
Information-Theoretic Topology-Hiding Broadcast:
Wheels, Stars, Friendship, and Beyond∗

D’or Banoun† Elette Boyle‡ Ran Cohen§

August 9, 2024

Abstract

Topology-hiding broadcast (THB) enables parties communicating over an incomplete network
to broadcast messages while hiding the network topology from within a given class of graphs.
Although broadcast is a privacy-free task, it is known that THB for certain graph classes ne-
cessitates computational assumptions, even against “honest but curious” adversaries, and even
given a single corrupted party. Recent works have tried to understand when THB can be ob-
tained with information-theoretic (IT) security (without cryptography or setup assumptions) as
a function of properties of the corresponding graph class.

We revisit this question through a case study of the class of wheel graphs and their subgraphs.
The nth wheel graph is established by connecting n nodes who form a cycle with another “center”
node, thus providing a natural extension that captures and enriches previously studied graph
classes in the setting of IT-THB.

We present a series of new findings in this line. We fully characterize feasibility of IT-THB for
any class of subgraphs of the wheel, each possessing an embedded star (i.e., a well-defined center
connected to all other nodes). Our characterization provides evidence that IT-THB feasibility
may correlate with a more fine-grained degree structure—as opposed to pure connectivity—of
the corresponding graphs. We provide positive results achieving perfect IT-THB for new graph
classes, including ones where the number of nodes is unknown. Further, we provide the first
feasibility of IT-THB on non-degenerate graph-classes with t > 1 corruptions, for the class of
friendship graphs (Erdös, Rényi, Sós’66).

∗A preliminary version of this work appeared in ITC 2024.
†Reichman University. E-mail: dor.banoun@post.runi.ac.il. Supported in part by AFOSR Award FA9550-21-

1-0046.
‡Reichman University and NTT Research. E-mail: elette.boyle@runi.ac.il. Supported in part by AFOSR

Award FA9550-21-1-0046 and ERC Project HSS (852952).
§Reichman University. E-mail: cohenran@runi.ac.il. Supported in part by NSF grant no. 2055568, by ISF

grant 1834/23, and by the Algorand Centres of Excellence programme managed by Algorand Foundation. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of Algorand Foundation.

Contents
1 Introduction 1

1.1 Our Contributions . 2
1.2 Technical Overview . 6

2 Preliminaries 12
2.1 Topology-Hiding Broadcast (THB) . 12

3 1-IT-THB for Friendship Graphs 16
3.1 1-IT-THB for Friendship Graphs of Fixed Size . 16
3.2 1-IT-THB for Friendship Graphs of Variable Size . 20
3.3 Friendship Graphs: Beyond a Single Corruption . 22

4 1-IT-THB Admissible Graph Class 29
4.1 1-IT-THB for Wheel Graphs . 29
4.2 1-IT-THB for Admissible Subgraphs . 36

5 Lower Bounds and Characterization 48
5.1 Lower Bounds . 48
5.2 Characterization of Wheel Subgraphs With an Embedded Star 51

Bibliography 52

A UC Framework 53

1 Introduction
Topology-hiding protocols over an incomplete communication network guarantee that colluding
parties do not learn additional information about the topology of the network graph (from within a
given class of graphs), beyond their own neighbor-set [MOR15]. Such protocols may be of interest
in settings where the communication structure itself is sensitive information, such as in social
networks, or peer-to-peer networks based on geographical position. Perhaps the most fundamental
goal is that of achieving topology-hiding broadcast (THB), where a designated sender wishes to
convey an input to all participating parties.

Although broadcast is a privacy-free task, THB turned out to be a challenging goal on its own.
It was recently shown that THB for certain graph classes necessitates computational assumptions,
even in the “honest but curious” semi-honest setting (when corrupted parties follow the protocol
honestly but try to learn more information from their joint view), and even given a single corrupted
party [BBMM18, BBC+19]. This lies in stark contrast to the topology-revealing case, in which
broadcast is trivially achievable in the semi-honest setting.

Obtaining topology hiding based on computational assumptions has been the subject of a fruitful
collection of works, leading to various THB, and in turn, general topology-hiding secure multiparty
computation (THC) protocols [MOR15, HMTZ16, AM17, ALM17, LZM+18, BBMM18, LZM+20,
Li22, BBKM23]. It is known by now how to construct THB protocols for the class of all graphs
(of polynomial size) that are secure against any subset of semi-honest corruptions under stan-
dard number-theoretic cryptographic hardness assumptions such as DDH, QR, and LWE,1 or from
unstructured assumptions such as constant-round constant-rate oblivious transfer [BBKM23].

Motivated by an analogous question within secure multi-party computation, the work of
[BBC+19] asked whether existence of an honest majority can enable information-theoretically secure
THB protocols in certain settings, without relying on cryptographic assumptions and withstanding
computationally unbounded adversaries. We refer to this as IT-THB. The work of [BBC+19] ruled
out 1-secure IT-THB on a path with four nodes (which is 1-connected) but devised a perfect 1-secure
information-theoretic THC on cycles of known length (which are 2-connected); see Figure 1. Given
these initial evidence, they conjectured that feasibility of IT-THB may depend on the connectivity2

of the graphs within the class: namely, that (t + 1)-connectivity is sufficient and/or necessary for
t-secure IT-THB.

The special case of t = 1 was further investigated by [BBC+20], who proved that the conjecture
holds in this case for the stronger notion of THC. They showed that information-theoretic THC with
security against a single semi-honest corruption is possible if and only if the connectivity of every
graph in the class is at least 2. However, they additionally showed that the conjecture does not
hold for THB, by constructing a perfectly secure THB against a single corruption for the butterfly
graph class (Figure 1), where each graph is only 1-connected.

The results of [BBC+19, BBC+20] open a rich domain of questions. As [BBC+20] showed, high
connectivity is not the “right” criterion for feasibility of THB (in contrast to THC), and alternative
graph-properties may serve as candidate conjectures. Therefore, our first question is:

Given a graph-class, which graph properties characterize feasibility of 1-secure IT-THB?

1DDH stands for the decisional Diffie-Hellman assumption, QR for the quadratic residuosity assumption, and
LWE for the learning with errors assumption.

2We consider node-connectivity; that is, a graph is k-connected if and only if every pair of nodes is connected by
k vertex-disjoint paths.

1

(a) 1 2 3 4

(b)

1

23

4

5 n

(c)

1

2

34

5

Figure 1: (a) Class G4-path, of all isomorphisms of 4 nodes on a path; 1-secure THB over G4-path implies key
agreement. (b) Class Gcycle(n) of all isomorphisms of n nodes on a cycle; admits 1-secure IT-THB. (c) Class
Gbutterfly of all isomorphisms of 5 nodes on a butterfly graph (two triangles with a common node); contains
1-connected graphs yet admits 1-secure IT-THB.

Zooming into [BBC+20], their general positive result, of 1-IT-THB over 2-connected graphs, has
a nonzero (yet exponentially small) error probability. This means that non-trivial THB with perfect
security is only known for cycles [BBC+19] and for the butterfly graph [BBC+20]. Is it possible
that for graphs with n > 5 nodes the source of perfect 1-THB is the highly symmetric structure of
cycles? Do other graph classes inherently require a positive error?

Are there additional graph-classes that support perfectly secure THB?

Finally, all feasibility results for IT-THB are secure against a single corruption. Indeed, 2-secure
THB on a 4-node rectangle, possibly with a missing edge, requires oblivious transfer [BBMM18],
and a 2-secure THB on a cycle with 7 nodes (or more) requires key agreement [BBC+19]. The
statistically secure THB protocols for 2-connected graphs from [BBC+20] completely break if there
are two corruptions, and in the butterfly class two corruptions trivialize the problem, as there is
no information to hide. One may wonder if IT-THB simply cannot withstand multiple corruptions
that provide several points of view about the graph topology, except for degenerate cases where
the topology is already revealed by the corrupted parties’ neighbor-sets. This leads to our third
question:

Are there graph-classes that support IT-THB with more than a single corruption?

1.1 Our Contributions

In this work, we conduct an investigation of these questions through a case study of the class of
wheel graphs and their subgraphs. The nth wheel graph Wn is established by connecting a single
node (the “center”) to n nodes who form a cycle, as depicted below. The wheel graph-class Gwheel(n)
consists of all isomorphisms of the wheel graph, i.e., all assignments of the labels {1, . . . , n + 1} to
the nodes of the wheel graph Wn.

n + 1 1

23

4

5 n

Wheel graphs and their subgraphs form a natural extension that captures and enriches previously
studied graph classes in the setting of IT-THB: for example, paths, cycles, triangles, and but-
terfly graphs. Interestingly, although Gwheel(n) has increased connectivity over the n-cycles, the
corresponding state-of-the-art THB protocols for Gwheel(n) are slightly worse. Note that the cycle

2

protocol cannot simply be run directly, as parties on the perimeter of the graph do not know—in
fact, must not know—which neighbor is the center node.

Several challenges arise when hiding the topology of Gwheel(n). First, consider a node v on the
perimeter; such a node has three neighbors, one of which is the center. To hide the identity of the
center node, either the protocol does not utilize the power of the center, or each of the non-center
neighbors must emulate the behavior of the center toward v, and further, v must emulate the center
toward all its neighbors. Second, consider the center node; this node is connected to all other parties
but must not learn how the parties on the perimeter are connected among themselves. Further,
an adversary that corrupts two parties on the perimeter without a common neighbor must not
learn their relative distance on the perimeter. Note that an adversary that corrupts n− 2 nodes in
the (n + 1)-nodes wheel graph knows the entire topology from the corrupted nodes’ neighbor-sets;
however, for t ≤ n− 3 corruptions not all is revealed (i.e., when there are 4 honest parties).3

Characterization of wheels and subgraphs with an embedded star. Our first result shows
that perfectly secure THB is possible against a single semi-honest corruption on the class of wheel
graphs Gwheel(n), as well as on certain classes of its subgraphs. Concretely, given any family of
subgraphs of the wheel with n + 1 nodes, with an embedded star in each graph (i.e., where the
center is fully connected and has degree n), we show that IT-THB with one corruption is possible if
either the minimal degree of non-center nodes in the family is greater than 1, or if it is 1 but so is
the maximal degree. Surprisingly, we show that this characterization is tight for any such subclasses
that are closed under isomorphism (i.e., for each graph topology in the class, all relabelings of this
graph are also contained in the class); that is, if the maximal degree is greater than 1 but the
minimal degree is 1, then THB on this class implies key agreement.

This would suggest that feasibility of IT-THB may correlate with a more fine-grained degree
structure, as opposed to connectivity, of graphs.

More concretely, we begin by defining admissible subgraphs as subgraphs of the wheel graph
Wn in which the degree of the center is n and the degree of every other node is either 2 or 3. The
butterfly graph is an example for an admissible subgraph for n = 4, as well as the (2n + 1)-node
friendship graph Fn,4 see Figure 2.

7 1

23

4

5 6

7 1

23

4

5 6

Figure 2: Examples of admissible subgraphs of Gwheel(6). On the left is a friendship graph in which every
non-center node has degree 2, and on the right is a subgraph where every non-center node has degree 2 or 3.

When considering graphs with an embedded star, i.e., with a fully connected center, non-
admissible graphs are those who contain a non-center node of degree 1. The extreme example is the
star graph in which the center node is connected to n nodes, and no other edges exist, see Figure 3.

3When considering arbitrary admissible graphs with n + 1 nodes (as defined below), there is more information to
hide; therefore, an adversary that corrupts n nodes knows the entire topology but for t ≤ n − 2 not all is revealed
(i.e., when there are 3 honest parties) .

4The friendship graph Fn, introduced in [ERS66], is a planar, undirected graph with 2n + 1 nodes and 3n edges.
Fn can be constructed by joining n triangles with a common node.

3

7 1

23

4

5 6

7 1

23

4

5 6

Figure 3: Example of non-admissible subgraphs of Gwheel(6). On the left is the star graph with 7 nodes. On
the right is a subgraph with a single node of degree 1.

Our characterization nearly shows that IT-THB is possible for a given graph-class with a fully
connected center if and only if it consists only of admissible subgraphs. The single exception is the
graph class Gstar(n) that only contains star graphs, which are not admissible; this class is degenerate
(trivially hides the topology) since any node can identify the center and derive the whole topology.

Theorem 1.1 (IT-THB for admissible graphs with fixed size, informal). Let n ∈ N with n ≥ 4, and
let G ⊆ Gwheel(n) be a graph-class in which every graph has n +1 nodes and the center has degree n.

Then, if either G = Gstar(n) or if G consists of admissible graphs, there exists perfectly secure
IT-THB against a single semi-honest corruption over G. Otherwise, THB over G secure against a
single semi-honest corruption exists if and only if key agreement exists.

Theorem 1.1 demonstrates another interesting phenomena: a nontrivial example of a graph-class
in which G is the union of two sub-classes G1 and G2, such that each sub-class admits an IT-THB,
yet the there is no IT-THB for G. Specifically, while Gwheel(n) and Gstar(n) each individually admits
1-IT-THB, any 1-THB protocol on Gwheel(n) ∪ Gstar(n) requires key agreement.

Generalizing to variable-size subgraphs. We proceed to analyze subgraphs of Gwheel(n) that
are generated by removing some of the nodes. Note that when disconnecting the center node, the
resulting subgraph is either a cycle with n nodes Gcycle(n), which supports 1-secure perfect THB,
or a path with up to n nodes that necessitates key agreement. Therefore, we focus on keeping
the center and disconnecting nodes from the perimeter. An interesting observation is that when
disconnecting k neighboring nodes from the perimeter, the result is an admissible subgraph of the
wheel with n + 1 − k nodes with one edge removed from the perimeter. Similarly, disconnecting
arbitrary k nodes yields a subgraph of the wheel with n + 1− k nodes with m edges removed from
the perimeter, where m is the number of sets of neighboring nodes that are removed.

7 1

23

4

5 6

7 1

23

4

5 6

Figure 4: On the left is a wheel graph. On the right is the resulting graph when disconnecting nodes 1 and
4 by removing their corresponding edges. The result is the butterfly graph F2 and two isolated nodes.

A more interesting question is thus to characterize families of such subgraphs whose number of
nodes is not a priori known. We remark that topology hiding on graphs of unknown size can be
surprisingly complex: For example, THB with an additional sender-anonymity guarantee for the
simple class of 2-paths and 3-paths implies infinitely often oblivious transfer [BBC+20, Thm 5.4].

4

We utilize a useful property of the protocol used for proving Theorem 1.1 (discussed further in
Section 1.2) that effectively hides the number of nodes from non-center parties. We show that the
protocol can be applied also to the current setting to obtain perfect IT-THB.

Theorem 1.2 (IT-THB for admissible graphs with varying size, informal). Let n ∈ N and let G
be a graph-class such that every (V, E) ∈ G is a subgraph of the wheel graph Wn, and it holds that
4 ≤ |V | ≤ n + 1 and that there is a center node with degree |V | − 1. Then,

• if the maximal degree of non-center nodes is 1, i.e., G consists only of stars (possibly of
different size), or

• if the minimal degree of non-center nodes is 2 or 3, i.e., G consists only of admissible graphs,
or

• if G consists both of stars and admissible graphs but they are of different sizes,

there exists perfectly secure IT-THB against a single semi-honest corruption over G. Otherwise,
THB over G secure against a single semi-honest corruption exists if and only if key agreement
exists.

We note that Theorem 1.2 subsumes Theorem 1.1; therefore, in the technical sections we directly
prove Theorem 1.2.

Tolerating many corruptions: the case of friendship graphs. The feasibility results thus
far were limited to a single corruption. The reason lies in the structure of the protocol, which
enables two colluding parties with two common neighbors to learn which of them is the center; see
Section 1.2 for an illustration. Therefore, it still remains open whether IT-THB tolerating t > 1
corruption is possible, aside from degenerate cases in which the topology is fully determined from
neighbor-sets of any t nodes.

We proceed to analyze an interesting class of subgraphs of a wheel graph with varying size,
which consists of friendship graphs. Recall that for n ≥ 1, the friendship graph Fn is a (2n + 1)-
nodes graph constructed by joining n triangles with a common node. They were named after the
friendship theorem [ERS66], which states that if in a finite set of people every pair has one common
friend, then there exists one person who is friend with everyone. We consider a class consisting of
friendship graphs of different sizes. Note that the connectivity of each of those graphs is 1, and by
their structure every two nodes can only have one common neighbor, so the attack discussed above
no longer applies. We prove that indeed perfect IT-THB tolerating any number of corruptions can
be achieved on this class. For an integer k, consider the graph class Gfriendship(k) containing all
isomorphisms of the friendship graph Fk.

Theorem 1.3 (t-IT-THB over friendship graphs, informal). Let n ∈ N with n ≥ 2, let t < 2n + 1,
and consider a graph-class G ⊆

⋃n
k=2 Gfriendship(k). There exists a perfectly secure THB protocol

against t semi-honest corruptions over G.

We remark that Theorem 1.3 presents the first feasibility of information-theoretic THB on
non-degenerate graph-classes with t > 1 corruptions.

5

1.2 Technical Overview

We move on to describing some of our techniques. We begin by explaining in Section 1.2.1 the
high-level ideas of the protocols used for our positive result. Next, in Section 1.2.2, we describe our
usage of the phantom-jump technique from [BBC+20] for our negative result.

1.2.1 Feasibility Results: The “Oblivious Centralized Coordination” Technique

Our protocols are inspired by the THB protocol for the butterfly graph from [BBC+20]. We extend
it in several aspects to support more involved graph classes that contain an embedded star, i.e., a
well-defined center connected to all other nodes. In the overview below, as well as in the technical
sections, we begin by describing the simpler case of friendship graphs, and then proceed to the
wheel graph, and to arbitrary admissible graphs.

Starting point: the butterfly graph. Recall that the butterfly graph (Figure 1) is in fact the
friendship graph F2: a 5-node graph consisting of two triangles connected by a common center
node. The high-level idea is to use the center node for coordinating the protocol. The protocol
runs multiple instances of reliable message transmission (RMT), one for every potential receiver. In
each RMT instance, the sender PS sends its message to all its neighbors in the first step. Note that
each party knows whether it is a neighbor of PS , so it knows whether it should receive a message
or not in the first round. At that point it is guaranteed that the center node holds the message
and so can deliver it to the receiver (in case the receiver is not the center).

This, of course, will reveal to the receiver who is the center node. Therefore, the center must
do so in an oblivious way, without exposing itself. In the butterfly graph, if the receiver PR is not
the center it has one more neighbor other than the center. The approach taken in [BBC+20] is to
first secret share the message m with the additional neighbor, and later have both neighbors of the
receiver deliver one share (thus hiding from the receiver who is the center). However, the center
does not know who is the additional neighbor of the receiver. Therefore, the center node prepares
2-out-of-2 shares of the message m for each potential neighbor, i.e., each non-receiver party.

To help the center hide its identity, each other party assists by acting as the center and preparing
2-out-of-2 shares of zero (so called, blinding terms for addition in Section 3) for each of its non-
receiver neighbors (a non-center party has either one or two non-receiver neighbors). Next, the
receiver receives four values from each of its neighbors (recall that in the butterfly graph there are
four nodes other than the receiver, see Figure 1), such that the center sends the sum of the share
m for each party with the share of zero it received from that party, and the second neighbor sends
the sum of the share received from its non-receiver neighbor with the share of zero sent to this
neighbor, along with three random values (one for each other party). The receiver can then select
the correct pair which corresponds to its true neighbors. Thus, PR can reconstruct m without
knowing which of its neighbors is the center.

This approach is secure as long as the receiver is not the center. However, if PR is the center,
it may learn the neighbor-set of other nodes (e.g., by inspecting which pairs of values sum up
to 0). This is solved by adding suitable offset values, which are multiplied by blinding terms for
multiplication, and only come into play if PR is the center. Specifically, if PR is not the center, then
PR will send the same offset to both its neighbors (this will ensure that the offset will be canceled
out). If PR is the center, then PR will send a different offset to each neighbor (this requires working
over a larger field, e.g., F4, to support a different value per party); in this case, the pairs of values

6

seen by PR will induce a linear system of two equations with two variables, and the different offsets
will guarantee that the system has full rank and always has a solution. This, in turn, will prove
that the center cannot identify which pairs of parties are connected.

