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Abstract. Let N = pq be the product of two balanced prime numbers
p and q. In 2002, Elkamchouchi, Elshenawy and Shaban introduced an
RSA-like cryptosystem that uses the key equation ed−k(p2−1)(q2−1) =
1, instead of the classical RSA key equation ed − k(p − 1)(q − 1) =
1. Another variant of RSA, presented in 2017 by Murru and Saettone,
uses the key equation ed − k(p2 + p + 1)(q2 + q + 1) = 1. Despite the
authors’ claims of enhanced security, both schemes remain vulnerable to
adaptations of common RSA attacks. Let n be an integer. This paper
proposes two families of RSA-like encryption schemes: one employs the
key equation ed − k(pn − 1)(qn − 1) = 1 for n > 0, while the other
uses ed − k[(pn − 1)(qn − 1)]/[(p − 1)(q − 1)] = 1 for n > 1. Note that
we remove the conventional assumption of primes having equal bit sizes.
In this scenario, we show that regardless of the choice of n, continued
fraction-based attacks can still recover the secret exponent. Additionally,
this work fills a gap in the literature by establishing an equivalent of
Wiener’s attack when the primes do not have the same bit size.

1 Introduction

In 1978, Rivest, Shamir and Adleman [45] proposed one of the most popular
and widely used cryptosystem, namely RSA. In the standard RSA encryption
scheme, we work modulo an integer N , where N is the product of two large prime
numbers p and q. Let φ(N) = (p − 1)(q − 1) denote the Euler totient function.
In order to encrypt a message m < N , we simply compute c ≡ me mod N ,
where e is generated a priori such that gcd(e, φ(N)) = 1. To decrypt, one needs
to compute m ≡ cd mod N , where d ≡ e−1 mod φ(N). Note that (N, e) are
public, while (p, q, d) are kept secret. In the standard version of RSA, also called
balanced RSA, p and q are of the same bit-size such that q < p < 2q.

A frequently used method for speeding up decryption is to first computemp ≡
cdp mod p and mq ≡ cdq mod q, where dp ≡ d mod p− 1 and dq ≡ d mod q − 1.
Then using the Chinese Remainder Theorem (CRT), we can recover m from mp

and mq. In [47], Shamir remarked that if m < q then it suffices to compute mq,
since m = mq. Asymmetric encryption schemes are usually used to encapsulate
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keys for symmetric schemes, and thus the restriction holds for most practical
cases. To further speed up the process, Shamir proposed a variant of RSA, called
the unbalanced RSA, where the bit size of q is much more smaller than that of
p. As long as q and N are large enough to prevent factorisation via the Elliptic
Curve Method (ECM) and the Number Field Sieve (NFS), the unbalanced RSA
is secure.

In 2002, Elkamchouchi, Elshenawy and Shaban [20] extend the classical RSA
scheme to the ring of Gaussian integers modulo N . A Gaussian integer modulo
N is a number of the form a + bi, where a, b ∈ ZN and i2 = −1. We denote
the set of all Gaussian integers modulo N by ZN [i] and the totient function
of N by ϕ(N) = |Z∗

N [i]| = (p2 − 1)(q2 − 1). To set up the public exponent,
we require gcd(e, ϕ(N)) = 1. The corresponding private exponent computed as
d ≡ e−1 mod ϕ(N). Encryption of a messagem ∈ ZN [i] is obtained by computing
c ≡ me mod N and decryption by m ≡ cd mod N . Note that the exponentiations
are computed in the ring ZN [i].

In 2017, Murru and Saettone introduced an RSA-like cryptosystem [36] that
involves a special type of group composed of equivalence classes of polynomials
from the GF (p3)×GF (q3), where GF stands for Galois field. Unlike the classical
RSA scheme, they select the public exponent e such that gcd(e, ψ(N)) = 1, where
ψ(N) = (p2 + p + 1)(q2 + q + 1). The decryption exponent is then computed
as d ≡ e−1 (mod ψ(N)). Encryption and decryption follow a process similar to
classical RSA, except that they employ this specific group instead of Z∗

N .
The authors of both papers [20, 36] claim that their extension offer more

security compared to the classical RSA. However, as elaborated in the following
paragraphs, these assertions prove to be inaccurate. It is important to clarify
that throughout the ensuing discussion, RSA refers to the classical RSA scheme.

Small Private Key Attacks. In order to decrease decryption time, one may prefer
to use a smaller d. Wiener showed in [54] that this is not always a good idea.
More exactly, in the case of RSA, if d < N0.25/3, then one can retrieve d from
the continued fraction expansion of e/N , and thus factor N . Using a result
developed by Coppersmith [15], Boneh and Durfee [7] improved Wiener’s bound
to N0.292. Later on, Herrmann and May [26] obtain the same bound, but using
simpler techniques. A different approach was taken by Blömer and May [5], whom
generalized Wiener’s attack. More precisely, they showed that if there exist three
integers x, y, z such that ex−yφ(N) = z, x < N0.25/3 and |z| < |exN−0.75|, then
the factorisation of N can be recovered. When an approximation of p is known
such that |p − p0| < N δ/8 and δ < 0.5, Nassr, Anwar and Bahig [38] present a
method based on continued fractions for recovering d when d < N (1−δ)/2.

In the case of Elkamchouchi et al.’s scheme, a series of small private key
attacks have been developed. Initially presented in [10], the attack made use of
continued fractions. Subsequent improvements utilizing lattice reduction tech-
niques were made in [44, 55], refining the attack’s efficiency and leading to a
bound of d < N0.585. A generalization of the attack presented in [10] to unbal-
anced prime numbers was presented in [12]. Considering the generic equation
ex − yϕ(N) = z, the authors of [11] described a method for factoring N when
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xy < 2N − 4
√
2N0.75 and |z| < (p − q)N0.25y. An extension of the previous

attack was proposed in [42].
As for the Murru-Saettone scheme, it was shown in [40, 50] that a Wiener-

type attack remains effective. Utilizing continued fractions, the authors showed
that when d < N0.25, it is possible to factor N . Building upon the Boneh-Durfee
method, Nitaj et al. [40] improved the bound to N0.5694. Further advancements
were made by Zheng, Kunihiro, and Yao in [56], achieving a tighter bound of
d < N0.585. Moreover, Nassr, Anwar, and Bahig [37] demonstrated a technique
to recover d when p0 satisfies |p− p0| < N δ and d < N (1−δ)/2, where δ < 0.5.

Multiple Private Keys Attack. Let ℓ > 0 be an integer and i ∈ [1, ℓ]. When mul-
tiple large public keys ei ≃ Nα are used with the same modulus N , Howgrave-
Graham and Seifert [27] describe an attack for RSA that recovers the corre-
sponding small private exponents di ≃ Nβ . This attack was later improved by
Sarkar and Maitra [46], Aono [2] and Takayasu and Kunihiro [51]. The best
known bound [51] is β < 1 −

√
2/(3ℓ+ 1). Remark that when ℓ = 1 we obtain

the Boneh-Durfee bound.
The multiple private keys attack against the Elkamchouchi et al. cryptosys-

tem was studied by Zheng, Kunihiro and Hu [55]. They derived a bound of
β < 2 − 2

√
2/(3ℓ+ 1), which is twice the bound obtained by Takayasu and

Kunihiro [51]. Note that, when ℓ = 1, the bound equals 0.585.
Similarly, Shi, Wang and Gu [48] studied the multiple private keys attack

against the Murru-Saettone cryptosystem. They obtained a bound of β < 3/2−
4/(3ℓ+1), which is twice the bound derived by Aono [2]. It is worth noting that
when ℓ = 1, the bound is less than 0.585, suggesting the possibility of tighter
bounds.

Partial Key Exposure Attack. In this type of attack, the most or least significant
bits of the private exponent d are known. Starting from these, an adversary can
recover the entire RSA private key using the techniques presented by Boneh,
Durfee and Frankel in [8]. The attack was later improved by Blömer and May [4],
Ernst et al. [21] and Takayasu and Kunihiro [52]. The best known bound [52] is
β < (γ + 2−

√
2− 3γ2)/2, where the attacker knows Nγ leaked bits.

Zheng, Kunihiro and Hu [55] and Shi, Wang and Gu [48] describe a partial
exposure attack that works in the case of the Elkamchouchi et al. scheme and the
Murru-Saetonne scheme. The bound they achieve is β < (3γ+7− 2

√
3γ + 7)/3.

When γ = 0, the bound is close to 0.569, and thus it remains an open problem
how to optimize it.

Small Prime Difference Attack. When the primes difference |p− q| is small and
certain conditions hold, de Weger [18] described two methods to recover d, one
based on continued fractions and one on lattice reduction. These methods were
further extended by Maitra and Sakar [34, 35] to |ρq − p|, where 1 ≤ ρ ≤ 2.
Lastly, Chen, Hsueh and Lin generalize them further to |ρq− ϵp|, where ρ and ϵ
have certain properties. The continued fraction method is additionally improved
by Ariffin et al. [30].
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The small prime difference attack against the Elkamchouchi et al. public key
encryption scheme was studied in [14]. Note that when the common condition
|p−q| < N0.5 holds, their bound leads to the small private key bound d < N0.585.

The de Weger attack was adapted to the Murru-Saetonne public key encryp-
tion scheme by Nitaj et al. [41], Nassr, Anwar and Bahig [37] and Shi, Wang
and Gu [48]. The best bounds for the continued fraction and lattice reduction
methods are found in [41]. The Maitra-Sakar extension was studied only in [37].

