
Generation of Authenticated Secret-Shared
Scaled Unit Vectors for Beaver Triples⋆

Vincent Rieder1,2[0009−0007−8694−7260]

1 University of Stuttgart
2 Bosch Research

For secure multi-party computation in the line of the secret-sharing based
SPDZ protocol, actively secure multiplications consume correlated randomness
in the form of authenticated Beaver triples, which need to be generated in ad-
vance. Although it is a well-studied problem, the generation of Beaver triples is
still a bottleneck in practice. In the two-party setting, the best solution with low
communication overhead is the protocol by Boyle et al. (Crypto 2020), which
is derived from the recent primitive of Pseudorandom Correlation Generators
(PCGs) (Crypto 2019). Their protocol requires less than 2 MB of communica-
tion to generate about 100 MB of Beaver triples (per party). In this work, we
improve their protocol in terms of communication (7%), computation (20% for
its interactive phase), and the amount of correlated randomness consumed by
internal secure two-party computations (11% storage). To achieve our improve-
ments, we propose a novel actively secure protocol for the efficient generation of
(authenticated) secret-shared scaled unit vectors, which in general are the main
building blocks of current PCG protocols.

1 Introduction

Secure multi-party computation (MPC) is a privacy-enhancing technology that
allows untrusted parties to evaluate a public function on private inputs with
the privacy guarantee that nothing is leaked beyond what the parties can learn
from their private inputs and outputs. We consider actively secure MPC in the
framework of the SPDZ protocol [15] for to evaluate arithmetic circuits over
finite fields. The SPDZ protocol has paved the way for practical and efficient
MPC protocols based on additive secret-sharing, where the underlying secret-
sharing scheme includes an authentication of secret-shared values to achieve
active security.

In our work, we consider the two-party setting. More broadly, secure two-
party computation with SPDZ induces a scenario for secure multi-party com-
putation, where several clients outsource a large-scale secure computation to a
secure two-party computation between two servers [13], e.g., cloud servers. In
this scenario, important cost factors are the bandwidth between the servers and
how the performance scales with the size of the function to be evaluated.
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For efficiency reasons, the SPDZ protocol works in the preprocessing model
where the secure function evaluation – that takes place in a so-called online
phase – consumes distributed correlated randomness that is generated in ad-
vance in an input-independent offline phase. While, in general, online phases are
designed to be highly efficient, offline phases are typically based on expensive
cryptographic constructions. In the scenario of SPDZ, one secure multiplication
in an online phase consumes correlated randomness in the form of one (authen-
ticated) Beaver triple, also known as authenticated multiplication triple. While
secure multiplications are highly efficient and use only a few bits of commu-
nication, offline phases for the generation of Beaver triples are proven to be a
bottleneck, in terms of computation and communication [20].

With our work, we contribute to improve the actively secure generation of
general-purpose two-party Beaver triples over a finite field. Common primitives
to generate Beaver triples are homomorphic encryption, as used by the initial
SPDZ protocol [4,14,15,26] and Overdrive [3,22], or oblivious transfer (OT) ex-
tensions used, e.g., used by MASCOT [21]. Other approaches benefit from switch-
ing from Beaver triples over a field to special-purpose Beaver triples over a ring
[17,25,28].

In contrast to all these work, we consider a recent two-party Beaver triple
generation protocol by Boyle et al. [10] that is constructed from a Distributed
Point Function (DPF) scheme [16,18] and the coding theoretic ring-LPN assump-
tion [10]. The construction follows the paradigm of Pseudorandom Correlation
Generators (PCGs) [6,9], which is a recent primitive to generate large batches of
correlated randomness with low communication. In this sense, the PCG approach
is specifically interesting in the out-sourcing scenario for the secure evaluation
of large-scales functions mentioned above. Concretely, for a batch of one million
Beaver triples (about 100 MB), the protocol from Boyle et al. [10] reduces the
communication from about 2 GB (required by Overdrive) to about 2 MB (per
party).

Apart from achieving low communication, the Beaver triple generation proto-
col [10] is expected to be practical efficient. However, compared to other Beaver
triple protocols and their implementation [22], for the practical performance of
the protocol by Boyle et al. [10] there exist only estimations. One performance
aspect is that their protocol relies on MPC in the preprocessing model, i.e.,
it consumes different types of correlated randomness that needs to be prepro-
cessed in advance and stored in between [8,10,19]. Since it is an open question
how much the preprocessing contributes to the performance in practice, we con-
sider the amount of consumed correlated randomness as a further performance
metric, next to computation and communication for the Beaver triple generation
protocol itself.

1.1 Why consider authenticated secret-shared scaled unit vectors?

Before we summarize our contributions, we motivate the role of authenticated
secret-shared scaled unit vectors inside the Beaver triple generation protocol
from Boyle et al. [10]. Shortly speaking, their protocol follows a template of
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recent PCGs [6,9] that states to encode the distributed target correlation into
a batch SUVs. These unit vectors are correlated in terms of their positions and
non-zero payloads [6], where the respective compression into their positions and
payloads enables to generate the SUVs with low communication. Concretely, the
Beaver triple generation protocol [10] consists of two parts: An interactive phase
to generate the SUVs (following a DPF scheme, see Section 1.3), and a silent
local phase to expand the SUVs into the target correlation (under the ring-LPN
assumption [10]). In our work, we improve the interactive phase by improving the
underlying actively secure SUV generation protocol by Boyle et al. [10] – setting
up a suitable coding theoretic assumption for an efficient and secure local phase
is another story [5,7,29].

Why consider authenticated SUVs instead of SUVs? The term SUV
refers to a secret-shared scaled unit vector, where each coefficient is individ-
ually additively secret-shared. While this is sufficient to keep its position and
payload, an SUV provides only passive security, i.e., a malicious party can intro-
duce errors in subsequent computations without being detected. As an actively
secure extension, we introduce authenticated SUVs (aSUVs), where each coeffi-
cient is additively secret-shared with an additional authentication that can be
used to verify subsequent secure computations against potential malicious behav-
ior. Concretely, for the authentication we use the message authentication code
(MAC) [14] as introduced with the SPDZ protocol. Then, using aSUVs instead
of SUVs enables a more compact presentation of the Beaver triple generation
protocol from Boyle et al. [10], where the explicit focus on aSUVs highlights our
improvements.

1.2 Contribution

We improve the Beaver triple protocol from Boyle et al. [10] in terms of commu-
nication, computation, and consumed correlated randomness. To achieve this,
we provide an explicit protocol to generate aSUVs, which improves the implicit
method that Boyle et al. [10] provide as part of their Beaver triple protocol.
Hereby, our starting point is to improve their SUV protocol.

Improved generation of SUVs: We reduce the communication costs of the
SUV protocol [10], while on the same time we keep the computational costs un-
changed. Furthermore, our SUV protocol consumes only correlated randomness
in the form of Beaver triples: Compared to the initial protocol [10], we avoid the
dependency on random VOLE correlations (vector oblivious linear equation) [2].
This has two practical advantages: Firstly, we avoid an actively secure prepro-
cessing stage to generate random VOLE correlations and secondly we avoid the
intermediate memory consumption to store the VOLE correlations.

Explicit and improved generation of aSUVs: We extend our improved
SUV protocol to an aSUV protocol that improves the proposal by Boyle et
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al. [10]. Hereby, our improvement of the SUV protocol can be seen as a prepara-
tory step, which applied to the aSUV generation even reduces the computational
costs. Our aSUV protocol only consumes correlated randomness in the form of
Beaver triples, avoiding the dependency on VOLE.

Improved generation of Beaver triples: The interactive phase of the Beaver
triple protocol from Boyle et al. [10] requires the generation of a few thousand
aSUVs to generate one million Beaver triples. The improvements we achieve with
our aSUV protocol are: 7% less communicating (a few hundred KB), 11% less
consumed correlated randomness (avoiding VOLE correlations with a few MB),
and 20% less computational costs for its interactive phase (hundred millions of
calls to the AES block cipher and hundred millions of field multiplications) for
one million Beaver triples. To give some context: On the one hand, one secure
multiplication in an online phase consumes one Beaver triple and takes five field
multiplications per party, on the other hand in the offline phase we save hundreds
of field multiplications per Beaver triple.

While our aSUV protocol does not consume VOLE correlations, this is ini-
tially not true for the Beaver triple protocol [10] itself. To actually avoid a pre-
processing stage for VOLE correlations, we introduce an efficient special-purpose
aSUV protocol that, compared to the general-purpose aSUV protocol, includes
to sample a uniformly random payload of the unit vector to be secret-shared.

We stress that our improvements of the aSUV generation only apply to the
interactive part of the Beaver triple protocol. However, we conjecture our im-
provements as asymptotically effective for the whole Beaver triple protocol, in-
cluding its local phase and the preprocessing stage for the consumed correlated
randomness.

1.3 Context: SUVs, DPFs, and PCGs

Difference between the generation of SUVs and DPF schemes: In or-
der to construct their actively secure Beaver triple protocol, Boyle et al. [10]
extend the passively secure DPF key generation protocol from Doerner and She-
lat [11,16] to be actively secure, using a consistency check [29]. However, the
security guarantees of their protocol are not compatible with the formalism of
a DPF scheme. Instead, they use the Universal Composability (UC) framework
[12] to formulate security by making a transition from a DPF key generation pro-
tocol to an SUV generation protocol. While SUVs and additively secret-shared
point functions are equivalent (in terms of their position and payload), the notion
of an SUV protocol is conceptually simpler than a DPF key generation protocol:
The SUV protocol from Boyle et al. [10] directly outputs a full secret-shared unit
vector, and not a respective compression in the form of private DPF keys. As a
consequence, the Beaver triple protocol [10] is strictly speaking not in the form
of a secure PCG [9]. Instead, the security is formulated in the UC-framework.

