
Succinct Non-Subsequence Arguments

San Ling1 , Khai Hanh Tang1(B) , Khu Vu2 , Huaxiong Wang1 , and
Yingfei Yan3

1 Nanyang Technological University, 50 Nanyang Ave, Singapore
{lingsan,khaihanh.tang,hxwang}@ntu.edu.sg

2 National University of Singapore, 21 Lower Kent Ridge Road, Singapore
isevvk@nus.edu.sg

3 Xidian University, Xi’an, China
yanxi@stu.edu.xidian.cn

Abstract. Lookup arguments have recently attracted a lot of devel-
opments due to their applications in the constructions of succinct non-
interactive arguments of knowledge (SNARKs). A closely related topic is
subsequence arguments in which one can prove that string s is a subse-
quence of another string t, i.e., deleting some characters in t can achieve
s. A dual notion, namely, non-subsequence arguments, is to prove that
s is not a subsequence of t. These problems have a lot of important
applications in DNA sequence analysis, internet of things, blockchains,
natural language processing, speech recognition, etc. However, despite
their applications, they are not well-studied in cryptography, especially
succinct arguments for non-subsequences with efficient proving time and
sublinear verification time.

In this work, we propose the first succinct non-subsequence argument.
Our solution applies the sumcheck protocol and is instantiable by any
multivariate polynomial commitment schemes (PCSs). We achieve an ef-
ficient prover whose running time is linear in the size of sequences s, t and
their respective alphabet Σ. Our proof is succinct and the verifier time
is sublinear assuming the employed PCS has succinct commitments and
sublinear verification time. When instantiating with Sona PCS (EURO-
CRYPT’24), we achieve proof size O(log2 |s|+ log2 |t|+ log2 |Σ|), prover
time O(|s|+ |t|+ |Σ|) and verifier time O(

√
|s|+

√
|t|+

√
|Σ|).

Extending our technique, we can achieve a batch subsequence argument
for proving in batch k interleaving subsequence and non-subsequence
arguments without proof size suffering a linear blow-up in k.

Keywords: SNARK · sumcheck · lookup

1 Introduction

SNARKs. Zero-knowledge proofs [13] allow a party to convince another party
about the truth of some statement without leaking anything beyond its valid-
ity. During their history, zero-knowledge proofs have been developed in multiple
aspects for multiple purposes. Among them, succinct non-interactive arguments

https://orcid.org/0000-0002-1978-3557
https://orcid.org/0009-0009-6790-4577
https://orcid.org/0000-0002-3236-0575
https://orcid.org/0000-0002-7669-8922
https://orcid.org/0000-0002-9415-7935

of knowledge (SNARKs) [12,11] are a kind of zero-knowledge proof that is non-
interactive and has sublinear proof size. SNARKs have been employed to prove
various problems including general NP statements [21] and incrementally veri-
fiable computation (IVC) [16,19]. One way to achieve SNARKs is to construct
polynomial IOP (PIOP) [4] from sumcheck arguments [17]. Then, we compile
PIOP by any multilinear polynomial commitment schemes (PCSs) [15,25,22]
with succinct commitment and (possibly) sublinear verifier time.

Lookup, Subsequence, and Non-Subsequence Arguments. One of the
famous problems in SNARKs is proving lookup arguments. Initially introduced
by Bootle et al. [3], lookup arguments aim to prove that a length-n vector
s = (s1, . . . , sn) is contained in a lookup table t = (t1, . . . , tN), i.e., each sj
belongs to {ti}i∈[N]. Recent lookup arguments, cq [7], cq+, cq++ [5] and Locq
[28] achieved fast lookup arguments by pushing large amount of computing into
pre-precessing. The core of these results is Haböck’s logarithmic derivatives [14].
Haböck’s technique is suitable with sumcheck, avoids rearranging elements of
s and t as in Plookup [9], achieves constant proof size, linear prover time (in
the total length of s and t) and sublinear verifier time. Another lookup argu-
ment, namely, Lasso [22], aims to optimize efficiency when the lookup table is
structured.

A closely related problem to lookup is the subsequence argument. Here, a
string s is a subsequence of t if elements in s appear in t in the same relative
order. Equivalently saying, s is a subsequence of t if we can delete some char-
acters in t to achieve s. Besides, if s is not a subsequence of t, we call this
case non-subsequences. Arguments for subsequences and non-subsequences have
a large number of applications in various fields including DNA sequence analysis,
internet of things (IoT), blockchains, natural language processing, speech recog-
nition, computer vision, and financial analysis [10]. We list below a few specific
examples.

– In DNA sequence analysis, (non-)subsequence arguments show whether a
sequence s, of DNA characters A, T, G, and C, is a subsequence of another
sequence t, revealing some relationship between two species. In IoT, we can
deploy health care systems for determining whether a DNA sequence of a par-
ticular person is vulnerable to some kind of disease. In some situations, this
can be done by showing the person’s DNA is a subsequence/non-subsequence
of some other DNA sequences related to some disease.

– In blockchains, stored transactions are usually huge. Nowadays, some appli-
cations/smart contracts in blockchains may involve supporting illegal activ-
ities. For example, Tornado Cash can facilitate money-laundering activities.
A person can prove himself not involved in such illegal activities by showing
that his transaction history in a specific blockchain is a non-subsequence of
transactions related to those potentially supporting-illegal-activities appli-
cations/smart contracts.

– In natural language processing, one can determine whether a list of words is
a subsequence in a large (encoded) text, identifying the necessary properties,
e.g., languages, topics (history, geography, or mathematics), etc.

2

– In speech recognition, (non-)subsequence arguments show whether a se-
quence of phonemes is a subsequence in sounds.

Although there are various applications, when putting them into the con-
text of cryptography, they are not well-studied, especially SNARKs for sub-
sequences and non-subsequences with efficient running time. Since data about
DNA, languages, and sound is usually large, using SNARKs for proving and ver-
ifying the above examples would achieve great benefits, especially for verifiers
with little resources of computations. To our knowledge, the only result from
Thakur [23] proposes a SNARK for subsequences with sublinear verification
time. However, there is no result proposing non-subsequence arguments with ef-
ficient running time and succinct proof size. Moreover, constructing SNARKs for
non-subsequences is not a trivial task. To check whether length-n string s is not
a subsequence of a length-N string t, a trivial way is to check that all possible
length-n subsequences of t do not match s. This checking costs an exponential
blow-up in running time as there are

(
N
n

)
such subsequences in t. Thus, we are

asking the following question.

Can we construct succinct non-subsequence arguments with efficient proving
time and sublinear verification time?

1.1 Our Contributions

In this result, we answer the above question by proposing the first construction
of succinct non-subsequence arguments for proving that s is not a subsequence
of t. Our construction is a PIOP [4] from sumcheck and combine it with any
multivariate polynomial commitment scheme (PCS) to achieve SNARKs. We
achieve a proof size bounded by the total commitment sizes and evaluation proof
sizes of related polynomials. The prover’s running time is linear in N , n, |Σ|,
and the total committing and evaluating time, while the verifier’s running time is
bounded by the verification time of evaluations of polynomials. If the employed
PCS is secure and has succinct proof size and sublinear verifier time, then our
construction achieves a SNARK for non-subsequences. Specifically, when using
lookup arguments adapted from Haböck [14] and Sona PCS from [22] we achieve
succinct non-subsequence arguments with proof sizeO(log2 n+log2 N+log2 |Σ|),
linear prover time O(n+N+|Σ|) and sublinear verifier time O(

√
n+
√
N+

√
|Σ|)

(see Section 4.4).
Moreover, of independent interest, we briefly discuss how to prove batch

subsequence arguments by showing in batch k interleaving subsequence and non-
subsequence arguments without proof size suffering a linear blow-up in k.

1.2 Technical Overview

Before discussing the technical overview, we formally define subsequences and
non-subsequences as follows. For s = (sj)j∈[n] and t = (tj)j∈[N], s is a subse-
quence of t, denoted by s ◁ t, if there exists id1, . . . , idn s.t. 1 ≤ id1 < · · · <

3

SubseqSearch :

Inputs: n,N ∈ Z+, alphabet Σ and s ∈ Σn, t ∈ ΣN .
Goal: Determine whether s◁ t, i.e., whether s is a subsequence of t.
Execution: This algorithm works as follows:
1. Set p0 := 0 and sn+1 :=⊥.
2. For j from 1, . . . , N : If spj−1+1 = tj , set pj := pj−1 + 1; else, set pj := pj−1.
3. Return 1 indicating s◁ t, if pN = n; and 0, otherwise.

Fig. 1. Algorithm SubseqSearch.

idn ≤ N and tidj = sj ∀j ∈ [n]. For non-subsequence, s is not a subsequence of t,
denoted by s ̸◁ t, if no such a sequence (id1, . . . , idn) exits. For non-subsequence,
if s is not a subsequence of t, we write s ̸◁ t.

We now discuss the technical overview. First, we recall the subsequence ar-
gument from Thakur [23] and discuss its exponential blow-up in the prover’s
running time. Then, we provide our technique, which can be plugged by any
PCS and lookup arguments, to avoid such mentioned blow-up. At last, we dis-
cuss how to achieve batch subsequence arguments.

Subsequence Argument from Thakur [23]. The construction proves that
s ◁ t by showing that the indices corresponding to each element of s in t are
in increasing order. Let s = (sj)j∈[n] and t = (tj)j∈[N] be strings of length n
and N , respectively. The prover convinces that s◁ t by proving the existence of
(idj)j∈[n] s.t. {(idj , sj)}j∈[n] ⊆ {(j, tj)}j∈[N] and (idj)j∈[n] is increasing, namely,
id1 < · · · < idn. To show the latter, one can prove that (idj − idj−1)j∈[2,n] is a
sequence of positive integers.

Our Non-Subsequence Argument. To prove s ̸◁ t, using the above tech-
nique would require considering all

(
N
n

)
possibilities for (idj)j∈[n]. However,

(
N
n

)
is exponential in N . To remove this exponential blow-up, we use algorithm
SubseqSearch, described in Figure 1, to determine whether s is a subsequence of
t. Then, we can achieve the non-subsequence arguments by proving its correct
execution.

The algorithm SubseqSearch tracks the maximal subsequence positions of s
within t by looking for a sequence (pj)j∈[0,N] s.t. pj ∈ [n] is the maximum index
satisfying (s1, . . . , spj

)◁(t1, . . . , tj). If pN computed from SubseqSearch equals to
n, namely, the length of s, it means (s1, . . . , spN

) = (s1, . . . , sn)◁ t. Otherwise,
when pN < n, it implies s ̸◁ t. The correctness of this algorithm is based on the
following Lemma 1 whose proof is deferred to Appendix A.

