
Efficient (Non-)Membership Tree from Multicollision-Resistance

with Applications to Zero-Knowledge Proofs

Maksym Petkus∗

maksym@petkus.info

Abstract. Many applications rely on accumulators and authenticated dictionaries, from timestamping certi-

ficate transparency1 and memory checking to blockchains and privacy-preserving decentralized electronic mo-

ney2, while Merkle tree and its variants are efficient for arbitrary element membership proofs, non-membership

proofs, i.e., universal accumulators, and key-based membership proofs may require trees up to 256 levels for

128 bits of security, assuming binary tree, which makes it inefficient in practice, particularly in the context of

zero-knowledge proofs.

Building on the hardness of multi-collision we introduce a novel (non-)membership, optionally key-value,

accumulator with up to 2x smaller tree depth while preserving the same security level, as well as multiple

application-specific versions with even shallower trees, up to 6x smaller depth, that rely on the low-entropy

source. Moreover, solving for special case of adversarial attacks we introduce key index variants which might

be a stepping stone for an entropy-free accumulator.

Notably, unlike other constructions, e.g., [Woo+14]; [GHW21], this work, although may, doesn’t depend

on the dynamic depth of the tree which is simpler and more suitable for constant-size ZKP circuits, while

ensuring a substantially smaller upper bound on depth.

Efficient in practice construction in the adversarial context, e.g. blockchain, where the tree manager doesn’t

need to be trusted, i.e., operations can be carried out by an untrusted party and verified by anyone, is the

primary goal. Example instantiations are considered, where special treatment is given to the application of

representing serial numbers, aka nullifiers, see [BS+14]. Nevertheless, the constructions are self-sufficient and

can be used in other contexts, without blockchain and/or zero-knowledge proofs, including non-adversarial

contexts, see 5.1.

Furthermore, our findings might be of independent interest for other use cases, such as hash tables, databases

and other data structures.

Keywords: dictionary, accumulator, tree, Merkle tree, multi-collision, set membership, non-membership,

zero-knowledge proof, zk-SNARK, blockchain, hash table, memory checking.

∗This work have been performed while employed at Chronicled Inc.
1Mel+15.
2Hop+20.

1

Contents

1 Introduction 3

1.1 Overview and Contributions . 3

1.2 Comparison to Alternatives . 4

2 Accumulator from Hardness of Multicollision 6

2.1 Key-Value Merkle Tree . 6

2.2 Sorted Merkle Tree . 6

2.3 Intuition . 6

2.4 General-Purpose Construction Sketch . 7

2.5 Update and Deletion . 10

3 Security 10

3.1 Objectives . 10

3.2 Building Blocks . 11

4 Efficient Constructions for Nullifiers and Combined Keys 11

4.1 Constrained Epoch Sample Space . 12

4.2 Post-Factum Randomization . 13

4.2.1 Nullifiers from Randomized Commitment . 14

4.2.2 Bare Commitment Bootstrapping . 15

4.2.3 Empty Bucket Rule . 16

4.2.3.1 Example Instantiation . 18

4.2.3.2 Front-running Problem . 18

4.2.3.3 Addressing Front-running . 19

4.2.3.4 Indistinguishability . 22

4.2.3.5 Randomized Nullifier Indistinguishability via Key Index Variants 23

5 Efficient General-Purpose Constructions 27

5.1 Authority Accumulator . 27

5.2 VRF-Based . 28

5.3 VDF-Based . 28

6 Bucket Operational Efficiency 28

6.1 History-Independent . 30

6.2 History-Dependent . 30

7 Future Work 31

8 Conclusions 32

9 Acknowledgements 32

10 References 33

2

1 Introduction

Many cryptographic applications rely on accumulators, from certificate transparency [LK12]; [Mel+15] to

privacy-preserving decentralized electronic money [BS+14], while Merkle tree and its variants are efficient

for arbitrary element membership proofs, non-membership proofs and key-based membership proofs, on

other hand, may require a sparse tree of depth 2λ for λ bits of security [Bau04], which makes it inefficient in

practice, particularly in the context of zero-knowledge proofs.

While there are constructions, such as Merkle Patricia tree [Woo+14], which are efficient on average in the

absence of an adversary, however, it’s possible to maliciously factor the keys in order to increase the depth

and subsequently slow down the speed of operations on the data structure.

Building on the hardness of multi-collision we introduce a basic trust-less version of (non-)membership, op-

tionally key-value, accumulator with almost 2x smaller tree depth (≈ λ) while preserving the λ security le-

vel. Additionally, we build specialized constructions with even shallower, up to 5+ times, trees that rely on a

source of entropy, and authority trees depth of which is 6+ times smaller. Notably, the construction doesn’t

depend on dynamic tree depth which is suitable for ZKP circuits.

Such an accumulator can be used to represent a database, a global state of a blockchain, a blacklist to

prove absence against or keep track of serial numbers3, aka nullifiers, and privately check or ensure its

(non-)existence.

The combination of tools depends on the application and environment, e.g., it can be a server of certificate

authority or a blockchain that can use it either as a key-value storage accumulator or to store nullifiers. We

focus on blockchain applications but these techniques can be adapted to other contexts.

1.1 Overview and Contributions

We start by considering simple Merkle tree-based constructions (2.1, 2.2) and their limitations, such as (non-

)membership proof time complexity which serves as a motivation for improvement. We then analyze the pro-

bability of collision in the simple construction, aka birthday collision, and introduce the primary observation

that the probability of collision decreases dramatically as we increase the arity of collision (2.3).

Building on the insight the first tree construction sketch based on the hardness of multicollision is introduced

(2.4) leading to an almost 2-fold depth reduction compared to the baseline, which is roughly equal to the se-

curity parameter λ for adversarial setting where input keys can be sampled maliciously to find multicollisions.

While a substantial improvement over the state of the art [Bau04], further improvement is still desired both

for ZKP (non-)membership proof complexity and insertion complexity, especially if the tree is stored as part

of the blockchain state.

Efficiency improvement proceeds considering the concrete use-case, namely storing the nullifiers, our ap-

proaches can be generally described as relying on a random oracle model where randomness can be seen as

derived post-factum combined with rate-limiting, such that a malicious actor can’t query an oracle before

deciding whether to submit the key for insertion, similarly to universal hashing.

Construction based on constraining epoch’s sample space is proposed (4.1), it further reduces tree depth by

4-fold compared to baseline (for specific parameters). The solution is suitable for environments with relatively

3BS+14.

3

few users, such as enterprise blockchains, nevertheless, it’s still desirable to reduce the depth even further,

while ideally being able to support many users.

Next, we turn to the rate-limiting approach with post-factum randomization (4.2), effectively making the

number of samples equal to the system throughput instead of the computing power of an adversary. The con-

struction in 4.2.1 relies on the derivation of the key index from the independently randomized input, speci-

fically from a randomized commitment. Such an approach further reduces the depth by 5-fold compared to

the baseline for the practical instantiations supporting 245 transactions, it is suitable for systems where each

transaction consumes an input that can be randomized, such as [BS+14].

As the next step, we’re seeking to support cases where randomized input cannot be provided, starting with

commitment bootstrapping (4.2.2) that introduces distinguishability concern, which we address with the

requirement of unconstrained key index (dummy nullifier) to fall onto an empty bucket (4.2.3), which pa-

ves the way to front-running, i.e., making bucket non-empty before honest user’s transaction gets processed.

We counteract front-running with the requirement to provide epoch-specific proof of work when no rando-

mized input is used, and relaxing the empty bucket rule to allow for multiple elements, rendering attacks

computationally infeasible.

While front-running is addressed, a malicious actor could engage in the distinguishability attack via strate-

gic partial filling of buckets that allows to use statistical methods to assign the likelihood of a nullifier being

a dummy and perform broad estimations which we solve through the introduction of key index variants

(4.2.3.5) that allow to fall back on another bucket if the corresponding one is busy. While seemingly more

complex the membership proof and amortized non-membership proof complexities are essentially the same.

Shifting attention to efficient general-purpose constructions, we introduce authority accumulator (5.1) as an

example of a non-adversarial case, or alternatively, a setup where the hash function used cannot be learned

by an adversary (e.g., universal hashing, keyed hash function). Following up with VRF-based key index deri-

vation construction (5.2) that is suitable for malicious choices of keys, and a VDF-based construction (5.3) as

an additional alternative.

Finally, in section 6 we analyze bucket occupancy to judge average time complexity, concluding that even if

there are some high arity collisions, most of the non-empty buckets will contain just a few elements, effective-

ly rendering constant time lookup complexity in the bucket. This finding is of independent interest, such as

for the design of efficient hash tables. We also discuss history-independent (6.1) and history-dependent (6.2)

approaches in more detail.

1.2 Comparison to Alternatives

Comparison of time and space complexities for λ bits of security (accumulator size is O(1) for all):

4

Construction (Non-)mem. proof upper bound Lookup Insert Tree Size4 HI5

Sorted Merkle Tree 2 logn logn n 2n X

Sparse Merkle Tree7 2λ logn 2λ 4n X

Sorted Reference Merkle Tree8 logn 2 logn 3 logn 3n+ 3n X

Merkle Patricia Tree9 ≈ 1.3λ logn logn 4n X

Jellyfish Merkle Tree10 2λ logn logn 4n X

This work, basic

construction, section 2.4
λ 16 logn 2n X

This work, optimized

construction 4.2.1
logn 16 logn 2n X

We’re considering the upper bound on the (non)-membership proof since 1) this has an influence on the size

of the zero-knowledge proof circuit and 2) higher tree depth can be targeted to perform DoS attacks, i.e., if

in the design of the system, the average case is considered (O(log n)) however the worst-case is staged and

exploited by a malicious user.

Note that lookup time complexity doesn’t assume an additional indexing data structure, which would tra-

de storage size for faster time. For the tree data structure size estimates, if a key-based lookup structure is

needed we account for an additional 2x overhead, assuming a hash table which is approximately the same as

storing reference to node’s children instead, such as in a sparse Merkle tree.

Sorted reference Merkle tree is impractical without a supporting data structure such as an AVL tree, however,

it will increase storage requirement since each node not only stores its value but also pointers to the left child,

right child and the parent. Hence, about 4∗(2n−1)∗log2(2n−1) bits of storage would be needed for a perfectly

balanced AVL tree. This yields at least 41 TiB for n = 240 which is almost the size of the sorted Merkle tree,

even having that the actual key values are stored in the sorted Merkle tree only, hence the number of reads

doubles, otherwise even more storage is needed. It requires O(2 log2 n) on average for lookup versus O(1) for

this work.

Merkle Patricia tree is a substantial improvement over the sparse Merkle tree [Bau04], intuition being the

fact that instead of depth increasing proportional to the length of colliding key index prefix, it adds only one

more level due to the use of extension node. For an attacker to increase the depth of the tree a set of key in-

dices has to be selected such that if we take one of the indices all of the rest will share the prefix of distinct

length with the given one, ensuring that branching is happening at many levels. Therefore, more samples are

required on average, meaning that for the same security parameter, the maximum depth of the tree is smaller.