Related work for PCGs: Apart from inefficient general purpose constructions
[9], and a generalization to the multi-party setting [1], to our knowledge, the
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protocol from Boyle et al. [10] is the only two-party Beaver triple protocol in the
line of PCGs. Note that this protocol is for authenticated Beaver triples, whereas
for multiplication triples without authentication, as sufficient for passively secure
MPC, there exist simpler PCG constructions [9,10].

Instead of a DPF scheme, many PCG constructions [8,27,29] use a Pseudoran-
dom Puncturable Function [8], which is a, practically more efficient, relaxation
to generate a secret-shared scaled unit vector under the assumption that one
party knows the position. However, this relaxation does not apply to the gen-
eration of SUVs inside the Beaver triple protocol from Boyle et al. [10], where
all SUV positions need to remain secret. Shortly speaking, the reason is that
Beaver triples have a multiplicative depth of two due their authentication, and
hence their generation turns out to be more challenging and complex compared
to linear forms of correlated randomness like VOLE or oblivious transfer (OT).

2 Preliminaries

Let F be the generic term for a finite ν-bit field, where ν is a security parameter.

With s
$← S, we denote that s is sampled uniformly at random from a set S. We

write Sd (or Sd×d) for the set of d (or d2) dimensional vectors over S.

2.1 Secure Arithmetic from Authenticated Secret-Sharing

We restrict our work to the two-party setting and use the index σ ∈ {0, 1}
for secret values known by party Pσ. We use the following two authenticated
secret-sharing schemes with induced secure arithmetic:

Secret sharing over F: For secure arithmetic over F, we use secret-sharing as in
the SPDZ line of MPC [14,15]. Hereby, we write [x] for an additively secret-shared
value, i.e., x = x0+x1 ∈ F is decomposed uniformly random where Pσ knows xσ.
Then, to achieve active security, an authenticated secret-shared value JxK consists
of [x] and a message authentication code (MAC) [x′] = [mx], where m

$← F is
a global additively secret-shared MAC key. In Protocol 1 we describe secure
arithmetic over J·K, tailored to our work, e.g., including a definition of Beaver
triples for secure multiplications and protocols to input and output secret-shared
values.

Bit-wise secret sharing of integers: We write ∥α∥m for an m-bit integer
that is secret-shared by m individual authenticated bits with a MAC as defined
in the TinyOT protocol [24]. For our work, we need a secure integer addition
∥γ∥m+1 = ∥α∥m + ∥β∥m. Using a binary circuit, this is possible with 2m bits
of communication, consuming m AND triples (Beaver triples with respect to
∥ · ∥1)[10,19,23]. A batch of random secret-shared bits is also known as random
correlated OT (COT).
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Protocol 1 Secure arithmetic with J·K[10,14,15]
– The scheme J·K is linear, i.e., given shares JxK, JyK and public values ϵ, δ, ρ ∈ F, the

parties can locally compute a share of ϵx+ δ · y+ ρ, written JzK = ϵ · JxK+ JyK+ δ,
where (zσ, z

′
σ) = (ϵxσ + δyσ + σ · ρ, ϵx′σ + δy′σ +mσ · ρ).

– We write Input(Pσ, x) for the functionality to create a secret sharing JxK of a
value x known by Pσ. Using one entry u0+u1 = vσ ·m1−σ of VOLE correlation [2]
conditioned on m1−σ, this can be achieved with Pσ sending x− vσ to P1−σ. Then
the parties can locally compute their private shares (xσ, x

′
σ) = (x,mσ ·x+uσ) and

(x1−σ, x
′
1−σ) = (0,m1−σ · (x− vσ) + u1−σ) of JxK

– We write Open(JxK) for the functionality that securely reveals a secret-shared
value JxK. In a first step, the parties exchange xσ, i.e, P0 sends x0 to P1 and vice
versa. Additionally, the parties perform a MAC check to check if the revealed value
x was computed correctly and is consistent with JxK, by checking if x′ = mx. Since
the MAC check can be efficiently performed for many values at once, we do not
consider it in our evaluation.

– For a secure multiplication of two secret-shared values JxK, JyK, let JaK, JbK, JcK,
conditioned on a, b

$← F, c = a · b, be a so called Beaver triple. Then, the parties
call ϵ← Open(JxK− JaK), δ ← Open(JyK− JbK) and locally compute

JzK = δ · JxK + ϵ · JyK + JcK− ϵδ. (1)

– For a secure inversion, i.e. to compute a share Jx−1K = JxK−1 from a share JxK,
the parties take a Beaver triple JaK, JbK, JcK. Then they open x + a and compute
JyK = (x+a)JbK−JcK. Afterwards they open y and locally compute Jx−1K = y−1 ·JbK.
If x = 0 or b = 0, then y = 0 causes an abortion.

2.2 (Authenticated) Secret-Shared Scaled Unit Vectors

We extend J·K to vectors over FM , where each coefficient is secret-shared indi-
vidually, written J·KFM . Then an (a)SUV is a secret-shared vector from the set
UM ⊂ FM of scaled unit vectors, i.e., from the set of vectors that are zero except
for one position α ∈ [0,M) where they take a payload A ∈ F. Formally:

Definition 1. A secret-shared scaled unit vector (SUV) is a secret-shared vector
[x]UM

:= [x]FM with x ∈ UM . An authenticated secret-shared scaled unit vector
(aSUV) is a secret-shared vector JxKUM

≃ ([x]UM
, [x′]UM

) with x ∈ UM .

With the term two-dimensional SUV, we refer to a pair of SUVs [x]UM
, [y]UM

that have the same position.

The Protocol ΠBoyle
SUV : We now summarize the actively secure SUV protocol

from Boyle et al.[10], named ΠBoyle
SUV . Additionally, we provide a formal presenta-

tion in Protocol 7, Appendix A.1. The purpose of ΠBoyle
SUV is to generate an SUV

[x]UM
of dimension M = 2m, given a secret-shared position ∥α∥m and payload

JAK. For our work, we divide ΠBoyle
SUV into three parts: A tree phase, which pro-

cesses the position α, a verification phase to detect malicious behavior, and a
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payload correction phase, which processes the payload A. The tree phase runs
through a PRG-based binary tree of depth m and outputs private left and right

vectors (tLσ , t
R
σ )

$← FM × FM , under the condition that [tL]UM
, [tR]UM

are two

SUVs with the same position α and secret payloads (uL, uR)
$← F×F. We treat

the tree phase as a black box, for an intuition see Appendix A.1. Under the
premise to keep α and A secret, the next two phases are over F (field phase for
short):

1. Verification: The tree phase contains passively secure parts that allow an
adversary to break the SUV structure of [tL]UM

, [tR]UM
. To prevent such

attacks on [tL]UM
, the field phase uses [tR]UM

to verify that [tL]UM
∼= [tL]FM

is indeed in the form of an SUVs. If not, it aborts. By the means of the
authenticated secret sharing scheme ∥·∥m, the tree phase then already implies
the correctness of the position α. Additionally, the verification procedure
provides the payload uL of tL in authenticated secret-shared form JuLK.

2. Payload Correction: To actually transform tL into the output SUV [x]UM

with payload A, the random payload uL has to be corrected. Concretely, the
payload correction is a linear operation [x] = CWL · [tL]UM , where CWL =
A
uL is securely computed over J·K. If it happens that uL = 0, which has
negligible probability in ν, the protocol requires a restart.

Costs of ΠBoyle
SUV : The protocol ΠBoyle

SUV inherits the asymptotic costs from previ-
ous DPF schemes [11,16]. More precisely, the costs to generate anM dimensional

SUV with ΠBoyle
SUV are distributed between the tree phase and the field phase as

follows:

– The computational costs of the tree phase are dominated by 2M calls to
a PRG with security parameter λ, e.g., realized with 4M calls to the AES
block cipher [16]. The communication costs of the tree phase are O(mλ),
and it does not consume any correlated randomness.

– For the field phase, the secure arithmetic over J·K takes O(ν) communica-
tion and consumes a constant number of Beaver triples and VOLE. Roughly
30% of the communication is given by calls of Input (Protocol 1). The
computation is dominated by 3M field multiplications (3 scalar-vector mul-
tiplications).

The Protocol ΠBoyle
aSUV: The actively secure Beaver triple protocol [10] involves

the generation of aSUVs. Hence, although Boyle et al. [10] do not formalize
aSUVs as a primitive, they provide a method to generate aSUVs (Section 1.1),

which we formalize as protocol ΠBoyle
aSUV (Protocol 7). Given a position ∥α∥m,

payload JAK and MAC key JmK, the aSUV protocol ΠBoyle
aSUV computes JA′K =

JmK·JAK and then generates a two-dimensional SUV with position α and payload
(A,A′). The straightforward approach to generate this two-dimensional SUV is

to make two calls to ΠBoyle
SUV . Instead to be more efficient, Boyle et al [10] remark
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Protocol 2 Ideal Functionalities for the SUV and aSUV generation [10]

Blue statements refer only to aSUV.

aSUV(∥α∥m, JAK, JmK):

– If both parties are honest: Exclude the trivial SUV with zero payload, i.e., if
A = 0, output ”A = 0” to both parties and abort. Exclude the trivial MAC, i.e.,

if m = 0, output ”m = 0” to both parties and abort. Sample x0
$← FM and let

x1 = (0, . . . , 0, A, . . . , 0) − x0, where A is in position α. Sample x′0
$← FM and let

x1 = (0, . . . , 0,mA, . . . , 0) − x0, where mA is in position α. For σ ∈ {0, 1} output
xσ, x

′
σ to party Pσ. Note that this defines an SUV [x]FM (aSUV JxKFM ).