Lemma 1 (Correctness of Algorithm SubseqSearch). Let n,N ∈ Z+, Σ be
an alphabet, s ∈ Σn and t ∈ ΣN . Let sn+1 :=⊥ where ⊥/∈ Σ. Let (pj)j∈[0,N]

satisfy that p0 = 0 and, for j ∈ [N], pj is the maximum index satisfying
(s1, . . . , spj

)◁ (t1, . . . , tj). Then, for j ∈ [N], pj = pj−1+1, if spj−1+1 = tj, and
pj = pj−1, otherwise.

Having (pj)j∈[0,N] computed from algorithm SubseqSearch, for non-subsequence
arguments, the prover needs to prove that (pj)j∈[0,N] is computed correctly and
pN < n as specified in Figure 1. To this end, we reduce all related constraints, in-

4

volving computing (pj)j∈[N] from s and t into an equivalence system containing
only lookup arguments as follows.

From Lemma 1, for j ∈ [N], the relationship between pj and pj−1 is either

pj − pj−1 = 1 ⇐⇒ spj−1+1 = tj or pj − pj−1 = 0 ⇐⇒ spj−1+1 ̸= tj . (1)

Therefore, to capture this equivalence, we define the set enc(s⊥) containing ele-
ments of the form (c, ℓ, v) ∈ {0, 1}× [n+1]×Σ∪{⊥} s.t. c = 1 iff sℓ = v. Specifi-
cally, c is the predicate capturing whether the ℓ-th entry of s is equal to v. Then,
we can capture equivalence (1) by proving that (pj−pj−1, pj−1+1, tj) ∈ enc(s⊥)
for j ∈ [N]. Hence, (1) holds iff (pj − pj−1, pj−1 + 1, tj) ∈ enc(s⊥) for j ∈ [N].

However, enc(s⊥) has (n + 1) · (|Σ| + 1) elements. This requires prover to
work in time O(n · |Σ|) for constructing it. Moreover, in the proof, the prover
needs to capture the correct formation of enc(s⊥) as we expect verifier time to
be sublinear without verifying it in the clear. To avoid this inefficiency, we devise
the following solution. For j ∈ [N], as computing pj is based on pj−1 and the
condition whether spj−1+1 = tj , we introduce vj := spj−1+1 with an associated
proof that vj is correctly computed. This proof can be proceeded by proving

{(pj−1 + 1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1]. (2)

With vj , prover can determine whether spj−1+1 = tj or not by simply comparing
tj and vj . Let cj = (tj = vj), namely, cj = 1, if tj = vj (or, tj − vj = 0)
and cj = 0, otherwise. To show that cj is correctly computed, we assume that
Σ ∪ {⊥} = {i}i∈[0,|Σ|], namely, a set of |Σ|+1 elements from 0 to |Σ|. One sees
that tj − vj ∈ [− |Σ| , |Σ|]. Therefore, the prover shows that

{(cj , tj − vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)} (3)

which captures the well-formedness of (cj)j∈[N]. In fact, cj = 0 iff tj − vj ∈
[− |Σ| , |Σ|] \ {0}. Finally, with cj indicating whether spj−1+1 = tj , we can then
prove the relationship between pj and pj−1 via proving that

pj − pj−1 = cj ∀j ∈ [N] (4)

according to (1). Hence, we removed the inefficiency discussed above by showing
the two tuple lookup arguments (2) and (3). When using appropriate lookup
argument (e.g., [14]) from sumcheck, prover time is only O(N + n+ |Σ|) which
does not contain factor O(n · |Σ|) incurred by enc(s⊥) discussed above.

Finally, we achieve the following Theorem 1, an informal version of Theo-
rem 2, for capturing subsequences and non-subsequences. In this theorem, we di-
rectly replace cj by pj−pj−1 for j ∈ [N] without the need to prove cj = pj−pj−1.

Theorem 1 (Informal Version of Theorem 2). s ̸◁ t (respectively, s◁t) iff
there exist sn+1, (pj)j∈[0,N], with p0 = 0 by default, and v = (vj)j∈[N] satisfying

{sj}j∈[n] ⊆ Σ, sn+1 =⊥, {tj}j∈[N] ⊆ Σ,

{(pj−1 + 1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1],

{(pj − pj−1, tj − vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)},

and pN < n (respectively, pN = n).

5

Hence, we can construct succinct subsequence arguments from sumcheck
based on (lookup) constraints in Theorem 1. Since there are various choices for
lookup arguments and PCSs, for simplicity, we choose lookup arguments adapted
from Haböck [14] as running time is linear in O(n+N+ |Σ|) or any other lookup
argument with similar running time. As Theorem 1 requires computing (pj)j∈[N]

when s is known, we cannot apply pre-processed lookup arguments like cq [7]
because running time will be dominated by O(N · log2 N). For PCS, we can in-
stantiate by Sona [22] with constant proof size, linear prover time, and sublinear
verifier time (see Section 4.4 for efficiency of the final protocol).

Extension to Batch Subsequence Arguments. We briefly discuss how the
approach above can be extended to batch subsequence arguments with the fol-
lowing context. Given k ∈ Z+, {s(i)}i∈[k], {t(i)}i∈[k] and {b(i)}i∈[k], prover shows

that b(i) = s(i)◁t(i) for i ∈ [k], i.e., b(i) = 1, if s(i)◁t(i), and b(i) = 0, otherwise.
Although SNARKs, especially sumcheck arguments, are well-known for batch
arguments, i.e., by aggregating and proving all k arguments at once, proving
such batch subsequence arguments is non-trivial. We observe that, if the verifier
knows exactly each bit in {b(i)}i∈[k], i.e., the verifier can distinguish subsequence
and non-subsequence arguments for each i ∈ [k], then, to optimize prover time,
prover and verifier proceed either Thakur’s approach for b(i) = 1 (subsequence)
or approach from Theorem 1 for b(i) = 0 (non-subsequence). Arguably, Thakur’s
approach is better in efficiency for prover time when proving subsequence argu-
ments. However, this way requires the verifier to know entirely {b(i)}i∈[k] which
requires a linear blow-up in the communication if k is large.

Assume that k is a power of 2. To reduce communication, we can encode
{b(i)}i∈[k] into a polynomial f̃b(X) ∈ F[lk] where lk = log2 k. Then, prover can

commit to f̃b(X) to obtain and send commitment σ(f̃b) to verifier. If σ(f̃b)
is a succinct commitment, verifier cannot know entire {b(i)}i∈[k] even if σ(f̃b) is
hiding or not. Therefore, the prover and verifier cannot proceed batch arguments
with both methods from Thakur and Theorem 1 as they are not compatible. To
avoid such incompatibility, let prover and verifier follow Theorem 1 to prove the

well-formedness of sequence (p
(i)
1 , . . . , p

(i)
N), for i ∈ [k], from running algorithm

SubseqSearch on inputs s(i) and t(i) for the i-th (non-)subsequence argument.
Hence, for b(i) equal to either 0 or 1, we prove the same way for well-formedness

of such sequence (p
(i)
1 , . . . , p

(i)
N). Consequently, we can make a batch proof for

well-formedness of all (p
(i)
1 , . . . , p

(i)
N) for i ∈ [k]. The only difference is showing

that, for i ∈ [k], either p
(i)
N < n if b(i) = 0 or p

(i)
N = n if b(i) = 1. These can

be proven in batch by proving the tuple lookup argument {(b(i), p(i)N)}i∈[k] ⊆
{(0, j)}j∈[0,n−1] ∪ {(1, n)}. Specifically, by writing s(i) = (s

(i)
1 , . . . , s

(i)
n), t(i) =

(t
(i)
1 , . . . , t

(i)
N) and extending Theorem 1, we can construct this batch argument

by proving knowledge of (s
(i)
n+1)i∈[k], (p

(i)
j)i∈[k],j∈[N] and (v

(i)
j)i∈[k],j∈[N] satisfying

6


{s(i)j }i∈[k],j∈[n] ⊆ Σ, s

(i)
n+1 =⊥ ∀i ∈ [k], {t(i)j }i∈[k],j∈[N] ⊆ Σ,

{(i, p(i)j−1 + 1, v
(i)
j)}i∈[k],j∈[N] ⊆ {(i, j, s

(i)
j)}i∈[k],j∈[n+1],

{(p(i)j − p
(i)
j−1, t

(i)
j − v

(i)
j)}i∈[k],j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)},

{(b(i), p(i)N)}i∈[k] ⊆ {(0, j)}j∈[0,n−1] ∪ {(1, n)}.

This system contains only four lookup arguments. The first three lines of the
above system are the extension of Theorem 1 with associated index i indicating
the i-th (non-)subsequence argument. The last line is already explained above.

1.3 Related Works

Besides lookup arguments and subsequence arguments from Thakur [23], another
line of research [18,20,26,2] is to prove correct execution of a regex searching. A
regular expression (regex) searching algorithm uses a regex, such as keywords,
to look for the appearance of such patterns in a long string, like documents. The
general methodology requires transforming the regex into a graph-like structure,
such as non-deterministic finite automata (NFA) or related notions like SAFA [2],
TNFA [24] and ADFA [1]. To construct a non-subsequence argument, i.e., to
prove s ̸◁ t, one can transform the sequence s into a regex. (For example, if s =
“abac”, we can transform into “. ∗ a. ∗ b. ∗ a. ∗ c.∗”.) Then, prove that the regex
does not match the sequence t. However, this approach leads to a complicated
proof. In terms of efficiency, [18,26] achieve O(N · |QTNFA|) constraints where
QTNFA is the description of the TNFA [24], [20] achieves O(N + |QADFA|) where
QADFA is the description of ADFA [1] with size O(n · |Σ|), Reef [2] with SAFA
achieves the resulting number of constraints at least O(N · log2 N).

From Section 1.2, our approach reduces to lookups with sets of sizes bounded
by O(n +N + |Σ|), achieving prover time O(n +N + |Σ|). Hence, we adopt a
different approach whose running time outperforms those for proving regexes.

2 Preliminaries

2.1 Notations

Denote by F, Z and Z+ to be the finite field of prime order, the ring of integers,
and the set of non-negative integers, respectively. For any a, b ∈ Z satisfying
a ≤ b, denote by [a, b] the set {a, a+1, . . . , b}. When a = 1, we write [b] to indicate
[1, b]. For a finite set S, denote by |S| to indicate its cardinality. Given n ∈ Z+, let
(si)i∈[n] = (s1, . . . , sn) denote a vector of length n and {si}i∈[n] = {s1, . . . , sn}
denote a set of size n. We write binl(a) = (b1, . . . , bl) ∈ {0, 1}l to indicate the
binary representation of a ∈ Z+ in l bits s.t. a =

∑
i∈[l] 2

i−1 · bi. Given l ∈ Z+

and b = (b1, . . . , bl) ∈ {0, 1}l, define intl(b) =
∑

i∈[l] 2
i−1 · bi. We usually write

negl(λ) to indicate the existence of a function negligible in λ.
Regarding multivariate polynomials, for l ∈ Z+, we denote by F[l] the set

of l-variate polynomials over F. A polynomial f(X) ∈ F[l] is of degree ρ if the
maximum of individual variables’ degrees in f(X) is ρ.

