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Abstract

Privacy preserving systems often need to allow anonymity while requir-
ing accountability. For anonymous clients, depending on application, this
may mean banning/revoking their accounts, docking their reputation, or
updating their state in some complex access control scheme. Frequently,
these operations happen asynchronously when some violation, e.g., a forum
post, is found well after the offending action occurred. Malicious clients,
naturally, wish to evade this asynchronous negative feedback. Considering
privacy-preserving analogues of modern access control and reputation
schemes raises a more fundamental technical challenge with far broader
applications: how do we allow multiple parties to interact with private
state stored by an anonymous client while ensuring state integrity and
supporting oblivious updates?

We propose zk-promises, a framework which supports Turing-complete
state machines with arbitrary asynchronous callbacks. In zk-promises,
client state is stored in a zk-object. Updates to the zk-object, represented
as a cryptographic commitment to the new, modified object, require a
zkSNARK that ensures integrity and atomicity while providing confiden-
tiality. Clients can modify and prove their state by calling valid methods
(e.g, to show they are authorized to post) and can give callbacks to third
parties (e.g., to later hold them accountable). Through careful protocol
design, we ensure clients who advance their state-machine are forced to
ingest callbacks that are called by a third party.

zk-promises allows us to build a privacy-preserving account model.
State that would normally be stored on a trusted server can be privately
outsourced to the client while preserving the server’s ability to update
the account. To demonstrate the feasibility of our approach, we build
an anonymous reputation system with better than state-of-the-art perfor-
mance and features, supporting asynchronous reputation updates, banning,
and reputation-dependent rate limiting to better protect against Sybil
attacks.
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1 Introduction

Balancing anonymity and accountability is a common theme in privacy-preserving
systems. Depending on the application, accountability might involve “simply”
banning an anonymous account, or it could require a complex update in a
stateful access control system. The challenge is that accountability frequently
happens asynchronously—often there is an arbitrary delay between action and
consequence—and malicious clients may, naturally, try to avoid the negative
consequence. For example, in a privacy-preserving version of Wikipedia, an
anonymous vandal may try to evade a server forcing them to transition into a
banned state when their malicious edit is later discovered by an administrator.
Since the client’s identity and current status are unknown, even the simple
case of this problem, where the state is limited to a single “isBanned” bit, is
challenging—we don’t know which client’s state to update.

The difficulty of updating anonymous clients to hold them accountable,
however, extends beyond banning and raises a more fundamental question: how
can multiple parties interact with a private state machine stored by an unknown
entity without compromising the state or leaking access patterns? While solutions
exist for the simple case of banning (e.g., [TAKS10, TAKS08, RMM22]) they are
concretely inefficient and do not provide a solution to the more general problem.

The challenge of third party updates to private state and asynchronous
negative feedback. In our setting, some secret state is stored by an untrusted
client. Our goal is to let third parties update this state while ensuring (1) state
confidentiality, i.e., that the third party learns nothing about the state; (2) obliv-
iousness in update and access, i.e., the third party cannot identify the user
by linking accesses or updates; and (3) integrity, i.e., that updates conform to
validation logic and access control. The core challenge in this setting is that
state updates are asynchronous—the client is not guaranteed to be online when
the state update is made. In addition, depending on application, users may
have ample motive and opportunity to evade an update. We refer to this as the
asynchronous negative feedback problem.

Returning to our Wikipedia example: a client who makes an edit must show
that their account is in a valid state in order to authenticate. Various existing
anonymous credential systems support this. The problem comes when we need
to update this state—e.g., when moderators score the quality of a Wikipedia
edit or ban the user’s account—after the user’s session has ended. Revocation
systems for anonymous credentials [CL01, BCC04] are insufficient: we do not
know the identity to revoke. And there is no direct way to update the user’s
state, since the user is anonymous and the location of the state is thus unknown.
Finally, there is no incentive for the user to accept an indirect update, e.g., some
signed statement posted on a server. This is in contrast to, e.g., an anonymous
payment system, where users are financially incentivized to receive updates that
increase their account balance.

Workarounds to the asynchronous negative feedback problem may be possible
for simple cases, such as some escrow system to provide sufficient incentive to
apply updates, but these offer limited functionality and are challenging to apply
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to complex logic. Since there is no one-size-fits-all approach, it is necessary to
have a programmable protocol. The practical adoption and success of such a
scheme requires flexibility.

For example, for anonymous banning in a real application, a forum moderator
may have to respond differently to a user posting hate speech versus spam or ex-
plicit content. They may implement a three-strikes policy for specific infractions,
or have a probation system when a second infraction triggers consequences.

Emulating trusted servers and Sybil resistance. For open enrollment
platforms, Sybil resistance consists of raising the resource costs for creating
and using a Sybil account, e.g., by requiring a CAPTCHA during registration.
While imperfect—a motivated attacker may pay the cost—it is essential to many
systems. Bans, after all, are not effective if users can cheaply make new accounts.

Non-privacy-preserving systems, however, can go much further than privacy-
preserving ones to raise the costs of Sybil attacks without placing undue costs
on legitimate users. Services like StackExchange [Atw09] define arbitrary server-
side logic tying allowed behavior to the account’s history, e.g., rate-limiting the
number of posts and, separately, the number of (possibly spam) links in posted
question for new accounts, or gating moderator privileges behind a sequence
of achievements. This substantially raises the cost of a Sybil attack, reducing
the utility of a new account and requiring the attacker to commit additional
resources to get an account in good standing. Looking ahead, using zk-promises,
we can realize this approach for privacy-preserving protocols without a trusted
server by “outsourcing” this type of reputation and rate limiting logic to the
client.

A promising but limited starting point. In PEREA [TAKS08], Tsang
et al. give an elegant approach to the simplest version of the anonymous state
update problem: anonymous blocklisting (née blacklisting). In PEREA, each
post is accompanied by a pseudorandom ticket. The ticket is placed on a blocklist
to ban the user. During authentication users prove in zero-knowledge that none
of their tickets appear on a blocklist. With this protocol, PEREA avoids the
pitfalls of previous approaches, such as trusted de-anonymization authorities or
high initial computational costs [TAKS10].

Unfortunately, PEREA and successors [AK12, XF14], have substantial per-
formance and functionality problems. Users are effectively stateless: a user’s
only private state is a fixed pseudorandom function key for generating tickets.
Each authentication requires that a user regenerate a fixed k tickets from a
global sliding detection window of size w and prove those tickets are not in a
ban list.1 This has two consequences:

1. Limited functionality. PEREA only supports checking if there is a ticket
in the window. In subsequent work [AK12, XF14], tickets contain a single
integer rating, users prove the sum of tickets in the window is below a

1Even with a zero-knowledge proof which hides how many tickets the user checked—
something PEREA and derivatives lack—there is no way to trust the user is honestly counting
how many tickets it has open.
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threshold. But this does not provide the complex, programmable logic or
state available in deployed moderation systems [ets].

2. Every user pays worst-case computation costs. For every authentication,
regardless of the number of tickets a user used, they must perform O(ωauth×
w) work, where ωauth is the rate at which the most active user uses the
service and therefore produces tickets. In essence, every user is burdened
with the workload of the worst-case user.

A starting point: zk-objects. We start, somewhat surprisingly, by repurpos-
ing techniques developed for privacy-preserving cryptocurrency payments and
smart contracts. Starting with Zerocash [BCG+14] and commercial derivatives
like Zcash, TornadoCash, and Railgun [HBHW, PSS, rai], through to academic
[KMS+16, BCG+20, XCZ+22] and commercial systems [Wil, ale] on privacy-
preserving smart contract systems, there is a robust line of work which builds
efficient protocols for privately manipulating Turing-complete state machines.
Although designed for blockchains, these systems can just as easily operate in
a centralized setting with a trusted server. We give a new view of this style of
computation, which we refer to as the zk-object model.

In the zk-object model, method calls manipulate the object and return
outputs. For integrity and replay/forking prevention, every object—even from
different owners—is controlled by a global bulletin board or trusted server,
which verifies zero-knowledge proofs of update correctness. For confidentiality,
the bulletin board stores only cryptographic commitments to the objects. To
hide access patterns and ensure anonymity, objects are not accessed directly or
mutated in-place. Instead, updates are made through an oblivious copy-on-write
approach, where a fresh commitment to the updated object is appended to the
bulletin board along with the zero-knowledge proof the update results from a
valid method call on the previous version of the object. To ensure obliviousness,
rather than identifying the old committed object version directly, the proof shows
that a secret previous version exists by, e.g., checking membership in a Merkle
tree built over all entries on the bulletin board. The proof also reveals a serial
number (a.k.a. a nullifier or nonce) of the old version to prevent replay of the
previous object version in subsequent updates (e.g., a double-spend in payment
systems). When these zero-knowledge proofs are instantiated with zkSNARKs,
we can achieve Turing-complete functionality and efficient verification by the
bulletin board, giving us zk-objects with integrity, confidentiality, obliviousness,
and atomicity.

Our contribution. We design, implement, and benchmark zk-promises, a pro-
tocol that augments the zk-object model with asynchronous oblivious callbacks.
Conceptually, our approach is simple: we give zk-objects access to a public
bulletin board that supports efficient membership and non-membership checks
from inside the program. The bulletin board maps psuedorandom tickets to
callbacks, complete with encrypted method arguments, posted by third parties.
Through careful protocol design, we force programs (in the zk-object model) to
track their tickets in local state, check if tickets are mapped to posted callbacks,
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and executed the callbacks to update their state if needed. With zk-promises,
we then build an example application for programmable anonymous blocking
and moderation, complete with user reputation and more complex functionality
such as reputation-dependent rate limiting.

Our approach is inspired by PEREA’s ticket approach for simple bans, but
overcomes a few key challenges to offer drastically improved performance, and
generalize to arbitrary Turing-complete state machines. First, to achieve our
performance requirements, we must describe a fixed-size state machine that
allows users to incrementally iterate through an unbounded list of open callbacks,
using zk-friendly data structures, while revealing nothing to the server and
preventing skipping callbacks.2 Second, we must support multiple callbacks and
callers, while ensuring confidentiality of callback arguments, the authenticity of
the caller, and the integrity (i.e., non-evasion) of the callback and the object itself.
Since neither the client nor the caller are trusted,3 we must carefully design a
protocol that avoids malicious inputs, fault injections, and key misbinding issues.
With these resolved, we achieve a scheme which permits arbitrary callbacks on
user-defined zk-objects.