– If party Pσ is malicious: Wait for input xσ ∈ FM and x′σ ∈ F from Pσ. Wait for
a predicate P : [0,M)] → {0, 1} from Pσ. If P (α) = 0, abort. If A = 0, output
”A = 0” to both parties and abort. If m = 0, output ”m = 0” to both parties
and abort. Set x1−σ = (0, . . . , 0, A, 0, . . . 0) − xσ, where A is in position α. Set
x′1−σ = (0, . . . , 0,mA, 0, . . . 0) − x′σ, where mA is in position α. Output ”success”
to the adversary and x1−σ, x

′
1−σ to P1−σ.

how to extend ΠBoyle
SUV . For this, the tree phase outputs a third SUV [tL

′
]UM

,
which is then mapped to the second output component. In between, the field
phase verifies the SUV structure of [tL

′
]UM

, analogously to [tL]UM
with respect

to the same [tR]UM
.

Security of ΠBoyle
SUV and ΠBoyle

aSUV: In the best case,ΠBoyle
SUV would implement the

ideal functionality that samples a random SUV given its position and payload.
However, ΠBoyle

SUV tolerates two sorts of malicious behavior. Since this will be
similar for our improved protocols, we present the achieved ideal functionalities
SUV, aSUV in Protocol 2. Firstly, a malicious party can control its share xσ of
the output SUV [x]UM

and secondly, within the verification step, it can take an
arbitrary guess on the position α of x by passing a guess function P : [0,M)→
{0, 1}. Then, SUV aborts if and only if P (α) = 0, otherwise it continues. Since
in the successful case the information α ∈ I = {β ∈ [0,M) | P (β) = 1} is leaked,
we denote this as selective failure attack. We stress that the respective leakage
can be caught up in the application of the Beaver triple protocol [10], especially
since the risk to be detected is higher for smaller, and hence more interesting,
sets I. Formally the security guarantees of ΠBoyle

SUV , ΠBoyle
aSUV are:

Theorem 1 ([10]). Protocol ΠBoyle
SUV securely implements the functionality SUV

with security against malicious adversaries in the UC-model. Similarly, ΠBoyle
aSUV

securely implements aSUV.
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3 Improved Generation of SUVs and aSUVs

In this section we construct improved (a)SUV protocols ΠSUV, ΠaSUV (Proto-

col 4). We first outline how we modify ΠBoyle
SUV to achieve our improvements.

(Section 3.1). Afterwards we describe our protocols (Section 3.2). We reveal the

formal relation to the protocol ΠBoyle
SUV as part of the security proof in Section 3.3.

3.1 Outline of our Modifications to ΠBoyle
SUV

To improve the generation of SUVs and aSUVs, we extend ΠBoyle
SUV into a protocol

for the generation of two-dimensional SUVs. Our improvement is better than the
respective extension of ΠBoyle

SUV that Boyle et al. [10] use for ΠBoyle
aSUV. Concretely,

we achieve the following:

1. Symmetric Verification: The verification makes only use of two internal
SUVs [tL], [tR], in a symmetric way. Compared to the two-dimensional ex-
tension by Boyle et al. [10], the symmetry allows us to avoid the additional
component tL

′
and the respective computational costs.

2. Avoiding calls to Input: We avoid calls to Input, i.e., the respective
communication, and the storage and preprocessing of VOLE correlations.

As a result, if we ignore the second output dimension, we get an SUV pro-
tocol ΠSUV with decreased communication costs compared to ΠBoyle

SUV (Item 2).
Furthermore, if we restrict the two-dimensional payloads to the form (A,mA),
we get an aSUV protocol ΠaSUV with decreased computational and communi-

cation costs compared to ΠBoyle
aSUV (Item 1). We now outline how we modify the

verification phase of ΠBoyle
SUV to achieve the above improvements.

Symmetric verification: The verification procedure of ΠBoyle
SUV is asymmetric:

While the left component “L” is related to the output, the right component “R”
is only used internally for the verification (Section 2.2). For this, ΠBoyle

SUV reveals
the random payload uR of tR. Instead, we modify the verification procedure to
be symmetric with respect to tL, tR such that it does not reveal any information
about tR. As a result, tR can be additionally mapped to the output, i.e., we
make a transition from SUVs to two-dimensional SUVs without the need of
an additional component L′. Instead, the additional cost that we need for the
transition is only one secure multiplication.

Avoiding calls to Input: To keep α and A secret, the verification of tL, tR in
ΠBoyle

SUV takes place as secure computation over J·K, which requires to translate
private information about the unauthenticated SUVs [tL], [tR], e.g., sums of their

individual private shares, to the scheme J·K. In ΠBoyle
SUV the private unauthenti-

cated inputs are turned into authenticated secret-shared values J·K with calls to
Input (Protocol 1). We point out that any deviation on tL, tR will be detected
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Protocol 3 Secure multiplication of unauthenticated factors

INPUT: [x]F, [y]F
OUTPUT: JxK, JyK, JzK with z = x · y.

Let JaK, JbK, JcK be a Beaver triple, i.e., c = a · b.
Locally, the parties compute ϵσ = xσ − aσ and δσ = yσ − bσ. Then they exchange
ϵσ, δσ and locally compute ϵ = ϵ0 + ϵ1, δ = δ0 + δ1. The computation of JzK is local
and given by Eq. (1). Additionally, the parties locally reshare x, y in authenticated
form: JxK = JaK + ϵ, JyK = JbK + δ.

SECURITY: Since [x] and [y] are unauthenticated additive secret-shared, a malicious
party might introduce additive errors ∆x,∆y. In this case, the output is Jx+∆xK, Jy+
∆yK, J(x +∆x) · (y +∆y)K, i.e., the outputs are always bounded to each other by the
product property.

by the verification procedure itself. Hence, it is redundant to authenticate the
information about tL, tR in advance of the verification. Instead, we provide a
method which implicitly inputs the information about tL, tR during secure mul-
tiplications that are part of the the verification itself, such that we can avoid
previous calls to Input without any additional costs.

To incorporate the calls of Input into the secure multiplications, we use an
adapted form of a secure multiplication. Normally, the purpose of a secure mul-
tiplication is to compute JxyK, given JxK, JyK (see Protocol 1). Instead, we use a
secure multiplication that computes JxyK, JxK, JyK, given unauthenticated shares
[x], [y] (see Protocol 3). Within Π(a)SUV the context is that the unauthenticated

factors are derived from the unauthenticated SUVs [tL]UM
, [tR]UM

. The product
JxyK is used for the verification of tL, tR, while the authenticated factors JxK, JyK
are used for the payload correction step afterwards. Hereby x, y are bound to
the verification by the means of the authentication. Note that since the inputs
[x], [y] are unauthenticated, a malicious party can introduce errors to JxK, JyK.
However, in the context of Π(a)SUV this turns out not to be an security issue,

since, apart from the selective failure attack (Section 2.2), potential errors are
detected by the verification (see Section 3.3).

We stress that to avoid all calls of Input, we require that the verification
is symmetric: Initially, the asymmetric verification within ΠBoyle

(a)SUV takes local

inversions in F. By making the verification symmetric, we turn these inversions
into a secure multiplication, such that we can apply Protocol 3.

3.2 The Protocols ΠSUV and ΠaSUV

We now describe our protocols ΠSUV, ΠaSUV, which are depicted in Protocol 4.

The structure of ΠSUV is identical to the structure of ΠBoyle
SUV . As input ΠSUV

takes a secret-shared position ∥α∥m and payload JAK. The first step is to call

the tree phase of ΠBoyle
SUV to get private vectors tLσ , t

R
σ (Appendix A.1). Under
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the assumption of an honest execution, these define two SUVs [tL]UM
, [tR]UM

with position α and uniformly random payloads uL, uR. Afterwards, to detect
malicious behavior, the verification phase verifies the structure of tL, tR, and
additionally provides uL, uR in secret-shared form JuLK, JuRK. In the final phase,
the payload uL of tL is corrected to A, such that the output [x]UM

is as specified
by the inputs α,A. Furthermore, since our verification keeps uR secret, we get
ΠaSUV almost for free: It only requires an additional payload correction [x′]UM

=
Am
uR · [tR] for the MAC component x′.

Symmetric verification: To check that [tL]FM , [tR]FM are indeed SUVs [tL]UM
,

[tR]UM
with the same position α, the verification of Π(a)SUV computes a check

value Z ∈ F that is, up to some negligible probability in the field size ν,
zero if and only if tL, tR are scaled unit vectors with the same position α. If
Z ̸= 0, the protocols Π(a)SUV abort, else they continue. We now derive the
definition of Z. For a description how Π(a)SUV uses Protocol 3 to actually com-
pute Z, we refer to the next paragraph. Remember, that the verification has to
be done without revealing information about the secret position α. Hence, the
parties operate on sums that uniformly depend on all M coefficients of tL, tR.

Concretely, given a public random vector r
$← FM , the parties compute lo-

cal sums uLσ , u
R
σ , v

L
σ , v

R
σ (see Protocol 4). In other words, they create additively

secret-shared sums [uL], [uR], [vL], [vR], for which, under the assumption that
[tL]UM

, [tR]UM
are honestly computed SUVs with position α, all summands of

the form tL,i0 + tL,i1 , i ̸= α, cancel out. In formulas that means

uL = tL,α uR = rα · tR,α vL = rα · tL,α vR = rα · tR,α. (2)

Especially it holds that, if [tL], [tR] are in the form of SUVs, then uL, uR are equal
to their payloads. Furthermore it follows that the check value Z := uLvR−uRvL
fulfills the requirement of the verification: If [tL], [tR] are SUVs with the same
position α, then Z = 0. Conversely, if tL, tR ̸∈ UM , or if they do not have the
same position α, then the terms in Eq. (2) do not collapse, in the sense that
uL, uR, vL, vR depend on more than the two coefficients tL,α, tR,α. But then, the
randomization with r ensures that Z ̸= 0 with overwhelming probability in ν.

