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Abstract. We study the linear code equivalence problem (LEP) for linear [n, k]-codes
over finite fields Fq. Recently, Chou, Persichetti and Santini gave an elegant heuristic
algorithm that solves LEP over large finite fields (with q = Ω(n)) in time 2 1

2 H( k
n )n,

where H(·) denotes the binary entropy function. However, for small finite fields,
their algorithm can be significantly slower. In particular, for fields of constant size
q = O(1), its runtime increases by an exponential factor 2Θ(n).
We present an improved and provably correct version of their algorithm, which
achieves the desired runtime of 2 1

2 H( k
n )n for all finite fields of size q ≥ 7. For a

wide range of parameters, this improves over the runtime of all previously known
algorithms by an exponential factor.
Keywords: Linear Code Equivalence Problem · Canonical Form Functions

1 Introduction
Digital signatures schemes based on so-called equivalence problems have recently emerged
as promising candidates for post-quantum security. Examples of such schemes include
LESS [BMPS20], HAWK [DPPv22] and MEDS [CNP+23], which are based on the linear
code equivalence problem, the lattice isomorphism problem, and the matrix code equivalence
problem, respectively. In this work, we focus on the linear code equivalence problem (LEP).

LEP is an important problem in coding theory. With the recent introduction of LESS,
LEP has gained significant interest in cryptography [Beu20, PS23, BBPS23, CPS23]. In
a nutshell, the problem is defined as follows: Given generator matrices G1, G2 ∈ Fk×n

q

of two linear [n, k]-codes C1, C2 ⊆ Fn
q , one is asked to compute a linear, Hamming weight

preserving map Q that bijectively maps C1 to C2 (provided such a map exists). Such maps
Q are precisely those linear maps, that permute the coordinates of the codewords c ∈ C1,
and additionally multiply them by units from the underlying field Fq. These maps are
called monomials.

1.1 Previous Work
Support Splitting. The permutation equivalence problem (PEP) is a variant of LEP,
in which one is asked to find a permutation, mapping C1 to C2 (again, provided it exists).
Curiously, PEP is easy on average, but seems to be hard in the worst case. Indeed,
Sendrier’s famous support splitting algorithm (SSA) [Sen00] solves random PEP instances
in polynomial time. However, there are worst-case instances (in which C1 and C2 are
so-called weakly self-dual codes), for which SSA requires exponential time.

Since there is a reduction from LEP to PEP [SS13], one can try solving LEP by first
reducing it to PEP and then using SSA. For fields of size q ≤ 4 this approach works just
fine. Hence, random LEP instances over F2 F3 and F4 are easy. However, for fields of
size q ≥ 5, the reduction results in weakly self-dual codes, and thus in an exponential
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runtime for SSA. It is conjectured that this state-of-the-art of SSA cannot improved, and
that random LEP instances over fields of size q ≥ 5 are hard.

Finding Low-weight Codewords. An alternative approach for solving LEP is based
on computing low-weight codewords. It was first suggested by Leon [Leo82], and is based
on the following simple observation: Let us fix some parameter w, and let L1(w) ⊂ C1 and
L2(w) ⊂ C2 denote sets of all codewords in C1 and C2 of weight at most w. Since monomials
preserve Hamming weight, any monomial that maps C1 to C2 has to map L1(w) to L2(w).
Conversely, if w is only slightly larger than the weight of the minimal-weight codeword in
C1, then any monomial that maps L1(w) to L2(w) will – with decent probability – map C1
to C2. To solve LEP, Leon thus suggests the following simple two step approach: First
compute the sets L1(w) and L2(w). Then compute a monomial Q, mapping L1(w) to
L2(w). Computing L1(w) and L2(w) takes time exponential in n, computing Q can be
done in time polynomial in |L1(w)| = |L2(w)|.

Recently, first Beullens [Beu20], and afterwards Barenghi, Biasse, Persichetti and Santini
(BBPS) [BBPS23] have introduced significantly improved variants of Leon’s algorithm,
following a similar two-step, low-weight codeword finding based approach. In many
parameter regimes, Beullens and BBPS improve over Leon the runtime by an exponential
factor. As a result, up until very recently, BBPS was in most parameter regimes the fastest
algorithm for solving LEP.

Canonical Form Functions. A very recent work by Chou, Persichetti and Santini
(CPS) [CPS23] introduced a completely different approach for solving LEP, based on
so-called canonical form functions.

In their work, CPS define a novel equivalence relation for linear codes, which we denote
by LRL∼ . Suppose we have two codes C1 and C2 with generator matrices G1 = [Ik | A1], G2 =
[Ik | A2] ∈ Fk×n

q , where Ik denotes the k-dimensional idenity matrix. We call C1 and C2

equivalent with respect to LRL∼ , if there exist monomials Qr, Qc such that A2 = Qr ·A1 ·Qc.
(Here we identify the monomials with their corresponding transformation matrices.) In a
nutshell, a canonical form function for LRL∼ is an algorithm that takes a generator matrix
G = [Ik | A] of some code C as input, and outputs a generator matrix G∗ = [Ik | A∗] of a
canonical representative C∗ of the equivalence class of C (with respect to LRL∼ ).

Importantly, CPS allow canonical form functions to fail. That is, instead of always
outputting the desired matrix G∗, a canonical form function may (with some failure
probability) also output an error symbol ⊥.

Suppose we have a canonical form function CF for LRL∼ . Let γ denote the success
probability of CF, i.e., let γ denote the probability that, on input G = [Ik | A] ∈ Fk×n

q

with uniformly random A ∈ Fk×(n−k)
q , CF does not output ⊥. CPS give a transformation,

that (heuristically) turns any canonical form function CF into an LEP algorithm with
runtime γ−1/2 · 2 1

2 H( k
n )n, where H(·) denotes the binary entropy function. In particular,

for canonical form functions with (at least) constant success probability γ = Ω(1), the
CPS transformation yields a heuristic LEP algorithm with runtime roughly 2 1

2 H( k
n )n.

As Figure 1 shows, if such a canonical form function with (at least) constant success
probability exists, then the resulting LEP algorithm would – for all fields of size q ≥ 27 –
improve over the previously best algorithm of BBPS by an exponential factor.1

Unfortunately, finding canonical form functions with (at least) constant success proba-
bility is challenging: CPS give a canonical form function that achieves constant success
probability only for large q = Ω(n). However, for constant q = O(1), its success probability

1We computed the runtime TBBPS in Figure 1 using the estimator from https://github.com/paolo-s
antini/LESS_project/blob/main/attacks/LEP/cost.sage.

https://github.com/paolo-santini/LESS_project/blob/main/attacks/LEP/cost.sage
https://github.com/paolo-santini/LESS_project/blob/main/attacks/LEP/cost.sage
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Figure 1: Comparison between runtime TBBPS of BPPS’ algorithm and the canonical
form function based algorithm – assuming the underlying canonical form function has (at
least) constant success probability. Results are for codes of rate k

n = 1
2 over various finite

fields Fq. For codes of rate k
n ̸= 1

2 , the improvements of the canonical form function based
algorithm over BPPS would be even higher.

is exponentially small in n.2 Hence, for constant q = O(1), the runtime of the resulting
LEP algorithm increases by a factor exponential in n.

1.2 Our Contributions

We introduce a novel canonical form function CFNew that – for all finite fields of size q ≥ 7
and codes of constant rate3 – has success probability 1 − O(n−1). Together with the
seminal results of CPS, this immediately results in a 2 1

2 H( k
n )n-time algorithm for LEP.

As shown in Figure 1, we thus improve over the previously fastest known LEP algorithm
known by an exponential factor. Importantly, while the original analysis by CPS was
only heuristic, we show that our LEP algorithm is provably correct. Furthermore, as an
additional side result, we briefly show that the algorithm naturally admits a quantum
variant with time and memory 2 1

3 H( k
n )n.

On the technical side, our novel canonical form function re-uses many of ideas of
the original canonical form function by CPS. However, we enhance their ideas via novel
techniques, which allow us to circumvent the failure conditions of CPS’ algorithm. Thereby,
we significantly increase its success probability to 1 − O(n−1).

Impact for LESS. The suggested LESS parameters use q = Ω(n). Hence, for these
parameters, already the original canonical form function by CPS has constant success
probability. Thus, for the LESS parameters, our novel algorithm does not improve
substantially over the LEP algorithm introduced by CPS in [CPS23]. In particular, our
novel results do not invalidate the security analysis of LESS.