To summarize, in this paper we design, build, and benchmark zk-promises,
which:

1. supports Turing-complete state machines and programmable logic for
zk-objects with arbitrary callbacks;

2. adds asynchronous callbacks to the line of privacy-preserving payment and
smart contract systems developed in [BCG+14, KMS+16, BCG+20];

3. yields an anonymous reputation and blocking system with significant
performance and feature improvements over the state of the art, such as
multi-dimensional reputation with support for arbitrary state-dependent
logic such as probationary periods and reputation-dependent rate limiting
for improved Sybil resistance; and

4. is concretely efficient, offering server verification times of less than 3ms
and client-side authentication times of 1–10s in realistic scenarios.

1.1 Related work

There is a very large body of reputation and anonymous blocklisting schemes. For
related work, we constrain ourselves to discussing systems that have anonymous
clients (as opposed to relying on pseudonyms); do not need trusted third parties
(TTPs) to anonymize, de-anonymize, or ban users; and allow asynchronous and
negative feedback. For a broader view, we refer readers to the excellent overview
by Henry and Goldberg [HG11] for blocklisting and Gurtler and Goldberg [GG21]
for reputation.

2Näıvely using a zkSNARK for every such statement is insufficient: the verifier learns the
length of the statement (and the statement itself), exposing how many tickets the user has.

3The client may evade calls and the caller may, e.g., provide a garbage callback to deadlock
the client.
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We use the same definition of anonymity in the terminology of Gurtler and
Goldberg’s taxonomy for reputation systems, “Reputation-Usage Unlinkability”
for Votee Privacy—the entity being rated remains private and unlinkable when
being rated or when showing their rating. This property excludes most of the
reputation systems Gurtler and Goldberg identify, including all of the secure
multiparty computation (SMC) approaches. If we also exclude systems that
require TTPs or only support positive feedback, we are left with the following
approaches which all come from the literature on anonymous blocklisting.

A general approach for TTP-free anonymous blocking is to use pseudorandom
tickets that clients provide, e.g., per Wikipedia edit, and a server-side blocklist
L of banned tickets (e.g. corresponding to vandalistic edits). Because clients
generate pseudorandom tickets, they are anonymous and unlinkable across
multiple edits without relying on TTPs. Accountability comes by enabling
clients to prove their tickets are not on the blocklist L. These schemes differ in
how this proof is done and the protocols around it.

In token-based blocklisting schemes in the line of BLAC [TAKS10, AKS12,
RMM22], each authentication requires the client prove they are not in the block-
list. They iterate over the entire blocklist, proving each ticket was not derived
from their PRF key. This requires O(|L|) work per client per authentication.

As an improvement, the BLAC authors [TAKS08] and subsequent work [AK12,
XF14, MC23], have each client keep a distinct queue Q of tickets they used,
requiring they prove ∀qi ∈ Q, qi /∈ L. As we described in depth earlier, this
introduces some major limitations. These schemes are limited by the fact that
client state, i.e., the queue, and proofs about it, must be small. In general, the
state cannot be mutated except by adding or removing entries for the queue. As
Ma and Chow [MC23] point out, this approach requires either severe rate limiting
(as every client does worst case work) or global halting until a misbehavior is
adjudicated. Ma and Chow propose an elegant mitigation, offering multiple
queues, where adjudication can happen in parallel. But this is a workaround,
not a full resolution.

Finally, a common shortcoming of all of the above schemes is lack of arbitrary
client state and update logic. These systems support simple banning and
reputation as a linear function over integer ratings in a finite-sized queue. This
is insufficient to support, e.g., a probationary period for new accounts, rate
limiting beyond simple counters per epoch, or any kind of complex reputation
metric, rating, or weighting.

We note a separate area of work on revocation for anonymous credential
systems (e.g. [CL01, BL07]). While sometimes drawing on similar techniques,
such as membership and non-membership proofs, these schemes address a simpler
problem by assuming the revoking authority knows either the public key or
private key of a party. They do not address the problem of updating an unknown
user.
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2 Overview

In this section, we introduce a simple example of zk-promises and its programming
model for enforcing callbacks on arbitrary anonymous objects. We stress that
the techniques described here have broader applications, as they permit arbitrary
programmable logic and Turing-complete state machines with arbitrary callbacks.

We have an anonymous individual (the user) editing a page on Wikipedia (the
service provider), where their account is a zk-object and callbacks are used to ban
them or update their reputation. In this section, we give the programming model
and, for ease of exposition, we phrase all actions imperatively, as if they were
occurring on a mutable finite state machine. As we will see in the next section,
every state transition and assertion in zk-promises is backed by a zero-knowledge
proof on an append-only log.

Figure 1 gives pseudocode for our example AnonUserRecord. It stores both
a multidimensional reputation score (e.g., containing separate scores for spam
versus hateful content), state for a leaky-bucket-style rate limit on edits per day,
and metadata to support callbacks. When making an edit to Wikipedia, users
will prove they called ShowAuthMakeCB and provide the server with the generated
callbacks. The server can later use these two callbacks to either update their
reputation or ban them. Executing this method also proves to the server the
following authorization checks passed:

1. The user’s reputation, defined as the dot product of the their reputation
with a public weight vector—their projected reputation—exceeds a specified
threshold.

2. The user is within a rate limit for edits. To demonstrate the flexibility
of zk-promises, we use a leaky bucket for the rate limit where the rate
depends on the user’s reputation.4

3. The user has recently scanned for all their open callbacks.

The reputation threshold and weighting are dynamically configurable via method
arguments. As these method arguments are public, the server can reject invalid
parameters. Again, these features are picked to demonstrate the flexibility of
zk-promises and its ability to handle arbitrary programs with branching, not
just linear logic.

Note, the object defines its own access control. Users cannot alter data except
by calling valid methods and, for example, updateRep method is restricted to
Wikipedia.

2.1 Callbacks and their lifecycle

The core of zk-promises is a callback, a function which is used to modify the
user record (here, ban and updateRep). Callbacks are first-class objects that

4Edits require the bucket has remaining capacity. Once a user’s bucket is full, they must
wait for the bucket to partially drain.
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class AnonUserRecord :
// Att r ibute s are a c c e s s i b l e v ia methods only
private const instanceID
private au tho r i z edCa l l e r // Pubkey o f owner
private cbMgr // For en f o r c i ng i s sued ca l l b a ck s
// Reputation can be a mult id imens iona l vec tor o f i n t s
private rep = (0 , 0 , 0) // E. g , ( hate , spam , qua l i t y )
// We de f i n e a leaky bucket f o r ra t e l im i t i n g
private leakyBucket = 0
private l a s tPo s t = currentTime ( ) // Used f o r l eak ra t e

AnonUserRecord ( wikiPk ) : // Constructor
instanceID = randomUID ( )
t h i s . cbMgr = CallbackManager ( t h i s )
au tho r i z edCa l l e r = wikiPk // f o r a c c e s s c on t r o l .

// Shows the user i s a l lowed to ed i t and sends
// c a l l b a ck s to hold them accountable f o r that ed i t . As
// arguments are publ ic , s e r v e r s can dynamical ly change
// what weights , t h r e sho ld s or c u t o f f s the c l i e n t must
// use .
public ShowAuthorizedForEditandMakeCallbacks (

curTime , repWeights , repThreshold , rateTreshold ,
cutOffTime

) :
t h i s . leakyBucket −= th i s . ca l cDra in ( curTime )
// Author i zat ion checks f o r e d i t s . Checks r eputat i on
// i s s u f f i c i e n t , e d i t i s with in ra t e l im i t , and that
// a l l c a l l b a ck s were handled as o f cutOffTime .
i f t h i s . rep . dotProd ( repWeights ) > repThreshold
and t h i s . leakyBucket < rateTresho ld
and t h i s . cbMgr . lastFul lScanTime >= cutOffTime :
updateCb = th i s . cbMgr .makeCb( t h i s . updateRep )
banCb = th i s . cbMgr .makeCb( t h i s . ban )
t h i s . leakyBucket++
th i s . l a s tPo s t = curTime
return ( updateCb , banCb)

else :
return nu l l // user isn ’ t author i zed

public updateRep ( c a l l e r , d e l t a ) :
// Users cannot update t h e i r own rep
i f c a l l e r == autho r i z edCa l l e r :

t h i s . rep += de l t a

public ban ( ) : // no ac c e s s check needed f o r ban
t h i s . rep = (− i n f , −i n f , − i n f )

private ca l cDra in ( currentTime ) :
i f | rep | > 10 // thre sho ld a r b i t r a r i l y s e t to 10

leakRate = 10/86400 // 10 auths per day in seconds
else : // lower reputa t i on ge t s 1 ed i t per day

leakRate = 1/86400 // 1 auth per day in seconds
elapsedTime = curTime − t h i s . l a s tPo s t
// cannot dra in more than cur rent bucket capac i ty .
return min( leakRate ∗ elapsedTime , t h i s . leakyBucket )

Figure 1: Pseudocode for an anonymous user record with reputation, bans, and
rate limiting.
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class CallbackManager :
private userObj // Ptr to AnonForumUser
private cbL i s t = [ ] // L i s t o f c a l l b a ck s
private curCbIter = 0 // cbL i s t i t e r a t o r
private scanStartTime = 0 // Current scan s t a r t
private lastFul lScanTime = 0 // Star t o f l a s t f u l l scan

CallbackManager ( userObj ) // Constructor
// Bind t h i s cbManager to ob j e c t
t h i s . userObj = userObj
// I n i t i a l i z e the i t e r a t o r
t h i s . curCbIter = th i s . cbL i s t . begin ( )

// Creates a new ca l l ba ck . Cannot run i f
// cu r r en t l y in the proce s s o f s e t t l i n g
private makeCb( func ) :

// This means we ’ re not s e t t l i n g , i e not in a scan
a s s e r t t h i s . curCbIter == th i s . cbL i s t . begin ( )
t i c k e t = randBytes (32)
t h i s . cbL i s t . append ( t i c k e t , func )
return t i c k e t

// Shows a l l c a l l b a ck s were handled as o f some time .
public showSettledUpTo ( cutof fTime ) :

return t h i s . lastFul lScanTime >= cutof fTime

// Incrementa l ly scans the l i s t o f open ca l l b a ck s
// I f a ca l l ba ck i s on the b u l l e t i n board , i t s s e t t l e d
// I f one i s expired , i t s removed from the open l i s t
public scanIncrementa l ( bu l l e t i n , curTime ) :

i f t h i s . curCbIter == th i s . cbL i s t . begin ( ) :
// I f s t a r t i n g a new scan , mark the s t a r t time
t h i s . scanStartTime = curTime

// Take the next ca l l ba ck and see i f i t s been c a l l e d
( t i c k e t , func ) = ∗ t h i s . curCbIter
c a l l = bu l l e t i n [ t i c k e t ]
// I f the c a l l i s on the b u l l e t i n board , execute i t
i f c a l l not nu l l :

( c a l l e r , cbArgs ) = c a l l
t h i s . userObj . func ( c a l l e r , cbArgs )
// Mark the ca l l ba ck f o r d e l e t i o n and move to next
t h i s . curCbIter . de leteAndIncr ( )

else :
// Move to next item in ca l l ba ck l i s t
t h i s . curCbIter . i n c r ( )

i f t h i s . curCbIter == th i s . cbL i s t . end ( ) :
// We have a new f u l l complete scan , update t imes
t h i s . lastFul lScanTime = th i s . scanStartTime
t h i s . curCbIter = th i s . cbL i s t . begin ( )

Figure 2: Pseudocode for the callback manager, responsible for creating and
settling callbacks.
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can be passed around, transferred over the network, and stored, e.g., alongside
an edit that is queued for moderation. Conceptually, they have a source that is
making the callback (in our case Wikipedia moderators) and destination (the
anonymous user).

