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Abstract. A compiler introduced by Kalai et al. (STOC’23) converts any
nonlocal game into an interactive protocol with a single computationally-
bounded prover. Although the compiler is known to be sound in the case of
classical provers, as well as complete in the quantum case, quantum soundness
has so far only been established for special classes of games.

In this work, we establish a quantum soundness result for all compiled two-
player nonlocal games. In particular, we prove that the quantum commuting
operator value of the underlying nonlocal game is an upper bound on the
quantum value of the compiled game. Our result employs techniques from
operator algebras in a computational and cryptographic setting to establish
information-theoretic objects in the asymptotic limit of the security parameter.
It further relies on a sequential characterization of quantum commuting operator
correlations which may be of independent interest.

1. Introduction

A nonlocal game consists of two (or more) non-communicating players interacting
with a referee. In the game, the referee samples a question for each player, to which
each player replies with an answer. The referee decides if the players win or lose
based on the tuple of questions and answers. Since communication is not permitted
between players, each player has no information about the questions given to the
other players, nor do they know the answers provided to the referee by the other
players. Nevertheless, the description of the game is known to the players ahead
of time, allowing them to strategize and maximize their probability of winning the
game. The classical value ωc(G) of a nonlocal game G is the maximum winning
probability of players with classical resources (such as shared randomness). On the
other hand, the quantum value ωq(G) represents the maximum winning probability
of quantum players sharing a finite amount of quantum resources (such as entangled
quantum states, like EPR pairs). In the quantum setting, the no-communication
assumption can either be modeled by (i) spatially separating the player so that they
act on tensor product subsystems or (ii) requiring that the players’ actions commute
on the joint system. While these two conditions are equivalent when the state space
is finite dimensional, they are not when one allows infinite-dimensional systems.
This motivates the study of the (quantum) commuting operator value ωqc(G), which
denotes the maximum winning probability over strategies where the measurement
operators of the players commute.

Nonlocal games can be viewed as variants of Bell scenarios [Bel64] and been
successful in advancing our understanding of entanglement. In particular, have been
a productive framework for separating various sets of correlations arising from various
physical models. Notably, they have been used to discern the sets of classical and
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quantum correlations Cc ⊊ Cq [CHSH69], the sets of quantum correlations and their
closure (the quantum approximable correlations) Cq ⊊ Cqa [Slo17], and the sets of
quantum approximable and commuting operator correlations Cqa ⊊ Cqc [JNV+21].
Along the way, nonlocal games became an important topic in complexity theory,
through their connection to multiprover interactive proofs [CHTW04]. More recently,
nonlocal games have enabled new protocols to certify quantum computation in the
two-prover setting [RUV13, CGJV19, Gri19, JNV+21]. A fundamental question in
this area is whether two non-communicating provers are really necessary to build
such protocols. The single-prover setting, where a verifier interacts with a single
computationally-bounded prover, is both theoretically appealing and practically
motivated since the non-communication assumption can be difficult to enforce.

Motivated by this issue, Kalai, Lombardi, Vaikuntanathan, and Yang (KLVY)
proposed a generic procedure to transform any nonlocal game into a single-prover
protocol, replacing the no-communication assumption between players with a com-
putational assumption on the prover [KLVY23]. For instance, the KLVY compiler
translates a two-player game into a four-round game with a single player (prover)
and a referee (verifier). Questions are asked and answered sequentially, rather than
in parallel, and the leaking of information to the next round is prevented by crypto-
graphic assumptions as signaling in the other direction is prevented by the temporal
order of the game. To achieve the desired functionality the construction employs a
quantum homomorphic encryption scheme with classical messages [Mah18, Bra18].
This results in a quantum polynomial time (QPT) assumption on the prover, as any
prover with greater computational resources could break the security of the QHE
scheme, and leak information about the encrypted questions.

In addition to outlining the compilation procedure, Kalai et al. established
classical soundness and quantum completeness of the compiler, meaning that while
classical provers cannot exceed the classical value of the corresponding nonlocal game,
quantum provers can achieve the quantum value, in the asymptotic limit where the
security parameter λ of the underlying quantum homomorphic encryption scheme
tends to infinity. In particular this implies that any nonlocal game with ωc < ωq

can be converted into a protocol that classically verifies quantum advantage.
In this work we consider the problem of establishing soundness of the compiler

in the quantum setting. Quantum soundness means that the quantum value of
the compiled game is suitably bounded above by a quantum value for the original
game. A series of subsequent works established upper bounds on the quantum
compiled value for the CHSH game [NZ23], the class of XOR games [CMM+24,
BVB+24], tilted-CHSH scenarios [MPW24], and for self-tests on Pauli measurements
on maximally entangled states [MNZ24]. This enables an alternative and conceptual
attractie way to perform verification of BQP and QMA computations with a classical
verifier. Despite this progress, a general bound on the quantum value that applies
to all compiled nonlocal games remained elusive.

1.1. Main result and techniques. In this work, we show that the quantum value
of any compiled two-player nonlocal game is bounded by the quantum commuting
operator value of the underlying nonlocal game.

Theorem (Informal). For large enough security parameter, no quantum polynomial
time prover can win the compiled game with probability exceeding the quantum
commuting operator value of the game by any constant.
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In other words, we show that for any nonlocal game G,

ωq,max(Gcomp) ≤ ωqc(G),

where ωq,max(Gcomp) denotes the supremum of the winning probability of any
quantum polynomial time prover against the compiled game Gcomp, in the limit
that the security parameter tends to infinity. The definition of Gcomp is given in
Definition 4.2 whereas ωq,max(Gcomp) is defined in Definition 4.4. The formal results
are given in Theorem 6.1 and Corollary 6.2. Our theorem establishes quantum
commuting operator soundness for all compiled two-player nonlocal games.

Our main result relies on two key ideas. First, we present a new characterization
of quantum commuting operator correlations in terms of strategies for a sequen-
tial game, which serves as an idealization of the compiled game. We show that
quantum sequential strategies that satisfy a certain strong non-signaling property
give rise to quantum commuting operator correlations. We believe this alternative
characterization of commuting operator correlations may be of independent interest.

Our second idea concerns the observation that the strong non-signaling property
required in the idealized sequential game to obtain commuting operator correlations
is obtained only in the limit of the security parameter tending to infinity. To make
sense of compiled quantum strategies with respect to this limit we incorporate
mathematical tools from operator algebras. Specifically we show that the essential
part of the prover’s strategies can be captured by states on a universal C∗-algebra
and use a compactness argument to prove the existence of a limiting state. The
limiting state can be then shown to precisely satisfy the aforementioned non-signaling
like property, even though for every finite level of the security parameter it only
holds for efficient observables. This approach is reminiscent of proofs of completeness
for noncommutative optimization hierarchies such as the NPA hierarchy [NPA08].

1.2. Comparison with prior work. It is instructive to compare our result with
prior works that established quantum soundness in special cases. As mentioned
earlier, [NZ23] showed that the compiled value of the CHSH game was bounded by the
quantum value. This result was extended to all XOR nonlocal games in [CMM+24,
BVB+24]. The fact that these results appear to give tighter bounds on the compiled
value by the quantum value ωq rather than the commuting operator value ωqc,
but in fact both values coincide for the XOR case by a result of Tsirelson [Tsi87].
This coincidence is also apparent in the SOS proof techniques in [NZ23, CMM+24,
BVB+24], which naturally relate to the commuting operator value rather than the
quantum one. Nonlocal games with a sequential (temporal) separation rather than
a spatial one have also been investigated in the XOR case [CFE+24].

1.3. Organization of the paper. The remainder of the paper is organized as
follows: Section 2 covers preliminary material. Section 3 provides an overview of
nonlocal games, correlations, and the various values of those games in the spatially
separated setting. Section 4 details the KLVY compiler and the description of a
compiled nonlocal game, including a discussion of the value of a compiled nonlocal
game, and proves a key technical result. Section 5 establishes our equivalent
characterization of commuting operator correlations (as well as of classical and
quantum correlations) in terms of strategies for a sequential game that satisfy a
strong non-signaling property. Section 6 proves of our main result, establishing the
upper bound on the quantum value of a compiled nonlocal game.
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2. Preliminaries

In this section, we recap some preliminaries from mathematics and computer
science as well as fix our notation and conventions.

2.1. Vectors, operators, quantum mechanics. Let H be a (possibly infinite-
dimensional) Hilbert space. Elements of H are denoted by |v⟩ ∈ H. The inner
product ⟨·|·⟩ is linear in the second argument and induces the norm ∥v∥ =

√
⟨v|v⟩.

