
HyperPianist: Pianist with Linear-Time Prover
via Fully Distributed HyperPlonk

Chongrong Li⋆, Yun Li†, Pengfei Zhu†,
Wenjie Qu‡, Jiaheng Zhang‡

⋆Beijing University of Posts and Telecommunications,
†Tsinghua University , ‡National University of Singapore

lichongrong@bupt.edu.cn, liyunscss@gmail.com,
zpf21@mails.tsinghua.edu.cn, wenjiequ@u.nus.edu, jhzhang@nus.edu.sg

Abstract. Zero-knowledge proofs allow one party to prove the truth
of a statement without disclosing any extra information. Recent years
have seen great improvements in zero-knowledge proofs. Among them,
zero-knowledge SNARKs are notable for their compact and efficiently-
verifiable proofs but face challenges with high prover costs for large-scale
applications. To accelerate proof generation, Pianist (Liu et al., S&P
2024) proposes to distribute the proof generation process across multiple
machines, and achieves a significant reduction in overall prover time.
However, Pianist inherits the quasi-linear computational complexity from
its underlying SNARK proof system Plonk, limiting its scalability and
efficiency with large circuits.
In this paper, we introduce HyperPianist, a fully distributed proof sys-
tem with linear-time prover complexity and logarithmic communication
cost among distributed machines. Starting from deVirgo (Xie et al., CCS
2022), we study their distributed multivariate SumCheck protocol and
achieve logarithmic communication cost by using an additively homo-
morphic multivariate polynomial commitment scheme in the distributed
setting. Given the distributed SumCheck protocol, we then adapt Hy-
perPlonk (Chen et al., EuroptCrypt 2023), a proof system based on mul-
tivariate polynomials, to the distributed setting without extra overhead
for witness re-distribution. In addition, we propose a more efficient con-
struction of lookup arguments based on Lasso (Setty et al., Eurocrypt
2024), and adapt it to the distributed setting to enhance HyperPianist
and obtain HyperPianist+.

1 Introduction

Zero-knowledge proofs (ZKPs) are cryptographic protocols where one party
proves that a statement is true without revealing any additional information.
ZKPs were first introduced in the 1980s by Goldwasser, Micali, and Rackoff,
and have since become a staple of modern cryptography. In recent years, the
efficiency of ZKPs has dramatically improved, enabling a multitude of new ap-
plications in blockchains and machine learning, among others.

Zero-knowledge succinct non-interactive arguments of knowledge (SNARK)
are a type of ZKPs where the proof is short and fast to verify (“succinct”). One
of the most popular constructions of modern SNARKs is based on a polynomial
interactive oracle proof (PIOP) in conjunction with a polynomial commitment
scheme (PCS). Two of the most deployed SNARKs, Plonk [12] and Marlin [4],
fall into this category. Plonk stands out with its compact proof size and fast
verifier, as well as support for custom gates with a universal trusted setup; it
has been adopted in various blockchain-related applications such as zkRollups
and zkEVM (Zero-knowledge Ethereum Virtual Machine). An extension work
Plonkup [24] enhances Plonk with the lookup arguments from Plookup [11] to
allow the proof system to efficiently handle non-linear functions.

However, high prover costs (in computation and memory consumption) have
been a main roadblock for SNARKs like Plonk when applied to large-scale real-
world applications, such as complex EVM traces on blockchains and large lan-
guage models (LLMs) in machine learning. As reported in a recent work Pi-
anist [18], Plonk requires about 200GB of memory for a circuit with 225 gates.

Pianist [18] proposes to distribute the proof generation process of Plonk
across multiple machines (sub-provers) to accelerate the proving phase. For a
data-parallel circuit containing M identical sub-circuits each of size T , Pianist is
able to achieve O(T log T +M logM) sub-prover cost using M machines, while
plain Plonk with one prover requires O(MT logMT) prover cost. Besides, Pi-
anist achieves O(1) communication cost among the sub-provers, and the proof
size and verification cost are the same as Plonk (which are O(1) too). Fur-
thermore, Pianist can be generalized to a “fully” distributed proof system that
applies to arbitrary circuits (in addition to data-parallel ones), with only minor
modifications and the same asymptotic complexity.

Pianist has shown the great potential of distributed systems in accelerat-
ing proof generation. However, its underlying proof system, Plonk, does not
scale well as the statement size gets larger. As a SNARK built upon univari-
ate PIOP and PCS, Plonk inevitably requires FFT (Fast Fourier Transform) or
NTT (Number Theoretic Transform) operations for polynomial interpolation,
which incurs O(N logN) computational cost for the prover. Concretely, for a
statement size larger than 220, the cost of FFTs or NTTs becomes the main bot-
tleneck of prover efficiency [3]. Although Pianist distributes the proving process
across multiple sub-provers using bivariate polynomials, each sub-prover still
needs to perform polynomial interpolation, and thus faces the same challenge.

Recently, HyperPlonk [3] was proposed to improve the efficiency and scalabil-
ity of Plonk: by adapting the Plonk univariate PIOP to the boolean hypercube

2

using multivariate polynomials in conjunction with a suitable multilinear PCS,
HyperPlonk can achieve linear-time prover complexity and handle custom gates
more efficiently. This improvement arises from the linear-time multivariate PIOP
and PCS, which scale better than the quasi-linear-time FFT or NTT operations
required by univariate PIOPs used in Plonk. In practice, the improvement factor
can be nearly 3× when statement size gets to 220, and the gap will be larger as
the statement size increases.

1.1 Our Contributions

HyperPianist. In this work, we propose HyperPianist (HyperPlonk vIA uN-
limited dISTribution), a fully distributed proof system with linear prover time.
HyperPianist is the distributed version of HyperPlonk, similar to how Pianist
is the distributed version of Plonk. Our goal is to enhance the scalability and
efficiency of Pianist by adapting the linear-time prover of HyperPlonk to the
distributed setting. As a result, HyperPianist is able to achieve linear-time com-
plexity for each sub-prover as well as logarithmic communication cost among the
distributed sub-provers.

We observe that the constraints in HyperPlonk (i.e., gate identity and wiring
identity) are eventually reduced to a multivariate SumCheck. An existing work,
deVirgo [32], has already explored the SumCheck protocol in the distributed
setting. However, naïvely applying their distributed SumCheck protocol to Hy-
perPlonk would incur linear communication costs among the sub-provers and
extra overhead for witness re-distribution. This mainly results from the follow-
ing two issues.

First, the original distributed SumCheck protocol in deVirgo incurs linear
communication cost among the distributed sub-provers. We note that the linear
communication cost comes from the use of the FRI-based multivariate PCS: in
the distributed setting, it requires exchanging extra witness data among the
distributed machines for constructing Merkle proofs. Instead, we propose to
make use of an additively horomorphic multivariate PCS, such as the IPA-based
scheme Dory [17]. The additive homomorphic property enables aggregation of
partial commitments to local witness held by the sub-provers, and thus enables
logarithmic communication cost for each sub-prover. We show the comparison of
our distributed PCS with the ones from deVirgo [32] and Pianist [18] in Table 1.

Second, in HyperPlonk, the wiring constraints (i.e., copy constraints) are re-
duced to a multiset check, which is then transformed into a grand product check
and handled by the Quarks [27] PIOP system. The grand product PIOP from
Quarks requires a helper polynomial, whose witness can not be locally obtained
by the distributed sub-provers in the distributed setting. To compute witnesses
of this polynomial, the sub-provers need extra linear communication cost to ex-
change intermediate data. To address this issue, we propose two solutions: (1)
using a logarithmic derivatives-based PIOP for the multiset check, which natu-
rally fits the distributed setting and has O(log n) proof size, and (2) using layered
circuits to directly prove the multiset relation, with O(log2 n) proof size but lower
prover cost. Both solutions require no extra effort for witness re-distribution.

3

Table 1: Comparisons of our distributed PCS with the ones from deVirgo and
Pianist. (N denotes the circuit size, M denotes the number of distributed
machines and T = N/M denotes the number of witnesses each distributed

machine holds. “Communication” measures the communication cost among the
distributed machines, and “Proof Size” measures the communication cost

between the master sub-prover and the verifier. H,P,F and G,GT stand for
hash, field, pairing, group operations respectively. | · | represents the size of

corresponding elements. “Transparent” stands for transparent setup.)

PCS Trans-
parent Pi Time V Time Communication Proof Size

deVirgo ✓ O(T log T)F+O(T)H O(log2 N)H O(N) |F| O(log2 N) |H|
Pianist ✗ O(T)G+O(T)F O(1)P O(M) |G| O(1) |G|
Ours ✓ O(T)G O(logN)GT O(M logN) |G| O(logN) |GT |

Table 2: Comparisons of HyperPianist with other distributed ZKP systems.
(Notations are the same as above.)

Scheme Pi Time V Time Communication Proof Size

deVirgo
O(T log T)F

O(log2 N)H O(N) |F| O(log2 N) |H|
+ O(T)H

Pianist
O(T log T)G

O(1)P O(M) |G| O(1) |G|
+ O(T log T)F

Ours
O(T)G O(logN)GT O(M logN) |G| O(logN) |GT |
+ O(T)F + O(logN)F + O(M logN) |F| + O(logN) |F|

Combining the distributed SumCheck protocol and the distributed Hyper-
Plonk PIOP system, we can obtain our fully distributed zero-knowledge proof
system HyperPianist. We compare HyperPianist with deVrigo and Pianist in
Table 2.

HyperPianist+. Our second contribution is HyperPianist+, an enhancement of
HyperPianist with an optimized distributed proof system for lookup tables, sim-
ilar to how HyperPlonk+ enhances HyperPlonk with lookup arguments. We
propose an optimized construction of lookup arguments based on the state-of-
the-art lookup argument Lasso [28], and extend it to the distributed setting.

Lookup arguments allow a party to prove that every element in a committed
vector exists in a pre-determined table. Compared to conventional ZKP systems
for arithmetic constraints, lookup arguments are especially suitable for non-linear
functions like bitwise operations, range proofs, and even finite state machines. To
build a distributed lookup argument compatible with HyperPianist, we studied
Lasso [28], a multivariate proof system also built over the boolean hypercube.
We found that one of its key components — the well-formation check based
on Memory-in-the-Head techniques, is not optimal. We propose to use logarith-

4

mic derivative techniques from Logup [16] for the well-formation check and can
immediately save 50% polynomial commitments.

We note a concurrent work [7] that uses the same idea for optimizing Lasso.
We emphasize that our construction of lookup arguments is developed indepen-
dently of theirs, and we additionally adapt it to the distributed setting and get
a more functional distributed ZKP system.

Implementation and Experiments. We have implemented our optimized lookup
arguments using the Lasso framework1 and conducted some preliminary exper-
iments. Results show that our optimized lookup protocol is 1.41 ∼ 1.89 times
as fast in proving 64-bit XOR computations compared to Lasso. Our fully dis-
tributed zero-knowledge proof system is still in progress, and we expect more
efficiency gains in the future.

1.2 Related Works

Distributed ZKPs. Wu et al. introduced DIZK [30], the first distributed zero-
knowledge proof protocol. However, DIZK incurs communication costs propor-
tional to the circuit size due to the use of a distributed FFT algorithm. zk-
Bridge [32] presented deVirgo, a distributed variant of Virgo [35], which achieves
linear prover time but also suffers from linear communication costs due to the
FRI protocol [2]. To mitigate the high communication overhead, Pianist [18]
proposed a bivariate KZG commitment scheme to aggregate proofs from differ-
ent machines, achieving optimal linear scalability in prover time and minimal
communication among distributed machines. However, the prover complexity in
Pianist remains quasi-linear to the circuit size. In contrast, our schemes provide
strictly linear prover time with only logarithmic communication per machine.

Collaborative ZKPs. A series of recent works [22,5,6,19] have focused on
distributing the proof generation process while maintaining the privacy of the
witnesses. One popular approach relies on the notation of collaborative ZKPs
introduced in [22]. This approach consists of two phases: First, each server sends
and receives its part of the witness in a secret-sharing form. Then, all servers
execute a certain secure multi-party computation (MPC) protocol for the proof
generation circuit. We stress that these works are orthogonal to ours: their em-
phasis is on security and privacy, while we focus on scaling proof generation with
sub-provers which trust each other.

1.3 Organization of the paper.

Section 2 presents the preliminaries. Section 3 introduces an optimized dis-
tributed SumCheck protocol as a main building block of HyperPianist, and then
presents our construction of HyperPianist by adapting the HyperPlonk multi-
variate PIOP to the distributed setting. Section 5 presents the construction of
1 Our implementation is in https://github.com/zhaowenlan1779/jolt/tree/logup.

5

https://github.com/zhaowenlan1779/jolt/tree/logup

our optimized lookup argument, and uses it to enhance HyperPianist to obtain
HyperPianist+. Section 6 gives some preliminary experimental results.

2 Preliminaries

2.1 Notations

We use λ to denote the security parameter. For n ∈ N, let [n] be the set
{1, 2, . . . , n}; for a, b ∈ N, let [a, b) denote the set {a, a+1, . . . , b−1}. A function
f(λ) is poly(λ) if there exists a c ∈ N such that f(λ) = O(λc). If for all c ∈ N,
f(λ) is o(λ−c), then f(λ) is in negl(λ) and is said to be negligible. A probability
that is 1− negl(λ) is overwhelming.