Realization of the verification without calls to Input: To actually com-
pute Z = uLvR − uRvL, the protocols Π(a)SUV make use of the secure multi-

plication in Protocol 3. Concretely, we separately consider the products ZL =
uLvR, ZR = uRvL and use two secure multiplications to compute JZLK and JZRK,
without the need to authenticate the values uLσ , u

R
σ , v

L
σ , v

R
σ in advance. The first

multiplication takes a Beaver triple JaLK, JbLK, JcLK to compute JZLK, JuLK, JvRK,
given [uL]F, [v

R]F. Analogously, the second multiplication takes a Beaver triple
JaRK, JbRK, JcRK to compute JZRK, JuRK, JvLK, given [uR], [vL]. Hereby, for secu-
rity reasons (see Section 3.3), the parties have to commit to the shares JuLK, JuRK
before sampling the public randomness r. Hence, the verification phase in Pro-
tocol 4 distributes the individual steps of Protocol 3 and proceeds as follows:
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Protocol 4 Protocols ΠSUV and ΠaSUV (Π(a)SUV)

Blue statements refer only to ΠaSUV. All interactive parts are framed.
INPUT: Secret shared position ∥α∥m, payload JAK and MAC key JmK.
OUTPUT: [x]UM , [x′]UM with position α and payload A, m ·A (where M = 2m).

Let JaLK, JbLK, JcLK and JaRK, JbRK, JcRK be two Beaver triples, e.g., cL = aL · bL.

1. TREE PHASE

Process ∥α∥m to get tLσ , t
R
σ ∈ FM (Section 2.2)

2. VERIFICATION

uL
σ =

∑M−1
j=0 tL,j

σ

uR
σ =

∑M−1
j=0 tR,j

σ

The parties exchange uL
σ − aLσ to compute ϵL = (uL

0 − aL0 ) + (uL
1 − aL1 )

The parties exchange uR
σ − aRσ to compute ϵR = (uR

0 − aR0 ) + (uR
1 − aR1 )

Then let JuLK = JaLK− ϵL and JuRK = JaRK− ϵR

Sample public randomness (r0, . . . , rM−1)
$← FM

vLσ =
∑M−1

j=0 rj · tL,j
σ

vRσ =
∑M−1

j=0 rj · tR,j
σ

The parties exchange vLσ − bLσ to compute δL = (vL0 − bL0 ) + (vL1 − bL1 )
The parties exchange vRσ − bRσ to compute δR = (vR0 − bR0 ) + (vR1 − bR1 )

Then let JvLK = JbLK− δL and JvRK = JbRK− δR
JZLK = δR · JuLK + ϵL · JvRK + JcLK− ϵL · δR
JZRK = δL · JuRK + ϵR · JvLK + JcRK− ϵR · δL

Z ← Open(JZLK− JZRK)

If Z ̸= 0, abort

3. PAYLOAD CORRECTION

JCWLK = JuLK−1 · JAK, JCWRK = JuRK−1 · JmK · JAK
CWL ← Open(JCWLK), CWR ← Open(JCWRK)

If CWL = 0 or CWR = 0, abort
Return [x]FM = CWL · [tL]FM and [x′]FM = CWR · [tR]FM
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1. Exchange ϵL, ϵR, which commits the parties to uLσ , u
R
σ . Afterwards, the par-

ties locally compute authenticated shares JuLK, JuRK.
2. Sample r (to locally compute vLσ , v

R
σ ).

3. Exchange δL, δR, which commits the parties to vLσ , v
R
σ . Afterwards, the par-

ties locally compute authenticated shares JvLK, JvRK.
4. Follow Eq. (1) to locally compute JZLK, JZRK. Then open Z = ZL − ZR to

check if Z is zero.

Altogether, the protocol Π(a)SUV aborts, if there is a malicious behavior, i.e., if

– Z ̸= 0, which can have two reasons: Either there was a corruption about
tL, tR in the tree phase, i.e., if the SUVs [tL], [tR] are broken (see Eq. (2)
cf.), or a malicious party Pσ provided erroneous values for uLσ , u

R
σ , v

L
σ , v

R
σ .

For the converse situation, i.e., if it can hold Z = 0 although the values
uLσ , u

R
σ , v

L
σ , v

R
σ are corrupted, we refer to Section 3.3.

– the opening of Z failed, i.e., if a malicious party cheated during the secure
computation with J·K (see Open, Protocol 1).

Otherwise the verification was successful, i.e., it detects no malicious behavior,
and the protocol Π(a)SUV continues with the payload correction phase.

Payload correction step: The payload correction phase of ΠSUV is identical

to the linear payload correction of ΠBoyle
SUV (Section 2.2). In total, ΠaSUV has the

following extended payload correction phase:

[x]UM
= CWL · [tL]UM

=
A

uL
· [tL]UM

, [x′]UM
= CWR · [tR]UM

=
mA

uR
· [tR]UM

.

The actual computation of CWL,CWR takes place as secure computation, given
JuLK, JuRK from the verification phase and the inputs JAK, JmK. A special case
is if CWL = CWR = 0. Since this leaks that A = 0 or m = 0, the protocol
aborts3. Apart from that, CWL and CWR do not leak information about the
target payloads, since uL, uR are uniformly random and independent of each
other by the means of the tree phase (Appendix A.1).

3.3 Active Security (Reduction to ΠBoyle
SUV )

We now prove that our protocols ΠSUV, ΠaSUV are correct and actively secure,
i.e., we prove an equivalence of Theorem 1:

Theorem 2. Protocol ΠSUV securely implements the functionality SUV with
security against malicious adversaries in the UC-model. Similarly ΠaSUV se-
curely implements aSUV.

3 If A = 0, the output (a)SUV secret-shares the zero vector, which is anyway disad-
vantageous in applications like the Beaver triple generation. If m = 0, the secure
arithmetic with J·K is broken.
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Our proof strategy is a reduction to Theorem 1. By this, we give an formal
relation to the protocols ΠBoyle

(a)SUV, and avoid to repeat technical arguments of

their respective proof, e.g., about the tree phase. We now outline the two steps
of our reduction proof, following the two modifications described in Section 3.1.
In the outline, we only cover a reduction from ΠaSUV to ΠBoyle

SUV , since the SUV
generation can be seen as a simplification of the aSUV generation (Section 3.1,
Protocol 4). For a comprehensive proof, we refer to Appendix A.2.

Step 1, Symmetric verification: In the first reduction step, we extend ΠBoyle
SUV

to a protocol for aSUVs with a symmetric verification procedure. Both pro-
tocols employ two internal unit vectors tL, tR ∈ FM with secret-shared pay-
loads JuLK, JuRK. While ΠBoyle

SUV maps tL to the output SUV [x]UM
, the sec-

ond component tR is used for a verification against malicious parties. Using
the notation of Protocol 4, ΠBoyle

SUV reveals uR and continues if and only if
JZBoyleK = JuLK · ( 1

uR JvRK) − JvLK is zero. Instead, we keep the payload uR

of tR secret, which enables us to use CWR = mA
uR for the payload correction of

the MAC component without leaking information about mA. Under this condi-
tion, the term 1

uR in ZBoyle needs to be replaced by JuRK−1. In preparation of
the second reduction step, we scale ZBoyle with uR and use Z = uLvR − uRvL
as check value. At this point, scaling is secure since it does not affect if Z = 0 or
Z ̸= 0, apart form the case uR = 0 which we exclude in the payload correction
step (the inversion JuRK−1 fails). The payload correction itself is secure, since it

is similar to the payload correction in ΠBoyle
aSUV.

Step 2, Removing calls to Input: Starting with ΠBoyle
SUV , the protocol re-

sulting from Step 1 calls Input to create shares JuLK, JuRK, JvLK, JvRK that are
subsequently used to compute JZK = JuLK ·JvrK−JuRK ·JvLK with two multiplica-
tions according to Protocol 1. Instead, ΠaSUV avoids the calls to Input by using
two calls of the secure multiplication according to Protocol 3. As mentioned in
Section 3.2, these two calls are distributed inside ΠaSUV, which in fact preserves

the order of ΠBoyle
SUV . We then use that J·K is additive and provides active security

to show that any potential manipulation in ΠaSUV can be reduced to a ma-
nipulation in the local values uLσ , u

R
σ , v

L
σ , v

R
σ (Appendix A.2). Since these local

values are similar for the protocol resulting from the previous reduction step, our
modification does not give any advantage to a malicious party, especially since
potential errors are detected by the respective verification procedure. Hereby,
ΠaSUV aborts whenever ΠBoyle

SUV aborts, since ZBoyle = 0 implies Z = 0 in the
previous reduction step.

Attacker for the selective failure attack: The ideal functionalities SUV and
aSUV allow an adversary to execute a selective failure attack on the position
α (see Section 2.2). In order to demonstrate that the selective failure attack
is not merely a theoretical feature, we construct a corresponding attacker (see

Appendix A.3) that is applicable to Π(a)SUV and ΠBoyle
(a)SUV.
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Protocol 5 Generation of Beaver triples (ΠBt) [10]

INPUT: A secret-shared MAC key JmK and parameters d = c · t,N = 2n, F . A public

randomness u⃗
$←Rd.

OUTPUT: N Beaver triples over F.

