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Abstract 

The formal verification of architectural strength in terms of computational complexity is 

achieved through reduction of the Non-Commutative Grothendieck problem in the form of a 

quadratic lattice.  This multivariate form relies on equivalences derived from a k-clique problem 

within a multigraph.  The proposed scheme reduces the k-clique problem as an input function, 

resulting in the generation of a quadratic used as parameters for the lattice.  By Grothendieck’s 

inequality, the satisfiability of lattice constraints in terms of NP-Hard and NP-Complete bounds 

is provably congruent to a closest vector problem in the lattice.  The base vectors of the resulting 

lattice are treated as a holomorphic vector bundle.  From the resulting bilinear matrices, the tight-

hardness reduction of the closest vector problem as the shortest vector problem is introduced 

within the system.  The derivation of the closest vector problem requires that the lattice is 

necessarily generated by a (0
1
)-Matrix expressed as a quadratic. This vector bundle is denoted as 

the unit ball with congruent topology to the Riemann sphere, symbolized as 𝒪. For the 

Grothendieck constraints, the relative vector norms necessarily result in satisfaction of NP-Hard 

requirements for shortest vector problems in the lattice. 
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EIGENEXUS INC.TM CHRYSALIS 

The manifold (𝑀) shall be defined as a closed and open set, using the principles of 

holomorphic vector bundles to introduce a Hermitian metric within the complex vector space.  

The tangent bundle is by definition a disjoint union of the tangent spaces of the manifold, of 

which the maximal expression is the complex vector space.  The image(𝑓⋆), and preimage (𝑓⋆) 

derived from the same function, is based upon a substitution in the principle holomorphic 

function.  The differentiable manifold allows for multivariate analysis which lends itself towards 

the principle bundle of frames relative to the tangent bundle. 

The security reduction proposed is the NP-Hard Non-Commutative Grothendieck 

problem which states that “…for any 𝜀 > 0 it is NP-Hard to approximate the non-commutative 

Grothendieck problem to within a factor of 
1

2
+ 𝜀” (Briet, Regev, & Saket, 2015).  Hermitian 

matrices may be derived as Hermitian matrices of norm 1 with a loss factor of √2 in the 

approximation but still allow for proof of the non-commutative Grothendieck inequality and has 

been demonstrated algorithmically (Naor, Regev, & Vidick, 2012). 

Applications to a dense regularity for algorithmic non-commutation result in recasting the 

problem as a semidefinite program (Naor, Regev, & Vidick, 2012).  A linear map in n-

dimensional ℂ, or ℂ𝑛 to any Banach space reframes the problem computing the norm of the 

linear map for any 𝜀′ < 0 as positive integer (𝑛), such that it is NP-Hard to approximate the 

norm of the explicitly given linear operator ℱ: 𝐿2 → 𝐿2(𝑋𝑛) to within a factor greater than 
𝜏

𝜂
+ 𝜀′ 

(Briet Regev, Saket). 

From Briet, et. al.: 

“Let (𝑋𝑛)𝑛∈ℕ  be a family of finite-dimensional Banach spaces, and 𝜂  and 𝜏  be positive 

numbers such that 𝜂 > 𝜏.  Suppose that for each positive integer (𝑛) there exists a linear operator 

𝑓: ℂ𝑛 → 𝑋𝑛 with the following properties: 
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• For any vector 𝑎 ∈ ℂ𝑛, we have ‖𝑓(𝑎)‖𝑋𝑛 ≤ ‖𝑎‖ℓ2 

• For each standard basis vector 𝑒𝑖, we have ‖𝑓(𝑒𝑖‖𝑋𝑛 ≥ 𝜂 

Then, for any 𝜀′ > 0  there exists a positive integer 𝑛  such that it is NP-Hard to 

approximate the norm of an explicitly linear operator ℱ: 𝐿2 → 𝐿1(𝑋𝑛) to within a factor greater 

than(
𝜏

𝜂
) + 𝜀′.” (Briet, Regev, & Saket, 2015). 

 

The complex case of these properties and theorem quoted from Briet, et. al. states that all 

positive integers map linearly and have the following properties that: 

• For any vector 𝑎 ∈ ℂ𝑛, we have ‖𝑓(𝑎)‖𝐿1 ≤ ‖𝑎‖ℓ2 

• For each standard basis vector (𝑒𝑖) , we have ‖𝑓(𝑒𝑖)‖𝐿1 = 1 .  If ‖𝑓(𝑎)‖𝐿1 > (√
𝜋

4
+

𝜀)‖𝑎‖ℓ2  then ‖𝑎‖ℓ4 > (
𝜀2

𝐾
)‖𝑎‖ℓ2  where (𝐾 <  ∞) is a universal constant. 

With respect to this universal constant, we shall allow (K = 12.511).  With respect to these 

requirements the Hermitian matrices inherently maintain a linear transformation over the real 

numbers.  To conclude the security reduction, with respect to the optimization implications of the 

Grothendieck inequality extended to non-commutation, semidefinite programming (SDP) has a 

relaxation of NP-Hard problems related to combinatorial optimization. 

The strength of any quantum computer hinges on the advanced capabilities to process large 

combinations, permutations, and enumerations of sets using superposition of a multi-qubit system.  

The proposed security reduction of a Grothendieck problem uses this very component of quantum 

computing to mitigate cryptanalysis based on future and known threats posed by quantum 

computers by addressing the fundamental computational process as opposed to a specific set of 

quantum computing algorithms. 