Vector, matrix and tensor indices will begin at 1. For any two vectors v1, v2,
we denote their concatenation by (v1||v2). We use ⊗ to denote the Kronecker
product, mapping an m×n matrix A and p× q matrix B to an mp×nq matrix.
For any vector v of even length we will denote the left and right halves of v by
vL and vR.

We write ←$ S for uniformly random samples of a set S, with the under-
standing that this encodes no additional structure.

We write all groups additively, and assume we are given some method to
sample Type III pairings at a given security level. Then we are furnished with
a prime field F = Fp, three groups G1,G2,GT of order p, a bilinear map
e : G1 × G2 → GT , and generators G1 ∈ G1, G2 ∈ G2 such that e(G1, G2)
generates GT . We generally suppress the distinction between e(·, ·) and multipli-
cation of F,G1,G2 or GT by elements of F, writing all of these bilinear maps as
multiplication; we will also use ⟨·, ·⟩ to denote the generalized inner product given
by ⟨a, b⟩ =

∑n
i=1 aibi, with signatures: Fn × Fn → F, Fn ×Gn

{1,2,T} → Gn
{1,2,T}

or Gn
1 ×Gn

2 → GT .
A multiset is an extension of the concept of a set where every element has

a positive multiplicity. Two finite multisets are equal if they contain the same
elements with the same multiplicities.

2.2 SNARKs

We adopt the definition of SNAKRs provided in [3].

Definition 1 (Interactive Argument of Knowledge). An interactive pro-
tocol Π = (Setup, I,P,V) between a prover P and verifier V is an argument of
knowledge for an indexed relation R with knowledge error δ : N → [0, 1] if the
following properties hold, where given an index i, common input x and prover
witness w, the deterministic indexer outputs (vk, pk) ← I(i) and the output of
the verifier is denoted by the random variable ⟨P(pk,x,w),V(vk,x)⟩:

– Perfect Completeness: for all (i,x,w) ∈ R,

Pr

[
⟨P(pk,x,w),V(vk,x)⟩ = 1

∣∣∣∣ pp← Setup(1λ)
(vk, pk)← I(pp, i)

]
= 1

6

– δ-Knowledge Soundness: There exists a polynomial poly(·) and a PPT
oracle machine E called the extractor such that given oracle access to any
pair of PPT adversarial prover algorithm (A1,A2), the following holds:

Pr

⟨A2(i,x, st),V(vk,x)⟩ = 1 ∧ (i,x,w) /∈ R

∣∣∣∣∣∣∣∣
pp← Setup(1λ)

(i,x, st)← A1(pp)
(vk, pk)← I(pp, i)
w← EA1,A2(pp, i,x)

≤ δ(|i|+ |x|).

An interactive protocol is knowledge sound if the knowledge error δ is negli-
gible in λ.

– Public coin: An interactive protocol is public-coin if V’s messages are cho-
sen uniformly at random.

It is well known that if the interactive argument of knowledge protocol is
public-coin, then it can be made non-interactive by the Fiat-Shamir transforma-
tion [9]. If the scheme further satisfies the following property:

– Succinctness: The proof size is |π| = poly(λ, log |C|) and the verification
time is poly(λ, |x|, log |C|),

then it is a Succinct Non-interactive Argument of Knowledge (SNARK).

2.3 Polynomial Interactive Oracle Proof

Definition 2 (Public-coin Polynomial Interactive Oracle Proof [3]). A
public-coin polynomial interactive oracle proof (PIOP) is a public-coin interac-
tive proof for a polynomial oracle relation R = (i,x;w), where i and x can
contain oracles to n-variate polynomials over some field F. These oracles can
be queried at arbitrary points in Fn to evaluate the polynomial at these points.
The actual polynomials corresponding to the oracles are contained in pk and w,
respectively. We denote an oracle to a polynomial f by [[f]]. In each round, P
sends multivariate polynomial oracles, and V replies with a random challenge.

2.4 Multilinear Extension

We define the set F (≤d)
n to be all n-variate polynomials f : Fn → F where the

degree is at most d in each variable. In particular, an n-variate polynomial f is
said to be multilinear if f ∈ F (≤1)

n . It is well-known that for any f : {0, 1}n → F,
there is a unique multilinear polynomial f̃ : Fn → F such that f̃(x) = f(x) for
all x ∈ {0, 1}n. The polynomial f̃ is called the multilinear extension (MLE) of
f , and can be expressed as

f̃(X) =
∑

x∈{0,1}n

f(x) · ẽq(x,X),

where ẽq(x,X) :=
∏n

i=1(xiXi + (1− xi)(1−Xi)).

7

2.5 Polynomial Commitment Scheme

Definition 3 (Polynomial Commitment Scheme (PCS)). A polynomial
commitment scheme Γ is a tuple Γ = (Gen,Commit,Open,Verify) of PPT algo-
rithms where:

– Gen(1λ,F)→ pp generates public parameters pp;
– Commit(pp, f)→ comf takes a secret polynomial f(X) and outputs a public

commitment comf ;
– Open(pp, comf ,x)→ (z, πf) evaluates the polynomial y = f(x) at a point x

and generates a proof πf ;
– Verify(pp, comf ,x, z, πf) → b ∈ {0, 1} is an interactive protocol between the

prover P and verifier V, convincing the verifier that f(x) = z.

A commitment scheme Γ is binding if for all PPT adversaries A,

Pr

b0 = b1 ̸= 0 ∧ x0 ̸= x1

∣∣∣∣∣∣∣∣
pp← Setup(1λ)

(C, x0, x1, r0, r1)← A1(pp)
b0 ← Open(pp, C, x0, r0)
b1 ← Open(pp, C, x1, r1)

 ≤ negl(λ).

A commitment scheme Γ is hiding if for all PPT adversaries A,

∣∣∣∣∣∣∣∣∣∣
Pr

b = b′

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ)

(x0, x1, st)← A1(pp)
b←$ {0, 1}

(Cb; rb)← Commit(pp;xb)
b′ ← A(pp, st, Cb)

− 1/2

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Our distributed polynomial commitment scheme is built upon Dory [17],
which makes use of the Pedersen and AFGHO commitments. For messages X =
Fn and any i ∈ {1, 2, T}, the Pedersen commitment scheme is defined as:

Definition 4 (Pedersen Commitment).

– pp← Gen(1λ) = (g ←$ Gn
i , h←$ Gi)

– (C,S)← Commit(pp;x) = {r ←$ F; (⟨x, g⟩) + rh, r)}
– Open(pp; C, x,S) : Check whether ⟨x, g⟩+ S · h = C.

AFGHO commitment is a structure-preserving commitment to group ele-
ments. In this case we have X = Gn

i for i ∈ {1, 2} and we have:

Definition 5 (AFGHO Commitment [1]).

– pp← Gen(1λ) = (g ←$ Gn
3−i, H1 ←$ G1, H2 ←$ G2);

– (C,S)← Commit(pp;x) = {r ←$ F; (⟨x, g⟩) + r · e(H1, H2), r)};
– Open(pp; C, x,S) : Check whether ⟨x, g⟩+ S · e(H1, H2) = C.

8

3 Distributed SumCheck Protocol with Sublinear
Communication Cost

In this section, we present our key building block of HyperPianist, an opti-
mized distributed SumCheck protocol with O(log n) communication cost per
distributed machine for a SumCheck statement of size n. A previous work, de-
Virgo [32], has constructed a SumCheck PIOP in the distributed setting, but
their construction is for data-parallel circuits and suffers from linear commu-
nication costs. Below we first review the distributed SumCheck PIOP from
deVirgo [32], and then show how to reduce the communication cost down to
O(log n) with an optimized distributed PCS.

3.1 Review: Distributed SumCheck PIOP From deVirgo

The SumCheck relation is defined as follows:

Definition 6 (SumCheck Relation). The relation RSum is the set of all tu-
ples (x;w) = ((v, [[f]]); f) where f ∈ F (≤d)

n and
∑

x∈{0,1}n f(x) = v.

There is a well-known PIOP for SumCheck, as illustrated in Protocol 3.1.01,
where the verifier runs in O(n) time plus the time required to evaluate f at a
single point r ∈ Fn. This is significantly faster than naïvely evaluating v on the
hypercube.

Theorem 1. The PIOP for RSum in Protocol 3.1.01 is perfectly complete and
has knowledge error dn/|F|.

In deVirgo [32], the authors have explored the aggregation of multiple Sum-
Check instances for data-parallel circuits held by several distributed machines.
Here we instead distribute a single SumCheck across multiple machines, assum-
ing the initial witnesses have already been distributed. We present the protocol
in Protocol 3.1.02.

Without loss of generality, suppose we have M = 2m distributed machines
acting as sub-provers. Initially, we assume that the i-th sub-prover holds wit-
nesses to indices (x1, . . . , xn−m, bin(i)) where x1, . . . , xn−m ∈ {0, 1}. Following
deVirgo [32], initially we can define

f (i)(x) := f(x, bin(i))

where bin(i) is the binary representation of the value i. Then we have∑
x∈{0,1}n

f(x) =
∑

x∈{0,1}n−m

∑
bin(i)∈{0,1}m

f(x, bin(i))

=
∑

i∈[0,M−1]

∑
x∈{0,1}n−m

f(x, bin(i))

=
∑

i∈[0,M−1]

f (i)(x).

9

PROTOCOL 3.1.01 SumCheck PIOP.

P holds a multivariate polynomial f : Fn → F, and wants to convince V that
v =

∑
x∈{0,1}n f(x).

– In the first round, P sends a univariate polynomial

f1(X1) :=
∑

x∈{0,1}n−1

f(X1,x).

V checks v = f1(0) + f1(1). If the check passes, V sends a random challenge
r1 ∈ F to P.

– In the k-th round, where 2 ≤ k ≤ n− 1, P sends a univariate polynomial

fk(Xk) :=
∑

x∈{0,1}n−k

f(r1, . . . , rk−1, Xk,x).

V checks fk−1(rk−1) = fk(0) + fk(1). If the check passed, V sends a random
challenge rk ∈ F to P.

– In the n-th round, P sends a univariate polynomial

fn(Xn) := f(r1, . . . , rn−1, Xn).

V checks fn−1(rn−1) = fn(0) + fn(1) and generates a random challenge
rn ∈ F. V accepts if an only if fn(rn) = f(r1, . . . , rn) using one oracle call to
[[f]].

Note that, given witnesses to indices (x1, . . . , xn−m, bin(i)), each sub-prover
Pi can locally obtain the polynomial f (i)(x). In the first n−m rounds, each sub-
prover can locally compute the univariate polynomial required by the SumCheck
PIOP, and send it to a master sub-prover P0. P0 aggregates all these polynomials
to obtain the polynomial to send to V, and forwards the challenge from V to
all sub-provers. By allocating each sub-prover a fixed binary suffix of length
m, the computation of the univariate polynomial in the first n − m rounds
of the SumCheck PIOP can be distributed evenly among the sub-provers and
then summed up via aggregation by a master sub-prover P0. More specifically,
we let each sub-prover Pi locally compute the univariate polynomial f (i)

k (Xk)
using its partial polynomial f (i)(x) with the fixed binary suffix bin(i) in each
k-th round of the SumCheck PIOP where 1 ≤ k ≤ n − m, and send it to
a master sub-prover P0. P0 aggregates the univariate polynomials and obtains
fk(Xk) =

∑
bin(i)∈{0,1}m f

(i)
k (Xk). After this, P0 acts as the prover in the normal

SumCheck PIOP, i.e., interacting with V by sending fk(Xk) and receiving a
random challenge rk. Then, it transmits the random challenge to other sub-
provers.

10

PROTOCOL 3.1.02 Distributed SumCheck PIOP.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given a multivariate polynomial f : Fn → F, suppose each sub-prover
Pi holds a local partial polynomial f (i) : Fn−m → F s.t. f (i)(x) = f(x, bin(i)).
The sub-provers want to convince V that v =

∑
x∈{0,1}n f(x).

– In the first round:
• Each Pi computes its own univariate polynomial

f
(i)
1 (X1) :=

∑
x∈{0,1}n−m−1

f(X1,x, bin(i)),

and sends it to P0.
• P0 sums up all the univariate polynomials to get

f1(X1) =
∑

i∈[0,M−1] f
(i)
1 (X1), and sends it to V.

• V checks v = f1(0) + f1(1). If the check passes, V sends a random
challenge r1 ∈ F to P0.

• P0 transmits r1 to the other sub-provers.
– In the k-th round where 2 ≤ k ≤ n−m:
• Each Pi computes its own univariate polynomial

f
(i)
k (Xk) :=

∑
x∈{0,1}n−m−k

f(r1, . . . , rk−1, Xk,x, bin(i))

and sends it to P0.
• P0 sums up all the univariate polynomials to get

fk(Xk) =
∑

i∈[0,M−1] f
(i)
k (Xk), and sends it to V.

• V checks fk−1 = fk(0) + fk(1). If the check passes, V sends a random
challenge rk ∈ F to P0.