1.1 Our Contributions

We first remark that the rings Zp = Zp[t]/(t+1) = GF (p) and Zp[i] = Zp[t]/(t2+
1) = GF (p2), where GF stands for Galois field. Therefore, we can reinterpret the
RSA scheme as working in the GF (p)×GF (q) group instead of ZN . Additionally,
the Elkamchouchi et al. scheme is an extension to GF (p2)×GF (q2) instead of
ZN [i]. This naturally leads to a generalization of RSA to GF (pn) × GF (qn),
where n ≥ 1. In this paper we introduce exactly this extension. Moreover, we
generalize the Murru-Saetonne scheme to equivalence classes of polynomials from
GF (pn) ×GF (qn), where n > 1. We wanted to see if only for n = 1 and n = 2
(RSA and Elkamchouchi et al.) or n = 3 (Murru-Saetonne) the common attacks
presented in the introduction work or this is something that happens in general.
In this study we present several Wiener-type attacks that work for any n. More
precisely, we prove that for any p > q, when d < N0.25n · (q/p)0.5n · 2−0.5n

or d < N0.25 · (q/p)0.25(n−1), respectively we can recover the secret exponent.
Therefore, no matter how we instantiate the generalized version, a small private
key attack will always succeed. In the case of the first family3, we construct
a probabilistic factorization algorithm once the group order is determined. For
completeness, we also generalized Wiener’s attack to unbalanced prime numbers.

Previous work. The generalizations of Elkamchouchi et al. and Murru-Saetonne
encryption schemes, along with their corresponding attacks, were initially pre-
sented in [17] and [16], respectively. It is important to note that these versions
specifically addressed the case of balanced prime numbers and did not consider
the unbalanced scenario.

Structure of the Paper. We introduce in Section 2 notations and definitions used
throughout the paper. The necessary group theory is developed in Section 3.
Inspired by Rivest et al., Elkamchouchi et al. and Murru and Saettone’s work
[20, 36, 45], in Section 4 we construct two families of RSA-like cryptosystems.
After proving several useful lemmas in Sections 5.1 and 6.1, we extend Wiener’s
small private key attack in Sections 5.2 and 6.2. Discussions and conclusions are
presented in Sections 7 and 8. Concrete instantiations of our classes of attacks are
provided in Appendices A and B. For completeness, in Appendix C we generalize
Wiener’s attack to the unbalanced RSA case, while in Appendix D we provide
a concrete example.
3 that generalizes the RSA and Elkamchouchi et al. schemes
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2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. The notation
|S| denotes the cardinality of a set S. When n is an integer, |n| denotes the size
of n in bits. The set of integers {0, . . . , a} is further denoted by [0, a]. We use ≃
to indicate that two values are approximately equal.

The Jacobi symbol of an integer a modulo an integer N is represented by
JN (a). J+

N and J−
N denote the sets of integers modulo n with Jacobi symbol

1, respectively −1. Throughout the paper, we let QRN be the set of quadratic
residues modulo N .

2.1 Continued fraction

For any real number ζ there exist an unique sequence (an)n of integers such that

ζ = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

,

where ak > 0 for any k ≥ 1. This sequence represents the continued fraction
expansion of ζ and is denoted by ζ = [a0, a1, a2, . . .]. Remark that ζ is a rational
number if and only if its corresponding representation as a continued fraction is
finite.

For any real number ζ = [a0, a1, a2, . . .], the sequence of rational numbers
(An)n, obtained by truncating this continued fraction, Ak = [a0, a1, a2, . . . , ak],
is called the convergents sequence of ζ.

According to [25], the following bound allows us to check if a rational number
u/v is a convergent of ζ.

Theorem 1. Let ζ = [a0, a1, a2, . . .] be a positive real number. If u, v are positive
integers such that gcd(u, v) = 1 and∣∣∣ζ − u

v

∣∣∣ < 1

2v2
,

then u/v is a convergent of [a0, a1, a2, . . .].

2.2 Parameter Selection

In an unbalanced RSA-type encryption scheme, in order to decrease decryption
time we lower the bit size of q (denoted by λq) while preserving the bit size
of N (denoted by λN ). Therefore, we have λN = λp + λq, where λp = |p|
and λq ≤ λp. Remark that when λp = λq we obtain the balanced RSA-type
encryption schemes.

The fastest currently known method for factoring composite numbers is the
NFS algorithm [33]. The expected running time of the NFS depends on the size
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of the modulus N and not on the size of its factors. More precisely, the expected
running time is approximately

L[N ] = e1.923(logN)1/3(log logN)2/3 .

In [32, 33], the authors use the computational effort needed to factor a 512-bit
modulus to extrapolate the running time required to factor a modulus of size
λN . Therefore, a λN -bit modulus offers a security equivalent to a block cipher
of d-bit security if

L[2λN ] ≃ 50 · 2d−56 · L[2512]. (1)

Therefore, if we select a modulus size that offers protection against the NFS,
decreasing the size of one of the factors does not increase the success probability
of factoring N using the NFS. Unfortunately, lowering the bit size of q below
a certain threshold can make the resulting encryption scheme vulnerable to the
ECM algorithm [29]. Compared to the NFS, the ECM has the running time
determined by the size of the smallest factor. More precisely, the running time
of the ECM is

E[N, q] = (log2N)2e
√
2 log q log log q.

Similarly to the NFS, Lenstra [31] extrapolates that the equivalent security is

E[2λN , 2λq ] ≥ 80 · 2d−56 · E[2768, 2167]. (2)

Using Equations (1) and (2) we can compute the following relation

E[2λN , 2λq ] ≥ 80 · 2log2(L[2
λN ]/(50·L[2512])) · E[2768, 2167]. (3)

Using known historical factoring records, Brent develops a different model [9]
to predict the security against the NFS and the ECM. More specifically, Brent
provides an equation4 that links the number of digits DN and Dq of the modulus
and, respectively, the smallest prime factor to the year Y when is possible to
factor the modulus using the NFS or the ECM. We further provide the updated
equations [53] for the NFS

D
1/3
N =

Y − 1926

13.97
or equivalently Y = 13.97 ·D1/3

N + 1926 (4)

and for the ECM

D1/2
q =

Y − 1939

8.207
or equivalently Y = 8.207 ·D1/2

q + 1939. (5)

Using Equations (4) and (5) we obtain the following relation

D1/2
q =

13.97 ·D1/3
N − 13

8.207
. (6)

4 derived using the least-squares fit
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According to NIST [3], if we choose λN = 3072/7680/15360 we can guarantee
protection against the NFS at least until 2030. We chose to use NIST’s key
lengths since the ones provided in [32,33] are criticized as being too conservative
[49]. Another argument for using the key sizes suggested by NIST is that these
are the ones used by the industry. Therefore, using NIST’s recommendations,
and Equations (3) and (6) we can compute the size of the smallest prime that
offers the same level of protection against the ECM. The results are presented
in Table 1.

Modulus key size 3072 7680 15360

Lenstra model 800 1617 2761

Regression model 749 1457 2385

Table 1. The equivalent sizes of the smallest prime number

The following lemma provides some useful bounds for the larges prime factor.

Lemma 1. Let p, q be two primes such that |p| = λp and |q| = λq. If λp = λq+λ,
then

2λ−1q < p < 2λq or 2λq < p < 2λ+1q.

Proof. According to the statement we have the following inequalities

2λp < p < 2λp+1 and 2λq < q < 2λq+1.

From the previous relations, we obtain the following

p < 2λp+1 = 2λq · 2λ+1 < q · 2λ+1

p > 2λp = 2λq+1 · 2λ−1 > q · 2λ−1,

as desired. ⊓⊔

Note that when λp = λq, according to Lemma 1 we obtain that q < p < 2q.
To be consistent with the balanced case, we further assume, without loss of
generality, that µq < p < 2µq. According to Lemma 1 we have either µ = 2λ−1

or µ = 2λ.

3 Useful Quotient Groups

In the first part of this section we will provide the mathematical theory needed
to generalize Rivest, Shamir and Adleman, and the Elkamchouchi, Elshenawy
and Shaban encryption schemes. Therefore, let (F,+, ·) be a field and tn − r an
irreducible polynomial in F[t]. Then

An = F[t]/(tn − r) = {a0 + a1t+ . . .+ an−1t
n−1 | a0, a1, . . . , an−1 ∈ F}
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is the corresponding quotient field. Let a(t), b(t) ∈ An. Remark that the quotient
field induces a natural product

a(t) ◦ b(t) =

(
n−1∑
i=0

ait
i

)
◦

n−1∑
j=0

bjt
j


=

2n−2∑
i=0

 i∑
j=0

ajbi−j

 ti

=

n−1∑
i=0

 i∑
j=0

ajbi−j

 ti + r

2n−2∑
i=n

 i∑
j=0

ajbi−j

 ti−n

=

n−2∑
i=0

 i∑
j=0

ajbi−j + r

i+n∑
j=0

ajbi−j+n

 ti +

n−1∑
j=0

ajbn−1−jt
n−1.

In order to generalize the Murru and Saettone encryption scheme, we need
to introduce another quotient group Bn = A∗

n/F∗. The elements from Bn are
equivalence classes of elements from A∗

n. More precisely, we have

[a0 + . . .+ an−1t
n−1] = {γa0 + . . .+ γan−1t

n−1 | γ ∈ F∗, a0, . . . , an−1 ∈ F},

where [a0 + . . .+ an−1t
n−1] ∈ Bn.

Using Lagrange’s theorem [23], we obtain the following result about the car-
dinality of Bn.

Lemma 2. The cardinality of Bn is ψn(F) = (|F|n − 1)/(|F| − 1).

For completeness, we further provide the equivalence classes from Bn. Let
1F∗ be the unity of F∗. When a0 ̸= 0 and a1 = . . . = an−1 = 0, we obtain that

[a0 + . . .+ an−1t
n−1] = [a0] = [a0a

−1
0 ] = [1F∗ ].

If a1 ̸= 0 and a2 = . . . = an−1 = 0, then

[a0 + . . .+ an−1t
n−1] = [a0 + a1t] = [a0a

−1
1 + t].