Interactive Phase:

1. For i = 0, . . . , d− 1 call (Jx⃗iKFN , ∥α⃗i∥n, JA⃗iK)← aSUV∗(JmK, n)
2. For i = 0, . . . , d− 1 call (Jy⃗iKFN , ∥β⃗i∥n, JB⃗iK)← aSUV∗(JmK, n)
3. For i, j = 0, . . . , d− 1: ∥γ⃗i,j∥n+1 = ∥α⃗i∥n + ∥β⃗j∥n
4. For i, j = 0, . . . , d− 1: JC⃗i,jK = JA⃗iK · JB⃗jK
5. For i, j = 0, . . . , d− 1 call Jz⃗i,jKF2N ← aSUV(∥γ⃗i,j∥n+1, JC⃗i,jK, JmK)

Local phase:

Let Tc,t : Rc ×Rd → FN , (f, g) 7→ ψ(⟨f, ḡ⟩c) where ḡi =
∑t−1

k=0 gt·i+k

Let Sc,t : Rc ×Rd×d → FN , (f, g) 7→ ψ(⟨f ⊗ f, ĝ⟩c×c), where ĝi,j =
∑t−1

k,l=0 gt·i+k,t·j+l

Return Tc,t(u⃗, Jx⃗KFN ), Tc,t(u⃗, Jy⃗KFN ),Sc,t(ū, Jz⃗KFN ), where x⃗, y⃗ are interpreted in Rd

and z⃗ is interpreted in Rd×d (i.e. modulo F ).

4 Application: Generation of Beaver Triples with ΠaSUV

We will now demonstrate the application of our protocol ΠaSUV to the actively
secure Beaver triple protocol ΠBt by Boyle et al. [10] (Protocol 5). The main
difference to their initial presentation is that we make the usage of aSUVs explicit
in order to apply our improved protocol ΠaSUV. Additionally, we introduce a
special purpose protocol Π*

aSUV to avoid calls to Input, i.e., the dependency on
VOLE, for ΠBt itself. The protocol ΠBt consists of two parts:

1. An interactive phase (Section 4.1) that generates three vectors of aSUVs

Jx⃗KUN
⊗ Jy⃗KUN

= Jz⃗KU2N
x⃗, y⃗

$← UdN , N = 2n, (3)

where ⊗ denotes a polynomial tensor product, i.e., z⃗ ∈ (F2N )d×d, z⃗i,j = x⃗i ·y⃗j
with multiplication in F[X].

2. A silent local phase (Section 4.2) to transform the private shares of the three
aSUVs into private shares of N many Beaver triples, i.e., into JaKFN ·JbKFN =

JhKFN , where a, b
$← FN and h = a · b coefficient-wise in F.

4.1 The Interactive Phase

The task of the interactive phase is to generate a random instance of Eq. (3),
i.e., 2d small N -dimensional aSUVs sharing x⃗, y⃗, and d2 large 2N -dimensional
aSUVs, with correlated positions and payloads, sharing the product z⃗.
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Protocol 6 Payload correction for Π*
aSUV (Alternative step 3 in Protocol 4)

JCWRK = JuRK−1 · JmK · JuLK, CWR ← Open(JCWRK)

If CWR = 0, abort. Else return [x]FM = [tL]FM and [x′]FM = CWR · [tR]FM .

Small aSUV instances (generated with aSUV∗): In ΠBt we write aSUV∗

for a functionality that, given a depth n and secret-shared MAC JmK, samples
a uniformly random n-bit position and payload, calls aSUV and additionally
returns the position and payload in secret-shared form. With aSUV∗ the gen-
eration of Jx⃗KFN and Jy⃗KFN is straightforward: Call d instances of aSUV∗ to

get Jx⃗KFN with uniformly random positions ∥α⃗∥n and payloads JA⃗K. Then call

d instances of aSUV∗ to get Jy⃗KFN with uniformly random positions ∥β⃗∥n and

payloads JB⃗K.
To actually sample the n-bit integer position, we follow Boyle et al. [10] and

take preprocessed correlated randomness in the form of COT (Section 2.1). For
the sampling of the payloads, our compact formulation with aSUV∗ enables a
new optimization. Boyle et al.[10] propose to sample the random shares JA⃗K, JB⃗K
with explicit calls to Input inside ΠBt. Instead, we use a variation Π*

aSUV of
ΠaSUV that includes to uniformly sample a new payload, without further costs.
Concretely we achieve even more, namely a more efficient payload correction
inside ΠaSUV (Protocol 6): Instead of sampling a new position A, we propose to
take over uL, which is already uniformly random (Section 2.2). In other words,
we set CWL = 1, which removes all respective operations in ΠaSUV, and we set

CWR = uLm
uR . Since uL, uR are secret-shared, uniformly random and independent

of each other by the means of the tree phase (Section 1.1), Theorem 2 already
implies that Π*

aSUV securely implements aSUV∗.

Large aSUV instances: For the product Jz⃗KUN
, the protocol ΠBt calls d

2 in-
stances of aSUV with dimension 2N . Following the polynomial tensor product,
the positions of z⃗ are given by a tensor sum

γ⃗ = α⃗⊞ β⃗ ∈ [0, 2N)d×d with γ⃗i,j = α⃗i + β⃗j , (4)

i.e, ΠBt calls d
2 many integer additions ∥γ⃗i,j∥n+1 = ∥α⃗i∥n+∥β⃗j∥n (Section 2.1).

Similarly, the payloads of z⃗ are given by a tensor product

C⃗ = A⃗⊗ B⃗ ∈ Fd×d with C⃗i,j = A⃗i · B⃗j , (5)

which is in terms of d2 many secure multiplications JC⃗i,jK = JA⃗iK · JB⃗jK.

4.2 The Local Phase

The problem to be solved with the local phase is: Can an instance of Eq. (3) be
locally transformed into N many Beaver triples? The answer is yes, under the se-
curity of the ring-LPN assumption [10]. The ring-LPN assumption is formulated
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over a polynomial ring R = F[X]/F , where in our case F is a fully reducible
polynomial of degree N such that there exists an isomorphism ψ : F[X] ≃ FN .
Let x̄ ∈ Rc be a vector of c many t-sparse polynomials. In other words, each co-
efficient of x̄i can be written as a sum of t many scaled unit vectors of dimension
N . Let Rt be the respective subset of R, and let c, t,N depend on a security
parameter λLPN. Then the ring-LPN assumption states that the distributions

{(ū, ⟨ū, x̄⟩c) | ū
$← Rc, x̄ $← Rct}, {(ū, e) | ū $← Rc, e $← R} (6)

are computationally indistinguishable, where ⟨·, ·⟩c denotes the c-dimensional

scalar product, i.e., ⟨ū, x̄⟩c =
∑c−1
i=0 ūi · x̄i.

The strategy of ΠBt is to aggregate x⃗ ∈ UdM , interpreted in Rd, into a vector
x̄ ∈ Rc of t-sparse polynomials and then to apply a transformation T : x̄ 7→
⟨ū, x̄⟩c ∈ R ≃ψ FN . Under the ring-LPN assumption, the resulting vector a =
⟨ū, x̄⟩c is indistinguishable from uniformly random. Furthermore, T is linear.
Hence by the linearity of J·K, the parties can locally transform the additively
shared aSUVs Jx⃗KUN

, Jy⃗KUN
into the secret-shared, uniformly random, factors

JaKFN , JbKFN of the output Beaver triples. Finally, the transformation T induces
a two-dimensional transformation S that allows to locally compute the product
JhKFN from Jz⃗KUN

(see Protocol 5).

4.3 Comments on ΠBt

Regular variant: Boyle et al. [10] introduce a regular variant of ΠBt, which
reduces costs by reducing the dimension of the aSUVs. Hereby, the coefficients
of x̄, ȳ, which are in the form of t-sparse vectors, are replaced by regular t-
sparse vectors, which consist of t many blocks with sparsity one. Then for each
coefficient, instead of generating t aSUVs with dimension N , it is sufficient to
generate t SUVs of smaller dimension N

t . Similarly, for the coefficients of z̄ the

dimension 2N
t is sufficient. For details, especially about the adaption of the ring-

LPN assumption, we refer to Boyle et al. [10].

Security: For secure parameter choices (N, d = c · t, F ) under the ring-LPN
assumption, we refer to Boyle et al. [10], e.g., the parameters we use in our
evaluation (Section 5.2). The two influences that a malicious party has inside
aSUV translate to ΠBt as follows:

– The selective failure attack can be addressed under the ring-LPN assumption
with static leakage [10].

– A malicious party is allowed to choose its shares of the Beaver triples. How-
ever, since Beaver triples are additively secret-shared objects, this is uncrit-
ical for many MPC applications, e.g., in the sense of Section 2.1.
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Table 1. Costs (per party) for the generation of SUVs and aSUVs depending on their
dimensionM = 2m, the field size ν, and the security parameter λ of the tree phase. We
give the number of AES calls, the estimated number of field multiplications, the number
of consumed Beaver triples (Bt), the size of the consumed correlated randomness (CR)
in bits and the communication in bits. The absolute numbers for the communication
are in bytes and refer to different parameter triples (m,λ, ν). For the AES calls we
assume that 86 ≤ ν ≤ 128, λ < 128.

