
Cryptographic Security through Kleene’s
Theorem and Automata Theory

Mike Wa Nkongolo1
mike.wankongolo@up.ac.za

University of Pretoria, Department of Informatics
South Africa

Abstract. This study addresses the challenge of strengthening crypto-
graphic security measures in the face of evolving cyber threats. The aim
is to apply Kleene’s Theorem and automata theory to improve the model-
ing and analysis of cybersecurity scenarios, focusing on the CyberMoraba
game. Representing the game’s strategic moves as regular expressions and
mapping them onto finite automata provides a solid framework for under-
standing the interactions between attackers and defenders. This approach
helps in identifying optimal strategies and predicting potential outcomes,
which contributes to the development of stronger cryptographic security
protocols. The research advances the theoretical use of automata theory
in cybersecurity while offering practical insights into enhancing defense
mechanisms against complex cyber attacks. This work connects theo-
retical computer science with practical cybersecurity, demonstrating the
importance of automata theory in cryptology.

Keywords: Cryptography · Automata Theory · Cybersecurity · Kleene’s
Theorem · CyberMoraba · Finite Automata · Cyber Attack Modeling ·
Theoretical Computer Science.

1 Introduction

In the face of evolving cyber threats, the challenge of strengthening cryptographic
security measures is becoming increasingly critical [1]. Cryptographic systems,
which rely on complex algorithms and protocols, must be robust against sophis-
ticated attack vectors [2]. This requires not only stronger algorithms but also a
mathematical understanding of how these threats interact with defensive mech-
anisms [1], [2]. To address this challenge, we turn to the rigorous frameworks
offered by automata theory [3] and Kleene’s Theorem [4]. Kleene’s Theorem is
a fundamental result in automata theory, which establishes a deep connection
between regular expressions and finite automata [3], [4]. Formally, the theorem
states that the set of languages recognized by finite automata is exactly the set
of languages that can be described by regular expressions [4]. Specifically, let L
be a language over an alphabet Σ. Then:

L is regular ⇐⇒ ∃ a DFA M such that L = L(M),

2 Mike Wa Nkongolo mike.wankongolo@up.ac.za

where L(M) denotes the language recognized by the deterministic finite au-
tomaton M . This theorem implies that any process, including sequences of ac-
tions in cybersecurity, can be represented both as a regular expression and as
a finite automaton. In the context of cybersecurity, particularly in the strategic
game CyberMoraba [5], this provides a structured way to model interactions be-
tween an attacker and a defender. The game is represented by a series of strategic
moves between two players: the attacker, A, and the defender, D (see Table 1).
Each player’s move can be represented by an element of the set Σ, where Σ
is the alphabet of possible actions (e.g., sending a malicious email, applying a
security patch). The sequence of moves in a game forms a string over Σ, which
can be analyzed using the tools of automata theory. By representing the game’s
strategic moves as regular expressions and mapping them onto finite automata,
this approach provides a rigorous mathematical framework for understanding
the dynamic interactions between attackers and defenders [5]. Moreover, it en-
ables the identification of optimal strategies [6] and the prediction of potential
outcomes, thereby contributing to the development of more robust cryptographic
security protocols. In tandem with the above, this study proposes the method-
ology of applying Kleene’s Theorem and automata theory to model and analyze
cybersecurity scenarios within the context of CyberMoraba. This approach pro-
vides a mathematical framework to optimize cryptographic security measures.
The study addresses the following research questions:

1. RQ1: How can Kleene’s Theorem be applied to enhance the modeling of
cybersecurity scenarios?

2. RQ2: What are the benefits of using finite automata to represent and analyze
strategic interactions in CyberMoraba?

3. RQ3: How does the application of automata theory improve the prediction
of outcomes and optimization of strategies in cybersecurity games?

4. RQ4: What practical insights can be gained from modeling CyberMoraba
for strengthening cryptographic security protocols?

The study makes three major contributions in addressing these questions:

1. It demonstrates how Kleene’s Theorem and automata theory can be applied
to model complex cybersecurity scenarios.

2. It provides a framework for using finite automata to analyze and optimize
strategic interactions in the CyberMoraba game.

3. It offers practical insights into improving cryptographic security protocols
through theoretical modeling and analysis.

2 Background

Prokopev [7] provides a practical automated approach to testing cryptographic
protocols using advanced state machine and declarative languages.