The friendship graph. As discussed above, we view the butterfly graph as two triangles con-
nected in a joint node; that is, as the friendship graph F2. In Section 3.1, we prove that the
1-THB protocol for the butterfly graph-class Gbutterfly (consisting of all isomorphisms of 5 nodes
to F2) extends in natural way to 1-THB for the class of friendship graph Gfriendship(n), for n ≥ 2,
consisting of all isomorphisms of 2n + 1 nodes to Fn.5 Namely, the receiver now receives a vector
of 2n values from each of its neighbors, and those values are uniformly distributed conditioned on
the corresponding values of its neighbors that sum up to the message. Further, recall that in case
the receiver is the center, it must provide a different offset to each of its neighbors; hence, the
underlying field Fq must grow and satisfy q ≥ 2n.

Friendship of variable size. A second observation is that for non-center parties, the protocol
behaves in a “local” manner, in the sense that the neighbors of a non-center node are neighbors on
their own. When PR is not the center, this enables the receiver’s neighbors to jointly construct the
shares of the message in a coordinated (yet oblivious) way. Only the center’s actions truly depend
on the actual number of parties, while non-center parties only need to know an upper bound on
the number of parties.

In Section 3.2, we prove that this locality property makes the protocol suitable for a variable
number of nodes (i.e., a variable number of triangles). Non-center nodes proceed as if the graph
has n triangles (where n is an upper bound), and the center node emulates missing nodes in its
head. Formally, we consider the graph Fk,n as an augmented friendship graph of 2n + 1 nodes,
where 2k + 1 nodes form a connected component which is the friendship graph Fk, and all other
2n + 1 − (2k + 1) = 2(n − k) nodes are singletons (isolated parties). Each isolated party simply
outputs 0 in this protocol (unless it is the sender, in which case it outputs its input), and the
agreement and validity properties are only required for the connected component of the sender.

Friendship with many corruptions. Another interesting observation, is that locality enables
tolerating an arbitrary number of t < 2n + 1 corruptions, without any adjustments to the protocol.
We prove this in Section 3.3. Intuitively, to see why, we distinguish between an honest center and
a corrupt center.

In case the center is honest, then once there is more than a single corruption, the adversary
can immediately identify who the center is. This is not considered a violation of privacy, since
this can be deduced just by observing the common neighbor of the corrupted parties, and without
observing any protocol messages. When focusing on each triangle now, if both non-center nodes
are corrupted there is nothing to hide within the triangle, whereas if none of the non-center nodes
is corrupted the adversary learns nothing new from the protocol. The case where there is a single
corrupted non-center in the triangle reduces to the single corruption case from before.

In case the center is corrupted, and there is another non-center corrupted party, then all the
information in its triangle is already known, regardless of whether the second non-center party is
honest or not. Further, consider the set of honest parties that have an honest neighbor, then the
center together with all other corrupt parties do not learn the connectivity of this set.

5Note that for n = 1 a friendship graph is just a triangle, and there is no well-defined center.

7

We note that despite the technical simplicity of this result, it bares a more significant conceptual
contribution, as it provides the first feasibility of IT-THB with more than one corruption beyond
trivial graph classes.

Beyond friendship: the wheel graph. We proceed to extend the oblivious centralized coor-
dination technique to more involved graph classes that admit an embedded star. As before, we
begin by considering a single corruption. One can view the (2n+1)-nodes friendship graph Fn as a
subgraph of the wheel W2n in which every non-center node has degree 2. The wheel graph presents
the other extreme in some sense, as every non-center node has degree 3.

A first attempt to extend the protocol to this new regime, is to use 3-out-of-3 secret sharing
instead of 2-out-of-2. Stated differently, before, in Fn, if PR is not the center it receives a vector
of 2n values from each of its two neighbors such that the matching pair of values sum up to the
message and all other values are independently and uniformly distributed. When considering the
(n + 1)-nodes wheel graph Wn, if PR is not the center then it has 3 neighbors, and it receives
a matrix of n × n values from each of its neighbors such that the corresponding entries in these
matrices6 sum up to the message and all other values are independently and uniformly distributed.

However, as opposed to the friendship regime, once a non-center node has degree 3 the protocol
loses its locality property, as now not all neighbors of the receiver are neighbors on their own, and
so the matrices are not “synchronized” like the vectors in the previous case. Indeed, if done without
care, this approach leads to an attack. The reason is that the preparation of entry (v, w) for the
matrix of party Pu is done as follows: if v and w are not neighbors of u sample a random value;
if only one is a neighbor use the value that this party sent before (to ensure it will cancel out);
and if both parties are neighbors of u then take the sum of their values. Therefore, the receiver
can identify repeating entries in a matrix to deduce pairs of neighboring parties, as illustrated in
Figure 5.

v1

R

v2

u

v3

v4

v5

v1

R

v2

u

v3

v4

v5

Figure 5: Illustration of an attack on a naïve protocol for Gwheel(n). The receiver PR has three neighbors:
v1, v2, and the center u. Say that v1 has another neighbor v3, which has a third neighbor v4, which has
a third neighbor v5. Then, PR receives a matrix from v1; however, since v3 sends a single value to v1, the
entry (v3, v4) will be the same as the entry (v3, v5). This means that both v4 and v5 are not neighbors of v1.

Our solution to this issue is to have each pair of neighbors (none of which is PR) generate a
vector of n correlated values, as opposed to a single value. This is done by having each party
sample a vector of random values and send it to each of its non-receiver neighbors. In fact, those
correlated values make the blinding terms and the suitable-offset terms redundant, so these values
are no longer used in this protocol. In Section 4.1, we prove that the resulting protocol is secure
for the class of wheel graphs.

6That is, for neighbors u, v, w take entry (u, v) from the matrix of w, entry (v, w) from the matrix of u, and entry
(w, u) from the matrix of v. In the protocol, we ensure the matrices are symmetric, i.e., M[u, v] = M[v, u].

8

Admissible graphs. Having established 1-IT-THB for the case when non-center nodes have
degree 2 (friendship graphs) and the case where they have degree 3 (wheel graphs), we proceed
to combine the ideas together and support any admissible graph. Intuitively, since the protocols
share a similar structure, one can hope to execute both options concurrently. That is, the parties
run two independent executions: one for the case where PR has two neighbors, and one for the case
where PR has three neighbors. This, however, is vulnerable to an attack, since when a receiver has
three neighbors it can find correlations in the messages it receives for the degree-2 execution and
identify who the center is, as illustrated in Figure 6.

v1

R

v3

v2

v1

R

v3

v2

v1

R

v3

v2

Figure 6: Illustration of an attack on a non-careful protocol for admissible graphs. Consider a non-center
receiver PR with neighbors v1, v2, and v3; assume that v2 is the center. Further, consider running the
friendship protocol over this graph. The left diagram, illustrates the view PR obtains for the triangle with
v1 and v2: here PR will obtain the message m. The middle diagram, illustrates the view PR obtains for the
triangle with v2 and v3: again, PR will obtain the message m. The right diagram, illustrates the view PR

obtains for the triangle with v1 and v3: here, there is no direct edge between v1 and v3; hence, PR will not
obtain the message m. Therefore, PR can identify that v2 is the center.

The main idea in overcoming this attack, is that although we need to run two executions in
order to hide the degree of the receiver (when it is not the center), we only need one execution
to deliver the message to the receiver, and the second does not need to convey any information.
Further, the receiver already knows its degree, so it knows which execution is the “right” one, and
can sabotage the “redundant” one. Specifically:

• In case the receiver’s degree is 3, in the degree-2 execution it will send a different offset for
each neighbor (and the degree-3 execution will be executed correctly).

• In case the receiver’s degree is 2, in the degree-2 execution it will correctly send the same
offset to its neighbors (and the degree-3 execution will not leak any information because the
receiver does not have three neighbors).

In Section 4.2, we prove that the resulting protocol is secure against one corruption for graph-classes
consisting of admissible graphs.

Many corruptions. The protocol described above establishes feasibility of 1-IT-THB for any
graph-class consisting of admissible graphs (even of variable size). This feasibility is tight for a
single corruption, as stated in Theorem 1.2 (proven in Section 5). It is tempting though to extend
the resiliency of the protocol, similarly to the class of friendship graphs that support any number
of corruptions. It turns out that the non-local nature of non-friendship, admissible graphs enables
an attack on the protocol when the adversary controls two nodes.

We illustrate the attack in Figure 7. Consider a pair of corrupted parties 2 and 4 , and assume
that none of them is the center. Further, assume that each has degree 3, and that they have two
common neighbors, denoted 3 and 6 . Clearly, by the structure of the graph, 2 and 4 together
can deduce that either 3 is the center, or 6 is the center.

9

However, when running in this setting the 1-secure protocol described above, the colluding
parties may learn correlations that will expose which of their common neighbors is the center.
Specifically, recall that when 3 is the receiver, it sends to its neighbors 2 and 4 the suitable-
offset values. In case 3 is the center, the offset value for 2 is the same as the one for 4 , whereas
in case 3 is not the center these are different values.

2

3

4

6
51

2

3

4

6
51

Figure 7: Attack on non-friendship admissible graphs with two corruptions.

We emphasize that in friendship graphs every non-center node has degree two; hence, the
scenario from Figure 7 cannot occur. We leave it as an open question to find a protocol that is
resilient to t > 1 corruptions for non-friendship admissible graphs.

1.2.2 Impossibility Results: The “Phantom Jump” Technique

The phantom-jump technique, introduced in [BBC+20], was used to show that key agreement is
necessary for 1-secure THB over the class Gtriangle consisting of a triangle, with possibly one of its
edges missing (see Figure 8). In this class, if a party has two neighbors it does not know whether its
neighbors are directly connected or not, but a party with one neighbor knows the entire topology.

1

2

3 1

2

3 1

2

3

Figure 8: The class Gtriangle from [BBC+20], consisting of a triangle, with possibly one of its edges
missing.

In Section 5.1.1 we prove the lower bound of Theorem 1.1 (namely that 1-THB on the union of an
admissible graph-class of size n+1 with Gstar(n) necessitates key agreement) by a direct reduction to
the impossibility in [BBC+20]. Below we explain in a more explicit manner how the phantom-jump
technique from [BBC+20] is used in this argument. We illustrate this for G = Gwheel(4) ∪ Gstar(4)
where both graphs consist of 5 nodes.

The high-level idea, going back to [BBC+19], is to construct a key-agreement protocol from
a 1-secure THB protocol π for G. Recall the desired key-agreement protocol is run between two
parties, Alice and Bob, and concludes with the parties outputting a bit b ∈ {0, 1}, such that a
channel eavesdropper listening to communications cannot predict the value of b with non-negligible
advantage. To construct a key-agreement protocol from π, Alice begins by choosing two long
random strings m1 and m2 and sending them to Bob in the clear. Next, Alice and Bob continue in
phases as follows:

• In each phase Alice and Bob locally toss coins A and B, respectively.

• They proceed to run two executions of π in which Alice always emulates 1 and Bob always
emulates 2 . In addition, if A = 0 then Alice emulates 3 , 4 , and 5 as neighbors of 1 , who
acts as the center of the star, and 3 broadcasting m1 in the first run; otherwise she emulates

10

3 , 4 , and 5 as neighbors of 1 , who acts as the center of the star, and 3 broadcasting
m2 in the second run. Similarly, if B = 1 then Bob emulates 3 , 4 , and 5 as neighbors
of 2 , who acts as the center of the star, and 3 broadcasting m1 in the first run; otherwise
he emulates 3 , 4 , and 5 as neighbors of 2 , who acts as the center of the star, and 3
broadcasting m2 in the second run. See Figure 9 for an illustration.

• If parties 1 and 2 output m1 in the first run and m2 in the second, Alice and Bob output
their bits A and B, respectively; otherwise, they execute another phase.

21

5

4

3

Alice Bob

Ind.
1 2

5

4

3

Alice Bob

Figure 9: Using wheels and stars to construct a key-agreement protocol.

Clearly, if A = B in some iteration then Alice and Bob will output the same coin, and by the
assumed security of π, the eavesdropper Eve will not be able to learn who emulated 3 , 4 , and
5 in the first run and who in the second. If A ̸= B, then in at least one of the runs nobody
emulates the broadcaster 3 , so with overwhelming probability Alice and Bob will detect this case
and execute another iteration.

In more detail, when A = B the view of Eve consists of the communication between 1 and 2 ,
as depicted in Figure 9. By THB security, when 2 acts as the center it cannot distinguish between
the star and the wheel; in particular, the distribution of the messages on the channel between 1
and 2 is indistinguishable in both cases. Again, by THB security, when 1 is not the center of
the wheel it cannot know which of its neighbors is the center, so it cannot distinguish between the
center being 2 or 3 ; in particular, the distribution of the messages on the channel between 1 and
2 is indistinguishable in both cases. Similarly, when 2 is not the center of the wheel, it cannot
distinguish between the center being 1 or 3 ; in particular, the distribution of the messages on the
channel between 1 and 2 is indistinguishable in both cases. Finally, when 1 acts as the center it
cannot distinguish between the star and the wheel; in particular, the distribution of the messages
on the channel between 1 and 2 is indistinguishable in both cases. By a simple hybrid argument
it follows that the messages between 1 and 2 are indistinguishable when communicating in a star
topology when 1 is the center and when 2 is the center, and it follows that the distinguishing
advantage of Eve is negligible. See Figure 10 for an illustration of the hybrid argument.

21

3

4

5

ind. 2
21

3

4

5

ind. 1
31

2

4

5

ind. 2

21

3

5

4

ind. 1
21

3

4

5

Figure 10: Hybrid steps in the phantom jump over wheels and stars.

11

Organization of the paper. In Section 2 we present the model and definitions. In Section 3
we describe our protocol for friendship graphs: initially for fixed-size graphs, next for variable-size
graphs, and finally, for tolerating many corruptions. In Section 4 we describe our protocol for wheel
graphs and the generalization to arbitrary admissible graphs. Finally, in Section 5 we present lower
bounds and our characterization.

2 Preliminaries
Notations. For n ∈ N let [n] = {1, . . . , n}. Looking ahead, we denote by n (or a function of n,
such as n + 1 or 2n + 1) an upper bound on the number of participating parties and by t an upper
bound on the number of corrupted parties. The security parameter is denoted by κ. We denote
variables in italic single-letter, e.g., x, vectors in lower-case bold-face, e.g., v, the ith location in the
vector as v[i], matrices in upper-case bold-face, e.g., M, and the (i, j)th location in the matrix as
M[i, j], and Turing machines in sans-serif, e.g., P. We denote by Fq the finite field with q elements,
by Fn

q the space of n-tuples over Fq, and by Fn×n
q the space of matrices of size n× n over Fq.

Graph notations and properties. A graph G = (V, E) is a set V of vertices and a set E of
edges, each of which is an unordered pair {v, w} of distinct vertices. A graph is k-connected if it
has more than k vertices and remains connected whenever fewer than k vertices are removed. A
graph class G is k-connected if every graph G ∈ G is k-connected. The (open) neighborhood of a
vertex v in an undirected graph G, denoted NG(v), is the set of vertices sharing an edge with v in
G. The closed neighborhood of v in G is in turn defined by NG[v] ..= NG(v) ∪ {v}. In addition, we
denote V(G), the vertices set of graph G.

Isomorphically closed graph class. Following [BBC+20], in this work we will consider iso-
morphically closed graph classes.

Definition 2.1 (isomorphically closed). Let n ∈ N and let G be a graph class comprised of graphs
with at most n vertices and labeled by a subset of {1, . . . , n}. The graph class G is isomorphically
closed if for every graph G = (V, E) ∈ G and for every bijection τ : V → {1, . . . , n}, the graph
H = (τ(V), EH) is also in G, where EH is defined by (u, v) ∈ E ⇔ (τ(u), τ(v)) ∈ EH .

In other words, if a graph is in an isomorphically closed class, then so are all the graphs obtained
by relabeling its vertices using a subset of {1, . . . , n}. Furthermore, given an unlabeled graph G
with n nodes, define the graph class associated with G as the graph class containing the labeled
graphs H = (τ(V), EH) where τ : V → {1, . . . , n} is a bijection and EH is defined as above. By
definition, the graph class associated with G is isomorphically closed.

2.1 Topology-Hiding Broadcast (THB)

Following [MOR15] we consider two definitions of topology-hiding broadcast. Our positive results
(protocol constructions) are defined with respect to the stronger simulation-based definition while
our lower bounds are given with respect to the weaker indistinguishability-based definition. Some
of the content in this section is taking verbatim from [BBC+20].

12

UC framework. The simulation-based definition is defined in the UC framework of [Can01]; we
present an informal overview of the model in Appendix A. Unless stated otherwise, we will consider
computationally unbounded, static, and semi-honest adversaries and environments.

2.1.1 Simulation-Based THC

We recall the definition of simulation-based topology-hiding computation from [MOR15, BBC+19].
The real-world protocol is defined in a model where all communication is transmitted via the
functionality FG

graph (described in Figure 11). The functionality is parametrized by a family of
graphs G, representing all possible network topologies (aka communication graphs) that the protocol
supports. We implicitly assume that every node in a graph is associated with a specific party
identifier, pid. To simplify the notation, we will consider that Pv in the protocol is associated with
node v in the graph.

Initially, before the protocol begins, FG
graph receives the network communication graph G from

a special graph party Pgraph, makes sure that G ∈ G, and provides to each party Pv with v ∈ V
its local neighbor-set. Next, during the protocol’s execution, whenever party Pv wishes to send a
message m to party Pw, it sends (v, w, m) to the functionality; the functionality verifies that the
edge (v, w) is indeed in the graph, and if so delivers (v, w, m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of participants
is known to all and need not be kept hidden. In this case, defining the ideal functionality and
constructing protocols becomes a simpler task. However, if there exist graphs in G that contain
a different number of nodes, then the model must support functionalities and protocols that only
know an upper bound on the number of participants. In the latter case, the actual number of
participating parties must be kept hidden.

Given a class of graphs G with an upper bound n on the number of parties, we define a protocol
π with respect to G as a set of n ppt interactive Turing machines (ITMs) (P1, . . . , Pn) (the parties),
where any subset of them may be activated with (potentially empty) inputs. Only the parties that
have been activated participate in the protocol, send messages to one another (via FG

graph), and
produce output.

An ideal-model computation of a functionality F is augmented to provide the corrupted parties
with the information that is leaked about the graph; namely, every corrupted (dummy) party
should learn its neighbor-set. Note that the functionality F can be completely agnostic about
the actual graph that is used, and even about the family G. To augment F in a generic way, we
define the wrapper-functionality WG

graph-info(F), that runs internally a copy of the functionality F.
The wrapper WG

graph-info(·) acts as a shell that is responsible to provide the relevant leakage to the
corrupted parties; the original functionality F is the core that is responsible for the actual ideal
computation.

More specifically, the wrapper receives the graph G = (V, E) from the graph party Pgraph, makes
sure that G ∈ G, and sends a special initialization message containing G to F. (If the functionality
F does not depend on the communication graph, it can ignore this message.) The wrapper then
proceeds to process messages as follows: Upon receiving an initialization message from a party Pv

responds with its neighbor set NG(v) (just like FG
graph). All other input messages from a party Pv

are forwarded to F and every message from F to a party Pv is delivered to its recipient.
Note that formally, the set of all possible parties V ∗ is fixed in advance. To represent a graph

G′ = (V ′, E′) where V ′ ⊆ V ∗ is a subset of the parties, we use the graph G = (V ∗, E′), where all
vertices v ∈ V ∗ \ V ′ have degree 0.

13

The functionality FG
graph

The functionality FG
graph is parametrized by a family of graphs G; let n denote the maximal number of

nodes in G ∈ G . The functionality proceeds with a special graph party Pgraph and with a subset of
the parties P1, . . . , Pn (to be defined by the graph received from Pgraph) as follows.

Initialization Phase:

Input: FG
graph waits to receive the graph G = (V, E) from Pgraph. If G /∈ G, abort.

