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Abstract

Lyubashevsky’s signature [1, 2] can be viewed as a lattice-based adapation of
the Schnorr signature [3], with the core difference being the use of aborts during
signature generation process. Since the proposal of Lyubashevsky’s signature,
a number of other variants of Schnorr-type signatures with aborts have been
proposed, both in lattice-based and code-based setting. In this paper, we examine
the security of Schnorr-type signature schemes with aborts. We give a detailed
analysis of when the expected value of the signature is correlated to the secret
key, and when it is not. Our analysis shows that even when abort condition is
employed, it is crucial to set the parameters carefully in order to defend against
statistical attack. In particular, we recommend to set δ ≥ β (where δ, β are
public parameters) as in this case we prove that the signature does not reveal
any information about the secret key. On the other hand, if this condition is
not satisfied, then some information about the secret key are leaked, making the
scheme susceptible to statistical attacks. For completeness, we also analyze the
security of Schnorr-type signatures without aborts. In particular, we present a
detailed key recovery attack via statistical method on the EagleSign signature [4],
which is one of the submission to the NIST call for Additional PQC Signature.
Moreover, we give a formula for determining the number of required signatures
to successfully launch the statistical attack.
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1 Introduction

Schnorr’s signature scheme is a signature scheme proposed by Schnorr in [3]. It is
constructed by first constructing an identification scheme, which is then transformed
into a signature scheme via the Fiat-Shamir transformation [5]. However, the security
of the original Schnorr’s signature scheme relies on the discrete logarithm problem.
As such, it is no longer secure in the presence of quantum adversaries.

Lyubashevsky [1, 2] adapts Schnorr’s approach in order to construct lattice-based
signatures. Adapting Schnorr’s signature to lattice-based setting is not trivial due to
the different underlying structures for lattices. A trivial adaptation will not be secure
as in this case, the signature will reveal information about the secret key. Thus, secret
key recovery can be done via statistical attack. Lyubashevsky overcame this issue by
introducing the use of aborts during signature generation. The idea is to abort/discard
a signature if it is deemed to leak information about the secret key. The signer then
repeats the signature generation process until it produces a desired signature. This
approach of constructing signatures is sometimes also called the Fiat-Shamir with
aborts paradigm.

Ever since the proposal of the Lyubashevsky’s signature, many lattice-based sig-
nature schemes were proposed based on the Lyubashevsky’s signature scheme, for
example, qTESLA [6] and Dilithium [7], which are some of the submissions in the
NIST call for Post-Quantum Cryptography (PQC) standardization. In fact, Dilithium
has been selected as one of the NIST PQC standardized signature schemes. Further-
more, Lyubashevsky’s signature has been adapted to construct code-based signature
schemes as well. For example, the SHMWW signature scheme [8] which is a Hamming-
metric code-based signature, and the RankSign signature [9] which is a rank-metric
code-based signature. Unfortunately, both of these signatures have been attacked. The
papers [10] and [11] successfully recover the secret key of the SHMWW signature in
polynomial time. The paper [12] also gives a polynomial-time key recovery attack on
the RankSign signature.

In this paper, we further analyze the security of Schnorr-type signature schemes
with aborts over Zq in either lattice-based or code-based settings. We will give a
detailed analysis of when the expected value of the signature will be correlated to the
secret key, and when the signature does not reveal any information about the secret
key.

For completeness, we also analyze the security of Schnorr-type signature schemes
without aborts. In particular, we present a detailed key recovery attack on the Eagle-
Sign signature, which is a lattice-based signature scheme submitted to the NIST call
for Additional PQC Signature. The rest of the paper is organized as follows. In Section
2, we introduce some notations and give a brief review on some results in probability
theory. We then analyze the security of Schnorr-type signature schemes without aborts
in Section 3. A detailed analysis of the Schnorr-type signatures with aborts is given
in Section 4. We further show information-theoretically that the signature does not
reveal any information about the secret key if certain condition is satisfied in Section
5. Finally, the paper is concluded in Section 6.
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2 Preliminaries

2.1 Notations

Let n be a power of 2 or a prime and q be an odd prime; and we set q1 := q−1
2

throughout this paper.

Rings. Let Zq = Z/qZ denote the quotient ring of integers modulo q, and let R, Rq

denote the rings Z[x]/(xn + 1) and Zq[x]/(x
n + 1) respectively. Denote R∗

q = {a(x) ∈
Rq | a(x) is invertible}.

For a polynomial a(x) = a0 + a1x+ . . .+ an−1x
n−1 ∈ R, define a(x) =

∑n−1
i=0 aix

i

where ai = ai mod q =

{
ai if ai ≤ q1,

ai − q otherwise
. So, ai ∈ [−q1, q1]. We denote its vector

form as a = (a0, a1, . . . , an−1). We also denote the vector form of a(x)b(x) ∈ Rq as
ab. We sometimes abuse the notation by interchanging a with a ∈ Rq.