7

2.2 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

A succinct non-interactive argument of knowledge (SNARK) for an NP relation
(x,w) ∈ R is a non-interactive proof produced by a prover P and verified by
a verifier V. A SNARK should satisfy completeness, knowledge soundness, and
succinctness as below. Detailed properties are in Appendix B.1. In this result,
we are interested in SNARKs with sublinear verification time.

– Completeness. An honest prover P will always be accepted by V.
– Knowledge Soundness. If a malicious prover P∗ outputs an accepted proof

π for the statement x, one can extract the witness w∗ s.t. (x,w∗) ∈ R.
– Succinctness. The proof size is sublinear in the size of the statement x.
– Sublinear Verification Time. The verification time is sublinear in |x|.

2.3 Multilinear Extension (MLE)

We recall the multilinear extension (MLE) of a function f . Let l be a positive
integer and f : {0, 1}l → F be a function. The MLE of f , denoted by f̃(X) =
MLE(f), is the polynomial

f̃(X) = MLE(f) =
∑

i∈{0,1}l

f(i) · ẽql(X∥i) ∈ F[l],

where, for X = (X1, . . . , Xl) and e = (e1, . . . , el) ∈ Fl,

ẽql(X∥e) = Πi∈[l](Xiei + (1−Xi)(1− ei)).

2.4 Polynomial Commitment Schemes (PCSs)

A polynomial commitment scheme (PCS, [15]) is a tuple (Setup,Com,Open,Eval).

Setup(1λ)→ pp: On input 1λ, ouput the public parameter pp.
Com(pp, f(X))→ (σ(f), aux): On input pp and f(X) ∈ F[l] for some l ∈ Z+,

output the polynomial commitment σ(f) and an auxiliary information aux.
Open(pp, σ(f), f(X), aux)→ b: On input pp, polynomial commitment σ(f), poly-

nomial f(X) ∈ F[l], for some l ∈ Z+, and an auxiliary input aux, return a
bit b ∈ {0, 1} indicating accepted or rejected.

Eval ⟨P(f(X), aux),V⟩ (pp, σ(f), r, e)→ b: This is an interactive protocol between
a prover P and a verifier V with common inputs pp, σ(f), r ∈ {0, 1}l, for
some l ∈ Z+, and e ∈ F. P additionally holds f(X) ∈ F[l] and aux. After the
execution, V outputs a bit b ∈ {0, 1} indicating whether V accepts f(r) = e.

Security. We briefly recall the security of a PCS. In Appendix B.2, we pro-
vide detailed security notions. A PCS is secure if it satisfies completeness and
binding. A PCS is extractable if Eval is knowledge-sound. For completeness, if
σ(f) is correctly computed and f(r) = e are correct, V always accepts. Regard-
ing binding, given a polynomial f and its commitment σ(f), a PPT adversary

8

A cannot find a second opening f∗. Regarding knowledge soundness, given the
commitment σ(f), if a malicious prover P∗ is accepted by V in Eval, one can
extract the polynomial f by some extractor.

Notations. We write σ(f) to indicate a polynomial commitment to f(X) ∈
F[l], for some l ∈ Z+, when f(X) is clear in the context. Moreover, regarding
efficiency-related notations for PCSs, let tp(l), tv(l), cs(l) and ps(l) respectively
denote the prover time (including committing and evaluating), verifier time,
commitment size and the proof size from executing the evaluation protocol Eval
from PCS for multilinear l-variate polynomials. Moreover, ϵeval(l) denotes the
soundness error of the evaluation of the employed PCS.

There are many PCSs [25,29,27] in the literature. Here, we focus on Sona
(recalled in Table 1), a recent PCS introduced in [22].

Table 1. For l ∈ Z+, this table contains the costs of Sona [22] for committing and
evaluating f(X) ∈ F[l]. H is collision-resistance hash, F is a finite field and G is
cryptographic group. For commitment size, writing 1H means that the commitment
size is 1 hash value. For running time, writing O(2l)F means that it requires O(2l)
computations with operations in F.

PCS Setup cs(l) ps(l) ϵeval(l) tp(l) tv(l)

Sona [22] transparent 1H O(1)G negl(l) O(2l)F,O(
√
2l)G O(

√
2l)G

2.5 Sumcheck Protocol and Lookup Protocol from Sumcheck

Sumcheck Protocol. The sumcheck protocol originally proposed in [17] is heav-
ily studied to achieve SNARKs [21,6,22]. In a sumcheck protocol, given a poly-
nomial f(X) ∈ F[l] of degree at most ρ, for a claimed S ∈ F, a prover P aims
at proving S =

∑
i1∈{0,1} · · ·

∑
il∈{0,1} f(i1, · · · , il). Instead of sending f(X) di-

rectly, P executes an l-round interaction with the verifier V. Let r = (r1, . . . , rl)
be the randomness that V chooses in the protocol. At the last step, P outputs
fl(Xl) and V accepts if f(r) = e where e = fl(rl).

When being instantiated to construct SNARKs, f is committed under some
PCS to achieve commitment σ(f). Then, the sumcheck f(r) = e is conducted
through the evaluation protocol of the PCS. In Appendix B.3, we recall the
sumcheck protocol Πsum for relation

Rsum =

(S ∈ F, σ(f); f(X) ∈ F[l], aux) : S =
∑

i∈{0,1}l

f(i)

 , (5)

where aux is the auxiliary input in the PCS. As discussed previously [17,21,22],
the sumcheck protocol Πsum satisfies completeness and knowledge soundness.
The soundness error and efficiency of Πsum are summarized in Table 2.

9

Lookup Argument Adapted from [14]. We consider the lookup protocol
Πlkup adapted from [14] for relation

Rlkup=
{(

σ(f̃a), σ(f̃b); f̃a(X),f̃b(X), aux
)
:{f̃a(j)}j∈{0,1}la ⊆{f̃b(i)}i∈{0,1}lb

}
(6)

where la, lb ∈ Z+, f̃a(X) ∈ F[la] and f̃b(X) ∈ F[lb], and aux is the auxiliary input
in the PCS. The protocol Πlkup shows the satisfaction of Rlkup by reducing the
lookup argument to sumcheck. Detailed protocol is deferred to Appendix B.3.
See Table 2 for the related costs.

Remark 1 (Tuple Lookup). We will encounter tuple lookup arguments in this
result. Here, tuple lookup captures the fact that a set of fixed-length tuples is a
multisubset of another set of fixed-length tuples.

Specifically, let γ, la, lb ∈ Z+, na = 2la and nb = 2lb . Let (aj)j∈[na] ∈
(Fγ)na and (bi)i∈[nb] ∈ (Fγ)nb . We would like to prove tuple lookup argument
{aj}j∈[na] ⊆ {bi}i∈[nb]. Notice thatΠlkup is only suitable for the cases that γ = 1,
which we call the ordinary lookup arguments. Therefore, to conduct this tuple

lookup argument, we use a challenge β
$← F and instead run Πlkup to prove the

reduced lookup argument
{〈

aj , (β
î−1)î∈[γ]

〉}
j∈[na]

⊆
{〈

bi, (β
î−1)î∈[γ]

〉}
i∈[nb]

which is an ordinary lookup. If the tuple lookup argument satisfies the lookup
condition, then it is obvious that the reduced lookup argument is also satisfied.

However, regarding soundness, this reduction certainly incurs some soundness
error which can be analyzed as follows. Assume that there exists some j ∈ [na]

s.t. aj /∈ {bi}i∈[nb]. Then, for each i, the probability that
〈
aj , (β

î−1)î∈[γ]

〉
=〈

bi, (β
î−1)î∈[γ]

〉
is at most = O(γ/ |F|) by Schwartz-Zippel Lemma. Taking

union bound over all j ∈ [na] and all i ∈ [nb], the reduction error for the reduced
lookup is at most (γ−1) ·na ·nb/ |F| = O(γ ·na ·nb/ |F|). Running Πlkup (adapted
from [14]) on this reduced lookup argument, we achieve the total soundness error
O(γ · na · nb/ |F|+ ϵeval(la) + ϵeval(lb)) where ϵeval is introduced in Section 2.4.

Table 2. This table contains efficiency of protocols from sumcheck (c.f. [6,14]). Pa-
rameters l, la ad lb are described in those protocols (see relations Rsum and Rlkup in (5)
and (6), respectively). Notations cs, ps, tp, tv and ϵeval are introduced in Section 2.4.

Protocol Proof size Soundness error Prover time Verifier time

Πsum [6] O(l · ρ+ ps(l)) O
(

l·ρ
|F| + ϵeval(l)

)
O(2lρ log22 ρ+tp(l)) O(l · ρ+ tv(l))

Πlkup [14]
O(la + lb
+ps(la) + ps(lb))

O((la + lb)/|F|
+ϵeval(la) + ϵeval(lb))

O(2la + 2lb

+tp(la) + tp(lb))
O(la + lb
+tv(la) + tv(lb))

3 Handling (Non-)Subsequence Arguments

In this section, we introduce our method to prove (non-)subsequence relations.

10

We now recall the initial discussion for proving non-subsequence arguments
in Section 1.2 with the employment of algorithm SubseqSearch in Figure 1. In
this setting, for n,N ∈ Z+ and alphabet Σ ⊆ F, we have s ∈ Σn, t ∈ ΣN and
sequence (pj)j∈[0,N] viewed as the trace after executing SubseqSearch. Assume
that s⊥ = (s∥⊥), namely, a concatenation of s and some dummy character
⊥ not belonging to Σ. Hence, we assume that s⊥ = (s1, . . . , sn, sn+1) where
sn+1 =⊥. This setting of sn+1 is tricky because it ensures pj ∈ [0, n] for all
j ∈ [N] since ⊥ is different to all characters in t. We also denote by Σ⊥ =
Σ ∪ {⊥} = {i}i∈[0,|Σ|], namely, a set of values from 0 to |Σ|. For simplicity, we
assume that ⊥= 0 and Σ = {1, . . . , |Σ|}. We denote by p = (pj)j∈[N] which
excludes p0 = 0. In Section 1.2, to show that p is well-formed, we additionally
use v = (vj)j∈[N] and show that p is well-formed, i.e., pj is the largest index such
that (s1, . . . , spj

)◁(t1, . . . , tj). This is formally proven in the following Lemma 2.
We remark that system (7) is the aggregation of (2), (3) and (4).