Cryptographic security and automata theory 3

Table 1. The Attacker and Defender Tokens

Token Image Definition Token Image
A1 Email Malicious e-mail D1 Denying
A2 Phone Malicious phone call D2 Network monitoring
A3 Chat Malicious chat D3 Avoid clicking
A4 Attachment Malicious attachment D4 Identification
A5 Donate Malicious directory D5 No trust
A6 Password Malicious password D6 Upload
A7 Connection Malicious connection D7 Trust
A8 Access Malicious intrusion D8 Provide
A9 Data Malicious data D9 Confidential
A10 Data loss Data loss process D10 Report
A11 Click Malicious link D11 Social media
A12 Sensitive data Theft of data D12 Connection
A13 Message Malicious communication D13 Backup

The study emphasizes automation, practical application, and handling com-
plex requirements. In contrast, we focused on the theoretical application of finite
automata and Kleene’s Theorem for modeling and verifying cryptographic pro-
tocols using the CyberMoraba gameplay. While both approaches aim to improve
protocol security, they differ in their focus, methodology, and practical applica-
tions. Kassa et al. [8] introduced significant advancements in hardware efficiency
to secure data transmission at the nano-scale. The study provides practical in-
sights into circuit design and performance using QCA technologies. In contrast,
our study emphasize formal verification and mathematical proofs focusing on the
theoretical application of finite automata and Kleene’s Theorem to cryptographic
protocols. While both studies aim to enhance security, they operate in different
domains: one in hardware design and the other in theoretical analysis. Our study
and the research on Parikh’s Theorem proposed by Hague et al. [9] both engage
with automata theory and verification. While our research focused on formal
analysis and optimization of cryptographic protocols, the Parikh’s Theorem re-
search addresses symbolic representations and complexity handling for large or
infinite alphabets [9]. Both studies delve into automata theory, though with dif-
ferent focuses:

– Our study. Applies finite automata and Kleene’s Theorem to model and
optimize cybersecurity protocols, focusing on theoretical analysis and formal
verification.

– Parikh’s Theorem research. Utilizes Parikh’s Theorem to connect the
letter-counting abstraction of languages recognized by finite automata to
Linear Integer Arithmetic, with a focus on symbolic representations and
handling large or infinite alphabets [9].

Both approaches are relevant to verification tasks. We target the formal verifi-
cation of cryptographic protocols, enhancing protocol security through automata-
based analysis.

4 Mike Wa Nkongolo mike.wankongolo@up.ac.za

Parikh’s Theorem [9] applies to the verification of cryptographic protocols us-
ing Horn clauses and symbolic automata, assist in the verification process with
large or complex data. Both studies address complexity and symbolic representa-
tion. We model cryptographic protocols with finite automata, using formal meth-
ods and regular expressions for analysis while [9] developed symbolic automata
for efficient handling of large or infinite alphabets, providing polynomial-time
algorithms for existential formulas and parametric symbolic grammars. Both
works emphasize algorithmic approaches and formal methods, our study uses
formal proofs and automata theory to analyze protocol behavior and proper-
ties, but [9] proposes new algorithms for applying Parikh’s Theorem to sym-
bolic automata, focusing on polynomial-time solutions and enhanced efficiency
in symbolic representations. We used the CyberMoraba game introduced in [5]
as a tool to model secure cryptographic protocols by applying concepts from
finite automata to simulate and analyze various protocol states, transitions, and
potential vulnerabilities.

3 Game Description

In the CyberMoraba game two players, an attacker and a defender, are assigned a
set of tokens representing various strategic actions [5]. The attacker’s tokens are
labeled A1, A2, . . . , A13, and the defender’s tokens are labeled D1, D2, . . . , D13.
The game unfolds on a finite board B, initially empty, with the attacker making
the first move. The board B can be mathematically represented as a finite set of
states {s0, s1, . . . , sn}, where each state si corresponds to a possible configuration
of token placements.

4 Mathematical Model

Let T = {A1, A2, . . . , A13} ∪ {D1, D2, . . . , D13} denote the set of all tokens. A
move by the attacker or defender is defined as a mapping m : B×T → B where
the state of the board transitions from si to si+1 under the application of a
token. Each move is evaluated by a scoring function σ : B × T → {0, 1}, where
σ(si, Aj) = 1 represents an optimal move by the attacker, and σ(si, Dk) = 1
represents an optimal move by the defender. The scoring system is presented in
Table 2.