Euclidean and Infinity Norm. Given a(x) = a0 + a1x+ . . .+ an−1x
n−1 ∈ R, define its

Euclidean norm as ∥a∥ :=
√∑n−1

i=0 a2i and its infinity norm as ∥a∥∞ := maxi{|ai|}.
The length of a is defined as its Euclidean norm ∥a∥.

Distribution. Let b < q1 and t < n be positive integers.

(1) Distribution Xt on {−1, 0, 1}, defined by Pr[Xt = 1] = Pr[Xt = −1] = t
2n , and

Pr[Xt = 0] = n−t
n .

(2) Distribution Yt,b on [−b, b]∩Z, defined by Pr[Yt,b = 0] = n−t
n and Pr[Yt,b = i] = t

2bn
for any i ∈ {±1,±2, . . . ,±b}.
Note that Xt = Yt,1.

(3) Uniform Distribution on [−b, b] ∩ Z: We denote it by Ub.
(4) Normal Distribution: We denote by N (0, σ2) the normal distribution with mean 0

and standard deviation σ.

The following results are well known.
Lemma 1. Let U, V be independent random variables with mean E(U),E(V ) and
variance V(U),V(V ). Then,

(a) E(U ± V ) = E(U)± E(V ) and V(U ± V ) = V(U) + V(V ),
(b) E(UV ) = E(U)E(V ) and V(UV ) = (V(U)+E(U)2)×(V(V )+E(V )2)−E(U)2E(V )2.

Lemma 2. Let Ub be the uniform distribution on [−b, b]∩Z. Then, the mean and the

variance of this distribution are 0 and b(b+1)
3 respectively.

Lemma 3. Let n > t, b ≥ 1 and. Then the mean and variance of Yt,b are 0 and
t(b+1)(2b+1)

6n respectively. In particular, the mean and variance of Xt is 0 and t
n .

Proof. Note that

E[Yt,b] =

b∑
i=−b

iPr[Yt,b = i] =

−1∑
i=−b

i · t

2bn
+

b∑
i=1

i · t

2bn
= 0.
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Moreover,

V[Yt,b] = E[Y 2
t,b]− E[Yt,b]

2 = E[Y 2
t,b]

=

b∑
i=−b

i2 Pr[Yt,b = i]

=

−1∑
i=−b

i2 · t

2bn
+

b∑
i=1

i2 · t

2bn

= 2

(
b∑

i=1

i2

)
· t

2bn

=
t(b+ 1)(2b+ 1)

6n
.

Now, consider the normal distribution N (0, σ2) with mean 0 and standard devi-

ation σ. The probability density function of N (0, σ2) is ρσ(t) :=
(

1√
2πσ2

)
e−

t2

2σ2 for

t ∈ R.
Theorem 1 ([13, Theorem 2.23] (Central Limit Theorem)). Let X1, X2, . . . ,
Xn be independent and identically distributed random variables such that E(Xi) = µ
and V(Xi) = σ2. Let X = 1

n

∑n
i=1 Xi. Then X − µ approximates to the normal

distribution N (0, σ2/n) with mean 0 and standard deviation σ√
n
. That is,

lim
n→∞

Pr

(
X − µ

σ/
√
n

≤ Z

)
= Φ(Z), where Φ(Z) :=

1√
2π

∫ Z

−∞
e−t2/2dt.

Lemma 4. For any Z ≥ 0, we have Φ(−Z) = 1 − Φ(Z). Furthermore, we have the
following approximations [14, page 932].

(i) Φ(Z) ≈ 1− (0.4361836tZ − 0.1201676t2Z + 0.937298t3Z) ·
exp(−Z2/2)√

2π
if Z ≥ 0; and

(ii) Φ(Z) ≈ (0.4361836tZ − 0.1201676t2Z + 0.937298t3Z) ·
exp(−Z2/2)√

2π
if Z < 0;

where tZ := 1/(1 + 0.33267|Z|).

Definition 1. (Circulant Matrix) Let v = (v0, . . . , vn−1) ∈ V, a circulant matrix
defined by v is

V :=


v0 v1 . . . vn−1

−vn−1 v0 . . . vn−2

...
...

. . .
...

−v1 −v2 . . . v0

 ∈ Zn×n
q .
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For u,v ∈ R, the product w = uv can be computed as w = uV = vU , and
w = (w0, . . . , wn−1). Then, for l = 0, . . . , n− 1,

wl =
∑

i+j=l mod n

ϵi,juivj ,

where

ϵi,j :=

{
1 if i+ j < n

−1 if i+ j ≥ n.

Lemma 5. Let u,v ∈ Rq and suppose each coordinates ui, vi of u and v are indepen-
dently distributed random variables with mean 0 and variance σ2

u and σ2
v respectively.

Then, each coordinate of uv approximates to N (0, nσ2
uσ

2
v).