Bi-affine, or bilinear matrix inequalities (BMI) allow the use of both vectors and 

symmetric matrices, opening the path to Pauli matrices based upon a Hermitian metric (Boyd & 

Vandenberghe, 1997).  A linear matrix inequality as a relaxation of a BMI can be defined as the 

BMI problem introduced by Boyd and Vandenberghe where the BMI problem is expressed as: 
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minimize 𝑐𝑇𝑥 

subject to 𝐹0 +∑𝑥𝑖𝐹𝑖

𝑚

𝑖=1

+ ∑ 𝑤𝑗𝑘𝐺𝑗𝑘

𝑚

𝑗,𝑘=1

≥ 0 

𝑤𝑗𝑘 = 𝑥𝑗𝑥𝑘, 𝑗, 𝑘 = 1,… ,𝑚 

Within the constraint of(𝑤𝑗𝑘), if (𝑗 ≠ 𝑘) the necessary conditions for bilinear matrix 

inequalities may be satisfied by quadratic forms.  The relaxation of this BMI focuses on the 

second constraint to derive the linear matrix inequality (LMI): 

minimize 𝑐𝑇𝑥 

subject to 𝐹0 +∑𝑥𝑖𝐹𝑖

𝑚

𝑖=1

+ ∑ 𝑤𝑗𝑘𝐺𝑗𝑘

𝑚

𝑗,𝑘=1

≥ 0 

[
𝑊 𝑥
𝑥𝑇 1

] ≥ 0 

A symmetric matrix may be positive semi-definite if the quadratic form associated with 

the matrix is non-negative.  It is useful at this point to refer to the interchangeability of the term 

eigenvalue with characteristic value, noting for Hermitian matrices that any Hermitian matrix 

where the eigenvalue is non-negative, then produces a matrix that is positive semi-definite 

(Cullen, 1990).  The semi-definite cone is associated with several semidefinite programming 

problems, including optimization, denoted as (𝑆+), which is an intersection of half-spaces in the 

subspace (𝑆𝑛) of the symmetric, semi-definite matrix.  Given a symmetric matrix, the square 

root of the largest eigenvalues which are all non-negative is used to derive the linear operator 

norm. 

The resulting arc length based upon the geodesic is the minimized arc length of the 

Riemannian metric. 
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12𝜋6𝑥2

(16𝑥6 + 𝜋6)3/2
 

Equation 1 – Maximal Element 

 

 

The geodesic depicted results from a center, radius, and equation derived from the 

holomorphic vector bundle, or the primary function and derivatives of the secondary functions.  

The center of the geodesic, expressed as: 

(
2𝑥0(𝜋

6 − 8𝑥0
6)

3𝜋6
, 12.511− 0.0752536𝑥0

4 −
2.58386

𝑥0
2 ) 

Equation 2 – Center Point of Geodesic 

(16𝑥0
6 + 𝜋6)3/2

12𝜋6𝑥0
2  

Equation 3 - Radius of Geodesic 

(−12.511 + 𝑦 +
2.58386

𝑥0
2 + 0.0752536𝑥0

4)2 + (𝑥 −
2𝑥0(𝜋

6 − 8𝑥0
6)

3𝜋6
) =

(𝜋6 + 16𝑥0
6)3

144𝜋12𝑥0
4  

Equation 4 – Geodesic Equation 

 

 

Cryptographic Specification 

Design Rationale1 

Quadratic form allows one to transform a curve by introducing a new coordinate system 

using a coordinate transformation (Shilov, 1977).  A quadratic form is defined on a linear space 
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such that an argument of a vector is obtained by changing (𝑦) to (𝑥) in any bilinear form defined 

on the linear space.  The necessary and sufficient condition for a symmetric matrix in defining 

positive definite bilinear form requires the descending principal minors of the matrix be positive 

(Shilov, 1977).  In the case of Hermitian matrices of which the bilinear form is symmetric and is 

based upon a positive-definite form, the bilinear form is derived as a scalar product via 

substitution, i.e., 𝐁(𝑥, 𝑥) is positive definite, the bilinear form 𝐁(𝑥, 𝑦) is the scalar product 

(Shilov, 1977).  This results in an orthonormal canonical basis derived from the scalar product, 

and it is also worth noting that with any non-symmetric bilinear form the derived quadratic form 

cannot be used to re-construct the bilinear form that generated it (Shilov, 1977). 

For any given vector in ℒ3, the corresponding decision problem of finding a vector which 

is longer than the shortest vector by a factor of  1 + 𝑛𝜀 for the shortest nonzero vector with 

absolute constant 𝜀 > 0, it is NP-Hard if and only if the problem is congruent to the factor 

constraint of 1 + 2−𝑛
4
 with respect to the lattice with ℒ2 norm. 

Treating a k-clique as input, the complexity is generally understood as  2
𝑛

2 for any n 

number of potential k-clique sets for (𝑛𝑛
2

), which results in the input length |𝑥| + |𝑘| = 𝑛 + log 𝑛 

for  

Extending the verification of key strength, the use of the closest vector problem (CVP) 

and the shortest vector problem (SVP) introduce further complexity in conjunction with both 

greater resilience in implementation as well as higher adaptability in terms of adjustments to the 

overall scheme. 

The SVP states, for a randomized reduction with constraints of a lattice 𝔏, such that the 

norm of the lattice is 1.82 with respect to the constant e, where 𝑒 > 𝑂, finding a vector of length 
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longer than the shortest vector by a factor of 1 + 2 − 𝑛′ is NP-Hard, and NP-Complete for 

randomized reductions in terms of decidability (Ajtai, 1998). 

Osculating circles occur at a specific point, the uniqueness of which allows noise within 

the polar coordinates of the holomorphic vector bundle.  The use of sufficient minute values of 

noise within lattice-based cryptography confirm that it is an acceptable post-quantum 

cryptographic scheme. 

To counter the failings of Lattice-Based Cryptography (LBC), the key space must be 

sufficient to withstand quantum computing threats, but also feasibly be implementable for wide-

spread production and use.  If a linear manifold is finite, the search space for noise as 

perturbation within a finite vector space produced by the inner product of the manifold is 

reduced.  Furthermore, the inner product of two vectors may be a tensor that is commutative 

(Budge, 1991).  Regarding the implementation of noise, as well as the level of noise, the smaller 

search space may enable post-quantum capable encryption, as well implementation in large-scale 

networks. 