Callback and authenticated origins. A key component of callbacks is
an authentication origin. This prevents, e.g., a user from calling updateRep

themselves to increase their reputation. Looking ahead, in our system, we assume
the caller is identified by a public key, and the bulletin board verifies posted
callbacks contain a signature under that key. Alternatively, callbacks could be
generated by code executed by the bulletin board (e.g., in smart contracts), a
trusted execution environment, or from the invocation of another zk-object.

Lifecycle and callback management. During its lifecycle, a callback is:
created by the user, called by the service provider, and finally ingested by the
user again.

Callbacks consist of pseudorandom tickets, which must be tracked to prevent
evasion of asynchronous negative feedback. In zk-promises, we build a separate
zk-object, called a callback manager, to create, track, and handle callbacks. As
shown in Figure 2, it keeps a list cbList of all created callbacks. In order to get
up to date, a user repeatedly calls scanIncremental, incrementally iterating
over every callback on the list to check if it has been called or expired. When
one full iteration of that loop completes, lastFullScanTime is set to the start
time of the current loop. This implies a polling-like model where users assert
they have scanned through all open callbacks as of some time tracked by the
callback manager.

In our example, callbacks are represented by a random 32-byte ticket tik
created by the user’s zk-object invoking makeCb in ShowAuthMakeCB. The server,
Wikipedia in our example, later calls the callback by placing the ticket on a
bulletin board along with the method arguments. For example, a moderator, after
reviewing the post, could decrement the anonymous users reputation by 3 via
posting (tik,−3) to the bulletin board. The callback would then be ingested when
the user scans through its open callbacks and is forced to run updateRep(-3).5

2.2 Security properties

Informally, the zk-object model has the following security properties:

Confidentiality An object’s contents are only directly visible to the owner.
Function callers may deduce some amount of information solely based on
the call they make on the object.

Obliviousness An object update does not reveal which object was updated.
Nor can updates on the same object be linked to each other.

5This must happen by the next time the user calls ShowAuthMakeCB, as that code requires
this.cbMgr.lastFullScanTime ≥ cutOffTime
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Setup(serviceProviders)

1 : authorizedCallers := serviceProviders

2 : curTime := 0

3 : userObjs := {} // Default value is app-specific

4 : createdCbs := {} // Callbacks created but uncalled

5 : pendingCbs := {} // Callbacks called but pending ingestion and execution

ExecAndMakeCb

(
Pj , sid, creationMeth, cbMeth,
auxpub, auxpriv, cutoffTime

)
from Pi

1 : tik← A
2 : assert ∄createdCbs[tik] and ∄pendingCbs[tik]
3 : assert ∀(Pi, callTime) ∈ pendingCbs :

4 : callTime > cutoffTime // All old calls have been processed

5 : createdCbs[tik] := (Pi,Pj , cbMeth, auxpub)

6 : userObjs[Pi].creationMeth(

7 : tik, curTime, auxpub, auxpriv, cutoffTime)

8 : send (“CreatedCb”, sid, tik, cbMeth, auxpub, cutoffTime) to Pj

IncrTime from A
1 : curTime += 1

Call(tik, args) from Pj

1 : assert Pj ∈ authorizedCallers

2 : (Pi,P ′,meth, aux) := createdCbs[tik]

3 : assert P ′ = Pj

4 : delete createdCbs[tik]

5 : pendingCbs[tik] := (Pi,meth, args, aux, curTime)

6 : send (“Called”, tik, args, curTime) to Pi

IngestCall(tik) from P
1 : (P,meth, args, aux, callTime) := pendingCbs[tik]

2 : userObjs[Pi].meth(tik, args, curTime, callTime, aux

3 : delete pendingCbs[tik])

Figure 3: A simple ideal functionality Fzkpr for zk-promises. A is the adversary,
who determines the structure of tickets and passage of time. The functionality
returns ⊥ if any table lookup fails.

Integrity An object is only updated according to its programmed methods,
and callbacks must be applied. Authorized entities may exclusively make
changes, and only accordance to the programmed methods.

Atomicity There is one valid version of an object at a time and it cannot be
rolled back (i.e., no forking or double spending). The act of state transition
consumes the prior state.

Formally, we capture these properties in an ideal functionality for a zk-callback
system in Figure 3. This ideal functionality describes a generic system for
manipulating objects via method calls that can produce callbacks. The callbacks
are later called and, subsequently, ingested and applied to the underlying object.
When callbacks are called, they cannot be ignored and must eventually be
ingested.

For our example anonymous reputation application, the above security prop-
erties map to properties of existing schemes (see [TAKS10, TAKS08, AK12]).
From confidentiality and obliviousness, we achieve anonymity, even after the
user is banned (so-called backward anonymity [HG11]). From integrity, we get
the guarantee that our authorization logic is enforced and therefore get both
authenticity—the server will only accept clients who meet the stated authoriza-
tion checks—and non-frameability—no one other than the service provider can
ban a user or alter their state.
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3 Notation and cryptographic preliminaries

3.1 General notation

We write x := z to denote variable assignment. y := A(x; r) denotes the execution
of a probabilistic algorithm A on input x, using randomness r. We write y ←$ S
to denote sampling uniformly from a set S and y ← Alg(x) to denote sampling
r ←$ {0, 1}∗ and assigning y := Alg(x; r). The security parameter of our system
is denoted by λ.

3.2 Cryptographic primitives

Zero-knowledge proofs. A noninteractive zero-knowledge proof of knowledge
(NIZKPok) is a representation of a statement “I know w such that P (x,w)” where
x is the instance (or public input), w is the witness, and P is some efficiently
computable predicate. We use the relation notation R = {(x,w) : P (x,w)} to
represent the set of such statements. A NIZKPoK is a tuple of algorithms:

Setup(P )→ (srsP , srsV , τ) Receives a description of the predicate P and returns
two structured reference strings, one used for proving, and one for verifying.
Setup also produces a trapdoor τ used for simulating proofs (only used in
establishing the zero-knowledge property).

Prove(srsP , x, w)→ π Computes a proof that (x,w) ∈ R.

Verify(srsV , x, π) Verifies π with respect to x, i.e., verifies that there exists a w
such that (x,w) ∈ R.

A NIZKPoK is perfectly correct if Verify succeeds on every proof that is
honestly computed, with an honestly generated srs. A NIZKPoK is perfectly
zero-knowledge if there exists a simulator Sim(τ, x) which, given trapdoor τ and
instance x, produces proofs which are distinguishable with negligible probability
from honest proofs generated with Prove(srsP , x, w) for any witness w. Finally,
a NIZKPoK has knowledge soundness if there exists an efficient extractor which,
given access to a prover, can extract the prover’s witness. For a more in-depth
treatment of zero-knowledge proofs, see [Tha].

We say that a NIZKPoK scheme is a succinct noninteractive argument of
knowledge (zkSNARK) if the runtime Verify is O(log |P |), that is, at most
logarithmic in the size of the predicate P .

Pubkey-rerandomizable signature schemes. For our main construction,
we will require a digital signature scheme with rerandomizable public keys. We
say that Σ = (Keygen, SkToPk, Sign, Verify, RerandPk, RerandSk) is a pubkey-
rerandomizable signature scheme if (Keygen, SkToPk, Sign, Verify) is an ordinary
signature scheme, and the following hold:

1. If pk is a valid public key, then RerandPk(pk) → (pk′, r) returns a fresh
public key with randomness r such that pk′ is computationally indistin-
guishable from a public key generated with Keygen.
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2. If (sk, pk) is a valid keypair and (pk′, r) is honestly generated by RerandPk(pk),
then RerandSk(sk, r)→ sk′ returns a secret key corresponding to pk′, i.e.,
SkToPk(sk′) = pk′.

Two simple examples of pubkey-rerandomizable signature schemes are EdDSA
and ECDSA, where the keypair (x, P ) can be rerandomized as (rx, rP ), where r is
a uniformly selected scalar. The resulting public key is perfectly indistinguishable
from one generated with Keygen.

3.3 zk-objects

We now describe the components of the zk-objects model.

Object. An object contains arbitrary state, e.g, payment account balances,
reputation, ban status, account creation date, etc. In addition, an object contains
a serial number (or nullifier or nonce)—a random string6 which is revealed when
the object is updated. By checking if a transaction updating an object contains
a serial number that has already been revealed, we prevent stale object states
from being replayed.

Object bulletin board. Objects must be stored in a way that permits a
consistent global view of the same state. We thus require the existence of a
global append-only log, called the object bulletin board. The bulletin board does
not store objects directly, but rather cryptographically-hiding commitments to
objects. As a result, object owners need to store both the object’s opening,
i.e., its contents and the randomness used in its commitment. When discussing
these constructions informally, we will refer to an object and its commitment
interchangeably, assuming that all authorized parties have the commitment
opening data.

The bulletin board needs to support efficient zero-knowledge set membership
proofs. For the systems mentioned above, this is done via Merkle tree inside
a zkSNARK. Proving membership of a leaf x in the Merkle tree with root r
amounts to proving knowledge of an authentication path—a list of the siblings
of x’s ancestors—whose iterated hash equals r.

