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Abstract. We propose a new wide encryption (WE) mode of operation that satisfies
robust authenticated encryption (RAE) and committing security with minimum
ciphertext expansion. WE is attracting much attention in the last few years, and
its advantage includes RAE security that provides robustness against wide range of
misuses, combined with the encode-then-encipher (EtE) construction. Unfortunately,
WE-based EtE does not provide good committing security, and there is a recent
constant-time CMT-4 attack (Chen et al., ToSC 2023(4)). Improving CMT-4 security
requires considerable ciphertext expansion, and the state-of-the-art scheme expands
the ciphertext by srae + 2scmt bits from an original message to achieve srae-bit RAE
and scmt-bit CMT-4 security. Our new WE mode FFF addresses the issue by achieving
srae-bit RAE and scmt-bit CMT-4 security only with max{scmt, srae} bits of ciphertext
expansion. Our design is based on the committing concealer proposed by Bellare et al.,
and its extension to WE (cf. tag-based AE) while satisfying RAE security is the
main technical innovation.
Keywords: Wide encryption · Commitment · Robust authenticated encryption ·
Minimum ciphertext expansion · Mode of operation.

1 Introduction
Block cipher is an essential component of symmetric-key cryptography, which provides a
pseudorandom permutation (PRP) of a fixed small length. If a PRP is secure for both
forward and inverse queries, it is called a strong PRP (SPRP). Fixed-length PRP and
SPRP are used with a mode of operation to handle variable-length input, but the resulting
scheme is not necessarily a PRP or SPRP. For example, many common modes (ECB, CBC,
OFB, CFB, and CTR [Dwo01]) are easily distinguishable from random functions, since
changing a last message block only affects the last ciphertext block.

Wide encryption (WE) is a symmetric-key primitive that realizes an SPRP for a
message of any length. Tweakable WE is a variant with an additional tweak input,
with which an independent WE is instantiated with each tweak value. Hereafter, the
term WE represents tweakable WE unless otherwise noted. Halevi and Rogaway for-
malized the security definition for WE, i.e. for tweakable, variable-length, and length-
preserving SPRP [HR04]. Since then, researchers have proposed WE modes, including
Shrimpton–Terashima [ST13], ZCZ [BLN18], and Băcuiet,i et al. [BDH+22], and concrete
realizations such as AEZ [HKR15]. WE has practical applications, including full-disk
encryption, and there are several proposals from the industry, including Adiantum [CB18]
and HCTR2 [CHB21] by Google. Moreover, NIST has recently started standardizing
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WEs [Nat23, Nat24], which stimulated even more WE proposals in the last few years,
including the ones using double-decker and docked-double-decker [GDM22, DMMT24].

WE is an efficient building block for authenticated encryption with associated data
(AE) that provide confidentiality and authenticity. More formally, an AE encryption
AE.Enc takes a key K, associated data A, and a message M to generate a ciphertext
C = AE.Enc(K, A, M). Throughout the paper, we assume that A includes a nonce N .
The decryption AE.Dec takes the ciphertext C and the tuple (K, A) called the decryption
context. It outputs the original message M with successful authentication; otherwise, it
returns the invalid symbol reject. The encode-then-encipher (EtE) scheme proposed by
Bellare and Rogaway [BR00] is a well-known way of constructing an AE from WE. WE-
based EtE is particularly important because it realizes a robust AE (RAE) [HKR15]—a
class of AEs that provides strong robustness against several misuses, including nonce reuse
and the release of unverified plaintexts [ABL+14, HKR15].

WE-based EtE achieves srae-bit RAE security with ciphertext expansion by srae bits
(up to the security bound of the WE). It first encodes srae bits of redundant data into an
m-bit original message, e.g., by appending srae bits of zeros to the message, and encrypts
the encoded message with the underlying WE to generate an (m + srae)-bit ciphertext.
Upon decryption, EtE recovers an (m + srae)-bit encoded message, decodes the srae-bit
redundancy, and checks it for authenticity. Meanwhile, WE’s tweak input can be used to
accept associated data A, including a nonce. AEZ [HKR15] is a well-known realization in
this category.

Committing security is a relatively new security model with respect to AE [FOR17,
GLR17]. The adversary is motivated to generate a ciphertext that is successfully decrypted
with distinct decryption contexts. It is practically relevant because of the real-world
attacks, including the multi-recipient integrity attack that delivers malicious content to
a targeted user [GLR17, DGRW18, ADG+22] and the partitioning oracle attack that
achieves efficient password brute-force attacks [LGR21]. The adversary in this model can
know and choose a secret key, which significantly impacts the security analysis. This
results in efficient attacks on common AE schemes, including GCM [GLR17, DGRW18],
GCM-SIV [LGR21], CCM [MLGR23], and ChaCha20-Poly1305 [GLR17, NL18].

Bellare and Hoang [BH22] (and Chan and Rogaway independently [CR22]) generalized
and formalized the committing security into CMT-1, CMT-3, and CMT-4 that consider
the decryption contexts with K ̸= K ′, (K, A) ̸= (K ′, A′), and (K, A, M) ̸= (K ′, A′, M ′),
respectively. CMT-1 covers committing security in the early days, also known as key
commitment [FOR17, GLR17]. Meanwhile, CMT-3 and CMT-4 are equivalent, and they
are strictly more secure than CMT-1.

Committing security of WE-based EtE is an emerging area of research. Grubbs et al. [GLR17]
showed that EtE combined with an ideal WE satisfies a variant of key-committing security.
Then, Chen et al. [CFI+23] pioneered cryptanalysis and security proof of concrete schemes,
including AEZ, Adiantum-EtE, and HCTR2-EtE . Although WE-based EtE provides
scmt-bit CMT-1 security with 2scmt bits of ciphertext expansion, the security is clipped at
n/2 wherein n is a block length of an underlying block cipher. With commonly used 128-bit
block ciphers, i.e., n = 128, CMT-1 security saturates at 64 bits, which is insufficient
for the minimum security level of 80 bits suggested by Chan and Rogaway [CR22]; the
80-bit security level is necessary because committing security is offline, where an adversary
can efficiently make and verify guesses without any online query, in the same way as
brute-force key recovery attack. The situation is even worse with CMT-4 security, and
AEZ, Adiantum-EtE, and HCTR2-EtE are all broken in a constant time.

We can improve committing security of WE-based EtE beyond n/2 bits with the
previous methods, at the cost of more ciphertext expansion, as summarized in Table 1.
We assume a baseline WE-based EtE that satisfies srae-bit RAE security with srae bits of
ciphertext expansion. We can use Fashim et al.’s method [FOR17] that adds an 2scmt-bit
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Table 1: Ciphertext expansion in WE-based AEs for srae-bit RAE and scmt-bit
CMT-1/CMT-4 security. The expansion is considered minimum when the target achieves
the CMT-4 and RAE security with max{scmt, srae}. The table assume scmt ≥ srae, and
max{scmt, srae} = scmt. The Primitive column shows assumptions of the underlying prim-
itives for CMT-1/CMT-4 security: IC, CR hash, and RO represent an ideal cipher, a
collision-resistant hash function, and a random oracle, respectively.

Scheme Expansion size (bits) Minimum? Primitive Ref.

CMT-1 CMT-4

WE + EtE† 2scmt
‡ — No IC [BR00]

WE + EtE + H(K) srae + 2scmt — No CR Hash [FOR17]

WE + EtE + H(K, A) srae + 2scmt srae + 2scmt No CR Hash [FOR17, CR22]

FFF scmt scmt Yes RO Ours

† AEZ, Adiantum-EtE, HCTR2-EtE, ‡The block size of the internal block cipher is 2scmt bits.

hash digest of a key, denoted by H(K), to the ciphertext. The resulting scheme achieves
scmt-bit CMT-1 security, which can be larger than n/2 bits. By appending a 2scmt-bit
hash digest of a key and associated data H(K, A) instead [FOR17, CR22], we can achieve
scmt-bit CMT-4 security.1 However, as a drawback, the ciphertext expands by srae + 2scmt
bits from the original message. We also remark that there is no RAE security regarding
the additional hash values H(K) and H(K, A), which is another issue that we address
with the proposed method.

1.1 Design Goals
This paper improves the committing security of WE-based AEs. In particular, we propose
a new method of building AE from the wide encryption that satisfies the following criteria.