2For all inputs G = [Ik | A] ∈ Fk×n
q , in which every row of A ∈ Fk×(n−k)

q contains at least one zero
entry, the canonical form of CPS outputs ⊥. For uniformly random A, the probability that all k rows
contain only non-zero entries is at most k · (1 − 1/q)n−k. For constant q = O(1), this is exponentially
small in n.

3An [n, k]-code C has constant rate, if the code dimension grows as k = c · n, where n is the code length
and c is a constant with 0 < c < 1. In other words, C has constant rate if k

n
̸= o(1), and k

n
̸= 1 − o(1).

This is the most important setting in practice.
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Implementation. A proof-of-concept SageMath implementation of our novel LEP
algorithm is available at

https://github.com/juliannowakowski/lep-cf

1.3 Open Questions
Our novel canonical form function CFNew has success probability close to 1 for all finite
fields of size q ≥ 7. It is a natural open question, whether one can also achieve this success
probability for fields of size q < 7. A perhaps even more interesting question is whether
one can hybridize the ideas behind the low-weight codeword finding based algorithms
with the ideas behind the canonical form function based algorithm to obtain an even
faster algorithm. Lastly, it would be interesting to explore, whether one can adapt the
canonical form function based algorithm to other equivalence problems, such as the lattice
isomorphism problem, or the matrix code equivalence problem.

2 Preliminaries
2.1 Notations
We frequently use soft-O and soft-Θ notaions, i.e., Õ(·) and Θ̃(·), which suppress polynomial
factors. The finite field with q elements is denoted by Fq. Its unit group is F∗q := Fq \ {0}.
The group of invertible (k×k)-dimensional matrix over Fq is denoted by GL(Fk

q ). We define
the set of natural numbers as N := {0, 1, 2, . . .}. For a natural number n ≥ 1, we define
[n] := {1, 2, . . . , n}. For a subset J ⊆ [n], we denote its complement by J := [n] \ J . All
vectors v ∈ Fn

q are row vectors. The i-th unit vector is denoted by ei, e.g., e1 = (1, 0, . . . , 0).
Let G ∈ Fk×n

q be a matrix. The transpose of G is denoted by GT . For J ⊆ [n], we
denote by GJ the submatrix of G formed by the columns indexed by J . We call J an
information set of A, if |J | = k and the matrix GJ ∈ Fk×k

q is invertible. We denote by
RREF(G) the row-reduced echelon form of G. If G is of the form G = [Ik | A], then
we say that G is in systematic form. A linear [n, k]-code C over Fq is a k-dimensional
subspace of Fn

q . The rate of an [n, k]-code is k
n . The binary entropy function is denoted by

H(x) := −x log2(x) − (1 − x) log2(1 − x). We frequently make use of the approximation(
n
k

)
= Θ̃(2H( k

n )n), which is a direct consequence of Stirling’s formula.

2.2 Permutations and Monomials
We denote by Σn the group of permutations on n letters. For P ∈ Σn, the image
of j ∈ [n] under P is denoted by P[j]. More generally, for a set J ⊆ [n], we define
P[J ] := {P[j] | j ∈ J}. We view permutations P ∈ Σn as (n × n)-matrices with columns
eT

P−1[1], . . . , eT
P−1[n]. As a consequence, multiplying a vector v = (v1, . . . , vn) ∈ Fn

q by P
gives v ·P = (vP−1[1], . . . , vP−1[n]). In other words, multiplying v by P permutes the entries
of v according to P. It is easy to see that inverse of P is given by the transpose PT . Hence,
if we have a column vector wT = (w1, . . . , wn)T , then P ·wT is equal to the vector obtained
by permuting the entries of wT according to P−1, i.e., P · wT = (wP[1], . . . , wP[n])T . For
J ⊆ [n] with |J | = k, we denote by PJ ∈ Σn a permutation with P[J ] = {1, 2, . . . , k}.
Hence, for all matrices G ∈ Fk×n

q it holds that G · PJ = [GJ | GJ ].
The group of (n × n) diagonal matrices over F∗q is denoted by Dn,q. For a diagonal

matrix D ∈ Dn,q with diagonal entries d1, . . . , dn ∈ F∗q and a permutation P ∈ Σn, the
matrix P−1 · D · P is a diagonal matrix with diagonal entries dP−1[1], . . . , dP−1[n].

The group of n-dimensional monomials over Fq is defined as

Mn,q := {P · D | P ∈ Σn, D ∈ Dn,q} = {D · P | P ∈ Σn, D ∈ Dn,q}. (1)

https://github.com/juliannowakowski/lep-cf
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The fact that we can swap the order P and D in Equation (1) follows from the facts that
D · P = P · (P−1 · D · P), and that P−1 · D · P is a diagonal matrix. Let Q ∈ Mn,q be a
monomial, and let k ∈ [n]. As first noted in [PS23], we can factor Q as

Q = PJ ·
[
Qr

Qc

]
,

where J ⊆ [n] with |J | = k, Qr ∈ Mk,q and Qc ∈ Mn−k,q. Considering such factorizations
of monomials can be helpful when studying the action of monomials on matrices. Indeed,
for every matrix G ∈ Fk×n

q , it holds that

G · Q = [GJ · Qr | QJ · Qc].

Moreover, if J is an information set of G, then GJ · Qr is invertible, and it holds that

RREF(G · Q) = [Ik | Q−1
r · (GJ)−1 · GJ · Qc].

2.3 Linear Code Equivalence Problem
Two linear [n, k]-codes C1, C2 ⊆ Fn

q are called linearly equivalent, if there exists a monomial
Q ∈ Mn,q such that C2 = C1 · Q, i.e., C2 = {c1 · Q | c1 ∈ C1} . Equivalently, C1 and C2 are
linearly equivalent, if generator matrices G1, G2 of C1, C2 satisfy the following equivalence
relation:

Definition 2.1 (Linear Equivalence). Generator matrices G1, G2 ∈ Fk×n
q are called

linearly equivalent, if there exist U ∈ GL(Fk
q ) and Q ∈ Mn,q, such that G2 = U · G1 · Q.

In that case, we write G1 ∼ G2.

It is straight-forward to verify that ∼ indeed defines an equivalence relation on the set
of all (k × n) matrices over Fq. Definition 2.1 now suggests the following computational
problem:

Definition 2.2 (LEP). The linear code equivalence problem (LEP) with parameters
(n, k, q) is defined as follows:

• Given: Linearly equivalent generator matrices G1, G2 ∈ Fk×n
q .

• Find: Matrices U ∈ GL(Fk
q ) and Q ∈ Mn,q such that G2 = U · G1 · Q.

In cryptography, one usually considers an average case variant of LEP, where the
matrices G1 and G2 are sampled from the following distribution.

Definition 2.3 (Average Case LEP Distribution). For parameters n, k, q, the average
case LEP distribution DLEP

n,k,q is defined as follows: Sample a uniformly random matrix
G1 ∈ Fk×n

q , and a uniformly random monomial Q ∈ Mn,q. Compute G2 := RREF(G1 ·Q),
and output the tuple (G1, G2).

Formally, the average case variant of LEP ($-LEP) is defined as follows.

Definition 2.4 ($-LEP). The average case linear code equivalence problem ($-LEP) with
parameters (n, k, q) is defined as follows:

• Given: Linearly equivalent generator matrices G1, G2 sampled from DLEP
n,k,q.

• Find: Matrices U ∈ GL(Fk
q ) and Q ∈ Mn,q such that G2 = U · G1 · Q.
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2.4 Probabilities
We need the following concentration bound for the sum of (possibly dependent) {0, 1}-
valued random variables X1, . . . , Xn. inequality.

Lemma 2.5. Let X1, . . . , Xn ∈ {0, 1} denote (possibly dependent) random variables. Let
p ∈ [0, 1], such that Pr[Xi = 1] > p for every i ∈ [n]. Then for X :=

∑n
i=1 Xi it holds that

Pr
[
X >

p

2 · n
]

>
p

2 .

A proof for Lemma 2.5 is given in Appendix A.1. We note that for independent random
variables X1, . . . , Xn, Lemma 2.5 is significantly inferior to more standard concentration
bounds, such as the Chernoff bound (which states that Pr

[
X > p

2 · n
]

> 1 − e−Ω(p·n)).
However, a major advantage of Lemma 2.5 is that it also applies to dependent random
variables.

Lemma 2.6. Let q be a prime power and let k ∈ N. If we sample a matrix A uniformly
at random from Fk×k

q , then A is invertible with probability greater than 1
4 .