Output: Upon receiving an initialization message from Pv, verify that v ∈ V , and if so send
NG(v) to Pv.

Communication Phase:

Input: FG
graph receives from a party Pv a destination/data pair (w, m) where w ∈ NG(v) and

m is the message Pv wants to send to Pw. (If v, w /∈ V , or if w is not a neighbor of v,
FG

graph ignores this input.)

Output: FG
graph gives output (v, m) to Pw indicating that Pv sent the message m to Pw.

Figure 11: The communication graph functionality

Definition 2.2 (Topology-hiding computation). We say that a protocol π securely realizes a func-
tionality F in a topology-hiding manner with respect to G tolerating a semi-honest adversary corrupt-
ing t parties if π securely realizes WG

graph-info(F) in the FG
graph-hybrid model tolerating a semi-honest

adversary corrupting t parties.

Broadcast. In this work we will focus on topology-hiding computation of the broadcast function-
ality (see Figure 12), where a designated and publicly known party, named the broadcaster, starts
with an input value m. Our broadcast functionality guarantees that every party that is connected
to the broadcaster in the communication graph receives the message m as output, whereas par-
ties in other connected components output adversarially chosen values (in particular, there is no
“global agreement” requirement, but only in the connected component of the broadcaster). In this
paper, we assume the communication graphs may have multiple connected components; however,
there is only one “main” connected component and all other are singletons (having degree-0). The
broadcaster may or may not be in the main connected component. Parties that are not connected
to the broadcaster receive a message that is supplied by the adversary (we can consider stronger
versions of broadcast, but this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pv by Fbc(Pv).

Definition 2.3 (t-THB). Let G be a family of graphs and let t be an integer. A protocol π is a
t-THB protocol with respect to G if π(Pv) securely realizes Fbc(Pv) in a topology-hiding manner with
respect to G, for every Pv, tolerating a semi-honest adversary corrupting t parties.

14

The functionality Fbc(Pv)

The broadcast functionality Fbc(Pv) is parametrized by the broadcaster Pv and proceeds as follows.

Initialization: The functionality receives the communication graph G from the wrapper Wgraph-info.

Input: Record the input message m ∈ {0, 1} sent by the broadcaster Pv.

Output: Send the output m to every party that is in the same connected component as Pv in G. For
every other party in G, the output delivered to that party is supplied by the adversary.

Figure 12: The broadcast functionality

2.1.2 Indistinguishability-Based THC

Moran et al. [MOR15] gave a weaker definition of topology-hiding computation: IND-CTA security
(indistinguishability under Chosen Topology Attack). We will next provide the explicit definitions
for THB.

Definition 2.4 (1-IND-CTA THB). A broadcast protocol π is indistinguishable under chosen topol-
ogy attack against one semi-honest corruption (1-IND-CTA secure) with respect to a graph class G,
if for any ppt adversary Adv there exists a negligible function negl, such that for every κ ∈ N it
holds that

Pr
[
ExpTHB1-ind-cta

π,G,Adv (κ) = 1
]
≤ 1/2 + negl(κ),

where ExpTHB1-ind-cta
π,G,Adv (κ) is as defined in Figure 13 and the probability is taken over the random

coins of the experiment and of the adversary.

The experiment ExpTHB1-ind-cta
π,G,Adv (κ)

Choice phase. The challenger invokes Adv on input (G, 1κ). Adv chooses two graphs G0, G1 ∈ G,
a broadcaster node u ∈ V (G0) ∩ V (G1), a message m ∈ {0, 1}, and a corrupted node v ∈
V (G0) ∩ V (G1) with NG0(v) = NG1(v). Next, the adversary returns (G0, G1, u, m, v). If Adv’s
output is not of the required form, the experiment aborts.

Challenge phase. The challenger flips a random bit b← {0, 1} and runs π(1κ) with node u broad-
casting message m over graph Gb, where the adversary controls node v.

Output phase. At the conclusion of the execution of π, Adv outputs b′. If b = b′, the experiment
outputs 1; otherwise 0.

Figure 13: The 1-IND-CTA broadcast experiment

Definition 2.4 can be extended to support t corruptions, denoted t-IND-CTA broadcast, by
having the adversary choose a set I ⊆ [n] of size t satisfying I ⊆ V (G0)∩V (G1) in ExpTHB1-ind-cta,
instead of choosing a single node v.

As shown in [MOR15], the indistinguishability-based definition is in fact implied by its
simulation-based counterpart.

Proposition 2.5. If π is 1-THB with respect to G, then π is a 1-IND-CTA secure broadcast protocol
with respect to G.

15

3 1-IT-THB for Friendship Graphs
In this section, we present the protocol for friendship graphs. We begin by defining the friendship
graph class. Next, in Section 3.1, we present 1-THB for a fixed-size class. In Section 3.2, we extend
the protocol to a variable-size class. Finally, in Section 3.3, we show that the protocol is in fact
secure for any number of corruptions.

Definition 3.1 (friendship graph [ERS66]). Let n ∈ N. The friendship graph Fn is a planar,
undirected graph with 2n+1 nodes and 3n edges. Equivalently, Fn is the graph obtained by joining n
triangles with a common center node.

Definition 3.2 (friendship graph-class). Let n ∈ N. The friendship graph-class Gfriendship(n) is the
isomorphically closed graph class associated with Fn.

Figure 14: The friendship graphs F3 on the left, and F5 on the right.

We emphasize that in this section n stands for the number of triangles in the friendship graph
Fn. The number of nodes (i.e., the number of participating parties) is 2n + 1.

3.1 1-IT-THB for Friendship Graphs of Fixed Size

We begin by presenting a protocol for Gfriendship(n) in which all graphs are of the same size. The pro-
tocol extends to support variable-size graphs with small adjustments; we mark down the additional
instructions in blue.

The protocol πfriendship, formally defined in Figure 15, operates in the FGfriendship(n)
graph -hybrid model

(see Section 2.1). Recall that this means that the communication in the protocol is carried out
by an external trusted party (denoted FGfriendship(n)

graph) that initially receives a graph G in the class
Gfriendship(n). At the beginning of the protocol the trusted party hands each party its local neighbor
set, and once a party v wants to send a message m to party u, the trusted party will do so if and
only if the edge (u, v) is in G.

Notations used in the protocol. We refer the reader to Section 1.2.1 for an overview of the
protocol. Below, we describe the notation used in the construction.

• The blinding terms are represented by the vectors bmul
u and badd

u . These vectors consist of uni-
formly random values from Fq, which are secret-shared between each party and its neighbors
to hide the message share that is sent in the last step of the protocol from the neighbors of
the receiver to the receiver.

• In case that the receiver is the center node, the suitable offset values β2-nbr
u are used to hide

the structure of the graph. In this case, the center sends each of its neighbors a different

16

β2-nbr
u , to ensure that within the message vector of the last step of the protocol, the values

are either sampled uniformly at random or distributed as a uniformly sampled value.

• In the last step of the protocol, every neighbor u of the receiver sends to the receiver a
vector su. These vectors contains mainly uniformly sampled values, but also carefully planted
shares of the message, to enable the receiver to reconstruct the message.

As mentioned above, the protocol πfriendship (see Figure 15) is suitable for a family of friendship
graphs of variable size (as defined in Section 3.2) and, further, is secure against t < n corruptions.
We will prove this in a gradual manner, starting in Lemma 3.3 with a proof for a friendship graph
with fixed-size and for t = 1. In this case, the blue instruction lines in Figure 15 are redundant and
can be ignored.

Lemma 3.3 (IT-THB for friendship graph-class). Let n ∈ N with n ≥ 2, and let Gfriendship(n) be the
friendship graph-class with 2n+1 nodes. The protocol πfriendship (defined in Figure 15) is a perfectly
secure IT-THB protocol against a single semi-honest corruption with respect to Gfriendship(n).

Proof. We will prove correctness and security separately.

Correctness. In case PR is a neighbor of PS , then in the first round PR receives m and sets m as
its output. In case PR is not a neighbor of PS , then PR has two neighbors; denote N (R) = {v, u}.
By the structure of friendship graphs, PR cannot be the center in this case, and one of its neighbors,
say Pu, must be the center. The output in this case is defined to be

sv[u]⊕ su[v] =
=

(
(β2-nbr

v · (bmul
v [u]⊕ bmul

u [v]))⊕ (badd
u [v]⊕ badd

v [u])⊕mv
)

⊕
(
(β2-nbr

u · (bmul
u [v]⊕ bmul

v [u]))⊕ (badd
v [u]⊕ badd

u [v])⊕mu
)

=
(
β2-nbr · (bmul

v [u]⊕ bmul
u [v]⊕ bmul

u [v]⊕ bmul
v [u])

)
⊕ (badd

u [v]⊕ badd
v [u]⊕ badd

v [u]⊕ badd
u [v])⊕ (mv ⊕mu)

= (β2-nbr · 0)⊕ (0⊕ 0)⊕ (0⊕m) = m,

where the first equality holds by the way sv[u] and su[v] are defined in Step 4; the second equality
holds by Step 3 and because the receiver PR, which is not the center, sets β2-nbr

v = β2-nbr
u = β2-nbr;

and the last equality holds because the non-center neighbor Pv sets mv = 0 in Step 4.

Security. We proceed to prove security. Let Pv∗ with v∗ ∈ [2n+1] denote the corrupted party. We
will construct a simulator Sim that given the neighbor-set of Pv∗ generates a simulated view for Pv∗

that is identically distributed as its view in a real execution of the protocol. As we consider semi-
honest security, and as broadcast is a deterministic functionality, this implies that the environment’s
output is identically distributed in the real and ideal computations.

The simulator Sim runs Pv∗ in its head. Initially, Pv∗ sends an initialization message to
FG

graph; the simulator forwards this message to WG
graph-info(Fbc(PS)) and sends the response N (v∗)

to Pv∗ . Next, in case the sender is corrupted, i.e., Pv∗ = PS , the simulator sends its input m to
WG

graph-info(Fbc(PS)); regardless, Sim receives the message m as the output fromWG
graph-info(Fbc(PS))

(formally, Sim sends the “empty input” for a non-sender corrupted party).

17

Protocol πfriendship(n, PS)

Auxiliary input: A binary field Fq such that q > 2n.
Input: The sender PS , with S ∈ [2n + 1], holds an input m ∈ {0, 1}.
Hybrid model: The protocol is defined in the FGfriendship(n)

graph -hybrid model.
The protocol:

• Each party Pv sends an initialization message to FGfriendship(n)
graph and receives its neighbor-set N (v).

• Repeat for each potential receiver PR with R ∈ [2n + 1]:

1. Forwarding the message to the center node. The sender PS sends m to its neighbors.
If PS is a isolated, the center acts as if received m = 0 from PS .

2. Generating blinding terms. Every non-receiver Pu ̸= PR uniformly samples from F2n+1
q two

blinding vectors bmul
u and badd

u of size 2n+1, and sends (bmul
u [v], badd

u [v]) to every Pv with v ∈ N (u).
In case Pu is the center, it plays in its head every isolated Pv; that is, Pu samples on behalf of
Pv two blinding vectors bmul

v and badd
v and sends (bmul

v [u], badd
v [u]) to itself.

3. Generating suitable offsets. Party PR generates values β2-nbr
u for each of its neighbors u ∈ N (R),

and sends β2-nbr
u to Pu, as follows:

– If PR is the center, sample independently at random β2-nbr
u ← Fq, for each u ∈ N (R),

conditioned on all values being distinct.
– Otherwise, sample β2-nbr ← Fq and set β2-nbr

u
..= β2-nbr for every u ∈ N (R).

4. Forwarding m to PR. In this step, only parties Pu with u ∈ N (R) send messages, and only PR

receives messages. Pu initializes a vector of zeros su of size 2n+1. For every v ∈ [2n+1]\{R, u},
if Pu is not the center and v /∈ N (u), set su[v]← Fq to be a random value; otherwise, set

su[v] ..= (β2-nbr
u · (bmul

u [v]⊕ bmul
v [u]))⊕ (badd

u [v]⊕ badd
v [u])⊕mu,

where mu
..= m if Pu is the center party, and mu

..= 0 otherwise.
Finally, Pu sends to PR the vector su.

5. PR output.
– If PR is PS then output its input m.
– If R ∈ N (S), output m as received on Step 1.
– If |N (R)| = 2, denote N (R) = {v1, v2} and output sv1 [v2]⊕ sv2 [v1].
– If |N (R)| = 0, output 0.

Figure 15: Information-theoretic THB over Gfriendship(n). The instruction lines in blue are only
needed when considering friendship graphs with variable size (i.e., when some nodes are isolated).

Next, Sim simulates each iteration of the protocol towards the corrupted party, for every po-
tential receiver PR with R ∈ [2n + 1] \ {S}.

• To simulate Step 1, if the sender is corrupted, Sim receives m on behalf of every honest Pv for
which v ∈ N (S). If the sender is honest and S ∈ N (v∗) then Sim sends m to Pv∗ .

• To simulate Step 2, if Pv∗ is not the receiver, Sim samples for every honest neighbor Pu with
u ∈ N (v∗) random blinding terms bmul

u [v∗], badd
u [v∗]← Fq and sends (bmul

u [v∗], badd
u [v∗]) to Pv∗ on

behalf of Pu. In addition, Sim receives (bmul
v∗ [u], badd

v∗ [u]) from Pv∗ on behalf of Pu.

18

• To simulate Step 3, if Pv∗ is a neighbor of PR, i.e., R ∈ N (v∗), the simulator samples at random
β2-nbr

v∗ ← Fq and sends β2-nbr
v∗ to Pv∗ . Else, If v∗ = R, the simulator receives β2-nbr

u from Pv∗ on
behalf of Pu for every u ∈ N (v∗).

• To simulate Step 4, if Pv∗ is a neighbor of the receiver, i.e., v∗ ∈ N (R), then receive from Pv∗

the vector sv∗ on behalf of PR.
If Pv∗ is the receiver, we consider two cases:

1. If Pv∗ is the center node, then for each u ̸= v∗ and for every v /∈ {u, v∗}, the simulator
samples a vector su from F2n+1

q at random and sends it to Pv∗ on behalf of Pu.
2. Otherwise, denote N (v∗) = {w1, w2}. The simulator initializes two vectors sw1 and sw2 ,

each of size 2n + 1, with zeros. The values sw1 [w2] and sw2 [w1] are sampled from Fq

conditioned on sw1 [w2] ⊕ sw2 [w1] = m. Sim samples sw1 [v], sw2 [v] ← Fq at random for
every v ∈ [2n + 1] \ {v∗, w1, w2}. Finally, Sim sends to the adversary the vectors sw1

and sw2 .

We proceed to show that the view of Pv∗ in the simulated protocol is identically distributed as
its view in a real execution of the protocol. Note that the simulation mirrors the protocol behavior
except for the last step. Therefore, we need to analyze only the last step, where v∗ is the receiver.

Recall that Pv∗ receives in Step 4 from each of its neighbors Pw, with w ∈ N (v∗), the vector
sw that is computed as follows: if v ∈ N (w) the value sw[v] is set to be

sw[v] ..= (β2-nbr
w · (bmul

w [v]⊕ bmul
v [w]))⊕ (badd

w [v]⊕ badd
v [w])⊕mw,

else sw[v] is sampled uniformly at random.
We will prove separately the cases where the corrupted party is the center and where it is not.

Case 1: Pv∗ is not the center, i.e., has 2 neighbors. Denote N (v∗) = {w1, w2}, since one of
the neighbors is the center, in the real execution it holds that sw1 [w2]⊕sw2 [w1] = m. Indeed,
the simulation guarantees all values are sampled conditioned on sw1 [w2]⊕ sw2 [w1] = m. The
joint view is identically distributed because for every v /∈ N [v∗] and every i ∈ {1, 2} the values
swi [v] are formed as follows: if v /∈ N (wi) then swi [v]← Fq; otherwise, for v ∈ N (wi),

swi [v] = (β2-nbr
wi

· (bmul
wi

[v]⊕ bmul
v [wi]))⊕ (badd

wi
[v]⊕ badd

v [wi])⊕mwi ,

where badd
wi

[v] and badd
v [wi] are sampled uniformly at random, and are only known to Pwi

and Pv. Note that v /∈ N [v∗] therefore v /∈ {w1, w2}. Particularly, Pv∗ is not aware of those
blinding terms, and each term is used only once.

Case 2: Pv∗ is the center. Denote {w1, w2} ⊆ N (v∗). In both the real and the simulated exe-
cutions, for i ∈ {1, 2}, Pv∗ receives from wi a vector swi . In the simulation, each swi [v] is
sampled uniformly at random for every v /∈ {R, wi} and set to zero for v ∈ {R, wi}. In the
real execution if v /∈ N (wi) then swi [v] is indeed sampled uniformly at random, but otherwise,
it is formed by

swi [v] = (β2-nbr
wi

· (bmul
wi

[v]⊕ bmul
v [wi]))⊕ (badd

wi
[v]⊕ badd

v [wi])⊕mwi

= (β2-nbr
wi

· (bmul
wi

[v]⊕ bmul
v [wi]))⊕ (badd

wi
[v]⊕ badd

v [wi]).

19

The equality holds since Pv∗ is the center, so each of its neighbors sets mwi = 0. Thus, it
is required to show that if v is neighbor of wi the value swi [v] is distributed uniformly at
random from the view of Pv∗ (as done in the simulation). Differently from Case 1, we note
that when w1 and w2 are neighbors, they use the same values to form sw1 [w2] and sw2 [w1]

sw1 [w2] = (β2-nbr
w1 · (bmul

w1 [w2]⊕ bmul
w2 [w1]))⊕ (badd

w1 [w2]⊕ badd
w2 [w1])

sw2 [w1] = (β2-nbr
w2 · (bmul

w2 [w1]⊕ bmul
w1 [w2]))⊕ (badd

w2 [w1]⊕ badd
w1 [w2]).

In the view of Pv∗ , the values sw1 [w2] and sw2 [w1] are the only values that are based on
bmul

w1 [w2], bmul
w2 [w1], badd

w1 [w2], and badd
w2 [w1], which in turn are each sampled independently and

uniformly at random, and remain unknown to Pv∗ . In addition, note that the values β2-nbr
w1

and β2-nbr
w2 are known to Pv∗ (as Pv∗ sampled and sent them), and by Step 3 we are guaranteed

that β2-nbr
w1 ̸= β2-nbr

w2 because Pv∗ is the center. Denote,

bmul = bmul
w1 [w2]⊕ bmul

w2 [w1] and badd = badd
w2 [w1]⊕ badd

w1 [w2].

Note that bmul and badd are uniformly distributed. Looking back at sw1 [w2] and sw2 [w1], it
holds that

sw1 [w2] = (β2-nbr
w1 · bmul)⊕ badd and sw2 [w1] = (β2-nbr

w2 · bmul)⊕ badd.

From the point of view of Pv∗ , these are two linear equations with two unknowns bmul and
badd, which are uniformly distributed. These equations are solvable since β2-nbr

w1 ̸= β2-nbr
w2 .

Therefore, from the view of Pv∗ , the values sw1 [w2] and sw2 [w1] are uniformly distributed.

This concludes the proof of Lemma 3.3.

3.2 1-IT-THB for Friendship Graphs of Variable Size

In the previous section, we considered a friendship graph of a fixed and known size, and showed
that the protocol πfriendship is secure against a single corruption. Note that in this protocol the
only party whose actions depend on the number of nodes is the center (that already knows this
information), whereas non-center nodes only need to know an upper bound on the size of the graph.

We proceed to use this intuition and show that the protocol πfriendship provides security when
the graph class includes various friendship graphs of different sizes. Recall that hiding the number
of nodes in the graph may raise new challenges, e.g., THB with sender-anonymity for the class of
2-paths and 3-paths was shown to imply infinitely often oblivious transfer [BBC+20].

In this setting, we consider the protocol πfriendship including the instructions in blue. Recall that
the definition of THB (Definition 2.2) considers a known upper bound on the number of parties,
but only guarantees agreement and validity for parties that are on the same connected component
as the sender. When considering friendship graphs with 2k + 1 nodes, for k < n, we view nodes
that are not on the same connected component of the sender as singletons (isolated parties), that
always output 0 in the protocol. We begin by defining “augmented” friendship graphs that may
include additional isolated nodes.