• P0 transmits rk to the other sub-provers.
– After the (n−m)-th round, each Pi sends f(r1, · · · , rn−m, bin(i)) to P0. P0

then computes v′ :=
∑

i∈[0,M−1] f(r1, · · · , rn−m, bin(i)), and constructs the
multivariate polynomial g(x) = f(r1, · · · , rn−m,x).

– In the final m rounds, P0 and V run the SumCheck PIOP (Protocol 3.1.01)
on the statement

v′ =
∑

x∈{0,1}m
g(x).

In the (n−m)-th round, after V returns the random challenge rn−m, the mul-
tivariate polynomial to check has been reduced to g(x) := f(r1, · · · , rn−m,x).
At this point, all sub-provers send f(r1, · · · , rn−m, bin(i)) to P0. P0 computes
v′ :=

∑
bin(i)∈{0,1}m f(r1, · · · , rn−m, bin(i)), and constructs the multivariate

polynomial g(x) s.t. g(bin(i)) = f(r1, · · · , rn−m, bin(i)). Now in the following

11

rounds, the master sub-prover P0 acts as the single prover in a regular SumCheck
PIOP to prove that

∑
x∈{0,1}m g(x) = v′.

3.2 Instantiation: Using Additively Homomorphic PCS

In the above distributed SumCheck PIOP, the verifier needs an oracle call to
the polynomial f to get f(r1, · · · , rn). To instantiate this oracle call, we need a
multivariate PCS suitable for the distributed setting.

In deVirgo [32], this multivariate PCS is obtained by adapting the FRI-
based scheme to the distributed setting. Although deVrigo has optimized its
distributed PCS algorithm by aggregating multiple commitments and proofs
into one instance to reduce the proof size, it incurs linear communication costs
for each sub-prover, as the FRI-based scheme requires exchanging data among
the distributed sub-provers to construct a single Merkle proof.

To circumvent this issue, we consider adapting Dory [17], an IPA-based ad-
ditively homomorphic PCS, to the distributed setting. The key insight here is
that the additive homomorphism property enables each sub-prover to perform
sub-computation locally and subsequently transmit only a constant number of
elements to the master sub-prover for aggregation, which significantly reduces
communication costs.

Review of Dory. In Section 2.5, we have introduced some building blocks used
in Dory [17]. Below we first review the main technique in Dory, and then show
how to adapt it to the distributed setting.

The Dory PCS focuses on multilinear polynomials, with the observation that
on the boolean hypercube, any polynomial (univariate or multivariate) can be
transformed into an equivalent multilinear polynomial. Given a multilinear poly-
nomial f ∈ F (≤1)

n , its matrix representation is defined as follows.

Definition 7 (Matrix Representation of Multilinear Polynomial). For
a multilinear polynomial f : Fn → F, without loss of generality, we assume n
is even and let k := n/2. Then the polynomial f can be represented as matrix
M = (Mij), where Mij = f(x1, . . . , xn) for any (x1, . . . , xn) ∈ {0, 1}n and

i =

k∑
t=1

2k−t · xt, j =

n∑
t=k+1

2n−t · xt.

Dory Commitment. In order to generate polynomial commitments using the ma-
trix representation, Dory [17] proposed to use a two-tiered homomorphic com-
mitment [15] by combining the Pedersen and AFGHO commitments. Formally,
for Mij ∈ Fn×m, we have

– pp← Gen(1λ) = (Γ1 ←$ Gm
1 , Γ2 ←$ Gn

2);
–

(C,S)← Commit(pp;Mij) =

{
Vi ← CommitPedersen(Γ1;Mij);
C ← CommitAFGHO(Γ2;V);

}
;

– Open(pp; C, x,S) : Check whether
∑

i Γ2i(
∑

j MijΓ1j) = C.

12

Dory Evaluation Proof. Given the two-tiered commitment comf to the polyno-
mial f , the prover P would like to convince the verifier that f evaluates to y at
some random point r ∈ Fn. The evaluation of f at some point (r1, . . . , rn) ∈ Fn

can be written as vector-matrix-vector products using its matrix representation.
More specifically, we have:

f(r1, . . . , rn) = (⊗i<kvi)
TM(⊗i≥kvi), (1)

where vi = (1 − ri, ri). We can define a relation to capture the vector-matrix-
vector product identity.

Definition 8. Let L,R ∈ Fn be public vectors, M ∈ Fn×n be the secret matrix,
y = LTMR, comM be the commitment to M using the two-tiered commitment,
and comy be the Pedersen commitment to y. The relation RVMV is the set of all
tuples ((L,R, comM , comy); (M , y)).

Thus, to prove the opening of f at the point (r1, · · · , rn) ∈ Fn, it suffices to
prove the following vector-matrix-vector relation

((⊗i<kvi,⊗i≥kvi, comM , comy); (M , y)) ∈ RVMV.

The general strategy to prove RVMV is as follows. Suppose commitment
to y = LTMR is computed as CommitPedersen(Γ1,fin; y) = (y; comy). P can
compute the vector v = LTM , and by construction y = LTMR = ⟨v,R⟩.
Since Pedersen commitments are linearly homomorphic, we have

comv := ⟨L, comrow⟩ = CommitPedersen(Γ1,v)

is a commitment to v, where comrow is a vector of Pedersen commitments to
the rows of matrix M . Recall that comM is a commitment to comrow ∈ Gn

1 . So
to prove ((L,R, comM , comy); (M , y)) ∈ RVMV, it suffices to prove knowledge of
comrow ∈ Gn

1 ,v ∈ Fn such that comM = ⟨comrow, Γ2⟩, ⟨L, comrow⟩ = ⟨v, Γ1⟩
and comy = ⟨v,R⟩Γ1,fin, which are inner-product relations.

In this way, a vector-matrix-vector relation is reduced to inner-product rela-
tions. More formally, we define the inner-product relation as follows.

Definition 9. Let s1, s2 ∈ Fn be public vectors. The relation RInner is the set
of all tuples ((s1, s2, C,D1, D2, E1, E2); (v1,v2)), where v1 ∈ Gn

1 ,v2 ∈ Gn
2 are

witness vectors, and

D1 = ⟨v1, Γ2⟩, D2 = ⟨Γ1,v2⟩,
E1 = ⟨v1, s2⟩, E2 = ⟨s1,v2⟩,
C = ⟨v1,v2⟩.

To prove the inner-product relation, Dory utilizes an observation that for any
vector uL,uR,vL,vR, and any non-zero scalar a:

⟨uL||uR,vL||vR⟩ = ⟨auL + uR, a−1vL + vR⟩ − a⟨uL,vR⟩ − a−1⟨uR,vL⟩.

13

Thus a claim about the inner product ⟨u,v⟩ of length n can be reduced to
a claim about the inner product of vectors of length n/2. We give a detailed
description of the reduction process in Appendix A, Protocol A.0.01.

After log n iterations, the length of the inner product is eventually reduced
to 1. V must also compute the final s1, s2 used as arguments to verify the Fold-
Scalars, described in Protocol A.0.02. In particular, there are the scalars:

⟨s1,⊗n−1
i=0 (αi, 1)⟩, ⟨s2,⊗n−1

i=0 (α
−1
i , 1)⟩.

For polynomial evaluation proof, s1, s2 have special multiplicative structure, and
we have the identity:

⟨⊗n−1
i=0 (li, ri),⊗

n−1
i=0 (ai, 1)⟩ =

N−1∏
i=0

(liai + ri)

which allows computation of the product in O(log n) operations on F.
Combining the Protocol A.0.01 and the Protocol A.0.02, we obtain the pro-

tocol to prove the following inner-product relation

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

We present this inner-product protocol in Protocol A.0.03.
Given the above sub-protocols, we describe the final protocol to prove the

relation ((L,R, comM , comy); (M , y)) ∈ RVMV in Protocol A.0.04.

Remark 1. Protocol A.0.04 only satisfies the weaker notation called Random
Evaluation Knowledge Soundness, instead of Knowledge Soundness. To address
this issue, Dory [17] suggested that if the prover can open the polynomial at
a random challenge point using Protocol A.0.04, then we can achieve Knowl-
edge Soundness. The final protocol for polynomial opening proof is described at
Protocol A.0.05.

Adapting Dory to the Distributed Setting.

Distributed Dory Commitment. To adapt Dory into the distributed setting, we
need some minor changes. Recall that in the distributed setting, the i-th sub-
prover holds witnesses to indices (x1, . . . , xn−m, bin(i)) where x1, . . . , xn−m ∈
{0, 1} and bin(i) is the binary representation of the value i. In the vanilla ma-
trix representation from Dory, each sub-prover ends up holding several different
columns of the matrix, but will need to calculate the Pedersen commitments for
the rows. Thus we use the transpose of the vanilla representation, i.e.:

f(x1, . . . , xn) = (⊗i≥kvi)
TMT (⊗i<kvi).

Then, each sub-prover can calculate the Pedersen commitments of the columns
locally and send these commitments to the master sub-prover for aggregation,
as in Protocol 3.2.01.

14

PROTOCOL 3.2.01 Distributed-Dory-Commit(f)

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given a multivariate polynomial f : Fn → F, suppose each sub-prover
Pk holds a local partial polynomial f (k) : Fn−m → F s.t. f (k)(x) = f(x, bin(k)).

– Each sub-prover Pk obtains the matrix representation of its local witnesses
M ij as in Equation 1, computes

comcol
(k) = CommitPedersen(Γ

(k)
1 ;M ij),

com
(k)
M = CommitAFGHO(Γ

(k)
2 ; comcol

(k)),

and sends com
(k)
M to P0.

– The master sub-prover P0 computes commitment

comM =
∑

k∈[0,M−1]

com
(k)
M .

Distributed Dory Evaluation Proof. Since we use the transpose, the sub-provers
in the distributed setting should instead prove that

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV.

At a very high level, the above vector-matrix-vector relation can also be re-
duced to an inner-product relation, which is then handled by a reduction process
and finally a fold-scalar proof. We note that the above protocols in Dory can
be easily distributed across several sub-provers, since almost all calculations in
this reduction are inner products, and each sub-prover can use their own partial
sub-vector to compute their corresponding partial result.

We present the distributed protocols for polynomial evaluation proofs in Pro-
tocol 3.2.05. It needs two invocations of Protocol 3.2.04 to prove two distributed
inner-product relations. Protocol 3.2.03 shows our distributed protocol for prov-
ing inner-product relations, which mainly involves a distributed reduction pro-
cess described in Protocol 3.2.02. It is worth noting that, after the first n −m
rounds in the reduction process, the master sub-prover P0 needs to aggregate all
partial data the other sub-provers hold, and then finishes the remaining reduction
process with the verifier. The batch algorithm of Dory can also be distributed
similarly.

15

PROTOCOL 3.2.02 Distributed-Dory-Reduce2n(s1, s2, C,D1, D2, E1, E2).

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Each Pi holds local partial witness v

(i)
1 ,v

(i)
2 w.r.t. v1,v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

The sub-provers jointly pre-compute ∆1L = ⟨Γ1L, Γ ′
2⟩, ∆1R = ⟨Γ1R, Γ

′
2⟩,

∆2L = ⟨Γ ′
1, Γ2L⟩, ∆2R = ⟨Γ ′

1, Γ2R⟩, and χ = ⟨Γ1, Γ2⟩.

– Each sub-prover Pi computes

D
(i)
1L = ⟨v1L

(i), Γ
′(i)
2 ⟩, D

(i)
1R = ⟨v1R

(i), Γ
′(i)
2 ⟩, E

(i)
1β = ⟨Γ (i)

1 , s2
(i)⟩,

D
(i)
2L = ⟨Γ ′(i)

1 ,v2L
(i)⟩, D

(i)
2R = ⟨Γ ′(i)

1 ,v2R
(i)⟩, E

(i)
2β = ⟨s1

(i), Γ
(i)
2 ⟩,

and sends them to P0.
– The master sub-prover P0 computes

D1L =
∑

D
(i)
1L, D1R =

∑
D

(i)
1R, E1β =

∑
E

(i)
1β ,

D2L =
∑

D
(i)
2L, D2R =

∑
D

(i)
2R, E2β =

∑
E

(i)
1β ,

and sends it to the verifier V.
– V samples β ←$ F and sends it to the master sub-prover P0.
– The master sub-prover P0 transmits β to the other sub-provers Pi.
– Each sub-prover Pi sets

v
(i)
1 ← v

(i)
1 + βΓ

(i)
1 , v

(i)
2 ← v

(i)
2 + β−1Γ

(i)
2 .

– Each sub-prover Pi computes

E
(i)
1+ = ⟨v1L

(i), s2R
(i)⟩, E

(i)
1− = ⟨v1R

(i), s2L
(i)⟩, C

(i)
+ = ⟨v1L

(i),v2R
(i)⟩,

E
(i)
2+ = ⟨s1L

(i),v2R
(i)⟩, E

(i)
2− = ⟨s1R

(i),v2L
(i)⟩, C

(i)
− = ⟨v1R

(i),v2L
(i)⟩,

and sends them to the master sub-prover P0.
– The master sub-prover P0 computes

E1+ =
∑

E
(i)
1+, E1− =

∑
E

(i)
1−, C+ =

∑
C

(i)
+ ,

E2+ =
∑

E
(i)
2+, E2− =

∑
E

(i)
2−, C− =

∑
C

(i)
− ,

and sends them to the verifier V.
– V samples α←$ F and sends it to the master sub-prover P0.
– The master sub-prover P0 transmits α to the other sub-provers Pi.
– Each sub-prover Pi sets

v′
1
(i) ← αv1L

(i) + v1R
(i), v′

2
(i) ← α−1v1L

(i) + v1R
(i).