A proof for Lemma 2.6 is given in Appendix A.2.

3 CPS Revisited
In this section, we revisit the original work of Chou, Persichetti and Santini (CPS) [CPS23].
We start by recalling the definition of so-called canonical form functions in Section 3.1.
While CPS initially introduced these functions to improve the efficiency of the LESS
signature scheme, they come with a surprising destructive application: CPS showed
that any canonical form function can be transformed into a LEP algorithm. We revisit
this transformation in Sections 3.2 and 3.3. While the original CPS analysis of the
transformation was heuristic, we show – as a novel result – that, under certain conditions,
the transformation can be made provably correct. This observation then serves as the
foundation for our novel, provably correct LEP algorithm, which we introduce in Section 4.

3.1 Canonical Form Functions
LRL Equivalence. CPS introduce a novel framework for studying equivalence relations
for linear codes. While CPS use their framework to study five different equivalence relations,
we need only one out of these five. CPS call this equivalence relation Case 5. However,
we choose the more descriptive name left-right linear equivalence, or LRL equivalence, for
short.

Definition 3.1 (LRL Equivalence). Two generator matrices in systematic form G1 =
[Ik | A1], G2 = [Ik | A2] ∈ Fk×n

q are called left-right linearly equivalent or LRL equivalent,
if and only if there exist Qr ∈ Mk,q and Qc ∈ Mn−k,q such that

A2 = Qr · A1 · Qc.

In that case, we write G1
LRL∼ G2. The equivalence class of a generator matrix in systematic

form G = [Ik | A] is denoted by [G]LRL∼
.

Notice that LRL∼ indeed defines an equivalence relation on the set of (k × n)-matrices
over Fq in systematic form. We point out that the original definition by CPS is slightly
more general than ours, as it also considers generator matrices that are not in systematic
form. However, for our purposes, the simplified definition above suffices.
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Additionally, we like to point out that LRL equivalence is a special case of linear
equivalence: If G1 = [Ik | A1] and G2 = [Ik | A2] are LRL equivalent, i.e., A2 = Qr ·A1·Qc,
then for

Q :=
[
Q−1

r

Qc

]
∈ Mn,q, and U := Qr ∈ Mk,q ⊆ GL(Fk

q ),

it holds that G2 = U · G1 · Q. Hence, the codes C1 and C2 generated by G1 and G2 are
linearly equivalent

Some Background. Definition 3.1 stems from the following scenario arising in the
LESS signature scheme: Let C1, C2 ⊆ Fn

q be linearly equivalent [n, k]-codes. Suppose Alice
and Bob know generator matrices G1, G2 of C1 and C2. Additionally, suppose Alice knows
a monomial Q ∈ Mn,q such that C2 = C1 · Q. In LESS, Alice wants to prove to Bob that
C1 and C2 are indeed linearly equivalent. A simple way to do this, would be for Alice to
simply send Q to Bob. However, in the LESS setting, Alice would like to make the proof
as memory-efficient as possible. To this end, CPS suggest the following approach:

Let us factor Q as
Q = PJ ·

[
Qr

Qc

]
,

for some J ⊆ [n] with |J | = k, Qr ∈ Mk,q and Qc ∈ Mn−k,q. Let us define G′1 :=
RREF(G1 ·PJ ), and G′2 := RREF(G2). For simplicity, let us assume that J is an information
set of G1. Then it holds that

G′1 = [Ik | (GJ
1 )−1 · GJ

1 ].

Since C2 = C1 · Q, we have G2 = U · G1 · Q for some U ∈ GL(Fk
q ). Together with the fact

that RREF is invariant under invertible transformations from the left, this implies

G′2 = RREF(U · G1 · Q) = RREF(G1 · Q) = [Ik | Q−1
r · (GJ

1 )−1 · GJ
1 · Qc].

The crucial observation is now that G′1 and G′2 satisfy Definition 3.1, i.e., the matrices G′1
and G′2 are LRL equivalent.

Assume for a moment that Bob has an efficient algorithm for deciding whether two
matrices are LRL equivalent. In such a scenario, CPS suggest instead of Alice sending Q
to Bob, to send only J . To verify that C1 and C2 are linearly equivalent, Bob can then
proceed as follows: Bob computes G′2, and uses J to compute G′1. After that, he tests
whether G′1 and G′2 are LRL equivalent. If so, he accepts that C1 and C2 are linearly
equivalent.

As shown by CPS, this approach is sound, i.e., Bob accepts only if C1 and C2 are indeed
linearly equivalent. Since storing J requires significantly less memory than storing Q,
this approach greatly improves the memory-complexity of the proof. However, it requires
access to an efficient algorithm for deciding, whether to matrices are LRL equivalent. For
certain parameters of n, k and q, CPS can indeed give such an algorithm. It is based on
so-called canonical form functions, which, we formally define below.

Canonical Form Functions. In a nuthsell, a canonical form function for LRL∼ is an
efficient algorithm CF that takes a generator matrix G = [Ik | A], and outputs a canonical
representative G∗ = [Ik | A∗] of the equivalence class [G]LRL∼

. Additionally, CF outputs
monomials Qr and Qc, such that A∗ = Qr · A · Qc. More precisely, a canonical form
function is defined as follows:

Definition 3.2 (Canonical Form Function). A canonical form function (for LRL equiva-
lence) is a polynomial time algorithm CF, that on input of a generator matrix in systematic
form G = [Ik | A] ∈ Fk×n

q either outputs
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• a tuple (G∗, Qr, Qc) ∈ [G]LRL∼
× Mk,q × Mn−k,q, where G∗ = [Ik | A∗] is a represen-

tative of the equivalence class [G]LRL∼
, such that A∗ = Qr · A · Qc,

• or an error symbol ⊥.

Furthermore, we require the representative G∗ to be canonical. That is, for all G1
LRL∼ G2

with CF(G1) ̸= ⊥, we require CF(G1) and CF(G2) to output the same representative of
the equivalence class [G1]LRL∼

= [G2]LRL∼
. For a canonical form function CF, we define its

success probability as

γCF(n, k, q) := Pr
A←Fk×(n−k)

q

[
CF
(
[Ik | A]

)
̸= ⊥

]
.

As with our definition of LRL equivalence (Definition 3.1), we point out that also
the original CPS definition for canonical form functions is more general than ours, as it
also considers matrices that are not in systematic form. However, again our simplified
definition suffices.

The Dark Side of CF. While CPS introduced canonical form functions with a con-
structive application in mind, they have a surprising destructive application: CPS give
an elegant transformation that turns any canonical form function CF into a algorithm
for solving LEP in time Õ

(
γCF(n, k, q)−1/2 · 2 1

2 H( k
n )n
)

. In particular, for canonical form
functions with (at least) constant success probability, the transformation results in an LEP
algorithm with runtime Õ

(
2 1

2 H( k
n )n
)

. Unfortunately, as discussed in the introduction,
finding canonical form functions with constant success probability is challenging: CPS
give a canonical form function that achieves constant success probability only for large
q = Ω(n). However, for constant q = O(1), its success probability is exponentially small –
leading to an LEP algorithm that requires time exponentially higher than 2 1

2 H( k
n )n.

In Section 4, we will introduce a novel canonical form function, that has success
probability probability 1 − O(n−1) for all q ≥ 7. By combining our canonical function
with the CPS transformation, this immediately implies our novel Õ

(
2 1

2 H( k
n )n
)

-time LEP
algorithm.

Importantly, the original analysis of the CPS transformation is only heuristic. However,
as we show in the following two sections, for our setting of a canonical form function
with (at least) constant success probability, we can even make the transformation provably
correct.

3.2 LEP as a Collision Finding Problem
The main idea behind the CPS transformation for turning a canonical form function into
an LEP algrithm is to view LEP as a collision finding problem: The transformation turns
any canonical form function into a meet-in-the-middle algorithm, that on input of a LEP
instance G1 ∼ G2 tries to find CF-colliding information sets J1, J2, as defined below.

Definition 3.3 (CF-colliding). Let G1 ∼ G2 be an LEP instance, and let CF be a canonical
form function. We call two information sets J1, J2 of G1 and G2 CF-colliding for (G1, G2),
if

RREF(G1 · PJ1) LRL∼ RREF(G2 · PJ2),

and additionally

CF(RREF(G1 · PJ1)) ̸= ⊥, CF(RREF(G2 · PJ2)) ̸= ⊥.
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As the following lemma shows, once CF-colliding information sets J1 and J2 are found,
solving LEP becomes easy:

Lemma 3.4 (Adapted from Proposition 11 in [CPS23]). Let G1 ∼ G2 be an LEP instance,
and let CF be a canonical form function. Let J1, J2 be CF-colliding information sets for
(G1, G2). On input G1, G2, J1, J2, algorithm RecoverMonCF(·) (Algorithm 1) computes a
solution U ∈ GL(Fk

q ), Q ∈ Mn,q to the LEP instance defined by G1 and G2 in polynomial
time.