Per Shilov in his book Linear Algebra, on page 41 section 2.35.d he states that “…every 

complex linear space…is twice as large as a complex linear space if it is regarded as a real 

instead of complex” (Shilov, 1977).  Therefore, whether the decision is to use a larger space by 

regarding it as a real-valued system rather than complex, or vice versa the ability to influence the 

overall key space for optimal security and performance is straightforward.  If a larger space is 

needed once it could be discovered that the key space is insufficiently sized, a switch between 

the systems of (ℜ) or (𝔈) could hypothetically solve this problem. 
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Design Decisions 

The proposed advances to the TLSv1.2 network protocol offer the following 

improvements within the context of a post-quantum resilient scheme.  Through use of three NP-

Hard problems, adjusted as NP-Complete in terms of randomized search decidability, the goal is 

stated as mitigating hybrid attacks from implementations of Shor’s factoring algorithm, and 

Grover search algorithms for known and unknown numbers of solutions.  The given problem is 

as follows.  For any arbitrary bilinear quadratic in ℂ4, find any set of points in ℂ such that the 

original graph of the bit map is calculable using only the homeomorphism of any arbitrary k-

clique of unknown network (𝐺). 

The proposed scheme reduces the k-clique problem as an input function, resulting in the 

generation of a quadratic used as parameters within the lattice.  By virtue of Grothendieck’s 

inequality, which is the principle NP-Hard problem for the security reduction, the satisfiability of 

lattice constraints in terms of NP-Hard and NP-Complete bounds is provably congruent to a 

closest vector problem in lattice ℒ3, where the base vectors of ℒ3 are treated as a holomorphic 

vector bundle, denoted as the unit ball with congruent topology to the Riemann sphere. 

For the Grothendieck constraints, the relative vector norms of |𝑥| < 1, |𝑦| < 1 

necessarily results in satisfaction of NP-Hard requirements for shortest vector problems in the 

lattice 𝐿2.  While research in Ring Learning with Errors (R-LWE) schemes have pushed to 

produce a lattice structure from a single, small vector as both secure and efficient are widely seen 

as a failure in security, the scheme proposed in this verification hinges on the use of vector 

bundles such that a principle bundle may be derived.  This principle bundle, treated as the unit 

sphere has as homeomorphisms, an equivalence of the derivatives shared by two holomorphic 

vectors, wherein the remaining holomorphic vector may be trivially derived.   
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In this manner, the achievement is such that a single vector bundle may be applied as the 

base vector, while simultaneously capable of being folded into any of the other two vector 

bundles.  The resulting coordinate shift achieved through a tensor produces stable security in 

addition to optimal costs in terms of use. 

The entire set as the complete system shall be defined as open, resulting in an empty and 

open complement which therefore defines the system as closed and open.  The primary analytic 

function is taken from Malloy (Malloy, 2016), and will be applied throughout the methodology 

as the principle expression adapted to the maximal element.  It was determined in Malloy that the 

existence of this analytic function is unique, or holomorphic, and a continuation of an Abelian-

Banach space within a Riemann-Hilbert intersection (Malloy, 2016).  These properties will be 

assumed throughout the methods of the security reduction described herein.  Given that the 

system is within a Hilbert space, the Grothendieck constant is inherent within the scope of this 

novel cryptographic scheme.  This has as a requirement, which needs to be satisfied, norms 

relative to the vectors of (𝑥1, 𝑥2, … 𝑥𝑚) and (𝑦1, 𝑦2, … 𝑦𝑛) that |𝑥𝑖| ≤ 1 and|𝑦𝑗| ≤ 1. 

For the purposes of this reduction, the vectors (𝑥𝑖𝑦𝑗) with respect to covariance maintain 

symmetry.  Therefore, any adjustment to either vector which removes the co-variance may result 

in an inequality derived from the resulting asymmetry which would also introduce an inability to 

reconstruct the generative bilinear form based on any quadratic form which may follow.  This 

capability is achieved by treating 𝜀 as a permutation tensor as well as an introduction of 

arbitrarily small noise.  Such use of 𝜀 results from treating (𝜃) as a point of reflection or curl 

based upon polar coordinates. 

The manifold (𝑀) is a Riemannian manifold boundedly compact.  Given this, (𝑀) 

possesses a metric tensor, where the metric shall be defined per its inner product of the tangent 
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space.  Within the tangent space, the Riemannian metric results, thereby introducing the positive-

definite metric tensor along with the real-valued metric.  Given any metric space (𝑅) within (𝑀), 

conditions for boundedness are for an 𝜀-net, such that (𝑥 ∈  𝑀) and (𝑎 ∈  𝐴) where(𝐴 ⊂ 𝑅), 

there exists a point 𝑝(𝑎, 𝑥) < 𝜀 (Kolmogorov & Fomin, 1999).  The value 𝑝(𝑥) may be selected 

arbitrarily if there exists at least one 𝑝(𝑎) which satisfies this condition (Kolmogorov & Fomin, 

1999).  Boundedness is both necessary and sufficient for compactness (Kolmogorov & Fomin, 

1999).  With respect to epsilon, it will act as both permutation tensor and arbitrarily small values 

of noise.  The value of 𝑝(𝑎) shall be the arc length derived from the geodesic, ensuring 

satisfaction of the constraint that 𝑝(𝑎, 𝑥) < 𝜀 given that the upper bound of the vector is|𝑥𝑖| ≤ 1 

and (𝜀 ≤ 2). 

The Riemannian metric may be regarded as weak, implying a positive definite property 

while allowing looser requirements for Riemannian metric satisfiability such as isomorphism 

between the tangent and cotangent spaces.  The geodesic of (𝑀) is graphically represented as 

osculating circles to calculate the shortest arc length of the maximal element to derive the 

tangent bundle.  The analytic function, Equation 1, introduces the principle expression for the 

security reduction. 