We denote by B(H) be the set of bounded (linear) operators on H. We let 1 denote
the identity operator, and denote the adjoint of an operator A ∈ B(H) by A∗. The
norm on B(H) is the operator norm ∥A∥ = sup∥v∥=1∥Av∥. For A,B ∈ B(H) the
commutator is denoted [A,B] = AB −BA. The commutant of a subset S ⊆ B(H)
is the set S ′ = {B ∈ B(H) : [B,A] = 0, for all A ∈ S}.

In quantum mechanics, physical systems are often identified with Hilbert spacesH,
and the states of the system are identified with positive semidefinite operators ρ with
unit trace, called density operators. A state is called pure if the density operator has
rank one, and otherwise it is called mixed. Any unit vector |v⟩ ∈ H determines a pure
state by the formula ρ = |v⟩⟨v|, and conversely any pure state can be written in this
way, hence the two concepts are often identified. The trace distance is the statistical
distance between the distributions associated with two density operators ρ and σ is
given by the formula 1

2∥ρ−σ∥1 = 1
2 tr(|ρ−σ|), where ∥·∥1 is the Schatten-1 norm and

the absolute value of an operator is defined by |A| :=
√
A∗A. A measurement with

a finite outcome set O is described by a collection of bounded operators {Aa}a∈O
acting on H such that

∑
a∈O A

∗
aAa = 1. If the system is in state ρ, then the

probability of obtaining outcome a is given by p(a) = tr(A∗aAaρ), after which the
state of the system is described by AaρA

∗
a/p(a). The probabilities of measurement

outcomes only depend on the operators Ma := A∗aAa. A collection of operators
{Ma}a∈O such as these which satisfy

∑
a∈OMa = 1 is called a POVM, which is

short for positive operator-valued measure, with outcomes in O. Any POVM arises
from a measurement. Observables are self-adjoint elements B = B∗ ∈ B(H), and
their quantum expectation value with respect to the state ρ is given by tr(ρB). This
can be related to the preceding if one takes O to be the set of eigenvalues of B
(assuming it is finite) and Aa as the corresponding spectral projections. We will
often discuss apparatuses with multiple measurement settings, labeled by some
index set I, but the same set of outcomes O for each setting. This will be denoted
by {{Max}a∈O : x ∈ I}, where {Mxa}a∈O is be a POVM (or measurement) with
outcomes in O for each x ∈ I. We often abbreviate and write this as {Mxa}a∈O,x∈I
when clear from context.

2.2. Algebras and representations. An algebra A over the complex number
is called a ∗-algebra if it is equipped with an antilinear involution, which for an
element A ∈ A will always be denoted by A∗, such that (AB)∗ = B∗A∗ for
all A,B ∈ A . In this work, every algebra we consider is unital, meaning it contains
an identity element 1. A C∗-algebra A is a ∗-algebra that is complete with respect
to a submultiplicative norm ∥·∥ that satisfies the C∗-identity ∥A∗A∥ = ∥A∥2 for
all A ∈ A . Examples to keep in mind are B(H) and any ∗-subalgebra of it that
is closed with respect to the operator norm, with the adjoint and operator norm
as defined above. A more abstract example will be introduced in Section 6 and
serve as a key ingredient to the proof of our main result. The commutant S ′ of
any subset S = S∗ ⊆ B(H) is always a C∗-algebra (it is even a von Neumann
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algebra). An element A ∈ A is called positive, denoted A ≥ 0, if it can be written
in the form A = B∗B for some B ∈ A . It is called a contraction if ∥A∥ ≤ 1; when
A is positive this can also be stated as A ≤ 1. A positive linear functional on a
C∗-algebra A is a linear functional ϕ : A → C such that ϕ(A) ≥ 0 whenever A ≥ 0.
Positive linear functionals are always bounded: it holds that ∥ϕ∥ = ϕ(1). Given
positive linear functionals ϕ, ψ, we write ϕ ≤ ψ to denote that ϕ(A) ≤ ψ(A) for all
A ≥ 0. A state on a C∗-algebra A is a positive linear functional that is also unital,
meaning that ϕ(1) = 1.

The formalism of C∗-algebras generalizes the usual formalism of quantum me-
chanics outlined above. For example, any density operator ρ acting on a Hilbert
space H gives rise to a state ϕ(·) = tr(·ρ) on the C∗-algebra A = B(H). The other
concepts of quantum mechanics generalize verbatim. For example, a measurement
on A consists of elements {Aa}a∈O ⊆ A such that

∑
aA
∗
aAa = 1, and so forth.

The Gelfand-Naimark-Segal (GNS) construction shows that, conversely, the abstract
world of C∗-algebras can always be realized concretely on a Hilbert space. It asserts
that for every C∗-algebra A and state ϕ : A → C, there exist a Hilbert space Hϕ,
a ∗-homomorphism πϕ : A → B(Hϕ), and a unit vector |νϕ⟩ ∈ Hϕ such that

ϕ(A) = ⟨νϕ|πϕ(A)|νϕ⟩

for all A ∈ A . Moreover, |νϕ⟩ is cyclic (meaning πϕ(A )|νϕ⟩ = H) and thereby
uniquely determined. We call (Hϕ, πϕ, |νϕ⟩) a GNS triple associated with ϕ. For
more information on C∗-algebras, we refer the reader to [Bla06].

Finally, we recall a result that applies to any normed vector space, but which we
will only use for C∗-algebras A . The Banach–Alaoglu theorem asserts that the unit
ball in the dual space, {ϕ : A → C : ∥ϕ∥ ≤ 1}, is compact in the weak-∗ topology.
When A is separable, this unit ball is even sequentially compact in this topology,
which concretely means the following: if {ϕn}n∈N is a sequence of functionals such
that ∥ϕn∥ ≤ 1 for all n ∈ N, then there exists a subsequence {ϕnk

}k∈N and a
functional ϕ such that limk→∞ ϕnk

(A) = ϕ(A) for all A ∈ A .

2.3. Classical and quantum computing. A function f : N→ R is called negligible
if for every k ∈ N there exists a n0 ∈ N such that for every n ≥ n0 it holds that
f(n) ≤ n−k. The sum of two negligible functions is negligible. Unless stated
otherwise, numbers are encoded as bitstrings using their binary representation. To
encode a number in unary representation, we use the notation 1n which refers to
the bitstring of length n that only consists of ones. We use the notation x← µ to
denote that x is drawn from a probability distribution µ, and x← A(y) to indicate
that x is obtained by running an algorithm A with input y.

A probabilistic polynomial-time (PPT) algorithm can be described by a proba-
bilistic Turing machine with a polynomial time bound, meaning that there exists
a polynomial p such that for every input x ∈ {0, 1}∗ the machine halts after at
most p(|x|) steps.

For quantum computations, we will use the quantum circuit model. Here,
computations correspond to the application of quantum circuits, which are unitary
operators that operate on the Hilbert space H = (C2)⊗k of some number k of qubits
and are given by the composition of unitary gates that each act nontrivially only
on (for definiteness) one or two qubits (taken from some fixed universal gate set).
The size of a quantum circuit is the number of gates used in the computation (we
assume all qubits are acted upon by at least one gate). The qubits are typically split
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into input qubits and auxiliary qubits, which are assumed to be initialized in the |0⟩
state, unless stated otherwise. If a classical outcome is desired, a subset of the qubits
is measured after the unitary circuit has been applied. A quantum polynomial-time
(QPT) algorithm consists of family of quantum circuits {Cλ}λ∈N and a deterministic
polynomial-time Turing machine that on input 1λ outputs a description of Cλ. We
can often interpret λ as a problem size or as a security parameter.

Any PPT algorithm can be converted into a QPT algorithm (with Cλ a quantum
circuit with λ input qubits that when given as input |x⟩ and if a suitable number of
qubits is measured, implements the same behavior as the PPT algorithm on any
bitstring x of length |x| = λ).

3. Nonlocal games and strategies

In this section, we briefly review nonlocal games along with the definitions of
classical, quantum, and (quantum) commuting operator strategies, correlations, and
values for these games. We also review the definition of non-signaling correlations.
Readers familiar with these concepts may proceed directly to Section 4.

3.1. Nonlocal games. In the following, let IA, IB ,OA, and OB be finite sets,
µ : IA×IB → R≥0 be a probability distribution, and V : OA×OB×IA×IB → {0, 1}
be a function.