5 Scoring and Strategic Analysis

The objective of each player is to maximize their cumulative score over a sequence
of moves [5], [6]. The total score Sa for the attacker and Sd for the defender after
n moves is defined as:

Sa =

n∑
i=1

σ(si, Aj), Sd =

n∑
i=1

σ(si, Dk)

Cryptographic security and automata theory 5

where Aj ∈ T are the tokens played by the attacker, and Dk ∈ T are the
tokens played by the defender.

6 Strategic Optimization and Nash Equilibrium

We can extend the analysis by considering the game as a sequential decision-
making process, where each player aims to optimize their strategy. The strategy
space for the attacker and defender can be modeled as a finite automaton A =
(Q,Σ, δ, q0, F) where:

– Q is a finite set of states representing the possible configurations of the board.
– Σ = {A1, A2, . . . , A13, D1, D2, . . . , D13} is the input alphabet.
– δ : Q×Σ → Q is the transition function dictating the state evolution.
– q0 is the initial state where the board is empty.
– F ⊆ Q is the set of final states, where the game concludes.

The game’s outcome can be analyzed by determining the Nash equilibrium,
where neither player can unilaterally improve their score by changing their strat-
egy [6]. Mathematically, this is found by solving the system of inequalities that
results from the best-response functions of both players.

Table 2. Instance of the Scoring Scheme

Scenario Action Score (Attacker) Score (Defender)
Email Zero trust 0 1
Click Denying 0 1
Chat Identification 0 1
Phone call Trust 1 0
Connection Connection 0 1
Access Identification 0 1
Data loss Upload 1 0
Click Provide 1 0
Total 3 5

This mathematical modeling of the game provides a rigorous framework for
analyzing strategic interactions in cybersecurity scenarios. By representing the
game as a finite automaton and applying game theory concepts, one can de-
rive optimal strategies and predict outcomes, thus enhancing understanding and
preparedness in real-world cybersecurity contexts.

6.1 Finite Automata Representation

We represent the CyberMoraba game as a universal set U , where U encom-
passes all possible states and actions within the game. The game’s mechanics
are modeled using a finite automaton A = (Q,Σ, δ, q0, F),

6 Mike Wa Nkongolo mike.wankongolo@up.ac.za

where:

– Q is the set of states, corresponding to specific configurations of the crypto-
graphic protocol (e.g., key exchange, authentication).

– Σ is the input alphabet, representing actions or events (e.g., sending a mes-
sage, applying an encryption key).

– δ : Q×Σ → Q is the transition function that dictates state transitions based
on inputs.

– q0 ∈ Q is the initial state.
– F ⊆ Q is the set of accepting (final) states, representing successful protocol

completion.

6.2 Application of Kleene’s Theorem

In this study, we explore the application of finite automata and Kleene’s Theorem
to model and analyze cybersecurity protocols. Kleene’s Theorem asserts that for
a given finite automaton A, the language L(A) recognized by A can be expressed
as a regular expression. This allows us to formalize the behavior of a protocol
through regular expressions and validate its properties.

7 Finite Automaton Modeling

Consider a finite automaton A = (Q,Σ, δ, q0, F) used to model a cybersecurity
protocol. Here, Q is a finite set of states, Σ is the input alphabet consisting of
tokens, δ : Q × Σ → Q is the transition function, q0 is the initial state, and
F ⊆ Q is the set of final states. The automaton A represents the sequence of
valid actions in the protocol.

8 Application of Kleene’s Theorem

The language L(A) accepted by the automaton A can be expressed by a regular
expression R. Formally,

L(A) = {w ∈ Σ∗ | transitions in A that leads to a final state}.

The regular expression R capturing L(A) can be constructed using the tran-
sition function δ and the state set Q. To derive R, one can use the following
algorithmic approach:

1. **Construct the Transition Matrix**: Define a matrix T where each
entry Tij represents the regular expression for transitions from state qi to state
qj . This matrix encapsulates the transitions and their regular expressions.

Tij =
⋃
k

RegexikRegexkj

Cryptographic security and automata theory 7

where Regexik and Regexkj are regular expressions corresponding to transi-
tions between states qi and qk, and qk and qj , respectively.

2. **Apply Kleene’s Theorem**: Use Kleene’s algorithm to eliminate
states and simplify the transition matrix to obtain the regular expression R. This
involves iteratively removing states and updating the transition expressions.