Definition 3.4 (augmented friendship graph). Let k, n ∈ N such that k ≤ n. The augmented
friendship graph Fk,n consists of the friendship graph Fk together with 2n + 1− (2k + 1) = 2(n− k)
isolated nodes.

20

Definition 3.5 (augmented friendship graph-class). Let k, n ∈ N such that k ≤ n. The augmented
friendship graph-class, denoted by Gfriendship(k, n), is the isomorphically closed graph class associated
with Fk,n.

In our proof we will consider the union of augmented friendship graph-class ⋃n
k=2 Gfriendship(k, n),

such that the main connected component (of non-isolated nodes) is of variable size: namely, of
possible size 2k + 1 for any k ≤ n.

Lemma 3.6 (IT-THB for friendship graph-class of variable size). Let n ∈ N with n ≥ 2, and let
G ⊆

⋃n
k=2 Gfriendship(k, n). The protocol πfriendship (defined in Figure 15, including the blue instruction

lines) is a perfectly secure IT-THB protocol against a single semi-honest corruption with respect to G.

Proof. The proof of correctness follows identically as the proof of Lemma 3.3, with the sole exception
that every party outside of the connected component of the sender outputs 0. It is left to show
that except for the center, no party identifies the specific graph that the protocol runs on.

Security. Let Pv∗ with v∗ ∈ [2n + 1] denote the corrupted party. We will construct a simulator
Simvar-size that given the neighbor-set of Pv∗ generates a simulated view for Pv∗ that is identically
distributed as its view in a real execution of the protocol. As we consider semi-honest security,
and as broadcast is a deterministic functionality, this implies that the environment’s output is
identically distributed in the real and ideal computations.

The simulator that will be constructed is very similar to the simulator in the proof of
Lemma 3.3, with the three following differences. The first difference is that the simulator instructs
WG

graph-info(Fbc(PS)) to set the output of every party that is not in the connected component of PS

to be 0. The second difference is when the sender is isolated, the simulator will emulate as if the
sender has sent input 0. The third difference is when parties are isolated they will not receive or
produce any messages. It is left to show that the view of Pv∗ in the simulated protocol is identically
distributed as its view in a real execution of the protocol. This is shown by considering the following
cases:

Case 0: Pv∗ is a singleton. In this case, no messages are received or sent; hence, the view is
trivially identical.

Case 1: Pv∗ has 2 neighbors. In this case, Simvar-size will run exactly like Sim on the fixed-sized
friendship graph Gfriendship(n). Indeed, in the real execution the center “runs in its head”
all isolated parties, which means that the view of Pv∗ in the real execution is identically
distributed as in the case of the fixed-size friendship graph Fn (where in case the sender is
isolated, it is emulated in the fixed-sized friendship with input 0). The proof thus follows
from Lemma 3.3.

Case 2: Pv∗ is the center. We will show that the center’s view is identically distributed as its
view in the fixed-size case (the proof of Lemma 3.3) with respect to all the nodes that are
connected to the center; we will then conclude that its view is identically distributed as in
the real execution.
Consider the case where there are no isolated parties; in this case, the simulator Simvar-size
run exactly like Sim on Gfriendship(n), and the proof follows from Lemma 3.3.
Otherwise, there are isolated parties; since Pv∗ is the center the simulator can identify all
isolated parties from the neighbor-set it receives from WG

graph-info(Fbc(PS)). The simulator

21

runs Sim on Gfriendship(n), but emulates only the non-isolated parties. In the case the sender is
isolated, the simulator Simvar-size runs exactly like Sim with input 0, and since the simulator
acts the same as the real execution the view is identically distributed. For each w ∈ N (v∗) in
both real and simulated execution, at the last step the center receives sw. In the simulated
view the values in sw are sampled uniformly at random. In the real execution, for values in
sw that correspond to non-neighbors of w, the value is sampled uniformly at random. For
every v ∈ N (w) the value sw[v] is defined as

sw[v] ..= (β2-nbr
w · (bmul

w [v]⊕ bmul
v [w]))⊕ (badd

w [v]⊕ badd
v [w]).

From Case 2 in the proof of Lemma 3.3 it follows that those values are uniformly distributed.
Since the messages are uniformly distributed in both executions the view is identically dis-
tributed.

3.3 Friendship Graphs: Beyond a Single Corruption

In this section, we present the first non-trivial feasibility of IT-THB secure against more than one
corruption. In fact, we show that the protocol πfriendship is already secure against any number of
corruptions. Stated differently, the joint view of any subset of nodes in the protocol does not reveal
any new information about the connectivity of the remaining nodes, except from information that
can be deduced from the local neighbor-sets of the colluding nodes.

Theorem 3.7. Let n ∈ N with n ≥ 2, let t < 2n + 1, and consider the graph-class G ⊆⋃n
k=2 Gfriendship(k, n). The protocol πfriendship (defined in Figure 15, including the blue instructions)

is a perfectly secure IT-THB protocol against t semi-honest corruptions with respect to G.

Proof. The proof of correctness follows identically as the proof of Lemma 3.6. Let C ⊆ [2n + 1]
denote the set of corrupted parties. We will construct a simulator Sim that given the neighbor-sets
of nodes in C generates a simulated view for the corrupted parties that is identically distributed as
their view in a real execution of the protocol. As we consider semi-honest security, and as broadcast
is a deterministic functionality, this implies that the environment’s output is identically distributed
in the real and ideal computations.

The simulator Sim runs the corrupted parties in its head. Initially, every Pv with v ∈ C sends
an initialization message to FG

graph; the simulator forwards this message to WG
graph-info(Fbc(PS)) and

sends the response N (v) to Pv. Next, in case the sender is corrupted, i.e., S ∈ C, the simulator
sends its input m to WG

graph-info(Fbc(PS)); regardless, Sim receives the message m as the output
from WG

graph-info(Fbc(PS)) (formally, Sim sends the “empty input” for every non-sender corrupted
party). Further, the simulator instructs WG

graph-info(Fbc(PS)) to set the output of every party that
is not in the connected component of PS to be 0.

Next, Sim simulates an iteration of the protocol towards the corrupted parties, for every poten-
tial receiver PR with R ∈ [2n + 1] \ {S}.

• To simulate Step 1, if the sender is corrupted, Sim receives m on behalf of every honest Pv

for which v ∈ N (S). If the sender is honest, Sim sends m to every corrupted Pv∗ for which
S ∈ N (v∗).

• To simulate Step 2, for every non-receiver corrupted party Pv∗ with v∗ ∈ C \ {R}, the simulator
samples for every honest neighbor Pu with u ∈ N (v∗)\C random blinding vectors bmul

u , badd
u from

22

F2n+1
q and sends the tuple (bmul

u [v∗], badd
u [v∗]) to Pv∗ on behalf of Pu. In addition, Sim receives

the tuple (bmul
v∗ [u], badd

v∗ [u]) from Pv∗ on behalf of Pu.

• To simulate Step 3, if the receiver PR is honest, let r denote the number of corrupted parties
who are neighbors of PR, i.e., r = |{v∗ | v∗ ∈ C ∧ R ∈ N (v∗)}|. Note that when r = 2 the
simulation identifies whether the receiver is the center.

If r = 0, then the receiver is not a neighbor of any corrupted party then no messages are received
or sent in this step.

If r = 1, then there exists a unique corrupted Pv∗ who is a neighbor of PR, i.e., R ∈ N (v∗), the
simulator samples at random β2-nbr ← Fq and sends β2-nbr to Pv∗ on behalf of PR.

If r = 2 and the receiver is center, then for every corrupted party Pv∗ who is a neighbor of
PR, i.e., R ∈ N (v∗), the simulator samples at random β2-nbr

v∗ ← Fq and sends β2-nbr
v∗ to Pv∗

on behalf of PR.
If r = 2 and the receiver is not the center, then for every corrupted party Pv∗ who is a

neighbor of PR, i.e., R ∈ N (v∗), the simulator samples at random β2-nbr ← Fq and sends
β2-nbr to Pv∗ on behalf of PR.

If the receiver PR is corrupted, the simulator receives β2-nbr
u from PR on behalf of Pu for every

u ∈ N (R) \ C. Note that if the receiver is the center then all β2-nbr
u are different, else equals.

• To simulate Step 4, if the receiver PR is honest, then for every corrupted party Pv∗ who is
a neighbor of PR, i.e., with R ∈ N (v∗), the simulator receives on behalf of PR from Pv∗ the
vector sv∗ .
If the receiver PR is corrupted, we consider the following cases:

If PR is a singleton: then the simulator does not receive any messages on behalf of PR.
If PR is not the center:

1. If |N (R) ∩ C| = 0, denote N (R) = {w1, w2}. The simulator initializes two vectors sw1

and sw2 each of size 2n + 1 with zeros. It samples from Fq and sets the values sw1 [w2],
sw2 [w1] conditioned on sw1 [w2]⊕ sw2 [w1] = m. For every v ∈ [2n + 1] \ {v∗, w1, w2} the
simulator samples sw1 [v], sw2 [v]← Fq at random and sends to the adversary the vectors
swi for i ∈ {1, 2}.

2. If |N (R)∩C| = 1 let v∗ ∈ N (R)∩C. Let u ∈ N (R)∩N (v). Party u is an honest neighbor
of PR. Note that PR and Pv∗ have a single common neighbor due to the friendship-graph
definition. The simulator initializes the vector su to zeros, and for every w /∈ {v∗, u, R}
sets su[w] to be a uniformly random value from Fq. For w = v∗, it holds that

su[w] = su[v∗] = (βu · (bmul
u [v∗]⊕ bmul

v∗ [u]))⊕ (badd
u [v∗]⊕ badd

v∗ [u])⊕mu,

where the values βu, bmul
u [v∗], bmul

v∗ [u], badd
u [v∗] and badd

v∗ [u] are the sampled by the simu-
lator in the previous steps, and mu = 0 if Pv∗ is the center, else mu = m. Eventually,
the simulator sends the vector su to PR on behalf of Pu.

3. If |N (R) ∩ C| = 2, in this case no messages are sent to (and from) the simulator.

23

If PR is the center:
1. If |N (R)∩C| = 0. The simulator acts the same as in the proof Lemma 3.3. The simulator

initializes a vector su of size 2n + 1 to zeros; next, for every u /∈ C and every v /∈ {u, R},
the simulator samples su[v]← Fq at random and sends su to PR on behalf of Pu.

2. If |N (R)∩C| > 0. Let k = |N (R)∩C| and denote N (R)∩C = {v∗
1, v∗

2, . . . , v∗
k}. For each

u ∈ N (R) \ C, the simulator initializes a vector su of size 2n + 1 to zeros; note that if
there exists i ∈ [m] such that u ∈ N (v∗

i) then su[v∗
i] is formed as

su[v∗
i] = (βu · (bmul

u [v∗
i]⊕ bmul

v∗
i

[u]))⊕ (badd
u [v∗

i]⊕ badd
v∗

i
[u]),

where βu, bmul
u [v∗

i], bmul
v∗

i
[u], badd

u [v∗
i] and badd

v∗
i

[u] are values the simulator sampled in the
previous steps. For every v ∈ [2n + 1] \ {R, v∗

i , u} the simulator samples at random
su[v] ← Fq. Otherwise, the only corrupted neighbor u is the receiver, and for every
v ∈ [2n + 1] \ {R, u} the simulator samples at random su[v] ← Fq. Eventually the
simulator sends all the vectors su to the receiver on behalf of each u.

Having defined the simulator, we proceed to show that the view of the adversary in the simulated
protocol is identically distributed as its view in a real execution of the protocol. Similarly to the
previous proofs the simulation mirrors the protocol except for the last step, which is the only one
that needs to be analyzed.

We proceed by analyzing various corruption patterns. We emphasize that the order of the cases
matters, since when entering a case we assume that none of the prior cases holds. We begin by
listing the “base” cases for one corruption and two corruptions; more corruptions will be reduced
to these “base” cases.

Single corrupted party:

Case 1.1: Isolated corrupted party. No messages are received or sent, just as in the real
execution; therefore, the view is identically distributed.

Case 1.2: Non-isolated corrupted party. The proof follows identically as the proof of
Lemma 3.6.

Two corrupted parties:

Case 2.1: At least one corrupted party is isolated. The isolated party does not re-
ceive or send any messages, and the second party’s view reduces to Case 1.

Case 2.2: Honest receiver. At Step 4 no messages are received. In the previous steps of
the protocol the simulation acts the same as the real execution; therefore, the view is
identically distributed.

Case 2.3: Corrupted receiver is center. Let v∗ and R be the corrupted parties, where
R is the receiver. Denote by v the honest common neighbor of the corrupted parties;
i.e., v ∈ N (v∗) ∩ N (R). At Step 4 the receiver receives messages from every neighbor,
including v.

R v∗

v

24

For every u ∈ N (R), the receiver receives a vector su in both the real and the simulated
executions.

• When u = v∗, both Pu and the receiver are corrupted, and no messages are sent
from the simulator.

• When u = v, in both the simulation and in the real execution the value sv[v∗] is
computed as

sv[v∗] = (β2-nbr
v · (bmul

v [v∗]⊕ bmul
v∗ [v]))⊕ (badd

v [v∗]⊕ badd
v∗ [v]),

where in the simulation, the values β2-nbr
v , bmul

v [v∗], bmul
v∗ [v], badd

v [v∗] and badd
v∗ [v] were

sampled in the previous steps and are known to Sim. Since v has two neighbors,
the receiver and v∗, for every w ∈ [2n + 1] \ {R, v∗, v} the value sv[w] are sampled
uniformly at random both in the simulation and in the real execution, and sv[R] and
sv[v] are zero both the simulation and real execution. Hence, the views in simulation
and in the real execution are identically distributed.

• When u /∈ {v, v∗}, Sim initializes a vector su of size 2n + 1 to zeros, and for every
w ∈ [2n+1]\{R, u} samples uniformly at random su[w]← Fq; in the real execution,
if w /∈ N (u) then su[w] is indeed sampled uniformly at random, but otherwise, it is
computed as

su[w] = (β2-nbr
u · (bmul

u [w]⊕ bmul
w [u]))⊕ (badd

u [w]⊕ badd
w [u])⊕mu

= (β2-nbr
u · (bmul

u [w]⊕ bmul
w [u]))⊕ (badd

u [w]⊕ badd
w [u]).

This equality holds since PR is the center, so each of its neighbors sets mu = 0.
Thus, it is left to show that when w is a neighbor of u, the value su[w] is distributed
uniformly at random from the view of the receiver (as done in the simulation).
Indeed, in the view of PR, the values su[w] and sw[u] are the only values that
are based on bmul

u [w], bmul
w [u], badd

u [w], and badd
w [u], which in turn are each sampled

independently and uniformly at random, and remain unknown to PR. In addition,
note that the values β2-nbr

u and β2-nbr
w are known to PR (since PR sampled and sent

these values), and by Step 3 we are guaranteed that β2-nbr
u ̸= β2-nbr

w because PR is
the center. Denote,

bmul = bmul
u [w]⊕ bmul

w [u] and badd = badd
w [u]⊕ badd

u [w].

Note that bmul and badd are uniformly distributed. Looking back at su[w] and sw[u],
it holds that

su[w] = (β2-nbr
u · bmul)⊕ badd and sw[u] = (β2-nbr

w · bmul)⊕ badd.

From the view of PR, these are two linear equations with two unknowns bmul and badd,
which are uniformly distributed. These equations are solvable since β2-nbr

u ̸= β2-nbr
w .

Therefore, from the view of PR, the values su[w] and sw[u] are uniformly distributed.
Case 2.4: Corrupted center and receiver. Since the receiver is not the center, it has

two neighbors: the corrupted center v∗ and an honest neighbor denoted by v. At Step 4
the receiver gets messages from v∗ and from v.

25

v∗ R

v

For both the simulation and the real world, the message from v is the vector su where
sv[v∗] is computed as

sv[v∗] ..= (βv · (bmul
v [v∗]⊕ bmul

v∗ [v]))⊕ (badd
v [v∗]⊕ badd

v∗ [v])⊕mu.

In the simulation, the values βu, bmul
u [v], bmul

v [u], badd
u [v] and badd

v [u] are known from the
previous steps and the value mu is set to 0 since v is not the center; in the real world,
the value sv[v∗] is formed in the same way. The values sv[v] and sv[R] are set to zero
both in the simulation and in the real execution, and for every u /∈ {R, v, v∗}, the value
sv[u] are sampled uniformly at random.

Case 2.5: Corrupted receiver is non-center, center is honest. In this case, the re-
ceiver has two neighbors.

• If both are honest, then at Step 4 the receiver receives messages from both neighbors.
By the structure of friendship graphs, the common neighbor of the corrupted parties,
denoted by u, is the center; denote by v the second neighbor of the receiver. In
addition, denote the non-receiver corrupted party v∗.

u R

v

v∗

We will focus on the sv and su received by PR from Pv and Pu, respectively. Note
that sv[R] = su[R] = 0, that sv[v] = 0 and that su[u] = 0, both in the simulation
and in the real execution. Further, the values sv[u] and su[v], are sampled in the
simulation conditioned on sv[u]⊕ su[v] = m, which is identically distributed as the
real execution. In addition, the value sent by Pu about the non-receiver corrupted
party Pv∗ is formed as

su[v∗] ..= (βu · (bmul
u [v∗]⊕ bmul

v∗ [u]))⊕ (badd
u [v∗]⊕ badd

v∗ [u])⊕mu,

where the values βu, bmul
u [v∗], bmul

v∗ [u], badd
u [v∗], badd

v∗ [u], and mu were evaluated in
the previous steps of the protocol, and used accordingly both in the simulation and
in the real execution; hence, the views are identically distributed.
Finally, the values sv[w] for every w ∈ [2n + 1] \ {R, v, u} and su[w] for every
w ∈ [2n + 1] \ {R, v, u, v∗} are sampled uniformly at random.
To conclude, the vectors sv and su are identically distributed as the real execution.

• Otherwise, if not both neighbors are honest, then one of the receiver’s neighbors is
corrupted, and the other is the center. Denote the center by u, and the non-center
corrupted party by v∗.

26

u R

v∗

The receiver gets messages from both neighbors. Specifically, PR gets the vector su

from the center, where su[R] = su[u] = 0, for w ∈ [2n + 1] \ {R, u, v∗} the value
su[w] is sampled uniformly at random, and the value su[v∗] that is formed as

su[v∗] ..= (βu · (bmul
u [v∗]⊕ bmul

v∗ [u]))⊕ (badd
u [v∗]⊕ badd

v∗ [u])⊕mu

based on values βu, bmul
u [v∗], bmul

v∗ [u], badd
u [v∗], and badd

v∗ [u] that were sent in the
previous steps of the protocol. In addition, mu = m which is known to Sim. Hence,
the views in the simulation and in the real execution are identically distributed.

More than 2 corrupted parties:

Case 3.1: At most two corrupted parties are not isolated. In this case, the isolated
corrupted parties do not receive or send any messages, so their view is identical to the
real execution. In addition, the non-isolated corrupted parties’ view reduces immediately
to the previous cases.

Case 3.1: Honest receiver. At Step 4 no messages are received. In the previous steps of
the protocol the simulation acts the same as the real execution; therefore, the views are
identically distributed.

Case 3.2: Corrupted receiver is center. By the structure of the protocol, we can de-
compose the view of the adversary to its view in every triangle which are independent
of each other. Note that the corrupted center appears in every triangle of the friendship
graph; therefore, in every triangle there are 0, 1, or 2 honest parties.

• If the triangle is fully corrupted, then simulating the messages in the triangle is
immediate.

• If there is exactly one honest party in the triangle, denote by v the honest party
and by v∗ the non-center corrupted party.