Updating an object. To update an object commitment obj, a user must
submit a new object commitment obj′ and a zero-knowledge proof π of the
conjunction of the following statements:

1. obj ∈ T

2. sn = obj.sn

3. Φ(obj, obj′)

where Φ is a predicate which determines validity of an update (e.g., a method
mutating the object) and the public inputs to the ZKP are the serial number sn,
the (committed) object obj′, and (the root of) the Merkle tree T .

6Whether this is directly used as the nonce or materialized through a PRF and some key
material depends on implementation.
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4 Construction of zk-objects with callbacks

We now provide a more detailed description of zk-promises using primitives
from the zk-object model. We begin by defining the algorithms for an extremely
simple callback system. We then build features on top of it, including callback
expiry, creation-calling unlinkability, and function argument authenticity and
confidentiality. We will use these features to define the scheme we implement
and benchmark in Section 7. A formal description of the final scheme can be
found in Appendix B.

4.1 Basic system

zk-promises is, at its core, a zk-object system, and thus carries with it all the
same requirements (fresh serial numbers, persistent states in a bulletin board,
zero-knowledge proofs over user predicates, etc.). In order to not trivially de-
anonymous the users, we assume that all communication done by the user is
through anonymous channels. In this section we augment zk-objects to support
callbacks. In doing so, we ensure that all these base requirements are still met.

Data structures. There are two globally accessible data structures in zk-
promises. bbobj stores every committed object obj on the bulletin board. bbcb
stores every callback posted to the bulletin board. These structures permit
efficient lookup of items inside zero-knowledge proofs. In addition, bbcb must
support efficient non-membership proofs. Non-membership requires the bulletin
board operator to commit to the complement of bbcb. For signature-backed
bulletin boards, this requires a bulletin board rollover—a full recomputation of
the complement set—whenever bbcb changes.

zk-promises permits the bulletin board manager(s) to represent passing time
in whichever way they choose. This can mean a centralized server publishing a
new bulletin board commitment every minute, or a blockchain-backed append-
only log growing as block height grows.

Created callbacks are associated with a ticket, tik ∈ {0, 1}256 that the service
provider will eventually post to the bulletin board along with the arguments to
the callback.

We will denote service providers by their ID spid. We will present algorithms
which depend on service-provider-specific keypairs (pkspid, skspid), but the struc-
ture of these keys is generic (later, we will describe an extension that uses skspid
to compute signatures).

Methods. zk-promises permits deployers to define multiple methods, functions
which mutate the object, these methods can both create callbacks and be called
by them. For example, as we saw in Section 2, it may be desirable for one
callback creation method to enforce rate limiting on itself, while another creation
method does not.

Finally, we describe how user-programmable functionality fits into the zk-
promises. In our zero-knowledge proofs, we will use Φmeth(obj, obj

′, . . .) to repre-
sent a valid transition from obj to obj′ using method meth.
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Algorithms. zk-promises consists of the following algorithms:

Setup(Φ)→ pp Takes a representation of zk-promises application-specific predi-
cates and produces public parameters for our zero-knowledge proof scheme.
This may be a trusted setup procedure as required by, e.g., the Groth16
zkSNARK [Gro16].

ExecMethodAndCreateCallback(pp, obj, pkspid,meth, x)→ (obj′, π, cbData, aux)
Invoked by a user with object obj for service provider with public key pkspid,
this executes the specified method and creates a callback ticket tik for
the service provider. Additional public input is given in x. The function
may modify obj. The resulting object obj′, its zero-knowledge proof π, and
any additional execution metadata cbData are sent to bbobj. The same,
plus some auxiliary data aux are sent to the service provider. In the most
basic system, cbData contains tik and the object’s serial number, and aux
is empty.

VerifyCreate(pp, skspid, obj
′, π, cbData, aux)→ {0, 1} Invoked by the service provider

spid with secret key skspid, this verifies π with respect to obj′ and cbData,
and verifies that these values appear in bbobj. This also optionally takes
an auxiliary input aux.

Call(pp, tik, args) Invoked by a service provider, calls the callback represented
by tik, with callback arguments args. These values are sent to bbcb.

VerifyCall(pp, tik, args, aux)→ {0, 1} Invoked by the manager of bbcb, this veri-
fies that the call (tik, args) (with optional caller-provided auxiliary input
aux) is well-formed. The notion of well-formedness is application-defined.

ScanOne(pp, obj, x)→ (obj′, π, cbData) Invoked by a user with object obj, this
takes one step in the callback list, checks on bbcb if the callback has been
called, and, if so, executes it. Additional public input is given in x. The
order of iteration through the list is application-specific. The resulting
object obj′, its zero-knowledge proof π, and the execution’s metadata
cbData are sent to bbobj.

VerifyMethodExec(pp, obj′, π, cbData)→ {0, 1} Invoked by the manager of bbobj,
this verifies π with respect to obj′ and cbData. This is used to verify bul-
letin board submissions from ExecMethodAndCreateCallback and ScanOne.
On verification success, (obj′, π, cbData) is posted to bbobj.

We now describe each algorithm in detail.

ExecMethodAndCreateCallback(pp, obj, pkspid,meth, x) → (obj′, π, cbData, aux).
This algorithm performs two important functions: (1) it updates obj according to
the given method; and (2) it creates a new callback entry and appends it to the
list of created callbacks obj.cbList. The resulting new object obj′ is accompanied
by a zero-knowledge proof that it was computed correctly.

We describe the update more formally. Let pkspid represent the public key of
the service provider the user intends to give the callback to, and let x represent
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any additional public values, including the method meth′ the user wishes to
create a callback for. The user performs the following updates to its objects.

1. Create a fresh ticket tik←$ {0, 1}256

2. Set obj′ := meth(obj, x)

3. Set obj′.cbList := obj.cbList∥entry where entry = (tik,meth′)

4. Set obj′.sn to be a fresh serial number

In upcoming sections, we will modify the first step to create tickets which depend
on pkspid.

The user then computes a zero-knowledge proof that the new object obj′

is correctly computed. Let the public inputs of the proof be obj′, x, and
cbData := (entry, obj.sn). Let the new callback list entry be (tik,meth′) where
meth′ ∈ x. The user proves the conjunction of the following statements:

zk-object bookkeeping:

The old object exists. obj ∈ bbobj

The serial number is revealed. obj.sn = sn

The entry has been appended. obj′.cbList = obj.cbList∥entry7

The predicate is satisfied. Φmeth(obj, obj
′, ∅, entry, x) = 1

The empty input corresponds to the fact that methods used for creation do not
have external callers, and thus do not receive a separate args input, as seen later
in ScanOne. We note zk-promises allows a choice of whether to reveal meth. We
discuss the tradeoffs later in this section.

The user sends (obj′, π, cbData) to the object bulletin bbobj, and sends the
same values, plus some auxiliary data aux, to the service provider.

VerifyCreate(pp, skspid, obj
′, π, cbData, aux) → {0, 1}. The service provider

must check well-formedness of the callback created in ExecMethodAndCreateCall-
back. Otherwise, the callback may be uncallable, or callable by parties other
than the service provider, or a duplicate callback that has already been called.

To verify well-formedness, the service provider with secret key skspid:

1. verifies that (obj′, π, cbData) appears on bbobj, i.e., that the callback was
created;

2. verifies the proof π with respect to inputs cbData and obj′; and

3. extracts tik from cbData or aux, and verifies that it has never received tik
in the past

7We omit details for now on how precisely the callback list works. For now, it may be
treated as a fixed-size list, where the callback manager retains a running index of unfilled slots.
We extend this later in this section.
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The final check is to ensure the user does not attempt to double-create the same
callback.

The service provider may perform additional checks on cbData and aux using
its knowledge of skspid.

Call(pp, tik, args). Recall that to call a callback, the service provider must post
some data to a bulletin board so that it may be handled asynchronously.

Formally, for a callback ticket tik and associated function arguments args,
the algorithm Call(tik, args) simply posts (tik, args) to bbcb. We will later extend
Call to sign and encrypt args.

ScanOne(pp, obj, x) → (obj′, π, cbData). This algorithm reads the next entry
of the list of issued callbacks, checks whether the callback has been called, and,
if so, executes that method.

We describe the update more formally. Let x represent some additional
public data and let entry = (tik,meth) represent the next entry in the callback
list obj.cbList (later in this section we give a concrete list traversal construction).
If the entry has been called, i.e., (entry.tik, args) ∈ bbcb, then the user performs
the following updates to its object:

1. Set obj′ := meth(obj, args, x)

2. Delete tik from obj′.cbList

3. Set obj′.sn to be a fresh serial number

If tik has not been called, then the user sets obj′ := obj and skips (1) and (2).
The user must then compute a zero-knowledge proof that the new object

obj′ is correctly computed. Let the public inputs of the proof be obj′ and
cbData := obj.sn. The user constructs a proof π of the conjunction of the
following statements:

The old object exists. obj ∈ bbobj

The serial number is revealed. obj.sn = sn

entry is the current entry. entry = obj.cbList.nextUnscanned()

Callback was applied if called. If (tik, args) ∈ bbcb then Φmeth(obj, obj
′, entry, args, x) =

1 and obj′.cbList = obj.cbList.tail()

No-op if not called. If tik ̸∈ bbcb, then obj′ = obj

As in ExecMethodAndCreateCallback, the user sends (obj′, π, cbData) to the object
bulletin bbobj. We note that the last two statements are the reason we require
efficient zero-knowledge proofs of membership and non-membership in bbcb.

In practice, ScanOne may be batched. A user may process 100 callbacks at
a time, and produce a single zero-knowledge proof that all 100 were applied
correctly.

VerifyMethodExec(pp, obj′, π, cbData) → {0, 1}. The object bulletin board
must handle zk-object updates from ExecMethodAndCreateCallback and ScanOne.
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To do so, it does the same proof verification as VerifyCreate. Specifically, given
(π, cbData, obj′) it verifies the zero-knowledge proof π with respect to its inputs
cbData and obj′. In addition, as with any zk-object update, it must ensure that
the serial number is not repeated. That is, cbData.sn ̸∈ S, where S is the set of
all serial numbers observed by the bulletin board operator. If all checks succeed,
the operator posts (obj′, π, cbData) to bbobj.

VerifyCall(pp, tik, args, aux) → {0, 1}. The operator of the callback bulletin
board must verify incoming calls (tik, args) before placing them on the bulletin
board. In our basic construction, aux is empty, and there is nothing that requires
verification. Later in this section, we will let aux be a digital signature, and
condition acceptance on the signature’s successful verification.