• RAE Security: We focus on an RAE scheme with the security notion by Hoang et al. [HKR15]
that provides strong robustness against several misuses.

• CMT-4 Security: We target CMT-4 security that is strictly more secure than
CMT-1 and is unavailable with a simple EtE.

• Minimum Ciphertext Expansion: The design satisfies the minimum ciphertext
expansion, which is max{scmt, srae} for an srae-bit RAE and scmt-bit CMT-4 security.

1.2 Our Approach
Obtaining CMT-4 security with the minimum ciphertext expansion is a major research
challenge [BHW23, NSS24], and Bellare et al. [BHW23] already achieved the minimum
ciphertext expansion for tag-based AEs, i.e., scmt-bit CMT-4 security with scmt bits of
expansion. Fig. 1-(left) shows Bellare et al.’s construction wherein the committing concealer
(CC) plays an important role. The construction splits a message into two parts, i.e.,
M →M1∥M2, and encrypts M1 with an underlying tag-based AE to obtain a ciphertext

1Appending H(K, A) is an extension of Farshim et al.’s method [FOR17] and is a variant of CTX [CR22]
that appends H(K, A, T ) wherein T is a tag of an underlying tag-based AE.
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Figure 1: Existing Committing Mode: Tag-based AE with Committing Concealer (Left)
and Our Committing Mode FFF: WE with 3-Round Feistel (Right).

C1 and a tag T . Then, CC encrypts M2 using the tag as its key and generates C2 and C3.
C1||C2||C3 is transmitted as a final ciphertext. In decryption, the scheme first decrypts C1
by calling the tag-based AE to recover the message M1 and the tag T . Then, it uses the
tag to run the CC decryption to recover M2. Authenticity is verified by checking 0r in CC
decryption. As a result, the size of C2||C3 contributes to the collision resistance for the
committing security, while the ciphertext expansion is only |C3| = r bits thereby achieving
minimum expansion.

We follow the above approach, but its application to WE and achieving RAE security
are not straightforward. WE has no tag, and an attempt to use a fraction of WE’s
ciphertext as a CC’s key does not work because, unlike the tag T , we cannot reproduce the
fraction from the remaining part. Moreover, the scheme in Fig. 1-(left) does not provide
RAE security; an adversary can efficiently distinguish the released unverified plaintexts
from the ideal-world counterparts because (i) the decrypted M1 is unaffected by C2||C3
and (ii) a difference in C2 propagates directly to M2.

1.3 Our Contributions
In this paper, we propose a new mode FFF that converts a WE into a RAE with provable
committing security. The construction is depicted in Fig. 1-(right). It is parameterized
by two variables, srae and scmt, which are target security levels as an RAE and as a
CMT-4-secure AE, respectively. The size of the ciphertext expansion is minimal; the
ciphertext size is only max{scmt, srae} bits larger than the message size.

In this construction, an input message M of size |M | bits is divided into two parts
M →M1∥M2, where the sizes of M1 and M2 are |M | − ℓ bits and ℓ bits, respectively. The
construction consists of WE Π for |M |-bit inputs and 3-round Feistel-like structure for
processing (ℓ + r)-bit input consisting of M2 and r bits of zeros 0r, where both the input
and the output of Π are involved in the 3-round Feistel-like structure.

Inside the 3-round Feistel-like structure, three independent keyed hash functions
F1(KF, ·), F2(KF, ·), and F3(KF, ·), which serve as three random oracles for CMT-4 security
or pseudorandom functions (PRFs) for RAE security, are computed.2 All of them take a
WE key KΠ and associated data A as input.3 Besides, F1(KF, ·) and F3(KF, ·) take the

2By using domain separations, the three keyed hash functions can be realized from a single keyed hash
function.

3By using iterated hash functions such as Merkle-Damgård or Sponge, one can share the state after
processing KΠ and A within the three hashing processes.



Yusuke Naito, Yu Sasaki and Takeshi Sugawara 5

r-bit state as the input and F2(KF, ·) take the last ℓ bits of the input and the output of Π
as input. During the encryption, F1(KF, ·) is first computed and XORed with M2, then Π
is computed with a key KΠ to transform M1∥M̃2 into C1∥C̃2, where M̃2 and C̃2 are the
last ℓ bits of the input and output of Π, respectively. At this stage, |M | − ℓ bits of the
ciphertext C1 can be output. After that, F2(KF, ·) and F3(KF, ·) are computed in turn,
and ℓ bits and r bits of the ciphertext C2 and C3 are computed respectively as shown in
Fig. 1. For decryption, first F3(KF, ·) is computed, and then the inverse of WE Π−1 is
computed, followed by F2(KF, ·) and F1(KF, ·). The outputs Z2 and Z1 are respectively
XORed with C3 and M̃2 to compute T and M2. The inputs are verified by checking if
T = 0r. If so, M1∥M2 is a valid plaintext.

The design rational can be understood by intuitively understanding the security of
this construction. To ensure RAE security, roughly speaking, any single-bit change in any
of M1, M2, A must change all of C1, C2, C3 randomly. The change of M1, M2 affects not
only C1, C2 but C3 through F2(KF, ·) that takes ℓ bits of the output from Π as input. The
change of A will affect all the three rounds of the Feistel-like structure, which randomly
changes C1, C2, C3. Similarly, during the decryption, the change in C1, C2, C3, A must
change M1,M2, and T randomly. It is easy to see that any change in C1, C2, C3, A will
change the input to Π−1, namely C1∥C̃2, which randomly changes the output of Π−1,
namely M1∥M̃2. With the similar analysis, any change in C1, C2, C3, A will change Z2
randomly, which changes T randomly.

For CMT-4, since CMT-4 and CMT-3 are equivalent, the goal of an adversary is to
find a pair ((K†

Π, K†
F, A†, M†

1 , M†
2 ), (K‡

Π, K‡
F, A‡, M‡

1 , M‡
2 )) whose tuples of the first three

values are distinct and the ciphertexts C†
1∥C

†
2∥C

†
3 and C‡

1∥C
‡
2∥C

‡
3 are the same. Then, the

CMT-4 security is reduced to the collision resistance of the C†
2∥C

†
3 part of the 3-round

Feistel-like structure. The previous CC-construction [BHW23] in Fig. 1-(left) showed that
this is possible even with 2-round Feistel network. With the similar approach, we can
prove the collision resistance of our 3-round Feistel-like structure. In fact, only for proving
CMT-4 security, 2 rounds are sufficient, but we need the additional round to make the
construction a provably secure RAE.

Regarding the security bounds, FFF achieves about min{r, ℓ/2}-bit RAE security in
the multi-user setting and about min{r, ℓ}-bit CMT-4-security. If srae ≤ scmt/2 (resp.
scmt/2 < srae ≤ scmt), then by choosing the parameters such that ℓ ≥ r = scmt (resp.
r = scmt and ℓ = 2srae), the size of the ciphertext expansion of FFF is minimum regarding
CMT-4 security. If scmt > srae, then by choosing the parameters such that r = srae and
ℓ = 2srae, the size of the ciphertext expansion is minimum regarding RAE security.

Note that we require that the hash functions F1(KF, ·), F2(KF, ·), and F3(KF, ·) are
keyed, and is a secure PRF. This is for proving RAE-security; RAE-security is usually
proved under a secret key, and if the hash functions are keyless, key-dependent data may
be passed to WE, yielding some attacks.

1.4 Related Works
Hash-then-Encrypt (HtE) [BH22] is another construction that converts a CMT-1-secure
AE scheme into a CMT-4-secure one. HtE first generates a hash value L = H(K, A) using a
collision-resistant hash function H and uses L as a key for the underlying CMT-1-secure AE.
We can achieve a CMT-4 security by combining HtE with WE and EtE, but the security
is limited to n/2 bits, bottlenecked by WE-based EtE’s CMT-1 security, as summarized in
Table 1.