(12.511 −
𝑧4

𝜋3
) 

Equation 5 – Principle Holomorphic Expression 

The canonical Hermitian inner product so defined by Equation 1 is a result of the matrix 

(𝐸) defined as the identity matrix.  Equation 1, as was determined by Malloy, produces a 

symplectic form on (𝑀) over a holomorphic vector space by the complex Hilbert space 

requirements satisfied by Malloy to derive the analytic function (Malloy, 2016).  The necessary 
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conditions of the Hermitian inner product specific to reduction of the Grothendieck problem 

chosen requires commutative properties of the inner product for relaxation of the Bilinear Matrix 

Inequality problem (BMI) (Boyd & Vandenberghe, 1997).  The BMI shall be implemented to 

reduce Grothendieck’s Non-Commutative (GNC) problem for the proposed cryptographic 

scheme. 

The Hermitian inner product generically defined has a symmetric positive definite real 

part, while the imaginary component is symplectic.  The avoidance of defining (𝐸) as a Hilbert 

identity was chosen to provide a unitary basis more easily, as well as introduce the Pauli 

matrices.  By the tangent bundle, a Jacobian may be derived as an iterative method for decimal 

floating point operations.  This allows use of (ℚ) to reduce the integer (2) accordingly, relative 

to the constant(𝑘𝑅(𝑛)) and the vectors(𝑥𝑚 , 𝑦𝑛). 

The appropriate (𝑛) value with respect to (2) within the context of the GNC problem is 

traditionally known to be(√2), and any value lesser than (2) results in NP-Hard approximations 

(Briet, Regev, & Saket, 2015).  In a proven refutation of Grothendieck’s conjecture for complex 

matrix (𝐴) of which the numbers(𝑠𝑖, 𝑡𝑗 ∈ 𝐴) for constant (𝑘𝐶(𝑛)) when (𝑛 = 2) are known to 

satisfy [1.1526, 1.2157] (Finch, Mathematical Constants).  The two values which satisfy the 

constant (𝑘𝐶(𝑛)) may be substituted within the vectors(𝑥𝑚 , 𝑦𝑛). 

Equation 2 is the image of 𝑓(𝐻).  Figure 1 is the graphical representation of Equation 2.  

Within the parametric plot range between(0, 𝜋), for the domain of (0, 2) the initial entropy 

derived from the modified analytic function produces the image for projection. 

(12.511 −
𝑛4𝑥

𝜋3
) = (0, 𝜋,∞) 

Equation 6 – Image 
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Analyzing Equation 2 as a preimage of 𝑓(𝐻) results in intersections of all roots in the 

complex plane equivalent to all roots of Equation 1.  The resulting intersections allow 

implementation of surjective functions within the roots of both Equation 1 and 2, from the 

maximal element.  The arc length within the range of (0, 2𝜋) relative to the parametric curve, 

with respect to the doubling of the roots of Equation 1 approximately equal the value of the 

parametric arc.  The parametric curve is generated from an adjusted Gaussian approximation to 

prime numbers, denoted as Equation 3 in complex form.  From the doubling of the roots of 

Equation 1, the approximation to the value of the arc allows the introduction of torsion with 

respect to parametrization such that one may choose either the vector of the geodesic or instead 

operate as if a particle is accelerated. 

For the purposes of this reduction, the polar graphs produced by the holomorphic vector 

bundle shall be termed “onions.”  Given the basis of each onion on a Bloch sphere, the 

introduction of acceleration to a point within the geodesic generates a shift in coordinate 

systems.  If a particle, or point, is treated analogous to a Bloch sphere then within each point the 

respective position determines specific behavior.  Bloch spheres have as a property that a pole 

may either act to generate or destroy a particle.  Therefore, any point within the geodesic shares 

this property such that once acceleration is introduced, the coordinate system changes from an 

initial value to one based upon the vector, trajectory, and initial vectors.  This is to introduce 

asymmetry to generate an inequality within bilinear matrices as a method to obfuscate the base 

similar to the closest vector problem. 

To achieve the ability of applying arc lengths properly, a parametrized function must be 

introduced.  The proposed parametric function shall be based upon a Gaussian expression 



EIGENEXUS INC.TM CHRYSALIS 14 

calculated from Gauss’ approximation to twin primes, as defined by Malloy (Malloy, 2016).  

This is shown as Equation 3 in complex form. 

𝑖𝑒−𝑖𝜃 − 𝑖𝑒𝑖𝜃  

Equation 7 – Gaussian Expression 

The Gaussian expression permits introduction and use of arbitrarily sized integers as a 

co-variant of the period (2𝜋) for the integer roots(𝜃: 0, 𝜋).  This transcendental function can be 

expressed trigonometrically as a function of 𝑠𝑖𝑛 and 𝑐𝑜𝑠𝑖𝑛 in another representation, using the 

parameters of (0, 2𝜋) as a range for the variable(𝑡).   

2 sin(𝑡) , {
sin (𝑡) )  

cos(𝑡)
} , 𝑡 = 0 𝑡𝑜 2𝜋 

 

Equation 8 –Parametrized Gaussian Expression 

The initial arc length of (𝑀) is derived from parametrization of the Gaussian expression, 

which shall be demonstrated not to be the smallest arc length of(𝑀). 

∫ √4 cos2(𝑡) + sin2(𝑡)
2𝜋

0

𝑑𝑡 = 8𝐸(
3

4
) ≈ 9.68845 

Equation 9 – Gaussian Arc Length 

 

𝑖𝑒179.21°(−𝑖) − 𝑖𝑒179.21°(𝑖) 

Equation 10 – Gaussian Polar Coordinate 

The polar graphs shown in Figures 5-8 for ranges of (𝑧) based upon Equation 1 result 

from an increase of the respective range of(𝑧), listed as the set(𝐴). 
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𝐴 = {
(−𝜋, 𝜋) (−20,20)
(−37, 37) (−100,100)

} 

Equation 11- Holomorphic Function Range 

Each range of (𝑧) produces a series of expanding arcs from the point of origin at 

approximately 0, and as shown by the graphs of the principle analytic function, a slight 

perturbation in the ball results from an increase in range, slightly distorting the ball. 