For completeness, we recall the proof of Lemma 3.4 in Appendix A.3.

Algorithm 1: RecoverMonCF(·)

Input: LEP instance G1 ∼ G2 ∈ Fk×n
q ,

CF-colliding information sets J1, J2 for (G1, G2).
Output: Solution U ∈ GL(Fk

q ), Q ∈ Mn,q with G2 = U · G1 · Q.

1 Compute G′i := RREF(Gi · PJi) for i ∈ {1, 2}.
2 Compute CF(G′i) = (G∗i , Qr,i, Qc,i) for i ∈ {1, 2}.
3 Compute U := GJ2

2 · Q−1
r,2 · Qr,1 · (GJ1

1 )−1.
4 Compute

Q := PJ1 ·

[
Q−1

r,1 · Qr,2

Qc,1 · Q−1
c,2

]
· (PJ2)−1.

5 return U, Q

To see that CF-colliding information sets actually exist, we need the following lemma.

Lemma 3.5. Let G1 ∼ G2 ∈ Fk×n
q be linearly equivalent matrices, where

G2 = U · G1 · P · D,

for some U ∈ GL(Fk
q ), P ∈ Σn and D ∈ Dn,q. Let J1 be an information set of G1. Then

J2 := P[J1] is an information set of G2, and it holds that

RREF(G1 · PJ1) LRL∼ RREF(G2 · PJ2).

In the original CPS paper, Lemma 3.5 is not stated explicitly, but only hinted at. For
completeness, we give a formal proof in Appendix A.4.

3.3 A Provably Correct Variant of the CPS Transformation
We are now ready to describe the CPS transformation for converting a canonical form
function CF into a LEP algorithm. It is depicted in Algorithm 2. For simplicity, we give a
variant of the transformation that only works well for canonical form functions CF with
(at least) constant success probability γCF(n, k, q) = Ω(1). As we show below, a major
advantage of this variant is that it can be shown to be provably correct.

The Algorithm. In a nutshell, Algorithm 2 samples on input of a LEP instance
G1 ∼ G2 sufficiently many random information sets J1, J2 of G1 and G2, with the hope
of sampling at least one CF-colliding pair (see Definition 3.3). If it finds such a pair, it uses
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Algorithm 2: LEP-Coll-SearchCF(·)

Input: LEP instance G1 ∼ G2 ∈ Fk×n
q .

Output: Solution U ∈ GL(Fk
q ), Q ∈ Mn,q with G2 = U · G1 · Q,

or error symbol ⊥.

1 Initialize empty list L.

2 repeat
⌊√

1
2
(

n
k

)⌋
times

3 Sample uniformly random size-k subset J1 of [n].
4 G′1 := RREF(G1 · PJ1).
5 if G′1 is in systematic form then ▷ Is J1 information set?

6 if CF(G′1) ̸= ⊥ then
7 Parse the first component of CF(G′1)’s output as G∗1 ∈ [G′1]LRL∼

.
8 Store (G∗1, J1) in L.
9 Sort L by the second component.

10 repeat
⌊√

1
2
(

n
k

)⌋
times

11 Sample uniformly random size-k subset J2 of [n].
12 G′2 := RREF(G2 · PJ2).
13 if G′2 is in systematic form then ▷ Is J2 information set?

14 if CF(G′2) ̸= ⊥ then
15 Parse the first component of CF(G′2)’s output as G∗2 ∈ [G′2]LRL∼

.
16 if (G∗2, J1) ∈ L for some J1 then ▷ Are J1, J2 CF-colliding?

17 return RecoverMonCF(·)(G1, G2, J1, J2)
18 return ⊥

RecoverMonCF(·) (Algorithm 1) as a subroutine to easily solve the LEP instance. More
precisely, it works as follows:

On input G1 ∼ G2, Algorithm 2 picks
⌊√

1
2
(

n
k

)⌋
random size-k subsets J1 of [n], and

computes G′1 := RREF(G1 · PJ1), for every J1. If G′1 is in systematic form (or equivalently,
if J1 is an information set of G1), the algorithm runs CF on G′1. If CF does not return
⊥, CF returns a canonical representative G∗1 of the equivalence class [G′1]LRL∼

. Algorithm 2
then stores G∗1 along with J1 in some list L.

Next, the algorithm tries to find an information set J2 of G2, that together with some
previously sampled information set J1 of G1 is CF-colliding for (G1, G2). The algorithm
can easily detect such a J2 by simply testing if G′2 := RREF(G2 · PJ2) is in systematic
form, and, additionally, if the computation of CF(G′2) yields a canonical representative
identical to one of the G∗1’s, that it has stored in L before (see Definitions 3.2 and 3.3).
Once it finds such a J2, it can easily solve the LEP instance via algorithm RecoverMonCF(·)

(see Lemma 3.4).

Runtime and Success Probability. The first repeat-loop in Algorithm 2 clearly runs
in time T := Θ̃

(√(
n
k

))
. Sorting L can be done in time T as well. After sorting L, testing

for membership in L can be done in time Θ̃(1). Thus, also the second repeat-loop runs
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in time T . Hence, we obtain an overall runtime of T = Θ̃
(√(

n
k

))
= Θ̃

(
2 1

2 H( k
n )n
)

for
Algorithm 2.

As we show below, for canonical form functions with (at least) constant success
probability, the algorithm provably solves the average case variant of LEP ($-LEP) with
constant success probability:
Theorem 3.6 (Correctness CPS Transformation). Let G1 ∼ G2 ∈ Fk×n

q be a $-LEP
instance, and let CF be a canonical form function with (at least) constant success probability.
On input G1, G2, Algorithm LEP-Coll-SearchCF(·) (Algorithm 2) outputs a solution to the
$-LEP instance defined by G1 and G2 in time Θ̃

(
2 1

2 H( k
n )n
)

, and with constant success
probability.

The proof of Theorem 3.6 is based on the following novel technical lemma.
Lemma 3.7. Let G1 ∼ G2 ∈ Fk×n

q be a $-LEP instance, and let CF be a canonical
form function with (at least) constant success probability. If we run LEP-Coll-SearchCF(·)

(Algorithm 2) on input G1, G2, then with constant probability, the list L computed by
LEP-Coll-SearchCF(·) contains more than

γCF(n, k, q)
8 ·

⌊√
1
2 ·
(

n

k

)⌋
distinct elements.

Proof. Let T :=
⌊√

1
2 ·
(

n
k

)⌋
, and γ := γCF(n, k, q). We denote by J1,1, . . . , J1,T the T sets

J1, that algorithm Algorithm 2 samples in its first repeat-loop. For every i, we define an
indicator variable Xi ∈ {0, 1}, that is equal to 1, if and only if J1,i gets stored in L. Let
Ei denote the event that J1,i is an information set of G1. Looking at Lines 5 and 6 of
Algorithm 2, it follows that

Pr[Xi = 1] = Pr[Ei] · Pr[CF(RREF(G1 · PJ1,i)) ̸= ⊥ | Ei].

The set J1,i is an information set of G1, if and only if GJ1,i

1 ∈ Fk×k
q is invertible. Since

in $-LEP, the matrix G1 is uniformly random, also GJ1,i

1 uniformly random. Hence, by
Lemma 2.6, we have Pr[Ei] > 1

4 , and thus

Pr[Xi = 1] >
1
4 · Pr[CF(RREF(G1 · PJ1,i)) ̸= ⊥ | Ei]

= 1
4 · Pr[CF([Ik | (GJ1,i

1 )−1 · GJ1,i

1 ]) ̸= ⊥ | Ei] = γ

4 ,

where the last equality follows from Definition 3.2 and the fact that in $-LEP, the
matrix GJ1,i

1 is uniformly random.
Applying Lemma 2.5 to |L| =

∑T
i=1 XJ1,i

, we obtain Pr
[
|L| > γ

8 · T
]

> γ
8 = Ω(1). This

already shows that, with constant probability, the list L contains more than γCF(n,k,q)
8 ·⌊√

1
2 ·
(

n
k

)⌋
elements. To finish the proof, we have to show that with constant probability

these elements are distinct. To this end, we simply note that the probability that the i-th
sampled set J1,i is equal to a previously sampled set J1,1, . . . , J1,i−1 is (i − 1)/

(
n
k

)
. Thus,

the probability that all sets J1,i are distinct is
T∏

i=1

(
1 − i − 1(

n
k

) ) ≥

(
1 − T(

n
k

))T

≥ 1 − T 2(
n
k

) ≥ 1 −
1
2
(

n
k

)(
n
k

) = 1
2 = Ω(1).