KIVR is another approach for improving CMT-4 security beyond the birthday bound
regarding the tag in tag-based AEs [NSS24]. With (r + t)-bit ciphertext expansion for an
r-bit plaintext redundancy and a t-bit tag, KIVR achieves r/2 or (r + t)/2 bits of CMT-4
security depending on the underlying tag-based AE.
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2 Preliminaries

2.1 Notation

For integers 0 ≤ i ≤ j, let [i, j] := {i, i + 1, . . . , j} and [j] := [1, j]. Let ε be an empty
string, ∅ an empty set, and {0, 1}∗ be the set of all bit strings. For an integer n ≥ 0, let
{0, 1}n be the set of all n-bit strings and {0, 1}0 := {ε}. Let 0i be the bit string of i-bit
zeros. For X ∈ {0, 1}j , let |X| := j. The concatenation of two bit strings X and Y is
written as X∥Y or XY when no confusion is possible. For integers 0 ≤ j, i and X ∈ {0, 1}i,
let msbj(X) (resp. lsbj(X)) be the most (resp. least) significant j bits of X. If j ≥ i,
then msbj(X) = X and lsbj(X) = X. For a non-empty set T , T

$←− T means that an
element is chosen uniformly at random from T and assigned to T . For two sets T and
T ′, T ∪←− T ′ means T ← T ∪ T ′. For integers l1, . . . , lj ≥ 0 and X ∈ {0, 1}∗ such that
|X| = l1 + · · · + lj , (X1, . . . , Xj) l1,...,lj←−−−− X means parsing of X into j blocks such that
X = X1∥ · · · ∥Xj and |Xi| = li for each i ∈ [j].

2.2 Wide Encryption (WE)

A WE is a set of length-preserving permutations indexed by a key. Let Kwe andMwe be the
sets of keys and plaintexts. A WE Π : Kwe×Mwe →Mwe is such that for any key KΠ ∈ Kwe
and distinct plaintexts M, M ′ ∈ Mwe, |M | = |Π(KΠ, M)| and Π(KΠ, M) ̸= Π(KΠ, M ′)
must be satisfied. Let Π−1 be the inverse of Π. Π (resp. Π−1) with a key KΠ is denoted
by ΠKΠ (resp. Π−1

KΠ
). Let Π±

KΠ
= (ΠKΠ , Π−1

KΠ
). We call a WE with Kwe = ∅ a “wide

permutation (WP)”. Let WP(Mwe) be the set of all WPs over Mwe.

2.3 SPRP Security

For the RAE security of our mode, the underlying WE is assumed to be a secure multi-
user-strong-pseudorandom-permutation (mu-SPRP). Let u be the number of users. In
the mu-SPRP game, an adversary interacts with either the real-world oracles or the ideal-
world oracles. The real-world oracles are (ΠK(1) , Π−1

K(1) , . . . , ΠK(u) , Π−1
K(u)) where for each

i ∈ [u], K(i) $←− Kwe. The ideal-world oracles are ideal WPs (Ψ1, Ψ−1
1 , . . . , Ψu, Ψ−1

u ),
where for each ω ∈ [u], Ψω

$←− WP(Mwe). At the end of this game, A return a de-
cision bit in {0, 1}. Let AO ∈ {0, 1} be an output of A with access to a set of ora-
cles O. Then, the mu-SPRP advantage function of A is defined as Advmu-sprp

Π (A) =
Pr

[
AΠ

K(1) ,Π−1
K(1) ,...,Π

K(u) ,Π−1
K(u) = 1

]
− Pr

[
AΨ1,Ψ−1

1 ,...,Ψu,Ψ−1
u = 1

]
.

2.4 Random Oracle

We prove the committing security of our mode in the random oracle model. For a positive
integer n and a non-empty set Mro, let F :Mro → {0, 1}n be an n-bit hash function. Let
F(Mro, {0, 1}n) be the set of all functions from Mro to {0, 1}n. In this model, a random
oracle F is defined as F $←− F(Mro, {0, 1}n), and all parties have access to F by offline
queries.

A random oracle F can be realized by lazy sampling. Let TF be a table that is initially
empty and keeps query-response pairs of F. For a new query X to F, the response is
defined as Y

$←− {0, 1}n, and the pair (X, Y ) is added to TF: TF
∪←− {(X, Y )}. For a query

stored in the table TF, the same response is returned.
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2.5 Pseudorandom Function (PRF)
We prove the RAE security of our mode with multi-user secure PRFs. For a positive
integer n and non-empty sets Kprf ,Mprf , let F : Kprf ×Mprf → {0, 1}n be an n-bit keyed
function, where Kprf is the key space and Mprf is the message space. The function with a
key K is denoted by FK . Let u be the number of users. Let R(1), . . . ,R(u) be u random
functions where Ri

$←− F(Mprf , {0, 1}n) for each i ∈ [u]. Let K(1), . . . , K(u) be u keys
where K(i) $←− K for each i ∈ [u]. Let AO ∈ {0, 1} be an output of A with access to
a set of oracles O. The mu-PRF advantage function of an adversary A is defined as
Advmu-prf

F (A) := Pr
[
AF

K(1) ,...,F
K(u) = 1

]
− Pr

[
AR(1),...,R(u) = 1

]
. In our RAE-security

proof, A is a computationally-bounded adversary.

2.6 Authenticated Encryption (AE) with Decryption Leakage
Let AE be an AE scheme that is a pair of encryption and decryption algorithms (AE.Enc, AE.Dec).
K, A, M, C are the sets of keys, associated data (AD), plaintexts, and ciphertexts
of AE, respectively. Note that if AE is a nonce-based (resp. tag-based) AE scheme,
nonce (resp. a tag) is a part of AD (resp. a ciphertext). The encryption algorithm
AE.Enc : K × A ×M → C takes a tuple (K, A, M), and returns, deterministically, a
ciphertext C. The decryption algorithm AE.Dec : K × A × C → {reject} ∪ M takes
a tuple (K, A, C) and returns, deterministically, either the distinguished invalid symbol
reject ̸∈ M or a plaintext M ∈M. We require that ∀(K, A, M), (K ′, A′, M ′) ∈ K×A×M
s.t. |M | = |M ′| : |AE.Enc(K, A, M)| = |AE.Enc(K ′, A′, M ′)|. We also require that
∀K ∈ K, A ∈ A, M ∈M : AE.Dec(K, A, AE.Enc(K, A, M)) = M .

2.7 Committing Security
We use the security notion, CMT-4, defined in [BH22]. Let AE[F] be an AE scheme with an
n-bit hash function F :Mro → {0, 1}n where Mro is a message space. Our proof assumes
that F is a random oracle.

Bellare and Hoang [BH22] defines committing-security notions CMT-1 and CMT-3 as
well as CMT-4. For i ∈ {1, 3, 4}, let WiCi be a function for CMT-i security where on an input
tuple (K, A, M), WiC1(K, A, M) = K, WiC3(K, A, M) = (K, A), and WiC4(K, A, M) =
(K, A, M). In the CMT-i-security game, the goal of an adversary A is to return two distinct
input tuples with respect to WiCi on which the outputs of AE.Enc[F] are the same. The
CMT-i-security advantage of an adversary A for i ∈ {1, 3, 4} is defined as Advcmt-i

AE[F](A) :=
Pr

[
(K†, A†, M†), (K‡, A‡, M‡)← AF s.t. WiCi(K†, A†, M†) ̸= WiCi(K‡, A‡, M‡) ∧ C‡ =

C‡]
. We assume that all input-output pairs of F required to calculate C‡ = AE.Enc[F](K†, A†, M†)

and C‡ = AE.Enc[F](K‡, A‡, M‡) are defined by adversary’s queries.
Bellare and Hoang [BH22] proved that CMT-4 and CMT-3 are equivalent.

Lemma 1. For any CMT-4 adversary A4 making p queries, there exists a CMT-3 adversary
A3 making p queries such that Advcmt-4(A4) ≤ Advcmt-3(A3).

2.8 Robust-AE (RAE) Security
We use a slight variant of the RAE-security notion defined in [HKR15]. The variant notion
mu-RAE is indistinguishabilty between AE and an ideal AE with decryption leakage in the
multi-user setting. The ideal AE returns values that are randomly chosen with replacement
where in the original notion, an ideal AE returns values that are randomly chosen without
replacement.