R v∗

v

In Step 4, Pv sends sv to the receiver. Note that in both the simulation and the
real execution, the values in the vector sv are set as follows: sv[v] = sv[R] = 0, for
every u ∈ [2n + 1] \ {R, v, v∗} the value sv[u] is sampled uniformly at random, and
for u = v∗

sv[u] ..= (β2-nbr
v · (bmul

v [u]⊕ bmul
u [v]))⊕ (badd

v [u]⊕ badd
u [v]),

27

R w

v

where the values β2-nbr
v , bmul

v [u], bmul
u [v], badd

v [u], and badd
u [v] were sent in the previous

steps of the protocol, in both the simulation and in the real execution, and therefore
are identically distributed.

• If there are two honest parties, denote them by v and w.
At Step 4, v and w send the receiver the vectors sv and sw, respectively. Note that
su[R] = sw[R] = 0, that sv[v] = 0 and that sw[w] = 0. For u ∈ [2n + 1] \ {R, v∗, v}
the value sv[u] is sampled uniformly at random, and for u ∈ [2n + 1]\{R, v∗, w} the
value sw[u] is sampled uniformly at random. The values sw[v] and sv[w] in the real
execution are formed as follows:

sv[w] ..= (β2-nbr
v · (bmul

v [w]⊕ bmul
w [v]))⊕ (badd

v [w]⊕ badd
w [v])

sw[v] ..= (β2-nbr
w · (bmul

w [v]⊕ bmul
v [w]))⊕ (badd

w [v]⊕ badd
v [w]),

where in the simulation, both sv[w] and sw[v] are sampled uniformly at random. It
is left to show that those values are distributed uniformly at random from the view
of the receiver. Since the receiver is the center, it is guaranteed that β2-nbr

v ̸= β2-nbr
w

and are known to PR. The values bmul
v [w], bmul

w [v], badd
v [w], and badd

w [v], which were
sampled uniformly at random, are used in the receiver’s view only when computing
sv[w] and sw[v], and remain unknown to PR. Denote,

bmul = bmul
u [w]⊕ bmul

w [u] and badd = badd
w [u]⊕ badd

u [w].

Note that bmul and badd are uniformly distributed. Looking back at su[w] and sw[u],
it holds that

su[w] = (β2-nbr
u · bmul)⊕ badd and sw[u] = (β2-nbr

w · bmul)⊕ badd.

From the view of PR, these are two linear equations with two unknowns bmul and badd,
which are uniformly distributed. These equations are solvable since β2-nbr

u ̸= β2-nbr
w .

Therefore, the simulated view and the real execution are identically distributed.
Case 3.4: Corrupted receiver is not center. Until Step 4, both the simulation and the

real execution follow the protocol, and during this step, only the receiver (which is non-
center) receives messages from its two neighbors. The possible scenarios are as follows:

• If both of the receiver’s neighbors are corrupted, the simulation is immediate. See
Scenario 1 below.

• If there is only one honest neighbor who is the center, then for each corrupted
neighbor of the center the simulator acts exactly as the real execution, and for honest
neighbors the case reduces to Case 2.5; hence, the view is identically distributed.
See Scenario 2 below.

28

• If the center (which is non-receiver) is corrupted, the simulation runs exactly the
same as the real execution; hence, the view is identically distributed. See Scenario
3 below.

• If both of the receiver’s neighbors are honest, then using induction on the center’s
corrupted neighbors and using Case 2.5 in each step to show that the view is iden-
tically distributed. See Scenario 4 below.

R

(a) Scenario 1: the receiver and its neighbors are
corrupted (in blue)

R

(b) Scenario 2: the center is honest

R

(c) Scenario 3: the non-center neighbor of the
receiver is honest

R

(d) Scenario 4: both of the receiver’s neighbors
are honest

This concludes the proof of Theorem 3.7.

4 1-IT-THB Admissible Graph Class
In this section, we present our 1-IT-THB protocol for admissible graph classes. We begin, in
Section 4.1, with the special case of wheel graphs; next, in Section 4.2, we present the protocol for
arbitrary admissible graphs.

4.1 1-IT-THB for Wheel Graphs

We begin by constructing 1-IT-THB for the wheel graph-class. First, we formally define the graph
class as the isomorphically closed class of Wn (see Definition 2.1).

Definition 4.1 (wheel graph). Let n ∈ N such that n ≥ 4. The wheel graph Wn consists of n + 1
nodes: a cycle of size n and a center node v connected to all other nodes.

Definition 4.2 (wheel graph-class). Let n ∈ N such that n ≥ 4. The wheel graph-class Gwheel(n)
is the isomorphically closed graph class associated with Wn.

Notations used in the protocol. We refer the reader to Section 1.2 for a high-level overview.
Below, we describe the notation used in the construction.

• The matrix of correlated values, C3-nbr
u ∈ F(n+1)×(n+1)

q , is sampled uniformly at random
by every non-receiver party Pu. Some values from these matrices are exchanged between

29

neighboring parties, and are used as secret-shares of the sender’s message within the matrices
Mu that are sent to the receiver.
We note that not all values in these matrices will actually be used in the protocol; we chose to
use matrices with redundant random values for simplicity of notation. Further, for consistency
with the protocol for admissible graphs (Section 4.2), we emphasize in the notation of C3-nbr

u

that these matrices are only relevant when the receiver has 3 neighbors.

• The matrix Mu ∈ F(n+1)×(n+1)
q is generated by every party Pu that is a neighbor of the

receiver, and is sent by Pu to the receiver in the last step of the protocol. Some of the values
in this matrix are uniformly sampled, and if the receiver has three neighbors (one of which is
the center) the corresponding entries in these matrices will be crafted as 3-out-of-3 shares of
the message (using the correlated values).

Similarly to Section 3.1, we first analyze the protocol πwheel (formally defined in Figure 17) for
fixed-size wheel graphs, where there is a single connected component. However, we add the instruc-
tions (in blue) for handling variable-size graphs, in which there is one main connected component
(that is a wheel) and all other nodes are isolated (see Corollary 4.6).

Theorem 4.3 (IT-THB for wheel graph-class). Let n ∈ N such that n ≥ 4 and consider the
wheel graph-class Gwheel(n). The protocol πwheel (defined in Figure 17) is a perfectly secure IT-THB
protocol against a single semi-honest corruption with respect to Gwheel(n).

Proof. First, note that the protocol is well-defined; because |V | = n + 1 ≥ 5, there exists a unique
center node v ∈ V with degree deg(v) = |V | − 1. We proceed to prove correctness and security.

Correctness. In case PR is a neighbor of PS , then in the first round PR receives m and sets m as
its output. In case PR is not a neighbor of PS , then PR has 3 neighbors. Denote N (R) = {v1, v2, u};
by the structure of wheel graphs, one of these neighbors, say Pu, is the center. The output in this
case is defined to be

Mv1 [v2, u]⊕Mv2 [v1, u]⊕Mu[v1, v2] =
=

(
σu

v2,v1
⊕ σv2

u,v1
⊕mv1

)
⊕

(
σu

v1,v2
⊕ σv1

u,v2
⊕mv2

)
⊕

(
σv2

v1,u ⊕ σv1
v2,u ⊕mu

)
=

(
(0⊕ σv2

u,v1
)⊕mv1

)
⊕

(
(0⊕ σv1

u,v2
)⊕mv2

)
⊕

(
(σv2

v1,u ⊕ σv1
v2,u)⊕mu

)
=

(
(0⊕C3-nbr

u [v1, v2])⊕mv1

)
⊕

(
(0⊕C3-nbr

u [v2, v1])⊕mv2

)
⊕

(
(C3-nbr

u [v1, v2]⊕C3-nbr
u [v2, v1])⊕mu

)
= (C3-nbr

u [v1, v2]⊕C3-nbr
u [v2, v1]⊕C3-nbr

u [v1, v2]⊕C3-nbr
u [v2, v1])⊕ (mv1 ⊕mv2 ⊕mu)

= (0⊕ 0)⊕ (0⊕ 0⊕m) = m.

The equalities are justified as follows:

• The first equality holds by the way Mv1 [v2, u], Mv2 [v1, u], and Mu[v1, v2] are defined in Step 3.

• The second equality holds by Step 3: since the center u is the common neighbor of v1 and v2,
which are not neighbors (by the structure of wheel graphs), so σu

v1,v2 and σu
v2,v1 are zero.

• The third equality holds by Step 3: since u is the center the value σ
v3−i
vi,u = C3-nbr

u [vi, v3−i] for
i ∈ {1, 2} and since v1 and v2 are not the center, it holds that σ

v3−i
u,vi = C3-nbr

u [vi, v3−i].

• The last equality holds because non-center nodes set mv1 = mv2 = 0 in Step 3.

30

Protocol πwheel(n, PS)

Auxiliary input: A binary field Fq such that q > n.
Input: The sender PS , with S ∈ [n + 1], holds an input m ∈ {0, 1}.
Hybrid model: The protocol is defined in the FGwheel(n)

graph -hybrid model.
The protocol:

• Each party Pv sends an initialization message to FGwheel(n)
graph and receives its neighbor-set N (v).

• Repeat for each potential receiver PR with R ∈ [n + 1]:

1. Forwarding the message to the center node. The sender PS sends m to its neighbors.
If PS is a isolated, the center acts as if received m = 0 from PS .

2. Generating correlated values. Every non-receiver party Pu ̸= PR samples uniformly at random
a matrix C3-nbr

u ← F(n+1)×(n+1)
q . Next, Pu sends to every Pv with v ∈ N (u) \ {R} the row

corresponding to v in C3-nbr
u .

In case Pu is the center, it plays in its head every isolated Pv; that is, Pu samples on behalf of
Pv a matrix C3-nbr

v ← F(n+1)×(n+1)
q and sends the row corresponding to u in C3-nbr

v to itself.
3. Forwarding m to PR. In this step, only parties Pu with u ∈ N (R) send messages, and only PR

receives messages. Party Pu proceeds as follows: Initialize a matrix Mu of size (n+1)2 to zeros.
For every v1, v2 ∈ [n + 1] \ {R, u} such that v1 ̸= v2:
(a) If {v1, v2} ∩ N (u) = ∅, sample a value x← Fq at random and set both Mu[v1, v2] = x and

Mu[v2, v1] = x.
(b) Otherwise, if {v1, v2} ∩ N (u) ̸= ∅, set Mu[v1, v2] ..= σv2

v1,u ⊕ σv1
v2,u ⊕mu, where

– For i ∈ {1, 2}: if u is the center set σ
v3−i
vi,u

..= C3-nbr
u [vi, v3−i]; otherwise, if vi ∈ N (u) set

σ
v3−i
vi,u

..= C3-nbr
vi

[u, v3−i]; else σ
v3−i
vi,u

..= 0.
– If u is the center node, set mu

..= m; else mu
..= 0.

Finally, Pu sends to PR the matrix Mu.
4. PR output.

– If PR is PS then output its input.
– If R ∈ N (S), output m as received on Step 1.
– If |N (R)| = 3, denote N (R) = {v1, v2, v3} and output Mv1 [v2, v3]⊕Mv2 [v1, v3]⊕Mv3 [v1, v2].
– If |N (R)| = 0, output 0.

Figure 17: Information-theoretic 1-THB over Gwheel(n). The instruction lines in blue are only
needed when considering wheel graphs with variable size (i.e., when some nodes are isolated).

Security. We proceed to prove security. Let Pv∗ with v∗ ∈ [n+1] denote the corrupted party. We
will construct a simulator Sim that given the neighbor-set of Pv∗ generates a simulated view for Pv∗

that is identically distributed as its view in a real execution of the protocol. As we consider semi-
honest security, and as broadcast is a deterministic functionality, this implies that the environment’s
output is identically distributed in the real and ideal computations.

The simulator Sim runs Pv∗ in its head. Initially, Pv∗ sends an initialization message to
FG

graph; the simulator forwards this message to WG
graph-info(Fbc(PS)) and sends the response N (v∗)

to Pv∗ . Next, in case the sender is corrupted, i.e., Pv∗ = PS , the simulator sends its input m to

31

WG
graph-info(Fbc(PS)); regardless, Sim receives the message m as the output fromWG

graph-info(Fbc(PS))
(formally, Sim sends the “empty input” for a non-sender corrupted party).

Next, Sim simulates an RMT instance towards the corrupted party, for every potential receiver
PR with R ∈ [n + 1] \ {S}.
• To simulate Step 1, if the sender is corrupted, Sim receives m on behalf of every honest Pv for

which v ∈ N (S). If the sender is honest and S ∈ N (v∗) then Sim sends m to Pv∗ .

• To simulate Step 2, if Pv∗ is not the receiver, for every honest neighbor Pu with u ∈ N (v∗), Sim
samples uniformly at random from F(n+1)×(n+1)

q correlated values for a square matrix C3-nbr
u and

sends the corresponding row vector to Pv∗ on behalf of Pu. In addition, Sim receives the vector
C3-nbr

v∗ [u] from Pv∗ on behalf of Pu.

• To simulate Step 3, if Pv∗ is a neighbor of the receiver, i.e., v∗ ∈ N (R), then Sim receives from
Pv∗ the matrix Mv∗ on behalf of PR.
If Pv∗ is the receiver, we consider two cases:

1. If Pv∗ is the center node, then for each u ̸= v∗ the simulator first initializes a matrix Mu

of size (n + 1)× (n + 1) to zeros; for every v1, v2 /∈ {u, v∗} such that v1 ̸= v2, the simulator
samples x ← Fq at random and sets Mu[v1, v2] = Mu[v2, v1] = x. Finally, the simulator
sends Mu to Pv∗ on behalf of each Pu.

2. Otherwise, denote N (v∗) = {w1, w2, w3}. First the simulator initializes the matrices Mw1 ,
Mw2 , and Mw3 , each of size (n+1)×(n+1) to zeros; next, the simulator randomly samples
values x1, x2, x3 ← Fq conditioned on x1 ⊕ x2 ⊕ x3 = m and sets

Mw1 [w2, w3] = Mw1 [w3, w2] = x1

Mw2 [w1, w3] = Mw2 [w3, w1] = x2

Mw3 [w2, w1] = Mw3 [w1, w2] = x3.

For every i ∈ {1, 2, 3} and every v1, v2 ∈ [n + 1] \ {v∗, wi} such that |{v1, v2} ∩ N (v∗)| < 2
and v1 ̸= v2, the simulator samples at random x′

i ← Fq and sets

Mwi [v1, v2] = Mwi [v2, v1] = x′
i.

Finally, the simulator sends to the adversary the matrices Mw1 , Mw2 , and Mw3 .

We proceed to show that the view of Pv∗ in the simulated protocol is identically distributed as
its view in a real execution of the protocol. Note that the simulation mirrors the protocol except
for the last step (Step 3). Therefore, we need to analyze only the last step where v∗ is the receiver.

Case 1: Pv∗ has three neighbors. That is, Pv∗ is not the center; denote N (v∗) = {w1, w2, w3}.
Since one of the neighbors is the center, in the real execution it holds that

Mw1 [w2, w3]⊕Mw2 [w1, w3]⊕Mw3 [w1, w2] = m.

Indeed, the simulation guarantees that all values are uniformly sampled from Fq conditioned on
Mw1 [w2, w3]⊕Mw2 [w1, w3]⊕Mw3 [w1, w2] = m; hence, these triplets are identically distributed in
the real and simulated executions.

For every v1, v2 ∈ [n + 1] and every i ∈ {1, 2, 3}, the values of the matrix Mwi [v1, v2] are set as
follows during the execution in the real world:

32

1. If {v1, v2} ∩ {R, wi} ≠ ∅ or if v1 = v2, it holds that Mwi [v1, v2] = 0; as in the simulation.

2. If {v1, v2}∩N (wi) = ∅, then Mwi [v1, v2] is sampled uniformly at random; as in the simulation.

3. If wi is not the center and {v1, v2}∩N (wi) = {vj} with j ∈ {1, 2} (i.e., |{v1, v2}∩N (wi)| = 1),
then, according to Step 3, Mwi [v3−j , vj] is set as:

Mwi [v3−j , vj] = σ
vj
v3−j ,wi ⊕ σ

v3−j
vj ,wi ⊕mwi

= σ
vj
v3−j ,wi ⊕ σ

v3−j
vj ,wi ⊕ 0

= 0⊕C3-nbr
vj

[wi, v3−j],

where the second equality holds since a non-center wi sets mwi = 0, and the third equality
holds since a non-center wi sets σ

v3−j
vj ,wi = C3-nbr

vj
[wi, v3−j] for vj ∈ N (wi), and sets σ

vj
v3−j ,wi = 0

for v3−j /∈ N (wi).
The only other party that can use the value C3-nbr

vj
[wi, v3−j] is the center.7 If vj is the center

(as illustrated in Figures 18b and 18c), the relevant value Mvj [wi, v3−j] is formed as:

Mvj [wi, v3−j] = σ
v3−j
wi,vj ⊕ σwi

v3−j ,vj
⊕mvj

= σ
v3−j
wi,vj ⊕ σwi

v3−j ,vj
⊕m

= C3-nbr
vj

[wi, v3−j]⊕C3-nbr
vj

[v3−j , wi]⊕m.

The value C3-nbr
vj

[v3−j , wi] is sent from the center vj to v3−j . If v3−j is a neighbor of the
receiver (Figure 18b), then {wi, vj , v3−j} = {w1, w2, w3}; else, if v3−j is not a neighbor of the
receiver (Figure 18c), then the value C3-nbr

vj
[v3−j , wi] is not used in any other message that

is part of the receiver’s view and is identically distributed as the simulated value which is
sampled uniformly at random.

v∗

wi

vj

(a) In this case, as vj is not the center, it is not a
neighbor of Pv∗ and will not participate in Step 3.

vj

v∗

wi v3−j

(b) In this case, vj is the center and v3−j is a
neighbor of v∗, i.e., {wi, vj , v3−j} = {w1, w2, w3}

vj

v∗

wi

v3−j

(c) In this case, vj is the center and v3−j is not a neighbor of v∗;
hence, the value C3-nbr

vj
[v3−j , wi] will not be used.

Figure 18: The various settings in Case 1, Item 3, where the corrupted receiver Pv∗ is not the center
and {v1, v2} ∩N (wi) = {vj} for one of Pv∗ ’s neighbors wi regarding arbitrary parties v1 and v2. In
particular, wi is not the center and it may use the correlated value C3-nbr

vj
[wi, v3−j] sent by vj , and

known only to wi and vj .
7We highlight some values with blue and green colors to match the illustration in Figure 18.

33

4. If wi is not the center and {v1, v2} ⊆ N (wi) (illustrated in Figure 19) then, according to
Step 3, Mwi [v3−j , vj] is formed by:

Mwi [v1, v2] = σv2
v1,wi

⊕ σv1
v2,wi

⊕mwi

= σv2
v1,wi

⊕ σv1
v2,wi

⊕ 0
= C3-nbr

v1 [wi, v2]⊕C3-nbr
v2 [wi, v1]⊕ 0,

where the second equality holds since the non-center wi sets mwi = 0, and the third equality
holds according to Step 3, as σv2

v1,wi
= C3-nbr

v1 [wi, v2] and σv1
v2,wi

= C3-nbr
v2 [wi, v1].

By the structure of the wheel graph, as wi is not the center, either v1 or v2 is not a neighbor
of the receiver Pv∗ ; assume without loss of generality that v1 is not a neighbor of Pv∗ and
consider the value C3-nbr

v1 [wi, v2]: the only time when this value is communicated is when party
v1 sends it to party wi at Step 2. During the simulation, Sim samples Mwi [v1, v2] uniformly
at random and independently of all other values; hence, Mwi [v1, v2] is identically distributed
in the real execution and the simulated one.

v2

v∗

wi

v1

Figure 19: The setting in Case 1, Item 4, where the corrupted receiver Pv∗ is not the center and v1
and v2 are the non-receiver neighbors of wi (colored in blue).

5. If wi is the center, then in particular {v1, v2} ⊆ N (wi) (see Figure 20). According to Step 3,
Mwi [v1, v2] is formed as:

Mwi [v1, v2] = σv2
v1,wi

⊕ σv1
v2,wi

⊕mwi

= σv2
v1,wi

⊕ σv1
v2,wi

⊕m

= C3-nbr
wi

[v1, v2]⊕C3-nbr
wi

[v2, v1]⊕m,

where the second equality holds since the center wi sets mwi = m, and the third equality
holds since wi is the center so σv2

v1,wi
= C3-nbr

wi
[v1, v2] and σv1

v2,wi
= C3-nbr

wi
[v2, v1].