From the previous two examples, we can deduce the general formula. For any
k ∈ [0, n− 1], if ak ̸= 0 and ak+1 = . . . = an−1 = 0, then

[a0 + . . .+ an−1t
n−1] = [a0 + . . .+ akt

k]

= [a0a
−1
k + a1a

−1
k t+ . . .+ ak−1a

−1
k tk−1 + tk].

From the equivalence classes we can infer the product induced by Bn, namely

[a(t)]⊙ [b(t)] = [a(t) ◦ b(t)] = [c(t)] = [α−1c(t)],

where α is the leading coefficient of c(t).
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4 RSA-like Unbalanced Encryption Schemes

4.1 Generalized Elkamchouchi et al. Unbalanced Scheme

Let p be a prime number. When we instantiate F = Zp, we have that An =
GF (pn) is the Galois field of order pn. Moreover, A∗

n is a cyclic group of order
φn(Zp) = φn(p) = pn − 1. Remark that an analogous of Fermat’s little theorem
holds

a(t)φn(p) ≡ 1,

where a(t) ∈ A∗
n and the power is evaluated by ◦-multiplying a(t) by itself

φn(p)− 1 times. Therefore, we can build an encryption scheme that is similar to
RSA using the ◦ as the product.

Setup(λp, λq): Let n > 1 be an integer. Randomly generate two distinct large
prime numbers p, q such that |p| = λp, |q| = λq and compute their product
N = pq. Select r ∈ ZN such that the polynomial tn− r is irreducible in Zp[t]
and Zq[t]. Let

φn(ZN ) = φn(N) = (pn − 1) · (qn − 1).

Choose an integer e such that gcd(e, φn(N)) = 1 and compute d such that
ed ≡ 1 mod φn(N). Output the public key pk = (n,N, r, e). The correspond-
ing secret key is sk = (p, q, d).

Encrypt(pk,m): To encrypt a message m = (m0, . . . ,mn−1) ∈ ZnN we first
construct the polynomial m(t) = m0 + . . . +mn−1t

n−1 ∈ A∗
n and then we

compute c(t) ≡ m(t)e. Output the ciphertext c(t).
Decrypt(sk, c(t)): To recover the message, simply compute m(t) ≡ c(t)d and

reassemble m = (m0, . . . ,mn−1).

Remark 1. When n = 1 we get the RSA scheme [45]. Also, when n = 2 and
λp = λq, we obtain the Elkamchouchi et al. cryptosystem [20].

Remark 2. When m1 = m2 = . . . = mn−1 = 0, encryption is reduced to c(t) =
me

0 mod N . Therefore, everything is computed in ZN , as in the classical RSA
scheme, due to all other message components being zero.

4.2 Generalized Murru and Saettone Unbalanced Scheme

In this case, we use the group Bn instead of An. Therefore, when we instantiate
F = Zp, we obtain that Bn is a cyclic group of order ψn(Zp) = ψn(p) = (pn −
1)/(p − 1). Note that an analogue of Fermat’s little theorem also exists in this
case, namely

[a(t)]ψn(p) ≡ [1],

where [a(t)] ∈ Bn and the power is evaluated by ⊙-multiplying [a(t)] by itself
ψn(p) − 1 times. Hence, we can build an encryption scheme that is similar to
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RSA using the ⊙ as the product. Note that the equivalence class of [0] contains
all the polynomials that are either divisible by tn− r or have all their coefficient
divisible by p.

Setup(λp, λq): Let n > 1 be an integer. Randomly generate two distinct large
prime numbers p, q such that |p| = λp, |q| = λq and compute their product
N = pq. Select r such that the polynomial tn− r is irreducible in ZN [t]. Let

ψn(ZN ) = ψn(N) =
pn − 1

p− 1
· q

n − 1

q − 1
.

Choose an integer e such that gcd(e, ψn(N)) = 1 and compute d such that
ed ≡ 1 mod ψn(N). Output the public key pk = (n,N, r, e). The correspond-
ing secret key is sk = (p, q, d).

Encrypt(pk,m): To encrypt a message m = (m0, . . . ,mn−2) ∈ Zn−1
N we first

construct the polynomial m(t) = m0+ . . .+mn−2t
n−2+ tn−1 ∈ Bn and then

we compute c(t) ≡ [m(t)]e. Output the ciphertext c(t).
Decrypt(sk, c(t)): To recover the message, simply compute m(t) ≡ [c(t)]d and

reassemble m = (m0, . . . ,mn−2).

Remark 3. When λp = λq and n = 3, we obtain the Murru and Saettone cryp-
tosystem [36].

Remark 4. The group Bn has been used to define ElGamal-based cryptosystems
as well. For more details, we refer the reader to [1] and [19] for the cases n = 2
and n = 3, respectively.

4.3 Optimisations

In this section, we present a possible optimisation for the generalized Murru and
Saettone scheme. We focus solely on this family, as the underlying group is more
intricate. A similar optimisation is also feasible for the generalized Elkamchouchi
et al. scheme. The main differences lie in changing the equivalence classes, and
we work with φn instead of ψn.

Therefore, to efficiently decrypt the message we first have to computemp(t) ≡
[c(t)]dp mod p and mq(t) ≡ [c(t)]dq mod q, where dp ≡ d mod ψn(p) and dq ≡
d mod ψn(q). Then we can use the CRT to recover m from mp and mq. If m ∈
Zn−1
N , then this procedure makes sense only when λp = λq. In the practical

case of key wrapping, we have that the coefficients of m(t) are strictly smaller
than q (i.e mi ∈ [0, 2λk ], where λk < λq), and thus is sufficient only to compute
mq(t) ≡ [c(t)]dq mod q. Also, in this case, using the equivalent sizes of q provided
in Table 1, we obtain a significant speed up for decryption compared to the
balanced case.

Note that we must always set parameter λk in the Setup phase and make
it public. Also, in the Decrypt phase, after recovering m we must always check
that for all i we have mi ∈ [0, 2λk ]. If this is not true, then we must discard the
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message. In the following paragraphs we will provide the technical details for
setting these restrictions.

If we do not check whether mi ∈ [0, 2λk ], then the following chosen ciphertext
attack is possible. The attacker chooses a message m′ such that m′

i > q and he
encrypts it. Let c′(t) denote the corresponding ciphertext. When the recipient
decrypts c′(t) obtains [m(t)] ≡ [m′(t)] mod q. Once the attacker has access5 to
m(t) then he computes gcd(m′

0 −m0, N) and obtains the factorisation of N . To
check that he truly obtains q, we observe that [m(t)] ≡ [m′(t)] mod q leads to
[m(t)−m′(t)] ≡ 0 mod q. Then either tn− r|m(t)−m′(t) or q|mi−m′

i for all i.
Since both messages have degree less than n, we have that q|mi −m′

i for all i.
Therefore, we obtain

gcd(m′
0 −m0, N) = gcd(aq, pq) = q,

as desired.
If we only check internally that mi < q then the attacker can probe6 the

recipient and reveal q. In order to do that he sets mi = 0 for i > 0 and sets
m0 randomly. If the message is discarded then the attacker knows that q < m0,
otherwise m0 < q. Once the attacker knows a lower and an upper bound of q he
can do a binary search and locate q.
Remark 5. Attacks similar to those presented above are described in [24] for the
unbalanced RSA and in [28] for the Okamoto-Uchiyama scheme.

5 Attacking the Generalized Elkamchouchi et al.
Unbalanced Scheme

5.1 Useful Lemmas
In this section we provide a few useful properties of φn(N). Before starting our
analysis, we first note that plugging q = N/p in φn(N) leads to the following
function

fn(p) = Nn − pn −
(
N

p

)n
+ 1,

with p as a variable. The next lemma tells us that, under certain conditions, fn
is a strictly decreasing function.
Proposition 1. Let N be a positive integer. Then for any integers n > 1 and√
N ≤ x < N , we have that the function

fn(x) = Nn − xn −
(
N

x

)n
+ 1,

is strictly decreasing with x.
5 e.g. the attacker has access to the recipient’s recycle bin or the message is simply

returned to the attacker by the recipient since it is meaningless
6 e.g. if the scheme is used for session key exchange, the attacker simply checks if the

session is successful or not
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Proof. Computing the derivative of f we have that

f ′(x) = −n
(
xn−1 − 1

xn+1
·Nn

)
.

Using x ≥
√
N we obtain that

x2n > Nn ⇔ xn−1 >
1

xn+1
·Nn ⇔ f ′(x) < 0,

and therefore we have f is strictly decreasing function.
⊓⊔

Using the following lemma, we will compute a lower and upper bound for
φn(N).

Lemma 3. Let N = pq be the product of two unknown primes with µq < p <
2µq. Then the following property holds

√
µN < p <

√
2µN and

√
2Nµ

2µ
< q <

√
Nµ

µ
.

Proof. Multiplying µq < p < 2µq with p we obtain µN < p2 < 2µN . This
is equivalent with

√
µN < p <

√
2µN . Since q = N/p, the previous relation

becomes
√
N/

√
2µ < q <

√
N/

√
µ, and thus we conclude our proof. ⊓⊔

When µ = 1, the following result proven in [39] becomes a special case of
Lemma 3.

Corollary 1. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

√
2

2

√
N < q <

√
N < p <

√
2
√
N.

Corollary 2. Let N = pq be the product of two unknown primes with µq < p <
2µq. Then the following property holds

Nn − (
√
µN)n −

(√
µN

µ

)n
+ 1 > φn(N) > Nn − (

√
2µN)n −

(√
2µN

2µ

)n
+ 1.

Proof. By Lemma 3 we have that√
µN < p <

√
2µN,

which, according to Proposition 1, leads to

fn(
√
µN) > fn(p) > fn(

√
2µN).

This is equivalent to our desired inequality. ⊓⊔
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For µ = 1, when n = 1 and n = 2, the following results proven in [13]
and [10], respectively become special cases of Corollary 2.