3. **Obtain the Regular Expression**: The resulting regular expression
R represents the language L(A), capturing all valid sequences of actions in the
protocol.

∃w ∈ Σ∗ such that δ∗(q0, w) ∈ F

where:

– δ∗(q0, w) denotes the state reached from the initial state q0 after processing
the string w through the transition function δ.

– F is the set of final states.

This notation signifies that there exists a string w in the set of all possible
strings Σ∗ such that the state reached by processing w starting from q0 is a
member of the final states F .

9 Formal Verification

To ensure that the protocol modeled by A meets its security requirements, we
must verify that the regular expression R accurately represents all acceptable
sequences. This involves checking that:

R is a regular expression such that R = L(A) ∩ C

where:

– L(A) denotes the language recognized by the finite automaton A, represent-
ing all valid sequences of actions in the protocol.

– C denotes the set of sequences that satisfy the specified security constraints.
– R is the regular expression that captures all sequences corresponding to valid

protocol actions and adheres to these constraints.

This notation signifies that R encompasses all sequences that are both valid
in terms of protocol actions and compliant with the specified security constraints.
By comparing R against expected patterns (e.g., handshake, data exchange, ter-
mination), we can confirm that the automaton correctly models the protocol and
meets its security goals. By expressing the language recognized by the automa-
ton as a regular expression, we can rigorously validate the protocol’s behavior
and ensure its adherence to security requirements. This approach enhances the
formal verification process and contributes to the development of secure crypto-
graphic protocols [10], [11], [12].

8 Mike Wa Nkongolo mike.wankongolo@up.ac.za

9.1 Formal Verification of Security Properties

We define a security property P as a subset of Σ∗ (the set of all strings over the
alphabet Σ). The protocol is secure if:

L(A) ⊆ P (1)

This means that every sequence w in the language L(A) must satisfy the
security conditions defined by P . If the regular expression R derived from the
automaton A conforms to the security property P , then the CyberMoraba game,
as modeled by the finite automaton A, effectively models and optimizes the
secure cryptographic protocol. Thus, the game can be used as a tool to validate
the security of cryptographic protocols.

9.2 Final Automaton

The final automaton for the game, as derived from the scoring Table 2 models
the interactions between the attacker and defender. This automaton captures
the scenarios in which the attacker and defender make moves, and it transitions
between states based on these moves. Each state represents a particular scenario
in the game, and transitions are defined by the actions taken by the players. The
automaton can be described as follows:

– States: Each state represents a specific game scenario based on Table 1 and
Table 2.

– Alphabet: Actions (e.g., A1, D5).
– Transitions: Determined by the moves and scoring.
– Start State: The initial state before any actions.
– Accept States: States where the game outcome meets the winning criteria.

Fig. 1 is the diagram of the final automaton, illustrating the transitions based
on the scoring Table 2. The regular expressions corresponding to different game
scenarios are derived as follows (Table 1 and Table 2):

– Email: A1D5 where the attacker uses an email (A1) and the defender applies
zero trust (D5).

– Click: A11D4 where the attacker uses a malicious link (A11) and the de-
fender uses identification (D4).

– Chat: A3D4 where the attacker uses a malicious chat (A3) and the defender
uses identification (D4).

– Connection: A7D12 where the attacker uses a malicious connection (A7)
and the defender suggests secure connection (D12).

– Access: A8D4 where the attacker uses malicious access (A8) and the de-
fender identifies the malicious access (D4).

Cryptographic security and automata theory 9

Fig. 1. The automaton diagrams showing the final state machine (FSM) models. The
automaton on the left and right illustrate the FSMs for different scenarios in the scoring
table.

9.3 Definitions and Notations

Let A = (Q,Σ, δ, q0, F) be a finite automaton where:

– Q is the set of states: Q = {Email,Click,Chat,Connection,Access,Final State}.
– Σ is the set of input symbols representing attacker and defender actions.
– δ : Q×Σ → Q is the transition function.
– q0 is the start state: q0 = Email.
– F is the set of accepting states: F = {Final State}.

The finite automaton A transitions between states based on the input se-
quences of attacker and defender actions. The transition function δ is defined as
follows:

δ(Email, A1D5) = Click,
δ(Click, A11D4) = Chat,
δ(Chat, A3D4) = Connection,

δ(Connection, A7D12) = Access,
δ(Access, A8D4) = Final State.