– The verifier V computes

C′ = C + χ+ βD2 + β−1D1 + αC+ + α−1C−,

D′
1 = αD1L +D1R + αβ∆1L + β∆1R, D′

2 = α−1D2L +D2R + α−1β−1∆2L + β−1∆2R,

E′
1 = E1 + βE1β + αE1+ + α−1E1−, E′

2 = E2 + β−1E2β + αE2+ + α−1E2−.

– Each sub-prover Pi sets

s1
′(i) ← αs1L

(i) + s1R
(i), s2

′(i) ← α−1s2L
(i) + s2R

(i).

– V accepts if

((s1
′, s2

′, C′, D′
1, D

′
2, E

′
1, E

′
2); (v

′
1,v

′
2)) ∈ RInner.

16

PROTOCOL 3.2.03 Distribued-Dory-IPA2n(s1, s2, C,D1, D2, E1, E2).

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Each Pi holds local partial witness v

(i)
1 ,v

(i)
2 w.r.t. v1,v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

For for all j ∈ {0, . . . , n− 1}, the sub-provers jointly pre-compute
Γ1,j+1 = (Γ1,j)L, Γ2,j+1 = (Γ2,j)L, for all i ∈ {0, . . . , n} compute
χi = ⟨Γ1,i, Γ2,i⟩, and for all i ∈ {0, . . . , n− 1} compute

∆1L,i = ⟨(Γ1,i)L, Γ2,i+1⟩, ∆2L,i = ⟨Γ1,i+1, (Γ2,i)L⟩,
∆1R,i = ⟨(Γ1,i)R, Γ2,i+1⟩, ∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩.

– For j = 0, . . . , n−m− 1, {Pi}i∈[0,M−1],V run

(s1, s2, C,D1, D2, E1, E2)← Distributed-Dory-Reduce2n−j (s1, s2, C,D1, D2, E1, E2).

– Each sub-prover Pi sends (s
(i)
1 , s

(i)
2 , C(i), D

(i)
1 , D

(i)
2 , E

(i)
1 , E

(i)
2 , v

(i)
1 , v

(i)
2) to the

master sub-prover P0.
– The master sub-prover P0 computes

C =
∑

i∈[0,M−1]

C(i),

D1 =
∑

i∈[0,M−1]

D
(i)
1 , D2 =

∑
i∈[0,M−1]

D
(i)
2 ,

E1 =
∑

i∈[0,M−1]

E
(i)
1 , E2 =

∑
E

(i)
2 .

– The master sub-prover P0 sets

v1 =
(
v
(i)
1

)
i∈[0,M−1]

, v2 =
(
v
(i)
2

)
i∈[0,M−1]

,

s1 =
(
s
(i)
1

)
i∈[0,M−1]

, s1 =
(
s
(i)
2

)
i∈[0,M−1]

.

– For j = n−m, . . . , n− 1, the master sub-prover P0 and V run

(s1, s2, C,D1, D2, E1, E2)← Dory-Reduce2n−j (s1, s2, C,D1, D2, E1, E2).

– The master sub-prover P0 and V run

Dory-Fold-Scalar(s1, s2, C,D1, D2, E1, E2).

17

PROTOCOL 3.2.04 Distributed-Dory-Eval-RE(comM , comy,L,R)

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Each sub-prover Pi holds local partial witness M (i), comcol

(i) w.r.t.
M , comcol and common input L(i),R(i) w.r.t. L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– Each sub-prover Pi computes

v(i) = L(i)TM (i), y(i) = ⟨v(i),R(i)⟩,

and sends y(i) to the master sub-prover P0.
– The master sub-prover P0 computes

y =
∑

i∈[0,M−1]

y(i),

and sends it to the verifier V.
– Each sub-prover Pi computes

C(i) = e(⟨v(i), comcol
(i)⟩, Γ2,fin), D

(i)
2 = e(⟨Γ (i)

1 ,v(i)⟩, Γ2,fin),

E
(i)
1 = ⟨L(i), comcol

(i)⟩, E
(i)
2 = y(i)Γ2,fin,

and sends them to the master sub-prover P0.
– The master sub-prover P0 computes

C =
∑

i∈[0,M−1]

C(i), D2 =
∑

i∈[0,M−1]

D
(i)
2 ,

E1 =
∑

i∈[0,M−1]

E
(i)
1 , E2 =

∑
i∈[0,M−1]

E
(i)
2 ,

and sends it to the verifier V.
– The verifier V checks that

E2 = yΓ2,fin, comy = yΓ1,fin,

e(E1, Γ2,fin) = D2.

– All sub-provers {Pi}i∈[0,M−1] and V run

Distributed-Dory-IPA(L,R, C, comM , D2, E1, E2).

18

PROTOCOL 3.2.05 Distributed-Dory-Eval(comM , comy,L,R)

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Each sub-prover Pi holds local partial witness M (i), comcol

(i) w.r.t.
M , comcol and common input L(i),R(i) w.r.t. L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– The verifier samples u←$ F and sends it to the master sub-prover P0.
– The master sub-prover P0 transmits u to the other sub-provers Pi.
– Each sub-prover Pi sets the corresponding local vector L′(i),R′(i) w.r.t.

L′ = (1, u, u2, . . . , un−1), R′ = (1, un, u2n, . . . , un(n−1)).

– Each sub-prover Pi computes

com
(i)

y′ = L′(i)M (i)R′(i)Γ1,fin,

and sends it to the master sub-prover P0.
– The master sub-prover P0 computes

comy′ =
∑

i∈[0,M−1]

com
(i)

y′ ,

and sends it to the verifier V.
– All sub-provers {Pi}i∈[0,M−1] and the verifier V run

Distributed-Dory-Eval-RE(comM , comy,L,R) ∧
Distributed-Dory-Eval-RE(comM , comy′ ,L′,R′).

4 HyperPianist: Adapting HyperPlonk to the Distributed
Setting

In this section, we show our construction of HyperPianist by adapting Hyper-
Plonk to the distributed setting. At a very high level, all constraints in Hy-
perPlonk(+) are reduced to SumCheck identities, as illustrated in Figure 1 from
HyperPlonk [3]. Given the distributed SumCheck protocol described in Section 3
as a key building block, we now present how to adapt the multivariate PIOP
system to the distributed setting in a bottom-up fashion.

4.1 Distributed ZeroCheck PIOP

The ZeroCheck relation shows that a multivariate polynomial evaluates to zero
everywhere on the boolean hypercube.

19

Fig. 1: Overview of the Multivariate PIOP System in HyperPlonk(+).

PROTOCOL 4.1.01 ZeroCheck PIOP.

P holds a multivariate polynomial f : Fn → F, and wants to convince V that
f(x) = 0 for all x ∈ {0, 1}n.

– V samples r ←$ Fn and sends it to P.
– P computes f̂(x) := f(x) · ẽq(x, r), where

ẽq(x,y) =
∏n

i=1(xiyi + (1− xi)(1− yi)).
– P,V run the SumCheck PIOP (Protocol 3.1.01) to check the relation

((0, [[f̂]]); f̂) ∈ RSum.

Definition 10 (ZeroCheck Relation). The relation RZero is the set of all
tuples (x;w) = (([[f]]); f) where f ∈ F (≤d)

n and f(x) = 0 for all x ∈ {0, 1}n.

In HyperPlonk [3], all constraints are reduced to ZeroCheck relations, and
then reduced to SumCheck relations using standard techniques. We show the
reduction from ZeroCheck PIOP to SumCheck PIOP in Protocol 4.1.01.

In the distributed setting, we follow the same distribution mechanism as in
the distributed SumCheck protocol: assuming there are M = 2m distributed
sub-provers, each sub-prover Pi holds witnesses w.r.t. indices bin(i), and thus
has a local partial multivariate polynomial f (i) : Fn−m → F defined as f (i)(x) =
f(x, bin(i)) where f : Fn → F is witness polynomial.

Given the verifier’s random challenge vector r, the i-th sub-prover can con-
struct their local witness for ẽq(x, r) by naturally splitting the random chal-
lenge vector into r = (r′, r′′) ∈ Fn−m × Fm and then calculating {ẽq(x, r′) ·
ẽq(bin(i), r′′)|x ∈ {0, 1}n−m}. From here, the adaptation of ZeroCheck PIOP
to the distributed setting follows naturally. We give the distributed ZeroCheck
PIOP in Protocol 4.1.02.

20

PROTOCOL 4.1.02 Distributed ZeroCheck PIOP.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given a multivariate polynomial f : Fn → F, suppose each sub-prover
Pi holds a local partial polynomial f (i) : Fn−m → F s.t. f (i)(x) = f(x, bin(i)).
All sub-provers want to convince V that f(x) = 0 for all x ∈ {0, 1}n.

– V samples r ←$ Fn and sends it to the master sub-prover P0, who then
transmits r to the other sub-provers.

– Each sub-prover Pi views r as r = (r′, r′′) ∈ Fn−m × Fm, and locally
computes f̂ (i)(x) := f (i)(x) · ẽq(x, r′) · ẽq(bin(i), r′′), where
ẽq(x,y) =

∏n
i=1(xiyi + (1− xi)(1− yi)).

– {Pi}bin(i)∈{0,1}m ,V run the distributed SumCheck PIOP (Protocol 3.1.02)
to check the relation ((0, [[f̂]]); f̂) ∈ RSum.

4.2 Distributed Multiset Check PIOP

We now focus on the Multiset Check PIOP, which demonstrates that two mul-
tisets are equal.

Definition 11 (Multiset Check Relation). For any k ≥ 1, the relation
RMSet is the set of all tuples

(x;w) = (([[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]); (f1, . . . , fk, g1, . . . , gk))

where fi, gi ∈ F (≤d)
n (1 ≤ i ≤ k) and the following two multisets of tuples are

equal:{
fx := (f1(x), . . . , fk(x))

}
x∈{0,1}n =

{
gx := (g1(x), . . . , gk(x))

}
x∈{0,1}n .

To prove the relation RMSet, HyperPlonk uses Reed-Solomon hash to reduce
it into a grand product check. The product check relation is defined as follows.

Definition 12 (Product Check Relation). The relation RProd is the set of
all tuples

(x;w) = ((s, [[f1]], [[f2]]); (f1, f2))

where f1, f2 ∈ F (≤d)
n , f2(b) ̸= 0 ∀b ∈ {0, 1}n and∏

x∈{0,1}n

f ′(x) = s,

where f ′ is the rational polynomial f ′ = f1/f2. In the case that f2 = 1, we
directly set f = f1 and write (x;w) = ((s, [[f]]); f).

21

PROTOCOL 4.2.01 Multiset Check PIOP.

P holds two multisets of tuples
{
fx = (f1(x), . . . , fk(x))

}
x∈{0,1}n and{

gx := (g1(x), . . . , gk(x))
}
x∈{0,1}n as defined in Definition 11, and wants to

convince V that the two multisets are equal.

– V samples β, γ ←$ F and sends them to P.
– P computes f ′(x) =

∑k
i=1 γ

i−1fi(x) and g′(x) =
∑k

i=1 γ
i−1gi(x).

– P,V run a Product Check PIOP to check the relation
((1, [[f ′ + β]], [[g′ + β]]); (f ′ + β, g′ + β)) ∈ RProd.

Protocol 4.2.04 shows the reduction from Multiset Check to Product Check.
In the final step, HyperPlonk applies the Product Check PIOP from Quarks [27]
to prove the two grand products are equal. In Quarks [27], the Product Check is
transformed into a ZeroCheck relation and then proved by the aforementioned
ZeroCheck PIOP.

Below we briefly review the Product Check PIOP from Quarks [27]. This
PIOP relies on the following theorem.

Theorem 2. P =
∏

x∈{0,1}n v(x) if and only if there exists a multilinear poly-
nomial in n + 1 variables such that h(1, . . . , 1, 0) = P , and ∀x ∈ {0, 1}n, the
following hold: h(0,x) = v(x), h(1,x) = h(x, 0) · h(x, 1).

Theorem 2 shows that, to prove the original grand product relation, it is
sufficient to prove the existence of such a multilinear polynomial h. Therefore,
P commits a polynomial purported to be such a h, and proves that it is well-
formed - namely, h(1, · · · , 1, 0) = P , and the two constraints hold. To prove
the two constraints, it is sufficient for P to prove that (1) h(0,γ) = v(γ) using
the Schwart-Zipple lemma with a random challenge γ ∈ Fn, and (2) h(1,x) −
h(x, 0) · h(x, 1) = 0 for all x ∈ {0, 1}n using a ZeroCheck PIOP.