Corollary 3. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

(
√
N − 1)2 > φ1(N) > N + 1− 3√

2

√
N.

Corollary 4. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

(N − 1)2 > φ2(N) > N2 + 1− 5

2
N.

We can use Corollary 2 to find a useful approximation of φn. This result will
be useful when devising the attack against the generalized RSA scheme.

Proposition 2. Let N = pq be the product of two unknown primes with µq <
p < 2µq. We define

φn,0(N) =
1

2
·
(
Nn − (

√
µN)n −

(√
µN

µ

)n
+ 1

)
+

1

2
·
(
Nn − (

√
2µN)n −

(√
2µN

2µ

)n
+ 1

)
.

Then the following holds

|φn(N)− φn,0(N)| < ∆n

2

√
N
n
,

where

∆E
n =

µn(2n −
√
2
n
)−

√
2
n
+ 1

√
2µ

n .

Proof. According to Corollary 2, φn,0(N) is the mean value of the lower and
upper bound. The following property holds

|φn(N)− φn,0(N)| ≤ 1

2

(
Nn − (

√
µN)n −

(√
µN

µ

)n
+ 1

−Nn + (
√
2µN)n +

(√
2µN

2µ

)n
− 1

)
=

1

2

√
N
n
(
−√

µ
n − 1

√
µn

+
√
2µ

n
+

1
√
2µ

n

)
=
∆E
n

2

√
N
n
,

as desired.
⊓⊔
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For µ = 1, when n = 1 and n = 2, the following properties presented in [13]
and [10], respectively become special cases of Proposition 2.

Corollary 5. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following holds

|φ1(N)− φ1,0(N)| < 3− 2
√
2

2
√
2

√
N.

Corollary 6. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following holds

|φ2(N)− φ2,0(N)| < 1

4
N.

5.2 Application of Continued Fractions

We further provide an upper bound for selecting d such that we can use the
continued fraction algorithm to recover d without knowing the factorisation of
the modulus N .

Theorem 2. Let N = pq be the product of two unknown primes with µq < p <
2µq. If e < φn(N) satisfies ed− kφn(N) = 1 with

d <

√
Nn(

√
N
n − δEn )

e∆E
n

, (7)

where

δEn =
4
√
2µ

n

µn(2n −
√
2
n
)−

√
2
n
+ 1

+
2[(2µ)n + 1]

√
2µ

n

then we can recover d in polynomial time.

Proof. Since ed− kφn(N) = 1, we have that∣∣∣∣kd − e

φn,0(N)

∣∣∣∣ ≤ e

∣∣∣∣ 1

φn,0(N)
− 1

φn(N)

∣∣∣∣+ ∣∣∣∣ e

φn(N)
− k

d

∣∣∣∣
= e

|φn(N)− φn,0(N)|
φn,0(N)φn(N)

+
1

φn(N)d
.
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Let εn = Nn −
√
N
n
((2µ)n + 1)/(

√
2µ)n + 1. Using d = (kφn(N) + 1)/e and

Proposition 2 we obtain∣∣∣∣kd − e

φn,0(N)

∣∣∣∣ ≤ ∆E
n

2 e
√
N
n

φn,0(N)φn(N)
+

e

φn(N)(kφn(N) + 1)

≤ e
√
N
n
(µn(2n −

√
2
n
)−

√
2
n
+ 1)

2
√
2µ

n
ε2n

+
e

εn(kεn + 1)

≤ e
√
N
n
(µn(2n −

√
2
n
)−

√
2
n
+ 1)

2
√
2µ

n
ε2n

+
e

ε2n

=
e
[√
N
n
(µn(2n −

√
2
n
)−

√
2
n
+ 1) + 2

√
2µ

n]
2
√
2µ

n
ε2n

≤
e
[√
N
n
(µn(2n −

√
2
n
)−

√
2
n
+ 1) + 2

√
2µ

n]
2
√
2µ

n
(Nn −

√
N
n (2µ)n+1√

2µn )2
.

Note that[√
N
n
(µn(2n −

√
2
n
)−

√
2
n
+ 1) + 2

√
2µ

n]
2
√
2µ

n
(Nn −

√
N
n (2µ)n+1√

2µn )2

=
(µn(2n −

√
2
n
)−

√
2
n
+ 1)

[√
N
n
+ 2

√
2µn

µn(2n−
√
2
n
)−

√
2
n
+1

]
2
√
2µ

n
Nn(

√
N
n − (2µ)n+1√

2µn )2

≤ ∆E
n

2Nn(
√
N
n − δEn )

which leads to ∣∣∣∣kd − e

φn,0(N)

∣∣∣∣ ≤ e∆E
n

2Nn(
√
N
n − δEn )

≤ 1

2d2
.

Using Theorem 1 we obtain that k/d is a convergent of the continued fraction
expansion of e/φn,0(N). Therefore, d can be recovered in polynomial time.

⊓⊔

In the case of unbalanced RSA (i.e. n = 1), when e is large enough, Theo-
rem 2 is simplified into the following corollary. We achieve a tighter bound in
Appendix C, where we directly generalized Wiener’s attack [6, 54].

Corollary 7. Let N = pq be the product of two unknown primes with µq < p <
2µq. If we approximate e ≃ Nn then Theorem 2 is equivalent to

d <
(µN)0.25√

µ(
√
2− 1)− 1

.
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Corollary 8. Let α < 1.5n and N = pq be the product of two unknown primes
with µq < p < 2µq. If we approximate e ≃ Nα, N ≃ 2λN and µ ≃ 2λ, then
Equation (7) becomes

d <
20.5(n−α)λN

√
20.5nλN − δEn√
∆E
n

<
20.5(1.5n−α)λN√

∆E
n

or equivalently

log2(d) < 0.5(1.5n− α)λN − log2(
√
∆E
n ) ≃ 0.5(1.5n− α)λN − 0.5n(λ+ 1).

Proof. From the definition of ∆E
n we obtain that

∆E
n =

µn(2n −
√
2
n
)−

√
2
n
+ 1

√
2µ

n ≃ 2nλ(2n −
√
2
n
)−

√
2
n
+ 1

2n(λ+1)/2
≃ 2n(λ+1)/2,

as desired. ⊓⊔

When µ = 1, the following properties presented in [13] (n = 1) and those
in [10] (n = 2) become special cases of Corollary 8. Note that when n = α = 1
we obtain roughly the same margin as Wiener [6, 54] obtained for the classical
RSA.

Corollary 9. Let α < 1.5 and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e ≃ Nα and N ≃ 2λN then Equation (7) is
equivalent to

log2(d) < 0.5(1.5− α)λN − 0.25 + 1.27 ≃ 0.5(1.5− α)λN .

Corollary 10. Let α < 3 and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e ≃ Nα and N ≃ 2λN then Equation (7) is
equivalent to

log2(d) < 0.5(3− α)λN − 0.5 ≃ 0.5(3− α)λN .

Corollary 11. Let N = pq be the product of two unknown primes with µq < p <
2µq. If we approximate e ≃ Nn and N ≃ 2λN then Equation (7) is equivalent to

log2(d) < 0.25nλN − log2(
√
∆E
n ) ≃ 0.25nλN − 0.5n(λ+ 1).

We further provide a theorem that allows us to devise a probabilistic algo-
rithm for factoring the modulus N once φn(N) is known.

Theorem 3. Let N = pq be an RSA-modulus. If φn(N) = (pn − 1)(qn − 1) is
known, then one can find primes p and q.
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Proof. Consider a ∈ J−
N and b ∈ J+

N \ QRN . Without loss of generality we can
assume that Jp(a) = 1 and Jq(a) = −1, which is equivalent to

a
p−1
2 = 1 mod p and a

q−1
2 = −1 mod q.

Remark that for any odd t ∈ Z, the properties

a
t(p−1)

2 = 1 mod p and a
t(q−1)

2 = −1 mod q

hold. Equivalent equations can be obtained for b.
Using Remark 2 and noticing that (q − 1)/2 divides (pn − 1)(qn − 1)/4, we

consider u1, u2, t1, t2, v ∈ N such that

u1 · 2v ·
p− 1

2t1
= u2 · 2v ·

q − 1

2t2
=

(pn − 1)(qn − 1)

4
,

where u1, u2, (p− 1)/2t1 , (q − 1)/2t2 are odd numbers. Thus, naturally we get

a
u2(q−1)

2 = −1 mod q ⇔ a
u2(q−1)

2 + 1 = 0 mod q,

b
u1(p−1)

2 = −1 mod p⇔ b
u1(p−1)

2 + 1 = 0 mod p,

b
u2(q−1)

2 = −1 mod q ⇔ b
u2(q−1)

2 + 1 = 0 mod q.

We want to prove that either

a
u2(q−1)

2 + 1 ̸= 0 (mod p) or b
u1(p−1)

2 + 1 ̸= 0 (mod q).

We further consider the following cases
1. If t1 = t2, then

a
u2(q−1)

2 ≡ a
u1(p−1)

2 ≡ 1 (mod p),

which implies

a
v(q−1)

2 + 1 ≡ 2 ̸≡ 0 (mod p).

2. Note that

au2·(q−1)/2t2 = au1·(p−1)/2t1 . (8)

If t1 < t2, then raising both sides of Equation (8) to 2t2−1, we get

a
u2(q−1)

2 ≡ au1(p−1)·2t2−t1−1

≡
(
a

u1(p−1)
2

)2t2−t1

≡ 1 (mod p).

3. Note that

bu1· p−1

2t1 = bu2· q−1

2t2 . (9)

If t1 > t2, then raising both sides of Equation (9) to 2t1−1, we get

b
u1(p−1)

2 ≡ bu2(q−1)·2t1−t2−1

≡
(
b

u2(q−1)
2

)2t1−t2

≡ 1 (mod q).
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Algorithm 1: Factoring the modulus when the order of the group is
known

Input: A composite number N and φn(N).
Output: The prime factors p and q.