In the mu-RAE-security game, we consider the decryption function with leakage func-
tionality, denoted by AE.DecL. AE.DecL takes the same inputs as AE.Dec, i.e., the input
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Algorithm 1 FFF
Encryption FFF.Enc[ΠKΠ , FKF ](A, M) where |M | ≥ ℓ

1: (M1, M2) |M |−ℓ,ℓ←−−−−−M

2: M̃2 ← F1(KF, (KΠ, A, 0r))⊕M2 ▷ 1st Round

3: M̃ ←M1∥M̃2; C̃ ← Π(KΠ, M̃); (C1, C̃2) |C̃|−ℓ,ℓ←−−−−− C̃ ▷ Perform WE
4: C3 ← F2(KF, (KΠ, A, M̃2, C̃2)) ▷ 2nd Round
5: C2 ← F3(KF, (KΠ, A, C3))⊕ C̃2 ▷ 3nd Round
6: C ← C1∥C2∥C3; return C

Decryption FFF.Dec[Π−1
KΠ

, FKF ](A, C) where |C| ≥ ℓ + r

1: (C1, C2, C3) |C|−(ℓ+r),ℓ,r←−−−−−−−−− C

2: C̃2 ← F3(KF, (KΠ, A, C3))⊕ C2 ▷ 3nd Round

3: C̃ ← C1∥C̃2; M̃ ← Π(KΠ, C̃); (M1, M̃2) |M̃ |−ℓ,ℓ←−−−−− M̃ ▷ Perform WE
4: T ← F2(KF, (KΠ, A, M̃2, C̃2))⊕ C3 ▷ 2nd Round
5: M2 ← F1(KF, (KΠ, A, T ))⊕ M̃2
6: if T = 0r then return M ; else return reject end if

space is K ×A×M, and returns leakage values as well as the result of the verification
which is accept if the inputs are valid; reject otherwise. Our mode leaks a pair of an
unverified plaintext and a value for authentication (See Section 3.1 for the leakage values).
AE.Enc (resp. AE.DecL) with a key K is denoted by AEK .Enc (resp. AEK .DecL). Let
AELK := (AEK .Enc, AEK .DecL).

Let u be the number of users. In the mu-RAE-security game, an adversary A has access
to either real-world oracles (AELK(1) , . . . , AELK(u)) or ideal-world ones (($(1)

Enc, $(1)
Dec), . . . , ($(u)

Enc, $(u)
Dec)).

K(1), . . . , K(u) are user’s keys defined as K(ω) $←− K for each ω ∈ [u]. $(ω)
Enc is a random-bit

encryption oracle of the ω-th user that takes a pair (A, M) of AD and a plaintext, and
returns a random ciphertext defined as C

$←− {0, 1}|AE.Enc(K,A,M)|. $(ω)
Dec is a random-bit

decryption oracle that returns a pair (reject, V ) where V is a random leak value defined
as V

$←− {0, 1}|AE.DecL(K,A,M)|. At the end of this game, A return a decision bit in {0, 1}.
In this game, for a query-response tuple (A, M, C) of some user, A is forbidden to make
the decryption query (A, C) to the same user. Let AO ∈ {0, 1} be an output of A with
access to a set of oracles O. Then, the mu-RAE-security advantage function of A is defined
as Advmu-rae

AE (A) := Pr
[
AAEL

K(1) ,...,AEL
K(ω) = 1

]
− Pr

[
A$(1)

Enc ,$(1)
Dec ,...,$(ω)

Enc ,$(ω)
Dec = 1

]
.

3 FFF: Committing Wide Encryption Mode
We first define our mode FFF. We then show the CMT-4-security bound of FFF, followed
by the mu-RAE-security bound of FFF.

3.1 Specifications of FFF
Our mode FFF has the 3-round Feistel-like structure with WE.

Let Π : Kwe × {0, 1}∗ → {0, 1}∗ be a WE, where Kwe is the key space. Let ℓ (resp.
r) be a positive integer and the length of the left (resp. right) part of the 3-round
Feistel-like structure. Let F : Kprf × ([3]×Kwe ×A× {0, 1}∗ × {0, 1}∗) → {0, 1}max{ℓ,r}

be a function that is a hash function for CMT-4 security and that is a keyed function
for mu-RAE security, where Kprf is the key space. For KF ∈ Kprf , KΠ ∈ Kwe, A ∈ A,
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F2 ⊕

⊕ F3

0r

C2 C3

M2

⊕ F1

KFKΠ, A

KF KΠ , A

KF KΠ , A
C2
~

M2
~

Z1

Z2

Z3

F2 ⊕

⊕ F3

0r

D1

⊕ F1

=

α2∈Q2

α3,i∈Q3

=

D1
(α3,i)

D2
(α2)

(α3,i)

Z3
(α3,i)

KF

KF

KΠ , A

KΠ , A

D2 ⊕Z3
(α2) (α3,i)

=(3)

(1)(2)

= ?
(4)

≠

F2 ⊕

⊕ F3

0r

⊕ F1

β2,i∈Q2

β3,i∈Q3
D1

(β3,i)

D2
(β2,i)

Z3
(β3,i)

KF

KF

KΠ , A

KΠ , A

=

D1
(β3,i)

Z2
(β2,i)

D2 ⊕Z3
(β2,i) (β3,i)

(B) (A)

Figure 2: Feistel30r (left) and Multi-Collision Event mcoll (right)

D1 ∈ {0, 1}∗, and D2 ∈ {0, 1}∗, let F1(KF, (KΠ, A, D1)) := msbℓ ◦ F(KF, (1, KΠ, A, D1, ε)
be the 1st-round function of the 3-round Feistel-like structure, F2(KF, (KΠ, A, D1, D2) :=
msbr ◦ F(KF, (2, KΠ, A, D1, D2)) the 2nd-round function, and F3(KF, (KΠ, A, D1)) :=
msbℓ ◦ F(KF, (3, KΠ, A, D1, ε)) the 3rd-round function.

The specification of FFF is given in Algorithm 1. The encryption (resp. decryption)
is depicted in Fig. 1-(right) (resp. Fig. 3 in Appendix A). FFF.Enc[ΠKΠ , FKF ] (resp.
FFF.Dec[Π−1

KΠ
, FKF ]) is the encryption (resp. decryption) function. We require that the

lengths of plaintexts (resp. ciphertexts) are grater than or equal to ℓ (resp. ℓ + r).
We define the decryption function with leakage functionality FFF.DecL[Π−1

KΠ
, FKF ] as

follows. For each inputs ((KΠ, KF), A, C), FFF.DecL[Π−1
KΠ

, FKF ] returns (M, T ) as well as
vrf ∈ {accept, reject}, where vrf = FFF.Dec[Π−1

KΠ
, FKF ](A, C), and M and T are defined

in the decryption procedure.

3.2 Security Bounds of FFF
3.2.1 CMT-4 Security

The following theorem shows the CMT-4-security bound of FFF in the random oracle
model. The proof is given in Section 4.

Theorem 1. Assume that F is a random oracle. For any CMT-4 computationally
unbounded adversary A making at most p offline queries, we have Advcmt-4

FFF (A) ≤
ℓ+r

log2(ℓ+r) ·p
2min{r,ℓ} +

(
12(ℓ+r)p
2min{r,ℓ}

) ℓ+r
log2(ℓ+r) .

The bound ensures that FFF is CMT-4-secure up to about 2min{r,ℓ} offline queries and
achieves about min{r, ℓ}-bit security.

3.2.2 Mu-RAE Security

The following theorem shows the mu-RAE-security bound of FFF. The proof is given in
Section 5.

Theorem 2. For any computationally bounded adversary A making at most q queries,
making at most qu queries to each user, having access to u users, and running in time at
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Algorithm 2 Disjointed 3-Round Feistel Structure with 0r

Procedure Feistel30r [F](KF, KΠ, A, M2, C̃2)
1: M̃2 ← F1(KF, KΠ, A, 0r)⊕M2 ▷ 1st Round
2: C3 ← F2(KF, KΠ, A, M̃2, C̃2) ▷ 2nd Round
3: C2 ← F3(KF, KΠ, A, C3)⊕ C̃2 ▷ 3nd Round
4: return C2∥C3

most t, there exist an mu-SPRP adversary AΠ and an mu-PRF adversary AF such that
Advmu-rae

FFF (A) ≤ quq
2ℓ + qd

2r + Advmu-sprp
Π (AΠ) + Advmu-prf

F (AF), and AΠ and AF1 make at
most q queries, have access to u users, and run in time O(q + t).

