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Abstract. The recent VOLE-based interactive zero-knowledge (VOLE-
ZK) protocols along with non-interactive zero-knowledge (NIZK) proofs
based on MPC-in-the-Head (MPCitH) and VOLE-in-the-Head (VOLEitH)
extensively utilize the commitment schemes, which adopt a circular cor-
relation robust (CCR) hash function as the core primitive. Neverthe-
less, the state-of-the-art CCR hash construction by Guo et al. (S&P’20),
building from random permutations, can only provide 128-bit security,
when it is instantiated from AES. This brings about a gap between AES-
based CCR hash function and high security (beyond 128-bit security).

In this paper, we fill this gap by constructing a new CCR hash func-
tion from AES, supporting three security levels (i.e., 128, 192 and 256).
Using the AES-based CCR hash function, we present an all-but-one vec-
tor commitment (AVC) scheme, which constitutes a computationally in-
tensive part of the NIZK proofs fromMPCitH and VOLEitH, where these
NIZK proofs can in turn be transformed into the promising post-quantum
signature candidates. Furthermore, we obtain an efficient VOLE-ZK pro-
tocol with security levels higher than 128 from the CCR hash function.
Our benchmark results show that the AES-based CCR hash function has
a comparable performance with CCR hash functions based on Rijndael
with larger block sizes, which is not standardized and has a limited ap-
plication range. In the AVC context, the expensive commitment compo-
nent instantiated with our AES-based CCR hash function improves the
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running time by a factor of 7 ∼ 30×, compared to the SHA3-based in-
stantiation used in the recent post-quantum signature algorithm FAEST.

Keywords: AES-based Circular Correlation Robust Hash Functions ·
All-but-one Vector Commitment · Interactive Zero Knowledge Protocols
· Non-Interactive Zero Knowledge Proofs · High Security Levels

1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier that a state-
ment is true, in a way that the verifier learns nothing beyond the validity of the
statement. ZK proofs have a wide range of applications in, e.g., cryptography,
blockchain and machine learning. It is a central objective to improve the effi-
ciency of ZK proofs while achieving the specified security level (e.g., 128, 192, or
256). ZK proofs often adopt the classical “commit-then-prove” paradigm, where
a commitment on the witness is first generated, and then the statement is proved
in zero knowledge.

A powerful and efficient technique to design non-interactive zero-knowledge
(NIZK) proofs is the MPC-in-the-Head (MPCitH) framework [43]. MPCitH en-
joys the high efficiency for small to medium-sized circuits, and has been used to
design a series of post-quantum signature schemes based on a variety of one-way
functions (OWFs) such as AES [26,11,27,44], MPC-friendly OWFs [45,31,47],
syndrome decoding [33,3,22] and the multivariate quadratic problem [15,32],
including the NIST post-quantum signature candidates [67,2,46,34]. MPCitH
adopts an all-but-one vector commitment (AVC) scheme as a crucial building
block, where all components of a vector except for one would be opened. Recently,
a flurry of interactive ZK protocols [60,30,12,63,35,61,29,62,8,66,28,20,49,65] use
subfield vector oblivious linear evaluation (sVOLE) correlations as additively ho-
momorphic commitments (AHCs). Such ZK protocols are called VOLE-ZK, and
enjoy the efficiency features of blazing fast end-to-end runtime and scalability to
very large circuits. Compared to MPCitH with public verifiability, VOLE-ZK has
the shorter proof size and faster running time, but is limited to the designated-
verifier setting. Very recently, Baum et al. [7] proposed a new NIZK framework,
called VOLE-in-the-head (VOLEitH), which bears resemblance to MPCitH in
the spirit of philosophy and makes VOLE-ZK be publicly verifiable. They use
VOLEitH to construct a post-quantum signature scheme based solely on AES,
referred to as FAEST [6], which has the shorter signature size and comparable
signing/verification time, compared to MPCitH. Note that VOLEitH also builds
upon the AVC scheme.

Both AVC and AHC schemes described as above build upon the classical
GGM tree [36] or the recent optimized GGM tree (called Half-Tree) [41]. 9

9 For the applications of MPCitH, VOLEitH and VOLE-ZK, compared to GGM
tree [36], Half-Tree [41] can reduce the number of AES calls by 25% ∼ 50%. For
the VOLE-ZK application, Half-Tree is also able to reduce the communication of
generating AHCs by a half.
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Compared to the GGM construction with a pseudorandom generator, the per-
formance of GGM tree can benefit from the circular correlation robust (CCR)
hash function, according to the state-of-the-art implementation [39]. Moreover,
Half-Tree adopts the CCR hash function as a core primitive. Informally, a CCR
hash function H guarantees that for a uniform key ∆, it is infeasible to distin-
guish H(xi ⊕ ∆) ⊕ bi∆ for a set of pairs {(xi, bi)} from random strings, where
(xi, 0) and (xi, 1) cannot be queried simultaneously. The CCR hash function
is able to be constructed straightforwardly from cryptographic hash functions
(e.g., SHA256 and SHA3) in the random oracle model [6,2]. However, given the
support of hardware instructions, prior works [13,39] have demonstrated that
AES is significantly faster than SHA256 and SHA3. In particular, the bench-
mark result [39] shows that AES is about 50× faster than SHA256 and 120×
faster than SHA3. Therefore, using AES to construct CCR hash functions is a
better choice.

The CCR hash functions [39,38,24,56,40], which are constructed with AES in
the random-permutation model, have been applied in the efficient AVC and AHC
schemes such as [64,63,60,18,56,62,41,66,7,21]. However, due to the fact that AES
has a fixed block length of 128 bits for three security levels (i.e., 128, 192 and 256
bits), the existing AES-based CCR constructions [39,38,24,56,40] have a severe
limitation, i.e., they cannot provide a security level higher than 128 bits where
the key ∆ has a length of at most 128 bits. Thus, there exists a gap between the
standardized AES algorithm and construction of CCR hash functions for both
192-bit and 256-bit security levels.

1.1 Our Contributions

In this paper, we fill the above gap by presenting an AES-based construction of
the CCR hash function with three security levels (i.e., 128, 192 and 256 bits).
By observing that the MPCitH and VOLEitH frameworks require that the AVC
scheme satisfies the so-called extractable binding property, we formulate a new
extractability for CCR hash functions, which may be of independent interest.
Then, we rigorously prove both CCR and extractable properties of the pro-
posed construction in the ideal-cipher model. Following the work [39], the CCR
hash function with both 192-bit and 256-bit security levels can be constructed
from the Rijndael algorithm supporting larger block lengths [25], which is not
standardized and less studied than AES. In comparison, our CCR construction
adopts the standard AES algorithm with better time-tested security, and enjoys
the hardware acceleration in the use cases where hardware instructions are only
available for the “whole” AES. When the hardware instructions of AES round
functions and Rijndael permutations are available to accelerate the Rijndael al-
gorithm, our construction has a comparable performance as indicated by the
experiment in Section 7.1.

We apply the AES-based CCR hash function with extractability to design
an efficient AVC scheme with three security levels. The AVC scheme integrates
the Half-Tree optimization, and can be used to design NIZK proofs and post-
quantum signature schemes in the MPCitH and VOLEitH frameworks. In the
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Fig. 1: The AES-based CCR hash function construction diagram.

AVC scheme of the VOLEitH-based signature scheme FAEST [6], each leaf node
in the GGM tree is hashed with SHA3. As a by-product, we replace SHA3 with
the AES-based CCR hash function, and achieve an improvement of 7 ∼ 30×
in terms of running time as indicated by our experiment in Section 7.2. The
recent work [21] to improve the AVC scheme based on Half-Tree uses Rijndael to
achieve the 192-bit and 256-bit security levels, and gives a specified construction
in the random permutation model. In comparison, our AVC scheme enjoys the
standard AES algorithm to achieve security levels beyond 128 bits as well as
a modular and generic construction using extractable CCR hash functions. In
addition, the techniques underlying our AVC scheme can also be used to improve
the performance of another recent AVC scheme [5].

We also apply the AES-based CCR hash function to construct an sVOLE
protocol in the PCG framework [17,19], by combining it with the learning parity
with noise (LPN) problem. The sVOLE protocol enjoys the complete picture of
three security levels and the high efficiency by integrating the Half-Tree opti-
mization. When using sVOLE correlations as AHCs, we can directly obtain an
efficient VOLE-ZK protocol following prior works [60,30,12,63,35,29,62,66,20].

2 Technical Overview

The main technical difficulty is that AES only has 128-bit block size regardless
of the security parameter. Therefore, we have to design hash functions working
on an input length longer than the block size of the underlying block cipher.
We solve the problem by constructing the hash output from multiple blocks, as
shown in Fig. 1. For a block cipher with n-bit block size and λ-bit key size, the
left n-bit input xL of the CCR hash function serves as the input of the block
cipher (after applying an orthomorphism) while the rest (λ− n)-bit input xR of
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the CCR hash function serves as part of the block cipher secret key. Since our
focus is the AES algorithm, which has a fixed block size 128 bits and variable
key lengths of 128, 192 and 256 bits, we turn our attention to the n ≤ λ ≤ 2n
parameter range. For λ = n, one block cipher invocation is sufficient and the
construction is identical to the CCR hash in [39]. For n < λ ≤ 2n, we need two
invocations of the block cipher keyed with the input value xR concatenated with
distinct public constants.

For input length λ ∈ N, the circular correlation robust (CCR) property for

a hash function H : {0, 1}λ → {0, 1}λ states that for a uniformly random key

Γ ∈ {0, 1}λ, the oracle O(x, b) = H(x ⊕ Γ ) ⊕ b · Γ should be indistinguishable

from an ideal random oracle, where x ∈ {0, 1}λ, b ∈ {0, 1}.1 By applying the
domain separation technique as mentioned above, the key Γ is distributed into
both the input block and the secret key of the block cipher. Intuitively, by
working in the ideal cipher model, information about the key Γ can only be
leaked when an ideal cipher query made by the adversary collides with some
internal ideal cipher invocation made by the CCR oracle, or two internal ideal
cipher invocations made by two distinct CCR oracle calls collides. Since the key
Γ is distributed to both the secret key and the input block of the ideal cipher,
a collision implies recovering the key Γ , which happens with probability 2−λ.
By applying a union bound on all possible collision events, we conclude that
the construction in Fig. 1 is indeed CCR-secure. The above intuition is formally
argued using the H-coefficient technique [51] in Section 4.2.

Motivated by the extractable binding property of AVC schemes [7], we for-
mulate the extractable property of CCR hash functions. Intuitively, the property
states that a hash function H is extractable, if given two purported hash out-
puts with correlated inputs y = Com(x) = H(x⊕ C2)∥H(x⊕ C3) (C2 and C3 are
two public constants) and the ideal cipher transcript, there exists an efficient
extractor that can extract the input x. Moreover, when the extraction fails, any
efficient adversary cannot provide a valid x such that the correlation holds.

Intuitively, since in the ideal cipher model the adversary has no way of ac-
quiring the ideal cipher output other than querying the ideal cipher oracle, all
information about a hash function call made by the adversary is recorded in
the ideal cipher transcript, from which the extractor can easily acquire the pos-
sible inputs. Nevertheless, extraction would fail if adversary finds collision in
hash function output or succeeds in inverting a hash image that has not been
queried before. We bound both probabilities by using the technique in [48]. In
particular, by granting the adversary “free” queries, we manage to separate the
ideal cipher queries into “piles” such that the Com invocation on a set of input
values can only incur queries within this pile. Therefore, further analysis can be
conducted on the pile-level. Moreover, to capture the fact that the adversary
can learn almost all information about the permutation related to a single key
when it acquires too many input-output pairs, we further grant the adversary
with a “super query” such that when half of the inputs related to a single key

1 A technical detail is that the distinguisher should not query the same x with both 0
and 1 to prevent a trivial attack.
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have been queried, the remaining half and the corresponding output values are
given to the adversary as well. Crucially, the additional input-output pairs do
not count towards the total number of queries that the adversary makes to the
ideal cipher. The intuition is that for a pile returned by a normal query, much
information about the related key is unknown to the adversary and the pile itself
has sufficient entropy such that collision and inversion is unlikely. On the other
hand, a pile returned by a super query has not much entropy to the adversary,
but to get a super query the adversary must spend many normal queries and the
total number of super queries is limited. By formalizing this intuition, we upper
bound the probability of collision to be O(qE/2

λ+ qE
2/22λ) and the probability

of pre-image inversion to be O(qE/2
2λ), where qE is the number of ideal cipher

queries of the adversary.

Using the derived bounds, we are able to capture the the extraction failure
probability of our CCR hash construction and derive the precise security bounds
of the proposed CCR hash function with respect to the new extractable CCR
definition. We note that, since our construction reduces to the extended MMO
construction when the block size equals to the security parameter, our proof also
implies the extractable security of the hash function in [39] under the random
permutation model.

We demonstrate two applications for the AES-based extractable CCR hash
function. The first one is an AVC scheme that supports security levels of 128,
192 and 256 bits from AES. In particular, we instantiate the correlated GGM
tree construction with the CCR hash function while using the CCR-based com-
mitment scheme Com in the leaf nodes. For AVC’s hiding property, we show that
the adversary’s view in the hiding game can be simulated by calling the oracle
in the CCR game. For the binding property, the definition of CCR’s extractabil-
ity allows the extractor of the AVC’s extractable binding game to invoke the
extractor of the CCR’s extractability game in the ideal cipher model. Moreover,
the extraction failure bound of the AVC’s extractable binding game can also be
derived straightforwardly from a union bound on the extraction failure events of
each leaf node commitment. Therefore, the extractable binding property of the
AVC scheme can be reduced to the extractability property of the CCR hash func-
tion. In the second application, we instantiate the sVOLE protocol in [41] with
the AES-based CCR hash function. Since the sVOLE protocol in [41] builds on
CCR hash functions in a black-box manner, we automatically get an AES-based
sVOLE protocol with three security levels.