AES Mult. Bt CR communication (15, 127, 124) (18, 127, 124) (17, 80, 80)

ΠBoyle
SUV 4 · 2m 3 · 2m 3 30ν m(2λ+ 2) + 13ν 682 778 474

ΠSUV 4 · 2m 3 · 2m 4 24ν m(2λ+ 2) + 10ν 635 731 444

ΠBoyle
aSUV 5 · 2m 5 · 2m 7 60ν m(2λ+ 2) + 24ν 837 933 574

ΠaSUV 4 · 2m 4 · 2m 7 42ν m(2λ+ 2) + 17ν 744 840 514

5 Evaluation

5.1 Evaluation of the SUV and aSUV Generation

In Table 1 we compare the costs of our protocols Π(a)SUV (Protocol 4) with the

costs of the protocols ΠBoyle
(a)SUV (Appendix A.1). At this point, note that an aSUV

has the double size compared to an SUV. However, since the aSUV protocols
are efficiently build on top of the SUV protocols, the additional costs for their
generation are below a factor two. We now separately discuss the numbers for
the computation, consumed correlated randomness and communication:

Computational Costs: For ΠBoyle
SUV , ΠSUV, and ΠaSUV, the tree phase is iden-

tical, with costs dominated by M many calls to a PRG : {0, 1}λ → {0, 1}2λ+2

and M many calls to a PRG : {0, 1}λ → F2 (Appendix A.1). Under the as-
sumption that λ < 127, ν ≤ 128, both PRGs can be efficiently realized with
two calls to the 128-bit AES block cipher [11]. Instead, the tree phase of ΠBoyle

aSUV

extends the second PRG to outputs in F3, for which, if 3ν < 256, we count one
additional AES call. Due to our symmetric verification procedure (Section 3.1),
ΠaSUV avoids the extension to F3, which gives an advantage of 20% AES calls.

As a measure for the computational costs of the field phases we take the num-
ber of field multiplications given byM dimensional scalar-vector-multiplications.
Concretely, this refers to the payload correction with CWL and to masking
tL, tR with the randomness r ∈ FM . On top of that, the aSUV protocols take
M multiplications with CWR to correct the payload of the MAC component.
Furthermore, ΠBoyle

aSUV takes M more field multiplications to mask the additional

component tL
′
with r. Our protocol ΠaSUV avoids the costs for the additional

component, which gives an advantage of 20%.

Correlated Randomness: The protocols ΠBoyle
SUV , ΠBoyle

aSUV consume correlated
randomness in the form of Beaver triples, for secure multiplications and inver-
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sions, and in the form of VOLE correlations, to support calls of Input (Pro-
tocol 1). Instead, since our protocols Π(a)SUV avoid calls to Input, we avoid
the dependency on VOLE. In Table 1, we give the size of consumed correlated
randomness per party, counting 6 field elements for a Beaver triple and 1.5 field
elements for one entry of a VOLE correlation (ignoring the constant scalar mσ).
By avoiding calls to Input, we can reduce this size by 20% for the SUV gener-
ation and 30% for the aSUV generation.

Note that the additional Beaver triple consumed by ΠSUV, compared to

ΠBoyle
SUV , is the price we pay for making the verification procedure symmetric,

which in turn is necessary to avoid calls to Input in Π(a)SUV (Section 3.1).

Communication Costs: All SUV and aSUV protocols have the communica-
tion costs of the tree phase in common, i.e., m(2λ + 2) bits per party [10]. On
top of that, the field phase has linear communication costs in ν, referring to the
secure arithmetic, Protocol 1, and our adapted multiplication, Protocol 3.4 By
avoiding calls to Input, we reduce the communication of the field phase (Sec-
tion 3.1). The improvement for the whole SUV and aSUVs protocols depends
on the relation between m, ν, λ. In Table 1, we provide absolute numbers for
different parameter choices that are realistic for ΠBt in the regular variant. In
general, our improvements for the communication costs are more effective for the
aSUV generation (10% in Table 1) then for the SUV generation (6% in Table 1),
since for the SUV generation we avoid 8 calls to Input, whereas for the aSUV
generation we avoid 12 calls.

5.2 Evaluation of the Beaver Triple Generation

We now evaluate the effect of our optimized protocols ΠaSUV on the interactive
phase of the Beaver triple protocol ΠBt. According to Section 4.1, for the small
aSUV instances we on top consider the optimizations implied by Π*

aSUV.
5 The

interactive phase of ΠBt consists of:

– 2d calls of Π*
aSUV with small regular depth m = ⌈log(Nt )⌉.

6

– d2 calls of ΠaSUV with large depth m+ 1.
– d2 secure integer additions (Eq. (5)) and secure multiplications (Eq. (4)).

In Table 2 we give absolute costs for the generation of 220 Beaver triples
with ΠBt (interactive phase). We take the parameter choices over from Boyle
et al. [10], which represent secure parameters for the ring-LPN assumption7.

4 We follow Bolye et al. [10] and do not count the costs to sample r.
5 We do not separately evaluate Π*

aSUV in Section 5.1 since the costs are dominated by
the large aSUVs withΠaSUV. Each call ofΠ*

aSUV gives an advantage ofM many saved
field multiplications, two saved Beaver triples and 5ν bits less of communication,
compared to the straightforward realization of SUV∗ with ΠaSUV.

6 i.e., for the regular variant M = 2m is N
t

rounded to the next power of two as
required by the tree phase.

7 The parameters refer to different choices for d = c · t, affecting the costs of the
interactive- and local phase of ΠBt. See [10] for a discussion.
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Table 2. Costs per party for the generation of 220 Beaver triples over a 124-bit field
with the regular variant of ΠBt (interactive phase), instantiated with either ΠBoyle

aSUV

or our protocols ΠaSUV, Π
*
aSUV. We set λ = 127, while λLPN is the security level of

the ring-LPN assumption. “Storage” refers to the accumulated amount of consumed
correlated randomness (Beaver triples, AND triples, COT, VOLE).

AES in billion Mul. in billion storage in MB communication in MB
λLPN d m Boyle Our work Boyle Our work Boyle Our work Boyle [10] Our work

80 96 15 3.05 2.44 3.05 2.43 22.07 19.40 8.77 8.16
80 40 17 2.15 1.72 2.15 1.71 4.21 3.72 1.68 1.57
80 32 18 2.77 2.21 2.77 2.20 2.81 2.50 1.13 1.05

128 152 14 3.81 3.05 3.81 3.04 52.85 46.25 20.97 19.46
128 64 16 2.73 2.18 2.73 2.17 10.27 9.06 4.09 3.80
128 40 18 4.30 3.44 4.30 3.42 4.37 3.88 1.75 1.63

Improvement 20.0% 20.4% 11.7% 7.0%

The costs advantage of reduced AES calls and field multiplications (20%) inside
ΠaSUV directly translates to an advantage inside the interactive phase of ΠBt,
i.e., hundred millions in absolute numbers (between 400 and 800 per generated
Beaver triple). On top of that, usingΠ*

aSUV saves up to 20 million multiplications.
AltogetherΠBt consumes correlated randomness in the form of Beaver triples,

VOLE, AND triples and COT (Section 2.1). We stress that we avoid the depen-
dency on VOLE, by the means ofΠaSUV andΠ*

aSUV. By avoiding the dependency
on VOLE, we reduce the amount of consumed correlated randomness by about
11%, which are a few MB in absolute numbers.

For our absolute communication cost numbers, we set λ = 127, i.e., the
maximum security parameter to instantiate the PRG in the tree phase with
two AES calls. We stress that the numbers from Boyle et al. [10] include the
costs to generate AND triples, hence we make the same assumption for our
numbers. In this scenario, we reduce the communication costs by about 7%. For
a more comprehensive evaluation, we provide numbers excluding the AND triple
generation, and numbers including more of the preprocessing, in Appendix B.

Asymptotic relation to the local phase: Using the regular variant to gen-
erate N Beaver triples, the interactive phase of ΠBt has computational costs of
O(c2tN) AES calls and field multiplications (dominated by the large aSUVs),
whereas the non-interactive local phase is dominated by c2 many multiplications
in R. For appropriate choices of R, these multiplications can implemented with
O(N logN) field multiplications, e.g., using the Number Theoretic Transform
[10]. Therefore, for the whole protocol ΠBt, our improvements asymptotically
scale with O(c2N), depending on the relation between t and log(N) accord-
ing to the ring-LPN assumption. For example, the numbers in Table 2 refer to
log(N) = 20 and different 4 ≤ t ≤ 76. In this sense, we conjecture our compu-
tational improvements, on the level of the aSUV generation, to be effective for
the whole protocol ΠBt.
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A Details on the SUV and aSUV Generation

A.1 Presentation of ΠBoyle
SUV ,ΠBoyle

aSUV

We present ΠBoyle
SUV and ΠBoyle

aSUV in Protocol 7. To be consistent with our work, we
slightly deviate from the notation by Boyle et al. [10], e.g., to avoid situations
where for an additive secret-shared value [x] it holds x = x0 − x1 instead of
x = x0+x1. Furthermore to get a better framework to describe our modifications,
we split the protocol into a tree phase and field phase (verification and payload
correction). Hereby, we shift the computation of JCWLK = JuLK−1 · JAK from the
verification step into the payload correction step.

We remark that Boyle et al. [10] make in fact two proposals how to extend

ΠBoyle
SUV for two-dimensional SUVs, which are a special cases of an extension to

multi-dimensional SUVs with coefficients in Fl instead of F (cf. Remark 5.2
[10]). For our work, we built the aSUV generation on the second one, which they
consider to be more efficient since it avoids to work over an extension field of F.
To make our notation consistent with the aSUV generation, we write “L;L′;R”
instead of “L, 0;L, 1;R”, for the three internal SUV components.