Lemma 2 (Well-Formedness of p). Let n,N ∈ Z+ and Σ = {i}i∈[|Σ|]. Let
s ∈ Σn and t ∈ ΣN . Let p = (pj)j∈[N] ∈ ZN

+ . Then, for j ∈ [N], pj is the largest
index satisfying (s1, . . . , spj

)◁ (t1, . . . , tj) iff there exists v = (vj)j∈[N] satisfying{
{(pj−1 + 1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1],

{(pj − pj−1, tj − vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)}.
(7)

Proof. We first observe that

{(pj−1 + 1, vj)}j∈[N] ∈ {(j, sj)}j∈[n+1] ⇐⇒ spj−1+1 = vj ∀j ∈ [N].

On the other hand, we see that, for each j ∈ [N],

(pj − pj−1, tj − vj) ∈ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)}
⇐⇒ (pj − pj−1 = 1 ∧ tj = vj) ∨ (pj − pj−1 = 0 ∧ tj ̸= vj).

Then, one sees that pj − pj−1 indicates whether tj = vj (i.e., pj − pj−1 = 1) or
not (i.e., pj − pj−1 = 0). Hence, by combining the above arguments, one has

(spj−1+1 = vj) ∧ ((pj − pj−1 = 1 ∧ tj = vj) ∨ (pj − pj−1 = 0 ∧ tj ̸= vj))

⇐⇒ (pj − pj−1 = 1 ∧ spj−1+1 = tj) ∨ (pj − pj−1 = 0 ∧ spj−1+1 ̸= tj).

Finally, we achieve the equivalence

(7) ⇐⇒ (pj − pj−1 = 1 ∧ spj−1+1 = tj) ∨ (pj − pj−1 = 0 ∧ spj−1+1 ̸= tj).

Equivalently, the RHS of the above equivalence can be written as

pj − pj−1 = 1 ⇐⇒ spj−1+1 = tj or pj − pj−1 = 0 ⇐⇒ spj−1+1 ̸= tj . (8)

By Lemma 1, the sequence (pj)j∈[N] satisfying above property captures the fact
that, for j ∈ [N], pj is the largest index satisfying (s1, . . . , spj

) ◁ (t1, . . . , tj).
This concludes the proof. ⊓⊔

11

Putting All Together. With well-formedness of p captured by Lemma 2,
we can show that s ◁ t or s ̸◁ t by showing either pN = n (for s ◁ t) or
pN < n (for s ̸◁ t). This is true because, by its definition, pN is the largest index
satisfying (s1, . . . , spN

) ◁ (t1, . . . , tN) and pN = n means that s = (s1, . . . , spN
)

while pN < n means that (s1, . . . , spN
) is a proper prefix of s. Hence, we unify

everything into the following Theorem 2.

Theorem 2. Let n,N ∈ Z+. Let s⊥ = (sj)j∈[n+1] ∈ Σn+1
⊥ , and t = (tj)j∈[N] ∈

ΣN . Then, s ̸◁ t (respectively, s ◁ t) iff there exist (pj)j∈[0,N], with p0 = 0 by
default, and v = (vj)j∈[N] satisfying

{sj}j∈[n] ⊆ Σ, sn+1 =⊥, {tj}j∈[N] ⊆ Σ,

{(pj−1 + 1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1],

{(pj − pj−1, tj − vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)},
(9)

and pN < n (respectively, pN = n).

Proof. The first line of (9) captures the correct domains of s⊥ and t. The re-
maining lines are from Lemma 2. Thus, the proof directly follows Lemma 2. ⊓⊔

4 Description of Succinct Non-Subsequence Arguments

In this section, we provide a protocol for non-subsequence arguments from sum-
check. We first introduce frequently used notations in Section 4.1. In Section 4.2,
we discuss the transformations of constraints in Theorem 2 into the forms suit-
able for using sumcheck. The description and efficiency of our non-subsequence
argument are in Sections 4.3 and 4.4, respectively.

4.1 Notations

We recall from Section 2.1 the encoding int : {0, 1}l → Z+, for some l ∈ Z+, that
maps any vector i = (i1, . . . , il) ∈ {0, 1}l into i =

∑
j∈[l] 2

j−1 · ij . This notation
is suitable for 0-based indexing. However, in some places of our result, we may
use 1-based indexing instead. Therefore, we additionally introduce

incl : {0, 1}l → Z+ mapping i 7→ intl(i) + 1

where inc stands for “increment”. We denote by ĩntl(X) ∈ F[l] and ĩncl(X) ∈ F[l]
respectively the multilinear extensions of intl and incl. Define

lN = log2 N, lΣ s.t. 2lΣ ≥ |Σ⊥| , ln = log2(n+ 1) ∈ Z+.

We now define the following functions encoding components s⊥ = (sj)j∈[n+1],
t = (tj)j∈[N], p = (pj)j∈[N], d = (dj)j∈[N] = (pj−1)j∈[N] and v = (vj)j∈[N]

introduced in Theorem 2.

12

fs : {0, 1}ln → F maps j 7→ sj ∀j ∈ {0, 1}ln where j = ĩncln(j).

ft : {0, 1}lN → F maps j 7→ tj ∀j ∈ {0, 1}lN where j = ĩnclN (j).

fp : {0, 1}lN → F maps j 7→ pj ∀j ∈ {0, 1}lN where j = ĩnclN (j).

fd : {0, 1}lN → F maps j 7→ dj = pj−1 ∀j ∈ {0, 1}lN where j = ĩnclN (j).

fv : {0, 1}lN → F maps j 7→ vj ∀j ∈ {0, 1}lN where j = ĩnclN (j).

Notice here that fd is introduced to encode d = (dj)j∈[N] = (pj−1)j∈[N].
This is due to the constraint {(pj−pj−1, tj−vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0}∪
{(1, 0)} in Theorem 2 requiring computing pj − pj−1, for all j ∈ [N], which is
a linear combination of elements in entries of (pj)j∈[0,N]. Therefore, we extract
(pj−1)j∈[N] and encode them into fd for ease of handling such constraint.

Denote by f̃s(X) ∈ F[ln], f̃t(X) ∈ F[lN], f̃p(X) ∈ F[lN], f̃d(X) ∈ F[lN]

and f̃v(X) ∈ F[lN] to be multilinear extensions of above functions. We also
assume that prover commits to f̃s(X), f̃t(X), f̃p(X), f̃d(X) and f̃v(X) to obtain

polynomial commitments σ(f̃s), σ(f̃t), σ(f̃p), σ(f̃d) and σ(f̃v), respectively.

4.2 Transformations

We aim to design a protocol from sumcheck for relation

Rnon-subseq =
{(

σ(f̃s), σ(f̃t); f̃s(X), f̃t(X), aux
)
: s ̸◁ t

}
where f̃s(X) and f̃t(X) encode s and t, respectively, as introduced in Section 4.1,
and aux is some auxiliary input for executing evaluation protocol of PCS. Our
idea of proving s ̸◁ t strictly follows system (9) in Theorem 2. We divide the
constraints in (9) into following cases w.r.t. the notations in Section 4.1:

Proving {sj}j∈[n] ⊆ Σ, sn+1 =⊥ and {tj}j ⊆ Σ. We first encode Σ⊥ into

a polynomial as follows. Let lΣ ∈ Z+ satisfy 2lΣ ≥ |Σ⊥|. We form a sequence
char = (chari)i∈[2lΣ] from Σ⊥ s.t. {chari}i∈[2lΣ] = Σ⊥. Notice that |Σ⊥| may not
be a power of 2. Therefore, we simply duplicate elements (if necessary) to reach
the desired cardinality. Hence, {sj}j∈[n+1] ⊆ {chari}i∈[2lΣ] iff {sj}j∈[n+1] ⊆ Σ⊥.

Define gΣ : {0, 1}lΣ → F that maps i 7→ chari for i = inclΣ (i). To show that

{sj}j∈[n] ⊆ Σ and sn+1 =⊥, define sequences ch = (chi)i∈[2lΣ] ∈ {0, 1}2
lΣ and

ch′ = (ch′j)j∈[n+1] ∈ {0, 1}n+1 s.t.

chi = 1 ⇐⇒ chari ̸=⊥ ∀i ∈ [2lΣ] and ch′j = 1 ⇐⇒ sj ̸=⊥ ∀j ∈ [n+ 1].

Notice here that both ch and ch′ can be determined by any party. We see that

{sj}j∈[n] ⊂ Σ ∧ sn+1 =⊥ ⇐⇒ {(ch′j , sj)}j∈[n+1] ⊆ {(chi, chari)}i∈[2lΣ]. (10)

Since we would like to show the LHS of (10), we equivalently show that its RHS
holds. Therefore, we encode ch and ch′ by g̃ch(X) ∈ F[lΣ], mapping i 7→ chi

13

for i = inclΣ (i), and g̃ch′(X) ∈ F[ln], mapping j 7→ ch′j for j = inclN (j). Lookup

argument {(ch′j , sj)}j∈[n+1] ⊆ {(chi, chari)}i∈[2lΣ] in RHS of (10) is hence proved

through reduced lookup {ṽs(j)}j∈{0,1}ln ⊆ {h̃Σ(i)}i∈{0,1}lΣ , where

h̃Σ(X) = g̃ch(X)+g̃Σ(X)·β ∈ F[lΣ], ṽs(X) = g̃ch′(X)+f̃s(X)·β ∈ F[ln] (11)

and β
$← F⋆, with reduction error at most 2ln ·2lΣ/ |F| = O(n · |Σ| / |F|) (see Re-

mark 1). Similarly, we can show that {ṽt(j)}j∈{0,1}lN ⊆ {h̃Σ(i)}i∈{0,1}lΣ , where

ṽt(X) = 1 + f̃t(X) · β, (12)

to prove {tj}j∈[N] ⊆ Σ with reduction error O (N · |Σ| / |F|).
Well-Formedness of f̃d(X) ∈ F[lN]. In Section 4.1, f̃d(X) ∈ F[lN] encodes
d = (dj)j∈[N] = (pj−1)j∈[N]. As f̃p(X) ∈ F[lN] encodes p = (pj)j∈[N], we see

that f̃d(X) has a tight relationship with f̃p(X). In fact, this is a linear mapping
from p to d written as d = A · p for some A ∈ FN×N of the form

A =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0

 ∈ FN×N with exactly N − 1 non-zero entries.