3 Preliminaries

We list the notations of this paper in Section 3.1. In Section 3.2 we recall the
definition of circular correlation robust hash functions and in Section 3.3 we
recall the H-coefficient technique which underlies our proofs.
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3.1 Notation

We use λ to denote the computational security parameter. We use log to denote
logarithms in base 2. We define [a, b) = {a, . . . , b−1} and write [a, b] = {a, . . . , b}.
We write x← S to denote sampling x uniformly at random from a finite set S.
We use {xi}i∈S to denote the set that consists of all elements with indices in set
S. When the context is clear, we abuse the notation and use {xi} to denote such
a set.

We use bold lower-case letters like a for column vectors and bold uppercase
letters like A for matrices. We let ai denote the i-th component of a (with a0
the first entry) and a[i, j] denote the sub-vector of a with indices [i, j].

Let E denote the encryption algorithm of a block cipher with a block size of
n bits. Since we only consider the AES algorithm in this work, we assume that
the key size always equals the security parameter λ. Let [x]n ∈ {0, 1}n be the
binary representation of an integer x ∈ Z2n . In our construction we also utilize
an orthomorphism σ : {0, 1}n → {0, 1}n, which means that

– σ is linear,
– σ is a permutation,
– σ ⊕ id is a permutation.

We can instantiate σ as σ(xL∥xR) = xR ⊕ xL∥xL where xL, xR are the left and
right halves of the input x.

3.2 Security Definition

We recall the definition of circular correlation robustness of [39] (in the ideal
cipher model) in Definition 1.

Definition 1. Let HE : {0, 1}λ → {0, 1}λ be a function defined upon an ideal

cipher E. For Γ ∈ {0, 1}λ, define Occr
Γ (w, b) = HE(w⊕Γ )⊕b ·Γ . We don’t allow

the distinguisher to query the same w with both b = 0 and b = 1 to avoid the
trivial attack. For a distinguisher D, we define the following advantage

AdvccrH :=

∣∣∣∣ Pr
Γ←{0,1}λ

[DO
ccr
Γ (·),E(·,·),E−1(·,·)(1λ) = 1]− Pr

f←Fλ+1,λ

[Df(·),E(·,·),E−1(·,·)(1λ) = 1]

∣∣∣∣ ,

where Fλ+1,λ denotes the set of all functions mapping (λ+1)-bit inputs to λ-bit
outputs. H is (qE , qC , ϵ)-circular correlation robust if for all D making at most qE
queries to E and E−1 and at most qC queries to the oracle we have AdvccrH ≤ ϵ.

3.3 The H-coefficient Technique

We will employ Patarin’s H-coefficient technique [51] to prove the circular corre-
lation robustness and pseudorandomness of our new building blocks. We provide
a brief overview of its main ingredients here (we refer to [51,23] for complete elab-
orations). Our presentation borrows heavily from that of [23]. Fix a distinguisher
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D that makes a bounded number of queries to its oracles. As in the security def-
inition presented above, D’s aim is to distinguish between two worlds: a “real
world” and an “ideal world”. Assume wlog that D is deterministic. The execu-
tion of D defines a transcript that includes the sequence of queries and answers
received from its oracles; D’s output is a deterministic function of its transcript.
Thus, if Tre, Tid denote the probability distributions on transcripts induced by the
real and ideal worlds, respectively, then D’s distinguishing advantage is upper
bounded by the statistical distance

∆(Tre, Tid) :=
1

2

∑
Q

∣∣Pr[Tre = Q
]
− Pr

[
Tid = Q

]∣∣, (1)

where the sum is taken over all possible transcripts Q.
Let T denote the set of all transcripts such that Pr

[
Tid = Q

]
> 0 for all

Q ∈ T . We look for a partition of T into two sets T1 and T2 of “good” and
“bad” transcripts, respectively, along with a constant ϵ1 ∈ [0, 1) such that

Q ∈ T1 =⇒ Pr
[
Tre = Q

]
/Pr

[
Tid = Q

]
≥ 1− ϵ1. (2)

It is then possible to show (see [23] for details) that

∆(Tre, Tid) ≤ ϵ1 + Pr
[
Tid ∈ T2

]
(3)

is an upper bound on the distinguisher’s advantage. One should think of ϵ1 and
Pr

[
Tid ∈ T2

]
as “small”, so “good” transcripts have nearly the same probability

of appearing in the real world and the ideal world, whereas “bad” transcripts
have low probability of occurring in the ideal world.

An appeal of the H-coefficient technique is that it handles arbitrary adap-
tive distinguishers even though the technical calculations involve a posteriori
probabilities computed with respect to finalized transcripts.

4 AES-based Extractable CCR Hash Function

In this section, we first present a block-cipher-based CCR hash function HCCR

with a bit security level higher than the block size in Section 4.1. We then prove
our CCR security claim in Section 4.2. Then, in Section 4.3 we propose and prove
an extractability notion of HCCR so that it becomes a multi-purpose construction.

4.1 Construction of HCCR

Our AES-based CCR hash functions are described in Fig. 2, where we treat the
three possible key lengths of AES (i.e. 128, 192, or 256) separately. To analyze
their provable security, in Fig. 3, we present a theoretical CCR hash construction
built upon an ideal cipher of n-bit block size and λ-bit keys, where λ is also the
security parameter.
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Algorithm HCCR(1
λ, 1n, r)

– If λ = 128: return AES-128
(
[C0]128, σ(r)

)
⊕ σ(r)

– If λ = 192:
1. rL ← left128(r), rR ← right64(r)
2. return AES-192

(
rR∥[C0]128, σ(rL)

)
⊕ σ(rL)∥∥left64(AES-192(rR∥[C1]128, σ(rL)

)
⊕ σ(rL)

)
– If λ = 256:

1. rL ← left128(r), rR ← right128(r)
2. return AES-256

(
rR∥[C0]128, σ(rL)

)
⊕ σ(rL)

∥∥AES-256(rR∥[C1]128, σ(rL)
)
⊕

σ(rL)

Fig. 2: The AES-based CCR hash function. Here C0 and C1 are two distinct
128-bit public constants, r is a λ-bit value, [·]128 denotes the 128-bit binary
representation, σ is an orthomorphism on 128-bit values, leftn (resp. rightn)
denotes taking the left (resp. right) n bits of the input.

4.2 The Circular Correlation Robustness of HCCR

We prove the security of the abstract construction in Fig. 3 using the H-coefficient
technique. We refer unfamiliar readers to Section 3.3 for a brief introduction to
this proof technique.

Lemma 1. If we model E as an ideal cipher, then the hash function HE
CCR de-

fined in Fig. 3 is (qE , qC , ε)-circular correlation robust, where

ε ≤ 4qEqC
2λ

+
qC(qC − 1)

2n
. (4)

Proof. Fix a deterministic distinguisher D making queries to two oracles. The
first is an ideal cipher oracle (and its inverse) where the key size is λ-bit and
the block space is n-bit. In the real world, the second oracle is OCCR

Γ (w, b) =

HCCR(Γ ⊕ w) ⊕ b · Γ (for Γ uniformly sampled from {0, 1}λ); Whereas in the

ideal world it is an independent random function from {0, 1}λ+1
to {0, 1}λ.

Recall from Fig. 3 that n ≤ λ ≤ 2n, rL = leftn(r) and rR = rightλ−n(r). We
(have to) employ a special treatment for the case where n < λ < 2n (which means
n ∤ λ). Concretely, in this case, instead of defining zL ← E

(
rR∥C0, σ(rL)

)
⊕σ(rL)

and zR ← leftλ−n
(
E
(
rR∥C1, σ(rL)

)
⊕ σ(rL)

)
as in Fig. 3, we define zL ←

E
(
rR∥C0, σ(rL)

)
⊕ σ(rL) and zR ← E

(
rR∥C1, σ(rL)

)
⊕ σ(rL), i.e., the trun-

cation is removed; and further (O′)ccrΓ (x, b) = (zL∥zR)⊕ b · (Γ∥[0]2n−λ), i.e., the
output of (O′)ccrΓ is of 2n bits. We focus on indistinguishability of (O′)ccrΓ and

an expanding random function f ′ : {0, 1}λ × {0, 1} → {0, 1}2n: note that this

implies indistinguishability of the original Occr
Γ and f : {0, 1}λ×{0, 1} → {0, 1}λ.

With the above in mind, let QE and QO be the transcripts of ideal cipher and
construction queries and responses respectively, where QE = {(k1, x1, y1), . . .}

9



Algorithm HE
CCR(1

λ, 1n, r)
// λ: security parameter and key-size of E; n: block size of E.
// Note that |r| = λ.

– If n ≤ λ ≤ 2n≪ n+ λ:
1. rL ← leftn(r), rR ← rightλ−n(r)
2. zL ← E

(
rR∥C0, σ(rL)

)
⊕ σ(rL)

3. zR ← leftλ−n

(
E
(
rR∥C1, σ(rL)

)
⊕ σ(rL)

)
// omit if n = λ

4. return zL∥zR

Fig. 3: The abstract model for the AES-based CCR hash function. Here C0 and C1

are two distinct n-bit public constants, r is a λ-bit value, σ is an orthomorphism
on n-bit values, leftn (resp. rightn) denotes taking the left (resp. right) n bits of
the input.

records the queries/answers to/from E or E−1 (with (k, x, y) ∈ QE meaning
E(k, x) = y) and QO = {(w1, b1, z1), . . .} records the queries/answers to/from
the second oracle.

Denote the transcript of D’s interaction by Q = (QE ,QO, Γ ), where QE =
{(k1, x1, y1), . . .} records the queries/answers to/from E or E−1 (with (k, x, y) ∈
QE meaning E(k, x) = y) and QO = {(w1, b1, z1), . . .} records the queries/an-
swers to/from the second oracle. Following [23,39], a key Γ is appended to the
transcript (even though it is not part of the view of D) to facilitate the analysis:
in the real world, this is the key used by the second oracle, whereas in the ideal
world, it is simply an independent key sampled from {0, 1}λ. A transcript Q is
attainable for some fixed D if there exist some oracles such that the interaction
of D with those oracles would lead to transcript Q.

For notational simplicity we define ΓL := leftn(Γ ) and ΓR := rightλ−n(Γ ).
We assume that the key size of E always equals the security parameter λ. We
also recall that for each (w, b, z) ∈ QO in the real world we have

zL = E(wR ⊕ ΓR∥C0, σ(wL ⊕ ΓL))⊕ σ(wL ⊕ ΓL)⊕ b · ΓL

zR = E(wR ⊕ ΓR∥C1, σ(wL ⊕ ΓL))⊕ σ(wL ⊕ ΓL)⊕ b · (ΓR∥[0]2n−λ) .

(Recall that we have removed the truncation in the case where n < λ < 2n, so
that |zR| always equals n.)

We say a transcript (QE ,QO, Γ ) is bad if either of the following conditions
is fulfilled:

– (B-1) There is a query (w, b, z) ∈ QO and a query of the following form in QE .
• (wR ⊕ ΓR∥C0, σ(wL ⊕ ΓL), ⋆)
• (wR ⊕ ΓR∥C1, σ(wL ⊕ ΓL), ⋆) in the case of n < λ ≤ 2n
• (wR ⊕ ΓR∥C0, ⋆, zL ⊕ σ(wL ⊕ ΓL)⊕ b · ΓL)
• (wR⊕ΓR∥C1, ⋆, zR⊕σ(wL⊕ΓL)⊕b·(ΓR∥[0]2n−λ)) in the case of n < λ ≤ 2n
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– (B-2) There are distinct (wi, bi, zi), (wj , bj , zj) ∈ QO subject to wi
R = wj

R

where either of the following two cases occurs.
• σ(wi

L)⊕ bi · ΓL ⊕ ziL = σ(wj
L)⊕ bj · ΓL ⊕ zjL

• σ(wi
L)⊕ bi · (ΓR∥[0]2n−λ)⊕ ziR = σ(wj

L)⊕ bj · (ΓR∥[0]2n−λ)⊕ zjR in the case
of n < λ ≤ 2n. (Again, since we have removed the truncation, it always
holds |ziR|, |z

j
R| = n.)

We now bound the probabilities of these events in the ideal world, beginning
with (B-1). For every pair of records ((w, b, z), (k, x, y)) ∈ QO ×QE , we bound
the four cases separately.

Case 1. The bad event is
(
wR⊕ΓR∥C0 = k

)
∧
(
σ(wL⊕ΓL) = x

)
. Using the

linear property of σ and rearranging the terms, this is equivalent to(
ΓR = leftλ−n(k)⊕ wR

)
∧
(
σ(ΓL) = x⊕ σ(wL)

)
Since Γ is uniformly sampled from {0, 1}λ and σ is a permutation, we have

Pr
[(
ΓR = leftλ−n(k)⊕ wR

)
∧
(
σ(ΓL) = x⊕ σ(wL)

)]
≤ 2−λ

Case 2. The bad event is
(
wR⊕ΓR∥C1 = k

)
∧
(
σ(wL⊕ΓL) = x

)
. Using the

same argument as the first case, we conclude that the probability of this event
is bounded by 2−λ.

Case 3. The bad event is
(
wR⊕ΓR∥C0 = k

)
∧
(
zL⊕σ(wL⊕ΓL)⊕b ·ΓL = y

)
.

Consider the following two sub-cases. If b = 0 then the event is equivalent to(
ΓR = wR ⊕ leftλ−n(k)

)
∧
(
σ(ΓL) = zL ⊕ σ(wL) ⊕ y

)
, which happens except

with probability 2−λ. Otherwise we have b = 1 and the event is
(
ΓR = wR ⊕

leftλ−n(k)
)
∧
(
σ(ΓL)⊕ΓL = zL⊕ σ(wL)⊕ y

)
. Since σ is an orthomorphism, the

map x 7→ σ(x)⊕ x is a permutation. We conclude that this event also happens
except with probability 2−λ.