Intuition of the tree phase: For the tree phase, the parties start with private
seeds s0,0σ ∈ {0, 1}λ and run through a binary tree si,jσ , 0 ≤ i ≤ m+1, 0 ≤ j < 2i

by using a length doubling PRG to generate si+1,2j
σ , si+1,2j+1

σ from si,jσ . After
each tree level i ≤ m, the parties run an interactive correction to maintain a
tree invariant: si,j0 = si,j1 if and only if j ̸= αm−1 · · ·αi, where αm−1 · · ·α0 is the
binary representation of the position α. To support the correction, the PRG out-
puts two additional bits, i.e. it is of the form PRG : {0, 1}λ → {0, 1}2λ+2. After
the last tree round, they convert their node values sm+1,2k

σ into pseudo-random,
independent left and right field elements sL,kσ , sR,kσ ∈ F, using a public conversion
function, e.g., the last round of PRGs is replaced by a PRG {0, 1}λ → F2. Due
to the tree invariant and the randomization with the PRGs, the 2m dimensional
secret-shared vectors sL0 − sL1 , sR0 − sR1 are SUVs with random payloads and the
same position α. We then define tLσ = (−1)σsLσ , tRσ = (−1)σsRσ . However, while a
malicious party can not deviate from the secret-shared position ∥α∥m, it can de-
viate from the private PRG outputs to break the unit-vector structure of tL, tR.
Hereby, the tree phase is constructed in such a way, that a malicious party can
not learn anything about α and the payloads uL, uR of tL, tR.

To additionally provide tL
′
, for ΠBoyle

aSUV the PRG in the last tree round is
extended to a PRG : {0, 1}λ → F3 that outputs three independent field elements
sL,kσ , sL

′,k
σ , sR,kσ .
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Protocol 7 Protocols ΠBoyle
SUV , ΠBoyle

aSUV ([10] cf. Πc-SUV, Remark 5.2)

Blue statements refer only to ΠBoyle
aSUV. All interactive parts are framed.

INPUT: Secret shared position ∥α∥m, payload JAK, and MAC key JmK.
OUTPUT: [x]UM , [x′]UM with position α and payload A, m ·A (where M = 2m).

1. TREE PHASE

Process ∥α∥m to get tLσ , t
L′
σ , t

R
σ ∈ FM (Appendix A.1)

2. VERIFICATION

uL
σ =

∑M−1
j=0 tL,j

σ , uL′
σ =

∑M−1
j=0 tL

′,j
σ

uR
σ =

∑M−1
j=0 tR,j

σ

For both Pσ let JuL
σ K← Input(uL

σ , Pσ), JuL′
σ K← Input(uL′

σ , Pσ)
For both Pσ let JuR

σ K← Input(uR
σ , Pσ)

JuLK = JuL
0 K + JuL

1 K, JuL′
K = JuL′

0 K + JuL′
1 K, and JuRK = JuR

0 K + JuR
1 K

CWR ← Open(JuRK)
Sample public randomness (r0, . . . , rM−1)

$← FM

vLσ =
∑M−1

j=0 rj · tL,j
σ , vL

′
σ =

∑M−1
j=0 rj · tL

′,j
σ

wR
σ = 1

CWR

∑M−1
j=0 rj · tR,j

σ

For both Pσ let JvLσ K← Input(vLσ , Pσ), JvL
′

σ K← Input(vL
′

σ , Pσ)
For both Pσ let JwR

σ K← Input(wR
σ , Pσ)

JvLK = JvL0 K + JvL1 K, JvL
′
K = JvL

′
0 K + JvL

′
1 K, and JwRK = JwR

0 K + JwR
1 K

JZK = JuLK · JwRK− JvLK, JY K = JuL′
K · JwRK− JvL

′
K

Z ← Open(JZK), Y ← Open(JY K)

If Z ̸= 0 or Y ̸= 0, abort

5. PAYLOAD CORRECTION

JCWLK = JuLK−1 · JAK, JCWL′
K = JuL′

K−1 · JmK · JAK
CWL ← Open(JCWLK), CWL′

← Open(JCWL′
K)

If CWL = 0 or CWL′
= 0, abort

Return [x]FM = CWL · [tL]FM and [x′]FM = CWL′
· [tL

′
]FM



aSUVs for Beaver triples 25

A.2 Proof of Theorem 2: Security of Π(a)SUV

For the proof of Theorem 2, we follow the two reduction steps as outlined in
Section 3.3.

First reduction step:

Theorem 3. Protocol Πsym
SUV (with symmetric verification phase, Protocol 8) se-

curely implements the functionality SUV with security against malicious adver-
saries in the UC-model. Similarly, Πsym

aSUV securely implements aSUV.

To prove Theorem 3, we go through all modifications between Protocol 7 and
Protocol 8 and show that they neither affect the expected abortion behavior and
output structure, nor leak any additional information.

– For Πsym
aSUV, we remove the L′ component in the tree phase and verification.

This is secure, since it only removes statements.
– Similarly, it is secure to remove the statement CWR ← Open(JuRK).
– The value wR is replaced by vR. This is secure, since it is a local modification.
– The definition of Z is modified from Z = uLwR − vL to Z = uLvR − uRvL.

By definition of vR, wR, this can be seen as scaling the old value of Z with
uR (CWR in ΠBoyle

SUV Protocol 7). Scaling however, does not affect if Z = 0
or Z ̸= 0 as long as uR ̸= 0. In Protocol 7 the case uR = 0 is excluded since
the parties fail to locally compute 1

CWR . Instead in Protocol 8, the case

uR = 0 causes an abortion since then the secret-shared inversion JuLK−1 in
the payload correction step fails. Hence with respect to Z, Protocol 7 aborts
if and only if Protocol 8 aborts.

– The payload correction phases differs only for the aSUV generation. For
Πsym

aSUV, the output for the MAC component is [x′] = Am
uR · [tR]. Since Πstep

aSUV

is symmetric with respect to the L - and R component this step is secure,
if the respective correction [x] = A

uL · [tL] of the left component is secure:
The only difference is the additional term m, which is analogously processed
in ΠBoyle

aSUV. Hence, the security and correctness for [x′] follows, since the L

components are identical for ΠBoyle
SUV and Πsym

SUV (with the only difference in
the definition of Z, which is independent of the output).

Second reduction step:

We now reduce the security of Protocol 4 to Theorem 3. The computation of
JZK in Protocol 8 requires two Beaver multiplications JZLK := JuLK · JvRK and
JZRK := JuRK · JvLK. For this, let JaLK, JbLK, JcLK and JaRK, JbRK, JcRK be two
Beaver triples. Applying Eq. (1) to compute JZLK means to compute

ϵL = Open(JuLK− JaLK), δL = Open(JvRK− JbLK)

JZLK = δL · JuLK + ϵL · JvRK + JcLK− ϵL · δL.

The computation of JZRK is analogue. Then, we point out the following:
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Protocol 8 Protocols Πsym
SUV, Π

sym
aSUV

Blue statements refer only to Πsym
aSUV. All interactive parts are framed.

INPUT: Secret shared position ∥α∥m, payload JAK, and MAC key JmK.
OUTPUT: [x]UM , [x′]UM with position α and payload A, m ·A (where M = 2m).

1. TREE PHASE

Process ∥α∥m to get tLσ , t
R
σ ∈ FM (Appendix A.1)

2. VERIFICATION

uL
σ =

∑M−1
j=0 tL,j

σ

uR
σ =

∑M−1
j=0 tR,j

σ

For both Pσ let JuL
σ K← Input(uL

σ , Pσ)
For both Pσ let JuR

σ K← Input(uR
σ , Pσ)

JuLK = JuL
0 K + JuL

1 K and JuRK = JuR
0 K + JuR

1 K

Sample public randomness (r0, . . . , rM−1)
$← FM

vLσ =
∑M−1

j=0 rj · tL,j
σ

vRσ =
∑M−1

j=0 rj · tR,j
σ

For both Pσ let JvLσ K← Input(vLσ , Pσ)
For both Pσ let JvRσ K← Input(vRσ , Pσ)

JvLK = JvL0 K + JvL1 K and JvRK = JvR0 K + JvR1 K

JZK = JuLK · JvRK− JuRK · JvLK
Z ← Open(JZK)

If Z ̸= 0, abort

3. PAYLOAD CORRECTION

JCWLK = JuLK−1 · JAK, JCWRK = JuRK−1 · JmK · JAK
CWL ← Open(JCWLK), CWR ← Open(JCWRK)

If CWL = 0 or CWR = 0, abort
Return [x]FM = CWL · [tL]FM and [x′]FM = CWR · [tR]FM
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– Since ϵL is masked with the factor aL of a Beaver triple, no information is
leaked to the parties. We point out that the computation of ϵL can be done
directly after JuLK is created, i.e., several step earlier in Protocol 8: Since aL

is only used for this purpose, the order of operations is not relevant. Sim-
ilarly, the values ϵR, δL, δR can be computed directly after JvLK, JvLK, JvRK
are created.

– When applying the reordering as described in the previous point, the com-
putations

JuL0 K← Input(uL0 , P0), JuL1 K← Input(uL1 , P1)

JuLK = JuL0 K + JuL1 K, ϵL ← Open(JuLK− JaLK)
(7)

can be seen as one statement, which in the honest case can be simplified to:

The parties exchange uLσ − aLσ to compute ϵL = (uL0 − aL0 ) + (uL1 − aL1 )
JuLK = JaLK + ϵL.

(8)

This step shows how to remove the calls of Input for the value JuLK. The
same argument can be applied to the computation of uR, vL, vR, δL, ϵR, δR,
which finally gives Protocol 4.

It remains to show that the transition from Eq. (7) to Eq. (8) is secure
in the malicious case. In Eq. (7), the only thing that a malicious party, say
P0, can achieve is to add some linear error ∆ on uL by calling JuL0 + ∆K =
Input(uL0 +∆,P0). All other operations are secured by J·K. In Eq. (8) a malicious
party P0 can only run attacks of the form ϵL0 = uL0 −aL0 +∆, where it is possible to
base ∆ on uL1 −aL1 . However the erroneous term can be written as (uL0 +∆)−aL0
and for any malicious P0 the term uL1 − aL1 looks uniformly random since aL1 is
uniformly random. Together this implies: The only options that an attacker has
to deviate in the case of Eq. (8) are equivalent to options it already has in case
of Eq. (7). Hence, it is secure to replace Eq. (7) by Eq. (8), and the proof of
Theorem 2 is complete.