Definition 3.1. A (two-player) nonlocal game is a tuple G = (IA, IB ,OA,OB , µ, V )
describing a scenario consisting of non-communicating players, Alice and Bob,
interacting with a referee. In the game, the referee samples a pair of questions
(x, y) ∈ IA × IB according to µ, sending question x to Alice and y to Bob. Then,
Alice (resp. Bob) returns answers a (resp. b) to the referee, who computes the rule
function V on the question-answer pairs (a, b, x, y) to determine if V (a, b|x, y) = 1
they win, or V (a, b|x, y) = 0 they lose.1

All the information about the game G is available to the player before the
game. This allows them to decide on a strategy beforehand. However, once
the game begins the players are not allowed to communicate. To the referee,
the behavior of the players can be modeled by the probabilities p(a, b|x, y) of
answers a, b given questions x, y as determined by the strategy. The collection of
numbers {p(a, b|x, y)}a∈OA,b∈OB ,x∈IA,y∈IB ∈ ROA×OB×IA×IB is called a (bipartite)
correlation. Thus, the probability of winning the game G under a strategy S, with
correlations p, is given by

(3.1) ω(G, S) = ω(G, p) =
∑

x∈IA,y∈IB

∑
a∈OA,b∈OB

µ(x, y)V (a, b|x, y)p(a, b|x, y).

Observe that the winning probability of a strategy is simply a linear function of the
corresponding correlation that it realizes.

Remark 3.2. Nonlocal games can also be viewed in the context of multiprover
interactive proofs. Here one thinks of the players as provers and the referee as a
verifier in an interactive protocol for a language. The winning probability of the
game is the acceptance probability of the verifier.

1We use the notation V (a, b|x, y) instead of V (a, b, x, y) to emphasize that this represents the
value of answers a, b given questions x, y.



A BOUND ON THE QUANTUM VALUE OF ALL COMPILED NONLOCAL GAMES 7

3.2. Strategies and correlations. One of the main purposes of nonlocal games
was to explore the effect of entangled non-communicating players in contrast to
classical players (players with no entanglement). We start with the definition of the
latter.

Definition 3.3. A classical strategy for a nonlocal game G consists of
(i) a probability distribution γ : Ω → R≥0 on a (without loss of generality)

finite probability space Ω, along with
(ii) probability distributions {pω(a|x) : x ∈ IA, ω ∈ Ω} with outcomes in OA

and {qω(b|y) : y ∈ IB , ω ∈ Ω} with outcomes in OB .
A correlation {p(a, b|x, y)} for which there is a classical strategy such that

p(a, b|x, y) =
∑
ω∈Ω

γ(ω) pω(a|x) qω(b|y),

for all a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB is called a classical correlation. The set of
classical correlations is denoted by Cc(IA, IB ,OA,OB) or simply as Cc when the sets
IA, IB ,OA,OB are clear from context. It is easy to see that Cc ⊆ ROA×OB×IA×IB

is a closed convex subset.

In quantum mechanics, spatially separated subsystems are often represented by
the tensor product of Hilbert spaces HA and HB . The pure states of the joint system
are the unit vectors |ψ⟩ ∈ HA ⊗ HB. Furthermore, if {Xa}a∈OA

and {Yb}b∈OB

are POVMs on HA and HB respectively, then {Xa ⊗ Yb}(a,b)∈OA×OB
describes the

joint measurement, with outcomes in OA ×OB . With this in mind, we can imagine
the players in a nonlocal game to be quantum players described in this way. The
players start out sharing a joint quantum state and, as they are spatially separated
and non-communicating once the game begins, any process by which they use the
quantum resource in the game can be modelled by POVMs (which can depend on
their given question) that the players employ to obtain their answers. If we assume
that the players have finite-dimensional Hilbert spaces at their avail, we arrive at
the following definition of a quantum strategy for a nonlocal game.

Definition 3.4. A quantum strategy for a nonlocal game G consists of
(i) Finite-dimensional Hilbert spaces HA and HB ,
(ii) a (without loss of generality) pure quantum state |ψ⟩ ∈ HA⊗HB , along with
(iii) POVMs {{Mxa : a ∈ OA} : x ∈ IA} acting on HA and POVMs {{Nyb : b ∈

OB} : y ∈ IB} acting on HB .
A correlation {p(a, b|x, y)} for which there exists a quantum strategy such that

p(a, b|x, y) = ⟨ψ|Mxa ⊗Nyb|ψ⟩
for all a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB is called a quantum correlation. The set of
quantum correlations is denoted by Cq(IA, IB ,OA,OB) or simply Cq.

Quantum strategies of particular interest are the entangled strategies. This is
because if the state in the quantum strategy is unentangled, then the resulting
correlation is always classical. It is easy to see that Cc ⊆ Cq, and the inclusion is in
general strict, as follows from the existence of nontrivial Bell inequalities [CHSH69,
Mer90, Per90].

The restriction to finite-dimensional quantum systems is not the only model. If
one allows the Hilbert spaces HA and HB to be infinite-dimensional, one gets the
set of spatial quantum correlations Cqs. Clearly, Cq ⊆ Cqs, and both sets are convex
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subsets ROA×OB×IA×IB . It turns out that in general, the inclusion is strict [CS20]
and neither set is closed [Slo17, DPP19, Col20, MR20, Bei21]. Moreover, both sets
have the same closure, denoted by Cqa and named the set of quantum approximable
correlations.

Another assumption that is not always warranted is the tensor product struc-
ture H = HA ⊗ HB of the joint Hilbert space. For instance, spatially separated
quantum systems in quantum field theory need not correspond to a tensor product
factorization, but are rather modelled mathematically by commuting subalgebras
A ,B ⊆ B(H) of observables on a single joint Hilbert space H. This perspective
gives rise to the following class of strategies.

Definition 3.5. A (quantum) commuting operator strategy2 for a nonlocal game G
consists of

(i) a Hilbert space H,
(ii) a (without loss of generality) pure quantum state |ψ⟩ ∈ H, along with
(iii) POVMs {{Mxa : a ∈ OA} : x ∈ IA} and {{Nyb : b ∈ OB} : y ∈ IB} acting

on H, such that [Mxa, Nyb] = 0 for all a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB .

A correlation {p(a, b|x, y)} for which there exists a commuting operator strategy
such that

p(a, b|x, y) = ⟨ψ|MxaNyb|ψ⟩

for all a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB is called a commuting operator correlation.
The set of commuting operator correlations is denoted by Cqc(IA, IB ,OA,OB) or Cqc.

The set of commuting operator correlations Cqc ⊆ ROA×OB×IA×IB is always a
closed convex subset [Fri12]. Since every quantum strategy is a commuting operator
strategy by properties of the tensor product, it follows that Cqa ⊆ Cqc. When the
Hilbert space H is finite-dimensional then any commuting operator strategy can
also be seen as an ordinary quantum strategy, but in general, this is not so. In fact
there exist commuting operator correlations which have no realization as a quantum
strategy, and hence Cq ⊊ Cqc [Slo16]. Whether the correlation sets Cqa and Cqc

were the same became known as Tsirelson’s Problem. This was recently resolved
in the celebrated work MIP∗ = RE [JNV+21] by the construction of a correlation
in Cqc with no realization in Cqa. In turn, this implied a negative resolution to
Connes’ Embedding Problem, following [Oza13, JNP+11].

Given that there are different models of physical correlations, it is interesting to
ask for conditions that any correlation should satisfy so that it can reasonably be
interpreted as a strategy of non-communicating players. One such condition is known
as the non-signaling property: it asserts that the marginal distribution of either
player’s answers must be independent of the other player’s question. Non-signaling
is easily verified to hold for all correlations defined so far.

Definition 3.6. A correlation p(a, b|x, y) is non-signaling if for all x, x′ ∈ IA,
y ∈ IB , and b ∈ OB , it holds that∑

a∈OA

p(a, b|x, y) =
∑

a∈OA

p(a, b|x′, y)

2These are also called quantum commuting strategies in part of the literature.
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and moreover for all x ∈ IA, y, y′ ∈ IB , and a ∈ OA, it holds that∑
b∈OB

p(a, b|x, y) =
∑
b∈OB

p(a, b|x, y′).

The set of non-signaling correlations is denoted by Cns(IA, IB ,OA,OB) or Cns.

To summarize, we have the following inclusion of convex sets, all of which are
known to be strict in general:

Cc ⊊ Cq ⊊ Cqs ⊊ Cqa ⊊ Cqc ⊊ Cns

Moreover, Cc, Cqa, Cqc, Cns are all closed, while Cq and Cqa are in general not.

3.3. Values of games. One of the original motivations for studying nonlocal games
was to understand when different types of strategies achieve different maximal
winning probabilities, as this can provide separations between the various correlation
sets. To this end, one defines the value of a game as the highest winning probability
for a given class of strategies or, equivalently, correlations.

Definition 3.7. Given a nonlocal game G and ⋆ ∈ {c, q, qc, ns}, we define

ω⋆(G) = sup
p∈C⋆

ω(G, p).

The quantity ωc(G) is called the classical value of the game, ωq(G) its quantum
value, ωqc(G) its commuting operator value, and ωns(G) its non-signaling value.