Case 4. The bad event is equivalent with
(
wR⊕ΓR∥C1 = k

)
∧
(
zR⊕σ(wL⊕

ΓL)⊕ b · (ΓR∥[0]2n−λ) = y
)
. Rearranging the terms we have

Pr
[(
wR ⊕ ΓR∥C1 = k

)
∧
(
zR ⊕ σ(wL ⊕ ΓL)⊕ b · ΓR = y

)]
= Pr [ΓR = leftλ−n(k)⊕ wR] ·
Pr [σ(ΓL) = zR ⊕ σ(wL)⊕ b · (ΓR∥[0]2n−λ)⊕ y | ΓR = leftλ−n(k)⊕ wR]

≤ 2−λ

Taking a union bound over all four cases and summing over the qEqC pairs
in QO × QE , we conclude that the probability of (B-1) in the ideal world is
bounded by 4qEqC

2λ
.

For (B-2), consider distinct (wi, bi, zi), (wj , bj , zj) ∈ QO. Note that even if we
take condition on the value of Γ , the values zi, zj are uniform and independent.
Thus, for side ∈ {L,R}

Pr[σ(wi
side ⊕ wj

side)⊕ (biside ⊕ bjside) · Γside = ziside ⊕ zjside] = 2−n.
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Taking a union bound over side ∈ {L,R} and the
(
qC
2

)
= qC(qC − 1)/2 pairs of

distinct queries, the probability of (B-2) is at most qC(qC−1)
2n .

Fix a good transcript (QE ,QO, Γ ). The probability that the ideal world is
consistent with this transcript is

1
2n ·

1
(2n)qE,1

·...·(2n)qE,µ
· 1
2qCn if λ = n

1
2λ
· 1
(2n)qE,1

·...·(2n)qE,µ
· 1
22qCn if n < λ ≤ 2n

(5)

where µ ∈ [1, qE ] denote the number of distinct keys in QE and qE,1, ..., qE,µ

denotes the number of entries in QE under the respective keys. Again such a
result is obtained due to removing the truncation in the case n ∤ λ.

The probability that the real world is consistent with this transcript is
1
2λ
· 1
(2n)qE,1

·...·(2n)qE,µ
· Pr[∀(w, b, z) ∈ QO : OCCR

Γ (w, b) = z | E ⊢ QE ] if n | λ
1
2λ
· 1
(2n)qE,1

·...·(2n)qE,µ
· Pr[∀(w, b, z) ∈ QO : (O′)CCRΓ (w, b) = z | E ⊢ QE ] if n ∤ λ

Recall that (O′)CCRΓ is the construction oracle obtained by removing the trunca-
tion.

We can express the last term of the above as{∏qC
i=1 Pr[OCCR

Γ (wi, bi) = zi | E ⊢ QE ∧ ∀j < i : OCCR
Γ (wj , bj) = zj ] if n | λ∏qC

i=1 Pr[(O′)CCRΓ (wi, bi) = zi | E ⊢ QE ∧ ∀j < i : (O′)CCRΓ (wj , bj) = zj ] if n ∤ λ

Consider the “original” oracleOCCR
Γ first. Note thatOCCR

Γ (wi, bi) = zi iff HCCR(Γ⊕
wi)⊕ bi · Γ = zi, i.e.,

(zi)L = E((wi)R ⊕ ΓR∥C0, σ((wi)L ⊕ ΓL))⊕ σ((wi)L ⊕ ΓL)⊕ bi · ΓL

(zi)R = E((wi)R ⊕ ΓR∥C1, σ((wi)L ⊕ ΓL))⊕ σ((wi)L ⊕ ΓL)⊕ bi · ΓR (if λ = 2n)

Since the transcript is good there is no query of the form ((wi)R⊕ΓR∥[0]n, σ(wL⊕
(wi)L), ⋆) or ((wi)R ⊕ ΓR∥[1]n, σ(wL ⊕ (wi)L), ⋆) in QE (since (B-1) does not
occur), nor is E((wi)R⊕ΓR∥[0]n, σ((wi)L⊕ΓL)) or E((wi)R⊕ΓR∥[1]n, σ((wi)L⊕
ΓL)) determined by the fact that OCCR

Γ (wj , bj) = zj for all j < i (since D does
not make two queries to OCCR

Γ with the same wi).
Similarly, there is no query of the form ((wi)R ⊕ ΓR∥[0]n, ⋆, σ((wi)L ⊕ ΓL)⊕

bi ·ΓL⊕zi) or ((wi)R⊕ΓR∥[1]n, ⋆, zR⊕σ((wi)L⊕ΓL)⊕bi ·ΓR) in QE (since (B-1)
does not occur), nor is E−1((wi)R ⊕ ΓR∥[0]n, σ((wi)L ⊕ ΓL)⊕ bi · ΓL ⊕ (zi)L) or
E−1((wi)R ⊕ ΓΓ ∥[1]n, σ((wi)L ⊕ ΓL) ⊕ bi · ΓR ⊕ (zi)R) determined by the fact
that OCCR

Γ (wj , bj) = zj for all j < i (since (B-2) does not occur). Thus, for all i
we have

Pr[OCCR
Γ (wi, bi) = zi | E ⊢ QE ∧ ∀j < i : OCCR

Γ (wj , bj) = zj ]

≥ 1

2n − qE − i+ 1
· 1

2λ−n − qE − i+ 1
≥ 1

2λ
(λ ∈ {n, 2n}).
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On the other hand, (O′)CCRΓ (wi, bi) = zi iff

(zi)L = E((wi)R ⊕ ΓR∥C0, σ((wi)L ⊕ ΓL))⊕ σ((wi)L ⊕ ΓL)⊕ bi · ΓL

(zi)R = E((wi)R ⊕ ΓR∥C1, σ((wi)L ⊕ ΓL))⊕ σ((wi)L ⊕ ΓL)⊕ bi · (ΓR∥[0]2n−λ).

In a similar vein to the above, it can be seen

Pr[(O′)CCRΓ (wi, bi) = zi | E ⊢ QE ∧ ∀j < i : (O′)CCRΓ (wj , bj) = zj ]

≥ 1

2n − qE − i+ 1
· 1

2n − qE − i+ 1
≥ 1

22n
.

It follows that

Pr[∀(w, b, z) ∈ QO : OCCR
Γ (w, b) = z | E ⊢ QE ] ≥ 1/2qCλ (λ ∈ {n, 2n}),

Pr[∀(w, b, z) ∈ QO : (O′)CCRΓ (w, b) = z | E ⊢ QE ] ≥ 1/22qCn,

and so the probability that the real world is consistent with the transcript is
always at least (5). This completes the proof. ⊓⊔

4.3 The Extractable Binding Property of HCCR

We show that in the ideal cipher model, we can extract the pre-image of HCCR

given output of sufficient length. In particular, we define an extractability prop-
erty for a hash function H and then prove that the construction HCCR in Fig. 3
satisfies this property.

Definition 2. Let HE : {0, 1}λ → {0, 1}λ be a hash function and C2,C3 ∈
{0, 1}λ be two public distinct constants. Let Com(m) := HE(m⊕C2)∥HE(m⊕C3)
be a commitment scheme and ExtE(c,QE) be an extractor that outputs the pre-
image of a purported commitment c. We say that the hash function HE satisfies
(qE , ε, δ)-extractable binding if for any stateful PPT adversary A making at
most qE queries to E in the following experiment Expebind

HE (A,Ext), we have
Pr[Expebind

HE (A,Ext) = fail] ≤ δ and Pr[Expebind
HE (A,Ext) = coll] ≤ ε.

Experiment Expebind
HE (A,Ext)

1. (c,QE)← AE(commit)
// QE is the transcript of E-queries and answers of AE

2. m∗ ← ExtE(c,QE)
3. m← AE(open)
4. Output fail if Com(m) = c ∧m∗ = ⊥
5. Output coll if Com(m) = c ∧m∗ ̸= ⊥ ∧m ̸= m∗

Remark 1. To the best of our knowledge, all existing ZK schemes in the MPC-in-
the-Head and VOLE-in-the-Head frameworks employ commitment with a similar
structure as in Definition 2. E.g. in [9,50] the commitment consists of the con-
catenation of hashes the message XOR’ed with 0 and 1 but the hash function is
required to be a random oracle. In [21] the construction is the same.
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Remark 2. We note that the extractable binding property in Definition 2 will
only be used in the GGM-style vector commitment scheme to be introduced in
Section 5, in which the message to hide is already uniformly random given the
partial opening and we shall argue the vector commitment’s hiding property
using the CCR property of HCCR. Therefore, we do not explicitly define the
hiding property of the Com in Definition 2.

HCCR is collision resistant. We will prove that our construction HE
CCR(1

λ, 1n, r)
in Fig. 3 is extractable binding (Lemma 5). To this end, we need to establish its
collision resistance, which is the focus of this subsection.

We distinguish between the cases of λ = n and n < λ ≤ 2n. When λ = n,
the construction HCCR(m⊕C2)∥HCCR(m⊕C3) is essentially a special case of the

Hirose double-block-length compression function [42], which maps r ∈ {0, 1}3n
to Eright2n(r)

(leftn(r))∥Eright2n(r)
(leftn(r) ⊕ [1]n) ⊕ leftn(r) ⊕ [1]n using a block

cipher E : {0, 1}2n×{0, 1}n → {0, 1}n. A collision security bound of O(qE
2/2n)

was given by Hirose [42, Theorem 4]. However, this is a bit buggy, since using
qE queries an “internal collision” of the form HE

CCR(m ⊕ C2)∥HE
CCR(m ⊕ C3) =

HE
CCR(m⊕C3)∥HE

CCR(m⊕C2) can be found with a success probability of O(qE/2
n).

On the other hand, Berti et al. [14, Lemma 1] proved that the probability of
finding a collision for the truncated construction HE

CCR(m⊕C2)∥leftn−1
(
HE

CCR(m⊕
C3)

)
is bounded by 6qE/2

n. Clearly, this implies a collision security bound for
the untruncated construction.

Lemma 2. Consider the case λ = n, and let C2 = C0, C3 = C1. If we model
E : {0, 1}λ×{0, 1}n → {0, 1}n as an ideal cipher, then the function Com defined
in Definition 2 is (qE , 6qE/2

n)-collision-resistant.

When n < λ ≤ 2n, the construction HCCR(m⊕ C2)∥HCCR(m⊕ C3) resembles
the multi-block-length compression function of Abed et al. [1], which maps r ∈
{0, 1}(w+1)n

to

Erightwn(r)(leftn(r)⊕[0]n)⊕leftn(r)⊕[0]n∥...∥Erightwn(r)(leftn(r)⊕[w−1]n)⊕leftn(r)⊕[w−1]n

using a long-key blockcipher E : {0, 1}wn × {0, 1}n → {0, 1}n. Though, the E-
calls made by HCCR(m⊕C2)∥HCCR(m⊕C3) are using two distinct keys, and the
outputs are truncated to λ bits. For rigorousness, we provide a lemma and its
complete proof as follows.

Lemma 3. Consider the case n < λ ≤ 2n, and let C2 = C0∥[0]λ−n, C3 =

C1∥[0]λ−n. If we model E : {0, 1}λ × {0, 1}n → {0, 1}n as an ideal cipher, then
the function Com defined in Definition 2 is (qE , ε)-collision-resistant, where

ε ≤ 20qE
2λ

+
640qE

2

22λ
(6)

Proof. Our proof follows [1, Theorem 3] (which was motivated by [48]).
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Proof setup. Since C2 = C0∥[0]λ−n, C3 = C1∥[0]λ−n, it holds (xL∥xR)⊕ C2 =
(xL⊕C0∥xR) and (xL∥xR)⊕C3 = (xL⊕C1∥xR). For convenience, define ∆k :=
[0]λ−n∥(C0 ⊕ C1) and ∆p := σ(C0)⊕ σ(C1): note that (rR∥Cb)⊕∆k = (rR∥Cb)

for any rR ∈ {0, 1}λ−n and b ∈ {0, 1}, and σ(x⊕ Cb)⊕∆p = σ(x⊕ Cb) for any
x ∈ {0, 1}n and b ∈ {0, 1} (since σ is linear).

Consider the interaction between the adversary A and the ideal cipher E,
and let QE = {(k1, x1, y1), (k2, x2, y2), ...} be the query transcript of A (which

is similar to Section 4.2). Then, for any rR ∈ {0, 1}λ−n and rL ∈ {0, 1}n, the set{
(rR∥C0, σ(rL ⊕ C0), y

0
0), (rR∥C1, σ(rL ⊕ C0), y

1
0),

(rR∥C0, σ(rL ⊕ C1), y
0
1), (rR∥C1, σ(rL ⊕ C1), y

1
1)
}

(7)

is called a pile. We stress that it is an orderless set. The involved keys rR∥C0 ∈
{0, 1}λ and rR∥C1 ∈ {0, 1}λ are called the (two) keys of the pile. For convenience,
we further define

QE [k] :=
{
(x, y) : (k, x, y) ∈ QE

}
(8)

for the set of query records in QE with the specific key k. The definition of such
a structure stems from the 4 ideal cipher queries underlying the commitment
evaluation Com(rL∥rR). This constitutes our motivation of introducing this ter-
minology.

Following [48], on top of the qE queries the adversary A wants to make, we
give it several queries “for free”, to ensure that all piles in the query history are
“complete”. The involved “free” queries are as follows.

– Normal forward query. If the adversary queries E(k, x) for some key k ∈
{0, 1}λ and x ∈ {0, 1}n, we also give it for free the answer to the 3 queries
E(k, x⊕∆p), E(k ⊕∆k, x), E(k ⊕∆k, x⊕∆p).

– Normal backward query. If the adversary queries E−1(k, y)→ x for some
key k ∈ {0, 1}λ and y ∈ {0, 1}n, we also give it for free the answer to the 3
queries E(k, x⊕∆p), E(k ⊕∆k, x), E(k ⊕∆k, x⊕∆p).

Note that the adversary is not charged for the above “free” queries: they do
not count towards the maximum of qE queries that the adversary is allowed.
However, these queries become part of the adversary’s query history, just like
other queries. We follow the standard assumption in ideal cipher proofs that
“the adversary never makes a query that will result in a triple (k, x, y) which is
already present in the query history”. This means the adversary is not allowed,
later, to remake the “free” queries “on its own”. We remark that “free” queries
are a common tool for analyzing the security of hash functions [42,4,48].