The bound ensures that FFF is mu-RAE secure up to min{2ℓ/2, 2r} queries, assuming
that the advantage functions of mu-SPRP and of mu-PRF are negligible compared with
the other terms. Thus, FFF achieves min{ℓ/2, r}-bit mu-RAE security. If the number of
queries to each user is limited, i.e., qu ≪ 2ℓ/2, then FFF achieves beyond-birthday-bound
security regarding the parameter ℓ.

4 Proof of Theorem 1
By Lemma 1, CMT-3 security and CMT-4 security are equivalent. Hence, we consider a
CMT-3 adversary A against FFF[F] where F is a random oracle. Without loss of generality,
assume that A is deterministic and makes no repeated query.

4.1 Decoupled 3-round Feistel-like Structure with 0r

We consider the 3-round Feistel-like structure Feistel30r [F] given in Algorithm 2 and Fig. 2-
(left). In Feistel30r [F], the right-part input is fixed to 0r and the left part at the 2nd
round is decoupled, i.e, Feistel30r [F] is FFF.Enc[Π, F] without Π. Hence, if the CMT-3 secu-
rity of FFF is broken, i.e., (K†

Π, K†
F, A†) ̸= (K‡

Π, K‡
F, A‡) and FFF.Enc[ΠK†

Π
, FK†

F
](A†, M†) =

FFF.Enc[ΠK‡
Π

, FK‡
F
](A‡, M‡), then we have a collision of Feistel30r [F], i.e., Feistel30r [F](K†

F, K†
Π, A†, M†

2 , C̃†
2) =

Feistel30r [F](K‡
F, K‡

Π, A‡, M‡
2 , C̃‡

2). Hence, by using the CMT-3 adversary A, we can con-
struct a collision-finding adversary B against Feistel30r [F] making at most p queries to a
random oracle F and outputting two tuples (K†

F, K†
Π, A†, M†

2 , C̃†
2) and (K‡

F, K‡
Π, A‡, M‡

2 , C̃‡
2)

such that (K†
F, K†

Π, A†) ̸= (K‡
F, K‡

Π, A‡), Advcmt-3
FFF (A) ≤ δcoll := Pr

[
Feistel30r [F](K†

F, K†
Π, A†, M†

2 , C̃†
2) =

Feistel30r [F](K‡
F, K‡

Π, A‡, M‡
2 , C̃‡

2)
]
, and the random-oracle list TF includes input-output tu-

ples needed to perform Feistel30r [F](K†
F, K†

Π, A†, M†
2 , C̃†

2) and Feistel30r [F](K‡
F, K‡

Π, A‡, M‡
2 , C̃‡

2).

4.2 Collision Resistance of the Disjointed 3-round Feistel
We evaluate δcoll, the probability that an adversary B making p queries finds a collision of
Feistel30r .

4.2.1 Intuition

We use a (ℓ + r)-multi-collision event in Z2 values of r bits. The multi-collision probability
is at most

(
p

ℓ+r

)
(1/2r)ℓ+r−1 ≤ (ℓ + r)p/2r. Assuming that the multi-collision does not

occur, for each input to F3 (including C3), the number of inputs to F2 whose outputs are
equal to C3 is at most ℓ + r. Then, if a collision of Feistel30r occurs, there exists a pair of
the ℓ + r inputs to F3, the outputs C2 must be equal, and the collision probability is at
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most (ℓ + r)2/2ℓ. Since the number of such multi-collision groups for C3 is at most p, we
have δcoll ≤ (ℓ + r)p/2r + (ℓ + r)2p/2ℓ. Note that the intuition does not consider query
orders between F2 and F3 for the collision of Feistel30r . The following evaluation derive a
(slightly) better bound by taking into account the orders.

4.2.2 Detail

For α ∈ [p], let X(α) = (K(α)
F , j(α), K

(α)
Π , A(α), D

(α)
1 , D

(α)
2 ) ∈ Kprf× [3]×Kwe×A×{0, 1}∗×

{0, 1}∗ be the α-th query to F and Z(α) = F(X(α)) the response. Let Z
(α)
j(α) := msbℓ(Z(α))

if j(α) ∈ {1, 3} and D
(α)
j(α) = ε; Z

(α)
2 := msbr(Z(α)) if j(α) = 2. Let T (<α)

F := {(X(β), Z
(β)
1 ) |

β ∈ [α − 1]}. Let L(<α)
Feistel30r

be all input-output tuples of Feistel30r obtained from T (<α)
F ,

i.e., ∀(I, C2,3) ∈ L(<α)
Feistel30r

: the corresponding input-output tuples of F are defined in

T (<α)
F , where I = (KF, KΠ, A, M2, C̃2) and C2,3 = C2∥C3. For i ∈ [3] and α ∈ [p], let
Q(<α)

i := {β | j(β) = i ∧ β ∈ [α− 1]} and Qi := Q(<p+1)
i . Let µ := ℓ+r

log2(ℓ+r) .
We define four (muti-)collision events. coll is a collision event for Feistel30r . For i ∈ [2, 3],

mcolli is a µ-multi-collision event for Fi. mcoll is a µ-multi-collision event for the number
of collision candidates in LFeistel30r

.

• coll: ∃(I†, C†
2,3), (I‡, C‡

2,3) ∈ LFeistel30r
s.t. I† ̸= I‡ and C†

2,3 = C‡
2,3.

• mcoll2: ∃α1, . . . , αµ ∈ Q2 s.t. α1 < . . . < αµ and Z
(α1)
2 = · · · = Z

(αµ)
2 .

• mcoll3: ∃D ∈ {0, 1}ℓ, α1, . . . , αµ, β1, . . . , βµ ∈ Q3 s.t.

– D
(α1)
1 , . . . , D

(αµ)
1 are all distinct, ∀i ∈ [µ] : D

(αi)
1 = D

(βi)
1 , (K(αi)

F , K
(αi)
Π , A(αi)) =

(K(α1)
F , K

(α1)
Π , A(α1)) ̸= (K(β1)

F , K
(β1)
Π , A(β1)) = (K(βi)

F , K
(βi)
Π , A(βi)), and

– ∀i ∈ [µ] : Z
(αi)
3 ⊕ Z

(βi)
3 = D.

(The structure of the event is depicted in Fig. 4 in Appendix A.)

• mcoll: ∃α2 ∈ Q2, β2,1, . . . , β2,µ ∈ Q(<α2)
2 , α3,1, . . . , α3,µ, β3,1, . . . , β3,µ ∈ Q(<α2)

3 s.t.
∀i ∈ [µ] : (1) D

(α3,i)
1 = D

(β3,i)
1 = Z

(β2,i)
2 , (2) D

(β2,i)
2 ⊕ Z

(β3,i)
3 = D

(α2)
2 ⊕ Z

(α3,i)
3 , and

(3) (K(α2)
F , K

(α2)
Π , A(α2)) = (K(α3,i)

F , K
(α3,i)
Π , A(α3,i)) ̸= (K(β2,i)

F , K
(β2,i)
Π , A(β2,i)) =

(K(β3,i)
F , K

(β3,i)
Π , A(β3,i)). (See Fig. 2-(right).)

By using these events, we have δcoll = Pr[coll] ≤ Pr[coll | ¬mcoll2 ∧ ¬mcoll3 ∧ ¬mcoll] +
Pr[mcoll2]+Pr[mcoll3]+Pr[mcoll]. The bounds of these probabilities are given below, and we

have δcoll ≤ µp
2min{r,ℓ} +2r

(
ep

µ2r

)µ

+2ℓ ·p ·( ep
µ2ℓ )µ +p

( 3ep
2ℓ

)µ ≤
ℓ+r

log2(ℓ+r) ·p
2min{r,ℓ} +

(
12(ℓ+r)p
2min{r,ℓ}

) ℓ+r
log2(ℓ+r) ,

assuming p ≤ 2r−1.