To demonstrate that A correctly models the given scenarios, we will show
that each transition accurately represents the interactions described in the game
scenarios.

10 Mike Wa Nkongolo mike.wankongolo@up.ac.za

– Email: For the input A1D5 starting from the state Email:

δ(Email, A1D5) = Click

This transition represents the attacker using email (A1) and the defender
applying zero trust (D5).

– Click: For the input A11D4 starting from the state Click:

δ(Click, A11D4) = Chat

This transition represents the attacker using a malicious link (A11) and the
defender using identification (D4).

– Chat: For the input A3D4 starting from the state Chat:

δ(Chat, A3D4) = Connection

This transition represents the attacker using a malicious chat (A3) and the
defender using identification (D4).

– Connection: For the input A7D12 starting from the state Connection:

δ(Connection, A7D12) = Access

This transition represents the attacker using a malicious connection (A7)
and the defender ensuring a secured connection (D12).

– Access: For the input A8D4 starting from the state Access:

δ(Access, A8D4) = Final State

This transition represents the attacker using malicious access (A8) and the
defender identifying the malicious access (D4). The finite automaton diagram is
presented in Fig. 2.

Email Click Chat Connection Access Final State
A1D5 A11D4 A3D4 A7D12 A8D4

Any

Fig. 2. Finite Automaton Modeling the Cybersecurity Game Scenarios

To apply Kleene’s Theorem to the finite automaton A, we need to derive
a regular expression that represents the language accepted by the automaton.
The automaton transitions between states based on specific input sequences, and
the goal is to express this language with a regular expression. To construct the
regular expression, we concatenate the input sequences for each transition:

Cryptographic security and automata theory 11

– From Email to Click: A1D5
– From Click to Chat: A11D4
– From Chat to Connection: A3D4
– From Connection to Access: A7D12
– From Access to Final State: A8D4

Combining these transitions, the regular expression R representing the lan-
guage accepted by the automaton is:

R = A1D5A11D4A3D4A7D12A8D4

The regular expression R = A1D5A11D4A3D4A7D12A8D4 accurately
represents the language accepted by the finite automaton A. According to Kleene’s
Theorem, this confirms that the language accepted by the automaton is regular
[16].

9.4 Mapping Protocol States to Automaton States

Let P be a cryptographic protocol with a finite set of states S = {s0, s1, . . . , sn}
and transitions representing protocol steps. We construct a DFA A = (Q,Σ, δ, q0, F)
corresponding to P as follows:

– Q = S: Each protocol state is a state in the automaton.
– Σ: The input alphabet consists of all possible actions or messages in the

protocol.
– δ: The transition function maps protocol steps to state transitions.
– q0: The initial protocol state.
– F : The set of accepting states corresponds to successful protocol completion.

9.5 CyberMoraba as Automaton Simulation

In CyberMoraba, moves and configurations can simulate the DFA A:

– States: Game configurations correspond to protocol states.
– Moves: Player actions represent inputs Σ causing state transitions.
– Transitions: Legal moves in the game simulate δ.

10 Formal Verification Using Automata Theory

10.1 Proving Protocol Correctness

Theorem 1 (Protocol Correctness). Let A = (Q,Σ, δ, q0, F) be the DFA
modeling a cryptographic protocol P . If for all w ∈ Σ∗, δ(q0, w) ∈ F only if w
adheres to the protocol’s security specifications, then P is correct.

Proof. Assuming A accurately models P , any accepted string w (i.e., leading to
a state in F) represents a successful protocol execution. If w violates security
specifications but is still accepted, this indicates a flaw in P or its modeling. Thus,
ensuring that only security-compliant w are accepted by A confirms protocol
correctness.

12 Mike Wa Nkongolo mike.wankongolo@up.ac.za

10.2 Ensuring Safety Properties

Definition 1 (Safety Property). A property is safe if it stipulates that "some-
thing bad" never happens during protocol execution.

Theorem 2 (Safety Verification). If all reachable states in A from q0 avoid
unsafe configurations (e.g., exposure of secret keys), then the protocol maintains
safety.

Proof. By performing a reachability analysis on A, we examine all states acces-
sible from q0. If none of these states correspond to unsafe configurations, the
protocol upholds safety properties.

10.3 Verifying Liveness Properties

Definition 2 (Liveness Property). A property is live if it ensures that "some-
thing good" eventually happens, such as protocol completion.