1 while 1 ̸= 0 do
2 a

$←− J−
N , b $←− J+

N

3 while φ mod 2 = 0 do
4 φ← φ/2
5 y1 ← aφ + 1 mod N , y2 ← bφ + 1 mod N
6 d1 ← gcd(y1, N), d2 ← gcd(y2, N)
7 if y1 ̸= 0 and d1 ̸= 1 then
8 return d1, N/d1
9 if y2 ̸= 0 and d2 ̸= 1 then

10 return d2, N/d2

Taking into account the previous arguments, we conclude that by computing
either

y = a
u2(q−1)

2 + 1 (mod N) or z = b
u1(p−1)

2 + 1 (mod N)

and evaluating gcd(y,N) or gcd(z,N), respectively allows us to determine one
of the factors q or p. ⊓⊔

Remark 6. Before stating our proposed factoring algorithm, some remarks are
in place

1. In the third case of the previous proof, one could consider an element x ∈ ZN
satisfying Jp(x) = −1 and Jq(x) = 1, and the proof would proceed similarly
to the second case.

2. Without knowing the factorisation of N , due to Quadratic Residuosity as-
sumption7, b must be chosen from J+

N . Then, with probability of 1/2 we have
that b ∈ J+

N \QRN .
3. An equivalent proof can be obtained by considering numbers of the form
y = a

u2(q−1)
2 − 1.

Using Theorem 2 we can compute the order φn(N) = (ed − 1)/k. Based on
Theorem 3, in Algorithm 1 we provide a probabilistic algorithm for computing
the factorisation of N for any n ≥ 1. Note that for n = 3 and n = 4, we provide
in Appendix A a deterministic algorithm that solves a cubic or biquadratic
equation, respectively. For n = 1 and n = 2 similar methods are presented
in [6, 10,13]. Therefore, for these cases we avoid doing exponentiations8.
7 This assumption stated that we cannot decide if x ∈ QRN or J+

N \ QRN without
knowing the factorisation of N.

8 that are computationally expensive
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It is know that |J−
N | = |ZN |/2 and |J+

N \QRN | = |QRN | = |ZN |/4. When b ∈
J+
N \QRN , Algorithm 1 always returns the factorisation of N . When b ∈ QRN ,

the factorisation of N can surely be found if t1 ≤ t2. Thus, the probability of
obtaining the factorisation of N for a single pair (a, b) is greater than 1/2.

Remark 7. In [43], the author describes a public key encryption scheme based on
Pell’s equation, choosing key exponents such that ed ≡ 1 mod lcm(p− 1, q − 1).
Using our attack with n = 1 we recover the factors of N , thereby we also break
the scheme presented in [43].

6 Attacking the Generalized Murru and Saettone
Unbalanced Scheme

6.1 Useful Lemmas

In this section we provide a few useful properties of ψn(N). Before starting our
analysis, we first note that plugging q = N/p in ψn(N) leads to the following
function

fn(p) =
pn − 1

p− 1
·

(
N
p

)n
− 1

N
p − 1

,

with p as a variable. The next lemma tells us that, under certain conditions, fn
is a strictly increasing function.

Proposition 3. Let N be a positive integer. Then for any integers n > 1 and√
N ≤ x < N , we have that the function

fn(x) =
xn − 1

x− 1
·
(
N
x

)n − 1
N
x − 1

,

is strictly increasing with x.

Proof. Before starting our proof, we notice that the function fn can be expanded
into fn(x) = gn(x) · hn(x), where

gn(x) = 1 + x+ x2 + . . .+ xn−1

and

hn(x) = 1 +
N

x
+

(
N

x

)2

+ . . .+

(
N

x

)n−1

.

We will further prove our statement using induction with respect to n. When
n = 2, we have that

f2(x) = (1 + x)

(
1 +

N

x

)
= 1 +

N

x
+ x+N.
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Using x ≥
√
N we obtain that

f ′2(x) = 1− N

x2
≥ 0 ⇔ 1 ≥ N

x2
⇔ x2 ≥ N,

and therefore we have that f2 is strictly increasing.
For the induction step we assume that fk is strictly increasing and we will

show that fk+1 is also strictly increasing. Hence, we have that

fk+1(x) = gk+1(x) · hk+1(x)

= gk(x) · hk(x) + gk(x) ·
(
N

x

)k
+ xk · hk(x) +Nk.

Considering the induction hypothesis, it is enough to prove that the function

sk(x) = gk(x) ·
(
N

x

)k
+ xk · hk(x)

is strictly increasing. Therefore, we have that

sk(x) =

(
Nk · 1

xk
+ xk

)
+

(
Nk · 1

xk−1
+N · xk−1

)
+

(
Nk · 1

xk−2
+N2 · xk−2

)
+ . . .+

(
Nk · 1

x
+Nk−1 · x

)
= sk,0(x) + sk,1(x) + sk,2(x) + . . .+ sk,k−1(x),

where we considered

sk,i(x) = Nk · 1

xk−i
+N i · xk−i.

Bear in mind that

s′k,i(x) = Nk · −(k − i)

xk−i+1
+N i · (k − i) · xk−i−1

= N i(k − i)

(
xk−i−1 −Nk−i · 1

xk−i+1

)
.

For any i ∈ [0, k − 1] we have that sk,i is strictly increasing since

s′k,i(x) ≥ 0 ⇔ xk−i−1 ≥ Nk−i · 1

xk−i+1
⇔ x2(k−i) ≥ Nk−i,

where for the last inequality we used x ≥
√
N . Therefore, sk is strictly increasing,

which implies that fk+1 is strictly increasing.
⊓⊔

Using Lemma 3 from Section 5.1, we further compute a lower and upper
bound for ψn(N).
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Corollary 12. Let N = pq be the product of two unknown primes with µq <
p < 2µq. Then the following property holds

(
√
µN)n − 1√
µN − 1

·

(√
µN
µ

)n
− 1

√
µN
µ − 1

< ψn(N) <
(
√
2µN)n − 1√
2µN − 1

·

(√
2µN
2µ

)n
− 1

√
2µN
2µ − 1

.

Proof. By Lemma 3 we have that√
µN < p <

√
2µN,

which, according to Proposition 3, leads to

fn(
√
µN) < fn(p) < fn(

√
2µN).

This is equivalent to our desired inequality. ⊓⊔

When n = 3 and µ = 1, the following result proven in [40] becomes a special
case of Corollary 12.

Corollary 13. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following property holds

(
N +

√
N + 1

)2
< ψ3(N) <

(
N +

3

4

√
2N + 1

)2

− 3

8
N.

We can use Corollary 12 to find an useful approximation of ψn. This result
will be useful when devising the attack against the generalized Murru-Saettone
scheme.

Proposition 4. Let N = pq be the product of two unknown primes with µq <
p < 2µq. We define

ψn,0(N) =
1

2
· (

√
µN)n − 1√
µN − 1

·

(√
µN
µ

)n
− 1

√
µN
µ − 1

+
1

2
· (

√
2µN)n − 1√
2µN − 1

·

(√
2µN
2µ

)n
− 1

√
2µN
2µ − 1

,

Then the following holds

|ψn(N)− ψn,0(N)| < ∆M
n

2
Nn−2

√
N,

where

∆M
n =

(
√
2µ)n − 1√
2µ− 1

·

(√
2µ
2µ

)n
− 1

√
2µ
2µ − 1

−
(
√
µ)n − 1

√
µ− 1

·

(√
µ

µ

)n
− 1

√
µ

µ − 1
.
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Proof. According to Corollary 12, ψn,0(N) is the mean value of the lower and
upper bound. The following property holds

|ψn(N)− ψn,0(N)| ≤ 1

2

 (√2µN)n − 1√
2µN − 1

·

(√
2µN
2µ

)n
− 1

√
2µN
2µ
− 1

− (
√
µN)n − 1√
µN − 1

·

(√
µN
µ

)n
− 1

√
µN
µ
− 1


=

1

2

[
n−1∑
i,j=0

(
√

2µN)i
(√

2µN

2µ

)j

−
n−1∑
i,j=0

(
√
µN)i

(√
µN

µ

)j
]

=
1

2

[
n−1∑
i,j=0

√
N

i√
N

j

(√
2µ

i+j

2jµj
−
√
µi+j

µj

)]

=
1

2

 n−1∑
i,j=0
i ̸=j

√
N

i√
N

j
√
µi+j

µj

(√
2
i+j

2j
− 1

) .
Note that in the last expression all the coefficients are non-zero and the leading

coefficient is
√
N
n−1+n−2

= Nn−2
√
N . Therefore, we obtain

|ψn(N)− ψn,0(N)| < 1

2
Nn−2

√
N

 n−1∑
i,j=0
i ̸=j

√
µi+j

µj

(√
2
i+j

2j
− 1

)
=

1

2
Nn−2

√
N

 (√2µ)n − 1√
2µ− 1

·

(√
2µ
2µ

)n
− 1

√
2µ

2µ
− 1

−
(
√
µ)n − 1
√
µ− 1

·

(√
µ

µ

)n
− 1

√
µ

µ
− 1

 ,
as desired.

⊓⊔

When n = 3 and µ = 1, the following property presented in [40] becomes a
special case of Proposition 4.
Corollary 14. Let N = pq be the product of two unknown primes with q < p <
2q. Then the following holds

|ψ3(N)− ψ3,0(N)| < 0.372N
√
N < 0.5N

√
N.

6.2 Application of Continued Fractions
We further provide an upper bound for selecting d such that we can use the
continued fraction algorithm to recover d without knowing the factorisation of
the modulus N .
Theorem 4. Let N = pq be the product of two unknown primes with µq < p <
2µq. If e < ψn(N) satisfies ed− kψn(N) = 1 with

d <

√
Nn−0.5

e∆M
n

, (10)

then we can recover d in polynomial time.
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Proof. We have that∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ = |ed− kψn,0(N)|
dψn,0(N)

≤ |ed− kψn(N)|+ k|ψn(N)− ψn,0(N)|
dψn,0(N)

.