4.2 Unlinking Create and Call

Currently, a passive observer of the (possibly public) bulletin board sees tik,
meaning it can correlate executions of ExecMethodAndCreateCallback and Call.
While this does not identify the user, it may, e.g., leak what post was moderated.

To fix this, we slightly modify the zero-knowledge proof and public input
of ExecMethodAndCreateCallback. The user replaces entry in cbData with a
commitment comentry := Com(entry; s) for some randomness s, and opens the
commitment in the proof. In addition, the auxiliary data sent to the service
provider is now aux := (entry, s). In VerifyCreate, the service provider checks
that comentry = Com(entry; s).

The Call algorithm is unchanged. Since tik is not sent in the clear at any
time before Call, there is no longer any event to link it to.

4.3 Expiry

Currently, there is no limit on the amount of time that can pass between creation
and calling of a callback. This gives service providers the power to rate old
and irrelevant posts for any reason. In addition, it requires the user to store all
callbacks indefinitely until they are called. Over time, this makes a full scan
computationally infeasible.

We solve both of these problems by associating an expiry with every callback.
With expirable callbacks, users only have to store the tickets that have not
expired, and calls are limited to the expiry period, e.g., at most one day after
creation. We detail the changes to the base system that this feature entails.

ExecMethodAndCreateCallback now takes an expiry exp as an argument, and
includes exp in entry.

In VerifyCall, the bulletin board operator does as before, but additionally
stores the time t that the call was received. So each element of bbcb is now of
the form (tik, args, t).

ScanOne now takes as part of its public input x the current time c. When
deciding whether to apply entry = (tik,meth, exp) ∈ obj.cbList, they do as follows:

1. If tik was posted, i.e., (tik, args, t) ∈ bbcb:
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(a) If t < exp, the callback was called in time. The user applies it:
obj′ := meth(obj, args, x) and deletes this entry from cbList.

(b) If t ≥ exp, the callback was called after expiry. The user ignores it
obj′ := obj and deletes this entry from cbList.

2. If tik was not posted, i.e., tik ̸∈ bbcb:

(a) If c ≥ exp, the callback has already expired. The user ignores it
obj′ := obj and deletes this entry from cbList.

(b) If c < exp, the callback is unposted and unexpired. The user ignores
it obj′ := obj and leaves this entry cbList.

The user’s zero-knowledge proof in ScanOne is also updated to reflect the above
logic.

4.4 Authenticity and confidentiality for callback inputs

Our construction so far still has the following limitations: (1) callback arguments
are sent in the clear in Call, meaning a passive adversary can, e.g., learn correla-
tions between activity and moderation decisions; and (2) function arguments are
not authenticated in any way, meaning that a malicious bulletin board provider
or an active adversary can modify the callback arguments in a Call payload.

We would like to give service providers the ability to include encrypted,
non-malleable arguments in their call. This must satisfy a few constraints
simultaneously:

1. If a service provider posts a ticket and callback arguments, the arguments
cannot be malleable.

2. If the arguments are malformed, the user must be able to reject the callback
during ScanOne.

3. If the arguments are well-formed, the user cannot reject the callback during
ScanOne.

We now describe how to add authenticity and confidentiality in a way that meets
these goals.

Authenticity: tickets are signature pubkeys. To bind tik to args, we
interpret tik as a public key for a signature scheme. Surprisingly, this requires
few modifications to our protocol overall, and no modifications to our zero-
knowledge proofs.

Let Σ represent an EUF-CMA-secure pubkey-rerandomizable signature
scheme. We assume a public-key infrastructure for all service providers. That is,
every service provider has an associated keypair (pkspid, skspid), and a user, given
spid, can discover pkspid.

In ExecMethodAndCreateCallback, rather than selecting a random tik, the
user computes (tik, r)← Σ.RerandPk(pkspid) and places r in aux for the service
provider.
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In VerifyCreate, the service provider computes sk′spid := Σ.RerandSk(skspid, r)

and checks that tik is well-formed, i.e., tik = Σ.SkToPk(sk′spid).
In Call, instead of sending (tik, args), the service provider sends (tik, args, σ),

where σ = Σ.Signsk′spid(args). This binds the arguments to the ticket.

In VerifyCall, instead of posting (tik, args) unconditionally, it now receives
aux = σ and posts the call iff Σ.Verifytik(y, σ) is true.

Confidentiality: encrypted method augments and in-circuit decryption.
To encrypt args, it suffices to have the caller simply compute and post args :=
Enck(plaintextArgs), where k is an encryption key and Enc is a circuit-friendly
CPA-secure encryption algorithm (CCA-security is not necessary, since args is
now signed).

We must be careful about how k is determined, though. If we do not properly
bind a ticket’s associated symmetric encryption key to the ticket itself, a user
could intentionally use the wrong key to decrypt arguments to the wrong value.
On the other hand, if we require the client to prove the decrypted payload
is well-formed, a malicious caller can deadlock a client by giving it an invalid
ciphertext.

We thus include a separate encryption key with every entry in the callback list.
This forces clients to use the correct key. Because callbacks are authenticated by
the ticket holder, clients cannot tamper with the ciphertext. Further, because
each ticket is bound to its encryption key, callers cannot use malformed ciphertext
to deadlock the client. They can give a ciphertext with an ill-formed decryption,
but this will merely result in a failed callback.

ExecMethodAndCreateCallback now generates a fresh encryption key k, and
includes k in entry.

In Call, rather than letting args be plaintext, it uses its knowledge of k to
compute args = Enck(plaintextArgs).

In ScanOne, the user simply decrypts the payload in-circuit. That is, rather
than using args directly, it uses Deck(args), where k comes from the current entry
in obj.cbList.

4.5 Variable-length callback lists

The core of our extension to the zk-object model requires us to track issued
callbacks via cbList. We must represent cbList in a way that gives efficient circuit
operations for append, remove, and iteration. Näıve approaches do not work
here: a large fixed-size array means a full scan requires traversing even the
empty slots in the array. And a sparse Merkle tree has less-than-ideal overhead,
requiring log n hashes where n is the number of elements of the list, for a total
of O(n log n) work for iteration. This leaves us, seemingly, needing to resort to
expensive mechanisms for constant-overhead zk-memory [FKL+21].

We observe that we do not need to support O(1) random-access remove
operations on cbList to scan and ingest callbacks. Since users must ensure all
called callbacks are ingested, they must traverse the full list at some point. Thus,
it suffices to support O(1) removal amortized, while traversing a list in order,

20



and O(1) append for new callbacks. We define the representation of a list ℓ as

hℓ := H(H(H(H(ℓ1), ℓ2), ℓ3) . . . ℓn),

where H is a collision-resistant hash function. This supports O(1) appending,
since ℓ′ := ℓ∥x implies hℓ′ = H(hℓ, x), but it does not support efficient removal.

To support O(1) removal when incrementally iterating through the list, we
encode list traversal as a state machine in our user object, keeping track of the
previous cbList as well as the new version that will be the result of a complete
scan. Removal consists of not adding the value to the new list. We note we can
readily make this incremental logic handle multiple entries in the list at a single
time and thus create a batch proof. The complete zero-knowledge relation for
variable-length cbList is provided in Appendix B.

4.6 Private and public method identifiers

So far we have not specified whether the method being called in ExecMetho-
dAndCreateCallback or ScanOne is hidden from passive adversaries or not. We
describe how to implement either choice, and discuss tradeoffs.

If method IDs are private, then Φ is a single predicate that is used for every
operation, and takes in meth as an argument. While this provides method
privacy, it means that a user performing a ScanOne operation must prove a
circuit whose size is the sum of all the method sizes.

Public method IDs can be used to mitigate this. That is, we may let each
Φmeth be a separate circuit, and have every ExecMethodAndCreateCallback and
ScanOne also post meth in the clear to the bulletin board.

Finally, we note is possible to trade off method anonymity with performance
by grouping different methods together into the same circuit.

5 Security argument

Our construction of zk-promises realizes the ideal functionality Fzkpr in Figure 3
against computationally bounded adversaries with static corruption of parties.
The security of zk-promises rests on the assumption that our commitment scheme
is binding and hiding; our signature scheme is pubkey-rerandomizable and EUF-
CMA-secure; our encryption scheme is IND-CPA-secure; and our NIZKPoK
scheme is knowledge-sound, perfectly correct, and statistically zero-knowledge.

For space reasons, we defer a proof sketch to Appendix A.

6 Programming in the zk-object model

Given the basic construction, we now describe some applications and alternative
configurations.

Authorization logic. First, because the zk-object model supports Turing-
complete state machines with arbitrary state, we can implement a variety of
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applications. zk-objects readily represent accounts with stateful access control
policies spanning almost any authorization logic. As hinted at in Figure 2, we can
program rate limits, where the rate depends on the client’s current state. These
give much more flexibility than existing techniques which enforce a fixed limit
on a counter that resets, e.g., daily, (see, e.g., [CHK+06]) and applies equally to
both new and well-established accounts. . Similarly, we can support logic for
temporary bans, or a probation policy where an additional infraction, while in a
probation state, results in a ban. Finally, because we can build Turing-complete
state machines, state itself is unbounded. We could make a zk-object store a
client’s entire history of actions and defining arbitrary logic on top of that.

We are also not limited to purely anonymous access. zk-objects can allow
both anonymous and pseudonymous authentication for different pseudonyms
across various domains,8 where an infraction on one website affects the account
backing all of them.

Non-anonymous callbacks, revocation, and privileges. Because the
callback management mechanism is itself a zk-object, we can also realize non-
anonymous callbacks, where the object is anonymous, but callbacks are placed to
a fixed identifier.9 Given accounts issued to a known identity, e.g., an employee,
this would allow for updates or revocation (e.g, in the case of promotion or
employment termination).

Callback ordering. Similarly, we can change the semantics of callbacks
themselves. We can force callbacks to be evaluated in the order they are issued.
Or in the order they expire. The later would reduce the clients need to scan for
open callbacks, at the cost of blocking settlement of subsequent calls. We could,
similarly, imagine different tiers of calls with different priorities and scanning
interval requirements.

Callbacks from TEEs, public smart contracts, other zk-objects . Cur-
rently we restrict the source of a callback to a public key, where the bulletin
boards a signature over the callback and its arguments under the key. However,
other options are possible. For example, the signing key could be controlled by a
TEE, guaranteeing that callbacks could only be made by programs under certain
conditions. Similarly, we could restrict callbacks to be called by a specific pro-
gram run by the bulletin board (e.g., a smart contract instance on a blockchain).
Finally, we could restrict callbacks to those coming from other zk-objects. Here
we would require the bulletin board to, instead of a signature, verify a proof
that the call came from the execution of a method on another zk-object. In this
case, we could imagine calls are either bound to a class of objects or to a specific
instance ID. This would require some form of integrity labeling for calls.