Due to the above “free” queries, records in the adversary’s query history Q
can be grouped into “piles” as defined in Eq. (7). We now give further “free”
queries to A. In detail, after each pile has been completed (namely, after A has
received their responses), we check whether the two keys k and k⊕∆k of the pile
is such that the (current) query history Q contains exactly 2n/2 query records
with each of them, and give all remaining queries under them for free to A if so.
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We insert these 2 × (2n/2) = 2n free query records into Q. Since A is assumed
never to make a query to which it knows the answer, it cannot make any more
queries under this key after these free queries are inserted into Q.

When 2× (2n/2) such free query records are given to A, we say that a super
query occurs. This can be summed up as follows:

– Super query. When the query history QE has |QE [k]| = 2n/2 for some

k ∈ {0, 1}λ (which also means |QE [k⊕∆k]| = 2n/2), all the remaining queries
of the form E(k, ·), E(k ⊕∆k, ·) are given for free.

This means the adversary needs to take 2n/4 queries to trigger a super query. By
this, if A makes qE adversarial queries during the interaction then the following
holds:

– There are exactly 4qE “normal queries” constituting qE distinct piles;

– There are at most qE
2n/4 ≤

4qE
2n “super queries”;

– For each k ∈ {0, 1}λ, if the corresponding super query occurs then the number
of piles in the super query is exactly 2n

4 . This also means the number of piles

in all super queries is at most 4qE
2n ×

2n

4 = qE in total.

Proof intuition: Decomposing the collision event. We now serve some
intuitions for the remaining arguments. For each rR ∈ {0, 1}λ−n, all the 2× 2n

inputs of E(rR∥C0, ·), E(rR∥C1, ·) constitute 2n/2 disjoint piles (i.e., no input is
shared among distinct piles). Meanwhile, each pile of Eq. (7) provides 2 possible
commitment evaluations, i.e.,

Com(rL ⊕ C0, rR) =
(

σ(rL ⊕ C0)⊕ E(rR∥C0, σ(rL ⊕ C0)),

leftλ−n
(
σ(rL ⊕ C0)⊕ E(rR∥C1, σ(rL ⊕ C0))

)
,

σ(rL ⊕ C1)⊕ E(rR∥C0, σ(rL ⊕ C1)),

leftλ−n
(
σ(rL ⊕ C1)⊕ E(rR∥C1, σ(rL ⊕ C1))

))
,

Com(rL ⊕ C1, rR) =
(

σ(rL ⊕ C1)⊕ E(rR∥C0, σ(rL ⊕ C1)),

leftλ−n
(
σ(rL ⊕ C1)⊕ E(rR∥C1, σ(rL ⊕ C1))

)
,

σ(rL ⊕ C0)⊕ E(rR∥C0, σ(rL ⊕ C0)),

leftλ−n
(
σ(rL ⊕ C0)⊕ E(rR∥C1, σ(rL ⊕ C0))

))
,

Collisions may occur among distinct commitment evaluations from a single
pile, e.g., Com(rL ⊕C0, rR) = Com(rL ⊕C1, rR), which will be refereed as inter-
nal collisions in piles. Collisions can also occur among two distinct piles. With
these in mind, we will decompose the collision event into internal and external
collisions, and bound their probabilities in turn.
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Decomposing and bounding the collision event. As discussed above, we
decompose the collision event as follows:

– (B-1) A obtains a pile{
(rR∥C0, σ(rL ⊕ C0), y

0
0), (rR∥C1, σ(rL ⊕ C0), y

1
0),

(rR∥C0, σ(rL ⊕ C1), y
0
1), (rR∥C1, σ(rL ⊕ C1), y

1
1)
}

that has internal collisions, i.e., Com(rL ⊕ C0, rR) = Com(rL ⊕ C1, rR).
– (B-2) A obtains two distinct piles{

(rR∥C0, σ(rL ⊕ C0), y
0
0), (rR∥C1, σ(rL ⊕ C0), y

1
0),

(rR∥C0, σ(rL ⊕ C1), y
0
1), (rR∥C1, σ(rL ⊕ C1), y

1
1)
}

and {
(r′R∥C0, σ(r

′
L ⊕ C0), y

0′

0 ), (r′R∥C1, σ(r
′
L ⊕ C0), y

1′

0 ),

(r′R∥C0, σ(r
′
L ⊕ C1), y

0′

1 ), (r′R∥C1, σ(r
′
L ⊕ C1), y

1′

1 )
}

that have external collisions, i.e., there exists b, b′ ∈ {0, 1} such that Com(rL⊕
Cb, rR) = Com(r′L ⊕ Cb′ , r

′
R).

We analyze them in turn.

Event (B-1). The collision Com(rL⊕C0, rR) = Com(rL⊕C1, rR) is equivalent
with 2 equalities as follows:

1. σ(rL ⊕ C0)⊕ y00 = σ(rL ⊕ C1)⊕ y01 ,
2. leftλ−n

(
σ(rL ⊕ C0)⊕ y10

)
= leftλ−n

(
σ(rL ⊕ C1)⊕ y11

)
.

With the above in mind, we let (B-11) denote the event that the adversary
obtains such a pile after a normal query, and (B-12) the event that the adversary
obtains such a pile after a super query. We consider the two sub-events in turn.

(B-11). First, consider the case A making a forward query E(rR∥C0, σ(rL ⊕
C0)) → y00 . Then, at most 2n/2 − 2 queries (counting free queries) have been
previously answered with each of the two keys rR∥C0 and rR∥C1 since oth-
erwise a super query for that key would have occurred. Thus the 2 answers
E(rR∥C1, σ(rL ⊕ C0))→ y10 , E(rR∥C1, σ(rL ⊕ C1))→ y11 are distinct values uni-
formly picked from a set of size at least 2n/2 + 2. By these,

– The probability to have σ(rL⊕C0)⊕y00 = σ(rL⊕C1)⊕y01 is at most 1/(2n/2+
2) ≤ 2/2n;

– Conditioned on E(rR∥C1, σ(rL ⊕ C0)) = y10 , it holds

Pr
[
leftλ−n(σ(rL ⊕ C0)⊕ y10) = leftλ−n(σ(rL ⊕ C1)⊕ y11)

]
=

∑
t∈{0,1}2n−λ

Pr
[
y11 =

(
leftλ−n(σ(rL ⊕ C0)⊕ y10 ⊕ σ(rL ⊕ C1))

)
∥t
]

≤ 22n−λ

2n/2 + 1
≤ 2

2λ−n
.
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By these, the probability that the event (B-11) occurs w.r.t. the pile is at most
2
2n ×

2
2λ−n ≤ 4/2λ.

When A makes a backward query E−1(rR∥C0, y
0
0) → x = σ(rL ⊕ C0), the

analysis is similar by symmetry: the associated forward queries E(rR∥C1, σ(rL⊕
C0)) and E(rR∥C1, σ(rL ⊕ C1)) have answers uniformly distributed in a set of
size at least 2n/2. Therefore, the probability that (B-11) occurs w.r.t. the pile
of these four queries is at most 4/2λ.

When A queries E(rR∥C1, σ(rL ⊕ C0)) → y10 or E−1(rR∥C1, y
1
0) → x, the

associated forward queries E(rR∥C0, σ(rL⊕C0)) and E(rR∥C0, σ(rL⊕C1)) have
answers uniformly distributed in a set of size at least 2n/2, and the same bound
4/2λ holds. Finally, since A itself makes at most qE queries in total, we have

Pr
[
(B-11)

]
≤ 4qE

2λ
. (9)

(B-12). Suppose a super query is about to occur on rR ∈ {0, 1}λ−n, meaning
that the value of E(rR∥C0, ·) is already known on exactly 2n/2 points. Let σ(rL⊕
C0), σ(rL ⊕ C1) be in the domain of the super query. (We say that a point x ∈
{0, 1}n is “in the domain of the super query” if E(rR∥C0, x) is not yet known, and
will be queried as part of the super query; note that a point σ(rL⊕C0) ∈ {0, 1}n
is in the domain of the super query if and only if σ(rL ⊕ C1) is also in the
domain of the super query.) Once y00 = E(rR∥C0, σ(rL ⊕ C0)) is known, the
value of y01 = E(rR∥C0, σ(rL ⊕ C1)) returned by the super query is uniformly
picked from 2n/2− 1 possibilities. Therefore,

– The probability to have σ(rL⊕C0)⊕y00 = σ(rL⊕C1)⊕y01 is at most 1
2n/2−1 ≤

4
2n ;

– Conditioned on E(rR∥C1, σ(rL ⊕ C0)) = y10 , it holds

Pr
[
leftλ−n(σ(rL ⊕ C0)⊕ y10) = leftλ−n(σ(rL ⊕ C1)⊕ y11)

]
=

∑
t∈{0,1}2n−λ

Pr
[
y11 =

(
leftλ−n(σ(rL ⊕ C0)⊕ y10 ⊕ σ(rL ⊕ C1))

)
∥t
]

≤ 22n−λ

2n/2− 1
≤ 4

2λ−n
. (since n ≥ 2 implies 2n − 2 ≤ 2n/2)

Therefore, the probability that the super query returns values such that the pile{
(rR∥C0, σ(rL⊕C0), y

0
0), ..., (rR∥C1, σ(rL⊕C1), y

1
1)
}
has internal collisions is at

most 4
2n ×

4
2λ−n ≤ 16

2λ
. The number of choices for this pile is 2n/4 for the value

rR ∈ {0, 1}λ−n. By a union bound, the probability that (B-12) occurs w.r.t. the

super query for rR ∈ {0, 1}λ−n is bounded by

16

2λ
× 2n

4
≤ 4 · 2n

2λ
.

As discussed, at most 4qE/2
n super queries can occur. Thus

Pr
[
(B-12)

]
≤ 4 · 2n

2λ
× 4qE

2n
≤ 16qE

2λ
. (10)
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Summary for (B-1). Summing over the two sub-events yields

Pr
[
(B-1)

]
≤ Pr

[
(B-11)

]
+ Pr

[
(B-12)

]
≤ 4qE

2λ
+

16qE
2λ
≤ 20qE

2λ
. (11)

Event (B-2). The condition that the two piles are distinct means that (r′L, r
′
R) /∈

{(rL, rR), (rL⊕∆p, rR)} and they consist of 8 distinct queries. Wlog assume that
the pile

{
(rR∥C0, σ(rL⊕C0), y

0
0), ..., (rR∥C1, σ(rL⊕C1), y

1
1)
}
appears later inQE .

We let (B-21) denote the event that the adversary obtains such two piles after
a normal query, and (B-22) the event that the adversary obtains such two piles
after a super query. We consider the two sub-events in turn.

(B-21). Consider the case where A makes a forward query E
(
rR∥C0, σ(rL ⊕

C0)
)
→ y00 first. As argued before, the response y00 comes uniformly from at least

2n/2 + 2 ≥ 2n/2 possibilities. Furthermore, the 3 associated forward queries
E
(
rR∥C1, σ(rL ⊕ C0)

)
→ y10 , E

(
rR∥C0, σ(rL ⊕ C1)

)
→ y01 and E

(
rR∥C1, σ(rL ⊕

C1)
)
→ y11 have y11 , y

0
1 , y

1
1 uniformly distributed in at least 2n/2 possibilities. By

these, for any pair of bits (b, b′) ∈ ({0, 1})2 the probability to have Com(rL ⊕
Cb, rR) = Com(r′L ⊕ Cb′ , r

′
R) is at most 16

22λ
, since:

– The probability to have σ(rL ⊕ Cb)⊕ E
(
rR∥C0, σ(rL ⊕ Cb)

)
= σ(r′L ⊕ Cb′)⊕

E
(
r′R∥C0, σ(r

′
L⊕Cb′)

)
and σ(rL⊕Cb)⊕E

(
rR∥C0, σ(rL⊕Cb)

)
= σ(r′L⊕Cb′)⊕

E
(
r′R∥C0, σ(r

′
L ⊕ Cb′)

)
is at most 1

2n/2 ×
1

2n/2 ≤ 4/22n;

– Conditioned on the ideal cipher outputs E
(
rR∥C0, σ(rL⊕Cb)

)
, E

(
rR∥C0, σ(rL⊕

Cb′)
)
, E

(
rR∥C0, σ(rL ⊕ Cb)

)
and E

(
rR∥C0, σ(rL ⊕ Cb′)

)
, the probability to

have leftλ−n
(
σ(rL ⊕ Cb) ⊕ E

(
rR∥C1, σ(rL ⊕ Cb)

))
= leftλ−n

(
σ(r′L ⊕ Cb′) ⊕

E
(
r′R∥C1, σ(r

′
L ⊕ Cb′)

))
and leftλ−n

(
σ(rL ⊕ Cb) ⊕ E

(
rR∥C1, σ(rL ⊕ Cb)

))
=

leftλ−n
(
σ(r′L ⊕ Cb′)⊕ E

(
r′R∥C1, σ(r

′
L ⊕ Cb′)

))
is at most

(
2

2λ−n

)2
;

When A makes a backward query E−1(rR∥C0, y
0
0) → x, the response x =

σ(rL ⊕ C0) is uniform in a set of size at least 2n/2 + 2 ≥ 2n/2. Again, the 3
subsequent forward queries E

(
rR∥C1, σ(rL ⊕ C0)

)
, E

(
rR∥C0, σ(rL ⊕ C1)

)
and

E
(
rR∥C1, σ(rL ⊕ C1)

)
have answers uniformly distributed in at least 2n/2 pos-

sibilities, and it yields the same bound 16/22λ.