Jellyfish, a variant of the Merkle Patricia tree, on the other hand, simplifies the construction by removing

extension nodes altogether resulting in the depth proportional to the length of the shared prefix index.

4 at full capacity, including supporting data structures
5 history-independent, see 6.1
6 amortized
7 [Bau04]
8 [LK12]; [Tzi+21], assumes supporting data structure (e.g., AVL tree that references primary tree’s leaf indices), otherwise

lookup is O(n)
9 arity of 2 is used for fair comparison; non-membership proof size is empirical, based on randomized simulations of up to 225

key samples
10 [GHW21]

5

2 Accumulator from Hardness of Multicollision

2.1 Key-Value Merkle Tree

In the introduction we’ve mentioned that a naive Merkle tree would have to be 2λ levels tall to achieve λ bits

of security, e.g., 256 levels for 128 bits of security, which is due to the birthday paradox. Such an accumu-

lator would hash a key k to obtain an index key h = H(k) and treat it as a path to the leaf (aka, leaf in-

dex) and the leaf itself would represent a flag, e.g., single bit 0 or 1 meaning element is or isn’t present in the

accumulator.

Inserting an element would entail flipping the leaf’s bit from 0 to 1 and updating the parent hashes. This

allows us to prove both membership and non-membership since the leaf’s location is deterministic, i.e., ad-

dressable. Optionally, the leaf can also encode the value corresponding to the key, effectively making it a

key-value accumulator.

We can utilize sparse Merkle tree [Bau04] to efficiently compute the initial accumulator and alleviate the

storage requirement, however, the maximum supported depth must still be 256 levels, which is expensive in

certain contexts, such as in ZKP circuits.

2.2 Sorted Merkle Tree

Another approach is to keep the sorted tree, such that starting from leaf 0 every element is specified in

an ascending order. This way we can prove membership as in the classic Merkle tree, and we prove non-

membership by revealing two adjacent leaves and proving that the key would be between them if it was in

the tree. We would need to account for 2 edge cases where the key in question is lesser than the key in the

0-index leaf, in which case we just show that it’s lesser and if it’s greater than the last we just show that it’s

greater.

Such a tree can be shallow, just to accommodate the expected number of inserted elements during its lifeti-

me, however, each insertion operation incurs O(n) time complexity to shift all the greater leaves to the right,

which is infeasible in most contexts. Notably, some optimizations can be done, which we’ll come back to later.

2.3 Intuition

We start by looking closely into the generalized Birthday paradox, i.e., the probability of multi-collision.

We first observe that the number of samples required on average to reach s-collision, i.e., s people sharing the

same birthday, increases close to linearly with s, e.g., while for 2-collision it’s 23, 1398 samples are needed on

average for 10-collision, see [Ste99].

This leads to an insight: since the “hardness” of multi-collision is higher than of the 2-way collision, if we

replace a leaf with a bucket that contains a list of elements that share the same path we might be able to

reduce the depth of the tree, while keeping security at the same level.

Here’s an example where a 6-collision is necessary to overflow a bucket, a 3-fold increase in s compared to a

birthday 2-collision, however, requires 460 samples on average, a 20-fold increase in the number of samples.

In fact, the accumulator from section 2.1 can be seen as a special case of such generalization, where the

bucket size is one and we’re seeking to avoid 2-collision.

6

2 4 6 8 10

0

500

1,000

1,500

of people sharing a birthday

to
ta

l
p

eo
p

le

Figure 1: Number of people needed for at least 2, 3... of them sharing a birthday with 50% chance

root

0

...

����� �����

...

����� ����� · · ·

1

...

����� �����

...

����� �����

Figure 2: Tree with buckets of 5-element capacity, where � - element, � - empty cell

2.4 General-Purpose Construction Sketch

We need two components to construct the accumulator 1) an addressable binary hash tree with depth da

(A stands for addressable) and a bucket that can hold a set of up to s − 1 elements, where s is the arity of

collision that should be improbable to occur.

To insert a key-value element (k, v) we get the first da bits of the key index h = H(k) to signify the path to

the bucket ka = h0..da−1 in the addressable tree, and we take the rest |h| − da bits, i.e., kb = hda..|h|−1 to

append (kb, v) to the elements of the bucket, consecutively h = ka‖kb, i.e., a concatenation of the bucket

address and the bucket element’s key. Notably value v is optional.

The (non-)membership proof is then an authentication path to the corresponding bucket along with the list of

all the bucket elements that went into the bucket and requires checking that the bucket element of the key is

(or is not) in the list.

In order to set the parameters for security level we need a good approximation of the amount of work neces-

sary to hit the first s-collision with 50% probability which has been explored in [Suz+06]. On average the

following amount of work is needed to overflow a single bucket:

7

n
s−1
s ∗ (s!)

1
s (1)

Hence we derive that the amount of work provides log2

(
n
s−1
s ∗ (s!)

1
s

)
bits of security.

Additionally, we can calculate an upper bound probability of s-collisions after work q. Let C(n, q, s) denote

an s-collision event having n buckets and q samples (queries), concretely that there’s at least one bucket with

at least s elements. Using the formula (see [RS09] theorem 2.9 assuming ideal hash function, i.e., µ(h) = 1,

[Suz+06] theorem 2):

Pr[C(n, q, s)] ≤
(
q

s

)
∗ n−(s−1) (2)

For example, using a bucket size of 10 we can reduce the depth of the addressable tree to 140 levels. Follo-

wing is an exposition of how bucket size influences the addressable tree depth while keeping the security level

constant at 128 bits.

0 5 10 15 20 25 30 35

150

200

250

bucket capacity

tr
ee

d
ep

th

Figure 3: Tree depth as a function of bucket capacity, for 128 bits of security

Notably, with an increase in the capacity of the bucket the depth falls sharply only initially, becoming less

influential, therefore, for the actual implementation a tradeoff between tree depth and complexity of the

bucket, in terms of storage and proof time and size, shall be made for the specific setup used. For example,

for tree depth da = 128 and the bucket capacity of 32, and the respective bucket part of key index size of

256 − 128 = 128 bits, the bucket hash would consume 4096 bits of input (assuming there’s no associated

value), in order to prove (non-)membership of an element alongside with 32 comparisons.

We can improve the construction by sorting the bucket and putting abridged elements into the bucket tree, a

sorted Merkle tree of depth db = log2(s − 1), since computational overhead is negligible for small buckets, as

described in 2.2. This would allow us to prove the non-membership of the bucket with 2db − 1 siblings (and

hashes) and 2 comparisons with adjacent elements, instead of s − 1 elements and s − 1 comparisons, reducing

the hashing complexity, see figure 4.

8

root

0

...

B0

kb0,v0 kb1,v1 kb2,v2 ∞

B1

· · · · · ·

...

B2 B3 · · ·

1

...

B2da−4 B2da−3

...

B2da−2 B2da−1

Figure 4: Tree with 4-element capacity buckets

Where Bka is the root hash of the bucket tree of depth db = 2 which contains leaves that represent all the

index keys that share db-bits prefix, i.e., list sort({kb | ka||kb ∈ K }) where K is the set of all the key indices

in the accumulator, ka ∈ {0, 1}2d
a

and ∞ signifies default value of an empty leaf.

Yet another improvement is possible through replication of the bucket key from the next leaf in the current

leaf (adopted from [GT00]), i.e., a leaf would represent (kbi , v, k
b
i+1), which is enough information to prove

non-membership, and results in almost 2-fold decrease in hash function invocations for bucket tree, therefo-

re the updated non-membership proof in the bucket requires only db hashes. Note that we also can optionally

store value v associated with the key, in which case it’s serialized into a constant bit length either as raw data

if it’s short or otherwise a hash of the respective data.

Structuring the bucket as a tree allows us to find optimal parameters by trading bucket tree depth for

addressable tree depth, see figure 5.

2 4 6 8 10

130

140

150

160

170

bucket depth

to
ta

l
le

ve
ls

of
h

as
h

in
g

Figure 5: Combined depth dependence on the bucket depth for 128 bits of security

This yields close to optimal parameters, assuming the hash function is perfect, i.e., µs(h) = 1, achieving 128

9

bits of security, meaning that it’s infeasible to fill out even a single bucket, with an addressable tree of depth

125 and bucket tree of depth 6, such that non-membership proof requires hashing 125 + 6 = 131 (or 122 +

8) levels, with the total tree depth of 131, which would require about 2127.72 of queries to achieve a multi-

collision with 50% probability. That’s an almost 2× improvement compared to the original construction in

2.1. Similarly, for 96 bits of security, the combined depth is roughly 99.

From the perspective of storage burden established efficient solutions for sparse Merkle trees can be used

with different variations and respective tradeoffs, see [DPP16]. Still, for certain applications, it’s preferable

to reduce the depth even further.

2.5 Update and Deletion

To make the scheme complete we can trivially add update and deletion functionality. To update the value un-

der an existing key of the bucket element, all that needs to be done is to lookup the leaf using the respective

key index h, modify the corresponding value v and update the parent hashes all the way to the root, as it is

done in Merkle tree.

For the deletion we first lookup the corresponding leaf li = (kbi , vi, k
b
i+1), and the preceding leaf li−1 =

(kbi−1, vi−1, k
b
i), update the reference of the preceding leaf li−1.k

b
i = li.k

b
i+1, if there’s a preceding leaf other-

wise we skip this step, and empty the deleted leaf li = ⊥, complete the change by updating hashes of the

respective parent nodes. The operation can be performed having either the complete tree data structure or

just the membership proof for the leaves (li−1, li), which do share the path at least down to the bucket root.

Importantly leaves from the other buckets (e.g., adjacent) need not be considered, i.e., for non-membership

proof if =the kb is not in the respective bucket ka, then it can’t be in any other bucket.

Note that this is a procedure for the history-dependent deletion (section 6.2), for history-independent deletion

(section 6.1), we would need to additionally shift one step left all the non-empty leaves that are to the right of

the deleted one in the bucket.

3 Security

3.1 Objectives

In order to improve on the basic construction it’s important to specify the security properties.

Adversarial model:

• probabilistic polynomial-time stateful adversary

• exclusive access to the accumulator for its lifetime, i.e., up to its capacity, meaning that it can decide

the exact order of its own operations

• has unlimited storage

• computationally bound

The objective, then, is to ensure that the following properties are honored:

• Correctness

10

– membership case: it’s possible to prove and verify membership of an element that is part of the

accumulator with all but negligible probability

– non-membership case: it’s possible to prove and verify non-membership of an element that isn’t

part of the accumulator with all but negligible probability

• Soundness: the probability of proving (non-)membership for an element that isn’t (is) part of the

accumulator is negligible

• Availability: given a key that is not part of the accumulated set, the probability of successfully adding

the key and its respective value to the accumulator is all but negligible. Specifically, the key has to fall

onto a bucket with at least one leaf still available to be filled, otherwise, it’s a bucket overflow and the

operation is rejected

3.2 Building Blocks

It’s worth noting, that although we reduced the depth of the tree, the key index h = ka‖kb is still represented

in full, i.e., partly as the address of the bucket and partly as a suffix in the bucket’s leaf, inheriting the bir-

thday collision resistance-based security. Hence, correctness and soundness are addressed, as long as the hash

function used to derive h is secure, regardless of the depth of the tree. Therefore, it remains to show that the

probability of bucket overflow is negligible.