This shows that with constant probability all elements in L are distinct, and thus concludes
the proof.
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Using Lemma 3.7, we now prove Theorem 3.6.

Proof (Theorem 3.6). We have to show that Algorithm 2 samples in its second repeat-loop
with constant probability an information set J2 of G2, that, together with some information
set J1 stored in the list L, is CF-colliding for (G1, G2).

Since G1 ∼ G2, we can write G2 = U · G1 · P · D, for some U ∈ GL(Fk
q ), P ∈ Σn and

D ∈ Dn,q. Let I1 denote the set of all information sets J1 that Algorithm 2 stores in the
list L, and let I2 := {P[J1] | J1 ∈ I1} . By Lemma 3.5, every pair (J1, P[J1]) ∈ I1 × I2 is
CF-colliding for (G1, G2). Thus, it suffices to show that Algorithm 2 samples at least one
set J2 with J2 ∈ I2.

Let γ := γCF(n, k, q) and T :=
⌊√

1
2
(

n
k

)⌋
. By Lemma 3.7, we have with constant

probability that |I2| = |I1| = |L| > γ
8 · T. If indeed |I2| > γ

8 · T , then Algorithm 2 samples
J2 ∈ I2 with probability at least

1 −

(
1 −

γ
8 · T(

n
k

) )T

≥ 1 − exp
(

−
γ
8 · T 2(

n
k

) ) ≥ 1 − e−γ/16 ≥ γ

32 .

Hence, the overall success probability of Algorithm 2 is lower bounded by Ω(1) · γ
32 = Ω(1),

as desired.

A Memoryless Variant. We note that the memory consumption of Algorithm 2 is
quite excessive, as (by Lemma 3.7) it requires storing a list of size roughly

√(
n
k

)
. However,

this issue can easily be avoided via a standard Van-Oorschot-Wiener-like collision-finding
algorithm [vW99].

A Quantum Variant. For canonical form functions with (at least) constant success
probability, Algorithm 2 naturally gives rise to quantum variant with time and memory
Θ̃
(

2 1
3 H( k

n )n
)

: Instead of sampling roughly
√(

n
k

)
sets J1 in the algorithms for first repeat-

loop, we sample only
(

n
k

)1/3 such sets. By slightly adapting the proofs of Lemma 3.7
and Theorem 3.6, one can easily show that the probability that a single iteration of the
second repeat-loop finds a CF-colliding pair J1, J2 then drops from roughly

(
n
k

)−1/2 to
roughly

(
n
k

)−2/3. Hence, by replacing the second repeat-loop by Grover search / amplitude
amplification, we immediately obtain a quantum algorithm with the desired runtime and
memory consumption.

Comparison with Original CPS Analysis. Our novel Theorem 3.6 shows that
Algorithm 2 solves LEP in time roughly

√(
n
k

)
≈ 2 1

2 H( k
n ), and with constant success

probability – provided that the underlying canonical form function CF has constant success
probability γCF(n, k, q) = Ω(1). CPS, on the other hand, give a more general, yet heuristic,
variant of Algorithm 2, that is supposed to work for any canonical form function CF. For
their variant, CPS claim runtime roughly

√
1

γCF(n,k,q)
(

n
k

)
, and "constant success probability

which is approximately 1/2".
Let ζ > 1

4 denote the probability that a uniformly random matrix A ∈ Fk×k
q is invertible

(see Lemma 2.6). The only difference between Algorithm 2 and the original CPS algorithm
is that instead of sampling

⌊√
1
2
(

n
k

)⌋
random index sets J1, J2, CPS suggest to sample

roughly
√

1
ζ·γCF(n,k,q)

(
n
k

)
such sets. Since each pair J1, J2 is CF-colliding with probability

at least ζ · γCF(n, k, q) ·
(

n
k

)−1, CPS then sample on expectation at least one CF-colliding
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pair. Since Algorithm 2 is successful, if and only if it samples at least one such pair, it
follows that on expectation, CPS indeed solve LEP.

Unfortunately, sampling one such pair on expectation does not necessarily imply that
one actually samples one such pair with decent probability.4 To overcome this issue, CPS
heuristically assume that for any pair of index sets J1, J ′1 the probabilities Pr[CF(RREF(G1 ·
PJ1)) ̸= ⊥] and Pr[CF(RREF(G1 · PJ′

1)) ̸= ⊥] can be treated as independent.5 Under this
assumption, standard concentration bounds (e.g., the Chernoff bound) indeed imply that
that the original CPS algorithm solves LEP with constant probability. However, in reality,
these probabilities are of course not perfectly independent, and it is unclear how much of
an issue this is in practice.

To circumvent this issue, we resort in our proof of Lemma 3.7 to the concentration
bound from Lemma 2.5. We use Lemma 2.5 to show that when sampling T ∈ N random
index sets J1, then with probability at least γCF(n, k, q)/8 more than γCF(n, k, q)/8 · T of
these sets satisfy CF(RREF(G1 · PJ1)) ̸= ⊥. For our setting of canonical form functions
with constant success probability γCF(n, k, q) = Ω(1), this is good enough to conclude
constant success probability for Algorithm 2. However, for canonical form functions with
exponentially small success probability, Lemma 2.5 is too weak to make any meaningful
conclusion about the success probability of the original CPS algorithm.

4 A Novel Canonical Form Function
Now that we have formally defined canonical form functions in the previous Section 3, we
are ready to introduce our novel canonical form function, which we denote by CFNew. As
we will show below, CFNew has over all fields of size q ≥ 7 success probability 1 − O(n−1).
Together with Theorem 3.6 from the previous section, this immediately yields our novel
Õ
(

2 1
2 H( k

n )n
)

-time LEP algorithm.

Road Map. For ease of exposition, we break CFNew into four steps. While descirbing
these steps, we prove the correctness of CFNew along the way. Let us briefly outline our road
map for our proof of correctness. To this end, let G1 = [Ik | A1] LRL∼ G2 = [Ik | A2] ∈ Fk×n

q

be any pair of LRL equivalent matrices. To prove that our novel canonical form function
CFNew is correct, we have to show that running CFNew on inputs G1 and G2, respectively,
returns the same representative of the equivalence class [G1]LRL∼

= [G2]LRL∼
. To this end, we

proceed as follows:
On input G1, CFNew computes in the i-th of its four steps a matrix G(i)

1 = [Ik | A(i)
1 ] ∈

[G1]LRL∼
. Analogously, on input G2, CFNew computes in its i-th step a matrix G(i)

2 = [Ik |

A(i)
2 ] ∈ [G2]LRL∼

= [G1]LRL∼
. We show that as the steps progress, the matrices A(i)

1 , A(i)
2

become increasingly similar. Ultimately, after the fourth step, we end up with A(4)
1 = A(4)

2 .
The final matrices G(4)

1 = G(4)
2 then serve as our canonical representative of the equivalence

class [G1]LRL∼
= [G2]LRL∼

.

Comparison with CPS. Before we finally begin, we would like to give credit and note
that our novel canonical form function CFNew re-uses many of the original ideas by CPS:
In Steps 1 to 3, we run essentially an improved variant of the original CPS canonical form

4Consider a random variable X with Pr[X = 2n] = 2−n and Pr[X = 0] = 1 − 2−n. Then E[X] = 1,
but Pr[X ≥ 1] = 2−n is negligible.

5More precisely, CPS assume that for any given matrix G with information set J , the matrix (GJ )−1 ·GJ

obtained from RREF(G · PJ ) = [Ik | (GJ )−1 · GJ ] can be treated as a freshly sampled uniformly random
matrix, see [CPS23, Heuristic 1].
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function [CPS23] on well-chosen submatrices of our inputs A1 and A2. By restricting
ourselves to these submatrices, we can circumvent some of the abort conditions of CPS.
The fourth step of CFNew is, however, completely different from the original CPS canonical
form function.