4.2.3 Evaluating Pr[mcoll2]

Fixing µ indexes α1, . . . , αµ ∈ Q2, we have Pr[Z(α1)
2 = · · · = Z

(αµ)
2 ] ≤

( 1
2r

)µ−1. Summing
the bound for each tuple of µ indexes and using Stirling’s approximation (x! ≥

(
x
e

)x for
any x), we have Pr[mcoll2] ≤

(
p
µ

) ( 1
2r

)µ−1 ≤ 2r
(

ep
µ2r

)µ

.
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4.2.4 Evaluating Pr[mcoll3]

Fix D ∈ {0, 1}ℓ, α1, . . . , αµ, β1, . . . , βµ ∈ Q3 such that ∀i ∈ [µ] : D
(αi)
1 = D

(βi)
1 , and

(K(αi)
F , K

(αi)
Π , A(αi)) = (K(α1)

F , K
(α1)
Π , A(α1)) ̸= (K(β1)

F , K
(β1)
Π , A(β1)) = (K(βi)

F , K
(βi)
Π , A(βi)).

We then have Pr[∀i ∈ [µ] : Z
(αi)
3 ⊕Z

(βi)
3 = D] ≤ ( 1

2ℓ )µ. The number of choices of α1, . . . , αµ

is at most
(

p
µ

)
. The number of choices of β1 is at most p. Fixing (α1, . . . , αµ, β1), (β2, . . . , βµ)

are uniquely fixed. Hence, we have Pr[mcoll3] ≤ 2ℓ · p ·
(

p
µ

)
· ( 1

2ℓ )µ ≤ 2ℓ · p ·
(

p
µ

)
· ( 1

2ℓ )µ ≤
2ℓ · p · ( ep

µ2ℓ )µ, using Stirling’s approximation.

4.2.5 Evaluating Pr[mcoll]

Fix α2 ∈ Q2 and γ1, . . . , γµ ∈ Q(<α2)
2 ∪Q(<α2)

3 where γi = max{α3,i, β2,i, β3,i}. For i ∈ [µ],
we consider the following cases.

Case 1. γi = α3,i, i.e., the γi query is the 3rd round of (A) in Fig. 2-(right).

Case 2. γi = β2,i, i.e., the γi query is the 2nd round of (B) in Fig. 2-(right).

Case 3. γi = β3,i, i.e., the γi query is the 3nd round of (B) in Fig. 2-(right).

We evaluate the probability that γi = α3,i (Case 1) and the conditions (1),(2),(3) on
mcoll are satisfied (See Fig. 2-(right)). Fixing the inputs (K(γi)

F , K
(γi)
Π , A(γi), D

(γi)
1 , D

(γi)
2 )

to F3, by ¬mcoll2, the number of candidates for β2,i (with the condition (1)) is at most µ.
For each of the (at most) µ candidates, β3,i is uniquely fixed. Then, the probability that
the condition (2) is satisfied is at most µ

2ℓ .
We evaluate the probability that γi = β2,i (Case 2) and the conditions (1),(2),(3) are

satisfied. Fixing the inputs (K(γi)
F , K

(γi)
Π , A(γi), D

(γi)
1 , D

(γi)
2 ) to F2, by ¬mcoll3, the number

of candidates for the pair (α3,i, β3,i) (with the condition (2)) is at most µ. Then, the
probability that the condition (1) is satisfied is at most µ

2r .
We evaluate the probability that γi = β3,i (Case 3) and the conditions (1),(2),(3) are

satisfied. Fixing the inputs (K(γi)
F , K

(γi)
Π , A(γi), D

(γi)
1 , D

(γi)
2 ) to F3, by ¬mcoll2, the number

of candidates for β2,i is at most µ. For each of the µ candidates, with the condition (1),
α3,i is uniquely fixed. Then, the probability that the condition (2) is satisfied is at most
µ
2ℓ .

Fixing α2 ∈ Q2, the number of choices of γ1, . . . , γµ ∈ [α2 − 1] is at most
(

α2
µ

)
. Hence,

using the above bounds, we have Pr[mcoll] ≤
∑

α2∈[p]
(

α2
µ

)
·
( 3µ

2ℓ

)µ ≤
∑

α2∈[p]
( 3eα2

2ℓ

)µ ≤
p

( 3ep
2ℓ

)µ.

4.2.6 Evaluating Pr[coll | ¬mcoll2 ∧ ¬mcoll3 ∧ ¬mcoll]

Assume that mcoll2, mcoll3, and mcoll do not occur. We then consider the case that coll
occurs just after the α-th query where α ∈ [p].

• Consider the sub-case with α ∈ Q2. Fix α ∈ Q2. Let α2 := α. By ¬mcoll, the
number of pairs of indexes (α3,1, β3,1), (α3,2, β3,1), . . . ∈ (Q(<α2)

3 )2 such that the
α2-th output Z

(α)
2 probabilistically connects with D

(α3,i)
1 and yields a collision of

Feistel30r is at most µ. See Fig. 2-(right) and the connection point is marked with
(4). For each α3,i, we have Pr[D(α3,i)

1 = Z
(α2)
2 ] ≤ 1

2r . Hence, the probability that coll
occurs in this case is at most µp

2r .

• Consider the sub-case with α ∈ Q3. Let Qnew
2 := {β ∈ Q2 | ∀β0 ∈ [β − 1] ∩

Q2 : Z
(β)
2 ̸= Z

(β0)
2 } be the set of query indexes in Q2 such that the outputs are

new. For β ∈ Qnew
2 , let Q2[β] = { β1 ∈ Q2 | Z

(β1)
2 = Z

(β)
2 } be multi-collision
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indexes with Z
(β)
2 and µβ = |Q2[β]|. Note that if coll occurs, then there exists

β ∈ Qnew
2 such that µβ ≥ 2, which is required to have a collision on the right

part of Feistel30r . Fix β ∈ Qnew
2 such that µβ ≥ 2. Then, for each pair (β1, β2) ∈

Q2[β]2 such that β1 ̸= β2 and (K(β1)
F , K

(β1)
Π , A(β1)) ̸= (K(β2)

F , K
(β2)
Π , A(β2)), we have

Pr
[
F3(K(β1)

F , K
(β1)
Π , A(β1), Z

(β1)
2 )⊕D

(β1)
2 = F3(K(β2)

F , K
(β2)
Π , A(β2), Z

(β2)
2 )⊕D

(β2)
2

]
≤

1
2ℓ , which is the bound of the collision probability at the left part. Hence, the
probability that the collision of Feistel30r occurs due to Q2[β] is at most

(
µβ

2
)
·

1
2ℓ ≤

0.5µ2
β

2ℓ . Note that µβ ≤ µ by ¬mcoll2 and
∑

β∈Qnew
2

µβ ≤ p. Summing the
bound for each β ∈ Qnew

2 , the probability that coll occurs in this case is at most∑
β∈Qnew

2

0.5µ2
β

2ℓ ≤ µ
∑

β∈Qnew
2

0.5µβ

2ℓ ≤ µp
2ℓ .

By using the bounds, we have Pr[coll | ¬mcoll2 ∧ ¬mcoll3 ∧ ¬mcoll] ≤ µp
2min{r,ℓ} .

5 Proof of Theorem 2
Without loss of generality, assume that an adversary A is deterministic and makes no
repeated query.

5.1 Notations
We define notations for this proof. Let qe (resp. qd) be the number of encryption (resp.
decryption) queries, where q = qe + qd. For ω ∈ [u], let q̂ω be the number of queries
to the ω-th user. For α ∈ [q], let query(α) ∈ {enc, dec} be the type of the α-th query:
query(α) = enc (resp. dec) if the query is an encryption (resp. decryption) one. Let
user(α) ∈ [u] be the user number of the α-th query, i.e., if the α-th query is to the
ω-th user, user(α) = ω. For α ∈ [q], values defined at the α-th query are denoted by
using the superscript of (α). The stage that an adversary makes queries is called “query
stage”. The stage after the query stage is called “decision stage”. For ω ∈ [u], let
FFF[Π±

K
(ω)
Π

, F
K

(ω)
F

] := (FFF.Enc[Π
K

(ω)
Π

, F
K

(ω)
F

], FFF.DecL[Π−1
K

(ω)
Π

, F
K

(ω)
F

]).

5.2 Deriving the Bound
We consider four games G1, G2, G3, and G4. For i ∈ [4], let Oi be the set of oracles in
the game Gi. The games are defined below.

• G1 is the real-world and O1 := (FFF[Π±
K

(1)
Π

, F
K

(1)
F

], . . . , FFF[Π±
K

(u)
Π

, F
K

(u)
F

]).