The number of choices for
{
(rR∥C0, σ(rL⊕C0), y

0
0), ..., (rR∥C1, σ(rL⊕C1), y

1
1)
}

(piles in normal queries) is at most qE , while the number of choices for{
(r′R∥C0, σ(r

′
L ⊕ C0), y

0′

0 ), ..., (r′R∥C1, σ(r
′
L ⊕ C1), y

1′

1 )
}

(piles in normal or super queries) is at most qE + qE = 2qE . Moreover, the
number of choices for the pair of bits (b, b′) ∈ ({0, 1})2 is at most 4. Therefore,

Pr
[
(B-21)

]
≤ 4 · qE · 2qE ×

16

22λ
≤ 128qE

2

22λ
. (12)
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(B-22). As argued before, for any rL “in the domain of the super query”,

– The two queries E(rR∥C0, σ(rL⊕C0)) and E(rR∥C0, σ(rL⊕C1)) have answers
uniformly distributed in 2n/2 and 2n/2−2+1 ≥ 2n/4 possibilities respectively;

– The two queries E(rR∥C1, σ(rL⊕C0)) and E(rR∥C1, σ(rL⊕C1)) have answers
uniformly distributed in 2n/2 and 2n/2−2+1 ≥ 2n/4 possibilities respectively.

Therefore, using the same argument as the previous case, for any pair of bits
(b, b′) ∈ ({0, 1})2 the probability of having Com(rL⊕Cb, rR) = Com(r′L⊕Cb′ , r

′
R)

is at most (8/2λ)2.
The number of choices for

{
(rR∥C0, σ(rL⊕C0), y

0
0), ..., (rR∥C1, σ(rL⊕C1), y

1
1)
}

(piles in super queries) is at most qE , while the number of choices for{(
r′R∥C0, σ(r

′
L ⊕ C0), y

0
0

)
, ...,

(
r′R∥C1, σ(r

′
L ⊕ C1), y

1
1

)}
(piles in normal or super queries) is at most qE + qE = 2qE . Moreover, the
number of choices for the pair of bits (b, b′) ∈ ({0, 1})2 is at most 4. Therefore,

Pr
[
(B-22)

]
≤ 4 · qE · 2qE ×

64

2λ
≤ 512qE

2

2λ
. (13)

Summary for (B-2). Summing over the two subevents yields

Pr
[
(B-2)

]
≤ Pr

[
(B-21)

]
+ Pr

[
(B-22)

]
≤ 128qE

2

22λ
+

512qE
2

2λ
≤ 640qE

2

22λ
. (14)

Summary. Gathering Eq. (11) and (14), the probability that A finds a collision
from its query history is bounded by

20qE
2λ

+
640qE

2

22λ
(15)

as claimed. ⊓⊔

By Lemmas 2 and 3, the bound 20qE
2λ

+ 640qE
2

22λ
provides a universal collision

security bound for all n ≤ λ ≤ 2n.

Lemma 4. Assume that n ≤ λ ≤ 2n, and let C2 = C0∥[0]λ−n and C3 =

C1∥[0]λ−n. If we model E : {0, 1}λ × {0, 1}n → {0, 1}n as an ideal cipher, then
the function Com defined in Definition 2 is (qE , ε)-collision-resistant, where

ε ≤ 20qE
2λ

+
640qE

2

22λ
. (16)

HCCR is extractable binding. With the help of the above results, we are now
able to prove our extractable binding claim.

Lemma 5. The hash function HCCR in Fig. 3 has (qE ,
80qE
2λ

+ 10240qE
2

22λ
+ 160qE

22λ
, 80qE

2λ
+

10240qE
2

22λ
) extractable binding property in Definition 2.
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Input. The commitment c ∈ {0, 1}2λ and the ideal cipher transcript QE .
Output. Message m such that Com(m) = c or ⊥.
Oracle. Ext has oracle access to E.

1. Ext initializes an empty set QP = ∅.
2. While QE ̸= ∅:

– Pick the first element (k, x, y) ∈ QE .
– QP = QP ∪ Pile(QE , (k, x, y)).

3. Now QP contains all possible piles from QE . Ext tries to find the preimage of
c from QP as follows.
– If λ = n, then for each entry in QP denoted as{

(k = C0, x0, y0), (k = C0, x1 = x0 ⊕∆p, y1)
}

Ext definesm0 = σ−1(x0)⊕C0 andm1 = σ−1(x1)⊕C0. If c = x0⊕y0∥x1⊕y1,
then Ext sets m∗ = m0. If c = x1 ⊕ y1∥x0 ⊕ y0, then Ext sets m∗ = m1.

– If n < λ ≤ 2n, then for each pile in QP denoted as{
(k0 = xR∥C0, x0, y

0
0), (k1 = k0⊕∆k, x0, y

1
0), (k0, x1 = x0⊕∆p, y

0
1), (k1, x1, y

1
1)
}

Ext defines m0 = σ−1(x0) ⊕ C0∥xR and m1 = σ−1(x1) ⊕ C0∥xR. If c =
x0⊕ y00∥leftλ−n(x0⊕ y10)∥x1⊕ y01∥leftλ−n(x1⊕ y11), then Ext sets m∗ = m0. If
c = x1⊕y01∥leftλ−n(x1⊕y11)∥x0⊕y00∥leftλ−n(x0⊕y10), then Ext setsm∗ = m1.

4. If m∗ is undefined or multiply defined, then Ext outputs ⊥. Otherwise, Ext
outputs the unique m∗ value.

Procedure Pile(QE , (k, x, y)):

– Case 1: λ = n
1. If k ̸= C0 then remove (k, x, y) from QE and return ∅.
2. Define x′ = x⊕∆p and check if there is an entry (k, x′, ⋆) ∈ QE .
• If so, denote the entry as (k, x′, y1) and remove it from QE .
• Otherwise, query the oracle E to get y1 = E(k, x′).

3. Return {(k, x, y), (k, x′, y1)}.
– Case 2: n < λ ≤ 2n

1. If rightn(k) ̸∈ {C0,C1} then remove (k, x, y) from QE and return ∅.
2. Define x′ = x ⊕ ∆p, k

′ = k ⊕ ∆k. For the i-th element (k̃, x̃) ∈
((k′, x), (k, x′), (k′, x′)), check if there exists an entry (k̃, x̃, ⋆) ∈ QE .
• If so, denote the respective entries as (k̃, x̃, yi) and remove it from QE .
• Otherwise, query the oracle E to get yi = E(k̃, x̃).

3. Return {(k, x, y), (k′, x, y1), (k, x′, y2), (k′, x′, y3)}.

Fig. 4: The extractor ExtE for our proof of Lemma 5.
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Proof. Let c be the commitment output by A and QE be A’s transcript of
E-queries and answers. We follow the technique in the proof of Lemma 3 and
define piles. Concretely, a pile is an orderless set with size θ = 2 in the case
of λ = n and θ = 4 in the case of n < λ ≤ 2n. We also define the constants
∆k = [0]λ−n∥(C0 ⊕ C1) and ∆p = σ(C0)⊕ σ(C1).

– If λ = n, then a pile is defined as{
(k = C0, x0, y0), (k, x0 ⊕∆p, y1)

}
.

– If n < λ ≤ 2n, then a pile is defined as{
(k0 = xR∥C0, x0, y

0
0), (k1 = k0⊕∆k, x0, y

1
0), (k0, x1 = x0⊕∆p, y

0
1), (k1, x1, y

1
1)
}
.

We define our extractor ExtE(c,QE) in Fig. 4. In the following we analyze
the probabilities of Pr[Expebind

HE
CCR

(A,Ext) = fail] ≤ δ and Pr[Expebind
HE

CCR
(A,Ext) =

coll] ≤ ε in the extractable binding game (Definition 2). Letm be the purported
Com pre-image returned by A. Recall that by definition,

– Pr[Expebind
HE

CCR
(A,Ext) = fail] = Pr[Com(m) = c ∧m∗ = ⊥]

– Pr[Expebind
HE

CCR
(A,Ext) = coll] = Pr[Com(m) = c ∧m∗ ̸= ⊥ ∧m ̸= m∗]

Regarding the probability of outputting fail, note that Ext outputs m∗ = ⊥
in two cases: first, it finds multiple candidate m∗ values in QE (denote this event
by Multi); second, it does not find any candidate in QE (denote this event by
Null). It is easy to see

Pr[Com(m) = c ∧m∗ = ⊥] = Pr[Com(m) = c ∧Multi] + Pr[Com(m) = c ∧ Null]

≤ Pr[Multi] + Pr[Com(m) = c | Null]

The event Multi indicates that the combination of A and Ext succeeds in
finding collisions on Com defined upon HE

CCR. Since A and Ext make at most 4qE
queries to E in total, Lemma 4 indicates

Pr
[
Multi

]
≤ 80qE

2λ
+

10240qE
2

22λ
.

Regarding the event Com(m) = c, we show in Lemma 6 that

Pr
[
Com(m) = c | Null

]
≤ 160qE

22λ
.

By union bound, we conclude that Pr[Expebind
HE

CCR
(A,Ext) = fail] ≤ δ =

80qE
2λ

+ 10240qE
2

22λ
+ 160qE

22λ
.

The probability of outputting coll clearly does not exceed Pr[Multi], yielding

Pr[Expebind
HE

CCR
(A,Ext) = coll] ≤ ε = 80qE

2λ
+ 10240qE

2

22λ
. These complete the proof.

⊓⊔
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Lemma 6. Consider the extractable binding game in Definition 2. If the adver-
sary submitted a commitment c such that after the pile completion step in the
proof of Lemma 5 no pre-image is found, then the probability that any adversary
making at most qE queries to E succeeds in providing a message m ∈ {0, 1}λ
such that Com(m) = c is bounded by 160qE

22λ
.

Proof. Suppose that the adversary returns a valid messagem such that Com(m) =
c. We assume without loss of generality that the pile related to m appears in
the adversary’s transcript QE (since if not we can append that pile to QE). We
follow the same strategy as in the proof of Lemma 3 to grant the adversary free
queries such that the entries in QE form piles and revealing all the input-output
pairs associated with a key k if the number of queries related to k exceeds 2n/2.
Consider the first pile{
(k0 = xR∥C0, x0, y

0
0), (k1 = k0⊕∆k, x0, y

1
0), (k0, x1 = x0⊕∆p, y

0
1), (k1, x1, y

1
1)
}

and define m0 = σ−1(x0)⊕C0∥xR and m1 = σ−1(x1)⊕C0∥xR. By the definition
of this pile, we have m = m0 or m = m1. And since Com(m) = c, we have the
following two cases respectively.

c = x0 ⊕ y00∥leftλ−n(x0 ⊕ y10)∥x1 ⊕ y01∥leftλ−n(x1 ⊕ y11) (17)

c = x1 ⊕ y01∥leftλ−n(x1 ⊕ y11)∥x0 ⊕ y00∥leftλ−n(x0 ⊕ y10) (18)

Since this is the first pile being the pre-image of c, we have that y00 , y
1
0 , y

0
1 , y

1
1

do not appear previously in QE and therefore are uniformly distributed over the
non-queried positions. Consider the following two cases.

– Inversion After Free Query.

Since the values y00 , y
1
0 , y

0
1 , y

1
1 are sampled from a set of size at least 2n/2 + 2,

we have

Pr[Eq. (17)] ≤ 1

2n/2 + 2
· 22n−λ

2n/2 + 2
· 1

2n/2 + 1
· 22n−λ

2n/2 + 1
≤ 16

22λ
.

Similarly, we have Pr[Eq. (18)] ≤ 16
22λ

. By a union bound over all the qE
queries, we conclude that in this case Pr[Com(m) = c] ≤ 32qE

22λ
.

– Inversion After Super Query.
For each pile returned by the super query, we have

Pr[Eq. (17)] ≤ 1

2n/2
· 22n−λ

2n/2− 1
· 1

2n/2
· 22n−λ

2n/2− 1
≤ 64

22λ
.

Notice that here we use the fact that since n > 1, 2n/2 − 1 ≥ 2n/4. We also
have Pr[Eq. (18)] ≤ 64

22λ
. By a union bound on all the 2n/4 piles in a super

query, the overall probability of inversion success in a super query is bounded
by 32·2n

22λ
. Since the number of super query is bounded by 4qE

2n , we have that

in this case Pr[Com(m) = c] ≤ 128qE
22λ

.
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In summary, we have Pr[Com(m) = c] ≤ 32qE
22λ

+ 128qE
22λ

= 160qE
22λ

.

Remark 3. We note that our construction of extractable CCR hash function in
Fig. 3 generalizes the MMO-style CCR hash function in [39]. In particular, when
λ = n = 128, our construction is identical to MMO(x) := π(σ(x)) ⊕ σ(x) if we
view π(x) = E([0]n, x). Moreover, since the ideal cipher’s key is fixed to be [0]n,
our proof in the ideal cipher model implies a proof in the random permutation
model. We argue that this generalization demonstrates the utility of the new
extractable CCR notation as one can derive a vector commitment scheme in the
random permutation model by following our construction in Section 5.

5 The AES-based AVC Scheme

In this section, we present an AVC scheme from AES in the ideal cipher model.
Our starting point is the correlated GGM tree proposed in [41]. Crucially, to
support all-but-one opening, we need to derive the commitment information as
well as the message for each of the leaf nodes in the tree. We formulate this
process in Definition 3.

Definition 3. Let Hleaf : {0, 1}λ → {0, 1}λ × {0, 1}2λ be a function that maps

the leaf node r ∈ {0, 1}λ into a message m ∈ {0, 1}λ and a commitment com ∈
{0, 1}2λ.

In [10,9] the Hleaf function is instantiated by a random oracle, which due to
its repeated invocation becomes a performance bottleneck.10 On the other hand,
in [21] the authors constructed Hleaf from a MMO-style CCR hash function [39]
but its security analysis is tightly related to the structure of the CCR hash
function. In this work, we try to design Hleaf and prove its security by a black
box reduction to the extractable CCR security notion introduced in Section 4.

Definition 4. Let N,λ ∈ N be the message length, vector dimension, and se-
curity parameter respectively. Let E,E−1 be the ideal cipher oracles. We define
the syntax of the following four algorithms that constitute an AVC scheme.

– Setup(1λ, N) → crs: Given security parameter λ and vector dimension N as
input, output commitment key crs. If unnecessary, we can set crs = ⊥.

– Commit(crs) → (com, decom, (m0, ...,mN−1)): Given commitment key crs as
input, output a commitment com, the opening information decom as well as
N messages m0, ...,mN−1 ∈ {0, 1}λ.

– Open(crs, decom, α) → decomα: Given commitment key crs, opening informa-
tion decom, and an opening index α ∈ [0, N) output the decommitment for the
index α.