To prove d = A · p, we follow [21] to encode A into g̃A(Y ∥X) ∈ F[2lN] and
commit to it by some PCS. Hence, we show well-formedness of d by proving

f̃d(Y) =
∑

j∈{0,1}lN

g̃A(Y ∥j) · f̃p(j). (13)

A way to prove this equation is to have rd
$← FlN from the verifier. Then, prover

shows that ed = f̃d(rd) =
∑

j∈{0,1}lN g̃A(rd∥j) · f̃p(j). In this way, the prover

must commit to g̃r(X) = g̃A(rd∥X) ∈ F[lN] to make succinct proof size and
sublinear verification time. Notice that A is sparse, i.e., having exactly N − 1
non-zero entries. Therefore, we can write

g̃A(Y ∥X) =
∑

i,j∈[N]

ai,j · ẽqlN (Y ∥binlN (i)) · ẽqlN (X∥binlN (j))

=
∑

i,j∈[N] s.t. ai,j ̸=0

ai,j · ẽqlN (Y ∥binlN (i)) · ẽqlN (X∥binlN (j)).
(14)

Hence, to evaluate g̃A(rd∥X), one can evaluate all a′i,j = ai,j · ẽqlN (rd∥bin(i))
for i, j ∈ [N] satisfying ai,j ̸= 0. This cost O(N) time for prover as prover can
compute ẽqlN (rd∥i) for all i ∈ {0, 1}lN as follows. Let rd = (rd,1, . . . , rd,lN) and
i = (i1, . . . , ilN). Then, by definition, we have

ẽqlN (rd∥i) =
∏

j∈[lN]

(rd,j · ij + (1− rd,j) · (1− ij)).

14

Set P0 := 1.
For each k form 1 to lN , the k-th round runs as follows:
– For all (i1, . . . , ik) ∈ {0, 1}k:
• Compute Pk,(i1,...,ik) := Pk−1,(i1,...,ik−1) · (rd,k · ik + (1− rd,k) · (1− ik)).

Fig. 2. Algorithm for computing all ẽq(rd∥i) for all i ∈ {0, 1}lN .

By denoting Pk,(i1,...,ik) :=
∏

j∈[k](rd,j · ij + (1− rd,j) · (1− ij)) for k ∈ [lN] and

(i1, . . . , ik) ∈ {0, 1}k, we see that

Pk,(i1,...,ik−1,ik) = Pk−1,(i1,...,ik−1) · (rd,k · ik + (1− rd,k) · (1− ik)).

With this idea, we can compute ẽqlN (rd∥i) for all i ∈ {0, 1}lN in time O(N) by
using algorithm in Figure 2. This algorithm in the k-th round has time complex-
ity O(2k). Hence, in all lN rounds, it costs total time

∑
k∈[lN]O(2k) = O(2lN).

Prover now can compute a′i,j = ai,j · ẽqlN (rd∥bin(i)) for all i, j ∈ [N] satisfying
ai,j ̸= 0 in time O(N) by using PlN ,i = ẽqlN (rd∥i) where i = binlN (i).

Finally, prover commit to

g̃r(X) = g̃A(rd∥X) =
∑

i,j∈[N] s.t. ai,j ̸=0

a′i,j · ẽqlN (X∥binlN (j)).

However, this way will incur verifier time to be O(N) to recompute g̃A(rd∥X)
since this is the only way for verifier to check whether prover compute commit-
ment to g̃A(rd∥X) honestly after pre-precessing. To reduce verifier time, we use
techniques for committing to sparse polynomials, i.e., l-variate polynomials hav-
ing a few non-zero entries among evaluations at i ∈ {0, 1}l for some l ∈ Z+, from
[21,22] to optimize prover and verifier time with properties specified in Table 3.

Table 3. This table contains properties of sparse PCS [21,22] for (2lN)-variate poly-
nomials with at most N non-zero entries. This sparse PCS is a generic construction
employing a PCS as a building block. Notations cs, ps, tp, tv and ϵeval (introduced in
Section 2.4) are for PCS.

Commitment size Proof size Soundness error Prover time Verifier time

cs(lN) O(ps(lN)) O
(

N
|F| + ϵeval(lN)

)
O(tp(lN)) O(tv(lN))

Hence, in the execution, initially, we have prover to commit to g̃A(Y ∥X) by
the sparse PCS and verifier to send rd. Prover computes g̃r(X) = g̃A(rd∥X)
in time O(N). Let ed = f̃d(rd). Prover and verifier follow Πsum for reducing
argument ed =

∑
j∈{0,1}lN g̃r(j) · f̃p(j) to checking that ep = g̃r(rp) · f̃p(rp)

with (rp, ep) is output of Πsum. Eventually, run evaluation of sparse PCS to

evaluate g̃A(Y ∥X) and of PCS to evaluate g̃r(Y) and f̃p(X) to check whether

g̃A(rd∥rp) = g̃r(rp) (implying g̃A(rd∥X) = g̃r(X)) and ep = g̃r(rp) · f̃p(rp).

15

Proving {(pj−1 + 1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1]. As f̃d(X) encodes sequence
d = (dj)j∈[N] = (pj−1)j∈[N], we prove this argument by defining

ṽv(X) = (f̃d(X) + 1) + f̃v(X) · β ∈ F[lN],

ṽx(X) = ĩncln(X) + f̃s(X) · β ∈ F[ln]
(15)

where β is the challenge discussed above in (11). Then, we can reduce proving
{(pj−1+1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1] to {ṽv(j)}j∈{0,1}lN ⊆ {ṽx(j)}j∈{0,1}ln with

reduction error at most 2ln · 2lN / |F| = O(n ·N/ |F|) (see Remark 1).

Proving {(pj − pj−1, tj − vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)}. To show
this tuple lookup argument, we introduce the sequence (izi, diffi)i∈[m] for some
m ∈ Z+ s.t. {(izi, diffi)}i∈[m] = {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)}. Here, for ease
of handling with sumcheck arguments, we assume that m is a power of 2 and
m = O(|Σ|). Hence, if {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)} is less than m entries,
we simply duplicate elements (if necessary) s.t. {(izi, diffi)}i∈[m] has exactly m
entries. Let lm = log2 m. We now encode them as follows.

giz : {0, 1}lm → F maps i 7→ izi ∀i ∈ {0, 1}lm where i = ĩnclm(i).

gdiff : {0, 1}lm → F maps i 7→ diffi ∀i ∈ {0, 1}lm where i = ĩnclm(i).

Denote by g̃iz(X) = MLE(giz) ∈ F[lm] and g̃diff(X) = MLE(gdiff) ∈ F[lm]. We
now observe that (pj − pj−1)j∈[N] is encoded by f̃p(X)− f̃d(X). Therefore, for
β introduced in (11), by defining

ṽc(X) = (f̃p(X)− f̃d(X)) + (f̃t(X)− f̃v(X)) · β ∈ F[lN],

h̃diff(X) = g̃iz(X) + g̃diff(X) · β ∈ F[lm],
(16)

we can reduce proving {(pj−pj−1, tj−vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0}∪{(1, 0)}
to proving {ṽc(j)}j∈{0,1}lN ⊆ {h̃diff(i)}i∈{0,1}lm with reduction error at most

2lN · 2lm/ |F| = O(N · |Σ| / |F|) (see Remark 1) since m = O(|Σ|).

4.3 Description for Non-Subsequence Arguments from Sumcheck

We present our non-subsequence argument Πnon-subseq for relation Rnon-subseq in
Figure 3 w.r.t. notations and transformations in Sections 4.1 and 4.2, respec-
tively. The protocol is divided into two phases, namely, pre-processing and execu-
tion. The pre-processing phase is for committing supporting polynomials f̃p(X),

f̃d(X) and f̃v(X) in advance. Regarding the execution phase, the prover and
verifier proceed with the interactive proving as discussed above. The security
of protocol Πnon-subseq is discussed in Theorem 3. Protocol Πnon-subseq can be
transformed into a SNARK by applying Fiat-Shamir heuristics [8].

Theorem 3 (Security of Πnon-subseq). Let ϵi be the soundness error of Πi for
i ∈ [5]. Πnon-subseq is complete, with completeness error O((2ln +2lN +2lΣ)/ |F|),

16

and knowledge-sound, with soundness error

O

n ·N + n · |Σ|+N · |Σ|
|F|

+
∑
i∈[5]

ϵi

 ,

where ϵeval is introduced in Section 2.4, if (i) Π1, . . . ,Π5 are complete and
knowledge-sound, and (ii) employed PCS is secure and extractable.

In particular, when Πlkup and Π3 are adapted from [14] and [21,22], respec-
tively, by following Tables 2 and 3, we have∑

i∈[5]

ϵi = O ((ln + lN + lΣ)/|F|+ ϵeval(ln) + ϵeval(lN) + ϵeval(lΣ)) .

Proof. Completeness is straightforward. Completeness error is computed due to
the union bound on completeness errors of Π1, Π2, Π4, and Π5. In other words,
the completeness error is bounded by

O
(
2ln + 2lΣ

|F|

)
+O

(
2lN + 2lΣ

|F|

)
+O

(
2lN + 2ln

|F|

)
+O

(
2lN + 2lm

|F|

)
= O

(
2ln + 2lN + 2lΣ + 2lm

|F|

)
= O

(
2ln + 2lN + 2lΣ

|F|

)
since O(2lm) = O(m) = O(|Σ|) = O(2lΣ). Regarding knowledge soundness,
we first notice that, for the evaluations on f̃s(X), f̃t(X), f̃p(X), f̃d(X), f̃v(X)
and g̃r(X), both parties run the evaluation protocol at least once since running
protocols Π1, . . . ,Π5 w.r.t. commitments σ(f̃s), σ(f̃t), σ(f̃p), σ(f̃d), σ(f̃v) and
σ(g̃r). Since the evaluation process of extractable PCSs is knowledge sound, there
are corresponding extractors to extract f̃s(X), f̃t(X), f̃p(X), f̃d(X), f̃v(X) and
g̃r(X). Hence, we can obtain s, t,p,d and v from those extracted polynomials
as in step 3 of protocol Πnon-subseq in Figure 3. Moreover, from extracted and

common polynomials, we can also form polynomials h̃Σ(X), f̃diff(X), ṽs(X),
ṽt(X), ṽv(X), ṽx(X) and ṽc(X). Since Π1, . . . Π5 are knowledge sound and are
all accepted by V, we hence deduce the followings:

– {ṽs(j)}j∈{0,1}ln ⊆ {h̃Σ(i)}i∈{0,1}lΣ , from Π1, holds with error probability ϵ1.