4.1 Step 1

Let G1 = [Ik | A1] LRL∼ G2 = [Ik | A2] ∈ Fk×n
q be the inputs to our canonical form function

CFNew. By definition of LRL equivalence, we can write

A2 = Pr · Dr · A1 · Pc · Dc, (2)

for some permutations Pr ∈ Σk, Pc ∈ Σn−k and diagonal matrices Dr ∈ Dk,q, Dc ∈
Dn−k,q.

The first step of CFNew is given in Algorithm CF(1)
New (Algorithm 3). On inputs G1 and G2,

respectively, our canonical form function starts by computing (A(1)
1 , w1) := CF(1)

New(A1, i1)
and (A(1)

2 , w2) := CF(1)
New(A2, i2), respectively, where i1, i2 ∈ [k] are some well-chosen

parameters. For ease of exposition, we defer the exact description of the selection process
for i1 and i2 to later. For the moment, it suffices to know that i1 and i2 satisfy i2 = Pr[i1],
where Pr is the permutation from Equation (2).

Algorithm 3: CF(1)
New

Input: A ∈ Fk×(n−k)
q , index i ∈ [k].

Output: A(1) ∈ Fk×(n−k)
q , parameter w ∈ [n − k].

1 A(1) := A
2 J := ∅
3 Parse the i-th row of A(1) as (ai,1, . . . , ai,n−k).
4 for j = 1, . . . , n − k do
5 if ai,j ̸= 0 then
6 Divide all entries in the j-th column of A(1) by ai,j .
7 else
8 J := J ∪ {j}.
9 w := n − k − |J | ▷ Number of non-zero entries in the i-th row of A.

10 Move all columns of A(1) indexed by J to the right of the matrix.
11 Swap the first row of A(1) with the i-th row.
12 return (A(1), w)

Relating A(1)
1 and A(1)

2 . Let us define w := w1. It is straight-forward to verify that the
matrix A(1)

1 is of the shape

A(1)
1 =


w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷

1
{

1, 1, . . . , 1 0, 0, . . . , 0

k−1
{

A(1)
1,1 A(1)

1,2

,
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where A(1)
1,1 and A(1)

1,2 are some matrices. Furthermore, for our choice of i2 = Pr[i1], it is
straight-forward to verify that w1 = w2, and that

A(1)
2 =


w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷

1
{

1, 1, . . . , 1 0, 0, . . . , 0

k−1
{

Q(1)
r · A(1)

1,1 · P(1)
c Q(1)

r · A(1)
1,2 · Q(1)

c

, (3)

for some monomials Q(1)
r , Q(1)

c and a permutation P(1)
c .

Staying in the Equivalence Class. Since the output matrices A(1)
i , i ∈ {1, 2}, are

obtained by simply permuting and scaling the input matrices Ai, it is clear that the
corresponding matrices G(1)

i := [Ik | A(1)
i ] satisfy G(1)

i ∈ [G1]LRL∼
= [G2]LRL∼

, as required.
As we will see below, the remaining three steps of CFNew also work by simply permuting

and scaling the corresponding input matrices. Thus, throughout the execution of CFNew,
we will only compute matrices G(1)

i , . . . , G(4)
i from the equivalence class [G1]LRL∼

= [G2]LRL∼
.

The Value of w. As noted in Line 9 of Algorithm 3, the parameter w = w1 = w2 is equal
to the number of non-zero entries in the i-th row of our input matrix A1. For uniformly
random A1 (as in $-LEP) we thus have E[w] = (1 − 1

q )(n − k). By the Chernoff bound,
w meets its expected value up to a small (1 ± δ)-factor with overwhelming probability
1 − e−Ω(n−k). In particular, for all q > 2 (and large enough n − k), we can safely assume
that w ≥ n−k

2 .

4.2 Step 2

Step 2 of CFNew is described in Algorithm CF(2)
New (Algorithm 4). After computing in Step 1

the matrix A(1)
i and the parameter wi, where i ∈ {1, 2}, our canonical form function CFNew

proceeds to compute (A(2)
i , hi) := CF(2)

New(A(1)
i , wi).

Algorithm 4: CF(2)
New

Input: A(1) ∈ Fk×(n−k)
q , parameter w ∈ [n − k].

Output: A(2) ∈ Fk×(n−k)
q , parameter h ∈ [k − 1].

1 A(2) := A(1)

2 I := ∅
3 for i = 2, . . . , k do
4 Parse the i-th row of A(2) as (ai,1, . . . , ai,n−k).
5 si :=

∑w
j=1 ai,j

6 if si ̸= 0 then
7 Divide all entries in the i-th row of A(2) by si.
8 else
9 I := I ∪ {i}

10 h := k − |I| − 1 ▷ Number of rows of A(1), for which si ̸= 0.

11 Move all rows of A(2) indexed by I to the bottom of the matrix.
12 return (A(2), h)



16 An Improved Algorithm for Code Equivalence

Relating A(1)
1 and A(1)

2 . Let us introduce some notation: Let s2, . . . , sk denote the values
computed in Line 5 of Algorithm 4, when running the algorithm on input (A(1)

1 , w1). Anal-
ogously, let s̃2, . . . , s̃k denote these values, when running the algorithm on input (A(1)

2 , w2).
Let us write the monomial Q(1)

r from Equation (6) as Q(1)
r = P(1)

r · D(1)
r for some permuta-

tion P(1)
r and a diagonal matrix D(1)

r . Let d1, . . . , dk−1 denote the diagonal entries of D(1)
r .

For i ∈ {2, . . . , k}, let ai := (ai,1, . . . , ai,n−k) denote the i-th row A(1)
1 . Let ãi denote the

i-th row of A(1)
2 .

From Equation (3) it follows that

ãP(1)
r [i] = di−1 · ai ·

[ w︷︸︸︷ n−k−w︷︸︸︷
P(1)

c

Q(1)
c

]
.

Thus,

s̃P(1)
r [i] =

w∑
j=1

di−1 · a
i,(P(1)

c )T [j] = di−1 ·
w∑

j=1
ai,j = di−1 · si. (4)

Hence, if si = 0, then CF(2)
New moves both the i-th row of A(1)

1 and the P(1)
r [i]-th row of

A(1)
2 to the bottom of A(2)

1 and A(2)
2 , respectively. On the other hand, if si ≠ 0, then the

i-th row ai of A(1)
1 gets replaced by 1

si
· ai, whereas the P(1)

r [i]-th row of A(1)
2 gets replaced

by

1
s̃P(1)

r [i]
· ãP(1)

r [i] = 1
si

· ai ·

[ w︷︸︸︷ n−k−w︷︸︸︷
P(1)

c

Q(1)
c

]
.

This shows that for all i with si ̸= 0 in the resulting matrices A(2)
1 and A(2)

2 , the first w
entries of the rows obtained from ai and ãP(1)

r [i] are identical up to permutation.
Let us define h := h1. Since h1 is the number of rows of A(1), for which si ̸= 0 (see

Line 5 of Algorithm 4), we have by Equation (4) that h = h1 = h2. Let us write A(2)
2 as

A(2)
1 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1
{

1, 1, . . . , 1 0, 0, . . . , 0

h

{
A(2)

1,1 A(2)
1,2

k−h−1
{

A(2)
1,3 A(2)

1,4

, (5)

for some matrices A(2)
1,1, . . . , A(2)

1,4. By the discussion above, we have

A(2)
2 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1
{

1, 1, . . . , 1 0, 0, . . . , 0

h

{
P(2)

r · A(2)
1,1 · P(2)

c P(2)
r · A(2)

1,2 · Q(2)
c

k−h−1
{

Q(2)
r · A(2)

1,3 · P(2)
c Q(2)

r · A(2)
1,4 · Q(2)

c

, (6)

for some monomials Q(2)
r , Q(2)

c and permutations P(2)
r , P(2)

c . In particular, the upper left
((h + 1) × w)-blocks of A(2)

1 and A(2)
2 are identical up to row and column permutation.
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The Value of h. As noted in Line 5 of Algorithm 4, the parameter h = h1 = h2 is
equal to the number of rows of A(1), for which si ̸= 0. It is easy to see that for uniformly
random inputs A1 to CF(1)

New, the second to k-th rows of the outputs A(1)
1 are still uniformly

random. Hence, the si’s are uniformly random over Fq, and we have E[h] = (1 − 1
q )(k − 1).

Arguing exactly as for the parameter w in the previous section, it follows that for all q > 2
(and large enough k), we can safely assume that h ≥ k−1

2 .