For availability, we relax the definition to signify overflow of any bucket, concretely, for the choice of addres-

sable tree depth da, bucket tree depth db, security parameter λ and q ≤ 2λ work of PPT adversary the

probability of overflow of any bucket is negligible:

Pr
[
C
(

2d
a

, q, 2d
b

+ 1
)]
≤ negl(λ) (3)

It naturally follows from the upper bound in (2). Thus, we rely on the following building blocks:

1. Random oracle model (ROM) to represent the uniform distribution of the hash function H()

2. Collision-resistance to ensure infeasibility of collision of the key index

3. Multi-collision resistance to ensure infeasibility of bucket overflow

Although we rely on ROM, in practice it’s instantiated with a suitable hash function. The choice of func-

tion is unlikely to be ideal, however, the notion of s-balance from [RS09] can be utilized as a compensatory

measure.

4 Efficient Constructions for Nullifiers and Combined Keys

We start the optimization process by considering an accumulator for serial numbers11, also known as nulli-

fiers12, which is an important cryptographic primitive in privacy-preserving blockchains and it’s useful to keep

nullifiers in an accumulator for applications such as privacy-preserving rollups. More generally, however, this

section covers use-cases where the key index is deterministic but isn’t required to be derived only from the

11BS+14.
12Hop+20.

11

user’s input, i.e., external input is also used, and nullifier is a great example of that, e.g., in [Hop+20] to de-

rive nullifier not only note commitment data itself (user input) but also its position in the note commitmen-

ts tree (external input) are used together. While we focus on the specific practical application, the following

techniques can be useful in other settings and we’ll apply them for the general case.

Even though we had a major improvement in terms of depth, the number of levels of the resulting tree is still

non-trivial, especially compared to the realistic number of members of the accumulator in its lifecycle.

We come from the angle of blockchains that utilize zero-knowledge proofs for the established “first commit,

then reveal unlinkable serial number (nullifier) pattern” (see [STS99]; [BS+14]) where the nullifier may or

may not be dummy (see [Hop+20]), i.e., there’s no record/note that’s being consumed.

All of the following options rely on the notion of the existence of the unbiased source of entropy, i.e., such

that an adversary cannot influence it and its output is uniformly distributed. Therefore, a randomness beacon

or distributed verifiable random function are potential choices ([HMW18]; [Gal+21]), however, similar tech-

niques can be used in other environments and architectures, including centralized solutions. Within the envi-

ronment, we focus on the practical application of accumulators for nullifiers which can yet again be mapped

onto other use cases without loss.

Reducing the depth of the tree entails a reduction in the work complexity necessary for an attacker to either

target specific buckets or successfully generate a random s-collision. Therefore our approach is to bound the

amount of work an attacker can perform in the lifetime of the accumulator.

As for randomness we assume that it is derived from a cryptographically secure source of entropy and the

adversary has no control nor influence on it.

4.1 Constrained Epoch Sample Space

The approach is to constrain the user’s sample space, so that only a relatively insignificant amount of work

can be done in the lifetime of the system, at the same time we need to make sure that the user’s anonymity

is preserved. Assuming the number of users is relatively small, a user can derive the nullifier from their own

namespace and a nonce η.

To ensure the privacy of the user and unlinkability of its transactions the namespace will be represented by a

secret seed uniformly derived at random. User pre-commits to the secret random seed ς in a setup transaction

using a cryptographic commitment, hence the nullifiers of the same user, derived from the seed ς and nonce η

are indistinguishable from random, assuming that the pseudorandom function family PRF() is pre-image and

collision resistant, we can derive nullifier as PRFς(η).

This still allows an adversary to attempt to pick the secret seed such that in combination with a nonce it’ll

yield desired nullifier properties, such as mapping on a specific subset of buckets.

Therefore, as a countermeasure, the ledger operation is split into epochs of constant duration and at the be-

ginning of each epoch, an epoch randomness εi is generated from a source of entropy. A new seed commit-

ment, submitted by the user at epoch t, does not become effective until the next epoch randomness is genera-

ted, hence, one can’t predict what εt+1 will be at the time of submission, which extends to inability to know

in advance the set of nullifiers that will be available in any of the future epochs, therefore, the seed ς can’t

be purposefully factored anymore to yield desired nullifier(s). Once committed, the secret seed can be used

indefinitely until the user chooses to update it.

12

The nullifier is derived from PRFς(εi‖η), (where i is the latest epoch number) and is a part of the value of the

record or note commitment (see [BS+14]) that’s revealed when the record is nullified (also consumed, spent).

In case the input commitment is a dummy (see section 4.7 of [Hop+20]) it’s desirable for the transaction to

look indistinguishable from the transactions consuming existing commitments and, therefore shall be accom-

panied by a nullifier, hence, instead of being an opening from the note commitment it is freshly derived the

same way it would’ve been derived for the note commitment using the current epoch’s randomness.

We claim that this is an effective solution as long as the number of users |U | and therefore pre-committed

random seeds is relatively small, hence assuming that an attacker controls all of the users the sample space

is limited to |U | ∗ |N | per epoch, where N is the set of nonces available. The total number of samples in the

lifetime of the system is |U | ∗ |N | ∗ |E|, where E is the set of all of the epochs.

Henceforth, we can rely on concrete security, namely the construction is (q, ε)-secure if any adversary sam-

pling at most q = |U | ∗ |N | ∗ |E| queries succeeds in overflowing a bucket with probability at most ε. This also

means that the capacity of the tree is limited to q elements.

For instance, assuming that 1 transaction has 1 nullifier, if there are at most 216 users, the nonce can be cho-

sen from
[
0, 218

)
and an epoch is 10 minutes long, in 1000 years there will be about 226 epochs, henceforth,

the upper bound on total number of samples is 216 ∗ 218 ∗ 226 = 260. Note that epoch randomness is only

relevant during the epoch, i.e., no one can post transactions using an expired epoch randomness retroactively,

hence there will be fewer samples in reality, which we acknowledge as a margin of safety.

Hence, for scheme to be (260, 2−128)-secure, we may choose the depth of the addressable tree to be da = 56

and the depth of the bucket to be 7, in which case the probability of (27 + 1)-collision in the lifetime of the

system, 260 samples, is no higher than 2−151, i.e., Pr
[
C(256, 260, 27 + 1)

]
≤ 2−151 (as per upper bound in

(2)). This brings the combined depth of the tree to 63 which is about 4 times shallower than the original

construction.

Notably, a user is allowed to modify his random seed ς, however, importantly, one cannot use it until the

next epoch which will bring an unpredictable ε, therefore, factoring the seed to facilitate multi-collision is

infeasible.

This approach, however, may not be suitable for certain applications since the nullifier of the commitment is

known by its creator, instead in some cases it’s desired to be known only to the owner of the commitment,

e.g., the recipient, that’s why the private key is also sometimes used (see [BS+14]) to derive the nullifier,

otherwise the sender may be able to learn when recipient’s commitment is consumed. The user should also

be careful to not re-use the same nonce within an epoch, which would render one or more of the commitmen-

ts unusable. The collision-prevention approaches, such as combining nullifier arguments with the position of

the commitment might be used but also will extend the number of possible samples since in the adversarial

setting the position can be chosen to gain an advantage.

On the other hand, the approach requires a relatively small amount of entropy, since the ε is generated only

once per epoch, therefore is suitable for limited entropy environments.

4.2 Post-Factum Randomization

The idea is to make the key index (e.g., nullifier) unpredictable at the time of committing to all of the user’s

inputs and infeasible to retroactively modify it, effectively limiting the number of samples to the upper bound

13

of the transaction throughput of the system, while keeping them uniformly distributed. We achieve this th-

rough the introduction of post-processing of the user’s input (transaction) which binds external randomness,

e.g., a random beacon [HMW18]; [Gal+21], to it and is used to eventually derive the nullifier. In practice,

this can be achieved either by re-randomization of the respective commitment before storing, e.g., throu-

gh the homomorphic property of Pedersen commitment [Ped92], or via association of commitment with the

respective randomness rcm , e.g., storing the (cm, rcm) pair.

While this approach covers nullifiers derived from existing commitments, keeping the dummy nullifiers un-

constrained opens up a gateway for collision attacks, therefore, we’ll consider three constructions with their

respective tradeoffs.

4.2.1 Nullifiers from Randomized Commitment

We start with the basic case where the commitment creation undergoes the following stages:

1. User generates transaction with original commitment cm as usual and posts it to the ledger

2. If valid, the commitment is randomized when the transaction is processed within a block with the block

randomness σb, where b is the block number, rcm = RCMσb(cm) which is stored instead of the cm.

When the commitment is consumed in one of the future transactions the randomized version will be used

in order to construct the nullifier, e.g., PRFz(rcm), where z is the application-specific data bound to the

commitment cm, such as commitment position, private key or nullifier key [Hop+20].

The solution assumes that adversary has no control over, or ability to predict, the external randomness (e.g.,

block randomness), which, for example, can be achieved with the use of a distributed random beacon, cur-

rently deployed as part of multiple notable blockchain networks. Since the joint randomness is unknown at

the time of transaction generation, the number of samples an attacker can try is effectively limited by the

throughput of the system.

Therefore, the best an adversary can do is produce as many transactions as possible to try and generate an

s-collision, hence the amount of work one can do is proportional to the number of transactions. If the throu-

ghput of the system is l transactions a year and its expected lifetime is y years then an attacker is bound by

O(l · y) of work. Therefore in the choice of parameters, we need to ensure that n
s−1
s ∗ (s!)

1
s � l · y (formula

(1)), i.e., the probability of an s-collision is negligible.

For example, assuming that 1 transaction = 1 nullifier, if the system can process 1000 transactions/sec

then in 1000 years there will be no more than 245 of nullifiers, therefore having 41 levels in the addressa-

ble tree and 7 in the bucket tree, the probability of (27 + 1)-collision is no more than 2−166, as per (2), i.e.,

(245, 2−128)-secure. That’s the total of 48 levels of the tree, 5.3 times smaller than the naive, addressable

tree-only, construction.

There’s one caveat, however, if we want to also accommodate dummy nullifiers, i.e., nullifier for a dummy no-

te commitment that doesn’t exist (see section 4.7 of [Hop+20]), which is important to achieve transaction in-

distinguishability on number of commitments consumed, i.e., in simplest case, an observer should not be able

to deduce whether the transaction creates completely new commitment or consumes an existing one.

In the case of Zcash, and similar protocols, at least one of the input notes will be non-dummy to pay the

transaction fee, therefore the dummy nullifiers can be derived from the first non-dummy randomized input

commitment. For our example, we will consider the JoinSplit transfer case with 2 inputs and 2 outputs.