Theorem 3 (Liveness Verification). If for every state q ∈ Q, there exists
a sequence w ∈ Σ∗ such that δ(q, w) ∈ F , then the protocol satisfies liveness
properties.

Proof. This condition guarantees that from any state q, the protocol can proceed
to successful completion. If such a sequence w exists for all q, the protocol does
not encounter deadlocks or infinite loops, satisfying liveness.

Using Kleene’s Theorem, we can derive a regular expression R corresponding
to L(A), the language recognized by A. This expression encapsulates all valid
sequences w leading from q0 to F . The regular expression R allows for:

– Pattern Recognition: Identifying allowed and disallowed sequences.
– Simplification: Optimizing the protocol by eliminating redundant steps.
– Validation: Ensuring that all sequences in R comply with security require-

ments.

11 Case Study: Modeling a Simple Authentication
Protocol

11.1 Protocol Description

Consider a basic authentication protocol with the following steps:

1. Client sends login request.
2. Server sends challenge.
3. Client responds with credentials.
4. Server verifies and grants access.

Cryptographic security and automata theory 13

11.2 Automaton Construction

We model this protocol as DFA A = (Q,Σ, δ, q0, F):

– Q = {q0, q1, q2, q3, q4}, representing each protocol step.
– Σ = {login_req, challenge, credentials, access_granted}.
– δ defined as:

δ(q0, login_req) = q1

δ(q1, challenge) = q2

δ(q2, credentials) = q3

δ(q3, access_granted) = q4

– F = {q4}.

Applying the Kleene’s theorem yield to:

– Correctness. Since only the sequence login_req → challenge → credentials →
access_granted leads to q4, and this sequence adheres to security specifica-
tions, the protocol is correct.

– Safety. There are no transitions leading to states where credentials are ex-
posed without verification.

– Liveness. From any state qi where i < 4, there exists a path to q4, ensuring
liveness.

12 CyberMoraba Simulation

12.1 Game Mapping

In CyberMoraba, each protocol step corresponds to a move:

– Move 1: Placing a piece representing login_req.
– Move 2: Responding with a piece for challenge.
– Move 3: Placing a piece for credentials.
– Move 4: Final piece for access_granted.

By simulating these moves in CyberMoraba, players can:

– Visualize protocol progression.
– Identify potential vulnerabilities (e.g., intercepting credentials).
– Explore alternative sequences and their outcomes.

Through rigorous mathematical modeling and application of automata the-
ory, CyberMoraba proves to be a valuable tool for the formal verification of
cryptographic protocols. By constructing corresponding finite automata and de-
riving regular expressions, we can analyze and ensure protocol properties such as

14 Mike Wa Nkongolo mike.wankongolo@up.ac.za

correctness, safety, and liveness, ultimately enhancing cybersecurity measures.
The application of finite automata and regular expressions to cryptographic se-
curity protocols provides robust methods for formal verification, optimization,
and analysis. By modeling a protocol as a finite automaton, one can rigorously
verify its correctness, ensuring it only accepts valid sequences and adheres to
intended security properties such as authentication and confidentiality. Regu-
lar expressions derived from these automata facilitate the detection of protocol
flaws, enabling the identification of security vulnerabilities. Additionally, these
expressions aid in optimizing protocols through minimization, reducing compu-
tational overhead, and improving performance [17]. In pattern matching, regular
expressions can define attack signatures and detect anomalies, enhancing secu-
rity monitoring [18]. Moreover, finite automata and regular expressions support
precise specification and design of protocols, ensuring they meet formal security
standards and are resilient to various attacks [17], [18], [19].

13 Conclusion

The application of Kleene’s Theorem enhances the modeling of cybersecurity
scenarios by providing a formal mechanism to represent and analyze sequences
of actions within these scenarios. The use of finite automata in representing
strategic interactions in CyberMoraba offers a structured and precise method
for analyzing complex decision-making processes, allowing for the identification
of optimal strategies. Automata theory, when applied to cybersecurity games,
improves the prediction of outcomes by enabling a systematic exploration of all
possible action sequences and their consequences, leading to better strategy opti-
mization. Moreover, modeling CyberMoraba provides practical insights into the
formal verification of cryptographic security protocols, highlighting the potential
to strengthen protocol security through automata-based analysis and ensuring
that all protocol actions conform to the expected secure patterns.