Note that the case where {v1, v2, wi} ⊆ {w1, w2, w3} (Figure 20a) is handled above, at the
beginning of Case 1. Otherwise, without loss of generality, let v1 /∈ {w1, w2, w3} (Figure 20b);
in this case, the value C3-nbr

wi
[v1, v2] is sent from wi to v1 in Step 2, and is only used in

Mwi [v1, v2] (since v1 is not a neighbor of the receiver). During the simulation, Sim samples
Mwi [v1, v2] uniformly at random and independently of all other values; hence, Mwi [v1, v2] is
identically distributed in the real execution and the simulated one.

wi

v∗

v1 v2

(a) v1 and v2 are neighbors of the receiver

wi

v∗

v2

v1

(b) v1 is not a neighbor of the receiver, but v2 is

Figure 20: The various settings in Case 1, Item 5, where wi is the center.

34

Case 2: Pv∗ is the center. Consider an arbitrary triplet of neighbors, {w1, w2, w3} ⊆ N (v∗).
For every i ∈ {1, 2, 3} and every pair v1, v2 ∈ [2n + 1], we will examine the value Mwi [v1, v2] by
considering the following cases:

1. If {v1, v2} ∩ {v∗, wi} ̸= ∅ or v1 = v2, it holds that Mwi [v1, v2] = 0. The same holds in the
simulation.

2. If {v1, v2}∩N (wi) = ∅, then Mwi [v1, v2] is sampled uniformly at random. The same holds in
the simulation.

3. If {v1, v2} ∩ N (wi) = {vj} with j ∈ {1, 2} (i.e., |{v1, v2} ∩ N (wi)| = 1), then, according to
Step 3, Mwi [vj , v3−j] is set as:

Mwi [vj , v3−j] = σ
v3−j
vj ,wi ⊕ σ

vj
v3−j ,wi ⊕mwi

= σ
v3−j
vj ,wi ⊕ σ

vj
v3−j ,wi ⊕ 0

= C3-nbr
vj

[wi, v3−j]⊕ 0⊕ 0
= C3-nbr

vj
[wi, v3−j],

where the second equality holds since the non-center wi sets mwi = 0 in Step 3, the third
equality holds since vj ∈ N (wi) so σ

v3−j
vj ,wi = C3-nbr

vj
[wi, v3−j], and since v3−j /∈ N (wi) so

σ
vj
v3−j ,wi = 0. Note that the value C3-nbr

vj
[wi, v3−j] is sampled uniformly at random, and is

known only to vj (who sampled it) and wi who received it, and is used only once in this
specific message.

v∗

wi

v3−jvj

Figure 21: The setting in Case 2, Item 3, where the corrupted receiver Pv∗ is the center, and vj is
a neighbor of wi but v3−j is not a neighbor of wi.

4. If |{v1, v2} ∩ N (wi)| = 2, then according to Step 3, Mwi [v1, v2] is formed as:

Mwi [v1, v2] = σv2
v1,wi

⊕ σv1
v2,wi

⊕mwi

= σv2
v1,wi

⊕ σv1
v2,wi

⊕ 0
= C3-nbr

v1 [wi, v2]⊕C3-nbr
v2 [wi, v1],

where the second equality holds since the non-center wi sets mwi = 0 in Step 3, and the third
equality holds since {v1, v2} ⊆ N (wi) so σv2

v1,wi
= C3-nbr

v1 [wi, v2], and σv1
v2,wi

= C3-nbr
v2 [wi, v1].

Note that the values C3-nbr
v1 [wi, v2] and C3-nbr

v2 [wi, v1] were sent to wi from the corresponding
v1 or v2 at Step 2. Party v1 samples C3-nbr

v1 [wi, v2] uniformly at random and sends it only
to wi (different parties get different C3-nbr

v1 [wi, v2]). Similarly, Party v2 samples C3-nbr
v2 [wi, v1]

uniformly at random and sends it only to wi. Therefore, both C3-nbr
v1 [wi, v2] and C3-nbr

v2 [wi, v1]
are not known to Pv∗ , and are not used in other values.

35

v∗

wi

v1 v2

Figure 22: The setting in Case 2, Item 4, where the corrupted receiver Pv∗ is the center, and both
v1 and v2 are neighbors of wi.

This concludes the proof of Theorem 4.3.

In Theorem 4.3 we have shown a 1-IT-THB protocol for the “fixed-size” wheel graph-class. With
minor changes to the protocol (including the blue instruction lines) wheel graphs of different sizes
are also captured.

Definition 4.4 (augmented wheel graph). Let k, n ∈ N such that 4 ≤ k ≤ n. The augmented
wheel graph Wk,n consists of the wheel graph Wk together with n + 1 − (k + 1) = n − k isolated
nodes.

Definition 4.5 (augmented wheel graph-class). Let k, n ∈ N such that 4 ≤ k ≤ n. The augmented
wheel graph-class, denoted by Gwheel(k, n), is the isomorphically closed graph class associated with
Wk,n.

Corollary 4.6 (IT-THB for wheel graph-class of variable size). Let n ∈ N with n ≥ 4, and let
G ⊆

⋃n
k=4 Gwheel(k, n). The protocol πwheel (including the blue instruction lines) is a perfectly secure

IT-THB protocol against a single semi-honest corruption with respect to G.

4.2 1-IT-THB for Admissible Subgraphs

We proceed by carefully combining the protocols for friendship graphs and wheel graphs into a
single protocol suitable for arbitrary admissible graphs. We start by defining admissible graphs as
a special form of star-embedded graphs (which will be used also in Section 5.2).

Definition 4.7 (star-embedded graph). Let n ∈ N such that n ≥ 4. A graph G is an n-star-
embedded graph if the following requirements hold:

• There exists k ∈ N such that 4 ≤ k ≤ n and G is a subgraph of Wk,n with |V(G)| = n + 1.

• G contains a single, main connected component of (V, E), such that |V | ≥ 5 and there exists
a node v ∈ V whose degree is deg(v) = |V | − 1.

• All other connected components are singletons; that is, for every node u ∈ V(G) \ V it holds
that deg(u) = 0.

Definition 4.8 (admissible graph). Let n ∈ N such that n ≥ 4. A graph G is an n-admissible
graph if G is an n-star-embedded graph and the following requirement holds:

• Let (V, E) be the main connected component of G. For every node u ∈ V , if deg(u) ̸= |V |−1,
then deg(u) ∈ {2, 3}.

36

Figure 23: Examples of admissible subgraphs of W8.

Definition 4.9 (star-embedded graph-class). Let n ∈ N. A graph-class G(n) is an n-star-embedded
graph-class if G(n) is not empty, and every G ∈ G(n) is an n-star-embedded graph, whose nodes
are labeled by unique identities from [n + 1], and if G(n) is isomorphically closed.

Definition 4.10 (admissible graph-class). Let n ∈ N. A graph-class Gadmis(n) is an n-admissible
graph-class if Gadmis(n) is an n-star-embedded graph-class, and every G ∈ Gadmis(n) is an n-
admissible graph.

We proceed to present an IT-THB protocol for an admissible graph-class. At a high level, the
protocol combines both the friendship protocol and the wheel protocol simultaneously; however,
care must be taken to ensure that the receiver “destroys” the irrelevant execution. An overview
can be found in the introduction (Section 1.2).

Notations used in the protocol. The notations in this protocol is a combination of the nota-
tions in the friendship protocol (πfriendship, Figure 15) and the wheel protocol (πwheel, Figure 17).

• As in πfriendship, the blinding terms are represented by the vectors bmul
u and badd

u .

• As in πfriendship, the suitable offset values β2-nbr
u are used to hide the structure of the graph

if the receiver is the center. As opposed to πfriendship, the suitable offset values are also used
if the receiver has three neighbors, meaning that the “friendship subexecution” should be
meaningless.

• As in πfriendship, every neighbor u of the receiver sends to the receiver a vector su in the last
step of the protocol.

• As in πwheel, the matrix of correlated values is represented as C3-nbr
u .

• As in πwheel, every neighbor u of the receiver sends to the receiver a matrix Mu in the last
step of the protocol.

Theorem 4.11 (IT-THB for admissible graph-class). Let n ∈ N and let Gadmis(n) be an n-admissible
graph-class. Then, Protocol πadmis (defined in Figure 24) is a perfectly secure IT-THB protocol
against a single semi-honest corruption with respect to Gadmis(n).

Proof. First, note that the protocol is well-defined since there exists a center node v ∈ V with
degree deg(v) = |V | − 1, and the center is unique since |V | ≥ 5. Further, for every non-center node
u ∈ V it holds that deg(u) ∈ {2, 3} as required by the protocol. We proceed to prove correctness
and security.

37

Protocol πadmis(n, PS)
Auxiliary input: A binary field Fq such that q > n + 1 and an n-admissible graph-class Gadmis(n).
Input: The sender PS , with S ∈ [n + 1], holds an input m ∈ {0, 1}.
Hybrid model: The protocol is defined in the FGadmis(n)

graph -hybrid model.
The protocol:

• Each party Pv sends an initialization message to FGadmis(n)
graph and receives its neighbor-set N (v).

• Repeat for each potential receiver PR with R ∈ [n + 1] \ {S}:
1. Forwarding the message to the center node. The sender PS sends m to its neighbors.

If PS is isolated, the center acts as if received m = 0 from PS .
2. Generating blinding terms. Every non-receiver Pu ̸= PR uniformly samples from Fn+1

q two blinding
vectors bmul

u and badd
u of size n + 1, and sends (bmul

u [v], badd
u [v]) to every Pv with v ∈ N (u).

In case Pu is the center, it plays in its head every isolated Pv; that is, Pu samples on behalf of Pv

two blinding vectors bmul
v and badd

v and sends (bmul
v [u], badd

v [u]) to itself.
3. Generating correlated values. Every party Pu ̸= PR samples a matrix C3-nbr

u ← F(n+1)×(n+1)
q .

Next, Pu sends to every Pv with v ∈ N (u) \ {R} the row corresponding to v in C3-nbr
u .

In case Pu is the center, it plays in its head every isolated Pv; that is, Pu samples on behalf of Pv

a matrix C3-nbr
v ← F(n+1)×(n+1)

q and sends the row corresponding to u to itself.
4. Generating suitable offsets. Party PR generates values β2-nbr

u for each of its neighbors u ∈ N (R),
and sends β2-nbr

u to Pu, as follows:
– If |N (R)| = 0, i.e., R is isolated, it does not send any messages.
– If |N (R)| = 2, sample β2-nbr ← Fq and set β2-nbr

u
..= β2-nbr for every u ∈ N (R).

– Otherwise, PR is the center party or N (R) = 3, sample independently at random β2-nbr
u ← Fq,

for each u ∈ N (R), conditioned on all values being distinct.
5. Forwarding m to PR. In this step, the communication is by neighbors of PR who talk to PR.

Every party Pu, with u ∈ N (R), proceeds as follows:
– If u is the center node, set mu

..= m; else, set mu
..= 0.

– Initialize a matrix Mu of size (n + 1)2 to zeros. For every distinct v1, v2 ∈ [n + 1] \ {R, u}:
(a) If {v1, v2} ∩ N (u) = ∅, sample x← Fq and set both Mu[v1, v2] ..= x and Mu[v2, v1] ..= x;
(b) Otherwise, set Mu[v1, v2] ..= σv2

v1,u ⊕ σv1
v2,u ⊕mu, where

∗ For i ∈ {1, 2}, if u is the center set σ
v3−i
vi,u

..= C3-nbr
u [vi, v3−i]; else, if vi ∈ N (u) set

σ
v3−i
vi,u

..= C3-nbr
vi

[u, v3−i], and if vi /∈ N (u) set σ
v3−i
vi,u

..= 0.
– Initialize a vector of zeros su of size n + 1. For every v ∈ [n + 1] \ {R, u}, if Pu is not the center

and v /∈ N (u), set su[v]← Fq to be a random value; otherwise, set

su[v] ..= (β2-nbr
u · (bmul

u [v]⊕ bmul
v [u]))⊕ (badd

u [v]⊕ badd
v [u])⊕mu.

Finally, Pu sends to PR the matrix Mu and the vector su.
6. PR output.

– If PR is the center, output m.
– If |N (R)| = 3, denote N (R) = {v1, v2, v3} and output Mv1 [v2, v3]⊕Mv2 [v1, v3]⊕Mv3 [v1, v2].
– If |N (R)| = 2, denote N (R) = {v, u} and output sv1 [v2]⊕ sv2 [v1].
– If |N (R)| = 0, output 0.

Figure 24: Information-theoretic THB over Gadmis. The instruction lines in blue are only needed
when considering admissible graphs with variable size (i.e., when some nodes are isolated).

38

Correctness. We will show that all parties in the same connected component of PS output its
message m. In case PR is a neighbor of PS , then in the first round PR receives m and sets m as its
output. In case PR is not a neighbor of PS , then PR has either 2 or 3 neighbors. We consider each
case separately.

• If |N (R)| = 3, denote N (R) = {v1, v2, u}; by the structure of admissible graphs, one of these
neighbors, say Pu, is the center. The output in this case is defined as

Mv1 [v2, u]⊕Mv2 [v1, u]⊕Mu[v1, v2] =
=

(
σu

v2,v1
⊕ σv2

u,v1
⊕mv1

)
⊕

(
σu

v1,v2
⊕ σv1

u,v2
⊕mv2

)
⊕

(
σv2

v1,u ⊕ σv1
v2,u ⊕mu

)
=

(
(0⊕ σv2

u,v1
)⊕mv1

)
⊕

(
(0⊕ σv1

u,v2
)⊕mv2

)
⊕

(
(σv2

v1,u ⊕ σv1
v2,u)⊕mu

)
=

(
(0⊕C3-nbr

u [v1, v2])⊕mv1

)
⊕

(
(0⊕C3-nbr

u [v2, v1])⊕mv2

)
⊕

(
(C3-nbr

u [v1, v2]⊕C3-nbr
u [v2, v1])⊕mu

)
= (C3-nbr

u [v1, v2]⊕C3-nbr
u [v2, v1]⊕C3-nbr

u [v1, v2]⊕C3-nbr
u [v2, v1])⊕ (mv1 ⊕mv2 ⊕mu)

= (0⊕ 0)⊕ (0⊕ 0⊕m) = m.

The first equality holds by the way Mv1 [v2, u], Mv2 [v1, u], and Mu[v1, v2] are defined in Step 5.
The second equality holds because the center node u is the common neighbor of v1 and v2,
which are not adjacent parties (by the structure of admissible graphs), so σu

v1,v2 = σu
v2,v1 = 0.

The third equality holds since u is the center so σ
v3−i
vi,u = C3-nbr

u [vi, v3−i] for i ∈ {1, 2}, and
since v1 and v2 are non-center, hence σ

v3−i
u,vi = C3-nbr

u [vi, v3−i]. The fourth equality holds by
commutativity, and the last equality holds because non-center nodes set mv1 = mv2 = 0.

• If |N (R)| = 2, denote N (R) = {v, u}; again, one of these neighbors, say Pu, is the center.
The output in this case is defined to be

sv[u]⊕ su[v] =
=

(
(β2-nbr

v · (bmul
v [u]⊕ bmul

u [v]))⊕ (badd
u [v]⊕ badd

v [u])⊕mv
)

⊕
(
(β2-nbr

u · (bmul
u [v]⊕ bmul

v [u]))⊕ (badd
v [u]⊕ badd

u [v])⊕mu
)

=
(
β2-nbr · (bmul

v [u]⊕ bmul
u [v]⊕ bmul

u [v]⊕ bmul
v [u])

)
⊕ (badd

u [v]⊕ badd
v [u]⊕ badd

v [u]⊕ badd
u [v])⊕ (mv ⊕mu)

= (β2-nbr · 0)⊕ (0⊕ 0)⊕ (0⊕m) = m,

where the first equality holds by the way sv[u] and su[v] are defined in Step 5; the second
equality holds by Step 4 and because the receiver PR, which is not the center, sets β2-nbr

v =
β2-nbr

u = β2-nbr; and the last equality holds because the non-center neighbor Pv sets mv = 0
in Step 5.

Security. We proceed to prove security. Let Pv∗ with v∗ ∈ [n+1] denote the corrupted party. We
will construct a simulator Sim that given the neighbor-set of Pv∗ generates a simulated view for Pv∗

that is identically distributed as its view in a real execution of the protocol. As we consider semi-
honest security, and as broadcast is a deterministic functionality, this implies that the environment’s
output is identically distributed in the real and ideal computations.

The simulator Sim runs Pv∗ in its head. Initially, Pv∗ sends an initialization message to
FG

graph; the simulator forwards this message to WG
graph-info(Fbc(PS)) and sends the response N (v∗)

39

to Pv∗ . Next, in case the sender is corrupted, i.e., Pv∗ = PS , the simulator sends its input m to
WG

graph-info(Fbc(PS)); regardless, Sim receives the message m as the output fromWG
graph-info(Fbc(PS))

(formally, Sim sends the “empty input” for a non-sender corrupted party). Further, the simula-
tor instructs WG

graph-info(Fbc(PS)) to set the output of every party that is not in the connected
component of PS to be 0.

Next, Sim simulates an RMT instance towards the corrupted parties, for every potential receiver
PR with R ∈ [n + 1] \ {S}.

• To simulate Step 1, if the sender is corrupted, Sim receives m on behalf of every honest Pv for
which v ∈ N (S). If the sender is honest and a neighbor of Pv∗ , then Sim sends m to Pv∗ . If the
sender is isolated and the center is honest, then Sim simulates the center as if receiving m = 0.

• To simulate Step 2, if Pv∗ is not the receiver, Sim samples for every honest neighbor Pu with
u ∈ N (v∗) random blinding terms bmul

u [v∗], badd
u [v∗]← Fq and sends (bmul

u [v∗], badd
u [v∗]) to Pv∗ on

behalf of Pu. In addition, Sim receives (bmul
v∗ [u], badd

v∗ [u]) from Pv∗ on behalf of Pu.

• To simulate Step 3, if Pv∗ is not the receiver, for every honest neighbor Pu with u ∈ N (v∗), Sim
samples uniformly at random from F(n+1)×(n+1)

q correlated values for a square matrix C3-nbr
u and

sends the corresponding row vector to Pv∗ on behalf of Pu. In addition, Sim receives the vector
C3-nbr

v∗ [u] from Pv∗ on behalf of Pu.

• To simulate Step 4, if Pv∗ is a neighbor of PR, i.e., R ∈ N (v∗), the simulator samples at random
β2-nbr

v∗ ← Fq and sends β2-nbr
v∗ to Pv∗ . Else, If v∗ = R, the simulator receives β2-nbr

u from Pv∗ on
behalf of Pu for every u ∈ N (v∗).

• To simulate Step 5, if Pv∗ is a neighbor of the receiver, i.e., v∗ ∈ N (R), then Sim receives from
Pv∗ the vector sv∗ and a matrix Mv∗ on behalf of PR.
If Pv∗ is the receiver, we consider three cases:

1. If Pv∗ is the center node, then for each u ̸= v∗ the simulator initializes a vector su of size
n + 1 and a matrix Mu of size (n + 1) × (n + 1) to zeros. For v ∈ [n + 1] \ {R, u} the
simulator sets su[v] ← Fq. For v1, v2 ∈ [n + 1] \ {u, v∗} such that v1 ̸= v2, the simulator
samples x ← Fq at random and sets Mu[v1, v2] = Mu[v2, v1] = x. Next, Sim sends the
vector su and the matrix Mu to Pv∗ on behalf of Pu.

2. If Pv∗ has two neighbors, denote N (v∗) = {w1, w2}. The simulator initializes two vectors
sw1 and sw2 each of size n+1 and two matrices Mw1 and Mw2 of size (n+1)2 with zeros. It
samples from Fq and sets the values sw1 [w2], sw2 [w1] conditioned on sw1 [w2]⊕sw2 [w1] = m.
For every v ∈ [n + 1] \ {v∗, w1, w2} the simulator samples sw1 [v], sw2 [v] ← Fq at random.
In addition, for every v1, v2 ∈ [n + 1] \ {v∗, w1, w2} such that v1 ̸= v2 the simulator samples
x1, x2 ← Fq at random and sets

Mw1 [v1, v2] =Mw1 [v2, v1] = x1

Mw2 [v1, v2] =Mw2 [v2, v1] = x2.