Notice that h̃Σ(X) = g̃ch(X) + g̃Σ(X) · β, ṽs(X) = g̃ch′(X) + f̃s(X) · β
and β

$← F⋆. Since common polynomials g̃ch(X) and g̃ch′(X) encode ch =
(chi)i∈[2lΣ] and ch′ = (ch′j)j∈[n+1], respectively, with constraints in (11), we

deduce that RHS of (10) holds with error probability
(
1−O

(
n·|Σ|
|F|

))
· ϵ1 +

O
(

n·|Σ|
|F|

)
which is simplified to be O

(
ϵ1 +

n·|Σ|
|F|

)
where O

(
n·|Σ|
|F|

)
is sound-

ness error of reducing tuple lookup {(ch′j , sj)}j∈[n+1] ⊆ {(chi, ai)}i∈[2lΣ] to

{ṽs(j)}j∈{0,1}ln ⊆ {h̃Σ(i)}i∈{0,1}lΣ (see Section 4.2). RHS of (10) hence im-
plies its LHS, namely, {sj}j∈[n] ⊂ Σ ∧ sn+1 =⊥.

17

– As from above, reducing to and proving {ṽt(j)}j ⊆ {h̃Σ(i)}i with Π2 have

soundness error O
(
ϵ2 +

N ·|Σ|
|F|

)
.

– ed =
∑

j∈{0,1}lN g̃r(j) · f̃p(j), from Π3, and the check g̃r(rp) = g̃A(rd∥rp)

deduce that d = A · p with soundness error O
(
ϵ3 +

N
|F| + ϵeval(lN)

)
.

– Similarly, {ṽv(j)}j∈{0,1}lN ⊆ {ṽx(j)}j∈{0,1}ln from Π4 implies tuple lookup

{(pj−1 + 1, vj)}j∈[N] ⊆ {(j, sj)}j∈[n+1] with soundness error O
(
ϵ4 +

n·N
|F|

)
.

– Lookup argument {ṽc(j)}j∈{0,1}lN ⊆ {h̃diff(i)}i∈{0,1}lm fromΠ5 implies {(pj−
pj−1, tj − vj)}j∈[N] ⊆ {(0, i)}i∈[−|Σ|,|Σ|]\{0} ∪ {(1, 0)} with soundness error

O
(
ϵ5 +

N ·|Σ|
|F|

)
as 2lN = N and 2lm = m = O(|Σ|).

– Evaluating f̃d(rd) = ed and f̃p(1) < n hold with soundness errorO(ϵeval(lN)).

By using Theorem 2 and union bound, the extracted components with the above-
satisfied properties imply s ̸◁ t with the soundness error (total soundness error

from above analysis) bounded by O
(

n·N+n·|Σ|+N ·|Σ|
|F| +

∑
i∈[5] ϵi

)
. ⊓⊔

4.4 Efficiency

Recall notations cs, ps, tp, tv and ϵeval from Section 2.4. Then, the efficiency of
Πnon-subseq is computed based on the efficiency of component protocolsΠ1, . . . ,Π5

as follows.

– Input size. O(cs(ln) + cs(lN) + cs(lΣ)).

– Proof size. O(cs(lN) + ln + lN + lΣ + ps(ln) + ps(lN) + ps(lΣ)) since there is
one commitment to g̃r(X) ∈ F[lN] sent to verifier, sumcheck protocols are
bounded by O(ln + lN + lΣ) rounds, and evaluations are from polynomials
over ln, lN and lΣ variables.

– Prover time. O(n+N + |Σ|+ tp(ln) + tp(lN) + tp(lΣ)) since all sums from
sumcheck protocols are bounded by O(n+N + |Σ|) addends.

– Verifier time. O(ln+ lN + lΣ+ tv(ln)+ tv(lN)+ tv(lΣ)) since the verifier only
verifies low-constant-degree univariate polynomials in the rounds of protocols
from sumcheck and evaluations of polynomials over ln, lN , and lΣ variables.

Instantiation.When instantiating with Sona PCS [22] (see Table 1), we achieve

– Input size. O(1)H.

– Proof size. O(ln + lN + lΣ)F, O(1)H and O(1)G.

– Prover time. O(n+N + |Σ|)F, O(
√
n+
√
N +

√
|Σ|)G.

– Verifier time. O(
√
n+
√
N +

√
|Σ|)G.

18

Πnon-subseq:

Inputs: The inputs to this protocol include:
– Common Parameters: n,N ∈ Z+, Σ ⊆ F, Σ⊥ = Σ ∪ {⊥}, m = O(|Σ|) ∈ Z+,

ln = log2(n+ 1), lN = log2 N , lΣ s.t. 2lΣ ≥ |Σ⊥|, lm = log2 m ∈ Z+.
– Common Inputs:
• Common polynomials ĩnclN (X) ∈ F[lN], g̃A(Y ∥X) ∈ F[2lN], g̃ch(X) ∈

F[lΣ], g̃ch′(X) ∈ F[ln], g̃Σ(X) ∈ F[lΣ], g̃iz(X) ∈ F[lm], g̃diff(X) ∈ F[lm];

• Commitments σ(f̃s), σ(f̃t) to f̃s(X), f̃t(X), respectively, and σ(ĩnclN), σ(g̃A)
(sparse), σ(g̃ch), σ(g̃ch′), σ(g̃Σ), σ(g̃iz), σ(g̃diff) to common polynomials.

– P’s Inputs: f̃s(X)∈F[ln], f̃t(X)∈F[lN], and auxiliary inputs for evaluating PCSs.
Goal: All constraints in system (9) hold.
Pre-Processing: P determines f̃p(X), f̃d(X), f̃v(X) ∈ F[lN], commits and sends to
V commitments σ(f̃p), σ(f̃d) and σ(f̃v).
Execution: This protocol works as follows:

1. V samples β
$← F⋆ and rd

$← FlN and sends (β, rd) to P.
2. P evaluates ed := f̃d(rd) and g̃r(X) = g̃A(rd∥X). Commit to g̃r(X) to obtain

σ(g̃r). Sends ed and σ(g̃r) to V.
3. Both P and V determine combined polynomials (see (11), (12), (15) and (16))

h̃Σ(X) = g̃ch(X) + g̃Σ(X) · β ∈ F[lΣ], h̃diff(X) = g̃iz(X) + g̃diff(X) · β ∈ F[lm],

ṽs(X) = g̃ch′(X) + f̃s(X) · β ∈ F[ln], ṽt(X) = 1 + f̃t(X) · β ∈ F[lN],

ṽv(X) = (f̃d(X) + 1) + f̃v(X) · β ∈ F[lN], ṽx(X) = ĩncln(X) + f̃s(X) · β ∈ F[ln],

ṽc(X) = (f̃p(X)− f̃d(X)) + (f̃t(X)− f̃v(X)) · β ∈ F[lN].
Here, an evaluation of the combined polynomial is computed through the evalua-
tions of its component polynomials. For example, to evaluate ṽs(r) for some r ∈ Fln ,
both parties run the evaluation protocol w.r.t. polynomial commitments σ(g̃ch) and
σ(f̃s) to evaluate ech = g̃ch(r) and es = f̃s(r), and then compute ṽs(r) = ech+es ·β.

4. Both P and V run (independently and in parallel) sumcheck-related protocols:
– Π1: run Πlkup for {ṽs(j)}j∈{0,1}ln ⊆ {h̃Σ(i)}i∈{0,1}lΣ .

– Π2: run Πlkup for {ṽt(j)}j∈{0,1}lN ⊆ {h̃Σ(i)}i∈{0,1}lΣ .

– Π3: run Πsum for ed =
∑

j∈{0,1}lN g̃r(j) · f̃p(j).
– Π4: run Πlkup for {ṽv(j)}j∈{0,1}lN ⊆ {ṽx(j)}j∈{0,1}ln .

– Π5: run Πlkup for {ṽc(j)}j∈{0,1}lN ⊆ {h̃diff(i)}i∈{0,1}lm .

– Run evaluation protocol of PCS to check whether ed = f̃d(rd), g̃r(rp) =
g̃A(rd∥rp), where rp is random string in the end of Π3, and f̃p(1) < n from
σ(f̃d), σ(f̃p), σ(g̃r) and sparse σ(g̃A).

5. V accepts if Π1, . . . , Π5 are accepted and the evaluations are satisfied.

Fig. 3. Protocol Πnon-subseq.

Acknowledgments

The work of San Ling and Huaxiong Wang was supported by Singapore Min-
istry of Education Academic Research Fund Tier 2 Grant T2EP20223-0028.
This research is supported by the National Research Foundation, Singapore,
and Infocomm Media Development Authority under its Trust Tech Funding Ini-
tiative, Strategic Capability Research Centres Funding Initiative, and Future
Communications Research & Development Programme. Any opinions, findings,

19

and conclusions, or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research Foundation, Sin-
gapore, and Infocomm Media Development Authority. We also thank Dr Hong
Hanh Tran, Minh Pham, Dr Chan Nam Ngo, Hien Chu, and anonymous review-
ers for reviewing and giving valuable comments in this result.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/

360825.360855

2. Angel, S., Ioannidis, E., Margolin, E., Setty, S., Woods, J.: Reef: Fast Succinct Non-
Interactive Zero-Knowledge Regex Proofs. In: 33rd USENIX Security Symposium
– USENIX Security 2024. USENIX Association (2024), https://www.usenix.org/
conference/usenixsecurity24/presentation/angel

3. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: Nearly Linear-
Time Zero-Knowledge Proofs for Correct Program Execution. In: Advances in
Cryptology – ASIACRYPT 2018. Lecture Notes in Computer Science, vol. 11272,
pp. 595–626. Springer International Publishing (2018). https://doi.org/10.