References

1. Mutombo, E.N. and Nkongolo, M.W., 2024. Blockchain security for ransomware
detection. arXiv preprint arXiv:2407.16862.

2. Denning, D.E., 1982. Encryption algorithms. Cryptography and Data Security,”
Addison Wesley Publishing Company Inc., USA, pp.59-125.

3. Shallit, J., 2024. Rarefied Thue-Morse sums via automata theory and logic. Journal
of Number Theory, 257, pp.98-111.

4. Da Ré, B., Szmuc, D. and Corbalán, M.I., 2024. Non-Reflexive Nonsense: Proof
Theory of Paracomplete Weak Kleene Logic. Studia Logica, pp.1-17.

5. Nkongolo, M.W., 2024, March. Infusing Morabaraba game design to develop a cy-
bersecurity awareness game (CyberMoraba). In International Conference on Cyber
Warfare and Security (Vol. 19, No. 1, pp. 240-250).

6. Nkongolo, M., 2023, January. Game theory based artificial player for morabaraba
game. In 2023 5th International Conference on Smart Systems and Inventive Tech-
nology (ICSSIT) (pp. 1210-1218). IEEE.

Cryptographic security and automata theory 15

7. Prokopev, S., 2024. Cryptographic protocol conformance testing based on domain-
specific state machine. Journal of Computer Virology and Hacking Techniques,
20(2), pp.249-259.

8. Kassa, S., Das, J.C., Lamba, V., De, D., Debnath, B., Mallik, S. and Shah, M.A.,
2024. Novel design of cryptographic architecture of nanorouter using quantum-dot
cellular automata nanotechnology. Scientific Reports, 14(1), p.10532.

9. Hague, M., Jeż, A. and Lin, A.W., 2024. Parikh’s Theorem Made Symbolic. Pro-
ceedings of the ACM on Programming Languages, 8(POPL), pp.1945-1977.

10. Aranda, V., Martins, M. and Manzano, M., 2024. Propositional Type Theory of
Indeterminacy. Studia Logica, pp.1-30.

11. Hu, J., Zeng, F., Zhao, Y., Zhang, Z., Zhang, L., Zhao, J., Chang, R. and Ren,
K., 2024. ProveriT: A Parameterized, Composable, and Verified Model of TEE
Protection Profile. IEEE Transactions on Dependable and Secure Computing.

12. Yuan, Y., Wang, Y. and Cheng, G., 2024, July. ProfistMAC: A Protocol Finite
State Machine Classifier via Graph Representation. In Australasian Conference on
Information Security and Privacy (pp. 350-369). Singapore: Springer Nature Singa-
pore.

13. Mahe, E., Bannour, B., Gaston, C., Lapitre, A. and Le Gall, P., 2024, April. Finite
Automata synthesis from interactions. In Proceedings of the 2024 IEEE/ACM 12th
International Conference on Formal Methods in Software Engineering (FormaliSE)
(pp. 12-22).

14. Nkongolo Wa Nkongolo, M., 2024. RFSA: A Ransomware Feature Selection Algo-
rithm for Multivariate Analysis of Malware Behavior in Cryptocurrency. Interna-
tional Journal of Computing and Digital Systems, 15(1), pp.893-927.

15. Nkongolo, M.N.W., 2023. Zero-day vulnerability prevention with recursive feature
elimination and ensemble learning. Cryptology ePrint Archive.

16. Tokmak, M. and Nkongolo, M., 2023. Stacking an autoencoder for feature selection
of zero-day threats. arXiv preprint arXiv:2311.00304.

17. Jajan, K.I.K. and Zeebaree, S.R., 2024. Optimizing Performance in Distributed
Cloud Architectures: A Review of Optimization Techniques and Tools. The Indone-
sian Journal of Computer Science, 13(2).

18. Abuabid, A. and Aldeij, A., 2024. Cyber Security Incident Response: The Effec-
tiveness of Open-Source Detection Tools in DLL Injection Detection. Journal of
Information Security and Cybercrimes Research, 7(1), pp.29-50.

19. Tehranipoor, M., Zamiri Azar, K., Asadizanjani, N., Rahman, F., Mardani Kamali,
H. and Farahmandi, F., 2024. Advances in Logic Locking. In Hardware Security: A
Look into the Future (pp. 53-142). Cham: Springer Nature Switzerland.