Problems When Adapting Product Check PIOP to the Distributed
Setting. Now we focus on the distributed setting. Note that after reducing to
the Product Check identity, each sub-prover Pi holds its local partial polynomials
v(i) : Fn−m → F defined as v(i)(x) := v(x, (bin(i))) with the fixed suffix bin(i).
To apply the distributed ZeroCheck PIOP, each sub-prover needs to construct
their partial polynomial h(i) : Fn−m+1 → F defined as h(i)(x) := h(x, bin(i)).
In Quarks [27], h is constructed as follows:

– h(1, · · · , 1) = 0, and
– for all ℓ ∈ [0, n] and x ∈ {0, 1}n−ℓ, h(1ℓ, 0,x) =

∏
y∈{0,1}ℓ v(x,y).

Unfortunately, the sub-provers are unable to construct h(i) from v(i) without
interaction, as the immediate values required to construct h(i) are held by the

22

PROTOCOL 4.2.02 Rational SumCheck PIOP.

P holds two polynomials p(x), q(x) : Fn → F as defined in Definition 13, and
wants to convince V that

∑
x∈{0,1}n

p(x)
q(x)

= v.

– P computes f(x) := p(x)
q(x)

, ∀x ∈ {0, 1}n.
– P sends oracle [[f]] to V.
– P,V run the ZeroCheck PIOP (Protocol 4.1.01) to check the relation

(([[f]]); f) ∈ RZero.
– P,V run the SumCheck PIOP (Protocol 3.1.01) to check the relation

((v, [[f]]); f) ∈ RSum.

other sub-provers. To obtain the whole partial polynomial h(i), each sub-prover
Pi needs a linear communication cost with the other sub-provers, which is un-
desirable in the distributed setting. To avoid the linear communication cost, we
propose the following two solutions.

Solution 1: Logarithmic Derivatives. Our first solution is to use logarithmic
derivatives techniques to construct the Multiset Check PIOP. It relies on the
following theorem.

Theorem 3.
∏n

i=1(ai +X) =
∏n

i=1(bi +X) if and only if

n∑
i=1

1

ai +X
=

n∑
i=1

1

bi +X
.

In the final step of the Multiset PIOP (Protocol 4.2.04), to prove that∏
x∈{0,1}n

f ′(x)+β
g′(x)+β = 1, i.e.,

∏
x∈{0,1}n(f ′(x) + β) =

∏
x∈{0,1}n(g′(x) + β), the

prover only needs to show∑
x∈{0,1}n

1

f ′(x) + β
=

∑
x∈{0,1}n

1

g′(x) + β
.

To prove the above relation, we extend the SumCheck PIOP to fractions
where both the numerator and the denominator are polynomials. We define the
rational SumCheck relation as follows.

Definition 13 (Rational SumCheck Relation). The relation RRSum is the
set of all tuples

(x;w) = ((v, [[p]], [[q]]); (p, q))

where p, q ∈ F (≤d)
n and ∑

x∈{0,1}n

p(x)

q(x)
= v.

23

PROTOCOL 4.2.03 Distributed Rational SumCheck PIOP.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given two multivariate polynomials p, q : Fn → F, suppose each
sub-prover Pi holds local partial polynomials p(i), q(i) : Fn−m → F s.t.
p(i)(x) = p(x, bin(i)), and q(i)(x) = q(x, bin(i)). All sub-provers want to
convince V that

∑
x∈{0,1}n

p(x)
q(x)

= v.

– Each sub-prover Pi computes f (i)(x) = p(i)(x)

q(i)(x)
, ∀x ∈ {0, 1}n.

– The master sub-prover P0 sends an oracle [[f]] to V.
– {Pi}i∈[0,M−1],V run the distributed ZeroCheck PIOP (Protocol 4.1.02) to

check the relation (([[f]]); f) ∈ RZero.
– {Pi}i∈[0,M−1],V run the distributed SumCheck PIOP (Protocol 3.1.02) to

check the relation ((v, [[f]]); f) ∈ RSum.

This is in the form of SumCheck, but the SumCheck PIOP does not apply
directly to fractions. A simple workaround is to find the multilinear interpolation
of the fraction and reduce it to a normal SumCheck PIOP plus a ZeroCheck
PIOP for the well formation check of the helper polynomial. We present the
Rational SumCheck PIOP in Protocol 4.2.02.

This Rational SumCheck PIOP is well suited to the distributed setting, as
each sub-prover can calculate the new witnesses locally. We give the distributed
Rational SumCheck PIOP in Protocol 4.2.03.

Now we are ready to present our distributed Multiset Check PIOP based on
the distributed Rational SumCheck PIOP. The PIOP is shown in Protocol 4.2.03.

Solution 2: Layered Circuit. Our second solution is to directly use a layered
circuit to prove grand products, which is also suitable for the distributed setting.
We elaborate on this below.

The layered circuit to prove a grand product s =
∏

z∈{0,1}n f(z) has depth n.
Layer 0 is the output layer and layer n is the input layer. The input polynomial
in layer n is specified by

Vn(z) = f(z).

Then in each j-th layer where n − 1 ≥ j ≥ 0, each gate takes inputs from two
gates in the (j + 1)-th layer, and the witness polynomial Vj for the j-th layer is
specified by

Vj(z) =
∑

x∈{0,1}j

ẽq(x, z)Vj+1(0,x)Vj+1(1,x). (2)

To prove the grand product relation, P and V need O(n) invocations of the
SumCheck protocol. The proof starts from the Layer 0, and finally reduced to
some random point evaluation of input polynomial f .

24

PROTOCOL 4.2.04 Distributed Multiset Check PIOP.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given two multisets of tuples

{
fx := (f1(x), . . . , fk(x))

}
x∈{0,1}n and{

gx := (g1(x), . . . , gk(x))
}
x∈{0,1}n as defined in Definition 11, suppose each

sub-prover Pi holds local partial polynomials{
f
(i)
x := (f

(i)
1 (x), . . . , f

(i)
k (x))

}
x∈{0,1}n and{

g
(i)
x := (g

(i)
1 (x), . . . , g

(i)
k (x))

}
x∈{0,1}n . All sub-provers want to convince V that

the two multisets are equal.

– V samples β, γ ←$ F and sends them to the master sub-prover P0, who then
transmits it to the other sub-provers.

– Each sub-prover Pi computes f ′(i)(x) :=
∑k

i=1 γ
i−1f

(i)
i (x) and

g′(i)(x) :=
∑k

i=1 γ
i−1g

(i)
i (x).

– {Pi}i∈[0,M−1],V run the distributed Rational SumCheck PIOP
(Protocol 4.2.03) to check the relation
((1, [[f ′ + β]], [[g′ + β]]); (f ′ + β, g′ + β)) ∈ RRSum.

For the layer 0, P sends two value v01 and v01 purported to be equal to V1(0)
and V1(1) respectively. V checks that

s = v01 · v11 ,

and using some random challenge γ1 to reduce the proof of v01 and v01 into a single
point v1, which can be done by proving the following equation with SumCheck
protocol.

v1 =
∑

x∈{0,1}

ẽq(x, γ1)V2(0, x)V2(1, x).

In each following layer j where 1 ≤ j ≤ n − 1, the random opening vj can be
verified by checking

vj =
∑

x∈{0,1}j

ẽq(x, rj ||γj)Vj+1(0,x)Vj+1(1,x), (3)

where rj ∈ Fj−1 is the random challenge vector chosen by V during the previous
SumCheck protocol, and γj is the random challenge used to combine two proofs
into one in this round. At the layer n−1, the proof is finally reduced to a random
opening of Vn(z), which can be directly verified by V using one oracle call to the
Vn(z).

Now we consider witness polynomial generation in the distributed setting.
At the input layer n, each sub-prover Pi holds a partial polynomial of the input
polynomial V (i)

n : Fn−m → F defined as

V (i)
n (z) := f(z, bin(i)).

25

Then in each layer j where n − 1 ≥ j ≥ m + 1, the sub-prover Pi can locally
compute a partial witness polynomial V (i)

j : Fj−m by

V
(i)
j (z) :=

∑
x∈{0,1}j−m

ẽq(i)(x, z)V
(i)
j+1(0,x)V

(i)
j+1(1,x).

At layer m, each sub-prover Pi sends V (i)
m = Vm(bin(i)) to the master sub-prover

P0. Then P0 reconstructs the polynomial Vm : Fm → F using the received V
(i)
m

from the sub-provers. The witness polynomials corresponding to the remaining
layers can be constructed by P0 using Vm(z) locally.

After all the witness polynomials are generated properly in a distributed
manner, we now describe the distributed proving procedure. The protocol goes
from the output layer 0 to the input layer n as in the normal setting in the first m
layers: the master sub-prover P0 and the verifier V invoke the normal SumCheck
protocol to prove the claim in each layer. Then after m layers, the protocol differs
— the computation can be distributed among the sub-provers. Thus, the later
n −m invocations of SumCheck protocol are executed in a distributed fashion
using the distributed SumCheck protocol.

4.3 Distributed Permutation Check PIOP

In HyperPlonk, the wiring constraints are reduced to a permutation relation
and then transformed into a multiset check relation. The permutation relation
shows that for two multivariate polynomials f, g ∈ F (≤d)

n , the evaluations of g
on boolean hypercube is a predefined permutation σ of f ’s evaluations on the
boolean hypercube.

Definition 14 (Permutation Check Relation). The indexed relation RPerm
is the set of tuples

(i;x;w) = (σ; ([[f]], [[g]]); (f, g)).

where σ is a permutation {0, 1}n → {0, 1}n, f, g ∈ F (≤d)
n , such that for all

x ∈ {0, 1}n,
f(σ(x)) = g(x).

We first review the construction in HyperPlonk, which originates from Plonk.
Given a tuple (σ; ([[f]], [[g]]); (f, g)) where σ is the predefined permutation, the
indexer generates two oracles [[sid]], [[sσ]] such that the polynomial sid ∈ F (≤1)

n

maps each binary string x ∈ {0, 1}n to the corresponding integer value [x] =∑n
i=1 xi·2i−1 ∈ F, and analogously, sσ ∈ F (≤1)

n maps x ∈ {0, 1}n to [σ(x)]. Given
this, HyperPlonk reduces the Permutation check to a Multiset Check, based on
the observation that if f(σ(x)) = g(x), then the multisets {([x], f(x))}x∈{0,1}n

must be identical to {([σ(x)], g(x))}x∈{0,1}n . We formulate this PIOP in Proto-
col 4.3.01.

26

PROTOCOL 4.3.01 Permutation Check PIOP.

P holds two polynomials f(x), g(x) : Fn → F as defined in Definition 13, and
wants to convince V that for all x ∈ {0, 1}n, f(σ(x)) = g(x) where σ is a
permutation {0, 1}n → {0, 1}n.

– P,V run a Multiset Check PIOP (Protocol 4.2.04) to check the relation
((1, [[(sid]], [[f]], [[sσ]], [[g]])); (sid, f, sσ, g) ∈ RMSet.

The sub-provers are able to locally compute their partial polynomials s(i)id :=

{sid(x, bin(i)) | x ∈ {0, 1}n−m} and s
(i)
σ := {sσ(x, bin(i)) | x ∈ {0, 1}n−m}.

With the distributed Multiset Check PIOP, the above Permutation Check PIOP
adapts to the distributed setting naturally. We give the distributed Permutation
Check PIOP in Protocol 4.3.02.

PROTOCOL 4.3.02 Distributed Permutation Check PIOP.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given two polynomials f(x), g(x) : Fn → F as defined in
Definition 13, suppose each sub-prover Pi holds local partial polynomials
f (i)(x), g(i)(x). All sub-provers want to convince V that for all
x ∈ {0, 1}n, f(σ(x)) = g(x) where σ is a permutation {0, 1}n → {0, 1}n.

– Each sub-prover Pi locally computes s
(i)
id := {sid(x, bin(i)) | x ∈ {0, 1}n−m}

and s
(i)
σ := {sσ(x, bin(i)) | x ∈ {0, 1}n−m}.

– {Pi}i∈[0,M−1],V run a distributed Multiset Check PIOP to check the
relation ((1, [[(sid]], [[f]], [[sσ]], [[g]])); (sid, f, sσ, g) ∈ RMSet.

4.4 Putting Everything Together: HyperPianist

Our fully distributed SNARK is constructed upon the building blocks introduced
above. The constraint system is from HyperPlonk [3], but we additionally assume
that all initial witnesses are distributed among the sub-provers.

Constraint System. The original Plonk considers fan-in-two circuits, where
each gate takes at most two inputs. The left input, the right input, and the
output of each gate are encoded by three univariate polynomials. The verifier
can check the computation of each gate by a polynomial equation, which we refer

27

to as the gate constraint. Additionally, the verifier also checks that the input and
output of the gates are connected correctly as defined by the structure of the
circuit, which we refer to as the wiring constraint (also called copy constraint).