14

We modify the derivation of nullifier to PRFz(δ‖rcm), where δ ∈ {0, 1} is a single bit signifying whether

the respective nullifier is dummy or not. This means that 2 distinct nullifiers can be derived from each non-

dummy commitment. Adversary, trying to exploit this, would maximize the number of nullifiers available to

be exposed by always consuming 1 non-dummy commitment, exposing 2 nullifiers and producing 2 new com-

mitments, and so on with every transaction. Therefore, each transaction consumes a single commitment, ex-

poses 2 nullifiers and produces 2 new commitments which in turn can be used to expose 4 nullifiers and to

produce 4 new commitments and so on. This process can be modeled with a binary tree where each node

represents a consumed commitment (and transaction) which exposes 2 nullifiers and produces 2 new com-

mitments and all the leaves represent all of the unconsumed commitments with 2 respective nullifiers each

ready to be selectively exposed. Hence, we can express the total number of nullifiers through the number of

transactions, counting 2 nullifiers for each node and 2 nullifiers available in each leaf, i.e.:

2 ∗ |T |+ 2 ∗ (|T |+ 1)⇒

4 ∗ |T |+ 2

Where T is the set of all of the transactions in the lifetime of the ledger.

Going back to 245 transactions upper bound, this translates to 247 + 2 nullifiers where 246 + 2 of them not

yet exposed, however, available to the adversary to choose from. This increase can be countered by the ad-

dressable tree depth of 43, which translates to 2−164 upper bound probability of (27 + 1)-collision, yielding the

combined tree with 50 levels.

Contrary to the solution in 4.1, this one is less restrictive and allows anonymity of the recipient from the

sender and other modifications, but it needs new randomness every block. However, it is amenable to va-

riable levels of entropy, such that if entropy is not sufficient at the time of transaction processing it can be

accumulated until the desired level is reached and only then finalized, effectively increasing the latency.

What if the application does not have the input commitment in certain cases? That would remove the foun-

dation from which to derive the dummy nullifier. We’ll explore the remaining solutions that address the

challenge.

4.2.2 Bare Commitment Bootstrapping

For certain applications, we ought to treat general case where none of the input commitments might exist.

We can accommodate both dummy and real nullifiers with a 2-step flow:

1. initially new commitment cm is submitted without the nullifier, randomized as rcmnew and left in

pending state on the ledger

2. follows up with another transaction where the user is constrained to either deterministically derive the

real nullifier from the randomized consumed commitment (if it exists) PRFzold(0‖rcmold) or determini-

stically derive the dummy nullifier from the created commitment’s randomization PRFznew(1‖rcmnew),

which would move rcmnew from pending state and make it available for consumption

The approach, however, requires 2 transactions to execute the operation which is inconvenient and might leak

some additional information, e.g., through analysis on how fast one follows up with the second transaction.

15

Hence we can simplify through an introduction of bootstrapping transaction that each user needs to do once

(although not limited) which gives a randomized commitment that can be used to transact as usual, unless

the user was the recipient of a commitment before in which case bootstrapping can be avoided.

The user starts by preparing and submitting a transaction with 0 inputs and one or more output

commitments. The output commitment(s) get randomized and stored on the ledger.

These commitment(s) can then be used as a regular transaction similar to 4.2.1. Even if one of the next tran-

sactions doesn’t have an input commitment, one of the randomized commitments can be supplied to derive

the dummy commitment from, which would not add an extra membership proving cost for constant-size cir-

cuits, since an unused slot of input commitment membership proving can be used. As long as randomized

commitment wasn’t used to derive a dummy nullifier yet, it can be used to construct regular transactions

with zero inputs.

As in the section 4.2.1, if an adversary chooses to maximize the number of nullifiers (samples) in 2 inputs 2

outputs case, the total number of nullifiers will be the same less the 2 nullifiers that will not be present in the

bootstrapping transaction, i.e.:

4 ∗ |T |

The downside is that the bootstrapping transaction publicly indicates that there are no inputs as well as that

it can be used to derive an approximate number of users, although a user might choose to run multiple such

transactions either for convenience or to obscure the picture, moreover as mentioned users might bootstrap by

receiving commitments from another user.

It also might be necessary to keep track of the consumed commitments, for which dummy nullifiers have not

been exposed yet, to seed the future dummy-input transactions.

Depending on the application the approach might be a reasonable tradeoff, for when it’s not see the following

solution.

4.2.3 Empty Bucket Rule

It is still might be desirable to retain transaction indistinguishability, hence we’ll address it in this section.

An easier alternative is to remove the constraint on the dummy nullifier, introduced in 4.2.1, but require it

to fall on an empty bucket instead, thereby ensuring that the newly introduced freedom can’t be exploited to

target buckets, i.e., at most, the adversary can easily produce only a single such element.

The way to enforce this is to provide the public signal to the zero-knowledge proof circuit, say τ ∈ {0, 1}
that will communicate whether the target bucket is empty (0) or not (1). The user will specify τ at the ti-

me of proof generation based on the current state of the accumulator and the ledger will verify that the τ

corresponds to the current state of the bucket in the accumulator.

The circuit will enforce that for the dummy nullifier the bucket must be empty, i.e., δ → τ = 0, while for the

regular commitment-derived nullifier it’ll not be enforced. The nullifier will still be derived as PRFz(δ‖rcm)

for non-dummy commitment, however, in the dummy nullifier case the rcm will be enforced to be 0 and z will

be the arbitrary value provided by the user, which will be generated at random.

Hence, it’s allowed to use any, user-generated, dummy nullifier as long as it’s not falling on a non-empty buc-

ket, therefore, it shall be ensured that empty buckets are always available during the lifecycle of the ledger,

16

which means that the total number of buckets shall be greater than the upper bound of the number of nulli-

fiers. To produce a suitable dummy nullifier user would sample z at random, derive the nullifier and check if

the corresponding bucket is empty, if it’s not, sample another z and so on until the empty bucket is yielded.

Another important factor is the prospect of nullifier bucket collision with the nullifiers of all other transac-

tions concurrently generated by other users because when it happens the first nullifier to be stored will make

the bucket non-empty, thereby the conflicting nullifiers will be rejected because of the mismatch, τ 6= 0. When

it happens the user’s action will depend on the case:

1. if the nullifier was for an existing commitment, prepare the same transaction with the non-empty bucket

flag set, τ = 1, and submit to the ledger, this time it will not be rejected even if there’s a collision;

2. for dummy nullifier, sample new z from scratch as described above and submit again.

We can observe two issues:

• inconvenience, it might require multiple transactions to execute a single operation;

• privacy degradation, if following the rejection due to collision there’s no follow-up transaction with the

same nullifier, it may be concluded with non-trivial confidence that the nullifier was dummy.

Thus, it’s desirable to make the probability of such collision negligible. Consequently, we need to consider

an upper bound of the number of competing nullifiers, i.e., the number of samples, and the number of empty

buckets, i.e., the sample space.

Similarly to existing privacy-preserving protocols, such as Zcash, we limit the duration of time εt a transac-

tion has from its construction to being processed by the ledger, if the duration is exceeded the transaction

is rejected. We’ll consider εt to be the range of time any given nullifier is competing with other nullifiers for

empty buckets, which is usually several minutes long, although in practice a transaction is processed much

faster. Moreover, we’ll assume the worst-case scenario: all of the competing nullifiers are dummy, i.e., all of

them are trying to target empty buckets.

Our goal, then, is to make the probability of collision within the εt timeframe negligible. Therefore, we turn

back to the idea of the system throughput. If the system can handle at most θ transactions per second, as-

suming we have 2 nullifiers per transaction, that sets an upper bound on the set of competing nullifiers to

εt ∗ θ ∗ 2. For example if, as before, the θ = 1000 tps and transaction expiration is set εt = 10 min., that

would translate to 220.1946 nullifiers.

Using square root approximation we derive that the sample space needs to be larger than 240 just to keep the

probability of single collision within εt at 50%, however, to achieve the negligible probability of 2−128 or less

the sample space has to be about 2167, hence da = 167, which can be calculated using the birthday collision

probability approximation:

1− e−
(220.1946)

2

2∗2167 ≈ 2−128

This, obviously, isn’t compatible with our goal of keeping the accumulator small, however, we can reuse our

insight into the hardness of multi-collision yet again and instead of enforcing the target bucket for the dummy

nullifier to be empty we can enforce it to have less than the certain number of elements a (allowance), such

that the probability of a-collision is negligible.

The ledger logic will depend on τ of the transaction:

17

• if bucket declared as non-empty τ = 1, accept only if bucket is indeed non-empty;

• if τ = 0, accept only if there are less than a elements in the bucket;

• reject in all other cases.

The change will allow an adversary to pretend that the bucket is empty and feasibly fill up buckets of choice,

but only up to a − 1 elements, the rest will be reserved for use by regular nullifiers. Consequently, we need to

account for the reduction of reserved space in our choice of the size of the bucket to keep the security at the

former level.

To sum up, we need to adjust the sizes of the addressable tree and the bucket tree such that:

1. for an honest user, while sampling a dummy nullifier, it should consistently fall on an empty bucket

with high probability, i.e., it shouldn’t take more than a few samples on average;

2. probability of collision with all other nullifiers within εt is negligible.

4.2.3.1 Example Instantiation

As for the first point we might want around 99% probability that an honest user’s dummy nullifier falls on an

empty bucket after just 3 attempts. We can find the maximum acceptable probability of the bucket being bu-

sy in any given sample as 1 − (Pr[busy])
3

= 0.99, hence, Pr[busy] shall be around 0.215 to achieve the desired

property, meaning that the accumulator shall have about 4 empty buckets for each non-empty bucket. Two

nullifiers per transaction case yields about 245.85 nullifiers in the lifetime of the ledger, which in the worst case

scenario means that 245.85 buckets will be non-empty. Hence, if we pick the addressable tree height to be 48

that would yield Pr[busy] ≈ 0.224 when the accumulator is at its peak capacity.

Picking a = 7 for the second point, yields 2−158.9 probability of an honest a-collision in εt, which for the

bucket of size 26 leaves 58 elements unaffected, hence an (s−a+1)-collision probability is no more than 2−345.

4.2.3.2 Front-running Problem

While we made a-collision and (s − a + 1)-collision close to impossible in nominal circumstances, because we

also made the dummy nullifier unconstrained, an adversary would need to perform about 243 of work to find

a random 7-collision for our example parameters. Notably, depending on the setting, it might be a concern,

since to prevent an honest user from successfully transacting with a nullifier(s) that falls on an empty bucket,

an adversary would need to:

• observe the transaction’s nullifiers before it’s processed by the ledger;

• do the work to sample an a-collision;

• compute zero-knowledge proof, form transactions with at least a− 1 nullifiers;

• ensure that the front-running transactions will be executed before the honest user’s transaction.

However, an adversary may be able to perform the sampling and the proof computation in advance, hence

it’ll be up to the adversary’s network connectivity advantage and the order of transaction processing on the

ledger.

Assuming transactions are processed in the order they were received, block producers have low-latency high-

speed connection and immediately share incoming transactions, users are communicating transactions directly

to the block producers and adversary can’t eavesdrop on an honest user’s transaction communication channel

18

nor can it artificial delay dissemination of the transaction to the block producer, front-running becomes less

of a concern, especially since adversary needs to get multiple of its transactions executed for the front-running

attack to be successful.