Using ed− kψn(N) = 1 and Proposition 4 we obtain∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ ≤ 1 +
∆M

n

2 kNn−2
√
N

dψn,0(N)

≤ k

2d
·∆M

n · 2 +Nn−2
√
N

ψn,0(N)
.

Note that

ψn,0(N) >
(
√
µN)n − 1√
µN − 1

·

(√
µN
µ

)n
− 1

√
µN
µ − 1

>

√
µN

2(n−1)

µn−1
+
√
µN +

√
µN

µ

=
√
N

2(n−1)
+
√
N · (√µ+

1
√
µ
)

>
√
N

2(n−1)
+ 2

√
N,

which leads to ∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ ≤ k

2d
·∆M

n · 2 +
√
N

2n−3

√
N

2n−2
+ 2

√
N

=
k∆M

n

2d
√
N
. (11)

According to Corollary 12, we have that ψn(N) >
√
µN2(n−1)

µn−1 = Nn−1. Since
kψn(N) = ed− 1 < ed, we have

k

d
<

e

ψn(N)
<

e

Nn−1
.

Equation (11) becomes∣∣∣∣kd − e

ψn,0(N)

∣∣∣∣ ≤ 1

2
· e∆M

n

Nn−0.5
<

1

2d2
.

Using Theorem 1 we obtain that k/d is a convergent of the continued fraction
expansion of e/ψn,0(N). Therefore, d can be recovered in polynomial time.

⊓⊔
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Corollary 15. Let α+ 0.5 < n, λ = λp − λq and N = pq be the product of two
unknown primes with µq < p < 2µq. If we approximate e ≃ Nα, N ≃ 2λN and
µ ≃ 2λ, then Equation (10) becomes

d <
20.5(n−α−0.5)λN√

∆M
n

or equivalently

log2(d) < 0.5(n− α− 0.5)λN − log2(
√
∆M
n ) ≃ 0.5(n− α− 0.5)λN − 0.25(n− 1)λ.

Proof. From the definition of ∆M
n we obtain that

∆M
n =

n−1∑
i,j=0
i ̸=j

√
µ
i−j

(
√
2
i−j

− 1) ≃
n−1∑
i,j=0
i ̸=j

2λ(i−j)/2(
√
2
i−j

− 1)

≃
n−1∑
i,j=0
i ̸=j

2λ(i−j)/2 ≃
n−1∑
j=0
i>j

2λ(i−j)/2 =

n−1∑
j=0

2λ/2
2λ(n−1−j)/2 − 1

2λ/2 − 1

≃
n−1∑
j=0

2λ(n−1−j)/2 =
2λn/2 − 1

2λ/2 − 1
≃ 2λ(n−1)/2,

as desired. ⊓⊔

When case n = 3 and µ = 1 is considered, the following property presented
in [40] becomes a special case of Corollary 15.

Corollary 16. Let α < 2.5 and N = pq be the product of two unknown primes
with q < p < 2q. If we approximate e ≃ Nα and N ≃ 2λN then Equation (10) is
equivalent with

log2(d) < 0.5(2.5− α)λN − 0.43 ≃ 0.5(2.5− α)λN .

Corollary 17. Let N = pq be the product of two unknown primes with µq <
p < 2µq. If we approximate e ≃ Nn−1, N ≃ 2λN and µ ≃ 2λ then Equation (10)
is equivalent with

log2(d) < 0.25(λN − λ(n− 1)).

7 Discussions

In this section we will compare the attack intervals for the two RSA-like families.
We start with the balanced primes case (i.e. λ = 0). According to Corollaries 8
and 15 for a given α, n > 1 and λN , we have

0.5(1.5n− α)λN ≥ 0.5(n− α− 0.5)λN ⇔ 1.5n− α ≥ n− α− 0.5

⇔ 0.5(n+ 1) ≥ 0.



25

Therefore, the attack interval for the generalized Elkamchouchi et al. scheme is
always greater that the one for the generalized Murru and Saettone scheme.

In the unbalanced case, for a given α, n > 1, λp and λq, we obtain that

0.5(1.5n− α)λN − 0.5n(λ+ 1) ≥ 0.5(n− α− 0.5)λN − 0.25(n− 1)λ

⇔ 0.5(0.5n+ 0.5)λN ≥ 0.25(n+ 1)λ+ 0.5n

⇔ (n+ 1)λN ≥ (n+ 1)λ+ 2n

⇔ (n+ 1)(λp + λq) ≥ (n+ 1)(λp − λq) + 2n

⇔ (n+ 1)λq ≥ −(n+ 1)λq + 2n

⇔ (n+ 1)λq ≥ n.

Therefore, the attack interval for the generalized Elkamchouchi et al. scheme is
always greater that the one for the Murru and Saettone scheme.

Taking into account the previous arguments and the fact that for the gener-
alized Elkamchouchi et al. scheme we found a probabilistic factoring algorithm9,
we conclude that the security assurances10 are greater for the generalized Murru
and Saettone scheme.

8 Conclusions

In this paper, we introduced two families of RSA-like cryptosystems. The first
one includes the RSA and Elkamchouchi et al. public key encryption schemes
[20, 45] (i.e. n = 1 and n = 2), while the second one includes the Murru and
Saettone public key encryption scheme [36] (i.e. n = 3). Then, we presented
a small private key attack against each family of cryptosystems and provided
several instantiations of it.

As a conclusion, the both families of RSA-like schemes allow an attacker to
recover the secret exponent via continued fractions when the public exponent is
close to Nn and the secret exponent is smaller than N0.25n · (q/p)0.5n · 2−0.5n

or Nn−1, or when the secret exponent is smaller than N0.25 · (q/p)0.25(n−1),
respectively. Note that in the case of the generalized Elkamchouchi et al. scheme,
we also provided a probabilistic factorisation algorithm once the order φn is
known. For completeness, we also provided a generalization of Wiener’s attack
to the unbalanced RSA. In this case we can recover the secret exponent when it
is smaller than N0.25(q/p)0.25.

Future Work. We leave the construction of a deterministic factoring algorithm,
capable of factoring N given the order of the group φn or ψn, as an open problem.
While we have managed to devise such algorithms for specific cases

– for φn when n = 1, 2, 3, 4 (see Appendix A and [6,10,13]),
– for ψn when n = 2, 3, 4 (see Appendix B and [40]),

9 once the order is known
10 from a continued fraction perspective
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the general case remains unsolved. Note that when ψn is given, we could not
even find a probabilistic algorithm for factoring. Another interesting research
direction is to find out whether the attack methods described in Section 1 also
work in the general case of the two RSA-like families.
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A Experimental Results for the Elkamchouchi et al.
scheme

We further present some examples for the attack presented in Section 5.2 in the
cases n = 3 and n = 4. When λp = λq, examples for n = 1 and n = 2 cases are
provided in [13] and [10] respectively, and thus we omit them.

A.1 Case n = 3

Before providing our example, we first show how to recover p and q once φ3(N) =
(ed− 1)/k is recovered using our attack.

Lemma 4. Let N = pq be the product of two unknown primes with q < p < 2q.
If φ3(N) = N3−p3−q3+1 is known, then p and q can be recovered in polynomial
time.

Proof. We will rewrite φ3(N) as

φ3(N) = N3 − p3 − 3p2q − 3pq2 − q3 + 1 + 3p2q + 3pq2

= N3 − (p+ q)3 + 3N(p+ q) + 1,

which is equivalent to

(p+ q)3 − 3N(p+ q) + φ3(N)−N3 − 1 = 0.

Finding S = p+ q is equivalent to solving (in Z) the following cubic equation

x3 − 3Nx+ (φ3(N)−N3 − 1) = 0. (12)

which can be done in polynomial time as it is presented in [22]. In order to find
p and q, we compute D = p− q using the following remark

(p− q)2 = (p+ q)2 − 4pq = S2 − 4N.

Taking into account that p > q, D is the positive square root of the previous
quantity, and thus we derive the following{

p = S+D
2

q = S−D
2

.

⊓⊔

The following lemma shows that in order to factor N we only need to find
one solution to Equation (12), namely its unique integer solution.
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Lemma 5. Equation (12) always has exactly two non-real roots and an integer
one.

Proof. Let x1, x2 and x3 be Equation (12)’s roots. Using Vieta’s formulas we
have

x1 + x2 + x3 = 0,

x1x2 + x2x3 + x3x1 = −3N,

x1x2x3 = −(φ3(N)−N3 − 1).

From the first two relations we obtain

x21 + x22 + x23 = (x1 + x2 + x3)
2 − 2(x1x2 + x2x3 + x3x1)

= 6N.

If we assume that x1 = p + q and x2, x3 are both real, we get the following
system{

x2 + x3 = −(p+ q)

x22 + x23 = 6N − (p+ q)2
⇒

{
(x2 + x3)

2 = (p+ q)2

2(x22 + x23) = 12N − 2(p+ q)2
⇒

(x2 − x3)
2 = 12N − 3(p+ q)2

= 6pq − 3p2 − 3q2

= −3(p− q)2 < 0.

Therefore, we obtain a contradiction, and hence we conclude that Equation (12)
has one real root, which is p+ q ∈ Z, and two non-real roots.

⊓⊔

A.1.1 Same size primes

Now, we will exemplify our attack for n = 3 using the following small public
key

N = 3014972633503040336590226508316351022768913323933,

e = 8205656493798992557632452332926222819762435306999

0124626035612517563005998895654688526643002715434

25112020628278119623817044320522328087505650969.