Any reputation system must have a mechanism to prevent users from rating
themselves. We note this can be achieved via a strict allow list, whereby Φ
is hard-coded with a set of signing public keys it will accept calls from, or by

8Pseudonyms could be stored in the object directly via a mapping from domain to
pseudonym, or derived via a PRF evaluation.

9Naively, such callbacks would be single-use. To allow multiple calls, we could, e.g., postfix
the callback with a counter and force the client to retrieve the next counter value.
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Prove (ms) Verify (ms)
Callback Capacity: Unlimited 216 232 264 -

Signature-based Tree-Based Both
Show Authorized 337 316 372 558 2.81
Incremental Scan 571 535 638 972 2.81
Show Authorized

+ Incremental Scan
909 716 829 1123 2.81

Table 1: Runtimes for proving and verifying the zero-knowledge circuits. The
signature-based variants correspond to the centralized setting and the tree-based
variants correspond to the decentralized setting. Incremental scan includes the
cost of applying the callback. However, the verification runtimes are same across
both settings.

permissive mutable list, whereby public keys be part of the user record itself
and unauthorized calls are rate-limited rather than rejected outright, or by any
access control regime in between.

7 Experiments

In this section, we describe the implementation and evaluation of the application
described in Section 2 built with zk-promises. We build two versions, one for
the decentralized and one for the centralized setting.

Instantiating cryptographic primitives. We use Groth16 [Gro16] as our
zkSNARK and Poseidon [GKR+21] for all hash functions. For circuit-friendly
encryption, we use key-prefixed Poseidon in counter mode as a stream cipher.
For signatures, we implement Schnorr over the Jubjub curve [ZCa19].

Hardware. All benchmarks were performed on a desktop computer with a
2021 Intel i9-11900KB CPU with 8 physical cores and 64GiB RAM running
Ubuntu 20.04 with kernel 5.15.0-69-generic.

Code. zk-promises is written in Rust, using the Arkworks [Ar22] zkSNARK
crates and Rayon for parallelization where possible. The Criterion-rs crate was
used for all microbenchmarks and statistics.

7.1 Methodology

In zk-promises, method calls are verified by a zero-knowledge proof realized as a
circuit representing the logic in the call (e.g., that the account is in good standing
to make an edit, that a generated callback was stored for future scanning, or
that all pending callbacks were scanned for). We note that the logic for scanning
for a callback also includes the logic for ingesting the callback and, to hide which
callback was made, includes logic for both calls.

Recall, zk-promises can be built in both a decentralized and centralized
setting, depending on how the bulletin board is instantiated. In the decentralized
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setting, we build a Merkle tree over all callback entries in the bulletin board
and require proof to show membership in that tree. In the centralized setting,
the bulletin board is operated by a single server that is trusted for integrity
but not confidentiality or obliviousness. This allows us to replace Merkle tree
membership checks with simple signature checks.

For both settings, we create and benchmark circuits to prove methods for
authorization, callback scanning, and a combined single circuit of those two
statements.

While the centralized setting offers improved efficiency, it requires on ad-
ditional step by the server. Periodically, the server must rebuild the non-
membership data structure, updating the signed timestamp on each value to
prevent use of an expired but still signed non-membership entry.10 We measure
the runtime of this process as well.

Our second construction uses Merkle trees for verifying membership and
non-membership. While a Merkleized key-value store could suffice, verifying
(non-) membership for this tree in a fixed-size circuit is costly. Each operation
incurs worst-case costs; for a naive sparse Merkle tree, it involves hashing a
Merkle path of depth d, where d is the bit length of the hashed keys (in our
case, 256 bits). Instead, we implement two Merkle trees, one storing tuples of
(key, value) and one storing intervals of unused keys. Here, the circuit need only
verify a path of length log |bbcb|. Updating the trees consists of at most three
insertions outside the circuit: one to add a callback, and two to split the unused
interval in two.

Finally, we also implement batched scan—a circuit which settles more than
one callback at a time. This allows the client to condense scans of multiple
callbacks into a single proof for the server to verify. As with scan incremental
this includes (now repeated |batch| times) the logic for executing both callbacks.

7.2 Results

Over all benchmarks, the maximum observed relative standard error of the
median was 1.2%.

Table 1 shows the Groth16 proof and verify computation time for the three
zero-knowledge proof circuits. One circuit shows the client is authorized, another
scans for a single callback (scan incremental), and one combines both into a
single operation. Appendix D gives a breakdown of circuit sizes. As expected,
prover runtime (in the tree-backed setting) increases linearly as the global allowed
number of callbacks (and therefore the cost of the Merkle tree membership check)
increases. The signature-based setting, which replaces the membership check
with a fixed single signature verification, takes constant time.

While Incremental Scan only checks for a single callback, a complete scan
must handle all open callbacks, requiring multiple invocations. We constructed

10This is not necessary in the decentralized setting, since proofs are made with respect to an
up-to-date root of a sparse Merkle tree, which has efficient membership and non-membership
proof algorithms.
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Figure 4: Benchmarks for handling multiple callbacks.

circuits for batched scans to handle a fixed number of pending callbacks. Bench-
marking results can be found in Figure 4a. As expected, a batched scan is more
efficient compared to the same number of single-scans. For example, for the
tree height of 32, computation savings range from 20–40% when doing batched
settles of between 2 and 32.

The verification times are constant, at 2.8ms for all circuits, as seen in Table 1.
Batching Groth16 proof verification gives a throughput of up to 1,194 verifications
per second, a 4× throughput improvement over individual verifications.

Finally, we plot the rebuilding time for signature-backed callback bulletin
boards in Figure 4b. As expected, the runtime grows linearly with the number
of callbacks called by the server.

Communication costs for zk-promises are very low, with constant proof sizes
and small public inputs. Concretely, Show Authorized uses 608B and 568B for
signature-based and tree-based settings, respectively. Similarly, Incremental
Scan and batched scans use 396B and 268B, respectively in the Merkle-tree
backed setting, and Show Authorized + Incremental Scan use 748B and 708B,
respectively.

7.3 Discussion

We now discuss the feasibility of our prototype reputation system in a real-world
deployment.

7.3.1 Choice of configuration

The performance of any deployment of zk-promises is determined by four config-
urable parameters:
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• (maximum) broadcast latency —how frequently the bulletin board rebuilds
and announces updates,

• expiry—how long before callbacks expire,

• (maximum) scan interval—how frequently the client must complete a full
scan (i.e, the cutoff that lastFullScanTime must be newer than), and

• batch size—how many callbacks clients scan for at a time.

Let us also define the average authentication rate of a user as avgAuth. During
each scan, the client must process the callbacks that did not expire in the previous
scan, and all added callbacks since that previous scan. The total number of
callbacks that must be checked is:

(avgAuth · expiry) + (avgAuth · scanInterval).

If the batch size is equal to this, the server will only have to verify a single
(batched) scan for the average client. Increasing the batch size this way is a
tradeoff as each client will now have to do the work proportional to the average
number of callbacks a user generates.

If we combine batched scans with Show Authorized into a single circuit, then
the server only has the overhead of one zkSNARK verification per authentication
for clients whose number of outstanding callbacks is at most the batch size.
Each client, in contrast, needs to compute less than 30 seconds of work per
authentication, even in very large settings, as shown in Figure 4a.

Decreasing the broadcast latency will increase the liveness of zk-promises,
as the smaller this value is, the faster callbacks are announced. The broadcast
latency should be set to the smallest value a server can handle and still keep up
with computation.

Expiry should be set so that most malicious client actions can be caught
before the callback expires. Setting scan interval is a tradeoff in how synchronized
the clients are with bulletin board and how much work (scanning) the client
must do.

7.3.2 Example scenario: Wikipedia

We now examine a real-world scenario: moderating Wikipedia edits. Wikipedia
(across all languages) has an edit rate of 18 edits per second (average rate across
April 2023–March 2024 [Wik]). We know from the above experiments that a
single lightweight server can support 357 zk-promises verifications per second
(or 1,428, using batched verification). Thus, the increased load on the server per
authentication is easily handled, even if all edits are anonymous.

The peak month of edits in that time frame (January) for English Wikipedia [Wik] 11

had an average editor make around 239 edits a month, and 90% of edits are
reverted within 5hrs [JNV]. Thus we set expiry to 1 day. If we set the scan

11Additional data on edits such as reversion rate are only available for select languages, so
we switch to statistics for only English Wikipedia.
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interval to 24hrs then the batch size should be set to 239
31 · (1 + 1) = 16, so that

the server only has to verify a single proof for the average user. This means the
computation required to create the proof for batched scan is less then 10sec, as
shown in Figure 4a. We feel client side proving times are reasonable, as proofs
can be completed in the background while the client makes an edit.

We note that our numbers are an overestimation of the performance require-
ments, as most edits are (non-anonymous) automated editors [PCL+07]. So the
actual rate of anonymous edits for anonymous users is lower.

8 Conclusion

In this paper, we define zk-promises, which adds callbacks to the zk-object model.
While we have used this to demonstrate the feasibility of an anonymous reputation
system, the potential applications are much broader. A long line of work on
proof-carrying data [CT10, BCCT12] have explored zero-knowledge incremental
computation. Zerocash [BCG+14] introduced the idea of replay- and forking-
prevention for simple objects (limited to payments). Hawk [KMS+16] generalized
the class of functions, but each object was isolated and could not interact with
other object types. Zexe [BCG+20] offered inter-object communication between
oblivious objects of different types and, additionally, used recursive proofs to
hide which object is called. But up until now, using this programming model in
many real applications has been challenging.

To explain, we borrow a distinction from the cryptocurrency literature. Smart
contract systems, such as Ethereum, typically operate in the account model,
where there is a single authoritative state for an account and methods can be
called on it. In contrast, in [BCG+14, KMS+16, BCG+20, XCZ+22], state is
split into multiple locations. This is sometimes referred to as the UTXO model.
The UTXO model is generally regarded as impractical to work with, and brings
with it challenges similar to the asynchronous negative feedback problem we
articulate in Section 1.

zk-promises yields a practical account model for privacy-preserving com-
putation, as shown by our example application. Users can store their state
in a single account that gets asynchronously updated by other calls. In the
zk-promises model, users are responsible for sequencing updates to their object
requested by others, but they cannot drop particular update requests. We believe
this is useful for many applications, ranging from anonymous access control to
privacy-preserving smart contract systems.