On the other hand, if the user’s transaction has to make multiple hops through mempools of different no-

des before getting to the block producer, adversary could use one’s connectivity and speed advantage to get

its transactions to the block producer faster, additionally, if transactions are ordered based on some other

criteria, such as fee amount, it might make it even easier.

4.2.3.3 Addressing Front-running

To tackle front-running we first ensure that an adversary can’t precompute a colliding transaction in advance

through re-introduction of the epoch randomness ε (see section 4.1), such that the user’s zero-knowledge proof

now have to attest that the dummy nullifier is derived from PRFz(1‖εi) where z is arbitrary user input and εi

is the active epoch randomness which expires after εt (same as transaction expiration, for simplicity).

Additionally, to give an advantage to the user over an adversary the protocol will constrain z, where instead

the user will specify arbitrary z′ and will be required to provide proof of work (PoW) [DN93] for the choice of

randomness z′ and the active epoch randomness εi (constituting the challenge), such that z, and thus, nulli-

fier depends on the result of the proof of work, hence the nullifier is unknown until the work is performed, i.e.,

z = PRFz′(πpow), such that POWverify(εi‖z′, diff, πpow) = 1 where πpow is the proof of work, diff is the difficul-

ty. Thus, the adversary must perform the work for each nullifier they sample to identify whether it’s suitable

for the attack.

Such construction ensures that the adversary can’t precompute the work before the epoch starts, and is re-

quired to perform significantly larger computation than an honest user, even when proof of work is negligible,

i.e., on the order of tens of milliseconds.

As we’ve established already in a nominal circumstance a-collision is next to impossible, hence if it does hap-

pen more likely than not there’s malicious behavior. Therefore, the difficulty diff can be adjusted automati-

cally by the ledger when (a − 1)-collision does happen. To achieve this the first time an element is added to

a bucket the timestamp can be stored, later when the bucket reaches the size of a elements it can be chec-

ked whether εt time has not yet passed since its first element, and if so, incrementally increase the difficul-

ty allowing for the grace transition period and making sure not to issue another increase until the new diffi-

culty went into effect. Notably, such situations may be mostly avoided altogether through dynamic difficulty

correlation to Moore’s law [Wik23c].

As before, affected transaction(s) of the honest user(s) can be re-generated and submitted again, hence

successful front-running is just delaying the processing of the user’s intent but not preventing it.

In the choice of parameters, we shall ensure that it takes adversary more than εt time to find an a-collision,

while simultaneously it takes less time for an honest user, hence rendering adversary efforts futile. To achieve

this we adopt an insufficient advantage principle, meaning that even if the adversary has up to α times more

computational power than a user it is still unlikely to produce the multicollision within the timeframe. For-

mally, if it takes on average opow computational operations to produce a single proof of work and the user’s

hardware can perform Ru operations per second we have (where qε is the number of samples needed to attain

probability p of an a-collision):
opow
Ru
� εt <

qε ∗ opow
α ∗Ru

19

Notably, the time it takes the user to produce the proof of work shall be way less than εt. We can update the

relation by claiming that it should take the user at least m times less time than an α times more powerful

adversary.
opow
Ru
≤ qε ∗ opow
m ∗ α ∗Ru

Which can be simplified to m ∗ α ≤ qε, meaning that the adversary cannot reach probability that makes it

feasible to sample a-collision within an epoch. We are making an assumption that as the computation power,

that can be used for malicious purposes, grows so does the computation power of a user, hence the proof of

work difficulty can be proportionally increased.

If the epoch randomness εi lasts for εt time, it’s convenient for epochs to overlap so that transactions that are

generated closer to the end of the epoch have enough time to be processed before expiring, hence epochs are

released with κ cadence, i.e., every κ units of time. For a computationally bound adversary, to maximize its

chances of success, it’s beneficial to use the latest epoch randomness as soon as it’s available to ensure that

samples will stay relevant as long as possible, compared to using the oldest relevant epoch randomness which

would render the work useless faster. Hence, it’s akin to a sliding window, where when new randomness εi

is issued the oldest relevant randomness εi− εtκ expires, thus, adversary can discard the uncommitted samples

tied to εi− εtκ and start using εi for the upcoming workload.

Consequently, considering the case just before the new epoch, assuming a steady sampling rate, the size of

the adversary’s relevant samples pool stays constant (i.e., progress done in εt) with equal amounts added

and removed as the previous epoch expires and gives way to another one, however, its composition changes

as above, hence we’ll consider every such instance of pool composition as new.

To reflect the change in setting, we introduce the notion of (qs, qε, ε)-security, meaning that after qs randomi-

zed samples (regular nullifiers) in lifetime of the accumulator, and up to qε samples at adversary’s disposal

per epoch duration, the probability that adversary succeeds is no higher than ε. Concretely:

1. Pr
[
C
(

2d
a

, qs, s− a+ 1
)]
≤ ε

2. Pr
[
C
(

2d
a

, qε, a
)]
≤ ε

3. 1−
(

1− Pr
[
C
(

2d
a

, qε, a
)])|E|

≤ ε

4. 2d
a

> qs, to ensure availability of empty buckets

5. opow
Ru
� εt < tAqε , where tAqε is time it takes adversary to obtain qε samples

Point 3 means that in the lifetime of the accumulator, a new a-collision within any epoch isn’t feasible, as

opposed to any a-collision across epochs which can happen, however since honest users’ dummy nullifiers fall

onto empty buckets those long-range collisions are inconsequential.

We ought to also consider unexposed nullifiers for unconsumed commitments an adversary has control over

since they can be used to aid in the search of the multicollision, therefore we’ll account for them in the

adversary’s relevant samples pool.

Let’s examine what parameters are reasonable to instantiate with. For this setting, we’ll use 2 inputs and 2

outputs transitions such that one, regular, nullifier can be derived from each commitment. That means that

in order to maximize available unexposed nullifiers an adversary can produce 2 commitments per transaction

20

with both inputs being dummy, which yields |T | ∗ 2 dummy nullifiers exposed and |T | ∗ 2 unexposed regular

nullifies at the end of the ledger lifecycle. Also, within εt we expect up to εt ∗ θ ∗ 2 nullifiers from honest users

which target empty buckets, to be processed, which contribute to the probability of a-collision. Thus:

• qs = |T | ∗ 2, i.e., max cumulative quantity of regular exposed and unexposed nullifiers

• qε = |T | ∗ 2 + εt ∗ θ ∗ 2 + qAεt , a respective sum of

– max unexposed nullifiers, i.e., no commitments were ever consumed

– nullifiers from all of the transactions in the epoch, assuming worst case: at capacity and all

targeting empty buckets

– qAεt is an upper bound on the number of samples adversary can draw in εt

Notably, in qε we don’t account for already exposed nullifiers since users would ensure that dummy nullifiers

fall onto empty buckets while regular nullifiers stay unaffected.

Having 1000 years of operation at θ = 1000 transactions per second, εt = 10 minutes, κ = 1 min., hence

|T | = 3.1536 ∗ 1013, |E| = 5.256× 108, adversary that is α = 240 times more powerful and takes m = 213 times

more time to draw qAεt samples, hence, qs = 246, qε ≈ 253. For the choice of ε = 2−128, the (qs, qε, ε)-security

can be achieved with the following configuration:

da = 50, db = 7, a = 103, s = 27, qAεt = 253,
opow
Ru

= 250 ms (4)

The configuration yields these concrete results:

1. Pr
[
C(250, 246, 27)

]
≤ 2−151

2. Pr
[
C(250, 253, 103)

]
≤ 2−185

3. 1−
(
1− 2−185

)5.256×108

< 2−156

4. 250 > 246

5. 250 ms� 10 min. < 34 min.

For comparison, the fastest modern-day supercomputers are up to 6 orders of magnitude faster than a

consumer-grade computer [Wik23b], which is way slower than up to about a trillion-fold assumed adversary

advantage. For the configuration it would translate into around 71 years of computation, hence 3 ms proof of

work difficulty is currently reasonable.

The setup also makes Pr[busy] ≤ 0.0625, meaning that an honest user will do fewer iterations on average to

sample a dummy nullifier that lands on an empty bucket.

If desired, the construction can be combined with a randomized dummy nullifier from 4.2.1 to ensure that

a user only needs to generate proof of work once and then derive dummy and regular nullifiers from its own

randomized commitments, therefore increasing proof of work generation time is acceptable, e.g., if takes the

honest user 5 minutes then the adversary has to be 252 (4.5×1015) times more powerful to reach the negligible

probability bound within 10 minute epoch time.

As the computation power increases the dynamic PoW difficulty ensures that adversary will be kept at bay.

21

Even if a-collision, due to increased Adversarial computational power, ever occurs, it’ll not affect regular nul-

lifiers and will only result in temporary degradation in the success rate of transactions with dummy nullifiers

and will be alleviated as soon as the proper PoW difficulty is set.

There are several problems with such a scheme: 1) when the user specifies that the target bucket is non-

empty, τ = 1, it unambiguously means that a regular nullifier is used, i.e., not dummy; 2) when instead nul-

lifier falls on an empty bucket, τ = 0, it slightly increases the probability of a nullifier to be dummy; 3) if

there are very few collisions, of arity 2 or higher, when there should’ve been many, it points to the fact that

the majority of nullifiers are dummy. Hence we need to ensure the indistinguishability of types of nullifiers.

4.2.3.4 Indistinguishability

Adversary may choose to carry out an attack on indistinguishability, concretely, one may set out to make as

many buckets as possible non-empty, thereby forcing the user to set τ = 1 for randomized nullifiers, using sta-

tistical methods that would allow to estimate the number of randomized nullifiers, and from there the number

of dummy nullifiers.

Therefore, the first step is to reduce the number of buckets adversary can affect by increasing the bucket’s

capacity by c and modify the user’s behavior to let dummy nullifiers fall onto non-empty buckets as long as

it holds no more than c elements. This effectively reduces the number of affected buckets by the factor of c,

requiring adversary to find a multitude of c-collisions.

So far we’ve ensured that a-collision is infeasible within the epoch’s timeframe. Furthermore, if adversary

chooses to commit arbitrary multi-collisions found within epoch, prioritizing highest arity, up to the available

bandwidth, it’ll be hard to achieve a (c + a − 1)-collision across epochs since the effort will be spread out, ho-

wever, if a smaller predefined target set of buckets is used, an adversary would only need to commit nullifiers

that fall within that set, ensuring that accumulator’s throughput is used effectively. For instance, limiting tar-

get buckets set to 220 would allow assumed adversary to find a-collision in just about 8 epochs, the reduced

target set ensures that suitable nullifiers found will fit into the throughput, moreover, it’ll also be feasible to

find c-collisions in the same fashion.

While the above doesn’t prevent honest users from transacting, adversary can fill many buckets with

c-collisions, increasing coverage to obtain higher confidence in the statistics.

Thus, second step is to combine current scheme with the randomized dummy nullifier from 4.2.1 to ensure

that a user only needs to generate proof of work once and then derive dummy and regular nullifiers from its

own randomized commitments, allowing such nullifiers to be accepted with τ = 1, thereby removing direct

association of τ = 1 with regular, non-dummy, nullifier. Following is the list of the possible types of nullifiers

along with the conditions in which they are accepted.