Remark that e ≈ N2.989. We use the Euclidean algorithm to compute the contin-
ued fraction expansion of e/φ3,0(N) and obtain that the first 25 partial quotients
are

[0, 3, 2, 1, 16, 5, 3, 5, 1, 5, 1, 11, 2, 6, 1, 3, 1, 4, 1, 1, 1, 267, 1, 1, 4, . . .].
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According to Theorem 4, the set of convergents of e/φ3,0(N) contains all the
possible candidates for k/d. From these convergents we select only those for
which φ3 = (ed− 1)/k is an integer and the following system of equations{

φ3 = (p3 − 1)(q3 − 1)

N = pq

has a solution as given in Lemma 4. The 2nd, 3rd and 21st convergents satisfy
the first condition, however only the last one leads to a valid solution for p and
q. More precisely, the 21st convergent leads to

φ3 = 2740628207892953207018702174077483807563264408773

7057963987757509374280517157259708222994487763446

946621855565600927215471565545807198298953933036,

k

d
=

514812488

1719435401
,

p = 2119778199036859068707819,

q = 1422305708622213956806807.

A.1.2 Different size primes

Now, we will exemplify our attack for n = 3 using the following small public
key

N = 2855813480614094216274394592472618547278232541419395361,

e = 4630084046662429097336558670671304233271432584109216468

0915894991799969707897320076677947898287075731667867080

46228385668910893284588931122055374926315487848673999,

with security parameters λp = 100 and λq = 80.
Remark that e ≈ N2.987. We use the Euclidean algorithm to compute the

continued fraction expansion of e/φ3,0(N) and obtain that the first 30 partial
quotients are

[0, 5, 32, 1, 11, 4, 4, 4, 1, 1, 12, 2, 1, 2, 1, 1, 1, 5, 1, 1, 2, 1, 3, 1, 10, 1, 1, 1, 1, 1, . . .].

According to Theorem 4, the set of convergents of e/φ3,0(N) contains all the
possible candidates for k/d. From these convergents we select only those for
which φ3 = (ed− 1)/k is an integer and the following system of equations{

φ3 = (p3 − 1)(q3 − 1)

N = pq

has a solution as given in Lemma 4. The 2nd and 29th convergents satisfy the
first condition, however only the last one leads to a valid solution for p and q.
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More precisely, the 29th convergent leads to

φ3 = 2329107414590064022951020531059192426539732750496

0291083177194445977849272372356250112885763018786

8314005868964154508199529573323714824273095587900

67149237117218500,

k

d
=

293248165996

1475149199999
,

p = 1545742437745710787397496383711,

q = 1847535146139205937905151.

A.2 Case n = 4

As in the previous case, we first show how to factorize N once φ4 is known.

Lemma 6. Let N = pq be the product of two unknown primes with q < p < 2q.
If φ4(N) = N4 − p4 − q4 + 1 is known, then

p =
1

2
(S +D) and q =

1

2
(S −D),

where S =
√
2N +

√
(N2 + 1)2 − φ4(N) and D =

√
S2 − 4N .

Proof. We will rewrite φ4(N) as

φ4(N) = N4 − p4 − 4p3q − 6p2q2 − 4pq3 − q4 + 1 + 4p3q + 6p2q2 + 4pq3

= N4 − (p+ q)4 + 4N(p2 + 2pq + q2)− 2p2q2 + 1

= N4 − (p+ q)4 + 4N(p+ q)2 − 2N2 + 1

which is equivalent to

(p+ q)4 − 4N(p+ q)2 + φ4(N)− (N2 − 1)2 = 0.

Finding S′ = p + q is equivalent to solving (in Z) the following biquadratic
equation

x4 − 4Nx2 + φ4(N)− (N2 − 1)2 = 0 ⇔
(x2)2 − 4N(x2) + φ4(N)− (N2 − 1)2 = 0.

The previous equation can be solved as a normal quadratic equation. Computing
the discriminant ∆, we have that

∆ = 4(N2 + 1)2 − 4φ4(N) > 0.

Thus, the roots of the quadratic equation, x′1,2, are

x′1,2 = 2N ±
√

(N2 + 1)2 − φ4(N).
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The roots of the biquadratic equation are the square roots of the previous quan-
tities.

x1,2 = ±
√

2N +
√

(N2 + 1)2 − φ4(N)

x3,4 = ±
√

2N −
√

(N2 + 1)2 − φ4(N)

The roots x3,4 are pure imaginary since√
(N2 + 1)2 − φ4(N) > 2N ⇔
(N2 + 1)2 − φ4(N) > 4N2 ⇔

N4 + 2N2 + 1−N4 + p4 + q4 − 1− 4N2 > 0 ⇔
(p2 − q2)2 > 0.

The root x2 = −
√

2N +
√
(N2 + 1)2 − φ4(N) < 0, thus we get S′ = S = x1 =√

2N +
√
(N2 + 1)2 − φ4(N). The values of p and q can be recovered by using

the algorithm from Lemma 4.
⊓⊔

A.2.1 Same size primes

We will further present our attack for n = 4 using the following small public
key

N = 3014972633503040336590226508316351022768913323933,

e = 3886649078157217512540781268280213360319970133145

6396788273204320283738850302214441484301356047280

9980074678226938065582620857819830171139174634897

69731055010977380039512575106301590600391232847.

Note that e ≈ N3.993. Applying the continued fraction expansion of e/φ4,0(N),
we get the first 25 partial quotients

[0, 2, 7, 1, 15, 6, 1, 2, 4, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 38, 1, 2, 1, 45, 8, . . .].

In this case, we consider the convergents of e/φ4,0(N), and we select only
those for which φ4 = (ed− 1)/k is an integer and the following system of equa-
tions {

φ4 = (p4 − 1)(q4 − 1)

N = pq

has a solution as given in Lemma 6. The 2nd and 23rd convergents satisfy the
first condition, however only the last one leads to a valid solution for p and q.
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More precisely, the 23rd convergent leads to

φ4 = 8262919045403735048878111025050137547018067986718

6489272861711603139280409749776405912009959512474

1225965967573968605037596274853618481302754457480

67878911842670048325065350941516266452271040000,

k

d
=

799532980

1699787183
,

p = 2119778199036859068707819,

q = 1422305708622213956806807.

A.2.2 Different size primes

We will further present our attack for n = 4 using the following small public
key

N = 2855813480614094216274394592472618547278232541419395361,

e = 2567370510972232006773537047215627569107232281812189203

47687158230510226195422573507282956093878118161325621701

21232464975442827741478460424643869840862494360616802843

89852002469708776700405298285081740832540792743333.

with security parameters λp = 100 and λq = 80.
Note that e ≈ N3.974. Applying the continued fraction expansion of e/φ4,0(N),

we get the first 30 partial quotients

[0, 25, 1, 9, 1, 5, 1, 1, 2, 1, 5, 2, 6, 6, 1, 1, 1, 1, 1, 1, 7, 1, 92, 3, 1, 1, 1, 1, 2, 1, . . .].

In this case, we consider the convergents of e/φ4,0(N), and we select only
those for which φ4 = (ed− 1)/k is an integer and the following system of equa-
tions {

φ4 = (p4 − 1)(q4 − 1)

N = pq

has a solution as given in Lemma 6. The 2nd, 3rd and 30th convergents satisfy
the first condition, however only the last one leads to a valid solution for p and
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q. More precisely, the 30th convergent leads to

φ4 = 6651496352384544903188120619770908196616817016200938630

9658510834304488819286773009251380765194122496812979719

9545925318425222504044575756485728476654739258155949912

41680627125876858676996469366026313423904013451264000,

k

d
=

184064447974

4768707901997
,

p = 1545742437745710787397496383711,

q = 1847535146139205937905151.

B Experimental Results for the Murru and Saettone
scheme

In this section we provide examples for the attack discussed in Section 6.2,
specifically we examine the cases where n = 2 and n = 4. An example for the
case λp = λq and n = 3 is provided in [40], and thus we omit it.

B.1 Case n = 2

Before providing our example, we first show how to recover p and q once ψ2(N) =
(1− ed)/k is recovered using our attack.

Lemma 7. Let N = pq be the product of two unknown primes with q < p < 2q.
If ψ2(N) = (1+ p)(1+ q) is known, then p and q can be recovered in polynomial
time.

Proof. Expanding ψ2(N) we obtain that

ψ2(N) = 1 + p+ q + pq = 1 + p+ q +N,

which is equivalent to

p+ q = ψ2(N)−N − 1.

Let S = ψ2(N)−N − 1. We remark that

(p− q)2 = (p+ q)2 − 4pq = S2 − 4N.

Let D be the positive square root of the previous quantity. Taking into account
that p > q, we derive the following{

p = S+D
2

q = S−D
2

.

⊓⊔
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B.1.1 Same size primes

Now, we will exemplify our attack for n = 2 using the following small public
key

N = 11939554693914055465250454114706510455824787856591,

e = 6074574633060181514768858436051302980810169830821.

Remark that e ≈ N0.994. We use the Euclidean algorithm to compute the con-
tinue fraction expansion of e/ψ2,0(N) and obtain that the first 20 partial quo-
tients are

[0, 1, 1, 27, 1, 56, 7, 23, 3, 2, 9, 2, 20, 1, 3, 1, 1, 1, 2, 7, 17, . . .].

According to Theorem 4, the set of convergents of e/ψ2,0(N) contains all the
possible candidates for k/d. From these convergents we select only those for
which ψ2 = (ed− 1)/k is an integer and the following system of equations{

ψ2 = (1 + p)(1 + q)

N = pq

has a solution as given in Lemma 7. The 2nd, 3rd and 15th convergents satisfy
the first condition, however only the last one leads to a valid solution for p and
q. More precisely, the 15th convergent leads to

ψ2 = 11939554693914055465250461283567876958785337490000,

k

d
=

3205471919

6300343581
,

p = 4537629838266117418120249,

q = 2631231528236843131513159.