A second consequence of this model is the possibility of having zk-objects
themselves make callbacks. Currently, in our prototype applications, the caller
is identified by a signature, but this can easily be tied to a TEE, a public smart
contract, or even another zk-object. This would allow an account model where
objects can, programmatically, be controlled by another entity in full or in part
even if that entity is not trusted to know the state of the object.
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9 Extensions and Future Work

We now detail some extensions and directions for future work.

9.1 Additional Functionality

While zk-promises already offers a lot of flexibility in callback creation and
execution, we identify some potential future routes of extension.

Service provider privacy. zk-promises explicitly does not aim to provide
privacy for the party calling the callback. Specifically, zk-promises permits the
user to know which service provider called a callback (by simply looking at which
ticket was used), as well as the contents of the callback arguments.

These notions of privacy are distinct and are resolved in distinct ways. Caller
privacy can be achieved by following the blocklisting mechanism of SnarkBlock
and BLAC [RMM22, TAKS10]. We replace token issuance with an interactive
protocol between the user and the service provider, whereby the user computes
an oblivious pseudorandom function (OPRF) over a nonce provided by the
service provider, where the key k is some user-specific key. This (tok, nonce) pair
is used during redemption. To sweep, the user must traverse the entire bulletin
until it finds a pair such that PRFk(nonce) = tok, and then sweep the attached
payload. Because this traversal is inherently sequential over (a portion of) the
bulletin board, this method can only reasonably be deployed over limited time
spans, and not globally.

Redeemer data privacy is a more difficult problem, since the user controls
their user record, and is tasked with updating it. One way of achieving this,
would be for a user to cede control over their record to a committee of mutually
distrusting parties. Then, to sweep a token, the parties would engage in a
multiparty computation (MPC) protocol to update the record. Another option is
to permit the user record to be updated by a single party using fully homomorphic
encryption, and then only rely on MPC to generate zkSNARK for the bulletin.

Lazy callback settlement. Currently, client prover time during ScanOne is
linear in the size of cbList, since it must check if each callback has been called or
has expired. This cost can be reduced if we loosen the time bounds on when
callbacks must apply.

Let cbList be as before, but now sorted by expiry time. This can be achieved
by in-circuit sorting with a more complex data structure, or by setting a fixed
expiry period for all present and future callbacks. To call ScanOne, the user will
now simply iterate through cbList until it finds an expiry time that is in the
future.

In this regime, a user only needs to do work linear in the number of expired
callbacks. This comes at the cost of immediacy of calls—any Call can take up to
the expiry time until it is applied to the user.

Retention period. In order to permit users to be offline for arbitrary periods
of time, zk-promises requires that bulletin boards keep all state forever. If we
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loosen this, permitting users to be offline for, e.g., at most one year, then we
may permit bulletin board operators to delete all items older than one year.

This extension only requires one extra assertion in ScanOne: that lastFullScanTime
is greater than the current time minus the retention period. This way, a user
who doesn’t fully settle at least once within the retention period is permanently
locked out, and cannot make progress by claiming their callbacks (which may or
may not have been called) are not in bbcb.

Rate limiting redemptions. Currently, redemption is unconditional—the
bulletin accepts any payload with a valid signature. There is no need to stop
here, though. If, for example, we wish for redeemers to also have credentials, we
can add a NIZK to the redemption logic to ensure that. Similarly, if we wish to
add rate limiting to token redemptions, we can add that as well, using standard
anonymous credential rate limiting methods [CHK+06] which are easy to realize
using existing anonymous credential schemes using zkSNARKs [RWGM23].

Additional provenance checking of calls. In a decentralized setting, it
may be desirable for a smart contract, rather than a specific service provider,
invoke Call for some callbacks. To handle this, it suffices to add public auxiliary
input to the callback bulletin board. Specifically, rather than storing (tik, args, t)
in bbcb, the bulletin board manager stores (tik, args, t, addr), where addr is the
source address of the Call. In Ethereum, for example, it is not necessary to trust
any third party that addr is correct. Similarly, call payloads can be accompanied
by an attestation from a trusted execution environment (TEE) that the values
were computed correctly.

The changes to ExecMethodAndCreateCallback and ScanOne are similar to
the allowlist method in the previous subsection. The user may predetermine
the smart contract addresses it is willing to receive calls from, and check in the
ScanOne ZKP that this holds.

9.2 Instantiating zk-promises with Different Cryptographic
Primitives

The approaches in zk-promises are generic to the cryptographic building blocks.
This raises the possibility of building new systems based on the approach in zk-
promises but using different primitives, or co-designing new primitives together
for improved efficiency.

Zero-knowledge Proof Systems. While Groth16 was selected in this work,
zk-promises is compatible with any zero-knowledge proof system. Alternate
systems can be used for additional properties such as trustless setup ( [BBHR18,
BBB+18]) or with universal setup (e.g., [MBKM19, GWC19, CHM+20]).

Since cryptographic primitives are used in a black-box manner, creating a
post quantum version of zk-promises is possible. For example, Groth16 can be
replaced with [AHIV17, BBHR19].

Membership Proofs and Accumulators. Callbacks in zk-promises depend on
an efficient membership and non-membership checks. While we implemented this
with merkle-trees, other approaches are possible like RSA accumulators [Bd94,
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LLX07, BBF19], polynomial commitments [KZG10], Verkle trees [Kus], and
Reckle trees [PSG+24] offer tradeoffs for this such as witness size, witness creation
and verification costs, and batching. In particular, batching of membership proofs
can reduce the amount of computation required for the client to sweep their
open callbacks.

Techniques for batched verifications also exist, such as Zebra [RPX+22]
for blind signatures and SnarkPack [GMN22] that has logarithmic scaling for
batches.

The use of more efficient hash functions in circuits than Poseidon will have
concrete improvements for client computation. We could even imagine co-
designing a zero-knowledge proof system and membership construction with
better efficiency.

zero-knowledge Virtual Machines. While this work is done with custom
zero-knowledge circuits, zero-knowledge virtual machines (zkVMs) can be utilized
instead. Multiple works such as Lasso, Jolt, RISC Zero, and TinyRAM [STW23,
AST24, RIS, BSCG+20] can be used to convert programs from existing languages
such as x86 and RISC-V into zero-knowledge proofs.
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A Proof sketch

We will now present a proof sketch that our construction realizes the ideal
functionality Fzkpr in Figure 3 against computationally bounded adversaries with
static corruption of parties. We do so by briefly describe the simulator Sim for
our real protocol in the ideal world and arguing for its correctness assuming the
underlying cryptographic primitives are correct.

The simulator Sim first runs Setup and gets the necessary trapdoors for the
simulation and extraction of zero-knowledge proofs in Setup, Simmaintains a table
mapping objects in its simulated real-world protocol to their ideal counterparts
in Fzkpr and, when necessary, updates the mapping when it needs to create a
real-world object for an ideal-world one (or vice versa).

Because all messages between parties are accompanied by zero-knowledge
proofs or ciphertexts, the simulator can extract on all adversarial generated
messages, look up the corresponding ideal-world objects in its table, and proxy
the requests to the ideal functionality. Similarly, for any honest interactions
in the ideal functionality, the simulator can model the adversary’s view of the
real-world protocol by simulating the zero-knowledge proofs with respect to
random commitments, serial numbers, and ciphertexts. In the case of executed
callbacks, we cannot directly extract arguments (as there is no zero-knowledge
proof associated with a call.) However, callbacks to a simulated party are
decryptable with the keys the simulator holds.

Simulating Call and IngestCall. In the real world, Call is performed by
adding a ticket, the arguments, and the current time to bbcb, which is accessed
later in ScanOne. This directly corresponds to our pendingCbs table, whose new
entry is also sent to the callback creator.

To simulate, we must also ensure that the real and ideal functionalities
behave equivalently with who can call callbacks. Suppose party Pi applies a
(tik, args) from bbcb during ScanOne. Firstly, the tuple could only appear in
bbcb if its signature is valid, i.e., the party who ran Call knows tik’s secret key.
In addition, (tik, args) is only applied if tik appears in the user’s cbList, which,
in turn, can only happen if tik was given to Pi during ExecMethodAndCreate-
Callback. Thus, the calling party must know the secret key of the tik given
at ExecMethodAndCreateCallback. This occurs only if they are the same party
(or, the party opposite Pi during ExecMethodAndCreateCallback was corrupted).
Finally, we note that the signature check of σ′ in VerifyCall ensures that the
caller is in authorizedCallers.
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For simulating IngestCall, we note that, in the real world, ScanOne makes
progress in its list of outstanding callbacks , and deletes it from the list. This is
precisely what IngestCall performs.

Simulating ExecAndMakeCb. In the real world, callbacks are created by
ExecMethodAndCreateCallback. In order to issue a ticket, ExecMethodAndCreate-
Callback rerandomizes pkspid and stores it as tik along with the encryption key
and method ID in obj.cbList. The user then posts the new object to bbobj, and
sends the service provider the transaction ID and the opening to the commitment
for (tik, k,meth). We consider the call a success if VerifyCreate succeeds.

The ideal-world user can only run ExecAndMakeCb when all callbacks called
before cutoffTime have been ingested. This directly corresponds with the
lastFullScanTime variable in the real world.

Suppose the real-world server calls Call(tik, args) on method meth at time t.
We argue that any future ExecMethodAndCreateCallback with lastFullScanTime >
t must reflect the object post-callback. Note ExecMethodAndCreateCallback with
lastFullScanTime threshold t′ must show that obj.lastFullScanTime ≥ t′. This can
only occur if a ScanOne sequence that started at time at earliest t′ has completed,
which, in turn, only succeeds if the user has done one of the following: (1) executed
meth(obj, args, x) and deleted the associated tik from cbList, (2) ignored the call
and deleted tik from cbList, (3) or ignored the call and left tik in cbList. However,
the latter two cases may only happen if tik ̸∈ bulcb, which contradicts the fact
that Call(tik, args) was called at time t. Thus, meth(obj, args, x) was called, and
the current object state reflects the called callback.

B Formal description of zk-promises

In this section we formally describe the entirety of zk-promises, once all the
features in Section 4 are added. We write the zero-knowledge relations for
ExecMethodAndCreateCallback and ScanOne in Figures 5 and 6, respectively. In
these relations, when a new object obj′ is created from obj, a fresh serial number
is chosen. If this serial number has been revealed before, then the use will be
unable to use this state as it will be treated as a stale state.