To revisit the parametric curve, the given parameters for the algorithmic expression 

denoted as the adjusted principle holomorphic function intersects at the signed values of (−1, 1) 

upon the y-axis.  The use of this intersection upon the y-axis is to allow for introduction of slight 

noise as “pulses” of the holomorphic vector bundle.  The concept of “pulse” shall be regarded as 

a layering effect of the encryption upon the cipher text based upon values of additive noise 

derived from 𝜀-permutations. 

The holomorphic vector bundle is a set of functions where each function produces a 

unique orientation of its respective polar graph.  The uniqueness in orientation, as well as the 

homeomorphism between each, lends itself to problems such as the closest vector problem. 

{
 
 
 

 
 
 𝑓(𝑥, 𝑦, 𝑧) = (−

4𝑧3

𝜋3
)

𝑔(𝑥, 𝑦, 𝑧) = (12.511 −
𝑧4

𝜋3
)

ℎ(𝑥, 𝑦, 𝑧) = (−
𝑧4

𝜋3
)

 

Equation 12 – 𝐻𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑉𝑒𝑐𝑡𝑜𝑟 𝐵𝑢𝑛𝑑𝑙𝑒 

Between each onion, the primary difference is orientation, the other being the range of 

each function.  Apart from differences in range and orientation, the domain remains the same 

with respect to all three holomorphic functions.  The applications of each onion is presented as 
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an ability to structure bilinear forms within and between functions and composite functions such 

that identification of the bilinear form based on the generated quadratic form is difficult.  The 

extension this has towards the security reduction applies the bilinear form as a matrix inequality 

such that the roots of each function is applied as a value of |𝑥𝑖| ≤ 1 and|𝑦𝑗| ≤ 1.  

Further applications of the quadratic form extend to changes in coordinate systems 

between each polar coordinate derived from the holomorphic vector bundle.  By projecting the 

concentric circles through the hyper-plane, an osculating circle for(𝑥0) enables the calculation of 

both the maximal element as well as reduction of the parametrized arc length based upon the 

geodesic.  The resulting arc length based upon the geodesic is the minimized arc length of the 

Riemannian metric. 

Given the bilinear matrix inequality (BMI) constraint of the relative norm of the y 

vector, and the same constraint applied to the relative norm of the x vector, this condition for the 

BMI is satisfied with respect to the y vector for positive values of n.  Insofar as satisfying the 

same condition for the values of x with respect to 𝑛 ∈ ℤ, the primary number base for x is zero.  

Otherwise, the parent function of X for 𝑛 ∈ ℤ is expressed as: 

𝐗: 𝑒−𝑖𝑥 − 2𝑖 = −2𝑖 + ∑
(−𝑖𝑥)𝑘

𝑘!

∞

𝑘=0

 

With y-intercepts located at: 

(0,1) ∈ ℝ, (0,−2) ∈ ℂ 

Given the root of X: 

1

2
(4𝜋𝑛 − 𝜋 + 2𝑖 log2) 

The utility of the series of Y as a period of 2 with respect to the y-intercepts of X allow 

efficient use of the TAP algorithm.  The TAP algorithm couples (𝑥, 𝑦, 𝜃)  between the range of 
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values for y along a dependent axis, where the dependent axis is a transition vector used by TAP.  

Since TAP occurs with respect to all zeroes of the system, TAP results in a coordinate shift 

between X and Y for (𝒪, 𝔗).  The series X is periodic in (𝑥) with period 2𝜋 while the series Y is 

periodic in (𝑦) with period 2.  Both series are with respect to a universal constant, 𝐾 = ∞. 

The series representation of Y is equated to the following function: 

𝐘: 2𝑒−𝑦𝜋𝑖 = 2∑
𝜋𝑘(−𝑖𝑦)𝑘

𝑘!

∞

𝑘=0

 

 

No roots exist for the function Y.  The reduction of the non-commutative Grothendieck 

inequality (NCG) centers on vector constraints and conditional values of tensor products 

applicable through the scheme’s architecture.  For a given linear operator ℱ, and the vectors 𝑤𝑗,𝑘 , 

X, Y, the following holds.  For any arbitrary vector 𝑋 = [

𝑥𝑖
𝑥𝑗
𝑥𝑚
], the tensor product of 𝑋⊗ 𝑌 as 

permutation of the vector 𝑌 = [

𝑦𝑗
𝑦𝑛
𝑦𝑚
] may be expressed as 

𝑋⊗ 𝑌 = {
𝑥𝑗, 𝑦𝑗  for 𝑗 ≠ 𝑘 

𝑤𝑗𝑘 , otherwise
 

Insofar as the vector of 𝑤𝑗,𝑘  has the additional constraints of: 

𝑤𝑗,𝑘 = {

𝑥𝑗,𝑘
𝑗
𝑘

 

The given linear operator is a function of the vector of 𝑤𝑗,𝑘 , treated as a bijective 

function: 

 

𝑤𝑗,𝑘
ℱ
→ 𝑥0 = [

𝑥𝑗
𝑦𝑗
] 
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For any constant, 𝑘 = 1, … ,𝑚 when 𝐾 = ∞, such that 𝑛 = (−1,1), 𝑥 = 0, and 

𝑝: (𝑥 = 𝑛) → (𝑛 = 0). 

Therefore, this geodesic point is a quadratic zero periodic in 𝑌, with bilinear base (𝑋, 𝑌).  