Eventually, Sim sends the adversary the vectors swi and the matrices Mwi for i ∈ {1, 2}.

40

3. If Pv∗ has three neighbors, denote N (v∗) = {w1, w2, w3}. The simulator initializes the
matrices Mw1 , Mw2 and Mw3 each of size (n + 1) × (n + 1) to zeros, then the simulator
randomly samples the values x1, x2, x3 ← Fq conditioned on x1 ⊕ x2 ⊕ x3 = m and sets

Mw1 [w2, w3] =Mw1 [w3, w2] = x1

Mw2 [w1, w3] =Mw2 [w3, w1] = x2

Mw3 [w2, w1] =Mw3 [w1, w2] = x3.

Let i ∈ {1, 2, 3}, for every v1, v2 ∈ [n + 1] \ {v∗, wi} such that |{v1, v2} ∩ N (v∗)| < 2 and
v1 ̸= v2 the simulator samples at random x′

i ← Fq, and sets

Mwi [v1, v2] =Mwi [v2, v1] = x′
i.

In addition, for each wi the simulator initializes a vector swi of size n + 1 to zeros, and for
every v ∈ [n + 1] \ {v∗, wi} the simulator samples swi [v]← Fq at random. Eventually, the
simulator sends the adversary the vector swi matrix Mwi .

We proceed to show that the view of Pv∗ in the simulated protocol is identically distributed as
its view in a real execution of the protocol. Note that the simulation mirrors the protocol behavior
except for the last step. Therefore, we need to analyze only the last step (i.e., Step 5), where v∗ is
the receiver. we do so by considering three cases: in Lemma 4.12 we consider the case where Pv∗

is the center; in Lemma 4.15 the case where Pv∗ has two neighbors; and in Lemma 4.18 the case
where Pv∗ has three neighbors.

Lemma 4.12. Suppose that Pv∗ is the center. Then, the view of Adv in Step 5 of the real execution
of πadmis(n, PS) and the view of Adv in Step 5 of the simulated execution (as part of the ideal
computation) are identically distributed.

Proof. Note that the view of Adv (which is essentially the view of Pv∗) can be decomposed into
to {sw}w∈N (v∗) (which are related to the “friendship subexecution”) and {Mw}w∈N (v∗) (which are
related to the “wheel subexecution”). In Claims 4.13 and 4.14 we will show that each part is identi-
cally distributed on its own; next, we will show that these messages are distributed independently,
and the proof will follow.

Claim 4.13. The partial view of Pv∗ consisting of the vectors {sw}w∈N (v∗) is identically distributed
in the real execution and in the simulated execution.

Proof. Consider an arbitrary pair of neighbors {w1, w2} ⊆ N (v∗). For every i ∈ {1, 2} we will
analyze the vector swi by examining the value swi [v] for every v ∈ [n + 1]. Consider the following
cases:

1. If v ∈ {v∗, wi}, then swi [v] = 0 both in the real execution and in the simulated execution.

2. If v /∈ N (wi), then swi [v] is sampled uniformly at random both in the real execution and in
the simulated execution.

3. If v ∈ N (wi) \ {v∗}, then by Step 5 of the real protocol, the value swi [v] is formed as

swi [v] = (β2-nbr
wi

· (bmul
wi

[v]⊕ bmul
v [wi]))⊕ (badd

wi
[v]⊕ badd

v [wi])⊕mwi

= (β2-nbr
wi

· (bmul
wi

[v]⊕ bmul
v [wi]))⊕ (badd

wi
[v]⊕ badd

v [wi]),

41

where the second equality holds since Pv∗ is the center, hence wi sets mwi to zero.
The values bmul

wi
[v], bmul

v [wi], badd
wi

[v] and badd
v [wi] are sent between wi and v, and those are

the only two parties that know and use those values. Party Pv uses those values only when
forming sv[wi] as

sv[wi] = (β2-nbr
v · (bmul

v [wi]⊕ bmul
wi

[v]))⊕ (badd
v [wi]⊕ badd

wi
[v])⊕mv

= (β2-nbr
v · (bmul

v [wi]⊕ bmul
wi

[v]))⊕ (badd
v [wi]⊕ badd

wi
[v]),

where, again, the second equality holds since Pv∗ is the center, so v sets mv to zero. Denote,

bmul = bmul
w [v]⊕ bmul

v [w] and badd = badd
v [w]⊕ badd

w [v].

Note that bmul and badd are uniformly distributed, since bmul
wi

[v], bmul
v [wi], badd

wi
[v] and badd

v [wi]
are sampled uniformly at random at Step 2. In addition, note that the values β2-nbr

wi
and

β2-nbr
v are known to Pv∗ (as Pv∗ sampled and sent them), and by Step 4 we are guaranteed

that β2-nbr
wi

̸= β2-nbr
v because Pv∗ is the center.

Looking back at swi [v] and sv[wi], it holds that

swi [v] = (β2-nbr
wi

· bmul)⊕ badd and sv[wi] = (β2-nbr
v · bmul)⊕ badd.

From the eyes of Pv∗ , these are two linear equations with two unknowns bmul and badd, which
are uniformly distributed. These equations are solvable since β2-nbr

wi
̸= β2-nbr

v . Therefore,
from the view of Pv∗ , the values swi [v] and sv[wi] are distributed as a pair of values sampled
uniformly at random from Fq.

v∗

v

wi

Figure 25: Illustration of the scenario described in Item 3 of Claim 4.13.

This concludes the proof of Claim 4.13.

Claim 4.14. The partial view of Pv∗ consisting of the matrices {Mw}w∈N (v∗) is identically dis-
tributed in the real execution and in the simulated execution.

Proof. Consider an arbitrary neighbor w ∈ NG(v∗). For every v1, v2 ∈ [n + 1], we will examine the
value Mw[v1, v2] by considering the following cases:

1. If {v1, v2}∩{v∗, w} ≠ ∅ or v1 = v2 the value Mw[v1, v2] = 0. The same holds in the simulation.

2. If {v1, v2}∩N (w) = ∅, then Mw[v1, v2] is sampled uniformly at random, both in the simulation
and in the real execution.

42

3. If |{v1, v2} ∩ N (w)| = 1. Denote j ∈ {1, 2} such that {v1, v2} ∩ N (w) = {vj}. Using Step 5
to disassemble Mw[v3−j , vj] value;

Mw[vj , v3−j] = σ
v3−j
vj ,w ⊕ σ

vj
v3−j ,w ⊕mw

= σ
v3−j
vj ,w ⊕ σ

vj
v3−j ,w ⊕ 0

= C3-nbr
vj

[w, v3−j]⊕ 0⊕ 0
= C3-nbr

vj
[w, v3−j].

The second equality holds since v∗ is the center, therefore, the non-center w sets mw = 0
in Step 5. The third equality holds since vj ∈ N (w) so σ

v3−j
vj ,w = C3-nbr

vj
[w, v3−j], and since

v3−j /∈ N (w) so σ
vj
v3−j ,w = 0.

Note that the value C3-nbr
vj

[w, v3−j] is sampled uniformly at random, and is known only to vj

(who sampled it) and w who received it, and is used only once in this specific message.

v∗

w

v3−jvj

Figure 26: Illustration of the scenario described in Item 3 of Claim 4.14. Here, vj is a neighbor of
w and v3−j is not.

4. If |{v1, v2} ∩ N (w)| = 2, using Step 5 to disassemble Mw[v1, v2] value;

Mw[v1, v2] = σv2
v1,w ⊕ σv1

v2,w ⊕mw

= σv2
v1,w ⊕ σv1

v2,w ⊕ 0
= C3-nbr

v1 [w, v2]⊕C3-nbr
v2 [w, v1].

The second equality holds since v∗ is the center, therefore, the non-center w sets mw = 0
in Step 5. The third equality holds since {v1, v2} ⊆ N (w) so σv2

v1,w = C3-nbr
v1 [w, v2], and

σv1
v2,w = C3-nbr

v2 [w, v1].
Note that the values C3-nbr

v1 [w, v2], C3-nbr
v2 [w, v1] were sent to w from the corresponding v1 or v2

at Step 3. Party v1 samples C3-nbr
v1 [w, v2] uniformly at random and sends it only to w (different

parties get different C3-nbr
v1 [w, v2]). Similarly, party v2 samples C3-nbr

v2 [w, v1] uniformly at
random and sends it only to w. Both C3-nbr

v1 [w, v2] and C3-nbr
v2 [w, v1] are not known to Pv∗ ,

and are not used in other values.

v∗

w

v1 v2

Figure 27: Illustration of the scenario described in Item 4 of Claim 4.14. Here, both v1 and v2 are
neighbors of w.

This concludes the proof of Claim 4.14.

43

Finally, since Pv∗ is the center, in the real execution, the messages {sw}w∈N (v∗) and
{Mw}w∈N (v∗) are not dependent on the sender’s message m, and are therefore distributed as a
product distribution of uniformly random values from Fq (or the constant value 0 for the coordi-
nates corresponding to sending neighbor w and the receiver v∗). The same holds in the simulated
execution; hence, the views are identically distributed. This concludes the proof of Lemma 4.12.

Lemma 4.15. Suppose that Pv∗ has two neighbors. Then, the view of Adv in Step 5 of the real
execution of πadmis(n, PS) and the view of Adv in Step 5 of the simulated execution (as part of the
ideal computation) are identically distributed.

Proof. Note that the view of Adv (which is essentially the view of Pv∗) can be decomposed into
to {sw}w∈N (v∗) (which are related to the “friendship subexecution”) and {Mw}w∈N (v∗) (which are
related to the “wheel subexecution”). In Claims 4.16 and 4.17 we will show that each part is identi-
cally distributed on its own; next, we will show that these messages are distributed independently,
and the proof will follow.

Claim 4.16. The partial view of Pv∗ consisting of the matrices {Mw}w∈N (v∗) is identically dis-
tributed in the real execution and in the simulated execution.

Proof. Denote N (v∗) = {w1, w2}. Let i ∈ {1, 2}. For every v1, v2 ∈ [n + 1], we will examine how
the value Mwi [v1, v2] is formed in the real execution, to show that it is identically distributed as in
the simulation.

1. If {v1, v2} ∩ {v∗, wi} ≠ ∅ or v1 = v2 the value Mwi [v1, v2] = 0. The same holds in the
simulation.

2. If {v1, v2}∩N (wi) = ∅, then Mwi [v1, v2] is sampled uniformly at random. The same holds in
the simulation.

3. If wi is not the center and {v1, v2}∩N (wi) = {vj} with j ∈ {1, 2} (i.e., |{v1, v2}∩N (wi)| = 1,
see Figure 28), then according to Step 5, Mwi [v3−j , vj] is set as:

Mwi [v3−j , vj] = σ
vj
v3−j ,wi ⊕ σ

v3−j
vj ,wi ⊕mwi

= σ
vj
v3−j ,wi ⊕ σ

v3−j
vj ,wi ⊕ 0

= 0⊕C3-nbr
vj

[wi, v3−j],

where the second equality holds since a non-center wi sets mwi = 0, and the third equality
holds since a non-center wi sets σ

v3−j
vj ,wi = C3-nbr

vj
[wi, v3−j] for vj ∈ N (wi), and sets σ

vj
v3−j ,wi = 0

for v3−j /∈ N (wi).
The only other party that can use the value C3-nbr

vj
[wi, v3−j] is the center;8 if vj is the center,

the relevant value Mvj [wi, v3−j] is formed as:

Mvj [wi, v3−j] = σ
v3−j
wi,vj ⊕ σwi

v3−j ,vj
⊕mvj

= σ
v3−j
wi,vj ⊕ σwi

v3−j ,vj
⊕m

= C3-nbr
vj

[wi, v3−j]⊕C3-nbr
vj

[v3−j , wi]⊕m.

8We highlight some values with blue and green colors to match the illustration in Figure 28.

44

In Mvj [wi, v3−j] the value C3-nbr
vj

[v3−j , wi] is a value the center sends to party v3−j . Since Pv∗

has only 2 neighbors, party v3−j cannot be a neighbor of Pv∗ , hence this value C3-nbr
vj

[v3−j , wi]
is not used in any other message that is part of the receiver’s view and is identically distributed
as the value in the simulation which is sampled uniformly at random.

w3−i

v∗

wi

(a) wi is marked blue, possible wi neighbors are marked in green.

vj

v∗

wi

v3−j

(b) First option; where vj is the center

w3−i

v∗

wi

vjv3−j

(c) Second option; where vj is not the center

Figure 28: In case receiver is non-center, illustration of the values a non-center wi party will send
Pv∗ , as shown in Item 3 of Claim 4.16.

4. If wi is not the center and {v1, v2} ⊆ N (wi), then according to Step 5, Mwi [v3−j , vj] is set as:

Mwi [v1, v2] = σv2
v1,wi

⊕ σv1
v2,wi

⊕mwi

= σv2
v1,wi

⊕ σv1
v2,wi

⊕ 0
= C3-nbr

v1 [wi, v2]⊕C3-nbr
v2 [wi, v1]⊕ 0,

where the second equality holds since a non-center wi sets mwi = 0, and the third equality
holds according to Step 5: σv2

v1,wi
= C3-nbr

v1 [wi, v2] and σv1
v2,wi

= C3-nbr
v2 [wi, v1].

From the structure of admissible graphs, since wi is not the center, either v1 or v2 is not a
neighbor of the receiver; assume without loss of generality that v1 is not a neighbor of R.
Consider the value C3-nbr

v1 [wi, v2]: the only time when this value is communicated is when
party v1 sends it to party wi at Step 3. During the simulation, Sim samples Mwi [v1, v2]
uniformly at random and independently of all other values; hence, Mwi [v1, v2] is identically
distributed in the real execution and the simulated one.

This concludes the proof of Claim 4.16.

Claim 4.17. The partial view of Pv∗ consisting of the vectors {sw}w∈N (v∗) is identically distributed
in the real execution and in the simulated execution.

Proof. Denote N (v∗) = {w1, w2}. Let i ∈ {1, 2}, and v ∈ [n + 1], we show that the values swi [v] in
the real execution are identically distributed as in the simulation.

1. If v ∈ {v∗, wi} the value swi [v] = 0. The same holds in the simulation.

2. If v /∈ N (wi) then in both the real execution and the simulation the value swi [v] is sampled
uniformly at random. Hence, the view identically distributed.

45

3. For v = w3−i, the value swi [w3−i] in the real execution satisfies sw1 [w2]⊕sw2 [w1] = m. Indeed,
the simulation guarantees all values are sampled conditioned on sw1 [w2]⊕ sw2 [w1] = m.

4. For v ∈ N (wi) \ {w3−i}, in the real execution the value is formed by:

swi [v] = (β2-nbr
wi

· (bmul
wi

[v]⊕ bmul
v [wi]))⊕ (badd

wi
[v]⊕ badd

v [wi])⊕mwi ,

where badd
wi

[v] and badd
v [wi] are sampled uniformly at random, and are only known to Pwi

and Pv. Note that v /∈ N [v∗], therefore v /∈ {w1, w2}. Particularly, Pv∗ is not aware of
those blinding terms, and each term is used only once, therefore the value swi [v] is uniformly
distributed. In the simulation, the value is sampled uniformly at random by the simulation,
hence the view is identically distributed.

w1

v∗

w2

This concludes the proof of Claim 4.17.

Finally, the view of Pv∗ can be decomposed into {sw}w∈N (v∗) and {Mw}w∈N (v∗). Since Pv∗ has
two neighbors, we have shown in Claim 4.16 that all the values in {Mw}w∈N (v∗) are distributed
as a product of uniformly random values from Fq (or the constant value 0 for the coordinates
corresponding to sending neighbor w and the receiver v∗). By Claim 4.17, the values in {sw}w∈N (v∗)
are also distributed as a product of uniformly random values from Fq (or the constant value 0 for
the coordinates corresponding to sending neighbor w and the receiver v∗), except for the values
that construct the message eventually. The same holds in the simulated execution; hence, the views
are identically distributed. This concludes the proof of Lemma 4.15.

Lemma 4.18. Suppose that Pv∗ has three neighbors. Then, the view of Adv in Step 5 of the real
execution of πadmis(n, PS) and the view of Adv in Step 5 of the simulated execution (as part of the
ideal computation) are identically distributed.

Proof. Note that the view of Adv (which is essentially the view of Pv∗) can be decomposed into
to {sw}w∈N (v∗) (which are related to the “friendship subexecution”) and {Mw}w∈N (v∗) (which are
related to the “wheel subexecution”). Like before, in Claims 4.19 and 4.20 we will show that each
part is identically distributed on its own; next, we will show that these messages are distributed
independently, and the proof will follow.

Claim 4.19. The partial view of Pv∗ consisting of the matrices {Mw}w∈N (v∗) is identically dis-
tributed in the real execution and in the simulated execution.

Proof. Denote N (v∗) = {w1, w2, w3}. Let i ∈ {1, 2, 3}, and v1, v2 ∈ [n+1], we will examine how the
values Mwi [v1, v2] are formed in the real execution, to show that they are identically distributed as
in the simulation.

1. If {v1, v2} ∩ {R, wi} ̸= ∅ or v1 = v2 the value Mwi [v1, v2] = 0. The same holds in the
simulation.

46

2. If {v1, v2}∩N (wi) = ∅, then Mwi [v1, v2] is sampled uniformly at random. The same holds in
the simulation.

3. If wi is not the center and |{v1, v2} ∩ N (wi)| = 1, let j ∈ {1, 2} and {v1, v2} ∩ N (wi) = {vj}
then according to Step 1, Mwi [v3−j , vj] is set as:

Mwi [v3−j , vj] = σ
vj
v3−j ,wi ⊕ σ

v3−j
vj ,wi ⊕mwi

= σ
vj
v3−j ,wi ⊕ σ

v3−j
vj ,wi ⊕ 0

= 0⊕C3-nbr
vj

[wi, v3−j],

where the second equality holds since a non-center wi sets mwi = 0, and the third equality
holds since a non-center wi sets σ

v3−j
vj ,wi = C3-nbr

vj
[wi, v3−j] for vj ∈ N (wi), and sets σ

vj
v3−j ,wi = 0

for v3−j /∈ N (wi).
The only other party that can use the value C3-nbr

vj
[wi, v3−j] is the center;9 if vj is the center,

the relevant value Mvj [wi, v3−j] is formed as:

Mvj [wi, v3−j] = σ
v3−j
wi,vj ⊕ σwi

v3−j ,vj
⊕mvj

= σ
v3−j
wi,vj ⊕ σwi

v3−j ,vj
⊕m

= C3-nbr
vj

[wi, v3−j]⊕C3-nbr
vj

[v3−j , wi]⊕m.

In Mvj [wi, v3−j] the value C3-nbr
vj

[v3−j , wi] is a value the center sends to party v3−j , if v3−j

is a neighbor of the receiver, then {wi, vj , v3−j} ⊆ {w1, w2, w3} else, v3−j is not a neighbor
of the receiver, hence this value C3-nbr

vj
[v3−j , wi] is not used in any other message that is part

of the receiver’s view and is identically distributed as the value in the simulation which is
sampled uniformly at random.

4. If wi is not the center and {v1, v2} ⊆ N (wi) then according to Step 1, Mwi [v3−j , vj] is formed
by:

Mwi [v1, v2] = σv2
v1,wi

⊕ σv1
v2,wi

⊕mwi

= σv2
v1,wi

⊕ σv1
v2,wi

⊕ 0
= C3-nbr

v1 [wi, v2]⊕C3-nbr
v2 [wi, v1]⊕ 0,

the second equality holds since wi is not the center, mwi = 0, the third equality holds according
to Step 5; σv2

v1,wi
= C3-nbr

v1 [wi, v2] and σv1
v2,wi

= C3-nbr
v2 [wi, v1].