1007/978-3-030-03326-2_20

4. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK Compilers.
In: Advances in Cryptology – EUROCRYPT 2020. Lecture Notes in Computer
Science, vol. 12105, pp. 677–706. Springer International Publishing (2020). https:
//doi.org/10.1007/978-3-030-45721-1_24

5. Campanelli, M., Faonio, A., Fiore, D., Li, T., Lipmaa, H.: Lookup Arguments:
Improvements, Extensions and Applications to Zero-Knowledge Decision Trees.
In: Public-Key Cryptography – PKC 2024. Lecture Notes in Computer Science,
vol. 14602, pp. 337–369. Springer Nature Switzerland (2024). https://doi.org/
10.1007/978-3-031-57722-2_11

6. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with Linear-
Time Prover and High-Degree Custom Gates. In: Advances in Cryptol-
ogy – EUROCRYPT 2023. Lecture Notes in Computer Science, vol. 14005,
pp. 499–530. Springer Nature Switzerland (2023). https://doi.org/10.1007/

978-3-031-30617-4_17

7. Eagen, L., Fiore, D., Gabizon, A.: cq: Cached quotients for fast lookups. Cryptology
ePrint Archive, Paper 2022/1763 (2022), https://eprint.iacr.org/2022/1763

8. Fiat, A., Shamir, A.: How To Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems. In: Advances in Cryptology — CRYPTO 1986. Lec-
ture Notes in Computer Science, vol. 263, pp. 186–194. Springer Berlin Heidelberg
(1987). https://doi.org/10.1007/3-540-47721-7_12

9. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. Cryptology ePrint Archive, Report 2020/315 (2020), https://

eprint.iacr.org/2020/315

10. GeeksforGeeks: Subsequence meaning in dsa. online (2023), https://www.

geeksforgeeks.org/subsequence-meaning-in-dsa/

11. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
Succinct NIZKs without PCPs. In: Advances in Cryptology – EUROCRYPT 2013.
Lecture Notes in Computer Science, vol. 7881, pp. 626–645. Springer Berlin Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

20

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://www.usenix.org/conference/usenixsecurity24/presentation/angel
https://www.usenix.org/conference/usenixsecurity24/presentation/angel
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-031-57722-2_11
https://doi.org/10.1007/978-3-031-57722-2_11
https://doi.org/10.1007/978-3-031-57722-2_11
https://doi.org/10.1007/978-3-031-57722-2_11
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://eprint.iacr.org/2022/1763
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://www.geeksforgeeks.org/subsequence-meaning-in-dsa/
https://www.geeksforgeeks.org/subsequence-meaning-in-dsa/
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

12. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing – STOC 2011. p. 99–108. Association for Computing
Machinery (2011). https://doi.org/10.1145/1993636.1993651

13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing – STOC 1985. p. 291–304. Association for Computing Ma-
chinery (1985). https://doi.org/10.1145/22145.22178

14. Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology
ePrint Archive, Report 2022/1530 (2022), https://eprint.iacr.org/2022/1530

15. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polyno-
mials and Their Applications. In: Advances in Cryptology - ASIACRYPT 2010.
Lecture Notes in Computer Science, vol. 6477, pp. 177–194. Springer Berlin Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11

16. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive Zero-Knowledge Arguments
from Folding Schemes. In: Advances in Cryptology – CRYPTO 2022. Lecture Notes
in Computer Science, vol. 13510, pp. 359–388. Springer Nature Switzerland (2022).
https://doi.org/10.1007/978-3-031-15985-5_13

17. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science – FOCS 1990. vol. 1, pp. 2–10. IEEE (1990). https://doi.org/
10.1109/FSCS.1990.89518

18. Luo, N., Weng, C., Singh, J., Tan, G., Piskac, R., Raykova, M.: Privacy-preserving
regular expression matching using nondeterministic finite automata. Cryptology
ePrint Archive, Paper 2023/643 (2023), https://eprint.iacr.org/2023/643

19. Nguyen, W., Datta, T., Chen, B., Tyagi, N., Boneh, D.: Mangrove: A Scalable
Framework for Folding-based SNARKs. In: Advances in Cryptology – CRYPTO
2024 (2024), to appear

20. Raymond, M., Evers, G., Ponti, J., Krishnan, D., Fu, X.: Efficient Zero Knowl-
edge for Regular Language. In: 19th EAI International Conference on Security and
Privacy in Communication Networks – SecureComm 2023 (2023), to appear

21. Setty, S.: Spartan: Efficient and General-Purpose zkSNARKs Without Trusted
Setup. In: Advances in Cryptology – CRYPTO 2020. Lecture Notes in Computer
Science, vol. 12172, pp. 704–737. Springer International Publishing (2020). https:
//doi.org/10.1007/978-3-030-56877-1_25

22. Setty, S., Thaler, J., Wahby, R.: Unlocking the lookup singularity with lasso.
In: Advances in Cryptology – EUROCRYPT 2024. Lecture Notes in Computer
Science, vol. 14656, pp. 180–209. Springer Nature Switzerland (2024). https:

//doi.org/10.1007/978-3-031-58751-1_7

23. Thakur, S.: A flexible snark via the monomial basis. Cryptology ePrint Archive,
Paper 2023/1255 (2023), https://eprint.iacr.org/2023/1255

24. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968). https://doi.org/10.1145/363347.

363387

25. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-Efficient zk-
SNARKs Without Trusted Setup. In: 2018 IEEE Symposium on Security and Pri-
vacy – S&P 2018. pp. 926–943. IEEE (2018). https://doi.org/10.1109/SP.2018.
00060

26. Zhang, C., DeStefano, Z., Arun, A., Bonneau, J., Grubbs, P., Walfish, M.: Zom-
bie: Middleboxes that Don’t Snoop. In: 21st USENIX Symposium on Networked

21

https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://eprint.iacr.org/2022/1530
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://eprint.iacr.org/2023/643
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-58751-1_7
https://eprint.iacr.org/2023/1255
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060

Systems Design and Implementation – NSDI 2024. pp. 1917–1936. USENIX As-
sociation (2024), https://www.usenix.org/conference/nsdi24/presentation/

zhang-collin

27. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent Polynomial Delegation and
Its Applications to Zero Knowledge Proof. In: 2020 IEEE Symposium on Security
and Privacy – S&P 2020. pp. 859–876. IEEE (2020). https://doi.org/10.1109/
SP40000.2020.00052

28. Zhang, Y., Sun, S.F., Gu, D.: Efficient KZG-Based Univariate Sum-Check
and Lookup Argument. In: Public-Key Cryptography – PKC 2024. Lecture Notes
in Computer Science, vol. 14602, pp. 400–425. Springer Nature Switzerland (2024).
https://doi.org/10.1007/978-3-031-57722-2_13

29. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL:
Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases. In: 2017
IEEE Symposium on Security and Privacy – S&P 2017. pp. 863–880. IEEE (2017).
https://doi.org/10.1109/SP.2017.43

A Proof of Lemma 1

Proof (Proof of Lemma 1). We prove this lemma by induction.
For the base case with p0 = 0, it is trivial since an empty string is a subse-

quence of an empty string.
Assume by inductive hypothesis that, for j ∈ [N − 1], pj−1 is the maximum

index satisfying
(s1, . . . , spj−1

)◁ (t1, . . . , tj−1).

Now, we prove that this is also true w.r.t. pj , i.e., the maximum index satisfying
(s1, . . . , spj

) ◁ (t1, . . . , tj). We claim that pj−1 ≤ pj ≤ pj−1 + 1. It is trivial to
see that pj−1 ≤ pj since a subsequence to (t1, . . . , tj−1) is also a subsequence of
(t1, . . . , tj). What happens if pj ≥ pj−1 + 2?

Since (s1, . . . , spj−1
)◁ (t1, . . . , tj−1), we know that there exist id1, . . . , idpj−1

satisfying {
id1 < · · · < idpj−1 ≤ j − 1,

(s1, . . . , spj−1) = (tid1 , . . . , tidpj−1
).

Hence, if pj ≥ pj−1+2, we know that there exist idpj−1+1 and idpj−1+2 satisfying{
id1 < · · · < idpj−1+2 ≤ j,

(s1, . . . , spj−1+2) = (tid1 , . . . , tidpj−1+2
).

If idpj−1+1 ≤ j − 1, then it contradicts to the fact that pj−1 is the maximum
index satisfying (s1, . . . , spj−1

) ◁ (t1, . . . , tj−1). Hence, j − 1 < idpj−1+1 ≤ j.
Therefore, we also have j − 1 < idpj−1+1 < idpj−1+2 ≤ j, a contradiction since
there cannot exist two distinct integers in (j− 1, j]. Thus, pj−1 ≤ pj ≤ pj−1+1.

With the above argument, we know that, if pj = pj−1 + 1, then it must
hold that idpj−1+1 = idpj

= j which only happens when spj−1+1 = tj . Thus, we
deduce that pj = pj−1 + 1, if spj−1+1 = tj , and pj = pj−1, otherwise. We hence
conclude the proof. ⊓⊔

22

https://www.usenix.org/conference/nsdi24/presentation/zhang-collin
https://www.usenix.org/conference/nsdi24/presentation/zhang-collin
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1007/978-3-031-57722-2_13
https://doi.org/10.1007/978-3-031-57722-2_13
https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1109/SP.2017.43

B Additional Preliminaries

B.1 Security of SNARKs

In this appendix, we recall the security of SNARKs. A SNARK for an NP lan-
guage L (with respect to some NP relation R) must satisfy the following.

– Completeness. Given pp← Setup(1λ), for any statement x ∈ L, there exists
a witness w s.t.

Pr

V(pp, x, π) = 1

∣∣∣∣∣∣
pp← Setup(1λ),
R(x,w) = 1,
π ← P(pp, x, w)

 ≥ 1− negl(λ),

where negl(λ) is a negligible function of λ.
– Knowledge Soundness. For any PPT adversary A, there exists a PPT ex-

tractor E s.t. for any x, it holds that

Pr

V(pp, x, π∗) = 1
∧R(x,w′) = 0

∣∣∣∣∣∣
pp← Setup(1λ),
π⋆ ← A(pp, x),
w′ ← E(pp, x, π⋆)

 ≤ negl(λ),

where negl(λ) is a negligible function of λ.
– Succinctness. The communication between P and V is sub-linear in the size

of x ∈ L.
– Sublinear Verification Time. The verification time is sublinear in |x|.

B.2 Security of Polynomial Commitment Schemes

In this appendix, we describe the security of PCSs. An extractable PCS

PCS = (Setup,Com,Open,Eval)

is secure if it satisfies completeness, binding, and knowledge soundness as follows.

– Completeness. For any l-variate multilinear polynomial f(X) ∈ F[l], the
following probability is overwhelming by in λ, i.e., at least 1− negl(λ):

Pr

[
Eval ⟨P(f(X), aux),V(r)⟩ (pp, σ(f), S) = 1
∧S = f(r)

∣∣∣∣pp← Setup(1λ),
(σ(f), aux)← Com(pp, f(X))

]
.

– Binding. For any PPT adversary A, the following probability is negligible in
λ, i.e., at most negl(λ):

Pr

 b0 = b1 = 1 ∧ f0(X) ̸= f1(X)

∣∣∣∣∣∣∣∣
pp← Setup(1λ),
(σ, f0(X), f1(X), aux0, aux1)← A(pp),
b0 ← Open(pp, σ, f0(X), aux0),
b1 ← Open(pp, σ, f1(X), aux1)

 .

– Knowledge Soundness. Given pp← Setup(λ), Eval is a succinct argument of
knowledge for NP relation

Reval =

{(
σ(f), r, e; f(X), aux

)
:
f(X) ∈ F[l] ∧ f(r) = e
∧Open(pp, σ(f), f(X), aux) = 1

}
.

23

Πsum:

Parties: Denote by P and V the prover and verifier, respectively.
Inputs: The inputs to this protocol include:
– Common Parameters: Integer l ∈ Z+.
– Common Inputs: polynomial commitment σ(f) and sum S ∈ F.
– P’s Input: f(X) ∈ F[l] and auxiliary input supporting evaluating from σ(f).