For gate j of the circuit C, let aj , bj and oj be its left input, right input,
and output, respectively. We define the multivariate polynomial ã(X) to be
the multilinear extension of the vector {aj}, and similarly define polynomials
b̃(X) and õ(X). If gate j is an addition gate, then aj + bj = oj , and thus
ã(⟨j⟩) + b̃(⟨j⟩) = õ(⟨j⟩); if gate j is a multiplication gate, then aj · bj = oj , and
thus ã(⟨j⟩) · b̃(⟨j⟩) = õ(⟨j⟩). Then we can express the gate constraints as follows

g(X) = qa(X)ã(X) + qb(X)b̃(x) + qo(X)õ(X) + qab(X)(ã(X) · b̃(X)) + qc(X),

where

– if gate j = X is an addition gate, qa(X) = qb(X) = 1, qo(X) = −1,
qab(X) = qc(X) = 0,

– if gate j = X is a multiplication gate, qab(X) = 1, qo(X) = −1, qa(X) =
qb(X) = qc(X) = 0,

– if gate j = X is a public input, qc(X) = inj , qo(X) = −1, qa(X) = qb(X) =
qab(X) = 0, where inj is the public input value of gate j.

In this way, the correct evaluation of the circuit is equivalent to g(X) = 0 for
all X ∈ {0, 1}n.

To check the wiring constraints, where a set of values are required to be
equal, Plonk uses a cycle connecting all indices to be checked, σ. Then if the
following sets are equal

{(fj , j)} = {(fj , σ(j))},

all fj must be equal.

Definition 15 (Constraint System of HyperPianist [3]). Fix public pa-
rameters pp := (F, ℓ, n, ℓw, ℓq, f) where F is the field, ℓ = 2ν is the public input
length, n = 2ν is the number of constraints, ℓw = 2νm , ℓq = 2νq are the number
of witnesses and selector per constraint, and f : Fℓq+ℓw → F is an algebraic map
with degree d. The indexed relation RHyperPianist is the set of all tuples

(i; x; w) = ((q, σ); (p, [[w]]); w),

where σ : Bµ+νm
→ Bµ+νm

is a permutation, q ∈ F (≤1)
µ+νq

, p ∈ F (≤1)
µ+ν , w ∈ F

(≤1)
µ+νw

,
such that

– the wiring constraint is satisfied, that is, (σ; ([[w]], [[w]]); w) ∈ RPerm;
– the gate constraint is satisfied, that is, ([[f̃]], f̃) ∈ RZero, where the virtual

polynomial f̃ ∈ F≤d
µ is defined as

f̃(X) :=f(q(⟨0⟩νq ,X), . . . , q(⟨ℓq − 1⟩νq ,X),

w(⟨0⟩νw ,X), . . . , w(⟨ℓw − 1⟩νw ,X));

28

PROTOCOL 4.4.01 Distributed PIOP for HyperPianist.

Indexer. I(q, σ) calls the permutation PIOP indexer ([[sid]], [[sσ]])← I(σ). The
oracle output is ([[q]], [[sid]], [[sσ]]), where q ∈ F (≤1)

µ+νq
, sid, sσ ∈ F (≤1)

µ+νm
.

The Protocol. {Pi(pp, i, p, w(i))}i∈[0,M−1] and V(pp, p, [[q]], [[sid]], [[sσ]]) run the
following protocol.

1. The master sub-prover P0 sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νm

.
2. {Pi}i∈[0,M−1] and V run a PIOP for the gate constraint, which is a distributed

ZeroCheck PIOP (Protocol 4.1.02) for the relation ([[f̃]], f̃) ∈ RZero where
f̃ ∈ F (≤d)

µ is as defined previously.
3. P and V run a PIOP for the wiring constraint, which is a distributed Permu-

tation Check PIOP for (σ; ([[w]], [[w]]); (w,w)) ∈ RPerm.
4. V checks the consistency between witness and public input. It samples

r ← Fnu, queries [[w]] on input (⟨0⟩µ+νw−ν , r) and checks whether p(r) =
w(⟨0⟩µ+νw−ν , r).

– the public input is consistent with the witness, that is, the public input poly-
nomial p ∈ F (≤1)

ν is identical to w(0µ+νw−ν ,X) ∈ F (≤1)
ν .

We present the PIOP protocol for HyperPianist in Protocol 4.4.01. We can
instantiate it with the distributed Dory PCS. Note that in the above protocols
we omit the zero-knowledge property for simplicity, and this can be achieved
using standard techniques from previous works [12,18,3].

5 HyperPianist+: HyperPianist with Optimized Lookup
Arguments

In this section, we construct an optimized lookup argument and adapt it to the
distributed setting. We then enhance HyperPianist with this lookup argument
to obtain HyperPianist+.

5.1 Distributed Lookup Arguments.

The lookup relation is essentially a set inclusion relation on committed vectors,
defined as follows.

Definition 16 (Lookup Relation). The indexed relation RLookup is the set of
tuples

(i;x;w) = (b; ([[a]], [[T]]); (a, T))

where b ∈ Fℓ, a is the multilinear polynomial representation of a ∈ Fℓ, and
T is the multilinear polynomial representation of T ∈ FN , such that for all
i ∈ {1, · · · , ℓ}

ai = T [bi].

29

There have been a series of works [33,25,34,10,8,16,28] aimed at improving
the efficiency of the lookup table argument. In the univariate setting, with some
expensive setup, prover costs can be made only quasi-linear to the number of
queries. In the multivariate setting, which is our main focus, HyperPlonk+ has
shown how to transform the univariate PIOP from Plookup [11] into a mul-
tivariate one. However, as noted in Lasso [28], this transformation introduces
additional overhead. As far as we know, Lasso is the most cost-effective con-
struction for lookup arguments, and thus we use it as our starting point.

Review: Lookup Arguments from Lasso. Lasso is specialized for structured
tables. It makes the observation that the lookup tables for many non-linear
operations (like bitwise AND) can be broken down into smaller subtables, such
that for some r = (r1, · · · , rc) and some (simple) algebraic function g,

T [r] = g(T1[r1], · · · , Tk[r1], Tk+1[r2], · · · , T2k[r2], · · · , Tα−k+1[rc], · · · , Tα[rc]),

where Ti are the subtables, and α = kc.
In Lasso, if the prover wants to convince the verifier that a committed vector

a ∈ Fℓ is contained in another committed vector t ∈ Fn, it turns to prove the
existence of some sparse matrix M ∈ Fℓ×n such that in each row, there is only
one nonzero entry of value 1, and t = M · t. Then, they run the SumCheck
protocol to check that ∑

y∈{0,1}log n

M̃(r,y) · t̃(y) = ã(r),

where r ∈ Flog ℓ is a random vector chose by the verifier, and M̃(x, y), t̃(y), ã(x)
is the MLE of M , t,a respectively. Let v := ã(r). Then V is able to obtain v
via an oracle call of ã. Now the main task is to efficiently run the SumCheck
protocol on the following claim∑

y∈{0,1}log n

M̃(r,y) · t̃(y) = v. (4)

Observe that one key feature of the matrix M is that it is extremely sparse,
i.e., only one entry in each row of M can be non-zero, and the non-zero entry
should have value 1. Making use of this feature, Lasso designs an efficient method
to prove Equation 4.

Given that M is sparse, Lasso transforms Equation 4 into the following
equation ∑

i∈{0,1}log ℓ

ẽq(i, r) · T [nz(i)] = v,

where for each i-th row, nz(i) denotes the column corresponding to the non-zero
entry in this row, and T [nz(i)] denotes the nz(i)-th entry of the table t. Since

30

we assume that the table T is decomposable, we can write the LHS of the above
equation as∑

i∈{0,1}log ℓ

ẽq(i, r) · g(T1[nz1(i)], · · · , Tk[nz1(i)], Tk+1[nz2(i)], · · · ,

T2k[nz2(i)], · · · , Tα−k+1[nzc(i)], · · · , Tα[nzc(i)]).

Let Ej(i) is the MLE of Tj [nz⌈j/k⌉(i)]. Then we have∑
i∈{0,1}log ℓ

ẽq(i, r) · g(E1(i), E2(i), · · · , Eα(i)) = v. (5)

Now P and V can engage in a new SumCheck instance to check Equation 5.
To this end, the prover now needs to provide oracles to new polynomials Ej ,
and additionally, it needs to show that they are well-formed, i.e., indeed equal
to the MLE of Tj [nz⌈j/k⌉(i)]. In Lasso, this well-formation check is done with
the Memory-in-the-Head technique from Spartan [26]. We briefly review the
technique below.

Memory-in-The-Head in a Nutshell. In the offline memory checking protocol,
a checker performs a series of operations on an untrusted memory, and then
checks that all operations are done honestly. The untrusted memory maintains
one multiset: S, representing the data stored. The checker locally maintains
two multisets: WS and RS, representing the data written to and read from the
untrusted memory, respectively. Each multiset element is three-tuple of (1) the
value’s address, (2) the value, and (3) the value’s timestamp. During setup,
The checker writes to the untrusted memory (i, vi, 0),∀i ∈ [N]. These tuples
are added to S and WS. On each read call to address i, the untrusted memory
provides an output (vi, ti), purported to be the value stored in address i and its
corresponding timestamp. The checker adds (i, vi, ti) to RS and (i, vi, ti + 1) to
WS. The untrusted memory updates the timestamp ti = ti + 1 in S; that is, it
removes (i, vi, ti) from S and adds (i, vi, ti + 1). After all queries are done, the
untrusted memory returns the local set S. Finally, the checker checks that the
RS ∪ S and WS are equal as multisets.

Memory-in-The-Head as Applied in Lasso. For each polynomial E, the prover
wants to show that

∀k ∈ {0, 1}log ℓ, E(k) = T [nz(k)],

To do so, the prover plays the memory checking protocol in the head. It com-
mits two more polynomials read_ts and final_cts. For k ∈ [m], read_ts(k) rep-
resents the timestamps returned by the untrusted memory for k-th read. For
j ∈ [N], final_cts(j) represents the final timestamp for the value stored at lo-
cation j. Let write_cts = read_ts + 1 denote the new timestamp the untrusted
memory writes for each read call. Then, the prover only needs to show that
RS ∪ S = WS as multisets, where

31

PROTOCOL 5.1.01 Well-Formation Check PIOP.

P has provided oracles to ñz(x) and E(x), where ñz is the MLE of nz, and
wants to convince V that E(k) = T [nz(k)] for all k ∈ {0, 1}log ℓ.

– P computes m(X) (as defined in the text), and sends the oracle of m(X) to
V.

– V samples β, γ ←$ F, and sends them to P.
– P sends the rational sum claim to V

v =
∑

x∈{0,1}log l

1

β + ñz(x) + γ · E(x)
.

– P,V run the Rational SumCheck PIOP (Protocol 4.2.02) to check the
relations
((v, [[m(x)]], [[β+ sid(x)+ γ ·T (x)]]); (m(x), β+ sid(x)+ γ ·T (x))) ∈ RRSum,
and ((v, [[1]], [[β + ñz(x) + γ · E(x))]]); (1, β + ñz(x) + γ · E(x))) ∈ RRSum.

– WS = {(sid(i), T (i), 0) | i ∈ {0, 1}logN} ∪ {(nz(k), E(k),write_cts(k)) | k ∈
{0, 1}log ℓ};

– RS = {(nz(k), E(k), read_ts(k)) | k ∈ {0, 1}log ℓ};
– S = {(sid(i), T (i), final_cts(i)) | i ∈ {0, 1}logN}.

Claim 1. If E(k) ̸= T [nz(k)] for some k, there do not exist read_ts, final_cts
such that RS ∪ S = WS holds given write_cts = read_ts + 1.

Prover Time. For each memory checking, the prover needs to commit two poly-
nomials read_ts and final_cts, both of which require time O(m). To demonstrate
multisets are equal, the prover engages in four grand product checks (or their
logarithmic derivative counterparts), with two of size O(m) and two of size O(N).

Our Optimization: Using Logup Instead. We make the observation that

Claim 2. If

{(nz(k), E(k))|k ∈ {0, 1}log ℓ} ⊂ {(x, T [x)]|x ∈ {0, 1}logN},

then E(k) = T [nz(k)] for all k ∈ {0, 1}log ℓ.

It is worth noting that here the two sides are sets, not multisets. This statement
can be proved more efficiently with techniques from logup [16] (or its layered
circuit compilation version [23]). Logup [16] depends heavily on the logarithmic
derivative technique, which is a generalized version of Theorem 3.

Theorem 4. Let F be an arbitrary field and m1,m2 : F → F be any functions.
Then

∑
z∈F

m1(z)
X−z =

∑
z∈F

m2(z)
X−z in the rational function field F(X) if and only

if m1(z) = m2(z) for every z ∈ F.

32

PROTOCOL 5.1.02 Lookup PIOP.

T is a decomposable lookup table of size N , and a is the vector of lookups of size
ℓ. P knows polynomials ñz1, · · · , ñzc : Flog ℓ → F which are MLE of nz1, · · · , nzc.
P wants to convince V that each entry of a is in the table T .

– P provides an oracle of the MLE polynomial ã : Flog ℓ → F of a, and oracles
of nz1, · · · , nzc : Flog ℓ → F.

– V picks a random r ∈ Flog ℓ, and sends it to P.
– V makes an oracle call to ã and obtains ã(r).
– P,V run a SumCheck PIOP (Protocol 3.1.01) to check the relation that

v =
∑

k∈{0,1}log ℓ ẽq(r,k)g(E1(k), · · · , Eα(k)).
– P,V run a Well-Formation Check PIOP (Protocol 5.1.01) to check that

Ej(k) = Tj(nz(k)) for all k ∈ {0, 1}log ℓ.