Clearly, the value only depends on the closure of the corresponding set of correla-
tions. In particular, ωq can equivalently be defined in terms of Cqs or Cqa. Given a
nonlocal game G it is immediate that

ωc(G) ≤ ωq(G) ≤ ωqc(G) ≤ ωns(G).
However, there also exist games G for which each of these inequalities is strict.
Indeed, the latter is equivalent to the statement that the closed convex sets Cc ⊊
Cqa ⊊ Cqc ⊊ Cns are in general distinct, as discussed above.3

4. Compiled nonlocal games

In this section we will review the construction from [KLVY23] that allows compil-
ing any multi-player nonlocal game into a single-prover interactive protocol, along
with the required cryptography. We will then prove a technical result that will be
key to our later analysis. It states that as the security parameter tends to infinity,
the average state of the prover after the first round of protocol becomes independent
of the first round’s challenge (question) in a precise sense (Proposition 4.6).

4.1. Quantum homomorphic encryption. We now define the notion of a quan-
tum homomorphic encryption scheme, which is the central component of the KLVY
compiler. For the purposes of their construction, only classical messages need to be
encrypted, and all ciphertexts should be classical. Moreover, one requires the capa-
bility to apply quantum circuits to homomorphically compute on such ciphertexts,
and in addition to the classical input and output, these quantum circuits may also
act on auxiliary input qubits (which are not encrypted).

3Veritably, the existence of certain nonlocal games G is how several of the strict inclusions
Cc ⊊ Cqa ⊊ Cqc ⊊ Cns were established.
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Because in this work we do not discuss families of games and their interplay with
the security parameter, we can assume that the set of allowed classical messages
(which will later correspond to Alice’s questions and answers) is a fixed finite set,
independent of the security parameter. We will denote this message set by M
and assume without loss of generality that it consists of bitstrings of some fixed
length ℓ ∈ N. Similarly, we may assume that the set of allowed quantum circuits,
which we denote by C, is a fixed (but possibly infinite) set independent of the
security parameter. Each circuit C ∈ C takes as input some number ℓ + aC of
input qubits, with the first ℓ qubits corresponding to the classical message (encoded
in the computational basis) and the remaining aC qubits serving as the auxiliary
input mentioned above. In the following definition, we also denote by SK the set of
classical secret keys and by CT the set of classical ciphertexts; both sets consist of
bitstrings.

Definition 4.1. Given sets of classical messages M and of quantum circuits C as
above, a quantum homomorphic encryption scheme is a tuple

QHE = (Gen,Enc, {EvalC}C∈C ,Dec)
consisting of algorithms with the following description:

• Key generation: Gen : {1λ}λ∈N → SK is a QPT algorithm that takes as
input the security parameter λ in unary, and returns a secret key.

• Encryption: Enc : SK×M→ CT is a QPT algorithm that takes as input a
secret key and a message, and returns a ciphertext.

• Homomorphic evaluation: For every quantum circuit C ∈ C, there is a QPT
algorithm EvalC : CT× (C2)⊗aC → CT that takes as input a ciphertext and
a quantum register on aC qubits, and returns a ciphertext.

• Decryption: Dec : SK× CT→ M is a QPT algorithm that takes as input a
secret key and a ciphertext, and returns a message.

We require that the following two properties hold:
• Correctness with auxiliary input: Recall that each circuit C ∈ C acts on a

Hilbert space of the formHM⊗HA, whereHM = (C2)⊗ℓ andHA = (C2)⊗aC .
For every quantum circuit C ∈ C, for every message m ∈ M, for every Hilbert
space HB , and for every quantum state |ψ⟩AB ∈ HA⊗HB , there should be a
negligible function η of the security parameter such that the states returned
by the following two games have trace distance at most η(λ), for all λ:

– Game 1: Apply CMA ⊗ 1B to |m⟩M ⊗ |ψ⟩AB. Measure register M to
obtain a bitstring m′. Return m′ and register B.

– Game 2: Sample a key sk← Gen(1λ) and encrypt using ct← Enc(sk,m).
Apply EvalC(ct, ·)⊗ 1B to |ψ⟩AB to obtain a ciphertext ct′. Decrypt
using m′ ← Dec(sk, ct′). Return m′ and register B.

• Security against quantum distinguishers: For any QPT algorithm A = {Aλ}
and any two messages m,m′ ∈ M, there is a negligible function η such that∣∣∣∣∣Pr

[
1← Aλ(ct)

Enc(sk,·)
∣∣∣∣ sk← Gen(1λ)
ct← Enc(sk,m)

]

− Pr

[
1← Aλ(ct)

Enc(sk,·)
∣∣∣∣ sk← Gen(1λ)
ct← Enc(sk,m′)

]∣∣∣∣∣ ≤ η(λ)
for all λ.
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It follows from [KLVY23, NZ23] that the quantum fully homomorphic encryption
schemes of [Mah20, Bra18] can be used to define QHE schemes in the sense of the
above definition (note that we require correctness only for a single C ∈ C at a time,
as the security parameter tends to infinity).

We allow all subroutines to be QPT even if they only have classical input and
output. This is not important for our result and only makes it stronger, since we
prove a bound that applies to any such scheme. We also note that while the EvalC

algorithms and the correctness with auxiliary input property are required to describe
the KLVY compiler and prove its correctness, they have no relevance to our result.

The security property demands that no adversary described by a QPT algorithm4

can distinguish between the encryption of any two fixed messages, with non-negligible
probability, even when given access to an encryption oracle. This in fact implies a
(seemingly stronger) security property, called parallel repeated IND-CPA security,
where the adversary can choose the two messages and also receives a polynomial
number of ciphertexts [NZ23].

4.2. The KLVY compiler. We now describe the compiler of [KLVY23]. It takes
as its input a nonlocal game (Definition 3.1) and a QHE scheme (Definition 4.1).
We assume from here onwards that the question and answer sets of the game are
encoded as bitstrings of some fixed length.
Definition 4.2 ([KLVY23]). Consider a nonlocal game G = (IA, IB ,OA,OB , µ, V )

and a quantum homomorphic encryption scheme QHE = (Gen,Enc, {EvalC}C∈C ,Dec)
with message set M ⊇ IA ∪ OA. The corresponding compiled nonlocal game Gcomp
describes an interactive protocol between a verifier and a prover exchanging classical
messages. They get as input the security parameter, encoded in unary, and proceed
as follows:

1. The verifier samples a question pair (x, y)← µ and a secret key sk← Gen(1λ).
They encrypt Alice’s question by ξ ← Enc(sk, x) and send the classical
ciphertext ξ to the prover.

2. The prover replies with some classical message α.
3. The verifier sends y unencrypted to prover.
4. The prover replies with another classical message b.
5. The verifier interprets α as a ciphertext and decrypts it as a← Dec(sk, α).

They accept if a ∈ OA, b ∈ OB , and V (a, b|x, y) = 1.
We only described the compiled version of a two-player nonlocal game, which is the

focus of the present work, but the compiler generalizes straightforwardly to any game
with k players (in which case 2k rounds of communication are required) [KLVY23].

In the compiled game, the verifier plays the role of the referee and the prover
plays the role of both Alice and Bob. In analogy to the nonlocal game, we will
denote by ωλ(Gcomp, S) the probability that the verifier accepts for a given value
of the security parameter λ ∈ N when interacting with a prover described by a
strategy S = {Sλ}, where Sλ denotes the strategy for fixed λ. Using (3.1), this can
also be written as

(4.1) ωλ(Gcomp, S) = ω(G, pλ) =
∑

x∈IA,y∈IB

∑
a∈OA,b∈OB

µ(x, y)V (a, b|x, y)pλ(a, b|x, y),

4QPT algorithms as defined in Section 2 are a uniform notion. A stronger requirement is
security against non-uniform QPT quantum adversaries, in which case one can also hope to get
stronger conclusions. This is indeed the case and we return to this point in Remark 4.5 below.
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where pλ(a, b|x, y) denotes the probability that the prover’s first reply under Sλ

decrypts to a and that their second reply is b, conditional on question pair (x, y).
Since a single prover plays the role of both Alice and Bob, this appears to be

in stark contraction to the no-communication requirement of nonlocal games. The
intuition that the compiled game can still be meaningful is as follows: because we
use encryption for Alice’s part but not for Bob’s, the prover should not be able to
usefully “correlate” the two messages, and might therefore be forced to act like a pair
of non-communicating players. Because the security of the cryptographic scheme
only applies to efficient adversaries, this can only be true if we similarly constrain
the prover’s computational power.

Just like in the case of the nonlocal games, there are different scenarios, depending
on whether we consider classical or quantum provers. Here we focus on the quantum
scenario, since [KLVY23] already proved that no classical efficient prover can exceed
the classical value of the nonlocal game. The following definition describes the
behavior of an efficient quantum prover in the compiled setting, analogously to
Definition 3.4 in the nonlocal setting.