B.1.2 Different size primes

In this scenario we will consider the following public key

N = 5019736030067394147475736707189228061339219786566982627,

e = 485434467383574169502440945536575804609769000630574045,

with security parameters λp = 100 and λq = 80.
Observe that e ≈ N0.9815. Using the Euclidean algorithm to compute the

continue fraction expansion of e/ψ2,0(N) we obtain that the first 20 partial
quotients are

[0, 10, 2, 1, 14, 2, 2, 286, 1, 2, 1, 32, 1, 4, 2, 1, 3, 1, 1, 2, . . .].
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As stated in Theorem 4, the set of convergents of e/ψ2,0 includes all possible
candidates for k/d. From these convergents we choose only those for which ψ2 =
(ed− 1)/k is an integer and the following system of equations{

ψ2 = (1 + p)(1 + q)

N = pq

has a solution as given in Lemma 7. The 2nd, 3rd, 4th and 19th convergents
satisfy the first condition, however only the last one leads to a valid solution for
p and q. More precisely, the 19th convergent leads to

ψ2 = 5019736030067394147475739071746925125275429766201217656,

k

d
=

1167480464

12072574453
,

p = 2364555574155054332193018723851,

q = 2122908881877786615511177.

B.2 Case n = 4

As in the previous case, we first show how to factorize N once ψ4 is known.

Lemma 8. Let N = pq be the product of two unknown primes with q < p < 2q.
If ψ4(N) = (1 + p + p2 + p3)(1 + q + q2 + q3) is known, then p and q can be
recovered in polynomial time.

Proof. Expanding ψ4(N) we obtain that

ψ4(N) = p3q3 + p3q2 + p3q + p3 + p2q3 + p2q2 + p2q + p2

+ pq3 + pq2 + pq + p+ q3 + q2 + q + 1

= N3 + (N2 + 1)(p+ q) + (N + 1)(p2 + pq + q2)+

+ (p3 + p2q + pq2 + q3) + 1

= N3 + (N2 + 1)(p+ q) + (N + 1)(p+ q)2 − (N + 1)N

+ (p+ q)3 − 2N(p+ q) + 1.

We further consider the following form of ψ4

ψ4(N) = (p+ q)3 + (N + 1)(p+ q)2 + (N − 1)2(p+ q) +N3 −N2 −N + 1.

Finding S = p+ q is equivalent to solving (in Z) the cubic equation

x3 + (N + 1)x2 + (N − 1)2x+ (N3 −N2 −N + 1− ψ4(N)) = 0, (13)

which can be done in polynomial time as it is presented in [22]. In order to find
p and q, we compute D = p− q as in Lemma 7. This concludes our proof.

⊓⊔



38

The following lemma shows that in order to factor N we only need to find
one solution to Equation (13), namely its unique integer solution.

Lemma 9. Equation (13) always has exactly two non-real roots and an integer
one.

Proof. Let x1, x2 and x3 be Equation (13)’s roots. Using Vieta’s formulas we
have

x1 + x2 + x3 = −(N + 1),

x1x2 + x2x3 + x3x1 = (N − 1)2,

x1x2x3 = −(N3 −N2 −N + 1− ψ4(N)).

From the first two relations we obtain

x21 + x22 + x23 = (x1 + x2 + x3)
2 − 2(x1x2 + x2x3 + x3x1)

= (N + 1)2 − 2(N − 1)2

= −N2 + 6N − 1.

If we assume that x1, x2, x3 are all real, we get the following inequalities

0 < x21 + x22 + x23 = −(N − 3)2 + 8 < 0,

for any N ≥ 6. Therefore, we obtain a contradiction, and hence we conclude
that Equation (13) has one real root, which is p+ q ∈ Z, and two non-real roots.

⊓⊔

B.2.1 Same size primes

We will further present our attack for n = 4 using the following small public
key

N = 11939554693914055465250454114706510455824787856591,

e = 15006652287039759861337802324565215623310940476513

92542670434722550157448270887318217632962138205421

899647696285870461657741073464172612216312741409.

Note that e ≈ N2.998. Applying the continue fraction expansion of e/ψ4,0(N),
we get the first 20 partial quotients

[0, 1, 7, 2, 4, 1, 4, 6, 1, 4, 26, 1, 7, 1, 1, 10, 2, 1, 11, 1, 1, . . .].

In this case, we consider the convergents of e/ψ4,0(N), and we select only
those for which ψ4 = (ed− 1)/k is an integer and the following system of equa-
tions {

ψ4 = (1 + p+ p2 + p3)(1 + q + q2 + q3)

N = pq
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has a solution as given in Lemma 8. The 2nd and 19th convergents satisfy the
first condition, however only the last one leads to a valid solution for p and q.
More precisely, the 19th convergent leads to

ψ4 = 17020189377867860247096553094467061591207640835506

21907753457911934182387623188683187170430636727789

996180586005565732093187872678169520144124360000,

k

d
=

2425248603

2750659489
,

p = 4537629838266117418120249,

q = 2631231528236843131513159.

B.2.2 Different size primes

In this scenario we will consider the following public key

N = 5019736030067394147475736707189228061339219786566982627,

e = 2144503513112830076766890985740891129181794630408884243

8351762718099949271772339472915417343214409254154821228

349284512502245789360583063482846844126104153266836579,

with security parameters λp = 100 and λq = 80.
Notice that e ≈ N2.986. Using the Euclidean algorithm to compute the con-

tinue fraction expansion of e/ψ4,0(N) we obtain that the first 20 partial quotients
are

[0, 5, 1, 8, 1, 4, 1, 1, 30, 1, 22, 1, 1, 4, 24, 1, 50, 2, 2, 3, . . .].

As stated in Theorem 4, the set of convergents of e/ψ4,0 includes all possible
candidates for k/d. From these convergents we choose only those for which ψ4 =
(ed− 1)/k is an integer and the following system of equations

{
ψ4 = (1 + p+ p2 + p3)(1 + q + q2 + q3)

N = pq

has a solution as given in Lemma 8. The 2nd, 3rd, 5th and 17th convergents
satisfy the first condition, however only the last one leads to a valid solution for
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p and q. More precisely, the 13th convergent leads to

ψ4 = 12648605260569537228242920792973090843887765822412440102

42424015478519904978373292779574040402298258662027055373

12473369988620334246189313082892046200224081054148960,

k

d
=

927107051

5468217259
,

p = 2364555574155054332193018723851,

q = 2122908881877786615511177.

C Generalized Wiener Attack

In this section we provide an equivalent of Wiener’s attack applied to the un-
balanced RSA. To the best of our knowledge, there is no such equivalent in the
literature.

Theorem 5. Let N = pq be the product of two unknown primes with µq < p <
2µq. If e < φ(N) satisfies ed− kφ(N) = 1 with

d <
(µN)0.25√
2(2µ+ 1)

(14)

then we can recover d in polynomial time.

Proof. Using ed− kφ(N) = 1, we have that∣∣∣∣kd − e

N

∣∣∣∣ = |ed− kN |
dN

=
|ed− kφ(N) + kφ(N)− kN |

dN

=
|1− k(N − φ(N))|

dN
.

Since µq < p < 2µq, we obtain

N − φ(N) = p+ q − 1 < (2µ+ 1)q <
(2µ+ 1)

√
µ

√
N,

where for the last inequality we used Lemma 3. Therefore, we have∣∣∣∣kd − e

N

∣∣∣∣ < |k(2µ+ 1)
√
N |

d
√
µN

=
k(2µ+ 1)

d
√
µN

.

Since kφ(N) = ed− 1 < ed and e < φ(N), we obtain k < d. This leads to∣∣∣∣kd − e

N

∣∣∣∣ < 2µ+ 1√
µN

<
1

2d2
.

Using Theorem 1 we obtain that k/d is a convergent of the continued fraction
expansion e/N . Therefore, d can be recovered in polynomial time. ⊓⊔
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When case µ = 1 is considered, Wiener’s attack [6,54] becomes a special case
of Theorem 5.

Corollary 18. Let N = pq be the product of two unknown primes with q < p <
2q. If e < φ(N) satisfies ed− kφ(N) = 1 with

d <
N0.25

√
6

<
N0.25

3

then we can recover d in polynomial time.

Corollary 19. Let λ = λp − λq and N = pq be the product of two unknown
primes with µq < p < 2µq. If we approximate N ≃ 2λN and µ ≃ 2λ then
Equation (14) becomes

d < 20.25(λN−λ)

or equivalently

log2(d) < 0.25(λN − λ).

D Experimental Results for the Generalized Wiener
Attack

For completeness, we additionally present an example for the generalized Wiener
attack when λp > λq. An example for the case λp = λq is provided in [54], and
thus we omit it.

D.1 Different size primes

We will exemplify the generalized Wiener’s attack using the following public key

N = 3520803707194414428952988103961415751574974566641,

e = 2123018498998414990793362988347899186101759432733,

with security parameters λp = 120 and λq = 40.
Notice that by setting µ = 280, we obtain that in order to apply Wienner’s

attack, we need d < 653176. Using the Euclidean algorithm to compute the
continue fraction expansion of e/N we obtain that the first 20 partial quotients
are

[0, 1, 1, 1, 1, 12, 1, 3, 3, 1, 1, 3, 1, 2, 1, 2, 1, 3, 14, 2, . . .].

As stated in Theorem 5, the set of convergents of e/N includes all possible
candidates for k/d. From these convergents we choose only those for which
φ(N) = (ed− 1)/k is an integer and the following system of equations{

φ(N) = (p− 1)(q − 1)

N = pq
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has a solution. Note that the system’s solutions can be computed similarly as in
the case of Lemma 7. The 2nd, 3rd, 4th and 18th convergents satisfy the first
condition, however only the 18th convergent leads to a valid solution for p and
q. More precisely, the last one leads to

φ(N) = 3520803707192711603764814487714739054164400581232,

k

d
=

291041

482661
,

p = 170282518817361624667669534294911607,

q = 2067624869333.
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