Setup(Φ) → pp. This performs Groth16 CRS generation for the relations in
Figures 5 and 6. The output pp contains proving and verifying keys.

ExecMethodAndCreateCallback(pp, obj, pkspid,meth′, x) → (obj′, π, cbData, aux).
Let obj be the user object, let pkspid be the verifying key for service provider ID
spid for an EUF-CMA-secure signature scheme Σ, and let s be the commitment
randomness used in that objects commitment in bbobj. Let meth′ be the method
the user wishes to create a callback for. Let x = (t, curTime), where t is the
minimum value for lastFullScanTime that the service provider will accept and
curTime be the current global time.

The ExecMethodAndCreateCallback algorithm proceeds as follows:

1. Compute a new ticket as a rerandomized verifying key (tik, r)← Σ.RerandPk(pkspid)
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2. Pick expiry expiry and a fresh encryption key k and build the callback
list entry entry := (tik, exp, k,meth′). Commit to the entry comentry :=
Com(tik, exp, k,meth′; sentry) where sentry is fresh randomness.

3. Clones the zk-object obj to a new one obj′. Append tik to their private

callback list, compute obj′.hcb := H(obj.hcb, entry), obj
′.h

(old)
cb := obj′.hcb,

obj′.lastFullScanTime := curTime, and pick a fresh serial number obj′.sn.
Finally commit to the new object, com′

obj := Com(obj′; s′obj) where s′obj is
fresh randomness.

4. Let cbData = (comentry, obj.sn) and let aux = (sentry, entry)

5. The user computes a zero-knowledge proof π of RΦcreate
create .

6. The user sends (π, com′
obj, cbData) to bbobj

7. The user sends (π, com′
obj, cbData, aux) to the service provider

The information that the user sends to the service provider does not de-
anonymize the user as it contains no multi-user or long term identifier. It contains
a zero-knowledge proof, π, the cryptographic commitment com′

obj, and cbData,
and aux. cbData contains a cryptographic commitment of the (single-use) entry
and a (single-use) fresh serial number. aux contains sentry, the (single-use) fresh
randomness and the callback list entry, entry.

VerifyCreate(pp, skspid, obj
′, π, cbData, aux). Let skspid be the service provider’s

signing key. The service provider performs the following:

1. Verify obj′ appears on bbobj, i.e., that the callback was created;

2. Verify the proof π with respect to inputs cbData, curTime, and obj′; and

3. Unpack aux and verify cbData.comentry = Com(tik, exp, k,meth′; sentry)

4. Verify that tik has never been used before in a callback initiated by this
service provider

ScanOne(pp, obj, x) → (obj′, π, cbData). Let obj be the user object, let x
be the current time curTime, and let sobj be the commitment randomness to obj.
The user does as follows:

1. Clones the obj to a new one obj′ and pick a fresh serial number obj′.sn.

If h
(old)
cb = hcb (i.e., the beginning of the scanning process), update

obj′.loopStartTime := curTime.

2. Let entry = (tik, exp, k,meth) represent the current entry in obj.cbList.
If (tik, args, t) ∈ bbcb for some args and t < exp, absorb the callback:
obj′ := meth(obj, curTime,m, x), where m = Deck(args). If tik ̸∈ bbcb and
exp is in the future, then leave entry in obj′.cbList. In any other case, delete

entry from obj′.cbList. Finally, update h′(new)
cb = H(h

(new)
cb , entry) if the

entry was left in, and h′(new)
cb = h

(new)
cb otherwise.

38



 com′
obj, comentry, sn, t, curTime, bbobj;

comobj, sobj, s
′
obj,

sentry, tik, exp, k,meth′

 :

comobj ∈ bbobj
comobj = Com(obj; sobj)
com′

obj = Com(obj′; s′obj)
comentry = Com(tik∥exp∥k∥meth′; sentry)
obj.lastFullScanTime ≥ t
obj′.lastCreated = curTime
obj.sn = sn
Φcreate(obj, obj

′,meth′, curTime) = 1
obj′.hcb = H(obj.hcb, (tik, exp, k,meth′))

obj.h
(old)
cb = obj.hcb

Figure 5: The RΦcreate
create relation

3. If h′(old)
cb = hcb this is the last step of a scanning process. Update

obj′.lastFullScanTime := obj.loopStartTime.

4. Compute a zero-knowledge proof π of Rsettle.

5. Let cbData = (comentry, obj.sn)

6. The user sends (π, com′
obj, cbData) to bbobj

VerifyMethodExec(pp, obj′, π, cbData). In VerifyMethodExeccreate, the main-
tainer of the bulletin board bbobj receives (π, com

′
obj, sn, cbData). It first checks

sn has not appeared in its set of observed serial numbers. Next, it verifies π with
respect to cbData and its own curTime and bbobj representative. On success, it
adds (π, com′

obj, cbData) to bbobj.
In VerifyMethodExecsettle, the maintainer receives the same payload. The

behavior is identical to above, with the only change being that it also uses a
bbcb representative as public input for π verification.

VerifyCall(pp, tik, args, aux). The maintainer of the callback bulletin board
bbcb receives (tik, args, aux = σ). It interprets tik as a signature public key pk,
and then checks Σ.Verifypk(args, σ). On success, it posts (tik, args, curTime) to
bbcb.

C Membership and non-membership

zk-promises is phrased in terms of bulletin boards and data structures that admit
efficiently checkable membership/non-membership arguments. We identify and
implement two such variants.
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
comobj, com

′
obj, comentry, nul, t, x, curTime,

bbobj, bbcb;
sobj, s

′
obj, sentry,

wasCalled, tik, exp, k,meth, timeCalled, args,m

 :

comobj ∈ bbobj
comobj = Com(obj; sobj)
com′

obj = Com(obj′; s′obj)
obj.sn = sn
wasCalled = tik ∈ bbcb
(timeCalled, args) = if wasCalled : bbcb[tik] else (⊥,⊥)
m = Deck(args)

scanning := obj.h
(old)
cb = obj.hcb

scanning′ := obj′.h
(old)
cb = obj′.hcb

entry := (tik, exp, k,meth)
deleteEntry := curTime < exp and tik ̸∈ bbcb
absorbEntry := timeCalled < exp and tik ∈ bbcb
¬absorbEntry ∨ Φingest(obj, obj

′,meth,m, curTime)

obj′.h
(old)
cb = H(obj.h

(old)
cb , entry)

obj′.h
(new)
cb = if deleteEntry : obj.h

(new)
cb

else H(obj.h
(new)
cb , entry)

obj′.loopStartTime = if ¬scanning : curTime
else obj.loopStartTime

obj′.lastFullScanTime = if ¬scanning′ : obj.loopStartTime
else obj.lastSwept

obj′.h
(old)
cb = if ¬scanning′ : ∅ else obj.h

(old)
cb

obj′.h
(new)
cb = if ¬scanning′ : ∅ else obj.h

(new)
cb

obj′.hcb = if ¬scanning′ : obj.h(new)
cb else obj.hcb

Figure 6: The R
Φingest

ingest relation
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Merkle trees. We may represent our object and used callback sets bbobj and
bbcb as Merkle trees, where the leaves are the elements of the set. To prove of
x ∈ S, it suffices to prove knowledge of an authentication path from a leaf with
value x to the root of the tree. In these proofs, the root is public input. To
keep a proof of membership up to date, it suffices to download a frontier of the
append-only tree. This permits a communication cost tradeoff of logarithmic to
linear, depending on privacy requirements [RWGM23].

To allow non-membership proofs for bbcb, we simply prove membership in the
complement of bbcb, i.e., C = {0, 1}256 \ {bbcb.tiki}i. Specifically, we partition C
into semi-open ranges of integers [a, b) ⊆ {0, 1}256, and define a Merkle tree T
whose leaves are those ranges. Then to prove non-membership in bbcb, it suffices
to show knowledge of a tik, a, b such that a ≤ tik < b and [a, b) is in T . We note
that the structure of T is liable to change every time bbcb is modified, so proofs
of membership are not necessarily updatable using the frontier method.

Signatures. In a centralized bulletin board setting, it is also possible to
represent set membership using signatures. The manager of the bulletin boards
maintains two signature keypairs (pkobj, skobj) and (pkcb, skcb). Every time a
value is posted to a bulletin board, the manager signs the value and returns
the signature. To prove membership of x in a bulletin board with public key
pk, it suffices to prove knowledge of a signature σ such that Verifypk(x) is
true. Compared to Merkle trees, membership signatures have the benefit of
not requiring updating—a valid σ will always be valid regardless of how the
corresponding set changes.

Signature non-membership proofs work similarly. As above, we partition the
complement set into ranges and prove membership in that signed set. Since the
bbcb complement set shrinks over time, a valid proof of non-membership at time
t should not necessarily be valid at time t+1, since the value might have become
a member of bbcb in the meantime. To handle this, we must invalidate every old
non-membership signature. We can do this by adding an epoch to every value
and making the verification equation Verifypk(x), or by picking a new signing
key every epoch and publicizing it through the bulletin board. In either case,
the bulletin board manager must re-sign the entire complement every epoch.

D Number of Constraints

Table 2 lists the number on constraints in ShowAuthMakeCB and ShowAuthMakeCB1Sweep
circuits in the centralized and decentralized settings. In the ShowAuthMakeCB

circuit, the user shows that the record is in good standing and creates a callback.
The ShowAuthMakeCB1Sweep circuit also does this but also scans for a single
callback.

Table 3 lists the number on constraints in BatchedScan circuits in the
centralized and decentralized settings with various batch sizes.
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Circuit
Single
Server

De-centralized

Epoch Capacity: Unlimited 216 232 264

Number of Constraints
ShowAuthMakeCB 28,603 25,352 29,720 38,456

ShowAuthMakeCB1Sweep 60,694 55,971 64707 82,179

Table 2: The number on constraints in ShowAuthMakeCB and
ShowAuthMakeCB1Sweep circuits.

Batch Size
Single
Server

De-centralized

Epoch Capacity: Unlimited 216 232 264

Number of Constraints
1 60,694 55,971 64,707 82,179
2 105,872 100,743 113,847 140,055
4 194,210 187,209 209,049 252,729
8 370,886 360,141 399,453 478,077
16 724,238 706,005 780,261 928,773
32 1,430,942 1,397,733 1,541,877 1,830,165
64 2,844,350 2,781,189 3,065,109 3,632,949

Table 3: The number on constraints in batched scan circuits.
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