Nullifier Type τ = 0 τ = 1

Dummy nullifier X ×
Randomized nullifier X X

Randomized dummy nullifier X X

While we’ve made it harder to distinguish types of nullifiers, because τ = 1 only permits nullifiers that were

derived from randomized commitments, it can provide a source of estimation of how many of the nullifiers

are of such type and, consequently, the number of dummy nullifiers can be derived. Concretely, if adversary

managed to fill out |Bc| buckets with c-collisions and there are Θ randomized nullifiers of honest users then

22

the expected number of nullifiers with τ = 1 is Θ ∗ |Bc|n , hence, having the number of colliding randomized

nullifiers it’s easy to calculate how many are there in total, including non-colliding, and subtract that from all

honest user nullifiers to get the approximate number of dummy nullifiers.

Although the expected number of collisions is useful, the actual result may vary and it’s important to know

the likelihood of different outcomes to see how differences in expectation and outcome might affect an analy-

sis by an observer, e.g., adversary. Let’s say that the random variable X represents all possible outcomes of

the randomized nullifier collision with the filled buckets |Bc|, then the specific outcome, i.e., that the number

of collisions is x, the probability can be computed as

Pr[X = x] =

(
Θ

x

)(
|Bc|
n

)x(
1− |Bc|

n

)Θ−x

which follows the normal distribution, i.e., the majority of outcome probabilities are aggregated in the stan-

dard deviation proximity of the mean, e.g., if the mean is large it’s extremely unlikely that in reality there

will be just a few collisions, and if that’s the case then absence/insufficiency of collisions points to the fact

that the most of the nullifiers are dummy.

Hence, we can conclude that if we want to achieve indistinguishability, to an observer it should look as if the-

re are zero dummy nullifiers and all of the nullifiers are randomized, which represents the expected probability

distribution. Therefore, as long as the actual probability distribution is hard to distinguish from the expected,

i.e., having almost identical mean and standard deviation, and not reaching statistical significance with the

application of statistical methods, then it’ll be close to impossible to derive any conclusions from the available

information. More generally, the more expected collisions there are the higher the statistical confidence that

could be achieved when deviations occur, therefore, the goal is either to minimize the variance or make the

probability of even a single collision very unlikely.

Assuming computationally favorable setup parameters this means that the share of dummy nullifiers must on-

ly be a fraction of total nullifiers, in practical terms meaning that a user should only use dummy nullifiers as

a bootstrap mechanism and preferably there should be only a few users compared to the number of transac-

tions, i.e., each user executing many transactions, or the absolute majority of users are bootstrapped by their

peers.

It’s a viable approach, although narrowing the range of applications, hence we propose a solution to alleviate

the limitations.

4.2.3.5 Randomized Nullifier Indistinguishability via Key Index Variants

Instead of providing useful statistical information to an observer, we can make the number of expected colli-

sions next to zero, hence making it extremely unlikely that a user would ever need to use τ = 1. We already

have a mechanism for dummy nullifiers to avoid crowded buckets, we can try to re-use a similar mechanism

for the randomized nullifiers.

The approach is to use deterministic key index variants for a nullifier (key) if the respective bucket of the first

key index variant is already filled with c or more elements, then the second key index variant will be derived

and so on until either there’s a bucket with available space or the limit is reached and the τ = 1 must be

used. In the end, only a single key index variant will be stored with the highest priority being on the first key

index variant, then on the second one and so on. Hence, the non-membership proof is simple, starting with

the first key index variant:

23

1. show that the key index variant is absent in the respective bucket

2. show that the bucket has less than c elements, otherwise start at step 1 for the next key index variant,

unless all the key index variants are evaluated

For brevity from now on we’ll use “variant” to mean “key index variant”.

Notably, when the nullifier is not yet exposed, such as when non-membership is relevant, an adversary doesn’t

know which bucket(s) to attack, therefore, they can’t be easily targeted to increase the complexity of non-

membership proofs, conversely, when nullifier is exposed there’s no use in proving non-membership anymore,

hence filling up such buckets is of no detriment.

Membership proof is trivial, the user just needs to prove membership of one of the possible variants, therefore

it’s best if it can be computed in constant time instead of sequential derivation, such as a hash chain.

Concretely, i-th variant of a nullifier is derived as ϑi = H(nf‖i), having i ∈ [1, `] and represented in fixed-

length binary form, where ` is the number of available variants.

While it might seem that the introduction of variants substantially increases the computational complexity of

the non-membership proof, with reasonable setup parameters proving non-membership for more than one va-

riant is an exception rather than the rule, we’ll come back to this in the example instantiation. In the context

of zero-knowledge proofs, using proving schemes that don’t consume proving time for execution paths not ta-

ken, such as SuperNova [KS22], Valida, MidenVM or RISC Zero, ensures minimal overhead and an amortized

constant time, i.e., single nullifier variant non-membership proof.

If the user submits a transaction with nullifier nf and τ = 0 to the ledger, then ϑ1 is computed and if the

respective bucket has the capacity, i.e., less than c, it’s appended, otherwise ϑ2 is derived and the process con-

tinues similarly until a suitable bucket is found or all the variants are exhausted. If instead τ = 1 is used,

then the ϑ1 is inserted in the respective bucket, which will have the capacity with overwhelming probability.

Algorithm 1 Preparing transaction on client side

function PrepareAndSend(δ, rcm, z, args)

nf ← PRFz(δ‖rcm)

τ ← 01

if SendAndExecute(nf, τ, args) then . Sends transaction to the ledger

return >
else . Improbable fallback

if ¬δ then

τ ← 11

return SendAndExecute(nf, τ, args)

else

return ⊥ . Upon an unlikely failure, the client retries with a new sample of z

end if

end if

end function

24

Algorithm 2 Adding nullifier to the accumulator on the ledger

function InsertNullifier(nf, τ)

i← 1

while i ≤ ` do

ϑi ← H(nf‖i)
if IsMember(ϑi) then

return ⊥ . Reject duplicate

else if ¬IsBucketCfilled(ϑi) ∨ τ then

return InsertVariant(ϑi)

end if

i← i+ 1 . Try next variant

end while

return ⊥ . Couldn’t find a bucket with availability

end function

We forgo the separate allocation of allowance a which leaves bucket capacity at c + s − 1. To make the non-

membership proof efficient, we need to ensure that the information on the bucket fullness is readily availa-

ble, therefore we add a unique encoding for bucket root node computation which depends on whether bucket

occupancy is c or higher.

There are multiple ways to achieve this, for one, let’s say we chose to use unique binary personalization using

pers : N −→ {0, 1}pl, of fixed length pl, at each level l of the tree, starting at 1, hence, each non-leaf node is

computed as

node = H(pers(l)‖left child‖right child)

To compute the bucket root node we use l = db when the bucket has less than c elements, and l = db + da + 1

otherwise.

We need to identify how many variants should be available for each nullifier, i.e., `, so that it’s infeasible for

an adversary to prevent an honest user from submitting the nullifier in an indistinguishable fashion, i.e., with

τ = 0. While we don’t allocate separate space for allowance a, it’s still helpful to account for it. As was said

previously an adversary can’t produce a-collision within an epoch’s time, and for the analysis we relax our

assumptions and presume that an adversary can generate (a − 1)-collision for any chosen buckets within an

epoch and that’s enough to succeed. Having a − 1 < c, an adversary would have the best shot at succeeding

if as many buckets as possible are filled with c − a + 1 elements, which we assume in worst case scenario is

carried out using whole accumulator’s capacity as expressed as the total number of transactions, 2 nullifiers

each, |T | ∗2, yielding ß =
⌊
|T |∗2
c−a+1

⌋
“staged” buckets. Buckets that contain less than c−a+1 elements are said

to be infeasible to fill to c elements within an epoch. Thus, for an adversary to succeed, all of the variants

of any nullifier shall fall on the staged buckets. Let Ai be an event of i-th variant falling on a staged bucket,

then Pr[Ai] = ß
n , since events are independent we have Pr

[⋂`
i=1Ai

]
=
(

ß
n

)`
.

Therefore, ` shall be as large as to make it very unlikely for all variants to fall on staged buckets, i.e., ` =

min
{
x ∈ N :

(
ß
n

)x ≤ ε}.

Having `, we can also identify an expected number of variant non-membership proofs on average to prove nul-

lifier non-membership, represented by random variable Y . A user only needs to prove non-membership of one

25

more variant when the current variant’s bucket has c elements or more, considering the worst-case scenario,

an adversary would need to fill as many buckets as possible with c elements, i.e.,
⌊
|T |∗2
c

⌋
.

Let C be an event of variant falling on a bucket with c elements, then Pr[C] = |T |∗2
c·n , and expected number of

non-membership proofs is E[Y] = g`(1), where:

g`(x) = Pr
[
C̄
]
∗ x+ Pr[C] ∗ g`(x+ 1) (5)

g`(`+ 1) = 0 (6)

Which furthermore can be simplified:

E[Y] =

`−1∑
i=0

Pr[C]
i − ` · Pr[C]

`
(7)

We can see that for small Pr[C], E[Y] approaches 1, limPr[C]→0E[Y] = 1, i.e., on average only a single va-

riant non-membership proof is necessary. Moreover, a similar result applies to the complexity of adding a new

nullifier to the tree.

Lastly, we need to assess whether increased freedom, namely the ability to fallback to the next variant is re-

ducing security in any way, effectively ensuring that PoW is not wasted if the first variant falls on c-filled

bucket, i.e., helping an adversary.

We can assess that such an ability doesn’t allow adversary to fill more buckets than before, since it’s the ac-

cumulator’s throughput that’s a limiting factor. In the absence of adversary with extremely high probability,

there will be no buckets that contain c or more elements, hence secondary variants will not be used, thus tho-

se fallback variants will only be used if adversary chooses to c-fill buckets, in worst case scenario as many as

possible, i.e., up to
⌊
|T |∗2
c

⌋
.

Effectively such circumstance ensures that the c-filled buckets are excluded from the sampling set, i.e., from

2d
a

, since regardless of how many consecutive variants will fall on c-filled bucket(s), with overwhelming pro-

bability a bucket with available space will be found. Hence, the resulting sampling space is reduced from 2d
a

to 2d
a −

⌊
|T |∗2
c

⌋
, in worst case scenario, which makes it somewhat easier for an adversary to find a-collision,

therefore, such reduction shall be accounted for.

We can update the notion of (qs, qε, ε)-security to include indistinguishability:

1. Pr
[
C
(

2d
a

, qs, s
)]
≤ ε

2. 1−
(

1− Pr
[
C
(

2d
a −

⌊
|T |∗2
c

⌋
, qε, a

)])|E|
≤ ε

3. Pr
[⋂`

i=1Ai

]
≤ ε

4. opow
Ru
� εt < tAqε , where tAqε is time it takes adversary to obtain qε samples

Point 3 ensures that there’s always a bucket available that has sufficient capacity, which also means that the

same mechanism can be used for dummy nullifiers and there will never be a need to re-sample the dummy

nullifier if the bucket is busy.