Topological properties place the geodesic in the neighborhoods of (𝑥, 𝑦: 2, ‐ 2).  Inverting these 

values of 𝑥, 𝑦 and (2,−2) such that (𝑥 =  −2) and (𝑦 =  2) is a TAP for the Blue onion in this 

RACK.  The TOP is pictured as the intersections of the points (𝐵, 𝐶).  The relative pole 

orientation generates the polarity as a vector bundle denoted as 𝛼⃑, signifying that this bundle 

produces values analogous to an alpha polarity of a Bloch sphere.  A 𝛽 polarity is the opposing, 

cancellation vector bundle, where no vector tends towards these values, yet marks the initial 

point of transition towards 𝛼⃑. 

Algorithm Collection 

Bob wishes to share an encoded message with Alice.  This message is encrypted with 

Alice’s public key, and only Alice’s private key can decode any message sent using her public 

key.  Alice’s private key is a quadratic form of arbitrarily chosen onions, (𝑂𝐴,𝐵,𝐶 ∈ 𝒪) called an 

“O-Clique,” and represented as a graph in matrix form.  To produce the O-Clique, the onions are 

converted into a matrix, and then translated into the secret (𝑠) which is a quadratic form.  Once 

this is complete, the clique is “PEN’d” to add arbitrary nodes within the graph.  The H-Clique is 

then converted to polynomial form and obfuscated by shifting weights.  The resulting clique is 

now Alice’s TOP expressed as TOP𝐴.  Using TOP𝐴, Alice then shares her public key, denoted as 

BLIP.  Bob then uses BLIP to encode his message to Alice.  Alice takes the message from Bob 

and extracts the message by using TAP operating upon BLIP with respect to TOP.  Since TOP is 

a vector field, using TAP with BLIP produces the H-Clique, the final clear text must be produced 
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by an ephemeral key Alice generated by her choice of onions for the O-Clique.  The quadratic 

form from the onion matrices used to create the O-Clique is incalculable from the quadratic.  

Since Alice is the only one who knows the quadratic form and base matrices, only she knows 

which nodes to subtract from the H-Clique.  The following diagram describes this process: 

Protocol Algorithm Terms 

• TEQ – Tensor Edge Quadratic 

o Alice Handshake 

o Key Exchange Pulse 

• MIQ – Matrix Inequality Quadratic 

o Bob Handshake 

o Key Exchange Pulse 

• NET – Node-Edge Tensor 

o Handshake Negotiation 

o Trapdoor 

• PEN – Point Edge Nodes 

o Generates Arbitrary Nodes upon Edges 

General Asymmetric Terms 

• TOP – Tensor Origin Point 

o Bilinear Vector Field from Intersecting Onions used by TAP 

• BLIP – Bilinear Intersection  

o Public Key 

• TAP – Tensor Access Point 

o Linear Operator ⊗ 

o Generates Nodes for TOP 

o Creates Homeomorphism of O-Clique 

• 𝜀-net filter 

o Permutation Tensor Added to TAP 

To describe the process diagram, the following steps are the operations needed to 

implement the asymmetric onion scheme. 

1: Alice Chooses Onions, Cliques – “Alice Racks the Onions” 

2: Alice encrypts her key by generating a homeomorphism of the rack – “Alice PENs her 

Key” 
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3: Taking the H-Clique, Alice then uses TAP to create TOP – “Alices TAPs the Clique” 

4: After the TOP vector field is produced, Alice can transmit her BLIP – “Alice’s BLIP is 

up.” 

5: Bob uses Alice’s BLIP to encode his message – “Bob BLIPS Alice” 

6: Alice Authenticates the BLIP using TOP – “The BLIP TOPs” 

7: Alice pairs the TAP, TOP, and BLIP to get the H-Clique – “Alice TAPs the BLIP” 

8: Alice uses the H-Clique and PEN to decode using her O-Clique – “Alice TAPs the 

PEN” 

9: Alice now has the BLIP message from Bob. 

 

Algorithm One – Tensor Origin Point 

TOP Parameters 

Given the use of tensors, by default they are regarded as a vector field resulting from the 

intersection of vectors.  The characteristic of a tensor as a vector is derived from the membership 

between a dynamic, interacting system.  With each onion based upon a particle, constructed as a 

Riemann sphere which itself is modeled in quantum computing as a Bloch sphere, the respective 

poles of an onion have specific properties associated with them.   

Mathematical Operations and Equations 

Onion A (𝑂𝐴) + Onion B (𝑂𝐵) using TOP is outlined as follows: 

𝑂𝐴 is an N x N matrix 

𝑂𝐵 is an M x M matrix 

TOP is the incident N x M matrix 

 

1 - 𝑂𝐴 PEN 𝑂𝐵 creates nodes for intersection 

2 - 𝑂𝐴 TAP 𝑂𝐵 and 𝑂𝐵 TAP 𝑂𝐴 begin generating edges between nodes 

3 - The vector fields produced by step 2 become TOP 
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Given the use of tensors, by default they are regarded as a vector field resulting from the 

intersection of vectors.  The characteristic of a tensor as a vector is derived from the membership 

between a dynamic, interacting system.  With each onion based upon a particle, constructed as a 

Riemann sphere which itself is modeled in quantum computing as a bloch sphere, the respective 

poles of an onion have specific properties associated with them.  The following is the TAP 

algorithm: 

(𝑎⃑ ∈ TOP𝐴) and (𝑏⃑⃑ ∈ TOP𝐵) 

(𝑎⃑ ⊗ 𝑏⃑⃑) ∈ (TOP𝐴⊗TOP𝐵) 

TOP𝐴 ⨂ TOP𝐵 → TOP⃑⃑⃑⃑⃑⃑ ⃑⃑
𝐴⃑,𝐵 = TOP𝐴,𝐵 

TOP: (𝒪) = {

BLIP𝑁,𝑀
𝑥0 ∈ 𝑂𝐵

TAP: 𝜃, 𝑦 ∈ 𝒪 
 

Algorithm Two – Bilinear Intersection Point (BLIP) 

 

BLIP 

Even though 𝑂𝐴 and 𝑂𝐶  only have (0) as a root, 𝑂𝐴 has an odd parity while 𝑂𝐶  has an 

even parity.  The parity of 𝑂𝐵 is even, and both 𝑂𝐵 and 𝑂𝐶  have a global maximum of 0 at 𝑧 = 0.  