– Verify(crs, com, α, decomα) → {(mj)j ̸=α} ∪ {⊥}: Given commitment key crs,
commitment com, the index α, and decommitment for α, output either N − 1
messages (mj)j ̸=α in case of accepting com or ⊥ in case of rejecting com.

10 We tested the reference implementation of FAEST on faest-128s instance and found
that the hash function at the leaf level takes up 25.8% of the total signing time.
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All four algorithms have oracle access to E,E−1.

We then propose a candidate AVC scheme in Fig. 5 by utilizing the correlated
GGM construction in [41]. We define the required properties of the AVC scheme.
In particular, we define the correctness property in Definition 5, the real-or-
random hiding property in Definition 6, and the extractable binding property in
Definition 7.

Protocol cGGM-based AVC

Let λ,N = 2d ∈ N be the security parameter and vector dimension. Let HCCR,Hleaf

be two hash functions to be specified in the ideal cipher/random permutation
model. Let HRO be a random oracle. We define the following four algorithms.

– Setup(1λ, N)→ crs: Setup the hash functions.
– Commit(crs)→ (com, decom, (m0, ...,mN−1)):

1. Sample a global key for this commitment Γ ← {0, 1}λ.
2. Sample the first layer nodes as r10 ← {0, 1}λ, r11 = r10 ⊕ Γ . Let K1

0 = r10.
3. For i ∈ [2, d] we expand from the (i− 1)-th layer to the i-th layer as follows.

For j ∈ [0, 2i−1), compute ri2j = HCCR(r
i−1
j ) and ri2j+1 = ri2j ⊕ ri−1

j . Let

Ki
0 =

∑
j∈2i−1 r

i
2j .

4. In the d-th layer, for i ∈ [0, 2d), we define (mi, comi) = Hleaf(r
d
i ) and

com = HRO(com0, ..., comN−1). Output (mi)i∈[0,N), com, and decom =
(Γ, {Ki

0}i∈[1,d], {comi}i∈[0,N)).
– Open(crs, decom, α)→ decomα:

1. Let α1, ..., αd be the binary decomposition of α ∈ [0, 2d) subject to∑
i∈[0,d) αi+1 · 2i = α. Let ᾱi = αi ⊕ 1 be the negation of αi.

2. Output the opening information as decomα = ({Ki
0 ⊕ ᾱi · Γ}i∈[1,d], comα).

– Verify(crs, com, α, decomα)→ {(mj)j ̸=α} ∪ {⊥}:
1. Parse the decommitment information as decomα = ({Ki

ᾱi
}i∈[1,d], comα).

2. Reconstruct the GGM tree using the information {Ki
ᾱi
}i∈[1,d]. Recover the

last layer information as (mj , comj) = Hleaf(r
d
j ) for j ∈ [0, N), j ̸= α.

3. Re-compute the commitment as com′ = HRO(com0, ..., comN−1) where comα
is part of the decommitment information and the rest is generated in the
previous step. Output ⊥ if com′ ̸= com. Otherwise, output (mi)i ̸=α.

Fig. 5: The candidate correlated GGM tree-based vector commitment scheme.

Definition 5 (Correctness). An all-but-one vector commitment scheme AVC
is (perfectly) correct if for all λ ∈ N and N = poly(λ) the following condition
holds.

crs← Setup(1λ, N), (com, decom, (m0, ...,mN−1))← Commit(crs),∀α ∈ [0, N)
decomα ← Open(crs, decom, α) : Verify(crs, com, α, decomα) = (mi)i∈[0,N),i̸=α.
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Algorithm HE
leaf(1

λ, r)
// λ: security parameter;
// Note that |r| = λ.

1. Let HE
CCR be as defined in Fig. 3 and Com(r) = HE

CCR(r ⊕ C2)∥HE
CCR(r ⊕ C3)

2. Let m = HE
CCR(r), com = Com(r)

3. Output (m, com).

Fig. 6: Theoretical model of HE
leaf , where C2,C3 are two λ-bit public constants.

Definition 6 (Hiding). Let AVC be an all-but-one vector commitment scheme
following the syntax of Definition 4. The adaptive hiding experiment for AVC
with N = 2d = poly(λ) and stateful A is defined as follows.

1. crs← Setup(1λ, N), b∗ ← {0, 1}
2. (com, decom, (m∗0, ...,m

∗
N−1))← Commit(crs)

3. α← A(1λ, crs, com)
4. decomα ← Open(crs, decom, α)
5. Let mi = m∗i for i ∈ [0, N), i ̸= α

6. For i = α, sample mi
$← {0, 1}λ and set mi =

{
m∗i if b∗ = 0

mi if b∗ = 1

7. b← A((mi)i∈[0,N), decomα)
8. Output 1 (success) if b = b∗, else 0 (failure).

In the selective hiding experiment, A must choose α prior to receiving com.
The advantage AdvSelHideAVC(A) (resp. AdvAdpHideAVC(A)) of an adversary

A is defined by |Pr[A wins]− 1
2 | in the selective (resp. adaptive) hiding experi-

ment. We say AVC is selectively (resp. adaptively) hiding if every PPT adversary
A has negligible advantage.

Definition 7 (Binding). Let AVC be an all-but-one vector commitment scheme
following the syntax of Definition 4. Let Ext(crs, com, QE) → (mi)i∈[0,N) be an
extraction function.

For any N = 2d = poly(λ), define the following extractable binding game for
a stateful adversary A.

– crs← Setup(1λ, N)
– com← A(crs)
– (m∗i )i∈[0,N) = Ext(crs, com, QE)
– (decomα, α)← A()
– Output 1 (success) if Verify(com, α, decomα) = (mi)i∈[0,N),i̸=α but mi ̸= m∗i

for some i ∈ [0, N), i ̸= α. Otherwise, output 0 (failure).

Let AdvEBAVC(A) = Pr[A wins] be the advantage of the adversary in the above
game. We say that AVC is extractable-binding if every PPT adversary A has a
negligible probability of winning the game.
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5.1 The Hiding Property of the AVC Scheme

In this section, we prove that the AVC scheme instantiated by the theoretical
framework in Fig. 6 satisfies the selective hiding property in Definition 6.

Lemma 7. Let E be the ideal cipher oracle, HE
CCR be a (qE , qC , εCCR)-circular

correlation robust hash function, and Hleaf be defined as in Fig. 6. The AVC
scheme in Fig. 5 with N = 2d satisfies AdvSelHideAVC(A) ≤ εCCR for any adver-
sary A making qE queries to E and qC = d+ 3.

Proof. Firstly, since we are proving the selective hiding property, we may assume
the opening index α = α1, ..., αd is fixed. Then, notice that

Pr[b = b∗] = Pr[b = 1 | b∗ = 1] · Pr[b∗ = 1] + Pr[b = 0 | b∗ = 0] · Pr[b∗ = 0]

=
1

2
Pr[b = 1 | b∗ = 1] +

1

2
(1− Pr[b = 1 | b∗ = 0])

=
1

2
+

1

2
(Pr[b = 1 | b∗ = 1]− Pr[b = 1 | b∗ = 0])

Therefore, we have∣∣∣∣Pr [A wins]− 1

2

∣∣∣∣ = 1

2
|Pr[b = 1 | b∗ = 1]− Pr[b = 1 | b∗ = 0]| (19)

We construct three hybrid experiments to upper-bound Eq. (19).

– Hybrid1. In this hybrid, the adversary is given the real commitment as well
as the partial opening and the messages. This corresponds to the b∗ = 0 case.

– Hybrid2. In this hybrid, we generate com, (mi)i∈[0,N), decomα using the fol-
lowing procedure.

• First sample decomα, comα,mα uniformly at random.
• Then compute {mi}i̸=α and {comi}i ̸=α using the Verify algorithm.
• Finally, compute com = HRO(com0, ..., comN−1).

– Hybrid3. In this hybrid, we generate com, (mi)i ̸=α, decomα using the algo-
rithm Commit but samples mα uniformly at random. Notice that this corre-
sponds to the b∗ = 1 case.

We derive the final result via two claims.

Claim. The difference between Hybrid1 and Hybrid2 is bounded by εCCR.

Proof. Let A be an adversary that distinguishes Hybrid1 and Hybrid2. We
construct a distinguisher B of the CCR game with the same advantage. In this
way, we can prove that the difference between Hybrid1 and Hybrid2 is upper-
bounded by εCCR.

The algorithm B proceeds as follows.

1. First samples r1ᾱ1
← {0, 1}λ and sets s1 = r1ᾱ1

,K1 = r1ᾱ1
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2. For i ∈ [2, d], let j∗ = α1∥...∥αi−1 computes rij∗+ᾱi
= OCCR(si−1, ᾱi)⊕ᾱisi−1.

For all j ∈ [0, 2i−1) s.t. j ̸= j∗, compute ri2j = HCCR(r
i
j) and ri2j+1 =

HCCR(r
i
j)⊕ rij . Then computes Ki =

∑
j∈[0,2i−1) r

i
2j+ᾱi

. Finally, update si =

si−1 ⊕ rij∗+ᾱi

3. For j ∈ [0, 2d) s.t. j ̸= α, computes mj = HCCR(r
d
j ) and comj = HCCR(r

d
j ⊕

C2)∥HCCR(r
d
j ⊕ C3).

4. Computes mα = OCCR(sd, 0) and comα = OCCR(sd ⊕ C2, 0)∥OCCR(sd ⊕ C3, 0)
5. Computes com = HRO(com0, ..., comN−1).
6. Output com, {mi}i∈[0,2d), and decomα = {Ki}i∈[1,d]

Notice that if OCCR returns the real correlated randomness then the view of
A is identical to Hybrid1, whereas if OCCR returns uniformly random values
then the view of A is identical to Hybrid2. Therefore, the advantage of A is
upper-bounded by εCCR.

Claim. The difference between Hybrid2 and Hybrid3 is bounded by εCCR.

Proof. The argument is almost identical to the previous claim, except that we
always sample mα uniformly at random in the two hybrids. Therefore, the ad-
vantage of the adversary in distinguishing the two hybrids is also bounded by
εCCR.

Combining the above two claims, we conclude that in Eq. (19) we have

|Pr[b = 1 | b∗ = 1]− Pr[b = 1 | b∗ = 0]| ≤ 2εCCR (20)

and therefore

AdvSelHideAVC(A) =
∣∣∣∣Pr [A wins]− 1

2

∣∣∣∣ ≤ εCCR (21)

⊓⊔

5.2 The Extractable Binding Property of Hleaf

Lemma 8. Let HCCR be a (qE , εEB, δEB)-extractable binding CCR function in the
ideal cipher model and HRO be a random oracle. By instantiating Hleaf with the
construction in Fig. 6, the vector commitment scheme in Fig. 5 with N = 2d

satisfies AdvEBAVC(A) ≤ 1+qH(qH−1)/2
22λ

+ N · (δEB + εEB) for any adversary A
making qE queries to the ideal cipher oracle and qH queries to the random oracle.

Proof. We present the extractor first. The extractor first goes through the ran-
dom oracle’s transcript and looks for the pre-image of com. If none can be found
or the pre-image is not unique, then it outputs ⊥.

Assuming that the pre-image com0, ..., comN−1 is unique then the extractor
applies Ext(comi,QE) for every i ∈ [0, N) to get mi (notice that mi might be
⊥). Finally, the extractor outputs {mi}i∈[0,N).
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Now we bound the probability AdvEBAVC(A). Since HRO is a random oracle,
the probability of the extractor outputting ⊥ due to finding a collision is bounded

by 1
22λ

+ 2
22λ

+ · · ·+ qH−1
22λ

= qH(qH−1)
2·22λ . The probability of not being able to find

a pre-image is bounded by 1
22λ

. Therefore, the extraction of com succeeds except

with probability 1+qH(qH−1)/2
22λ

.
Furthermore, the event of extraction failure for i ̸= α would imply extraction

failure for Ext(comi,QE), which is bounded by δEB + εEB. Therefore, by taking a
union-bound on all the leaf nodes, we conclude that

AdvEBAVC(A) ≤ 1 + qH(qH − 1)/2

22λ
+N · (δEB + εEB). (22)

⊓⊔

6 The AES-based AHC Scheme

In this section, we demonstrate that using the AES-based CCR hash func-
tion, we can construct an AHC scheme that is extensively utilized in VOLE-
ZK [12,63,29,62]. Let F be a subfield and K be its extension field. In such a com-
mitment correlation, one party (Alice) gets two random vectors u ∈ FN ,w ∈ KN

while another party (Bob) gets a random vector and a random scalar v ∈
KN , Γ ∈ K such that v = w+u ·∆. Intuitively, Bob “authenticates” the vector
u since we can require that whenever Alice reveals u (or some of its components)
she would also have to provide the corresponding w values. To change u, Alice
has to guess the exact value of fΓ , and her success probability equals to the
inverse of the size of K. Additionally, since the authentication global key Γ can
be fixed, the relation v = w + u · ∆ still holds under linear operations on u.
Therefore, the commitment is said to be additively homomorphic and commit-
ment of random values can be changed to that of arbitrary values. We note that
this correlation is also referred to as subfield Vector Oblivious Linear Evaluation
(sVOLE) in the literature.

The state-of-the-art method for generating aforementioned additively homo-
morphic commitment relies on the Learning Parity with Noise (LPN) assump-
tion [63,60,57,17]. Let m,N ∈ N be two parameters and m < N . The LPN
assumption [52] states that for a public random compressing matrix H ∈ Fm×N

and a secret sparse vector e ∈ FN , the product y = H · e is pseudorandom.
Therefore, an efficient method to generate additively homomorphic commitment
for a random vector u is to first generate many commitments for the single point
vector u′, and then using the additive homomorphic property of the commit-
ment, we can add multiple single point vectors to get a sparse vector and then
multiply it by the LPN compression matrix H to get commitment of the pseudo-
random vector u. In summary, under the LPN assumption, the task of generating
AHC correlations of random vectors reduces to generating AHC correlations of
random single point vectors.