Proof. Suppose that the fractional decompositions are equal. Then we have∑
z∈F

m1(z)−m2(z)
X−z = 0, and therefore

p(X) =
∏
w∈F

(X − w) ·
∑
z∈F

m1(z)−m2(z)

X − z

=
∑
z∈F

(m1(z)−m2(z)) ·
∏

w∈F\{z}

(X − w)

= 0.

In particular, p(z) = (m1(z) −m2(z)) ·
∏

w∈F\{z}(X − w) = 0 for every z ∈ F.
Since

∏
w∈F\{z}(z − w) ̸= 0, we must have m1(z) = m2(z) for every z ∈ F. The

other direction is obvious. ⊓⊔

This leads to the following algebraic criterion for set inclusion.

Theorem 5. Suppose that (ai)ℓi=1, (bj)
N
j=1 are arbitrary sequences of field ele-

ments. Then {ai} ⊂ {bj} as sets, if and only if there exists a sequence (mj)
N
j=1

such that

ℓ∑
i=1

1

ai +X
=

N∑
j=1

mj

bj +X
.

Recall that our task is to prove the following set inclusion relation (see
Claim 2)

{(nz(k), E(k))|k ∈ {0, 1}log ℓ} ⊂ {(x, T (x))|x ∈ {0, 1}logN}.

We first use Reed-Solomon to fingerprint each tuple, i.e., using a random chal-
lenge to combine each tuple into one element, and then apply Theorem 5. We

33

PROTOCOL 5.1.03 Distributed Well-Formation Check PIOP.

Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the master
sub-prover. Given polynomials ñz(x), E(x) : Flog ℓ → F and T : FlogN → F as
defined in text, suppose each sub-prover Pi holds local partial polynomials
ñz(i)(x) = ñz(x, bin(i)), E(i)(x) = E(x, bin(i)). All sub-provers want to
convince V that E(k) = T [nz(k)] for all k ∈ {0, 1}log ℓ.

– Each sub-prover Pi locally computes m(i) as described in the text.
– Sub-provers calculate the rational sumcheck claim v.
– {Pi}i∈[0,M−1],V run the distributed Rational SumCheck PIOP

(Protocol 4.2.03) to check the relation
((v, [[m(x)]], [[β+ sid(x)+ γ ·T (x)]]); (m(x), β+ sid(x)+ γ ·T (x))) ∈ RRSum,
and ((v, [[1]], [[β + ñz(x) + γ · E(x))]]); (1, β + ñz(x) + γ · E(x))) ∈ RRSum.

can get the following relation∑
x∈{0,1}log ℓ

1

nz(x) + γ · E(x) + β
=

∑
x∈{0,1}log N

m(x)

sid(x) + γ · T (x) + β
,

where γ, β are random challenges picked by V, and the polynomial sid ∈ F (≤1)
n

is defined the same as in Section 4.3, i.e., it maps each binary string x ∈ {0, 1}n
to the corresponding integer value [x] =

∑n
i=1 xi · 2i−1 ∈ F.

It is worth noting that m(k) for k ∈ {0, 1}ℓ denotes the multiplicity of the
entry (nz(k), E(k)) in the lookup vector (in fact, it is equal to final_cts(k) in
the Memory-in-the-Head approach). Now, to prove the well-formation of E, the
prover needs to compute the polynomial m(x) with O(m) non-zero entries, and
engage in a rational SumCheck to prove that v =

∑
x∈{0,1}log N

m(x)
sid(x)+γ·T (x)+β

as well as v =
∑

x∈{0,1}log ℓ
1

nz(x)+γ·E(x)+β . The details are in Protocol 5.1.01.

Prover Time. For each logup, the prover needs to commit one polynomial m,
requiring O(m) time. To demonstrate the set inclusion, the prover engages in
two logarithmic derivative checks, of size O(m) and size O(N) respectively. This
directly leads to a 50% save in the constant compared with using memory in the
heads.

We show the complete Lookup PIOP in Protocol 5.1.02. It follows Lasso [28],
except that we use the logup based techniques for the Well-Formation Check
PIOP rather than the Memory-in-The-Head approach.

Adapting Lookup PIOP to the Distributed Setting. Now we show how
to distribute the above Well-Formation Check PIOP. As before, we assume
that each sub-prover holds partial polynomials of nz(i)(x). Given this, the sub-
provers are able to locally construct E(i)(x) = T [nz(i)(x)]. The main task of

34

PROTOCOL 5.1.04 Distributed Lookup PIOP.

T is a decomposable lookup table of size N , and a is the vector of lookups of size
ℓ. Suppose there are M distributed sub-provers P0, · · · ,PM−1 and P0 is the
master sub-prover. Given polynomials ñz1(x), · · · , ñzc(x) as defined in
Equation 5, suppose each sub-prover Pi holds local partial polynomials
ñz

(i)
1 (x), · · · , ñz(i)c (x). All sub-provers want to convince V that each entry of a is

in the table T .

– The master sub-prover P0 provide an oracle of the MLE polynomial
ã : Flog ℓ → F of a, and oracles of ñz1, · · · , ñzc : Flog ℓ → F.

– V picks a random r ∈ Flog ℓ, and sends it to the master sub-prover P0, who
then transmits it to the other sub-provers.

– V makes an oracle call to ã and obtains ã(r).
– {P}i∈[0,M−1],V run a distributed SumCheck PIOP (Protocol 3.1.02) to

check the relation that v =
∑

k∈{0,1}log ℓ ẽq(r,k)g(E1(k), · · · , Eα(k)).
– {P}i∈[0,M−1],V run a distributed Well-Formation Check PIOP

(Protocol 5.1.03) to check that Ej(k) = Tj(nz(k)) for all k ∈ {0, 1}log ℓ.

the sub-provers is to compute m(x). We let m(i) : Fn−m → F be a multi-
variate polynomial that maps x ∈ {0, 1}n−m to the multiplicity of the entry
nz(x, bin(i)), E(x, bin(i)) in the lookup vector. Note that the polynomial m(i)

can be locally computed by the sub-prover Pi given E(i)(x), nz(i)(x). Then by
definition, we have∑
i∈[0,M−1]

m(i)(x) =
∑

bin(i)∈{0,1}m

∑
x∈{0,1}log N−m

m(x, bin(i)) =
∑

x∈{0,1}log N

m(x).

This demonstrates that the computation of m(x) can be locally distributed
among the sub-provers. As shown in Section 4.3, the polynomial sid is also
suitable for distribution. We thus give the distributed Well-Formation Check
PIOP in Protocol 5.1.03.

Given the above distributed Well-Formation Check PIOP, we now present
our distributed Lookup PIOP in Protocol 5.1.04.

5.2 Putting Everything Together: HyperPianist+

To integrate the lookup argument, we only need to add constraints enforcing
that some function over the witness values belongs to a predetermined table.

Definition 17 (Constraint System of HyperPianist+ [3]). Let pp1 :=
(F, ℓ, n, ℓw, ℓq, f) be the public parameters for Plonk. Let pp2 := (ℓlk, flk) be the
additional public parameters where ℓlk = 2νlk is the number of lookup selectors
and flk : Fℓlk+ℓw → F is an algebraic map. The indexed relation RHyperPianist+

35

PROTOCOL 5.2.01 Distributed PIOP for HyperPianist+.

Indexer. I(i1, i2 = (table, qlk)) calls the distributed HyperPlonk PIOP indexer
vpplonk ← Iplonk(i1), and calls the distributed Lookup PIOP indexer vpt ←
Ilkup(i2). The oracle output is vp = ([[qlk]], vpt, vpplonk).
The Protocol. {Pi(pp, i, p, w(i))}i∈[0,M−1] and V(pp, p, vp) run the following pro-
tocol.

1. The master sub-prover P0 sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νm

.
2. {Pi}i∈[0,M−1] and V run a distributed HyperPianist PIOP (Protocol 4.4.01)

for (i;x;w) ∈ RHyperPianist.
3. {Pi}i∈[0,M−1] and V run a distributed Lookup PIOP (Protocol 5.1.04) for

(table; [[g]]) ∈ L(RLookup) where g is as defined in Definition 16.

is the set of all triples

(i;x;w) = ((i1, i2); (p, [[w]]);w)

where i2 := (table ∈ Fn−1, qlk ∈ F≤1
µ+νlk

) such that

– (i1;x;w) ∈ RHyperPianist
– there exists addr : Bµ → [1, 2µ) such that (table; [[g]]; (g, addr)) ∈ RLookup,

where g ∈ F (deg(flk)
µ is defined as

g̃(X) :=flk(qlk(⟨0⟩νlk
,X), . . . , qlk(⟨ℓνlk

− 1⟩νlk
,X),

w(⟨0⟩νw ,X), . . . , w(⟨ℓw − 1⟩νw ,X)).

We present the distributed PIOP for HyperPlonk+ in Protocol 5.2.01. It
is the combination of the distributed PIOPs for HyperPlonk and the Lookup
relation.

6 Evaluation

In this section, we show some preliminary results of our implementation and
experiments.

6.1 Implementation

While a full implementation of our distributed proof system is still in the works,
to better gauge the effectiveness of our techniques, we have implemented our
optimized lookup arguments as patches to Jolt (a SNARK framework for zkVMs
based on Lasso). 2 Below we give some more details on the implementation of
our optimized lookup arguments.
2 Our implementation is in https://github.com/zhaowenlan1779/jolt/tree/logup.

36

https://github.com/zhaowenlan1779/jolt/tree/logup

Sparse-Dense Layered Circuits. Our rational sum argument on f can be
considered “sparse” - even though it is defined over the hypercube of size logN ,
at most m entries have non-zero numerators.

The implementation of Lasso in the Jolt framework relied on layered-circuit-
based grand product checks. In Lasso, the grand products are dense; but in
Lasso, for each CPU tick, the next instruction needs to be fetched and decoded
from memory. The results of all possible lookups for all instruction types are
evaluated, and only one of them is used, depending on the actual type of the
instruction. That is, the “primary sumcheck” becomes∑

x

eq(r,x) [flags0(x)g0(E0(x)) + · · · flagsK(x)gK(EK(x))]

where flagsk(x) (on the hypercube) determines whether the instruction in index
x is of type k, and K is the number of instruction types. This meant that the
grand product tree became sparse.

Lasso developed a sparse-dense layered circuit proof for this purpose. In
Lasso, each layer on the grand product tree may be dense or sparse, as de-
termined by a “densification” threshold. A sparse layer is stored as a list of pairs
of indices and values, and indices not in the list have value 1 (and thus do not
change the product). To prove the SumCheck for each layer, it is necessary to
sequentially bind the layer to challenges, and to compute a univariate polyno-
mial on the next variable and sum up the rest (i.e.

∑
x f(r1, · · · , rk−1, Xk,x)).

Both can be adapted to suit the sparse representation, although the sparsity will
decrease with each bind.

Unfortunately this approach does not directly apply to our rational sum
argument. Since each node now holds a rational (p, q), and the two polynomials
are committed separately, we cannot just dispose of the nodes where p ≡ 0,
because the q commitments must be opened to their proper values.

In our current implementation, for q we effectively just prove a regular dense
grand product, while p is a sparse rational sum (the proofs for p and q are still
related in the sense that challenges are shared). Since q = β+(sid(x)+ γ ·T (x))
does not depend on the dimension index, there are only k different q polynomials,
not α, and the computation on q is not typically the dominant part. Preliminary
experiments show that the sparse-dense layered circuit can be up to 40% faster,
though the concrete benefits still need to be evaluated with more practical tests.

6.2 Experiments

We performed some preliminary experiments generating proofs for m random
lookups of XOR statements. The subtables are the same as those used in Lasso,
and parameters are set to match Lasso’s default for RV32 (number of dimensions
C = 4, memory size/subtable size 216 = 65536). All experiments are run 6 times
(consecutively), with the first run discarded, on a laptop equipped with AMD
Ryzen 7 5800H @ 3.20 GHz. Proof size reported here is the compressed size.
Prover time does not include time needed to setup generators; verifier time does

37

Table 3: Experiment results of proving 64-bit XOR statements (using C = 4
decomposed subtables each of size 216).

Statement Size Scheme Prover Time (ms) Proof Size (KB) Verifier Time (ms)

2
Lasso 70.42 54 3.979
Ours 37.44 (1.89×) 54 3.746

32
Lasso 73.28 58 7.863
Ours 42.88 (1.71×) 58 7.128

256
Lasso 74.35 66 17.73
Ours 52.58 (1.41×) 65 16.55

not include decompression, but includes time needed to deserialize an uncom-
pressed proof in memory.