Definition 4.3. A QPT strategy S = {(Vλ,Wλ)}λ∈N for a compiled game Gcomp
consists of two QPT algorithms {Vλ}λ∈N and {Wλ}λ∈N. It describes a quantum
prover that behaves as follows:

1. When receiving the ciphertext ξ ∈ CT, the prover applies Vλ to |ξ⟩ along
with a suitable number of |0⟩ states. They then measure a suitable number
of qubits and respond with the measurement outcome α.

2. When receiving the question y ∈ IB, the prover applies Wλ to |y⟩ along
with the post-measurement state of the preceding step. They again measure
a suitable number of qubits and respond with the measurement outcome b.

This definition is perhaps more precise, but also more cumbersome to work with
than the notation used in prior works, which instead described QPT strategies by
families {(Hλ, |ψλ⟩, {Aλ

ξα}, {Bλ
yb})}λ∈N, consisting of

• Hilbert spaces Hλ,
• states |ψλ⟩ ∈ Hλ,
• measurement operators of the form Aλ

ξα = Uλ
ξαP

λ
ξα, where all Uλ

ξα are
unitaries on Hλ and {Pλ

ξα}α∈CT is a projective measurement for any ξ ∈ CT,
• POVMs or projective measurements {Bλ

yb}b∈OB
for each y ∈ IB ,

subject to QPT assumptions that are less straightforward to state than above.
The relation is immediate: we take |ψλ⟩ to be the all-zeros states on a suitable
multi-qubit Hilbert space Hλ (but it can be any state that can be prepared by a
QPT algorithm), the projective measurements Pλ

ξα correspond to the first part of
Definition 4.3, the unitaries Uλ

ξα can be taken as the identity,5 and the operators Bλ
yb

correspond to the second part of Definition 4.3, that is,

Bλ
yb = (⟨y| ⊗ 1)W ∗λ (|b⟩⟨b| ⊗ 1)Wλ(|y⟩ ⊗ 1).(4.2)

We emphasize that unlike in the nonlocal case, there are no commutation conditions
imposed on the operators Aλ

ξα and Bλ
yb, nor is there any tensor product structure of

5This is without loss of generality: the unitaries Uλ
ξα can always be absorbed into the second

POVM, as |α⟩ is part of the post-measurement state and we can also keep a copy of |ξ⟩ in it.
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the Hilbert spaces Hλ. Using this notation, the probabilities pλ in (4.1) take the
following form for a QPT strategy:

pλ(a, b|x, y) = E
sk←Gen(1λ)

E
ξ←Enc(sk,x)

∑
α∈CT

Pr(a← Dec(sk, α)) ⟨ψλ| (Aλ
ξα)
∗Bλ

ybA
λ
ξα|ψλ⟩

Introducing positive (semidefinite) operators

σλ
xa = E

sk←Gen(1λ)
E

ξ←Enc(sk,x)

∑
α∈CT

Pr(a← Dec(sk, α))Aλ
ξα|ψλ⟩⟨ψλ|(Aλ

ξα)
∗,(4.3)

the correlations can also be written as

pλ(a, b|x, y) = tr(σλ
xaB

λ
yb).(4.4)

We note that tr(σλ
xa) is the probability that the first part of the prover replies

with a ciphertext that decrypts to a ∈ OA when given an encryption of x ∈ IA,
and σλ

xa/ tr(σ
λ
xa) is its post-measurement state in this case.

As in the nonlocal case, we can also define the value of a compiled game by
taking the maximum (supremum) over all possible QPT strategies. Any quantum
strategy S = {Sλ} gives rise to a sequence of acceptance probabilities {ωλ(Gcomp, S)}
as in Eq. (4.1). If we would like to define a single value then there are at least two
natural definitions.

Definition 4.4. Then we associate to of a compiled game G the following minimal
and maximal quantum values:

ωq,min(Gcomp) = sup

{
lim inf
λ→∞

ωλ(Gcomp, S)

∣∣∣∣ S = {Sλ} a QPT strategy for Gcomp

}
,

ωq,max(Gcomp) = sup

{
lim sup
λ→∞

ωλ(Gcomp, S)

∣∣∣∣ S = {Sλ} a QPT strategy for Gcomp

}
.

Both quantities are meaningful. A bound of the form ωq,min(Gcomp) ≥ θ shows that
efficient quantum provers are able to achieve an acceptance probability arbitrarily
close to θ, while ωq,max(Gcomp, S) ≤ θ means that no quantum prover can exceed
this acceptance probability by any constant, for large enough security parameter.
Clearly, ωq,min(Gcomp) ≤ ωq,max(Gcomp).

Any strategy for the nonlocal game can be converted into a prover for the compiled
game by using the homomorphic evaluation functionality of the encryption (assuming
it supports evaluating the necessary quantum circuits). Thus, for every quantum
strategy S for the nonlocal game G, there exists a QPT strategy Scomp = {Sλ

comp} and
a negligible function η such that ωλ(Gcomp, Scomp) ≥ ω(G, S) − η(λ) for all λ ∈ N.
This is one half of the main result [KLVY23, Thm. 3.2], and it implies that in
particular ωq,min(Gcomp) ≥ ωq(G). The other half of their theorem states that
efficient classical provers cannot exceed the classical value ωc(G) by a non-negligible
amount, as already mentioned earlier.

Remark 4.5. In this section, we consider quantum strategies that are defined in
terms of (uniform) QPT algorithms, in line with the prior works [NZ23, CMM+24]
and to emphasize that all reductions that will be discussed in the following are
uniform as well. In cryptography, one can also model adversaries by non-uniform
QPT algorithms, as mentioned earlier, and one can similarly define non-uniform
QPT strategies. It is easy to see that all our results hold verbatim for such strategies,
provided the QHE scheme is secure against non-uniform QPT adversaries.
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We note that while in this setting the appropriate definition of ωq,max is by
optimizing over non-uniform QPT strategies, ωq,min is still most naturally defined in
terms of uniform QPT strategies since this is the appropriate notion for an honest
prover to achieve a desired functionality.

4.3. Asymptotic security for any noncommutative polynomial. In the com-
piled game the prover gets Bob’s question after giving Alice’s answer. This implies
that the correlations pλ(a, b|x, y) are necessarily non-signaling from Bob to Alice, i.e.∑

b∈OB
pλ(a, b|x, y) =

∑
b∈OB

pλ(a, b|x, y′) for all x ∈ IA and y, y′ ∈ IB. Unlike in
the nonlocal case, however, it is not a priori clear to which extent these correlations
are non-signaling from Alice to Bob. However, the security property of the QHE
scheme readily implies that the post-measurement states (4.3) are computationally
indistinguishable when averaged over the possible measurement outcomes α. That
is, if we define the quantum states

(4.5) σλ
x =

∑
a∈OA

σλ
xa = E

sk←Gen(1λ)
E

ξ←Enc(sk,x)

∑
α∈CT

Aλ
ξα|ψλ⟩⟨ψλ|(Aλ

ξα)
∗.

then {σλ
x} and {σλ

x′} are computationally indistinguishable for any x, x′ ∈ IA,
meaning that no QPT algorithm can distinguish them with non-negligible probability.
This, in particular, implies that the correlations pλ(a, b|x, y) become non-signaling
from Alice to Bob in the limit λ→∞. That is, for any x, x′ ∈ IA and y ∈ IB , there
exists a negligible function η such that, for all λ,∣∣∣ ∑

a∈OA

pλ(a, b|x, y)−
∑

a∈OA

pλ(a, b|x′, y)
∣∣∣ = ∣∣∣tr(σλ

xB
λ
yb)− tr(σλ

x′Bλ
yb)

∣∣∣ ≤ η(λ),
because the POVM {Bλ

yb} is implemented by a QPT algorithm for every y ∈ IB .
However, the security property of the encryption scheme implies a much stronger

notion of computational non-signaling from Alice to Bob, as it makes a statement
about any efficient algorithm. In particular, we can prove the following result.

Proposition 4.6. Consider any compiled game and QPT strategy. Let x, x′ ∈ IA,
and let P = P ({Byb}) be a polynomial in noncommuting variables {Byb}y∈IB ,b∈OB

.
Then there exists a negligible function η such that, for all λ ∈ N,∣∣tr(σλ

x P ({Bλ
yb})

)
− tr

(
σλ
x′ P ({Bλ

yb})
)∣∣ ≤ η(λ),

where σλ
x is the prover’s average state after its first reply when given an encryption

of x ∈ IA, see (4.5), and where {Bλ
yb}b∈OB

are POVMs for y ∈ IB, corresponding
to the measurements that lead to the prover’s second reply, as defined in (4.2).

Proposition 4.6 is a generalization of [CMM+24, Lem. 21] and is proved in a
similar fashion, by using block encodings.