Thus, a BLIP is achieved by using the parent functions of the sets {𝑋} and {𝑌}, denoted as X and 

Y, but remains secure when released publicly.  Since the onion choice and derivative chosen is 

unknown, the parity of the key pair is unknown.  Since the parity of the key pair is unknown, 

having both BLIP and TOP will not reveal which TAP is needed.  Even if a TAP is found in the 

TOP vector field, since the H-Clique was PEN’d and had weights adjusted, the actual O-Clique 

remains unknown.  Given the O-Clique is a quadratic form used to generate the bilinear matrices, 



EIGENEXUS INC.TM CHRYSALIS 22 

knowing the matrices will not permit calculating the quadratic O-Clique either.  By using this 

method, the key selected as the quadratic form is ephemeral. 

Mathematical Operations and Equations 

The BLIP algorithm relies on the TAP operator, ⊗, which manipulates the zeroes of the 

set 𝒪 by taking the first derivatives of (𝑂𝐵 , 𝑂𝐶) such that: 

𝑂𝐵′

𝑂𝐶′
} = 𝑂𝐴 

The principle expression for 𝑂𝐴 is: 

𝑂𝐴 : −
4𝑧3

𝜋3
 

While the first derivatives of 𝑂𝐵,𝐶  are equal, the onions 𝑂𝐴,𝐶  share the same root of (0), 

this being the only root of the onions 𝑂𝐴 and 𝑂𝐶 . 

Algorithm Three – Tensor Origin Point (TOP) 

Mathematical Operations and Equations 

 

Algorithm Four – Tensor Access Point (TAP) 

 

TAP 

The TAP function produces an intersection between real and imaginary values, where the 

real intercepts occur at (-1, 1) as a value for (𝑛), where 𝑛 = 𝑥, and exists along the x-axis.  The 

imaginary values of TAP occur at (−1,−4) and (1,−4) again using the equation (𝑛 = 𝑥).  The 

convergence of the real and imaginary values of TAP occurs at the point of origin, (0). 

Given the BMI constraint of the relative norm of the y vector, and the same constraint 

applied to the relative norm of the x vector, this condition for the BMI is satisfied with respect to 
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the y vector for positive values of n.  Insofar as satisfying the same condition for the values of x 

with respect to 𝑛 ∈ ℤ, the primary number base for x is zero.  Otherwise, the parent function of X 

for 𝑛 ∈ ℤ is expressed as: 

𝐗: 𝑒−𝑖𝑥 − 2𝑖 = −2𝑖 + ∑
(−𝑖𝑥)𝑘

𝑘!

∞

𝑘=0

 

With y-intercepts located at: 

(0,1) ∈ ℝ, (0,−2) ∈ ℂ 

Given the root of X: 

1

2
(4𝜋𝑛 − 𝜋 + 2𝑖 log2) 

The utility of the series of Y as a period of 2 with respect to the y-intercepts of X allow 

efficient use of the TAP algorithm.  TAP couples (𝑥, 𝑦, 𝜃)  between the range of values for y 

along a dependent axis, where the dependent axis is a transition vector used by TAP.  Since TAP 

occurs with respect to all zeroes of the system, TAP results in a coordinate shift between X and Y 

for (𝒪, 𝔗).  The series X is periodic in (𝑥) with period 2𝜋 while the series Y is periodic in (𝑦) 

with period 2.  Both series are with respect to a universal constant, 𝐾 = ∞. 

The series representation of Y is equated to the following function: 

𝐘: 2𝑒−𝑦𝜋𝑖 = 2∑
𝜋𝑘(−𝑖𝑦)𝑘

𝑘!

∞

𝑘=0

 

 

No roots exist for the function Y. 

Mathematical Operations and Equations 

The TAP function is expressed as: 

2𝑒−𝑖𝜋𝑛 − 2𝑒𝑖𝜋𝑛 
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The following is the TAP algorithm: 

(𝑎⃑ ∈ TOP𝐴) and (𝑏⃑⃑ ∈ TOP𝐵) 

(𝑎⃑ ⊗ 𝑏⃑⃑) ∈ (TOP𝐴⊗TOP𝐵) 

TOP𝐴 ⨂ TOP𝐵 → TOP⃑⃑⃑⃑⃑⃑ ⃑⃑
𝐴⃑,𝐵 = TOP𝐴,𝐵 

TOP: (𝒪) = {

BLIP𝑁,𝑀
𝑥0 ∈ 𝑂𝐵

TAP: 𝜃, 𝑦 ∈ 𝒪 
 

 

Example of Tapping: 

RACK: {
𝑂𝐴
𝑂𝐵

 

PEN:= 𝐺(𝑂𝐴)⨁(𝑂𝐵) 

TAP𝐴,𝐵: {
𝑂𝐴
𝑂𝐵

 

 

TAP𝐴 = 𝑂𝐴: (𝑥, 𝑛) 

𝑤𝑗,𝑘 = {

𝑥𝑗,𝑘
𝑗
𝑘

 

𝑤𝑗,𝑘
ℱ
→ 𝑥0 = [

𝑥𝑗
𝑦𝑗
] 

𝑘 = 1, … ,𝑚 

 

𝑛 = (−1,1) and 𝑥 = 0 

𝑝: (𝑥 = 𝑛) → (𝑛 = 0) 
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TAP(𝑂𝐴, 𝑂𝐵)⨂TOP(𝐗, 𝐘) 

 

𝑋 = [

𝑥𝑖
𝑥𝑗
𝑥𝑚
]  𝑌 = [

𝑦𝑗
𝑦𝑛
𝑦𝑚
] 

 

𝑋 ⊗ 𝑌 = BLIP {
𝑥𝑗, 𝑦𝑗  for 𝑗 ≠ 𝑘 

𝑤𝑗𝑘 , otherwise
 

It has been established that (𝑂𝐵
′ , 𝑂𝐶

′ ) = 𝑂𝐴, and that for any x with a base of 0, the relative 

Onion is 𝑂𝐵.  The PEN algorithm takes any sub-graph k-clique as the O-Clique, and proceeds to 

introduce arbitrary nodes upon arbitrary edges to generate the homeomorphic clique of the O-

Clique.  This new homeomorphic clique, termed H-Clique is then TAP’d to eventually become a 

public key.  The O-Clique itself is an ephemeral key, obfuscated by PEN and resulting in the 

encrypted H-Clique which is then diffused in the TOP by a TAP. 