The most efficient protocol to generate such correlations to date is the pseu-
dorandom correlated GGM tree method of Guo et al. [41]. This protocol utilizes
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circular correlation robust (CCR) hash function as a black box and therefore our
AES-based CCR hash function can be integrated into this protocol seamlessly.
Moreover, as previous AES-based instantiations utilizes the construction in [39],
which is limited to 128-bit security, our construction pushes the AHC generation
method of [41] to the high security domain.

We recall the security of the single point subfield VOLE protocol ΠspsVOLE

with pseudorandom correlated GGM tree of [41] in Theorem 1. We include the
descriptions of the ideal functionality generating the sVOLE and single point
sVOLE correlations to Appendix A for completeness.

Theorem 1 (Theorem 3 in [41]). Given CCR function H : F2λ → F2λ , func-
tion ConvertK : F2λ → K, and the pseudorandom correlated GGM tree (Fig. 7)
for field K, keyed hash function HS(x) := H(S ⊕ x) with key S ← F2λ , and
function ConvertK, protocol ΠspsVOLE−pcGGM (Fig. 8) UC-realizes functionality
FspsVOLE (Fig. 10) against any semi-honest adversary in the (FCOT, FsVOLE)-
hybrid model.

Remark 4. We note that Theorem 1 requires the CCR security of H and therefore
by instantiating H with the construction in Section 4, we can acquire a secure
ΠspsVOLE for all parameters choices λ ∈ {128, 192, 256} from AES.

7 Performance Evaluation

In this section, we test the performance of our proposed AES-based CCR hash
function. We want to resolve two research questions via experiments in this
section, namely:

– RQ1: In terms of performance, in the parameter ranges where the security
parameter exceeds the block size, how does our AES-based CCR hash function
compare with previous MMO-style CCR hash construction [39] instantiated
with the non-standardized block ciphers?

– RQ2: To what extent can the commitment scheme required at the leaf nodes
of the all-but-one vector commitment (AVC) scheme be optimized by using
the new AES-based CCR hash function instead of standardized cryptographic
hash functions?

For the first question, we instantiated the MMO-style CCR hash function [39]
with the Rijndael encryption scheme [25] where the block size equals the secu-
rity parameter and compared our AES-based CCR hash construction with it.
We chose this particular configuration as the comparison baseline for multiple
reasons. Firstly, the 128-bit block size version of Rijndael is chosen as the Ad-
vanced Encryption Standard and has withstood decades of cryptanalysis efforts.
This brings confidence in the other configurations of the Rijndael encryption
scheme. Secondly, the Rijndael-based CCR hash function appeared previously
in the literature [21]. Finally, due to the structural similarity, both the Rijn-
dael cipher and AES can utilize the AES-NI instruction sets, therefore offering a
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Parameters: Tree depth d ∈ N. Field K. Keyed hash function HS : F2λ → F2λ .
Function ConvertK : F2λ → K.

pcGGM.FullEval(∆, k): Given (∆, k) ∈ F2
2λ

1: s01 := k ∈ F2λ , s
1
1 := ∆⊕ k ∈ F2λ

2: for i ∈ [2, d), j ∈ [0, 2i−1) do
3: s2ji := HS

(
sji−1

)
∈ F2λ , s

2j+1
i := sji−1 ⊕ s

2j
i ∈ F2λ .

4: for j ∈ [0, 2d−1), σ ∈ {0, 1} do
5: s2j+σ

n := ConvertK
(
HS

(
sjd−1 ⊕ σ

))
∈ K

6: v :=
(
s0d, . . . , s

2d−1
d

)
∈ K2d

7: for i ∈ [1, d) do
8: Ki

0 := ⊕j∈[0,2i−1)s
2j
i ∈ F2λ

9:
(
Kd

0 ,K
d
1

)
:=

(∑
j∈[0,2d−1) s

2j
d ,

∑
j∈[0,2d−1) s

2j+1
d

)
∈ K2

10: return
(
v,

{
Ki

0

}
i∈[1,d−1]

,
(
Kd

0 ,K
d
1

))
pcGGM.PuncFullEval(α,

{
Ki

ᾱi

}
i∈[1,d]

, γ): Given
(
α,

{
Ki

ᾱi

}
i
, γ

)
∈ {0, 1}d×Kd×K,

1: sᾱ1
1 := K1

ᾱ1
∈ F2λ

2: for i ∈ [2, d) do
3: for j ∈ [0, 2i−1), j ̸= α1 . . . αi−1 do
4: s2ji := HS

(
sji−1

)
∈ F2λ , s

2j+1
i := sji−1 ⊕ s

2j
i ∈ F2λ

5: s
α1...αi−1ᾱi

i := Ki
ᾱi
⊕

(
⊕j∈[0,2i−1),j ̸=α1...αi−1

s2j+ᾱi
i

)
∈ F2λ .

6: for j ∈ [0, 2d−1), j ̸= α1 . . . αd−1, σ ∈ {0, 1} do
7: s2j+σ

d := ConvertK
(
HS

(
sjd−1 ⊕ σ

))
∈ K

8: s
α1...αd−1ᾱd

d := Kd
ᾱd
−

∑
j∈[0,2d−1),j ̸=α1...αd−1

s
2j+ᾱd
d ∈ K

9: sαd := γ −
∑

j∈[0,2d),j ̸=α s
j
d ∈ K,w :=

(
s0d, . . . , s

2d−1
d

)
∈ K2d

10: return w

Fig. 7: The pseudorandom correlated GGM tree algorithms.

fairer comparison in terms of performance. As for the second question, we chose
to use the SHA3 algorithm as it is the latest standard of NIST and is utilized
by some ZK-based post-quantum signatures [6,2].

We implemented our AES-based CCR hash function and commitment scheme
based on the emp-toolkit [59]. We used the vectorized implementation of the AES
algorithms in the AES-NI whitepaper [37]. As for Rijndael, we chose to use the
vectorized implementation from FAEST [9]. We used the SHA3 implementation
available at the original emp-toolkit project, which builds upon the widely used
OpenSSL library [58]. Our code is available at the anonymized repository https:
//anonymous.4open.science/r/aes_ccr_hash-6B7B. We conducted our ex-
periments on a machine running Ubuntu 24.04 OS with i7-7700 CPU @ 3.60GHz
and 16GB RAM. The compiler is GCC 13.2.0 with the ‘-O2’ flag enabled.
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Protocol ΠspsVOLE−pcGGM

Parameters: Field F and its extension field K.

Init. This procedure is executed only once.

1. PA and PB send (init) to FCOT, which returns ∆ ∈ F2λ to PA.
2. PA and PB send (init) to FsVOLE, which returns Γ ∈ K to PA. PA outputs Γ .

Extend. PA and PB input N = 2d and use pcGGM (c.f. Fig. 7) for d,K, keyed
hash function HS : F2λ → F2λ , and function ConvertK : F2λ → K.

1. PA and PB send (extend, d) to FCOT, which returns (K [r1] , . . . ,K [rn]) ∈ Fd
2λ to

PA and ((r1, . . . , rd) , (M [r1] , . . . ,M [rd])) ∈ Fd
2 × Fd

2λ to PB such that M [ri] =
K [ri]⊕ ri ·∆ for i ∈ [1, d].

2. PA and PB send (extend, 1) to FsVOLE, which returns K[s] ∈ K to PA and
(s,M[s]) ∈ F×K to PB such that M[s] = K[s] + s · Γ .

3. PB samples β ← F∗, sets M[β] := M[s], and sends δ := s− β ∈ F to PA. PA sets
K[β] := K[s] + δ · Γ such that M[β] = K[β] + β · Γ .

4. PA samples (c1, µ)← F2
2λ and sets k := K [r1]⊕ c1,(

v,
{
Ki

0

}
i∈[1,d−1]

,
(
Kd

0 ,K
d
1

))
:= pcGGM.FullEval(∆, k),

ci := K [ri]⊕Ki
0 for i ∈ [2, d), cσn := ConvertK (HS (µ⊕ K [rd]⊕ σ ·∆)) +Kd

σ for
σ ∈ {0, 1}, and ψ := Kd

0 +K
d
1 −K[β]. PA sends

(
c1, . . . , cd−1, µ, c

0
d, c

1
d, ψ

)
to PB.

5. PB sets α = α1 . . . αd := r̄1 . . . r̄d ∈ [0, N),Ki
αi

:= M [ri] ⊕ ci for i ∈
[1, d),Kd

ᾱd
:= c

rd
d − ConvertK (HS (µ⊕M [rd])), and

u := UnitF(N,α, β),w := pcGGM.PuncFullEval

(
α,

{
Ki

ᾱi

}
i∈[1,d]

, ψ +M[β]

)
.

6. PA outputs v and PB outputs (u,w).

Macro. For N ∈ N, α ∈ [0, N), β ∈ F, UnitF(N,α, β) returns u ∈ FN s.t. ui = 0
for i ̸= α and uα = β.

Fig. 8: The single point subfield oblivious vector linear evaluation protocol with
pseudorandom correlated GGM tree algorithms.

7.1 Performance of the AES-based CCR Hash Function

As in the use cases of AVC (Section 5) and AHC (Section 6) schemes, the CCR
hash function is called on a large number of independent blocks. So we tested the
performance of the CCR hash function running in this scenario. In particular, we
iteratively ran the CCR hash function for many rounds, using the hash output of
one invocation as the input of the next invocation. Then, we measured the total
running time of the CCR computation and reported the average running time of a
single invocation in Table 1. Notice that since when the security parameter is 128,
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our AES-based construction becomes identical with MMO-style construction, so
the performance of Rijndael-based construction was not tested in this setting.

We noticed that the running time of our construction is slower than the
Rijndael-based counterpart for the security parameters of 192 and 256. The
increased running time is most likely because our construction requires key
scheduling for the security parameters 192 and 256 while the Rijndael-based
construction uses fixed key. We also noticed that the 256 bit version of Rijn-
dael runs slightly faster than the 192 bit version. By inspecting the compiled
assembly codes, we discovered that the 192 bit Rijndael encryption function in-
deed has more more instructions in total compared to the 256 bit version. In
particular, the vectorized implementation of Rijndael in FAEST [9] introduces
operations to process the internal state so that the AES-NI instructions can be
utilized. The 192-bit Rijndael requires more such instructions than the 256-bit
case. Therefore, despite the 256-bit Rijndael has two additional rounds, it still
has a smaller total instruction count.

Advantages of Constructions from AES. We would also like to stress that
since AES is a standardized algorithm it has better time-tested security com-
pared to other configurations of Rijndael. Moreover, due to the standardized sta-
tus of AES, it is possible that in many realistic scenarios, satisfactory hardware
support is only provided for the “whole” AES (via low-latency AES IPs [16,55,53]
or side-channel protected AES IPs [54]), but not available for AES round func-
tions nor Rijndael permutations. In these cases, constructions built upon the
“whole” AES would better meet the relevant implementation requirements (ei-
ther low-latency or side-channel security) than those built upon the AES round
functions.

Table 1: The performance comparison between our AES-based CCR hash func-
tion and Rijndael-based MMO-style CCR hash function [39]. The running time
is measured in CPU cycles and is averaged over 100,000,000 invocations.

Construction Security Parameter Standardization

128 192 256

Rijndael-MMO - 150.02 148.74 No
Our Scheme 40.98 250.52 361.78 Yes

7.2 Performance of Leaf Node Commitment Schemes in AVC

We also performed experiments to investigate the performance gain of using
AES-based commitment scheme as compared to commitment schemes from cryp-
tographic hash functions to commit the leaf nodes in an all-but-one vector com-
mitment scheme (AVC). Recall that in an AVC scheme the leaf node x has
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length of the security parameter λ and in previous works [6,2] such commitment
is defined by Com(x) = HRO(x) where HRO is a random oracle that maps λ-bit
strings to 2λ-bit strings and is typically instantiated by SHA3.

Following the methodology of the previous experiment, we ran the commit-
ment schemes (either AES-based or SHA3-based) in an iterative manner, feeding
the first half of the commitment output of one round as the input of the next
commitment invocation. We reported the benchmark result in Table 2. We ob-
served that the AES-based commitment scheme has 7 ∼ 30 times improvement
in terms of running time over the SHA3-based construction. This result confirms
that the AES-based commitment scheme has significant performance benefits as
compared to SHA3-based counterparts.

Table 2: The performance comparison between AES-based commitment scheme
and SHA3-based commitment scheme. The running time is measured in CPU
cycles and is averaged over 100,000,000 invocations.

Construction Security Parameter Standardization

128 192 256

SHA3-based 2842.11 2863.31 2892.89 Yes
AES-based 41.78 264.77 378.05 Yes
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S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (Dec 2012). https://doi.org/
10.1007/978-3-642-34961-4_14

17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018). https://doi.org/10.1145/3243734.3243868

35

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/978-3-031-15985-5_12
https://faest.info/faest-spec-v1.1.pdf
https://doi.org/10.1007/978-3-031-38554-4\_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4\_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-031-38554-4_19
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://tches.iacr.org/index.php/TCHES/article/view/8400
https://tches.iacr.org/index.php/TCHES/article/view/8400
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868


18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.:
Correlated pseudorandomness from expand-accumulate codes. In: CRYPTO 2022,
Part II. pp. 603–633. LNCS, Springer, Heidelberg (Aug 2022). https://doi.org/
10.1007/978-3-031-15979-4_21

19. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Effi-
cient pseudorandom correlation generators: Silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 489–518. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-26954-8_16

20. Bui, D., Chu, H., Couteau, G., Wang, X., Weng, C., Yang, K., Yu, Y.: An efficient
ZK compiler from SIMD circuits to general circuits. Cryptology ePrint Archive,
Paper 2023/1610 (2023), https://eprint.iacr.org/2023/1610

21. Bui, D., Cong, K., de Saint Guilhem, C.D.: Improved all-but-one vector commit-
ment with applications to post-quantum signatures. Cryptology ePrint Archive,
Paper 2024/097 (2024), https://eprint.iacr.org/2024/097, https://eprint.
iacr.org/2024/097

22. Carozza, E., Couteau, G., Joux, A.: Short signatures from regular syndrome
decoding in the head. pp. 532–563. LNCS, Springer, Heidelberg (Jun 2023).
https://doi.org/10.1007/978-3-031-30589-4_19

23. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 327–350. Springer, Heidelberg (May 2014). https://doi.org/10.1007/

978-3-642-55220-5_19

24. Chen, Y.L., Tessaro, S.: Better security-efficiency trade-offs in permutation-based
two-party computation. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part II. LNCS, vol. 13091, pp. 275–304. Springer, Heidelberg (Dec 2021). https:
//doi.org/10.1007/978-3-030-92075-3_10

25. Daemen, J., Rijmen, V.: The block cipher rijndael. In: International Conference on
Smart Card Research and Advanced Applications. pp. 277–284. Springer (1998)

26. Delpech de Saint Guilhem, C., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: Using
AES in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 669–692. Springer, Heidelberg (Aug 2019). https://doi.org/10.
1007/978-3-030-38471-5_27

27. Delpech de Saint Guilhem, C., Orsini, E., Tanguy, T.: Limbo: Efficient zero-
knowledge MPCitH-based arguments. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021.
pp. 3022–3036. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.