We show the experimental results in Table 3. Compared with Lasso, our
construction of lookup arguments is 1.41 ∼ 1.89× as fast in proving time, and
slightly faster in verifier time with the same (or smaller) proof size. The prelim-
inary results have already shown the efficiency of our scheme. As our implemen-
tation and optimization are still ongoing, we expect more efficiency gains in the
future.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
Advances in Cryptology – CRYPTO 2010. pp. 209–236. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In: Chatzigiannakis, I., Kak-
lamanis, C., Marx, D., Sannella, D. (eds.) 45th International Collo-
quium on Automata, Languages, and Programming (ICALP 2018).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 107,
pp. 14:1–14:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14,
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.14

3. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) Advances
in Cryptology – EUROCRYPT 2023. pp. 499–530. Springer Nature Switzerland,
Cham (2023)

4. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zksnarks with universal and updatable srs. In: Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Pro-
ceedings, Part I 39. pp. 738–768. Springer (2020)

5. Chiesa, A., Lehmkuhl, R., Mishra, P., Zhang, Y.: Eos: Efficient private delegation
of zksnark provers. In: 32nd USENIX Security Symposium (USENIX Security 23).
pp. 6453–6469 (2023)

38

https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.14

6. Dayama, P., Patra, A., Paul, P., Singh, N., Vinayagamurthy, D.: How to prove
any np statement jointly? efficient distributed-prover zero-knowledge protocols.
Proceedings on Privacy Enhancing Technologies (2022)

7. Dore, D.: TaSSLE: Lasso for the commitment-phobic. Cryptology ePrint Archive,
Paper 2024/1075 (2024), https://eprint.iacr.org/2024/1075, https://eprint.iacr.
org/2024/1075

8. Eagen, L., Fiore, D., Gabizon, A.: cq: Cached quotients for fast lookups. Cryptology
ePrint Archive, Paper 2022/1763 (2022), https://eprint.iacr.org/2022/1763, https:
//eprint.iacr.org/2022/1763

9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 186–194. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

10. Gabizon, A., Khovratovich, D.: flookup: Fractional decomposition-based lookups
in quasi-linear time independent of table size. Cryptology ePrint Archive, Pa-
per 2022/1447 (2022), https://eprint.iacr.org/2022/1447, https://eprint.iacr.org/
2022/1447

11. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. Cryptology ePrint Archive, Paper 2020/315 (2020), https://eprint.
iacr.org/2020/315, https://eprint.iacr.org/2020/315

12. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

13. Garg, S., Goel, A., Jain, A., Policharla, G.V., Sekar, S.: zksaas: Zero-knowledge
snarks as a service. In: 32nd USENIX Security Symposium (USENIX Security 23).
pp. 4427–4444 (2023)

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interac-
tive proofs for muggles. In: Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing. p. 113–122. STOC ’08, Association for Computing Ma-
chinery, New York, NY, USA (2008). https://doi.org/10.1145/1374376.1374396,
https://doi.org/10.1145/1374376.1374396

15. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: International Conference on the Theory and Application of Cryptol-
ogy and Information Security. pp. 431–448. Springer (2011)

16. Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology
ePrint Archive, Paper 2022/1530 (2022), https://eprint.iacr.org/2022/1530, https:
//eprint.iacr.org/2022/1530

17. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Nissim, K., Waters, B. (eds.) Theory of Cryptogra-
phy. pp. 1–34. Springer International Publishing, Cham (2021)

18. Liu, T., Xie, T., Zhang, J., Song, D., Zhang, Y.: Pianist: Scalable zkrollups
via fully distributed zero-knowledge proofs. In: 2024 IEEE Symposium on Se-
curity and Privacy (SP). pp. 35–35. IEEE Computer Society, Los Alamitos,
CA, USA (may 2024). https://doi.org/10.1109/SP54263.2024.00035, https://doi.
ieeecomputersociety.org/10.1109/SP54263.2024.00035

19. Liu, X., Zhou, Z., Wang, Y., He, J., Zhang, B., Yang, X., Zhang, J.: Scalable
collaborative zk-snark and its application to efficient proof outsourcing. Cryptology
ePrint Archive (2024)

20. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (oct 1992). https://doi.org/10.1145/146585.
146605, https://doi.org/10.1145/146585.146605

39

https://eprint.iacr.org/2024/1075
https://eprint.iacr.org/2024/1075
https://eprint.iacr.org/2024/1075
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://doi.org/10.1109/SP54263.2024.00035
https://doi.org/10.1109/SP54263.2024.00035
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00035
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00035
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605

21. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) Advances in Cryptology — CRYPTO ’87. pp. 369–378.
Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

22. Ozdemir, A., Boneh, D.: Experimenting with collaborative zk-snarks: Zero-
knowledge proofs for distributed secrets. In: 31st USENIX Security Symposium
(USENIX Security 22). pp. 4291–4308 (2022)

23. Papini, S., Haböck, U.: Improving logarithmic derivative lookups using gkr. Cryp-
tology ePrint Archive, Paper 2023/1284 (2023), https://eprint.iacr.org/2023/1284,
https://eprint.iacr.org/2023/1284

24. Pearson, L., Fitzgerald, J., Masip, H., Bellés-Muñoz, M., Muñoz-Tapia, J.L.:
Plonkup: Reconciling plonk with plookup. Cryptology ePrint Archive (2022)

25. Posen, J., Kattis, A.A.: Caulk+: Table-independent lookup arguments. Cryptology
ePrint Archive, Paper 2022/957 (2022), https://eprint.iacr.org/2022/957, https:
//eprint.iacr.org/2022/957

26. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020.
pp. 704–737. Springer International Publishing, Cham (2020)

27. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zksnarks. Cryptology
ePrint Archive, Paper 2020/1275 (2020), https://eprint.iacr.org/2020/1275, https:
//eprint.iacr.org/2020/1275

28. Setty, S., Thaler, J., Wahby, R.: Unlocking the lookup singularity with lasso. Cryp-
tology ePrint Archive, Paper 2023/1216 (2023), https://eprint.iacr.org/2023/1216,
https://eprint.iacr.org/2023/1216

29. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp. 71–89. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

30. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: A distributed zero
knowledge proof system. In: 27th USENIX Security Symposium (USENIX Security
18). pp. 675–692. USENIX Association, Baltimore, MD (Aug 2018), https://www.
usenix.org/conference/usenixsecurity18/presentation/wu

31. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) Advances in Cryptology – CRYPTO 2019. pp. 733–764. Springer Inter-
national Publishing, Cham (2019)

32. Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y., Jia, Y., Boneh, D., Song,
D.: zkbridge: Trustless cross-chain bridges made practical. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
p. 3003–3017. CCS ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3548606.3560652, https://doi.org/10.1145/
3548606.3560652

33. Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.:
Caulk: Lookup arguments in sublinear time. Cryptology ePrint Archive, Paper
2022/621 (2022), https://eprint.iacr.org/2022/621, https://eprint.iacr.org/2022/
621

34. Zapico, A., Gabizon, A., Khovratovich, D., Maller, M., Ràfols, C.: Baloo: Nearly
optimal lookup arguments. Cryptology ePrint Archive, Paper 2022/1565 (2022),
https://eprint.iacr.org/2022/1565, https://eprint.iacr.org/2022/1565

35. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy (SP). pp. 859–876 (2020). https://doi.org/10.1109/SP40000.2020.00052

40

https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://www.usenix.org/conference/usenixsecurity18/presentation/wu
https://www.usenix.org/conference/usenixsecurity18/presentation/wu
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/3548606.3560652
https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

A Dory Evaluation Proof

In this section, we present the formal protocols of the evaluation proof in Dory [17].

41

PROTOCOL A.0.01 Dory-Reduce2n(s1, s2, C,D1, D2, E1, E2)

Suppose the prover P holds the witness v1,v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

The prover pre-compute ∆1L = ⟨Γ1L, Γ
′
2⟩, ∆1R = ⟨Γ1R, Γ

′
2⟩, ∆2L = ⟨Γ ′

1, Γ2L⟩,
∆2R = ⟨Γ ′

1, Γ2R⟩, and χ = ⟨Γ1, Γ2⟩.

– The prover P computes

D1L = ⟨v1L, Γ
′
2⟩, D1R = ⟨v1R, Γ ′

2⟩, E1β = ⟨Γ1, s2⟩,
D2L = ⟨Γ ′

1,v2L⟩, D2R = ⟨Γ ′
1,v2R⟩, E2β = ⟨s1, Γ2⟩,

and sends them to verifier V.
– The verifier V samples β ←$ F and sends it to the prover P.
– The prover P sets

v1 ← v1 + βΓ1, v2 ← v2 + β−1Γ2.

– The prover P computes

E1+ = ⟨v1L, s2R⟩, E1− = ⟨v1R, s2L⟩, C+ = ⟨v1L,v2R⟩,
E2+ = ⟨s1L,v2R⟩, E2− = ⟨s1R,v2L⟩, C− = ⟨v1R,v2L⟩,

and sends them to the verifier V.
– The verifier V samples α←$ F and sends it to the prover P.
– The prover P sets

v′
1 ← αv1L + v1R, v′

2 ← α−1v1L + v1R.

– The verifier V computes

C′ = C + χ+ βD2 + β−1D1 + αC+ + α−1C−,

D′
1 = αD1L +D1R + αβ∆1L + β∆1R, D′

2 = α−1D2L +D2R + α−1β−1∆2L + β−1∆2R,

E′
1 = E1 + βE1β + αE1+ + α−1E1−, E′

2 = E2 + β−1E2β + αE2+ + α−1E2−.

– The prover P and the verifier V both set

s1
′ ← αs1L + s1R, s2

′ ← α−1s2L + s2R.

– The verifier V accepts if

((s1
′, s2

′, C′, D′
1, D

′
2, E

′
1, E

′
2); (v

′
1,v

′
2)) ∈ RInner.

42

PROTOCOL A.0.02 Dory-Fold-Scalar(s1, s2, C,D1, D2, E1, E2).

Suppose the prover P holds the witness v1, v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1, v2)) ∈ RInner.

P pre-computes χ = ⟨Γ1, Γ2⟩.

– The verifier V samples γ ←$ F and sends it to the prover P.
– The prover P defines

v′1 = v1 + γs1H1, v′2 = v2 + γ−1s2H2,

and sends them to the verifier V.
– The verifier computes

C′ = C + s1s2HT + γ · e(H1, E2) + γ−1 · e(E1, H2),

D′
1 = D1 + e(H1, s1γΓ2),

D′
2 = D2 + e(s2γ

−1Γ1, H2)

– The verifier V samples d←$ F and accepts if

e(v′1 + dΓ1, v
′
2 + d−1Γ2) = χ+ C + dcD2 + d−1cD1.

PROTOCOL A.0.03 Dory-IPA2n(s1, s2, C,D1, D2, E1, E2).

Suppose the prover P holds witness v1,v2 s.t.

((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

The prover P pre-computes Γ1,j+1 = (Γ1,j)L, Γ2,j+1 = (Γ2,j)L, for all
i ∈ {0, . . . , n} computes χi = ⟨Γ1,i, Γ2,i⟩, and for all i ∈ {0, . . . , n− 1} computes

∆1L,i = ⟨(Γ1,i)L, Γ2,i+1⟩, ∆2L,i = ⟨Γ1,i+1, (Γ2,i)L⟩,
∆1R,i = ⟨(Γ1,i)R, Γ2,i+1⟩, ∆2R,i = ⟨Γ1,i+1, (Γ2,i)R⟩.

– For j = 0, . . . , n− 1, the prover P and the verifier V run

(s1, s2, C,D1, D2, E1, E2)← Dory-Reduce2n−j (s1, s2, C,D1, D2, E1, E2).

– The prover P and the verifier V run

Dory-Fold-Scalar(s1, s2, C,D1, D2, E1, E2).

43

PROTOCOL A.0.04 Dory-Eval-RE(comM , comy,L,R)

Suppose the prover P holds witness M , comcol and common input L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– The prover P computes

v = LTM , y = ⟨v,R⟩,

and sends y to the verifier.
– The prover P computes

C = e(⟨v, comrow⟩, Γ2,fin), D2 = e(⟨Γ1,v⟩, Γ2,fin),

E1 = ⟨L, comrow⟩, E2 = yΓ2,fin,

and sends them to the verifier V.
– The verifier V checks that

E2 = yΓ2,fin, comy = yΓ1,fin,

e(E1, Γ2,fin) = D2.

– The prover P and V run

Dory-IPA(L,R, C, comM , D2, E1, E2).

44

PROTOCOL A.0.05 Dory-Eval(comM , comy,L,R)

Suppose the prover P holds witness M , comcol and common input L,R s.t.

comcol = CommitPedersen(Γ1;Mij), comM = CommitAFGHO(Γ2; comcol),

((⊗i≥kvi,⊗i<kvi, comMT , comy); (M
T , y)) ∈ RVMV

where vi = (1− ri, ri) for (r1 · · · , rn) ∈ Fn.

– The verifier samples u←$ F and sends it to the prover P.
– The prover P and the verifier V both set

L′ = (1, u, u2, . . . , un−1), R′ = (1, un, u2n, . . . , un(n−1)),

– The prover P computes

comy′ = L′MR′Γ1,fin,

and sends it to the verifier V.
– The prover P and the verifier V run

Dory-Eval-RE(comM , comy,L,R) ∧Dory-Eval-RE(comM , comy′ ,L′,R′).

45

	HyperPianist: Pianist with Linear-Time Prover via Fully Distributed HyperPlonk