The process of encrypting your key relies on the parametrization of the system 𝒪, which 

is achieved with the function: 

𝑖𝑒−𝑖𝜃 − 𝑖𝑒𝑖𝜃 

  This step is referred to as “Penning your Key.”  The utility of this function is based upon 

the periodicity, which is a period of 2𝜋 being periodic in 𝜃, with the integer roots of 𝜃 being 0 

and 𝜋.  The roots of this function are 𝜋𝑛, otherwise.  Therefore, PEN operates by beginning at 

the zero of the system, which is the center of the geodesic based in 𝑂𝐵. 

Algorithm Five – Point-Edge Node (PEN) 
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PEN Algorithm: 

The start state begins in base zero for the PEN algorithm, applied as a function to the O-

Clique.  This begins the process to manipulate the chosen ephemeral key regardless of the 

ephemeral key selected.  The ability to transform any O-Clique into an H-Clique is achieved via 

the center point of the geodesic, derived from 𝑂𝐵, along with the ability to shift coordinate 

systems between any onion by simply either taking the derivative of the parent onion or doing 

nothing.  With the start state in base zero, the x-coordinate then becomes the value of the 

geodesic center point.  With this set, the relative y-intercept at (𝑥 = 0) can then either be treated 

as a complex or real number.  Given that the period of 2, periodic in y is the relative properties to 

the value of x at PEN0, a PEN-Step is therefore defined as an iteration of one period of 2.  Since 

x as defined by the parent function X is periodic in x with period 2𝜋 it is straightforward to 

operate within both parent functions (𝐗, 𝐘) with respect to the parametric function.  The next 

stage begins upon completion of the step-cycle permutations, and is a result of an additive union 

of the positive integers to the O-Clique.  This unity stage between the integers and the O-Clique 

is calculated using the base  (0, 𝐘) for PEN, symbolized as PEN0,𝐘.  The final stage of the PEN 

algorithm results once the “PEN is Tapped,” meaning a “Tensor Access Point” is added to the O-

Clique, producing the newly formed homeomorphic H-Clique. 

Mathematical Operations and Equations 

 

PEN Start State: 

PEN0 =
2𝑥0(𝜋

6 − 8𝑥0
6)

3𝜋6
 

Penning the Key: 
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G(𝒪){

PEN𝐴
PEN𝐵

′

PEN𝐶
′
 

PEN Steps: 

PEN0,𝐘: ℤ
+⨄G(𝒪) 

Tapping the PEN: 

TAP
⊗
→ PEN = (H)Clique 

PEN Computations: 

PEN ≔ Step𝐘
$
→{

1, place node
0, do nothing

 

The PEN continues the PEN steps and computations for as many iterations, or periods, 

desired.  Essentially the PEN begins as a point in the center of an onion, and then proceeds to 

“walk” the circumference of the parametrized system 𝒪, and based upon the conditions of the 

relative topology to the O-Clique, in addition to 𝔗 a node is either added between the edge, 

resulting in the XOR of that position in both the adjacency matrix and incidence matrix, or 

nothing is done.  Once the PEN has been “tapped,” the output becomes a z-coordinate that uses 

an XOR of the H-Clique based upon the coordinates and equation for the geodesic. 
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Tunable Parameters 

1 - Rack Size 

2 - Color of Onions 

3 - Integer Layering 

4 - PEN Steps 

Performance Analysis 

Known Answer Test (KAT) Values 

Expected Security Strength 

For any arbitrary homeomorphism, there exists a holomorphic vector bundle as a range 

within a parametrized Gaussian domain in ℂ.  Knowing any solution to the problem is 

necessarily within these constraints, the worst-case time complexity may only be derived by first 

isolating the closest vector, and then calculating the shortest vector for the base bilinear (0
1
)-

Matrix.  We show that the least lower bound (LLB) in queries to an arbitrary Grover oracle 

requires 𝑂(√𝑁) evaluations for finding solution 𝑘0 (Pittenger, 2000).  To increase the probability 

of success in queries 𝑡 for 𝑡 solutions, the work factor of a function 𝑓 to return a decision is 

𝑂(√𝑁/𝑡) (Pittenger, 2000). 

 

Algorithm Resistance to Known Attack Vectors 

To mitigate attempts of cryptanalysis using Shor’s algorithm, the TAP algorithm is 

populated with high values of noise.  The following figure depicts where the levels of noise 

begin, as well as their respective number field.  For hybrid attacks using Grover’s algorithm, 

assuming the encoded search space for Grover has been attenuated for noise, the intractability of 

solving for the correct derivative, and therefore racked onions remains successful.  The 



EIGENEXUS INC.TM CHRYSALIS 29 

derivatives applied to the O-Clique do not provide the quadratic basis for the BMI, and therefore 

any implementation of Grover will not know which domain to search even with the range 

known.  Given that the vector fields of the TOP and BLIP rely on a TAP, if one were to isolate 

the TAP from the TAP function they would still be unable to apply the correct PEN an isolate the 

needed O-Clique.  With the added fact that each PEN is ephemeral, there is no risk posed to 

reusing the PEN.  
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