Definition 4.7. A block encoding of an operator M on (C2)⊗n is a unitary U
on (C2)⊗(m+n), for some additional number of qubits m ∈ N, such that

tH =
(
⟨0|⊗m ⊗ 1

)
U
(
|0⟩⊗m ⊗ 1

)
, i.e. U =

(
tH ∗
∗ ∗

)
for some t > 0 called the scale factor of the block encoding.

A QPT block encoding of a family of operators {Mλ} is a QPT algorithm {Uλ}
such that each Uλ is a block encoding of Mλ, with t and m independent of λ.
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The significance of this definition is as follows. On the one hand, the quantum
expectation value of an observable that admits a QPT block encoding can be
measured to any inverse polynomial precision, by a QPT quantum algorithm that
takes polynomially many copies of the state. Together with the security property of
the QHE scheme this implies the following.

Lemma 4.8 ([CMM+24, Lem 2.21], cf. [NZ23, Lem. 15-17]). Consider any compiled
game and QPT strategy. Let x, x′ ∈ IA, and let {Mλ}λ∈N be a family of observables
that admit a QPT block encoding and such that supλ ∥Mλ∥ <∞. Then there exists
a negligible function η such that, for all λ ∈ N,∣∣tr(σλ

x Mλ

)
− tr

(
σλ
x′ Mλ

)∣∣ ≤ η(λ),
where the states σλ

x are defined as in (4.5).

On the other hand, one can show that the families of POVM elements {Bλ
yb}λ∈N

have natural QPT block encodings, and moreover that the existence of QPT block
encoding is preserved by multiplication and taking linear combinations. This implies
that the family of operators defined by Mλ = P ({Bλ

yb}) has a QPT block encoding,
which in view of the preceding lemma essentially establishes the proposition. The
following proof makes this reasoning precise.

Proof of Proposition 4.6. It suffices to prove the claim for monomials since any
noncommutative polynomial is a finite linear combination of monomials.

We first note that for any fixed y ∈ IB and b ∈ OB , the POVM elements {Bλ
yb}

have a natural QPT block encoding. This follows from equation (4.2), by the
same reasoning as in [GSLW19, Lem. 26], which also shows that the resulting block
encodings have parameter t = 1 and m = N , where N denotes the total number of
bits in the binary representation of y and b.

Now suppose that P is a monomial of degree D and let Mλ = P ({Bλ
yb}). It

follows from [GSLW19, Lem. 30] that {Mλ} admits a QPT block encoding with t = 1
and m = DN , simply by concatenating the individual block encodings in a suitable
way (cf. [CMM+24, Lem 2.18]). Even though each POVM element is an observable,
the operators Mλ need not be Hermitian, so we cannot apply Lemma 4.8 directly.
Instead, we observe that it suffices to prove the claim for the observables Re(Mλ) =
(Mλ +M

∗
λ)/2 and Im(Mλ) = (Mλ−M∗λ)/(2ı). To this end, we first note that {M∗λ}

also admits a QPT block encoding with the same parameters as {Mλ}, as the
former family corresponds to the monomial obtained by reversing P . Then it follows
from [GSLW19, Lem. 29], by taking the controlled unitaries corresponding to these
QPT block encodings, along with fixed state-preparation pairs for the two desired
linear combinations, that the two families {Re(Mλ)} and {Im(Mλ)} admit QPT
block encodings (cf. [CMM+24, Lem 2.17]). Now the claim follows from Lemma 4.8,
the triangle inequality, and the fact that nonnegative linear combinations of negligible
functions are negligible. □

5. Sequential characterizations of nonlocal correlations

Motivated by the two-round structure of a compiled game, we consider sequential
games and strategies. Without further constraints, the resulting correlations can
even be signaling, but we identify an information-theoretic property motivated by
Proposition 4.6 that ensures that the resulting correlations are exactly quantum (in
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the finite-dimensional case) respectively commuting operator correlations (in the
infinite-dimensional case). We also give a classical version of this result.

5.1. Sequential games. We consider sequential games that are parameterized by
nonlocal games (Definition 3.1). Unlike in the nonlocal game, there is a single player
that plays the roles of both Alice and Bob.

Definition 5.1. Consider a nonlocal game G = (IA, IB ,OA,OB , µ, V ). The corre-
sponding sequential game Gseq describes a scenario of a single player interacting with
a referee. In the game, the referee samples a pair of questions (x, y) ∈ IA×IB accord-
ing to µ and sends question x to the player. The player returns an answer a ∈ OA.
Then the referee sends y to the player, who replies with an answer b ∈ OB . Finally
the referee computes V (a, b|x, y) to determine if the player wins or loses.

Remark 5.2. A sequential game can also be interpreted as a two-player game
where the first player can pass some information (depending on their question) to
the second player before the latter has to respond with their answer.

As in the nonlocal case, we can describe the player’s behavior by strategies
that determine the probabilities p(a, b|x, y) of answers a, b given questions x, y.
Thus, the probability of winning the game Gseq under a sequential strategy S, with
correlations p = {p(a, b|x, y)}, will be denoted by

ω(Gseq, S) = ω(G, p) =
∑

x∈IA,y∈IB

∑
a∈OA,b∈OB

µ(x, y)V (a, b|x, y)p(a, b|x, y).

Because of the temporal order in the sequential game, these correlations should
be non-signaling from Bob to Alice, meaning that for all x ∈ IA, y, y′ ∈ IB, and
a ∈ OA, it should hold that∑

b∈OB

p(a, b|x, y) =
∑
b∈OB

p(a, b|x, y′).

On the other hand, there is nothing imposed that prevents Alice from signaling Bob.

5.2. Classical strategies and correlations. While our main interest are quantum
strategies, we first discuss the classical case to build some intuition.

Definition 5.3. A classical strategy for the sequential game Gseq consists of
(i) probability distributions {p(a, ω|x) : x ∈ IA} with outcomes in IA × Ω,

where Ω is a (without loss of generality) finite set,
(ii) probability distributions {qω(b|y) : y ∈ IB , ω ∈ Ω} with outcomes in OB .

Such a classical strategy gives rise to a correlation

p(a, b|x, y) =
∑
ω∈Ω

p(a, ω|x) qω(b|y),

where a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB .

We note that ω ∈ Ω models the information that is preserved between the two
rounds of the game. While classical strategies for sequential games are always non-
signaling from Bob to Alice, they may even be signaling from Alice to Bob. However,
we can identify a natural property that ensures that the resulting correlations are
not only non-signaling, but in fact nonlocal classical correlations in the sense of
Definition 3.3: the distribution of ω should be independent of x.
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Proposition 5.4. Consider a classical strategy for Gseq and suppose that the
distributions p(ω|x) =

∑
a∈OA

p(a, ω|x) are the same for all x ∈ IA. Then the
resulting correlation is a nonlocal classical correlation, that is, in Cc.

Proof. Define a probability distribution γ(ω) := p(ω|x), which by assumption does
not depend on x ∈ IA, as well as probability distribution pω(a|x) := p(a, ω|x)/γ(ω)
for x ∈ IA and ω ∈ Ω (for γ(ω) = 0 the corresponding distributions pω can be
defined arbitrarily). Then it holds that

p(a, b|x, y) =
∑
ω∈Ω

p(a, ω|x) qω(b|y) =
∑
ω∈Ω

γ(ω) pω(a|x) qω(b|y),

which is precisely the form of a classical correlation. □

Conversely, any classical strategy for the nonlocal game (Definition 3.3) gives rise
to one for the sequential game that satisfies the hypotheses of Proposition 5.4. Simply
set p(a, ω|x) := γ(ω)pω(a|x) and use the same qω(b|y) as in the nonlocal strategy.

Corollary 5.5. The classical correlation set Cc consists precisely of the correlations
produced by classical sequential strategies satisfying the condition in Proposition 5.4.

Remark 5.6. The condition identified in Proposition 5.4 does not refer to the Bob
part of the strategy. If one takes Bob’s strategy into account then one can give
a sharper criterion – the distributions p(ω|x) should coincide when restricted to
the σ-algebra generated by the functions {ω 7→ qω(b|y)}b∈OB ,y∈IB . In the classical
case, the simpler condition is without loss of generality, but not so in the (infinite-
dimensional) quantum case.

5.3. Quantum strategies and correlations. Next, we move on to the quantum
case. We give a definition that applies in finite as well as infinite dimensions.

Definition 5.7. A quantum strategy for the sequential game Gseq consists of

(i) a Hilbert space H,
(ii) positive (semidefinite) operators {σxa}x∈IA,a∈OA

such that σx :=
∑

a∈OA
σxa

is a density operator (i.e., has unit trace) for every x ∈ IA, along with
(iii) POVMs {{Byb : b ∈ OB} : y ∈ IB} acting on H.