4.3 Step 3

As shown in the previous section, the upper left ((h + 1) × w)-blocks of the matrices A(2)
1

and A(2)
2 obtained from CF(2)

New are identical up to row and column permutation. This
observation lets us now easily transform A(2)

1 and A(2)
2 via a simple sorting procedure into

matrices A(3)
1 and A(3)

2 , in which the upper left ((h + 1) × w)-blocks are identical. More
precisely, we can easily compute matrices of the forms

A(3)
1 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1
{

1, 1, . . . , 1 0, 0, . . . , 0

h

{
A(3)

1,1 A(3)
1,2

k−h−1
{

A(3)
1,3 A(3)

1,4

, (7)

A(3)
2 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1
{

1, 1, . . . , 1 0, 0, . . . , 0

h

{
A(3)

1,1 A(3)
1,2 · Q(3)

c

k−h−1
{

Q(3)
r · A(3)

1,3 Q(3)
r · A(3)

1,4 · Q(3)
c

, (8)

Our sorting procedure is described in Algorithm CF(3)
New (Algorithm 5). From Equation (6)

it immediately follows that for A(3)
i := CF(3)

New(A(2)
i , wi, hi), i ∈ {1, 2} the outputs A(3)

i

indeed have the desired shape as in Equations (7) and (8) – provided, of course, that CF(3)
New

does not return ⊥ in Line 9 . Fortunately, as we show below, for all fields of size of q ≥ 7,
the probability of CF(3)

New not returning ⊥ is close to 1.

Success Probability. The probability that CF(3)
New returns ⊥ on input A(2)

i is the
probability that the matrix A(2)

1,1 from Equation (5) contains two rows or two columns,
that are identical up to permutation. To compute this probability we introduce two novel
technical lemmas.

Lemma 4.1. Let B ∈ Fh×w
q be a uniformly random matrix. Let P denote the probability

that two rows of B are identical up to permutation. If q ≥ 7, then P = O(h2 · w−3).

Proof. The larger q, the smaller P . Thus, to prove our upper bound of P = O(h2 · w−3)
for all q ≥ 7, it suffices to prove it for the special case of q = 7.

Let v = (v0, v1, . . . , v6) ∈ N7, such that
∑7

i=0 vi = w. For i1, i2 ∈ [h] with i1 ≠
i2, let Pi1,i2,v denote the probability that the i1-th row, the i2-th row, and the vec-
tor (0v0 , 1v1 , . . . , 6v6) ∈ Fw

7 are up to identical permutation. Then the probability that the
i1-th and i2-th row are identical up to permutation is given by

Pi1,i2 :=
∑

v0+v1+...+v6=w

Pi1,i2,v =
∑

v0+v1+...+v6=w

(
1

7w
·
(

w

v0, v1, . . . , v6

))2
.
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Algorithm 5: CF(3)
New

Input: A(2) ∈ Fk×(n−k)
q , parameters w ∈ [n − k], h ∈ [k − 1].

Output: A(3) ∈ Fk×(n−k)
q , or error symbol ⊥.

1 A(3) := A(2)

2 for i = 2, . . . , h + 1 do
3 Parse the i-th row of A(3) as (ai,1, . . . , ai,n−k).
4 Let Ri denote the multiset (ai,1, . . . , ai,w).
5 for j = 1, . . . , w do
6 Parse the j-th column of A(3) as (a1,j , . . . , ak,j)T .
7 Let Cj denote the multiset (a2,j , . . . , ah+1,j).
8 if the Ri’s or the Cj ’s are not pairwise distinct then
9 return ⊥

10 Sort the 2nd to (h + 1)-th rows of A(3) according to an lexicographic ordering of
the multisets R2, . . . , Rh+1.

11 Sort the 1st to w-th columns of A(3) according to an lexicographic ordering of the
multisets C1, . . . , Cw.

12 return A(3)

As shown in [RS09, Theorem 4], it holds that

∑
v0+v1+...+v6=w

(
w

v0, v1, . . . , v6

)2
∼ 72w+7/2(4πw)(1−7)/2.

Thus,
Pi1,i2 ∼ 77/2 · (4πw)−3 = O(w−3),

Taking a union bound over the Θ(h2) pairs (i1, i2), the lemma follows.

We like to point out that in [CPS23, Theorem 3], CPS already showed that for q = Ω(n),
a uniformly random matrix from Fk×(n−k)

q has a constant probability Ω(1) of having no
two rows identical up to permutation. Our novel Lemma 4.1 significantly improves upon
this CPS result.

Applying Lemma 4.1 to the transpose of a uniformly random matrix B ∈ Fh×w
q

immediately yields the following lemma.

Lemma 4.2. Let B ∈ Fh×w
q be a uniformly random matrix. Let P denote the probability

that two columns of B are identical up to permutation. If q ≥ 7, then P = O(w2 · h−3).

Carefully inspecting Algorithms 3 and 4, it easily follows that for a uniformly random
input A1 ∈ Fk×(n−k)

q to CFNew, the matrix A(2)
1,1 ∈ Fh×w

q from Equation (5), obtained after
running CF(1)

New and CF(2)
New, is still uniformly random. Hence, Lemmas 4.1 and 4.2 show

that for q ≥ 7, the probability that CF(3)
New returns ⊥ is O(h2 · w−3) + O(w2 · h−3). By

construction, we can upper bound w and h by w ≤ n − k and h ≤ k − 1. As discussed in
the previous two sections, with overwhelming probabilities 1 − e−Ω(n−k) and 1 − e−Ω(k),
we can lower bound w and h by w ≥ n−k

2 and h ≥ k−1
2 . Thus, for the typical parameter

setting of constant rate, we have w = Θ(n) and h = Θ(n). Hence, the probability that
CF(3)

New returns ⊥ is O(n2 · n−3) = O(n−1) – showing that with probability 1 − O(n−1) the
output of CF(3)

New indeed has the desired shape.
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4.4 Step 4

By Equations (7) and (8), the upper left ((h + 1) × w)-blocks of the matrices A(3)
1 and A(3)

2
obtained from CF(3)

New are identical up to row and column permutation. Additionally, the
upper right ((h + 1) × (n − k − w))-blocks are identical up to a monomial transformation
from the right. The lower left ((k − h − 1) × w)-blocks are identical up to a monomial
transformation from the left. Dealing with monomials that act only on one side of the
matrix is much easier, than dealing with monomials that act on both sides (as we had to
in the previous three sections). Indeed, if we now appropriately divide the (w + 1)-th to
(n − k)-th columns, and the (h + 2)-th to k-th rows of our matrices, we can easily turn
them into matrices that are identical up to row and column permutation. After that,
we simply invoke our algorithm from Step 3 once more to sort our matrices. Thereby,
we finally obtain identical matrices A(4)

2 = A(1)
1 . Our approach is formally described in

Algorithm CF(4)
New (Algorithm 6). It is easy to see that its output has the desired shape,

i.e., for A(4)
i := CF(4)

New(A(3)
i , wi, hi) we have A(4)

2 = A(1)
1 – provided that the algorithm

does not return ⊥.

Success Probability. The probability that Algorithm 6 aborts in Line 17 is exponentially
small. (The algorithm aborts here only if one of the uniformly random matrices A(3)

1,2, A(3)
1,3

from Equation (7) contains an all-zero row or column.) Furthermore, as detailed in the
previoius section, the probability that Algorithm 6 aborts in Line 18 is upper bounded by
O(n−1). Hence, with probability 1 − O(n−1) the output of CF(4)

New indeed has the desired
shape.

Algorithm 6: CF(4)
New

Input: A(3) ∈ Fk×(n−k)
q , parameters w ∈ [n − k], h ∈ [k − 1].

Output: A(4) ∈ Fk×(n−k)
q , or error symbol ⊥.

1 A(4) := A(3)

2 J := {w + 1, w + 2, . . . , n − k}
3 I := {h + 2, h + 3, . . . , k}
4 for i = 2, . . . , h + 1 do
5 Parse the i-th row of A(4) as (ai,1, . . . , ai,n−k).
6 for j ∈ J do
7 if ai,j ̸= 0 then
8 Divide the j-th column of A(4) by ai,j .
9 Remove j from J .