• G2 is a variant of G1 where the underlying functions F
K

(1)
F

, . . . , F
K

(u)
F

are replaced
with random functions R(1), . . . ,R(u) and KΠ values are removed from inputs to the
random functions. Then, O2 := (FFF[Π±

K
(1)
Π

,R(1)], . . . , FFF[Π±
K

(u)
Π

,R(u)]). The ω-th
user’s encryption is depicted in Fig. 5 in Appendix A.

• G3 is a variant of G2 where the underlying WE Π±
K

(1)
Π

, . . . , Π±
K

(u)
Π

are replaced with

ideal WPs Ψ±
1 , . . . , Ψ±

u . Then, O3 := (FFF[Ψ±
1 ,R(1)], . . . , FFF[Ψ±

u ,R(u)]). The ω-th
user’s encryption is depicted in Fig. 6 in Appendix A.

• G4 is the ideal world and O4 := ($(1)
Enc, $(1)

Dec, . . . , $(u)
Enc, $(u)

Dec).

Using these games, we have Advmu-rae
FFF (A) = Pr[AO1 = 1]− Pr[AO4 = 1]

=
∑

i∈[3]
(
Pr[AOi = 1]− Pr[AOi+1 = 1]

)︸ ︷︷ ︸
=:δi

.
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From G1 to G2, the underlying functions in G1 are replaced with random functions.
Hence, δ1 is bounded by the mu-PRF-security advantage function of F, i.e., there exists
an adversary AF making at most 3q queries and having access to u users such that
δ1 ≤ Advmu-prf

F (AF).
From G2 to G3, WEs are replaced with ideal WPs. Hence, δ2 is bounded by the

mu-SPRP-security advantage function of Π, i.e., there exists an adversary AΠ making at
most q queries and having access to u users such that δ2 ≤ Advmu-sprp

Π (AΠ).
The bound of the δ3 is given in Section 5.3. By using the bounds of δ1, δ2, δ3, we have

Advmu-rae
FFF (A) ≤ quq

2ℓ + qd

2r + Advmu-prf
F (AF) + Advmu-sprp

Π (AΠ).

5.3 Bounding δ3

We derive the bound of δ3 by using the coefficient-H technique [Pat08]. The following
evaluation shows that δ3 ≤ quq

2ℓ + qd

2r .

5.3.1 Adversary’s View

We define dummy values of G4 according to the structure of FFF. The dummy values are
defined in the decision stage. Let R : [u] × {1, 3} × A × {0, 1}r → {0, 1}ℓ be a random
function. The first element is a user index and the second one is a round number. For
i ∈ {1, 3}, let Ri : [u]×A× {0, 1}r → {0, 1}ℓ be the random function R with the round
number i. For each α ∈ [q], the dummy values of the α-th query are defined as follows.

• M
(α)
1 , M

(α)
2

|M |−ℓ,ℓ←−−−−−M (α) and C
(α)
1 , C

(α)
2 , C

(α)
3

|C|−ℓ,ℓ,r←−−−−−− C(α).

• If query(α) = enc, then T (α) ← 0r.

• Z
(α)
1

$←− R1(user(α), A(α), T (α)), Z
(α)
2 ← T (α)⊕C

(α)
3 , and Z

(α)
3 ← R3(user(α), A(α), C

(α)
3 ).

• M̃
(α)
2 ←M

(α)
2 ⊕ Z

(α)
1 and C̃

(α)
2 ← C

(α)
2 ⊕ Z

(α)
3 .

We then define a transcript τ which consists of

• (query(α), user(α), M (α), C(α), T (α), Z
(α)
1 , Z

(α)
2 , Z

(α)
3 ) for α ∈ [q],

where in G3, if query(α) = enc, then T (α) := 0r.
This proof reveals the transcript to the adversary A in the decision stage.

5.3.2 Coefficient-H Technique

Let T3 be a transcript obtained by sampling in G3, i.e., sampling of Πω and Rω for
ω ∈ [u]. Let T4 be a transcript obtained by sampling in G4, i.e., sampling of $(ω)

Enc, $(ω)
Dec,

and R for ω ∈ [u]. We call a transcript τ valid if Pr[T4 = τ ] > 0. Let T be the set
of all valid transcripts such that ∀τ ∈ T : Pr[T3 = τ ] ≤ Pr[T4 = τ ]. Then, we have
δ3 ≤ SD(T3, T4) :=

∑
τ∈T (Pr[T3 = τ ]− Pr[T4 = τ ]).

We can derive the bound of δ3 by using the coefficient-H technique [Pat08].

Lemma 2. Let Tgood and Tbad be good and bad transcripts into which T is partitioned. If
∀τ ∈ Tgood : Pr[T3=τ ]

Pr[T4=τ ] ≥ 1− ε s.t. 0 ≤ ε ≤ 1, then SD(T3, T4) ≤ Pr[T4 ∈ Tbad] + ε.

We thus (1) define good and bad transcripts; (2) upper-bound Pr[T4 ∈ Tbad]; and (3)
lower-bound Pr[T3=τ ]

Pr[T4=τ ] . Then, putting these bounds into the above lemma, we obtain the
upper-bound of δ3.

In the following, firstly good and bad transcripts are defined. Then, in Section 5.4, the
upper-bound of Pr[T4 ∈ Tbad] is derived. In Section 5.5, the lower-bound of Pr[T3=τ ]

Pr[T4=τ ] . By
using these bounds, we have δ3 ≤ quq

2ℓ + qd

2r .
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5.3.3 Good and Bad Transcripts and Bound of δ3

We define bad events below.

• bad1: ∃α, β ∈ [q] s.t. α > β, user(α) = user(β), and

– query(α) = enc ∧ C̃
(α)
2 = C̃

(β)
2 or

– query(α) = dec ∧ M̃
(α)
2 = M̃

(β)
2 .

• bad2: ∃α, β ∈ [q] s.t. α > β, user(α) = user(β), and

– query(α) = enc ∧ (A(α), M
(α)
2 ) ̸= (A(β), M

(β)
2 ) ∧ M̃

(α)
2 = M̃

(β)
2 or

– query(α) = dec ∧ (A(α), C
(α)
2 , C

(α)
3 ) ̸= (A(β), C

(β)
2 , C

(β)
3 ) ∧ C̃

(α)
2 = C̃

(β)
2 .

• bad3: ∃α ∈ [q] s.t. query(α) = dec and T (α) = 0r.

Let bad = bad1 ∨ bad2 ∨ bad3.
Tbad is a set of transcripts that satisfy bad, and Tgood := T \Tbad.

5.4 Evaluation for Bad Transcript
We derive the bound of Pr[T4 ∈ Tbad]. For i ∈ [3], let bad∗

i be an event that badi occurs
before the other bad events occur. Then, we have Pr[T4 ∈ Tbad] ≤ Pr[bad∗

1] + Pr[bad∗
2] +

Pr[bad∗
3]. The bounds of Pr[bad∗

1], Pr[bad∗
2], and Pr[bad∗

3] are given below, and we have
Pr[T4 ∈ Tbad] ≤ quq

2ℓ + qd

2r .

Evaluating Pr[bad∗
1]

We first consider a pair (α, β) ∈ [q]2 such that α > β, user(α) = user(β), and query(α) = enc,
and evaluate the collision probability Pr[C̃(α)

2 = C̃
(β)
2 ].

• If the inputs to R3 are distinct, (A(α), C
(α)
3 ) ̸= (A(β), C

(β)
3 ), then C̃

(α)
2 and C̃

(β)
2 are

independently defined and we have Pr[C̃(α)
2 = C̃

(β)
2 ] ≤ 1

2ℓ .

• If the inputs to R3 are the same, i.e., Z
(α)
3 = Z

(β)
3 , then C

(α)
2 is uniformly at random

from {0, 1}ℓ, thus we have Pr[C̃(α)
2 = C̃

(β)
2 ] ≤ 1

2ℓ .

Regarding a pair (α, β) ∈ [q]2 such that α > β and query(α) = dec, the evaluation is
the same as that with query(α) = enc due to the symmetric structure of FFF. We thus
have Pr[M̃ (α)

2 = M̃
(β)
2 ] ≤ 1

2ℓ .
By summing these bounds for each (α, β) ∈ [q]2 such that α > β, we have Pr[bad∗

1] ≤∑
ω∈[u]

(
q̂ω

2
)
· 1

2ℓ ≤
∑

ω∈[u]
0.5q̂2

ω

2ℓ ≤ 0.5quq
2ℓ .