Such a quantum strategy gives rise to a correlation

p(a, b|x, y) = tr(σxaByb)

where a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB .

Note that this formula is precisely the same expression as in (4.4) for the correla-
tion determined by a QPT strategy.

Operators as in (ii) naturally arise as unnormalized post-measurement states for
quantum measurements. For example, given a state ρ and a collection of measure-
ments {{Axa}a∈OA

}x∈I , the operators σxa = AxaρA
∗
xa satisfy the assumption, as

do the operators {σλ
xa} defined in (4.3) for the compiled game (for any fixed λ).

This is immediate, but can also be verified by the following lemma.

Lemma 5.8. Let H be a Hilbert space, ρ be a state on H, and {Φxa}x∈IA,a∈OA
be

a collection of completely positive maps such that
∑

a∈OA
Φxa is trace-preserving for
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every x ∈ IA.6 Then the operators σxa = Φxa(ρ) satisfy the assumptions in (ii) of
Definition 5.7. Conversely, any collection of operators as in (ii) arises in this way.

Proof. The first claim follows directly from the trace-preserving assumption. For
the converse, take ρ to be an arbitrary state and define Φxa(·) = tr(·)σxa. □

Correlations produced by quantum strategies for sequential games are always
non-signaling from Bob to Alice, but not necessarily from Alice to Bob. We now
state the key property that allows us to ensure that the correlations are in fact
quantum respective commuting operator correlations for the nonlocal game, in the
sense of Definitions 3.4 and 3.5. As the states σx are analogous to the marginal
distributions p(ω|x) in the classical case, it is natural to demand that they are
identical in a suitable sense.

Definition 5.9. A quantum strategy for Gseq is strongly non-signaling if there
exists a C∗-algebra B ⊆ B(H) containing the operators {Byb}y∈IB ,b∈OB

such that
the following condition holds: for all x, x′ ∈ IA and for all B ∈ B, we have

tr(σxB) = tr(σx′B).(5.1)

We can always take B to be the C∗-algebra generated by the operators {Byb},
because it is contained in any other C∗-algebra that contains these elements. More-
over, by continuity it suffices to verify (5.1) on the dense set of noncommutative
polynomials in these operators.7 We record this useful observation.

Lemma 5.10. A quantum sequential strategy is strongly non-signaling if, and only
if, for every x, x′ ∈ IA and for every noncommutative polynomial P ({Byb}) in the
operators {Byb}y∈IB ,b∈OB

, it holds that

tr
(
σx P ({Byb})

)
= tr

(
σx′ P ({Byb})

)
.(5.2)

Note the similarity between the characterization in Lemma 5.10 and the statement
of Proposition 4.6. In Section 6 we will show how to connect the two in a precise way.
Because we will need to take the limit where the security parameter tends to infinity,
this will require us to consider infinite-dimensional strategies.

However, to build intuition we first consider finite-dimensional quantum sequential
strategies. In this case we can prove that the strong non-signaling property ensures
that these give rise to nonlocal quantum correlations in the sense of Definition 3.4.

Proposition 5.11. Consider a quantum strategy for Gseq that satisfies the strong
non-signaling condition. If dim(H) <∞, then the resulting correlation is a nonlocal
quantum correlation, that is, in Cq.

Proof. As explained in Remark 5.17 we may assume that B = B(H) and hence σx =
σx′ for all x, x′ ∈ IA, and therefore we let σ = σx. Let HA := COA ⊗ HA′

and HA′ := HB := H. We think of the operators σxa as acting on HB and choose
purifications |ψxa⟩ ∈ HA′ ⊗HB for each x ∈ IA and a ∈ OA. Then the states

|ψx⟩ :=
∑

a∈OA

|a⟩ ⊗ |ψxa⟩ ∈ HA ⊗HB

6A collection of completely positive maps {Ψa}a∈O such that
∑

a∈OA
Ψxa is trace-preserving is

called a quantum instrument. It describes the most general quantum evolution that has a classical
outcome (measurement result) as well as a quantum one (post-measurement state) [Wil17, §4.6.8].

7However, it does not suffice to only require that (5.1) holds for the generators B ∈
{Byb}y∈IB ,b∈OB

.
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are purifications of the same operator σ, which implies that there exist unitaries Uxx′

on HA such that |ψx⟩ = (Uxx′ ⊗ 1B)|ψx′⟩. Defining Pa := |a⟩⟨a| ⊗ 1A′ gives a
projective measurement {Pa}a∈OA

on HA. Fixing some x0 ∈ IA, we observe that

p(a, b|x, y) = tr(σxaByb) = ⟨ψx|Pa ⊗Byb|ψx⟩ = ⟨ψx0
|U∗xx0

PaUxx0
⊗Byb|ψx0

⟩,

which shows that p(a, b|x, y) is a quantum correlation, with Hilbert spaces HA,HB ,
initial state |ψx0⟩, and POVM elements Axa := U∗xx0

PaUxx0 and Byb for all a ∈
OA, b ∈ OB , x ∈ IA, and y ∈ IB . □

Conversely, any quantum strategy for the nonlocal game (Definition 3.4) gives
rise to one for the sequential game that satisfies the hypotheses of Proposition 5.11.
Simply let H = HB , σxa = trA((Mxa⊗1B)|ψ⟩⟨ψ|), and use the operators Byb = Nyb.
Then strong non-signaling is satisfied, e.g., for B = B(H).

Corollary 5.12. The quantum correlation set Cq consists precisely of the corre-
lations produced by finite-dimensional quantum sequential strategies satisfying the
strong non-signaling condition of Definition 5.9.

If we do not require the Hilbert space to be finite dimensional, we find that
the strong non-signaling condition precisely characterizes the commuting operator
correlations in the sense of Definition 3.5. To establish this result, it is useful to
define the following equivalent C∗-algebraic model.

Definition 5.13. A strongly non-signaling algebraic strategy for Gseq consists of
(i) a C∗-algebra B,
(ii) positive linear functionals ϕxa : B → C for x ∈ IA and a ∈ OA, along with
(iii) POVMs {Byb}b∈OB

in B with outcomes in OB for every y ∈ IB ,
such that there exists a state ϕ : B → C such that

∑
a∈OA

ϕxa = ϕ for every x ∈ IA.
Such a strategy gives rise to a correlation

p(a, b|x, y) = ϕxa(Byb)

where a ∈ OA, b ∈ OB , x ∈ IA, y ∈ IB .

Any quantum strategy for G can be converted into such an algebraic strategy,
provided it satisfies the strong non-signaling property for a C∗-algebra B. Simply
define the positive linear functionals ϕxa by ϕxa(B) := tr(σxaB) for all B ∈ B.
Thus the algebraic model is at least as general.

We now state the key result of this section. We will use it as an important
component in the proof of our main result in Section 6.

Theorem 5.14. For any strongly non-signaling algebraic strategy, the resulting
correlation is a nonlocal commuting operator correlation, that is, in Cqc.

In the proof of the theorem we will use the following version of the Radon-
Nikodyme theorem for C∗-algebras, which is well-known to experts in operator
algebras. We refer the reader to Section 2.2 for the concepts used in its statement.

Proposition 5.15 (Radon-Nikodyme theorem for C∗-algebras). Let ϕ and ψ be
positive linear functionals on a unital C∗-algebra B with ψ ≤ ϕ. Then there exists
a unique operator T ∈ πϕ(B)′ ∈ B(Hϕ), with 0 ≤ T ≤ 1, such that

ψ(B) = ⟨νϕ|Tπϕ(B)|νϕ⟩,
for all B ∈ B, where (Hϕ, πϕ, |νϕ⟩) is any GNS triple associated with ϕ.
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The version stated here is [Bla06, Prop. II.6.4.6] and we refer to this reference
for a concise proof.