A.3 Selective Failure Attack

We now give a selective failure attack on ΠaSUV that allows a malicious party
to guess if the secret position α is in a certain subset J ⊂ [0,M) or not. This
is equivalent to a malicious party sending the guess function P : [0,M) →
{0, 1}, P (α) = 1 ⇔ α ∈ J to aSUV. We present the attack for ΠaSUV – as ex-

pected by Theorem 1, similar attacks apply to the other protocolsΠSUV, Π
Boyle
(a)SUV.

Hereby, the SUV generation can be seen a special case of the aSUV generation.
And due to the symmetry of our verification phase, achieved through scaling Z
(Section 3.3), the presentation of the attacker is more instructive for ΠaSUV.
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Let I∪J = [0,M) be a disjoint decomposition. Let tLI = (tL,i)i∈I and similar
for tR, J . We then use the short notation uLI , u

R
I , v

L
I , v

R
I , u

L
J , u

R
J , v

L
J , v

R
J for the

respective partial sums. Let ZI = uLI v
R
I − uRI vLI , ZJ = uLJ v

R
J − uRJ vLJ be the Z

values defined for these smaller vectors. We now show that, under the assumption
that α ∈ J , it is possible to deviate from the values tLI , t

R
I such that it still holds

Z = 0. On the other hand it will hold Z ̸= 0 if the assumption α ∈ J was wrong
in which case the attacker risks an abortion. However, if the protocol passes the
verification with Z = 0, an attacker can conclude that α ∈ J .

Given the decomposition I ∪ J = [0,M) it holds

Z = (uLI + uLJ )(v
R
I + vRJ )− (uRI + uRJ )(v

L
I + vLJ )

= ZI + ZJ + uLI v
R
J + uLJ v

R
I − uRI vLJ − uRJ vLI

= ZI + ZJ +
∑
j∈J

tL,j
∑
i∈I

(ri − rj)tR,i +
∑
j∈J

tR,j
∑
i∈I

(rj − ri)tL,i.

Under the assumption that α ∈ J , an attacker knows that tL,i, tR,i = 0 for all i ∈
I, i.e., the attacker can fully control the additively shared values tL,iI , tR,iI , i ∈ I.
For the selective failure attack, it can try replace them by some malicious values
t̄L,iI , t̄R,iI , such that still Z = 0. A key observation is to set t̄iI := t̄L,iI = t̄R,iI , since
then the malicious version Z̄I = ūLI v̄

R
I − ūRI v̄LI of ZI is zero and cancels out.

If the attacker is consistent for tLJ , t
R
J , which are unit vectors, it holds as well

ZJ = 0. Then, for the erroneous value Z̄ it follows

Z̄ =
∑
j∈J

(tL,j − tR,j)
∑
i∈I

(ri − rj)t̄iI .

Hereby, the attacker can not control tL,jJ , tR,jJ since they are independent and

secret-shared, i.e., since they depend on tL,α1−σ, t
R,α
1−σ. But it has control over t̄

i
I and

can use this to cancel out all sums
∑
i∈I(r

i − rj)t̄i which already implies Z̄ = 0
as desired. Concretely, an attacker can achieve this by solving a linear equation
system Ω · t̄I = 0, where the entries of Ω ∈ F|J|×|I| are given by Ωj,i = ri − rj .

A careful reader might point out two issues:

1. The presented attack might harm the correctness of ΠaSUV since the mali-
cious values t̄LI , t̄

R
I result in erroneous terms ūL, ūR for uL, uR. Consequently

the payload correction actually corrects towards malicious payloads Ā, Ā′

instead of A,A′. How is this in accordance with the functionality aSUV?

2. On the one hand, inside ΠaSUV the value r is sampled after the parties
compute JuLK, JuRK, which is binding. On the other hand, for the attack
the terms t̄LI , t̄

R
I , and hence the malicious terms ūL, ūR, depend on r. Is the

selective failure attack indeed possible?

To address both issues, we write E :=
∑
i∈I t̄

i
I , for the linear error term that

the attacker adds to uL, uR when deviating from tiI = 0. We then distinguish
between |J | = 1 and |J | > 1.
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– If |J | > 1 we will show that the equation system Ω · t̄I = 0 already implies
E = 0. This already solves the second issue, since E = 0 is independent of r,
and the first issues, since E = 0 means that uR = ūR, uR = ūR are correct.
To prove E = 0, consider two different indices j0, j1 ∈ J . From Ω · t̄I = 0, it
follows that

∑
i∈I(r

i − rj0)t̄iI = 0 and
∑
i∈I(r

i − rj1)t̄iI = 0. Together, this

implies (rj0 − rj1)
∑
i∈I t̄

i
I = (rj0 − rj1)E = 0. Since r

$← FM is uniformly
random, we can assume that there exists j0, j1 with rj0 ̸= rj1 (for ν,M
large). Hence, it follows E = 0.

– The case |J | = 1 is a special case for which E ̸= 0 is possible. To address the
second issue, we point out that any E is possible, since for any particular
solution t̂I of Ω · t̂I = 0, the solution E∑

i∈I t̂I
· t̂I is in accordance with E. The

difference to the case |J | > 1, is that at least one solution t̂I with
∑
i∈I t̂I ̸= 0

exists (except the corner case ri = rα for all i ∈ I). For the first issue, note
that by the attack, the outputs [x̄]UM

, [x̄′]UM
are corrupted with erroneous

payloads Ā = A+E, Ā′ = A′ +E. For |J | = 1, the selective failure attacker
means nothing else that a malicious party, say P0, learns α. Hence P0 can
locally correct the payloads to A,A′: It just needs to replace tL,α0 , tR,α1 by

tL,α0 −E, tR,α1 −E. With other words, the correctness of the output depends
only on local manipulations by P0. However, the UC-security guarantees
are indifferent about the output for the malicious party. Hence the selective
failure attack is in accordance with the ideal functionality aSUV.

B Communication Costs of ΠBt including Preprocessing

The evaluation of ΠBt in Section 5.2 partially takes care about the communica-
tion costs for the preprocessing, i.e., for AND triples. In Table 3 we provide more
comprehensive numbers for the communication costs, covering more of the pre-
processing, as well as numbers excluding the costs for the AND triples. Following
Boyle et al. [10], the preprocessing stage for ΠBt is as follows:

– the Beaver triples that ΠBt consumes can be taken from a previous call of
ΠBt. We denote the ratio between consumed and generated Beaver triples
as recursion rate R. Note that the self-recursion assumes that JmK is authen-
ticated with respect to itself. For simplicity, we assume that JmK is given as
input.

– the PCG for VOLE [8] to support the calls of Input(only for the initial

instantiation with ΠBoyle
aSUV). In Table 2, we make a slightly different assump-

tion and count the costs to preprocess randoms shares instead of VOLE, that
can be use alternatively to realize calls to Input [15]. Random shares can be
generated by restricting ΠBt to the x-component. We do this for simplicity,
and to bind the MAC m to several recursive calls of ΠBt.

– the AND triple protocol [19] to support integer additions with ∥ · ∥m. Ac-
cording to [10,19], the costs for one AND triple are 32 bits of communication
per party and 54 random COT. The numbers in Table 1 include the 32 bits
per AND triple.
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Table 3. Communication cost of ΠBt including the preprocessing. This table extends
Table 1. “without” refers to numbers without preprocessing, while the other columns
include preprocessing. For COT we take two different assumptions. “Overhead” refers
to the additional costs induced by the prepossessing: The numbers for our work without
preprocessing related to the numbers for our our work where the costs for COT are
according to [8]. R is the recursion rate for Beaver triples.

without COT with [29] COT with [8]
λLPN d t R Boyle Our work Boyle Our work Boyle Our work Overhead

80 96 48 7% 8.22 7.60 9.90 9.22 9.56 8.87 17%
80 40 10 1% 1.57 1.46 1.78 1.67 1.72 1.61 10%
80 32 4 1% 1.06 0.98 1.20 1.12 1.15 1.07 10%

128 152 76 18% 19.68 18.17 26.73 24.84 25.83 23.94 32%
128 64 16 3% 3.83 3.54 4.43 4.13 4.27 3.97 12%
128 40 5 1% 1.63 1.51 1.86 1.73 1.79 1.67 10%

Average reduction 7.5% 6.8% 7.0%

– a PCG for COT, as necessary for the AND triple generation [19] and to
sample the positions of the small aSUV instances. To generate COT, Boyle
et al. [10] propose the PCG [8]. In our estimated evaluation below, we either
assume this PCG with communication costs of 101 bits per COT (with
malicious security) or FerretOT [29] with higher costs of 0.44 per COT, but
better runtime efficiency.

To model the costs for the preprocessing, we compute the total communica-
tion costs C of ΠBt according to C = CBt + CVOLE + CAND + CCOT + R · C,
where CBt refers to ΠBt without preprocessing and the other values refer to the
costs for the respective preprocessing. This reflects to a large scale application,
where the self-recursion of Beaver triples is modelled as a stream running infinite
rounds of ΠBt. In this sense, we do not include initialization costs, e.g., for the
very first round of Beaver triples.

The numbers in Table 3 show that the preprocessing increases the costs by at
least 10%. The main reasons is due to generation of AND triples. However, since
the recursion rate for Beaver triples grows with d2, the costs for the recursive
calls ofΠBt become more and more dominant. Furthermore, the different options
for the COT generation are significant.
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