Goal:
∑

i∈{0,1}l f(i) = S.
Execution: This protocol runs as follows:
1. P sends polynomial

f1(X1) =
∑

i∈{0,1}l−1

f(X1∥i).

V rejects if f1(0) + f1(1) ̸= S and degree of f1(X1), denoted by deg1, equals to

that of X1 in f(X), denoted by deg(X1). V chooses sample r1
$← F and sends r1

to P.
2. For each j runs sequentially from 2 to l, P sends the polynomial

fj(Xj) =
∑

i∈{0,1}l−j

f((r1, . . . , rj−1, Xj)∥i).

V rejects if fj(0) + fj(1) ̸= fj−1(rj−1) and degree degj = deg(Xj). V samples

rj
$← F and sends rj to P.

3. V accepts if e = f(r1, . . . , rl), where e = fl(rl), by running protocol Eval of the
respective PCS. This protocol also returns (r, e) where r = (r1, . . . , rl).

Fig. 4. Protocol Πsum.

B.3 Protocols from Sumcheck

Sumcheck Protocol. The sumcheck protocol Πsum for relation

Rsum =
{(

S, σ(f); f(X) ∈ F[l], aux
)
: S =

∑
i∈{0,1}l f(i)

}
,

recalled from (5), proceeds as in Figure 4. We use the following Lemma 3 to
show its security.

Lemma 3 ([17]). For an l-variate polynomial f(X) ∈ F[l] of degree ρ, the
above sumcheck protocol is perfectly complete and sound with soundness error
O ((l · ρ)/|F|+ ϵeval(l)) where ϵeval(l) is introduced in Section 2.4.

Table 4. This table contains communication cost, soundness error, prover time
and verifier time of sumcheck protocol Πsum (c.f. [6]) for polynomial f(X) =
h(g1(X), . . . , gc(X)) ∈ F[l] where c ∈ Z+ is a constant, gc(X) is of degree 1 and
h(·) is of degree ρ. Notations cs, ps, tp, tv and ϵeval are introduced in Section 2.4.

Proof size Soundness error Prover time Verifier time

O(l · ρ+ ps(l)) O
(

l·ρ
|F| + ϵeval(l)

)
O(2lρ log22 ρ+ tp(l)) O(l · ρ+ tv(l))

24

In Table 4, we recall the communication cost, soundness error, prover and
verifier time of sumcheck protocol Πsum from [6], w.r.t.

f(X) = h(g1(X), . . . , gc(X)) ∈ F[l]

where c ∈ Z+ is a constant, gc(X) is of degree 1 and h(·) is of degree ρ.

Lookup Argument Adapted from [14]. As said above, as we are only in-
terested in the lookup protocol from [14], in this appendix, we only consider
the lookup protocol adapted from [14]. Other lookup protocols can be found in
[7,22]. Let la, lb ∈ Z+. Protocol Πlkup in Figure 5 aims to show the satisfaction
of relation

Rlkup =
{(

σ(f̃a), σ(f̃b); f̃a(X), f̃b(X), aux
)
: {f̃a(j)}j∈{0,1}la ⊆ {f̃b(i)}i∈{0,1}lb

}
,

recalled from (6), where f̃a(X) ∈ F[la] and f̃b(X) ∈ F[lb] are multilinear. Ac-

cording to [14], {f̃a(j)}j∈{0,1}la ⊆ {f̃b(i)}i∈{0,1}lb iff there exists m̃ul(X) ∈ F[lb]
satisfying ∑

j∈{0,1}la

1

f̃a(j) + Y
=

∑
i∈{0,1}lb

m̃ul(i)

f̃b(i) + Y
. (17)

The intuition for Πlkup for relation Rlkup is as follows. To show (17), prover
instead shows the reduced formula∑

j∈{0,1}la

1

f̃a(j) + γ
= T and

∑
i∈{0,1}lb

m̃ul(i)

f̃b(i) + γ
= T, (18)

where γ
$← F given by verifier, holds with completeness error O

(
2la+2lb

|F|

)
(due

to potential division by zero) and soundness error O
(

2la+lb

|F|

)
(i.e., the original

formula is false but reduced formula holds). Then, prover computes f̃ ′
a(X) and

f̃ ′
b(X) encoding

(
(f̃a(j) + γ)−1

)
j∈{0,1}la

and
(
m̃ul(i) · (f̃b(i) + γ)−1

)
j∈{0,1}lb

, re-

spectively. Then, prover must show that f̃ ′
a(X) and f̃ ′

b(X) are computed hon-

estly. Hence, prover show that f̃ ′
a(j) · (f̃a(j) + γ)−1 − 1 = 0 for all j ∈ {0, 1}la

and f̃ ′
b(i) · m̃ul(i) · (f̃b(i) + γ)−1 − 1 = 0 for all i ∈ {0, 1}lb . Hence, we apply the

well-known technique to show that∑
j∈{0,1}la

(
f̃ ′
a(j) · (f̃a(j) + γ)−1 − 1

)
· ẽqla(r1∥j) = 0 and

∑
i∈{0,1}lb

(
f̃ ′
b(i) · m̃ul(i) · (f̃b(i) + γ)−1 − 1

)
· ẽqlb(r2∥i) = 0,

for some r1
$← Fla and r2

$← Flb , by running two instances of Πsum for the two
formulas. The use of ẽqla(r1∥X) and ẽqlb(r2∥X) is employed in Spartan [21]

25

Πlkup:

Parties: Denote by P and V the prover and verifier, respectively.
Inputs: The inputs to this protocol include:
– Common Parameters: la, lb ∈ Z+.
– Common Inputs: Polynomial commitments σ(f̃a), σ(f̃b).
– P’s Inputs: f̃a(X) ∈ F[la], f̃b(X) ∈ F[lb] and auxiliary inputs supporting evaluating

polynomial commitments in common inputs. Notice here that f̃a(X) and f̃b(X)

encode vectors a = (aj)j∈[0,2la−1] ∈ F2la and b = (bi)i∈[0,2lb−1] ∈ F2lb

Goal: {aj}j∈[0,2la−1] ⊆ {bi}i∈[0,2lb−1] by showing the existence of m̃ul(X) ∈ F[lb]
satisfying

∑
j∈{0,1}la (f̃a(j) + Y)−1 =

∑
i∈{0,1}lb m̃ul(i) · (f̃b(i) + Y)−1.

Pre-Processing: P determines m̃ul(X) ∈ F[lb], commits and sends to V polynomial

commitment σ(m̃ul).
Execution: This protocol runs as follows:

1. V samples γ
$← F and sends γ to P.

2. P does the followings:
– Compute f̃ ′

v(X) ∈ F[lv], for v ∈ {a, b}, to be MLE of function f ′
v : {0, 1}lv → F

mapping i 7→ (fv(i) + γ)−1 ∈ F ∀i ∈ {0, 1}lv .
– Compute T =

∑
j∈{0,1}la f̃ ′

a(j).

– Compute and send polynomial commitments σ(f̃ ′
a) and σ(f̃ ′

b) to V.
3. V samples r1

$← Fla , r2
$← Flb and sends (ra, rb) to P.

4. P and V run Πsum for checking whether

0 =
∑

i∈{0,1}la

(
f̃ ′
a(i) · (f̃a(i) + γ)− 1

)
· ẽqla(r1∥i)

0 =
∑

i∈{0,1}lb

(
f̃ ′
b(i) · (f̃b(i) + γ)− 1

)
· ẽqlb(r2∥i)

T =
∑

j∈{0,1}la

f̃ ′
a(j) where f̃ ′

a(X) is of degree 1,

T =
∑

i∈{0,1}lb

m̃ul(i) · f̃ ′
b(i)

For the first argument, we remind that Πsum reduces the check to a pair (ra, ea)
and then both parties run the evaluation protocol w.r.t. σ(f̃ ′

a) and σ(f̃a) to check

whether ea =
(
f̃ ′
a(ra) · (f̃a(ra) + γ)− 1

)
· ẽqla(r1∥ra). Similar ways of checking

apply to the remaining three executions of Πsum.
5. V accepts if all four executions of Πsum are accepted.

Fig. 5. Protocol Πlkup.

and HyperPlonk [6]. This implies well-formednesses of f̃ ′
a(X) and f̃ ′

b(X) with
high probability. Eventually, run the other two instances of Πsum to show the
two formulas

T =
∑

j∈{0,1}la

f̃ ′
a(j) and T =

∑
i∈{0,1}lb

m̃ul(i) · f̃ ′
b(i).

26

Lemma 4 (Security of Πlkup). Let ϵeval be the total soundness error from invo-
cations (in a constant number of times) to the evaluation protocol of the employed
PCS incurred in Πlkup. Then, protocol Πlkup for relation Rlkup satisfies com-

pleteness, with completeness error O
(

2la+lb

|F|

)
, and knowledge soundness, with

soundness error O
(

la+lb
|F| + ϵeval(l)

)
, where ϵeval is introduced in Section 2.4, if

(i) Πsum satisfies completeness and knowledge soundness, and (ii) the employed
PCS is secure and extractable.

In our result, we are only interested in polynomials f̃a(X) and f̃b(X) of
degree 1. Hence, the protocol Πlkup only deals with polynomials of degree at
most 3. Eventually, the cost of Πlkup is summarized in Table 5.

Table 5. This table contains communication cost, soundness error, prover time, and
verifier time of sumcheck protocol Πlkup (adapted from efficiency of Πsum discussed in
[6]). Notations cs, ps, tp, tv and ϵeval are introduced in Section 2.4.

Proof size Soundness error Prover time Verifier time

O(la + lb
+ps(la) + ps(lb))

O
(

la+lb
|F| + ϵeval(la) + ϵeval(lb)

) O(2la + 2lb

+tp(la) + tp(lb))
O(la + lb
+tv(la) + tv(lb))

27

	Succinct Non-Subsequence Arguments
	Introduction
	Our Contributions
	Technical Overview
	Related Works

	Preliminaries
	Notations
	Succinct Non-Interactive Arguments of Knowledge (SNARKs)
	Multilinear Extension (MLE)
	Polynomial Commitment Schemes (PCSs)
	Sumcheck Protocol and Lookup Protocol from Sumcheck

	Handling (Non-)Subsequence Arguments
	Description of Succinct Non-Subsequence Arguments
	Notations
	Transformations
	Description for Non-Subsequence Arguments from Sumcheck
	Efficiency

	Acknowledgments
	References
	Proof of Lemma 1
	Additional Preliminaries
	Security of SNARKs
	Security of Polynomial Commitment Schemes
	Protocols from Sumcheck