26

Note, that we no longer need to ensure that there are empty buckets available, moreover we leave τ and s in

place as a safety mechanism for cases when a) adversary learns the user’s nullifiers before they were exposed

in a transaction; b) PoW adjustment wasn’t adequate for a period of time.

We can now update our example instantiation (4) to reflect the changes, while maintaining
(
246, 253, 2−128

)
-

security:

da = 49, db = 8, c = 229, a = 129, s = 28, ` = 14, qAεt = 253,
opow
Ru

= 250 ms (8)

These parameters yield E[Y] = 1.00049 (one extra variant non-membership proof per 2040 proofs), i.e., the

absolute majority of non-membership proofs require only one variant non-membership proof, assuming the

worst-case scenario which is only reached at the end of the lifecycle of the accumulator in about 1000 years.

Notably, we were able to achieve indistinguishability, through the elimination of collision overflow, while

maintaining the overall tree depth unchanged.

5 Efficient General-Purpose Constructions

Now that we considered multiple application-specific constructions and respective primitives that make them

possible, we can apply the learnings to the general-purpose constructions.

5.1 Authority Accumulator

One notable learning is that if we assume that the samples are uniformly distributed and there’s no malicious

activity to factor the key then the combined size of the accumulator is only slightly larger than its capaci-

ty. Thus, for the case when the accumulator is managed authoritatively, e.g., a government keeping list of

sanctioned organizations, certificate authority issuing certificates, etc., the accumulator can be kept small and

very efficient without the complexities of the considered above applications.

In fact, for the accumulator capacity q and bucket size s − 1, we can find the addressable tree depth da, such

that Pr
[
C(2d, s, q)

]
≤ 2−128, i.e., probability of filling up a bucket after q elements are inserted is negligible:

da =

⌈
log2 2128

(
q
s

)
s− 1

⌉

For example, fixing bucket tree depth db = 7, for capacity n = 224 the addressable tree depth is da = 20

totaling to 27, and for capacity n = 232 the depth is da = 28. On average combined accumulator depth is

just about 3 levels deeper than the smallest Merkle tree that has enough capacity to hold n elements, i.e.,

log2(n) + 3, for 29 ≤ n ≤ 283, which is next to optimal, for comparison an AVL tree has a maximum depth of

1.4405 log2(n + 2) − 0.3277, see [Knu98], i.e., about 31% more than our construction for n = 232, while also

requiring more storage.

Note that in order to achieve the same security with the trivial solution from the section 2.1 it would require

to use the tree of depth 175 and 191 for 224 and 232 capacities respectively, hence this work provides 6.48x

and 5.45x reductions respectively.

27

5.2 VRF-Based

Verifiable random function VRF(∗), introduced in [MRV], allows to open up authority accumulator from sec-

tion 5.1 to other users, whereby authority would be responsible for computing the deterministic index of the

key from given key-value pair (k, v), similarly to [Mel+15], i.e., VRF(k). This way, the marginal tree depth

overhead also applies.

The VRF itself can either be centralized or distributed, however, a distributed setting would require

rebuilding an accumulator from scratch if VRF setup reconfiguration occurs, since key indices will change.

Assuming the adversary can’t evaluate the key VRF(k) by any other means apart from submitting a key-

value pair insertion operation which will be added to the accumulator, the number of samples is limited by

the capacity of the accumulator.

5.3 VDF-Based

Verifiable delay function [Bon+18] can provide both determinism of result for any given input, as well as re-

quirement on the number of sequential steps of computation before the result is provided. We can use these

properties to build general-purpose accumulator in cases where VRF is not appropriate.

The idea is to multiply the amount of work necessary to produce s-collision, thereby allowing for reduction

of the tree depth. If it takes w work (samples) on average to find s-collision, then if the addition of VDF ta-

kes wds operations to derive a single key index from key k then the total work becomes w × wds. Hence, the

number of indices that’s possible to derive with w work is qvdf = w
wds

, respectively the updated goal is to set

accumulator parameters such that it takes qvdf samples on average to find s-collision, effectively meaning that

we can reduce depth while keeping security at the same level.

We can achieve this either using random delay oracle (see [Bon+18]) or the VDF directly, relying on its deter-

minism and unpredictability properties. Using notation from [Bon+18], to derive key index h, first the VDF

evaluation is carried out (ν, πvdf) = VDF.Eval(ek, k), followed by h = PRF0(ν). The accumulator insertion re-

quest, therefore, consists of (k, v, ν, πvdf), which is verified before being accepted using VDF.Verify(), which

can be carried out either natively or through zero-knowledge proof. Notably, the verification takes only a

short time compared to evaluation, hence the modification has minimal impact on accumulator performance.

For example for 128 bits of security, if it takes wds = 228 operations to evaluate the VDF on a key, we need to

set accumulator parameters such that s-collision is feasible after 2100 key indices are sampled. Having addres-

sable tree depth da = 94 and bucket size s− 1 = 256 satisfies the requirements, resulting in a combined depth

of 102, or about 1.28 times shallower than in section 2.4. We can satisfy 96 bits of security with da = 62 and

s− 1 = 256, i.e., 70 levels combined, a 1.41 times reduction.

This tree size improvement, of course, comes at an additional cost to the user and, therefore, may not be

suitable for some applications.

6 Bucket Operational Efficiency

We’ve omitted bucket insertion or removal time complexity so far, but it’s important to address it for prac-

tical efficiency. Although s-collision may be infeasible after w samples, there might be many less than s-

collisions, we can generalize the number of days with the birthday collision formula [Wik23a, Number of days

28

with at least two birthdays]:

n−
s−1∑
i=0

n

(
1

n

)i(
q

i

)(
n− 1

n

)q−i
(9)

Notably the formula
(
q
s

)
× n−(s−1)µs(h) from [RS09] section 2.4, is asymptotic to the above, however, it’s

especially suited for cases where µs(h) 6= 1, although, as before (section 2.4) we assume that µs(h) = 1 for

simplicity, although final construction must account for less than ideal hash function for margin of safety.

For example, for da = 59, n = 259 and s = 65, the probability of 65-collision is negligible after 260 work.

0 20 40 60

−150

−100

−50

0

50

arity of collision

ex
p

ec
te

d
n
u

m
b

er
o
f

co
ll

is
io

n
s,

lo
g

2
sc

al
e

Figure 6: Expected number of buckets with the specific number of elements

For instance, we can expect about 257 buckets with a single element, 244 10-element buckets, and about one

bucket with 24 elements, thus multi-element buckets are quite common and we need to consider how to best

deal with them.

It’s helpful, to look at the cumulative share of busy buckets up to a certain number of elements per bucket

in relation to all the non-empty buckets, figure 7. For instance, more than 99% of all the busy buckets are

expected to have 6-collision or less, and more than 83% of 3-collision or less. To complete the picture, let’s

calculate the expected bucket occupancy as relation of the number of elements versus the number of busy

buckets:
q

n− n
(
n−1
n

)q (10)

For our example this yields about 2.3 elements on average per bucket, hence it’s reasonable to store bucket

trees as sparse Merkle trees [Bau04]; [DPP16] and assume constant time performance.

However, the more we shift the balance towards the larger bucket size the larger the expected occupancy

will be, for instance, q = 232, da = 28, db = 7, yields about 16-element buckets on average. General-

ly, security level being 128 bits, as we choose larger buckets, db > 1, the average occupancy will get up to

25%. Considering such cases or the fact that malicious actor might try to commit partial multi-collisions as a

form of DoS attack, especially in constructions such as in section 4.2.3, our solution will depend on whether

history-independence property is desired.

29

0 20 40 60

40

60

80

100

arity of collision (elements in bucket)

cu
m

u
la

ti
ve

sh
ar

e
of

b
u

ck
et

s,
%

Figure 7: Cumulative share of buckets, containing up to the given number of elements

6.1 History-Independent

It’s important to note that if the bucket is history-independent then the accumulator as a whole is history-

independent since keys are mapped to specific buckets deterministically and regardless of the order of

processing the buckets will contain exactly the same elements.

Keeping buckets sorted provides history independence, however, this might prompt an O(s) reorganization

in the worst case which would require reconstruction of the bucket tree from scratch, involving recomputing

hashes of all parent nodes. Hence it’s best to keep the bucket size small, however, as we’ve seen in figure 5,

a bucket tree with a depth less than 6 will need to pay unproportionate extra in size of the addressable tree,

hence it’s a balancing act.

For our example, the bucket size of 25 with the addressable tree depth of da = 62 provides the necessary level

of security, moreover, more than 99% of non-empty buckets are expected to contain 2 or fewer elements, and

in 99.9999% of non-empty buckets the worst case is an insert or removal operation in bucket with 4 elements,

which is negligible and may be considered amortized constant-time.

6.2 History-Dependent

As mentioned in section 2.2, we can do further optimization of the sorted tree, building on top of optimiza-

tion from section 2.4 where leaf also contains the key of the leaf that is next in the ordering sequence, i.e., leaf

li contains
(
kbi , v, k

b
i+1

)
where in non-membership-proof of kb/∈ we make sure that kbi < kb/∈ < kbi+1.

l0 l1 l2 l3 l4

Figure 8: leaves are in the ascending order of the key

Considering that all the data needed for membership and non-membership proofs is already available in the

leaf, we can conclude that the ordering of the leaves doesn’t matter as long as each leaf contains the key of

30

the next element in the ordered sequence.

l4 l1 l3 l2 l0

Figure 9: leaves in order of insertion “pointing” to the next leaf, in the ordered sequence

Hence, upon insert operation, we can append an element onto the first available leaf and make sure to specify

the correct next value (if there’s any) and update the next value of the previous by-order leaf (if there’s any).

Notably, the same observation was independently made in [LK12].

Hence, now every time we insert only at most O(2db) updates need to be made. However, keeping it as is

would require O(s − 1) search complexity, to find the two adjacent elements in the linked list-like structure,

which might be reasonable for smaller buckets.

To make search complexity improvement we can keep a supplemental sorted data structure which would con-

tain the list of leaf indices sorted by the bucket key kb of the respective leaves. For example, we can use a

sorted array for O(db) search complexity and O(s − 1) insertion or removal complexity, although it’s worth

noting that changes to this data structure don’t need invocation of hashing, hence it’s more efficient when

sorting data is kept independent of the bucket tree. Moreover, for buckets of size s only s log2 s bits of stora-

ge are required, which is only a fraction of bucket storage, i.e., a bucket size of 32 only needs 20 bytes to store

the sorted structure.

Other sorted data structures, such as AVL13 tree can be used for O(db) insert and delete operations. Howe-

ver, since the number of multi-collisions is dropping exponentially, as per figure 6, most non-empty buckets

will contain only a few elements, therefore it might be reasonable to use simple data structure and only when

it’s warranted, i.e., when the bucket reaches a certain size.

With a supporting data structure in place, it’s notable that there’s no need to store the key of the next leaf in

the current one, the key can be fetched from the next leaf when needed, such as for hashing up to the root or

constructing a (non-)membership proof.