By the structure of admissible graphs, since wi is not the center, either v1 or v2 is not a
neighbor of the receiver; assume without loss of generality that v1 is not a neighbor of R.
Consider the value C3-nbr

v1 [wi, v2]: the only time when this value is communicated is when
party v1 sends it to party wi at Step 3. During the simulation, Sim samples Mwi [v1, v2]
uniformly at random and independently of all other values; hence, Mwi [v1, v2] is identically
distributed in the real execution and the simulated one.

9This setting is illustrated in Figure 18, and we highlight some values with blue and green to match the illustration.

47

5. If wi is the center, then in particular {v1, v2} ⊆ N (wi), and according to Step 1, Mwi [v1, v2]
is formed as:

Mwi [v1, v2] = σv2
v1,wi

⊕ σv1
v2,wi

⊕mwi

= σv2
v1,wi

⊕ σv1
v2,wi

⊕m

= C3-nbr
wi

[v1, v2]⊕C3-nbr
wi

[v2, v1]⊕m,

where the second equality holds since wi is the center, so mwi = m, and the third equality
holds since wi is the center so σv2

v1,wi
= C3-nbr

wi
[v1, v2] and σv1

v2,wi
= C3-nbr

wi
[v2, v1].

Note that the case where {v1, v2, wi} ⊆ {w1, w2, w3} is handled above, at the beginning of
Case 1. Otherwise, without loss of generality, let v1 /∈ {w1, w2, w3}; in this case, the value
C3-nbr

wi
[v1, v2] is sent from wi to v1 in Step 3, and is only used in Mwi [v1, v2] (since v1 not

a neighbor of the receiver). During the simulation, Sim samples Mwi [v1, v2] uniformly at
random and independently of all other values; hence, Mwi [v1, v2] is identically distributed in
the real execution and the simulated one.

This concludes the proof of Claim 4.19.

Claim 4.20. The partial view of Pv∗ consisting of the vectors {sw}w∈N (v∗) is identically distributed
in the real execution and in the simulated execution.

Proof. Note that the view of Pv∗ can be derived from the view of the center. Therefore, the claim
follows from Claim 4.13.

Finally, the view of Pv∗ can be decomposed into {sw}w∈N (v∗) and {Mw}w∈N (v∗). Since Pv∗ has
three neighbors, we have shown that in Claim 4.20 that all the values in {sw}w∈N (v∗) are distributed
as a product of uniformly random values from Fq (or the constant value 0 for the coordinates
corresponding to sending neighbor w and the receiver v∗). For the values in {Mw}w∈N (v∗), by
Claim 4.19 they are also distributed as a product of uniformly random values from Fq (or the
constant value 0 for the coordinates corresponding to sending neighbor w and the receiver v∗),
except for the values that construct the message eventually. The same holds in the simulated
execution; hence, the views are identically distributed. This concludes the proof of Lemma 4.18.

This concludes the proof of Theorem 4.11.

5 Lower Bounds and Characterization
In Section 5.1, we present our lower bounds, and in Section 5.2, we characterize which subgraphs
of the wheel containing an embedded start support 1-IT-THB and which require key agreement.

5.1 Lower Bounds

We proceed to prove two simple impossibility results for 1-IT-THB. In Section 5.1.1, we show
that a topology-hiding broadcast protocol for a class containing an admissible graph-class together
with the star graph-class of the same size, necessitates key agreement. In Section 5.1.2 we show
an analogue result for graphs containing a tail node and a non-tail node. We prove the bounds
by a direct reduction to graph classes that were shown to imply key agreement in [BBC+20]

48

via the phantom-jump technique (see Section 1.2.2). These bounds are given with respect to the
weaker definition of topology-hiding broadcast, IND-CTA security (see Section 2.1.2); this establishes
stronger results.

5.1.1 1-THB on Admissible Subgraphs and Stars Requires Key Agreement

The first bound is accomplished by a reduction to the class Gtriangle (see Figure 8). We refer the
reader to Section 1.2.2 for an overview of the ideas. As we consider graphs with variable size, i.e.,
with isolated nodes, we first define the augmented star graph in the spirit of augmented friendship
graphs (Definition 3.4).

Definition 5.1 (star graph). Let n ∈ N such that n ≥ 2. The star graph Sn consists of n + 1
nodes: a center node of degree n, and n nodes of degree 1 connected to the center.

Definition 5.2 (augmented star graph). Let k, n ∈ N such that 2 ≤ k ≤ n. The augmented star
graph Sk,n consists of the star graph Sk together with n + 1− (k + 1) = n− k isolated nodes.

Definition 5.3 (augmented star graph-class). Let k, n ∈ N such that 2 ≤ k ≤ n. The augmented
star graph-class, denoted by Gstar(k, n), is the isomorphically closed graph class associated with Sk,n.

Lemma 5.4. Let n ∈ N such that n ≥ 5 and let G1 and G2 be two n-star-embedded graph-classes
(as per Definition 4.9). Assume that the following holds:

• The class G1 is an n-admissible graph-class (as per Definition 4.10); in particular, there exists
a graph G1 ∈ G1, with a main connected component (V1, E1), such that for every node u ∈ V1,
if deg(u) ̸= |V1| − 1, then deg(u) ∈ {2, 3}.

• The class G2 contains an augmented star graph-class; in particular, there exists a graph G2 ∈
G2, with a main connected component (V2, E2), such that for every u ∈ V2, if deg(u) ̸= |V2|−1,
then deg(u) = 1.

• The set of non-isolated nodes in G1 and G2 (i.e., in their main connected components) is the
same, i.e., V1 = V2.

Then, if there exists a 1-IND-CTA-secure broadcast protocol for the class G1 ∪ G2, there exists a
key-agreement protocol.

Proof. Consider the graphs G1 ∈ G1 and G2 ∈ G2 from the theorem statement. Denote the center
node of the main connected component in G1 (and G2) by u. Since G1 is admissible, there exist
two non-center nodes v1 and v2 that are connected by an edge. Since G1 is isomorphically closed,
assume (without loss of generality) that the nodes v1, v2, and u are labeled in G1 with 1 , 2 , and
3 , respectively. Next, since G2 is isomorphically closed, assume (without loss of generality) that
the nodes v1, v2, and u in G2 are also labeled with 1 , 2 , and 3 , respectively. Finally, since G2
is isomorphically closed, there exists a graph G3 ∈ G2 with the same main connected component
(V2, E2) as G2, in which the nodes v1, v2, and u are labeled with 3 , 2 , and 1 , respectively.

Consider a partition of the n + 1 nodes into three sets: the first set consists of the node v1, the
second set consists of the node u, and the third set consists of all other nodes (and in particular
includes v2). Note that for each of the graphs G1, G2, and G3, the nodes labeled by 1 , 2 , and 3
appear in different sets; denote by Pi the set that contains i , for i ∈ {1, 2, 3}. Then, the following
holds:

49

• When considering the labeling of G1, it holds that P1 = { 1 }, P2 = { 2 , 4 , . . . , n + 1 },
and P3 = { 3 }, and there are edges between P1 and P2, between P2 and P3, and between
P1 and P3. That is, this is the structure of three sets on a triangle P1—P2—P3—P1 and
|P1| = |P3| = 1.

• When considering the labeling of G2, it holds that P1 = { 1 }, P2 = { 2 , 4 , . . . , n + 1 }, and
P3 = { 3 }, and there are edges between P3 and P2 and between P3 and P1, but there is no
edge between P1 and P2. That is, this is the structure of three sets on a line P2—P3—P1
and |P1| = |P3| = 1.

• When considering the labeling of G3, it holds that P1 = { 1 }, P2 = { 2 , 4 , . . . , n + 1 }, and
P3 = { 3 }, and there are edges between P1 and P2 and between P1 and P3, but there is no
edge between P2 and P3. That is, this is the structure of three sets on a line P2—P1—P3
and |P1| = |P3| = 1.

Therefore, if there exists a 1-IND-CTA-secure broadcast protocol for G, in which node 2 is the
sender, then there exists an IND-CTA-secure broadcast protocol for Gtriangle against corruptions of
P1 and P3, in which P2 is the sender. By [BBC+20, Thm. 3.5], this implies the existence of a
key-agreement protocol.

5.1.2 1-THB on a Graph with a Tail and a Non-tail Requires Key Agreement

The second bound is accomplished by a reduction to the class Gpaw (see Figure 29). This is a
four-node graph consisting of a center of degree 3, a tail of degree 1, and two non-tails of degree 2.
By [BBC+20, Lem. 7.6], 1-IND-CTA broadcast on this class requires key agreement.

Figure 29: “The Paw” graph

Lemma 5.5. Let n ∈ N such that n ≥ 4 and let G be a n-star-embedded graph-class (as per
Definition 4.9). Assume that there exists a graph G ∈ G, with a main connected component (V, E);
further, there exist non-center nodes u, w ∈ V such that deg(u) = 1 and deg(w) = 2.

Then, if there exists a 1-IND-CTA-secure broadcast protocol for the class G, there exists a key-
agreement protocol.

Proof. Consider the following partition of G into four sets:

• The first set P1 consists of the degree-1 node u.

• The second set P2 consists of the center node of degree |V | − 1.

• The third set P3 consists of the degree-2 node w.

• The last set, P4 consists of all other nodes. Note that P4 ̸= ∅ as w has a neighbor other than
the center.

50

Then, it holds that the set P1 is connected only to P2; the set P2 is connected to P1, P3 and P4;
the set P3 is connected to P2, and P4; and the set P4 is connected P2 and P3. Stated differently,
the sets P1, P2, P3, and P4 form the paw graph, and further, the sets P1 and P2 are singletons.

Therefore, if there exists a 1-IND-CTA-secure broadcast protocol for G, then there exists an
IND-CTA-secure broadcast protocol for Gpaw against corruptions of P1 and P2, in which P3 is the
sender. By [BBC+20, Lem. 7.6], this implies the existence of a key-agreement protocol.

5.2 Characterization of Wheel Subgraphs With an Embedded Star

We proceed to describe our characterization.

Theorem 5.6 (characterization of IT-THB). Let n ∈ N such that n ≥ 4 and let G be an n-star-
embedded graph-class (as per Definition 4.9). Then,

• if the maximal degree of non-center nodes is 1, i.e., G ⊆ ∪k≤nGstar(k, n) consists only of stars
(possibly of different size), or

• if the minimal degree of non-center nodes (which are not isolated) is 2 or 3, i.e., G consists
only of n-admissible graphs, or

• if the class G can be partitioned into disjoint classes G1 and G2 such that G1 is an n-admissible
graph class, G2 ⊆ ∪k≤nGstar(k, n) consists only of stars, and there do not exist G1 ∈ G1 and
G2 ∈ G1 such that the main connected components of G1 and G2 are of the same size,

there exists perfectly secure IT-THB against a single semi-honest corruption over G. Otherwise,
THB over G secure against a single semi-honest corruption exists if and only if key agreement
exists.

Proof. Let G be an n-star-embedded graph-class. We will first show that each case in Theorem 5.6
results with 1-IT-THB, and later that any other graph class requires key agreement. By [BBC+20,
Thm. 7.3], key agreement is sufficient for 1-THB over G. We consider the following four cases:

Case 1: The maximal degree of non-center nodes is 1. In this case, G consists only of aug-
mented stars, i.e., G ⊆ ∪k≤n Gstar(k, n). By the structure of star-embedded graphs, every
non-isolated party can identify that this is a star topology; further, every non-center node
does not know the actual size of the graph. It is immediate to see that the following simple
protocol at Figure 30 is 1-IT-THB for G.

Case 2: The minimal degree of non-center nodes is 2 or 3. In this case, G consists only of
admissible graphs, and feasibility follows from Theorem 4.11.

Case 3: G consists both of stars and admissible graphs, of different sizes. Again, by the
structure of star-embedded graphs, each non-isolated party can identify whether the topology
of the actual graph is a star or admissible: non-center nodes by checking if their degree is 1,
and the center by inspecting its degree (in this case it is guaranteed that for each degree
the topology is either admissible or a star). Therefore, all non-isolated parties can non-
interactively agree on the THB protocol they should run.

Case 4: Otherwise. In this case, there are two possibilities:

51

• Either G contains a two graphs G1 and G2 whose main connected components are of the
same size, and such that G1 is admissible and the main connected component of G2 is a
star, in which case the proof follows from Lemma 5.4, or

• There exists a graph G ∈ G containing a non-center node of degree 1 and another
non-center node of degree 2, in which case the proof follows from Lemma 5.5.

Protocol πG(n, PS)

Input: The sender PS , with S ∈ [n + 1], holds an input m ∈ {0, 1}.

Hybrid model: The protocol is defined in the FG
graph-hybrid model.

The protocol:

1. Each party Pv receives its neighbor-set N (v) from FG
graph.

2. The sender PS sends m to its neighbors; if PS is isolated, the center simulates receiving 0.

3. The center sends m to its neighbors.

4. Each party outputs the message it received; isolated parties output 0.

Figure 30: Information-theoretic 1-THB for a collection of stars

Bibliography
[ALM17] Adi Akavia, Rio LaVigne, and Tal Moran. Topology-hiding computation on all graphs. In 37th

Annual International Cryptology Conference (CRYPTO), part I, pages 447–467, 2017.

[AM17] Adi Akavia and Tal Moran. Topology-hiding computation beyond logarithmic diameter. In 36th
Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), part III, pages 609–637, 2017.

[BBC+19] Marshall Ball, Elette Boyle, Ran Cohen, Tal Malkin, and Tal Moran. Is information-theoretic
topology-hiding computation possible? In Proceedings of the 17th Theory of Cryptography
Conference (TCC), part I, pages 502–530, 2019.

[BBC+20] Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin, Pierre Meyer, and Tal Moran.
Topology-hiding communication from minimal assumptions. In Proceedings of the 18th Theory
of Cryptography Conference (TCC), part II, pages 473–501, 2020.

[BBKM23] Marshall Ball, Alexander Bienstock, Lisa Kohl, and Pierre Meyer. Towards topology-hiding com-
putation from oblivious transfer. In Proceedings of the 21st Theory of Cryptography Conference
(TCC), part I, pages 349–379, 2023.

[BBMM18] Marshall Ball, Elette Boyle, Tal Malkin, and Tal Moran. Exploring the boundaries of topology-
hiding computation. In 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT), part III, pages 294–325, 2018.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001.

[ERS66] Paul Erdös, Alfréd Rényi, and Vera T. Sós. On a problem of graph theory. Studia Sci. Math.
Hungar., 1:215–235, 1966.

52

[HMTZ16] Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Network-hiding communication
and applications to multi-party protocols. In 36th Annual International Cryptology Conference
(CRYPTO), part II, pages 335–365, 2016.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Proceedings of the 10th Theory of Cryptography Conference (TCC),
pages 477–498, 2013.

[Li22] Shuaishuai Li. Towards practical topology-hiding computation. In Shweta Agrawal and Dongdai
Lin, editors, 28th International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), part I, pages 588–617, 2022.

[LZM+18] Rio LaVigne, Chen-Da Liu Zhang, Ueli Maurer, Tal Moran, Marta Mularczyk, and Daniel
Tschudi. Topology-hiding computation beyond semi-honest adversaries. In Proceedings of the
16th Theory of Cryptography Conference (TCC), part II, pages 3–35, 2018.

[LZM+20] Rio LaVigne, Chen-Da Liu Zhang, Ueli Maurer, Tal Moran, Marta Mularczyk, and Daniel
Tschudi. Topology-hiding computation for networks with unknown delays. In Proceedings of the
23rd International Conference on the Theory and Practice of Public-Key Cryptography (PKC),
part II, pages 215–245, 2020.

[MOR15] Tal Moran, Ilan Orlov, and Silas Richelson. Topology-hiding computation. In Proceedings of the
12th Theory of Cryptography Conference (TCC), part I, pages 159–181, 2015.

A UC Framework
We present a highly informal overview of the UC framework and refer the reader to [Can01] for
further details. The framework is based on the real/ideal paradigm for arguing about the security
of a protocol.

The real model. An execution of a protocol π in the real model consists of n ppt interactive
Turing machines (ITMs) P1, . . . , Pn representing the parties, along with two additional ITMs: an
adversary Adv, describing the behavior of the corrupted parties and an environment Env, repre-
senting the external network environment in which the protocol operates. The environment gives
inputs to the honest parties, receives their outputs, and can communicate with the adversary at
any point during the execution. It is known that security against the dummy adversary (that
forwards every message it sees to the environment and acts according to the environment’s in-
structions) is sufficient to achieve security against arbitrary adversaries. Throughout, we consider
synchronous protocols that proceeds in rounds (this can be formally modeled using the Fsync func-
tionality [Can01], or using the synchronous framework of [KMTZ13]) and semi-honest (passive)
security (where corrupted parties continue following the protocol, but reveal their internal state to
the adversary). We will consider both static corruptions (where Adv chooses the corrupted parties
at the onset of the protocol) and adaptive corruptions (where Adv can dynamically corrupt parties
based on information gathered during the computation), and will explicitly mention at any section
which type of corruptions are considered. An t-adversary can corrupt up to t parties during the
protocol.

53

The ideal model. A computation in the ideal model consists of n dummy parties P̃1, . . . , P̃n, an
ideal-model adversary (simulator) Sim, an environment Env, and an ideal functionality F. As in the
real model, the environment gives inputs to the honest (dummy) parties, receives their outputs, and
can communicate with the ideal-model adversary at any point during the execution. The dummy
parties act as channels between the environment and the ideal functionality, meaning that they send
the inputs received from Env to F and vice-versa. The ideal functionality F defines the desired
behaviour of the computation. F receives the inputs from the dummy parties, executes the desired
computation and sends the output to the parties. The ideal-model adversary does not see the
communication between the parties and the ideal functionality, however, Sim can corrupt dummy
parties (statically or dynamically) and may communicate with F according to its specification.

Security definition. We present the definition for static and semi-honest adversaries.
We say that a protocol π UC-realizes (with computational security) an ideal functionality F

in the presence of static semi-honest t-adversaries, if for any ppt static semi-honest t-adversary
Adv and any ppt environment Env, there exists a ppt ideal-model t-adversary Sim such that
the output distribution of Env in the ideal-model computation of F with Sim is computationally
indistinguishable from its output distribution in the real-model execution of π with Adv.

We say that a protocol π UC-realizes (with information-theoretic security) an ideal functionality
F if the above holds even for computationally unbounded Adv, Env, and Sim. In that case the
requirement is for the output distribution of Env in the ideal-model computation to be statistically
close to its output distribution in the real-model execution. If the environment’s outputs are
identically distributed, we say that π UC-realizes F with perfect security.

The hybrid model. The F-hybrid model is a combination of the real and ideal models, it extends
the real model with an ideal functionality F. The parties communicate with each other in exactly
the same way as in the real model; however, they can also interact with F as in the ideal model.
An important property of the UC framework is that the ideal functionality F in an F-hybrid model
can be replaced with a protocol that UC-realizes F. The composition theorem of [Can01] states
the following.

Theorem A.1 ([Can01], informal). Let ρ be a protocol that UC-realizes F in the presence of
adaptive semi-honest t-adversaries, and let π be a protocol that UC-realizes G in the F-hybrid
model in the presence of adaptive semi-honest t-adversaries. Then, for any ppt adaptive semi-
honest t-adversary Adv and any ppt environment Env, there exists a ppt adaptive semi-honest
t-adversary Sim in the F-hybrid model such that the output distribution of Env when interacting
with the protocol π and Sim is computationally indistinguishable from its output distribution when
interacting with the protocol πρ (where every call to F is replaced by an execution of ρ) and Adv in
the real model.

54

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Topology-Hiding Broadcast (THB)

	1-IT-THB for Friendship Graphs
	1-IT-THB for Friendship Graphs of Fixed Size
	1-IT-THB for Friendship Graphs of Variable Size
	Friendship Graphs: Beyond a Single Corruption

	1-IT-THB Admissible Graph Class
	1-IT-THB for Wheel Graphs
	1-IT-THB for Admissible Subgraphs

	Lower Bounds and Characterization
	Lower Bounds
	Characterization of Wheel Subgraphs With an Embedded Star

	Bibliography
	UC Framework