3484595

28. Dittmer, S., Eldefrawy, K., Graham-Lengrand, S., Lu, S., Ostrovsky, R., Pereira,
V.: Boosting the performance of high-assurance cryptography: Parallel execution
and optimizing memory access in formally-verified line-point zero-knowledge. pp.
2098–2112. ACM Press (2023). https://doi.org/10.1145/3576915.3616583

29. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
Two multiplications for the price of one. pp. 829–841. ACM Press (2022). https:
//doi.org/10.1145/3548606.3559385

30. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its appli-
cations. Cryptology ePrint Archive, Report 2020/1446 (2020), https://eprint.
iacr.org/2020/1446

31. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. pp. 843–857.
ACM Press (2022). https://doi.org/10.1145/3548606.3559353

36

https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://eprint.iacr.org/2023/1610
https://eprint.iacr.org/2024/097
https://eprint.iacr.org/2024/097
https://eprint.iacr.org/2024/097
https://doi.org/10.1007/978-3-031-30589-4_19
https://doi.org/10.1007/978-3-031-30589-4_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-92075-3_10
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3576915.3616583
https://doi.org/10.1145/3576915.3616583
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.1145/3548606.3559385
https://doi.org/10.1145/3548606.3559385
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1145/3548606.3559353


32. Feneuil, T.: Building MPCitH-based signatures from MQ, MinRank, and rank
SD. In: ACNS 24, Part I. pp. 403–431. LNCS, Springer, Heidelberg (Jun 2024).
https://doi.org/10.1007/978-3-031-54770-6_16

33. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In: CRYPTO 2022, Part II. pp.
541–572. LNCS, Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/

978-3-031-15979-4_19
34. Feneuil, T., Rivain, M.: MQOM — MQ on my Mind. Tech. rep., National Insti-

tute of Standards and Technology (2023), available at https://csrc.nist.gov/

Projects/pqc-dig-sig/round-1-additional-signatures
35. Franzese, N., Katz, J., Lu, S., Ostrovsky, R., Wang, X., Weng, C.: Constant-

overhead zero-knowledge for RAM programs. In: Vigna, G., Shi, E. (eds.) ACM
CCS 2021. pp. 178–191. ACM Press (Nov 2021). https://doi.org/10.1145/

3460120.3484800
36. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-

tended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press (Oct
1984). https://doi.org/10.1109/SFCS.1984.715949

37. Gueron, S.: Intel advanced encryption standard (aes) new instructions set. Intel
Corporation 128 (2010)

38. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Y.: Better concrete security for half-
gates garbling (in the multi-instance setting). In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 793–822. Springer, Heidelberg
(Aug 2020). https://doi.org/10.1007/978-3-030-56880-1_28

39. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy.
pp. 825–841. IEEE Computer Society Press (May 2020). https://doi.org/10.
1109/SP40000.2020.00016

40. Guo, C., Wang, X., Yang, K., Yu, Y.: On tweakable correlation robust hashing
against key leakages. Cryptology ePrint Archive, Paper 2024/163 (2024), https:
//eprint.iacr.org/2024/163

41. Guo, X., Yang, K., Wang, X., Zhang, W., Xie, X., Zhang, J., Liu, Z.: Half-tree:
Halving the cost of tree expansion in COT and DPF. In: EUROCRYPT 2023,
Part I. pp. 330–362. LNCS, Springer, Heidelberg (Jun 2023). https://doi.org/
10.1007/978-3-031-30545-0_12

42. Hirose, S.: Some plausible constructions of double-block-length hash functions.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (Mar 2006). https://doi.org/10.1007/11799313_14

43. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

44. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and
post-quantum signatures. Cryptology ePrint Archive, Report 2022/588 (2022),
https://eprint.iacr.org/2022/588

45. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018. pp. 525–537. ACM Press (Oct 2018). https:
//doi.org/10.1145/3243734.3243805

46. Kim, S., Cho, J., Cho, M., Ha, J., Kwon, J., Lee, B., Lee, J., Lee, J., Lee, S., Moon,
D., Son, M., Yoon, H.: AIMer. Tech. rep., National Institute of Standards and
Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures

37

https://doi.org/10.1007/978-3-031-54770-6_16
https://doi.org/10.1007/978-3-031-54770-6_16
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1109/SP40000.2020.00016
https://doi.org/10.1109/SP40000.2020.00016
https://doi.org/10.1109/SP40000.2020.00016
https://doi.org/10.1109/SP40000.2020.00016
https://eprint.iacr.org/2024/163
https://eprint.iacr.org/2024/163
https://doi.org/10.1007/978-3-031-30545-0_12
https://doi.org/10.1007/978-3-031-30545-0_12
https://doi.org/10.1007/978-3-031-30545-0_12
https://doi.org/10.1007/978-3-031-30545-0_12
https://doi.org/10.1007/11799313_14
https://doi.org/10.1007/11799313_14
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://eprint.iacr.org/2022/588
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures


47. Kim, S., Ha, J., Son, M., Lee, B., Moon, D., Lee, J., Lee, S., Kwon, J., Cho, J., Yoon,
H., Lee, J.: AIM: Symmetric primitive for shorter signatures with stronger security.
pp. 401–415. ACM Press (2023). https://doi.org/10.1145/3576915.3616579

48. Lee, J., Stam, M., Steinberger, J.P.: The security of Tandem-DM in the ideal cipher
model. Journal of Cryptology 30(2), 495–518 (Apr 2017). https://doi.org/10.
1007/s00145-016-9230-z

49. Lin, F., Xing, C., Yao, Y.: More efficient zero-knowledge protocols over Z2k via
galois rings. Cryptology ePrint Archive, Paper 2023/150, To appear at CRYPTO
2024 (2023), https://eprint.iacr.org/2023/150

50. Melchor, C.A., Feneuil, T., Gama, N., Gueron, S., Howe, J., Joseph, D.,
Joux, A., Persichetti, E., Randrianarisoa, T.H., Rivain, M., Yue, D.: The
Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme. Tech.
rep., National Institute of Standards and Technology (2023), available at
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

round-1/spec-files/SDitH-spec-web.pdf

51. Patarin, J.: The “coefficients H” technique (invited talk). In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg
(Aug 2009). https://doi.org/10.1007/978-3-642-04159-4_21

52. Pietrzak, K.: Cryptography from learning parity with noise. In: SOFSEM. vol. 12,
pp. 99–114. Springer (2012)

53. Rambus: AES-IP-36 AES ECB/CBC/CTR accelerators, https://www.rambus.

com/security/crypto-accelerator-cores/aes-ip-36/

54. Reuse, D..: AES-DPA-FIA SW library - Advanced DPA- and FIA-
resistant FortiCrypt AES SW library, https://www.design-reuse.com/sip/

advanced-dpa-and-fia-resistant-forticrypt-aes-sw-library-ip-52392/

55. Reuse, D..: CryptoCORE 400G - 400G AES Encryption Core, https://www.

design-reuse.com/sip/400g-aes-encryption-core-ip-46356/

56. Roy, L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in
the minicrypt model. In: CRYPTO 2022, Part I. pp. 657–687. LNCS, Springer,
Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15802-5_23

57. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 1055–1072. ACM Press (Nov 2019). https:
//doi.org/10.1145/3319535.3363228

58. The OpenSSL Project: OpenSSL, https://github.com/openssl/openssl
59. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-

tation toolkit. https://github.com/emp-toolkit (2016)
60. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and

communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy. pp. 1074–1091. IEEE Com-
puter Society Press (May 2021). https://doi.org/10.1109/SP40001.2021.00056

61. Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: Efficient conversions
for zero-knowledge proofs with applications to machine learning. In: Bailey, M.,
Greenstadt, R. (eds.) USENIX Security 2021. pp. 501–518. USENIX Association
(Aug 2021)

62. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: Interactive zero-
knowledge proofs with sublinear communication. pp. 2901–2914. ACM Press
(2022). https://doi.org/10.1145/3548606.3560667

63. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,

38

https://doi.org/10.1145/3576915.3616579
https://doi.org/10.1145/3576915.3616579
https://doi.org/10.1007/s00145-016-9230-z
https://doi.org/10.1007/s00145-016-9230-z
https://doi.org/10.1007/s00145-016-9230-z
https://doi.org/10.1007/s00145-016-9230-z
https://eprint.iacr.org/2023/150
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SDitH-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SDitH-spec-web.pdf
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
https://www.rambus.com/security/crypto-accelerator-cores/aes-ip-36/
https://www.rambus.com/security/crypto-accelerator-cores/aes-ip-36/
https://www.design-reuse.com/sip/advanced-dpa-and-fia-resistant-forticrypt-aes-sw-library-ip-52392/
https://www.design-reuse.com/sip/advanced-dpa-and-fia-resistant-forticrypt-aes-sw-library-ip-52392/
https://www.design-reuse.com/sip/400g-aes-encryption-core-ip-46356/
https://www.design-reuse.com/sip/400g-aes-encryption-core-ip-46356/
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1145/3319535.3363228
https://github.com/openssl/openssl
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3548606.3560667


Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM Press (Nov 2021). https:
//doi.org/10.1145/3460120.3484556

64. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1607–1626. ACM Press (Nov 2020). https://doi.
org/10.1145/3372297.3417276

65. Yang, Y., Heath, D.: Two shuffles make a RAM: Improved constant overhead
zero knowledge RAM. Cryptology ePrint Archive, Paper 2023/1115, To appear at
USENIX Security 2024 (2023), https://eprint.iacr.org/2023/1115

66. Yang, Y., Heath, D., Hazay, C., Kolesnikov, V., Venkitasubramaniam, M.: Batch-
man and robin: Batched and non-batched branching for interactive ZK. pp. 1452–
1466. ACM Press (2023). https://doi.org/10.1145/3576915.3623169

67. Zaverucha, G., Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher,
S., Rechberger, C., Slamanig, D., Katz, J., Wang, X., Kolesnikov, V., Kales,
D.: Picnic. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions

A Functionalities for Generating Additively
Homomorphic Commitment Correlations.

As mentioned in Section 6, the state-of-the-art protocol [12,63,29,62] reduces
the generation of additively homomorphic commitment correlation (also known
as subfield vector oblivious linear evaluation correlation) to the generation of
commitment of single point vectors (also known as single point subfield vector
oblivious linear evaluation correlation). For completeness, we recall the FsVOLE

and FspsVOLE functionalities in Fig. 9 and Fig. 10 respectively.
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Functionality FsVOLE

Init. Upon receiving (init) from PA and PB, sample ∆ ← Fpr if PB is honest or
receive ∆ ∈ Fpr from the adversary otherwise. Store global key ∆ and send ∆ to
PB, and ignore all subsequent init commands.

Extend. This procedure can be run multiple times. Upon receiving (extend, ℓ)
from PA and PB, do:

1. If PB is honest, sample K[x] ← Fℓ
pr . Otherwise, receive K[x] ∈ Fℓ

pr from the
adversary.

2. If PA is honest, sample x← Fℓ
p and compute M[x] := K[x] +∆ · x ∈ Fℓ

pr . Oth-
erwise, receive x ∈ Fℓ

p and M[x] ∈ Fℓ
pr from the adversary, and then recompute

K[x] := M[x]−∆ · x ∈ Fℓ
pr .

3. Send (x,M[x]) to PA and K[x] to PB.

Global-key query. If PA is corrupted, receive (guess,∆′) from the adversary with
∆′ ∈ Fpr . If ∆

′ = ∆, send success to PA and ignore any subsequent global-key
query. Otherwise, send abort to both parties and abort.

Fig. 9: The subfield vector oblivious linear evaluation functionality.

Functionality FspsVOLE

Init. Upon receiving (init) from PA and PB, sample ∆ ← Fpr if PB is honest and
receive ∆ ∈ Fpr from the adversary otherwise. Store global key ∆, send ∆ to PB,
and ignore all subsequent init commands.

Extend. Upon receiving (sp-extend, N), where N = 2d for some d ∈ N, from PA

and PB, do:

1. If PB is honest, sample v ← FN
pr . Otherwise, receive v ∈ FN

pr from the adversary.
2. If PA is honest, then sample uniform u ∈ FN

p with exactly one nonzero entry,
and compute w := v + ∆ · u ∈ FN

pr . Otherwise, receive u ∈ FN
p (with at

most one nonzero entry) and w ∈ FN
pr from the adversary, and recompute

v := w −∆ · u ∈ FN
pr .

3. If PB is corrupted, receive a set I ⊆ [0, N) from the adversary. Let α ∈ [0, N) be
the index of the nonzero entry of u. If α ∈ I, send success to PB and continue.
Otherwise, send abort to both parties and abort.

4. Send (u,w) to PA and v to PB.

Global-key query. If PA is corrupted, receive (guess, ∆′) from the adversary with
∆′ ∈ Fpr . If ∆

′ = ∆, send success to PA and ignore any subsequent global-key
query. Otherwise, send abort to both parties and abort.

Fig. 10: The single point subfield vector oblivious linear evaluation functionality.
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