Even though we update 2 leaves when we insert an element, we only do so in the bucket (O(2db − 1)) and the

update of the bucket root hash in the whole tree is only computed for da nodes.

7 Future Work

Apart from applications to cryptographic accumulators, learnings from the multi-collision probability and

bucket occupancy analysis may have a broad range of applications, including in databases and hash table im-

plementations. For instance, for hash tables it may provide a useful estimate on how many elements to expect

at any given location on average, while separately taking care of edge-case overflows.

While the focus of the work was on symbiosis with zero-knowledge proofs, in some scenarios it’s not required,

hence our construction can be easily adapted for such needs.

13AVL62.

31

Introduction of key index variants in section 4.2.3.5 might be a stepping stone to either reducing or

eliminating the need for post-randomization.

Additionally, the approach can be modified to utilize higher tree arity to improve storage efficiency and/or to

benefit from better performing hash functions.

8 Conclusions

We’ve constructed an efficient key-value, and optionally history-independent14, accumulator in terms of

constant-time lookup complexity, rounds of hashing for (non-)membership proofs, number of updates per in-

sert and storage requirement. The primary insight is that the larger the arity of collision is, the substantially

more samples is needed, asymptotically O
(
n
e

)
increase per each arity increment, i.e., s.

For the subset of applications that include nullifiers, we’ve utilized unpredictability of the final key index

along with rate-limiting to establish an upper bound on the total number of samples which facilitated a

substantial tree depth reduction of more than 5 fold.

Additional analysis of the expected occupancy of bucket trees (section 6) led to the conclusion that amortized

lookup complexity is O(1).

9 Acknowledgements

We thank Daniel Lubarov and Kai Geffen for helpful comments that made this work better.

14NT01.

32

10 References

[AVL62] Georgii Maksimovich Adelson-Velskii and Evgenii Mikhailovich Landis. “An algorithm for organi-

zation of information”. In: Proc. USSR Acad. Sci. Vol. 146. 2. USSR Academy of Sciences. 1962,

pp. 263–266 (cit. on p. 31).

[Bau04] Matthias Bauer. “Proofs of Zero Knowledge”. In: CoRR cs.CR/0406058 (2004). url: http://

arxiv.org/abs/cs/0406058 (cit. on pp. 3, 5, 6, 29).

[Bon+18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable Delay Functions. Cryp-

tology ePrint Archive, Paper 2018/601. https://eprint.iacr.org/2018/601. 2018. url:

https://eprint.iacr.org/2018/601 (cit. on p. 28).

[BS+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,

and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. Cryptology ePrint

Archive, Paper 2014/349. https://eprint.iacr.org/2014/349. 2014. url: https://eprint.

iacr.org/2014/349 (cit. on pp. 1, 3, 4, 11, 12, 13).

[DN93] Cynthia Dwork and Moni Naor. “Pricing via Processing or Combatting Junk Mail”. In: Advances

in Cryptology—CRYPTO’92: 12th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 16–20, 1992. Proceedings. Vol. 740. 1993, p. 139 (cit. on p. 19).

[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient Sparse Merkle Trees: Caching Strate-

gies and Secure (Non-)Membership Proofs. Cryptology ePrint Archive, Paper 2016/683. https:

//eprint.iacr.org/2016/683. 2016. url: https://eprint.iacr.org/2016/683 (cit. on pp. 10,

29).

[Gal+21] David Galindo, Jia Liu, Mihair Ordean, and Jin-Mann Wong. “Fully Distributed Verifiable

Random Functions and their Application to Decentralised Random Beacons”. In: 2021 IEEE

European Symposium on Security and Privacy (EuroSP). 2021, pp. 88–102. doi: 10 . 1109 /

EuroSP51992.2021.00017 (cit. on pp. 12, 14).

[GHW21] Zhenhuan Gao, Yuxuan Hu, and Qinfan Wu. ‘Jellyfish Merkle tree. Tech. rep. Facebook Diem,

Tech. Rep, 2021 (cit. on pp. 1, 5).

[GT00] Michael T Goodrich and Roberto Tamassia. Efficient authenticated dictionaries with skip lists and

commutative hashing. Tech. rep. Technical Report, Johns Hopkins Information Security Institute,

2000 (cit. on p. 9).

[HMW18] Timo Hanke, Mahnush Movahedi, and Dominic Williams. “DFINITY Technology Overview

Series, Consensus System”. In: ArXiv abs/1805.04548 (2018). url: https : / / api .

semanticscholar.org/CorpusID:44106332 (cit. on pp. 12, 14).

[Hop+20] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash Protocol Specifica-

tion. [Version 2020.1.14]. 2020. url: https : / / github . com / zcash / zips / blob /

36b35dbf4a7f6be54617fb52906d87816582d4e6/protocol/protocol.pdf (cit. on pp. 1, 11,

12, 13, 14).

[Knu98] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, Volume 3. Pearson Edu-

cation, 1998. isbn: 9780321635785. url: https://books.google.com/books?id=cYULBAAAQBAJ

(cit. on p. 27).

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal machine executions without

universal circuits. Cryptology ePrint Archive, Paper 2022/1758. https://eprint.iacr.org/

2022/1758. 2022. url: https://eprint.iacr.org/2022/1758 (cit. on p. 24).

33

http://arxiv.org/abs/cs/0406058
http://arxiv.org/abs/cs/0406058
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2018/601
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2016/683
https://eprint.iacr.org/2016/683
https://eprint.iacr.org/2016/683
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1109/EuroSP51992.2021.00017
https://api.semanticscholar.org/CorpusID:44106332
https://api.semanticscholar.org/CorpusID:44106332
https://github.com/zcash/zips/blob/36b35dbf4a7f6be54617fb52906d87816582d4e6/protocol/protocol.pdf
https://github.com/zcash/zips/blob/36b35dbf4a7f6be54617fb52906d87816582d4e6/protocol/protocol.pdf
https://books.google.com/books?id=cYULBAAAQBAJ
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758

[LK12] Ben Laurie and Emilia Kasper. “Revocation transparency”. In: Google Research, September 33

(2012) (cit. on pp. 3, 5, 31).

[Mel+15] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and Michael J Freed-

man. “CONIKS: Bringing key transparency to end users”. In: 24th USENIX Security Symposium

(USENIX Security 15). 2015, pp. 383–398 (cit. on pp. 1, 3, 28).

[MRV] Silvio Micali, Michael Rabin, and Salil Vadhan. “Verifiable Random Functions”. In: () (cit. on

p. 28).

[NT01] Moni Naor and Vanessa Teague. “Anti-Persistence: History Independent Data Structures”. In:

Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. STOC ’01.

Hersonissos, Greece: Association for Computing Machinery, 2001, 492–501. isbn: 1581133499.

doi: 10.1145/380752.380844. url: https://doi.org/10.1145/380752.380844 (cit. on

p. 32).

[Ped92] Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret

Sharing”. In: Advances in Cryptology — CRYPTO ’91. Ed. by Joan Feigenbaum. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 1992, pp. 129–140. isbn: 978-3-540-46766-3 (cit. on p. 14).

[RS09] Somindu C. Ramanna and Palash Sarkar. On Quantifying the Resistance of Concrete Hash Func-

tions to Generic Multi-Collision Attacks. Cryptology ePrint Archive, Paper 2009/525. https:

//eprint.iacr.org/2009/525. 2009. url: https://eprint.iacr.org/2009/525 (cit. on pp. 8,

11, 29).

[Ste99] Steven Finch. Minimal number of people to give a 50% probability of having at least n coincident

birthdays in one year. [Online; accessed 20-December-2020]. 1999. url: https://oeis.org/

A014088 (cit. on p. 6).

[STS99] Tomas Sander and Amnon Ta-Shma. “Auditable, Anonymous Electronic Cash”. In: Advances in

Cryptology — CRYPTO’ 99. Ed. by Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 1999, pp. 555–572. isbn: 978-3-540-48405-9 (cit. on p. 12).

[Suz+06] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. “Birthday Paradox for

Multi-collisions”. In: Information Security and Cryptology – ICISC 2006. Ed. by Min Surp Rhee

and Byoungcheon Lee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 29–40. isbn: 978-

3-540-49114-9 (cit. on pp. 7, 8).

[Tzi+21] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. Transparency Dictionaries

with Succinct Proofs of Correct Operation. Cryptology ePrint Archive, Paper 2021/1263. https:

//eprint.iacr.org/2021/1263. 2021. url: https://eprint.iacr.org/2021/1263 (cit. on

p. 5).

[Wik23a] Wikipedia contributors. Birthday problem — Wikipedia, The Free Encyclopedia. [Online; accessed

6-November-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Birthday_

problem&oldid=1182788018 (cit. on p. 28).

[Wik23b] Wikipedia contributors. Computer performance by orders of magnitude — Wikipedia, The Free

Encyclopedia. [Online; accessed 26-October-2023]. 2023. url: https://en.wikipedia.org/w/

index.php?title=Computer_performance_by_orders_of_magnitude&oldid=1178716171

(cit. on p. 21).

[Wik23c] Wikipedia contributors. Moore’s law — Wikipedia, The Free Encyclopedia. [Online; accessed 27-

October-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Moore%27s_law&

oldid=1181898128 (cit. on p. 19).

34

https://doi.org/10.1145/380752.380844
https://doi.org/10.1145/380752.380844
https://eprint.iacr.org/2009/525
https://eprint.iacr.org/2009/525
https://eprint.iacr.org/2009/525
https://oeis.org/A014088
https://oeis.org/A014088
https://eprint.iacr.org/2021/1263
https://eprint.iacr.org/2021/1263
https://eprint.iacr.org/2021/1263
https://en.wikipedia.org/w/index.php?title=Birthday_problem&oldid=1182788018
https://en.wikipedia.org/w/index.php?title=Birthday_problem&oldid=1182788018
https://en.wikipedia.org/w/index.php?title=Computer_performance_by_orders_of_magnitude&oldid=1178716171
https://en.wikipedia.org/w/index.php?title=Computer_performance_by_orders_of_magnitude&oldid=1178716171
https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=1181898128
https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=1181898128

[Woo+14] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:

Ethereum project yellow paper 151.2014 (2014), pp. 1–32 (cit. on pp. 1, 3).

35

	Introduction
	Overview and Contributions
	Comparison to Alternatives

	Accumulator from Hardness of Multicollision
	Key-Value Merkle Tree
	Sorted Merkle Tree
	Intuition
	General-Purpose Construction Sketch
	Update and Deletion

	Security
	Objectives
	Building Blocks

	Efficient Constructions for Nullifiers and Combined Keys
	Constrained Epoch Sample Space
	Post-Factum Randomization
	Nullifiers from Randomized Commitment
	Bare Commitment Bootstrapping
	Empty Bucket Rule
	Example Instantiation
	Front-running Problem
	Addressing Front-running
	Indistinguishability
	Randomized Nullifier Indistinguishability via Key Index Variants

	Efficient General-Purpose Constructions
	Authority Accumulator
	VRF-Based
	VDF-Based

	Bucket Operational Efficiency
	History-Independent
	History-Dependent

	Future Work
	Conclusions
	Acknowledgements
	References