Bounding Pr[bad∗
2]

We first consider a pair (α, β) ∈ [q]2 such that α > β, user(α) = user(β), query(α) = enc, and
(A(α), M

(α)
2 ) ̸= (A(β), M

(β)
2 ). We evaluate the collision probability Pr[M̃ (α)

2 = M̃
(β)
2 ] =

Pr[M (α)
2 ⊕M

(β)
2 = Z

(α)
1 ⊕ Z

(β)
1 ].

• If A(α) = A(β)∧M
(α)
2 ≠ M

(β)
2 , then Z

(α)
1 = Z

(β)
1 , thus we have Pr[M̃ (α)

2 = M̃
(β)
2 ] = 0.

• If A(α) ≠ A(β), then Z
(α)
1 and Z

(β)
1 are independently chosen. We thus have

Pr[M̃ (α)
2 = M̃

(β)
2 ] ≤ 1

2ℓ .
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We next consider a pair (α, β) ∈ [q]2 such that α > β, user(α) = user(β), query(β) =
dec, and (A(α), C

(α)
2 , C

(α)
3 ) ̸= (A(β), C

(β)
2 , C

(β)
3 ). We evaluate the collision probability

Pr[C̃(α)
2 = C̃

(β)
2 ] = Pr[C(α)

2 ⊕ C
(β)
2 = Z

(α)
3 ⊕ Z

(β)
3 ].

• If (A(α), C
(α)
3 ) = (A(β), C

(β)
3 ) ∧ C

(α)
2 ̸= C

(β)
2 , then Z

(α)
3 = Z

(β)
3 , thus we have

Pr[C̃(α)
2 = C̃

(β)
2 ] = 0.

• If (A(α), C
(α)
3 ) ̸= (A(β), C

(β)
3 ), then Z

(α)
3 and Z

(β)
3 are independently chosen. We

thus have Pr[C̃(α)
2 = C̃

(β)
2 ] ≤ 1

2ℓ .

By summing these bounds for each (α, β) ∈ [q]2 such that α > β, we have Pr[bad∗
2] ≤∑

ω∈[u]
(

q̂ω

2
)
· 1

2ℓ ≤
∑

ω∈[u]
0.5q̂2

ω

2ℓ ≤ 0.5quq
2ℓ .

Bounding Pr[bad∗
3]

For each α ∈ [q] such that query(α) = dec, T (α) is chosen uniformly at random from {0, 1}n.
We thus have Pr[bad∗

3] ≤
∑

α∈[q] Pr[T (α) = 0r] ≤ qd

2r .

5.5 Evaluation for Good Transcript

Fix a good transcript τ . Values in τ are denoted by using the symbol “∗”, e.g., M∗(α), C∗(α), Z
∗(α)
1 ,

etc. Let τM,C,T = {M∗(α), C∗(α), T ∗(α) | α ∈ [q]}, and τZ1,3 = {Z∗(α)
1 , Z

∗(α)
3 | α ∈ [q]}.

For a set S and i ∈ [3, 4], let Ti ⊢ S be an event that sampling of Ti results in elements
in S. For each α ∈ [q], let cα := |C∗(α)|. Let N1 (resp. N3) be the number of distinct
inputs to R1 (resp. R3) defined from τ , i.e., N1 =

∣∣{(user∗(α), A∗(α), T ∗(α)) | α ∈ [q]}
∣∣ and

N3 =
∣∣∣{(user∗(α), A∗(α), C

∗(α)
3 ) | α ∈ [q]}

∣∣∣. Note that by ¬bad1 and ¬bad2, τ is defined
such that all M̃2 values are distinct and C̃2 values are distinct, thus the number of distinct
inputs to R2 is q.

5.5.1 Evaluating Pr[T4 = τ ]

We evaluate the probabilities Pr [T4 ⊢ τM,C,T ] and Pr
[
T4 ⊢ τZ1,3

]
, since Pr[T4 = τ ] =

Pr [T4 ⊢ τM,C,T ] · Pr
[
T4 ⊢ τZ1,3

]
and Z

(α)
2 = T (α) ⊕ C

(α)
3 .

• Evaluating Pr [T4 ⊢ τM,C,T ]. For each α ∈ [q],

– if query(α) = enc, then C(α) is chosen uniformly at random from {0, 1}cα , we
have Pr[T4 ⊢ {M∗(α), C∗(α)}] = 1

2cα , and

– if query(α) = dec, then M (α) is chosen uniformly at random from {0, 1}cα−r and
T (α) is chosen uniformly at random from {0, 1}r, we have Pr[T4 ⊢ {M∗(α), C∗(α)}] =

1
2cα .

By using the probabilities, we have Pr [T4 ⊢ τM,C,T ] =
∏

α∈[q]
1

2cα .

• Evaluating Pr
[
T4 ⊢ τZ1,3

]
. For each new input to R, the output is chosen uniformly

at random from {0, 1}ℓ, thus we have Pr
[
T4 ⊢ τZ1,3

]
=

( 1
2ℓ

)N1+N3 .

By using the probabilities, we have Pr[T4 = τ ] =
(∏

α∈[q]
1

2cα

)
·
( 1

2ℓ

)N1+N3 .
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5.5.2 Evaluating Pr[T3 = τ ]

We evaluate the probabilities Pr [T3 ⊢ τM,C,T ] and Pr
[
T3 ⊢ τZ1,3

]
.

• Evaluating Pr
[
T3 ⊢ τZ1,3

]
. For each new input to R, the output is chosen uniformly

at random from {0, 1}ℓ, thus we have Pr
[
T4 ⊢ τZ1,3

]
=

( 1
2ℓ

)N1+N3 .

• Evaluating Pr [T3 ⊢ τM,C,T ]. For each α ∈ [q], if query(α) = enc (resp. query(α) =
dec), then ¬bad2, the input to Ψuser(α) (resp. Ψ−1

user(α)) is distinct from the previous
inputs, thus chosen uniformly at random from {0, 1}cα\{C̃(β) | β ∈ [α−1]∧user(β) =
user(α)} (resp. {0, 1}cα\{C̃(β) | β ∈ [α−1]∧user(β) = user(α)}). By ¬bad1 and ¬bad2,
the input to R2 at the α-th query is new, thus the output is chosen uniformly at
random from {0, 1}r. We thus have Pr[T3 ⊢ {M (α), C(α), T (α)}] ≥ 1

2cα−r · 1
2r = 1

2cα .
By using the bound, we have Pr [T3 ⊢ τM,C,T ] ≥

∏
α∈[q]

1
2cα .

By using the probabilities, we have Pr[T3 = τ ] ≥
(∏

α∈[q]
1

2cα

)
·
( 1

2ℓ

)N1+N3 .

5.5.3 Lower-bound of Pr[T3=τ ]
Pr[T4=τ ]

By the above bounds, we have Pr[T3=τ ]
Pr[T4=τ ] ≥ 1.

6 Conclusion
This paper proposed FFF, a new WE mode that achieves srae-bit RAE and scmt-bit CMT-4
security with a minimum ciphertext expansion, max{scmt, srae} bits from an original
message. With scmt ≥ srae, scmt bits of ciphertext expansion is sufficient to achieve
scmt-bit RAE and CMT-4 security. To achieve RAE and CMT-4 security with minimum
ciphertext expansion, our new mode comprises a 3-round Feistel-like structure, ensuring
indistinguishability under the release of unverified plaintexts. Several important questions
are open for future research. In particular, achieving the same level of security with two
(cf. three) hash function calls is an important challenge regarding the efficiency. Unlike our
design that treats an underlying WE as a blackbox, making more rigorous optimization
beyond the WE’s boundary, i.e., a dedicated design, is another research challenge.
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Appendix
A Figures
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~

C2
~

?

Figure 3: FFF.Dec.
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⊕
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Figure 4: The conditions on the event mcoll3.
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R2 ⊕

⊕ R3

𝐾𝐾𝛱𝛱

A
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l r
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𝛱𝛱
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Z1
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C2
~
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Figure 5: The ω-th user’s encryption in G2 of the proof of Theorem 2.
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Figure 6: The ω-th user’s encryption in G3 of the proof of Theorem 2.
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