Proof of Theorem 5.14. Observe that ϕxa ≤ ϕ for all x ∈ IA and a ∈ OA. Let
(Hϕ, πϕ, |νϕ⟩) be a GNS triple associated with ϕ. Then, by Proposition 5.15, for
each pair (x, a) there exists an operator Mxa ∈ πϕ(B)′ (in the commutant) such
that 0 ≤ Mxa ≤ 1 and we have ϕxa(B) = ⟨νϕ|Mxaπϕ(B)|νϕ⟩ for all B ∈ B.
Because Byb ∈ B for all y, b, it follows that, for all x, y, a, b,

p(a, b|x, y) = ϕxa(Byb) = ⟨νϕ|Mxaπϕ(Byb)|νϕ⟩ = ⟨νϕ|MxaNyb|νϕ⟩

where Nyb := πϕ(Byb) ∈ πϕ(B). Moreover, [Mxa, Nyb] = 0 because Mxa ∈ πϕ(B)′.
To conclude that p(a, b|x, y) is a commuting operator correlation, it remains to

argue that {Mxa}a∈OA
is a POVMs for each x ∈ IA and {Nyb}b∈OB

is a POVM for
each y ∈ IB . The latter follows from the fact that each {Byb}b∈OB

is a POVM and πϕ
is a ∗-homomorphism. For the former, it suffices to prove that

∑
a∈OA

Mxa = 1 for
every x ∈ IA because we already know that the operators Mxa are positive. To this
end, we observe that for any two elements E,F ∈ B, it holds that

⟨νϕ|πϕ(E∗)
∑

a∈OA

Mxaπϕ(F )|νϕ⟩ =
∑

a∈OA

⟨νϕ|Mxaπϕ(E
∗F )|νϕ⟩

=
∑

a∈OA

ϕxa(E
∗F )

= ϕ(E∗F ) = ⟨νϕ|ϕ(E∗)ϕ(F )|νϕ⟩

where we used that Mxa ∈ πϕ(B)′ and that πϕ is a ∗-homomorphism. Thus we have
⟨νϕ|πϕ(E∗)(

∑
a∈OA

Mxa − 1)πϕ(F )|νϕ⟩ = 0 for all E,F ∈ B. Since πϕ(B)|νϕ⟩ is
dense in Hϕ, we deduce that

∑
a∈OA

Mxa = 1, as desired, concluding the proof. □

Finally, any commuting operator strategy for the nonlocal game (Definition 3.5)
gives rise to a strongly non-signaling quantum strategy for the sequential game.
Simply use the same Hilbert spaceH, σxa =

√
Mxa|ψ⟩⟨ψ|

√
Mxa, the operators Byb =

Nyb, and let B denote the C∗-algebra generated by the operators {Byb}b∈OB ,y∈IB .
Then it is easily verified that strong non-signaling holds for B, noting that Mxa ∈ B′

(as we started from a commuting operator strategy) and hence the same is true for
its positive square roots

√
Mxa. Altogether we obtain the following corollary which

may be of independent interest.

Corollary 5.16. The commuting operator correlation set Cqc is equal to the cor-
relations produced by strongly non-signaling algebraic sequential strategies (Defini-
tion 5.13), as well as to the correlations produced by (possibly infinite-dimensional)
strongly non-signaling quantum sequential strategies (Definition 5.9).

Remark 5.17. Clearly, a quantum strategy is strongly non-signaling (Definition 5.9)
if σx = σx′ for all x, x′ ∈ IA. This condition is analogous to the one that we gave
in the classical case. If H is finite-dimensional then we can always reduce to
this situation, by replacing each σxa by its twirl over the unitary group of the
commutant of the C∗-algebra generated by the POVM elements. When H is infinite-
dimensional such a reduction is not possible, but the C∗-algebraic model described
in Definition 5.13 can serve as a useful substitute. We note that when B is finite-
dimensional and commutative, the latter reduces to the situation of Proposition 5.4.
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6. Upper bound on the quantum value of compiled nonlocal games

In this section we prove that the (maximal) quantum value of a compiled game
never exceeds the commuting operator value of the corresponding nonlocal game.
The basic idea is as follows. In Section 4, we showed that any QPT strategy of a
nonlocal game satisfies an analogue of the strong non-signaling condition discussed
in Section 5. More precisely, Proposition 4.6 states that (5.2) holds to arbitrary
precision when the security parameter tends to infinity, for any fixed polynomial in
the Bob POVMs. We would like to take a limit, but as the Hilbert spaces will depend
on the security parameter, we instead work with a single universal C∗-algebra. We
can then define a sequence of states on this algebra, which captures precisely all
information that can be accessed using the Bob POVMs, for every value of the
security parameter, and use compactness of the state space of a C∗-algebra to define
a limit where the strong non-signaling condition holds exactly. The result then
follows from Theorem 5.14.

We now describe the required C∗-algebra, which is often called the POVM algebra,
denoted A I,OPOVM, for finite sets I and O [PSZZ23]. It has elements {Bxa}x∈I,a∈O
which satisfy the relations 0 ≤ Bxa ≤ 1 and

∑
a∈O Bxa = 1 for each x ∈ I.

Importantly, it satisfies the following universal property : for any Hilbert space H̃
and any collection of POVMs {B̃xa} on H̃, there exists a unique ∗-homomorphism
θ : A I,OPOVM → B(H̃) sending Bxa 7→ B̃xa for all x ∈ I and a ∈ O. The POVM
C∗-algebras are separable as they are finitely generated.

Theorem 6.1. Let G be any two-player nonlocal game and let S be any QPT
strategy for the compiled game Gcomp. Then it holds that

lim sup
λ→∞

ωλ(Gcomp, S) ≤ ωqc(G)

As a direct consequence, we obtain the following upper bound on the (maximal)
quantum value of any compiled game (Definition 4.4).

Corollary 6.2. For any two-player nonlocal game G, we have ωq,max(Gcomp) ≤ ωqc(G).

We now prove the theorem.

Proof of Theorem 6.1. Recall from Eq. (4.4) that for each value of the security
parameter λ ∈ N there exists a Hilbert space Hλ, positive operators σλ

xa for x ∈ IA
and a ∈ OA such that each σλ

x :=
∑

a∈OA
σλ
xa is a state, and POVMs {Bλ

yb}b∈OB

for all y ∈ IB , such that the correlations take the following form:

pλ(a, b|x, y) = tr(σλ
xaB

λ
yb)

After passing to a subsequence, we may assume that the limit

lim
λ→∞

ωλ(Gcomp, S)

exists and is equal to the lim sup of the original sequence.
The theorem follows if we can show that there exists a further subsequence {λk}k∈N

such that the correlations pλk
converge to a commuting operator correlation. To

this end, let A IB ,OB

POVM denote the POVM C∗-algebra described above, with its
generators {Byb}. By the universal property, there exist ∗-homomorphisms

ϑλ : A IB ,OB

POVM → B(Hλ)
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such that ϑλ(Byb) = Bλ
yb for all λ, y, b. We can use these to define linear functionals

ϕλxa : A IB ,OB

POVM → C, ϕλxa(·) = tr(σλ
xaϑλ(·)).(6.1)

Observe that each ϕλxa is a positive linear functional of norm ∥ϕλxa∥ = ϕλxa(1) =
tr(σλ

xa) ≤ 1. Thus we can apply the Banach–Alaoglu theorem (Section 2.2) to
deduce that, for each x ∈ IA, a ∈ OA, the sequence {ϕλxa}λ∈N (and any subsequence
thereof) has a weak-∗ convergent subsequence. By iteratively passing to convergent
subsequences (recall that IA and OA are finite sets), we obtain a strictly increasing
subsequence {λk}k∈N and positive linear functionals ϕxa : A IB ,OB

POVM → C such that

lim
k→∞

ϕλk
xa(B) = ϕxa(B)(6.2)

for every x ∈ IA, a ∈ OA, and B ∈ A IB ,OB

POVM . Let ϕx :=
∑

a∈OA
ϕxa. These are

states, because
∑

a∈OA
ϕλxa(1) = tr(σλ

x) = 1 and hence also ϕx(1) = 1, by (6.2).
We now show that ϕx = ϕx′ for all x, x′ ∈ IA. To this end, take any fixed
polynomial P ({Byb}) in the generators Byb of A IB ,OB

POVM . Using Eqs. (6.1) and (6.2),

ϕxa(P ({Byb})) = lim
k→∞

ϕλk
xa(P ({Byb}))

= lim
k→∞

tr
(
σλk
xa ϑλk

(P ({Byb}))
)

= lim
k→∞

tr
(
σλk
xa P ({B

λk

yb })
)

and hence

ϕx(P ({Byb})) = lim
k→∞

tr
(
σλk
x P ({Bλk

yb })
)
.

Now Proposition 4.6 implies that ϕx(B) = ϕx′(B) for all x, x′ ∈ IA and any element
of the form B = P ({Byb}). Since these elements are dense in A IB ,OB

POVM , it follows
that ϕx = ϕx′ for all x, x′ ∈ IA. Thus we have proved that the C∗-algebra A IB ,OB

POVM
along with the functionals {ϕxa} and the operators {Byb} constitute a strongly
non-signaling algebraic strategy for the sequential game Gseq. Using Theorem 5.14,
we obtain that

p(a, b|x, y) = ϕxa(Byb)

is a commuting operator correlation. On the other hand, Eq. (6.2) implies that

lim
k→∞

pλk
(a, b|x, y) = p(a, b|x, y)

for all a, b, x, y. It follows that

lim
λ→∞

ωλ(Gcomp, S) = lim
k→∞

ωλk
(Gcomp, S) = lim

k→∞
ω(G, pλk

) = ω(G, p) ≤ ωqc(G),

and this concludes the proof of the theorem. □
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