10 for j = 1, . . . , w do
11 Parse the j-th column of A(4) as (a1,j , . . . , ak,j)T .
12 for i ∈ I do
13 if ai,j ̸= 0 then
14 Divide the i-th row of A(4) by ai,j .
15 Remove i from I.
16 if J ≠ ∅ or I ≠ ∅ then
17 return ⊥
18 A(3) := CF(3)

New(A(3), n − k, k)
19 return A(3)
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4.5 Putting Everything Together
We are now almost ready to fully describe our novel canonical form function. The only
thing left to do, is describing how to pick the inputs i1 and i2, in Step 1. (Recall that
in Step 1, we want compute (A(1)

1 , w1) := CF(1)
New(A1, i1) and (A(1)

2 , w2) := CF(1)
New(A2, i2),

where i2 = Pr[i1], and Pr is the permutation from Equation (2).) To this end, we re-use
an idea by CPS: On input G1 = [Ik | A1], we iterate over all values i1 = 1, 2, . . . , k. For
each i1, we run Steps 1 to 4, such that in the end we obtain a list L1 of (up to) k matrices
from the equivalence class [G1]LRL∼

. We sort L1 lexicographically and then output the first
entry. Analogously, on input G2 = [Ik | A2], we iterate over all values i2 = 1, 2, . . . , k
to obtain a list of matrices L2. For any i1, the i1-th entry in L1 is then identical to the
Pr[i1]-th entry in L2. Hence, by lexicographically sorting L1 and L2, we output the same
representative from the equivalence class [G1]LRL∼

= [G2]LRL∼
.

The full description of CFNew is given in Algorithm 7. We remark that Definition 3.2
technically requires a canonical form function not only to output both a canonoical
representative G∗ = [Ik | A∗] ∈ [G]LRL∼

, but also to output monomials Qr, Qc, satisfying
A∗ = Qr · A · Qc. For ease of notation, we omit these monomials in the description of
Algorithm 7. In practice, the monomials can easily be computed. To this end, one simply
has to keep track of the monomial transformations made by CF(1)

New, . . . , CF(4)
New. (See also

our proof-of-concept implementation, available in GitHub.)

Algorithm 7: CFNew

Input: G = [Ik | A] ∈ Fk×n
q

Output: Canonical representative G∗ = [Ik | A∗] of [G]LRL∼
, or error symbol ⊥.

1 Initialize empty list L.
2 for i = 1, . . . , k do
3 (A(1), w) := CF(1)

New(A)
4 (A(2), h) := CF(2)

New(A(1), w)
5 A(3) := CF(3)

New(A(2), w, h)
6 if A(3) ̸= ⊥ then
7 A(4) := CF(4)

New(A(3), w, h)
8 if A(4) ̸= ⊥ then
9 Add [Ik | A(4)] to L.

10 if L is not empty then
11 return the lexicographically first entry in L.
12 else
13 return ⊥

Summarizing the above four sections, we finally obtain the following theorem:

Theorem 4.3 (Correctness CFNew). For all q ≥ 7 and constant rate k
n , the canonical form

function CFNew has success probability

γCFNew (n, k, q) = Pr
A←Fk×(n−k)

q

[
CFNew

(
[Ik | A]

)
̸= ⊥

]
≥ 1 − O(n−1).

Combining Theorems 3.6 and 4.3, our main result follows:

Theorem 4.4 (Main Result). For all q ≥ 7 and constant rate k
n , there is an algorithm that

solves $-LEP with parameters (n, k, q) in time Θ̃
(

2 1
2 H( k

n )n
)

, and with constant success
probability.
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A Appendix: Additional Proofs
A.1 Lemma 2.5
Lemma 2.5. Let X1, . . . , Xn ∈ {0, 1} denote (possibly dependent) random variables. Let
p ∈ [0, 1], such that Pr[Xi = 1] > p for every i ∈ [n]. Then for X :=

∑n
i=1 Xi it holds that

Pr
[
X >

p

2 · n
]

>
p

2 .

Proof. Let us define Y := n − X. Using E[Y ] = n − E[X] < (1 − p) · n, and applying
Markov’s inequality to the non-negative random variable Y , we obtain

Pr
[
Y ≥

(
1 − p

2

)
· n
]

≤ Pr
[
Y ≥

1 − p
2

1 − p
· E[Y ]

]
≤ 1 − p

1 − p
2

= 1 − p

2 − p
< 1 − p

2 ,

and conversely
Pr
[
X >

p

2 · n
]

= Pr
[
Y <

(
1 − p

2

)
· n
]

>
p

2 ,

as required.

A.2 Lemma 2.6
Lemma 2.6. Let q be a prime power and let k ∈ N. If we sample a matrix A uniformly
at random from Fk×k

q , then A is invertible with probability greater than 1
4 .

Proof. A uniformly random matrix is invertible with probability

k−1∏
i=0

(1 − qi−k) >

∞∏
i=1

(1 − q−i) ≥
∞∏

i=1
(1 − 2−i).

Numerically evaluating the last of the above products shows that the probability is lower
bounded by 0.288 > 1

4 .

A.3 Lemma 3.4
Lemma 3.4 (Adapted from Proposition 11 in [CPS23]). Let G1 ∼ G2 be an LEP instance,
and let CF be a canonical form function. Let J1, J2 be CF-colliding information sets for
(G1, G2). On input G1, G2, J1, J2, algorithm RecoverMonCF(·) (Algorithm 1) computes a
solution U ∈ GL(Fk

q ), Q ∈ Mn,q to the LEP instance defined by G1 and G2 in polynomial
time.

Proof. Algorithm 1 starts by computing G′i := RREF(Gi · PJi) ∈ Fk×(n−k)
q . Since the Ji’s

are information sets, we have G′i = [Ik | Ai], where

Ai = (GJi
i )−1 · GJi

i ∈ Fk×(n−k)
q . (9)

In particular, since the Gi’s are in systematic form, they are valid inputs for CF. (Recall
that CF is only defined for inputs in systematic form, see Definition 3.2.) Since the Ji’s

https://doi.org/10.1007/PL00003816
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are CF-colliding, we have CF(G′i) ̸= ⊥. Hence, in Line 2, Algorithm 1 indeed obtains a
tuple (G∗i , Qr,i, Qc,i). By Definition 3.2, we have

G∗i = [Ik | A∗i ], for A∗i = Qr,i · Ai · Qc,i,

Moreover, we have by Definition 3.2 that A∗1 = A∗2, and thus

A2 = Q−1
r,2 · Qr,1 · A1 · Qc,1 · Q−1

c,2. (10)

Let U ∈ GL(Fk
q ) and Q ∈ Mn,q denote the matrices computed by Algorithm 1. (We have

U ∈ GL(Fk
q ), since the Ji’s are information sets. Furthermore, we have Q ∈ Mn,q, since

the PJi ∈ Σn ⊆ Mn,q’s are monomials.) A tedious but straight-forward computation
shows that

U · G1 · Q = GJ2
2 · [Ik | Q−1

r,2 · Qr,1 · (GJ1
1 )−1 · GJ1

1 · Qc,1 · Q−1
c,2] · (PJ2)−1.

Using Equations (9) and (10), one can simplify the above equation as

U · G1 · Q = G2,

which shows that U and Q form a solution to the LEP instance defined by G1 and G2.
Since Algorithm 1 clearly runs in polynomial time, this proves the lemma.

A.4 Lemma 3.5
Lemma 3.5. Let G1 ∼ G2 ∈ Fk×n

q be linearly equivalent matrices, where

G2 = U · G1 · P · D,

for some U ∈ GL(Fk
q ), P ∈ Σn and D ∈ Dn,q. Let J1 be an information set of G1. Then

J2 := P[J1] is an information set of G2, and it holds that

RREF(G1 · PJ1) LRL∼ RREF(G2 · PJ2).

Proof. By definition of J2, we have

G1 · P · Q · PJ2 =
[
GJ1 · Qr | GJ1 · Qc

]
for some Qr ∈ Mk,q and Qc ∈ Mn−k,q. Since RREF is invariant under invertible
transformations from the left, this yields that

RREF(G2 · PJ2) = RREF(U · G1 · P · D · PJ2)
= RREF(G1 · P · D · PJ2)

= RREF
([

GJ1
1 · Qr | GJ1 · Qc

])
.

Since J1 is an information set of G1, the matrix GJ1
1 · Qr has full rank. Hence,

RREF(G2 · PJ2) =
[
Ik | Q−1

r · (GJ1
1 )−1 · GJ1 · Qc

]
.

This shows that J2 is an information set of G2 (since this shows that GJ2
2 is invertible).

Furthermore, this shows that

RREF(G2 · PJ2) LRL∼
[
Ik | (GJ1

1 )−1 · GJ1
]

= RREF(G1 · PJ1),

and thus proves the lemma.
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