Proof. Let uv = (w0, . . . , wn−1), then wt =
∑n−1

i=0 ±uiv(t−i) mod n. By Lemma 1(b),
each ±uivj follows a random variable with mean 0 and variance σ2

uσ
2
v. By the Central

Limit Theorem, each wt approximates to N (0, nσ2
uσ

2
v).

3 Schnorr-type Signatures without Aborts

Let n be a power of 2 or a prime and q be an odd prime. We set q1 := q−1
2 Let

R := Z[x]/(xn + 1) and Rq := Zq[x]/(x
n + 1). For b > 0, denote Sb := {a ∈ R |

∥a∥∞ ≤ b}. For positive integer τ, b, denote Bτ := {a ∈ {0, 1,−1}n | wtH(a) = τ} and
Bτ,b := {a ∈ {0,±1, . . . ,±b}n | wtH(a) = τ}.

We shall consider the following setting of Schnorr-type signature. The signature
typically gives information of the form

s = u+ ce ∈ Rq,

where e ∈ Sη is a (fixed) secret key, u is chosen randomly from Sγ , c :=
H(message m∥pk) ∈ Bτ , and ∥s∥∞ < q1. Here, η, γ, τ are integers which are public
parameters satisfying γ ≫ η. We set β := η · τ . Given a signature of a message m, the
public information include s, c, and m; while u and e are secret.

Recall that s = u+ ce, where ce can be computed as

(c0, . . . , cn−1)


e0 e1 . . . en−1

−en−1 e0 . . . en−2

...
...

. . .
...

−e1 −e2 . . . e0

 .

Fix 0 ≤ i ≤ n − 1. Suppose cl ̸= 0. Considering the (l + i)-th coordinate of
s = u+ ce, we have

sl+i = ul+i + (ce)l+i
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= ul+i +

n−1∑
j=0

ϵj,l+i−jcjel+i−j

= ul+i + ϵl,iclei +
∑

0≤j≤n−1
j ̸=l

ϵj,l+i−jcjel+i−j

= ul+i + ϵl,iclei + wl+i (1)

where
wl+i :=

∑
0≤j≤n−1

j ̸=l

ϵj,l+i−jcjel+i−j (2)

and all indices are considered modulo n.

3.1 Computing E[sl+i]

In this section, we shall compute the expected value of sl+i, denoted as E[sl+i]. We
start by considering E[wl+i].
Lemma 6. We have |wl+i| ≤ β − η.

Proof. Note that

|wl+i| =

∣∣∣∣∣∣∣
∑

0≤j≤n−1
j ̸=l

ϵj,l+i−jcjel+i−j

∣∣∣∣∣∣∣
≤

∑
0≤j≤n−1

j ̸=l

|cj | · |el+i−j |

≤
∑

0≤j≤n−1
j ̸=l

|cj | · η (as e ∈ Sη)

= (τ − 1) · η (as c ∈ Bτ and cl ̸= 0)

= β − η.

For k ∈ Z, we define
pk := Pr[wl+i = k].

Remark 1.(i) By Lemma 6, we have pk = 0 if |k| > β − η.

(ii) So,

β−η∑
k=−(β−η)

pk = 1.

(iii) We shall assume that pk = p−k for any k ∈ Z.

(iv) As a consequence of (iii), we have E[wl+i] =

β−η∑
k=−(β−η)

kpk = 0.
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Since u is chosen randomly from Sγ , we observe that

Pr[ul+i = k] =

{
1

2γ+1 if |k| ≤ γ,

0 otherwise.

Consequently, E[ul+i] = 0.
In this case when there is no aborts in the Schnorr-type lattice-based signature,

we then have
E[sl+i] = E[ul+i] + ϵl,iclei + E[wl+i] = ϵl,iclei,

or equivalently (since ϵl,icl ∈ {1,−1}),

ei = ϵl,iclE[sl+i]. (3)

3.2 Recovering the Secret e

Equation (3) can be used to recover ei from a number of signatures. Suppose we have

collected a number of samples s
(1)
l+i, s

(2)
l+i, . . . , s

(N̂)
l+i from some known signatures. Then

E[sl+i] can be estimated as E[sl+i] ≈
∑N̂

k=1 s
(k)
l+i/N̂ . This allows us to recover ei for

any 0 ≤ i ≤ n− 1 (and hence the whole secret key e = (e0, e1, . . . , en−1)) as given in
the following Algorithm 1.
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Algorithm 1: Recovering e = (e0, e1, . . . , en−1) ∈ Rq = Zq[x]/(x
n + 1)

1 Collect N signatures (s(k))Nk=1 for messages (m(k))Nk=1

Set Σ = (Σ0,Σ1, . . . ,Σn−1) := (0, 0, . . . , 0) and N̂ := 0
for 1 ≤ k ≤ N do

2 Compute c(k) := H(m(k)∥pk)
for 0 ≤ l ≤ n− 1 do

3 if c
(k)
l = 1 then

4 N̂ := N̂ + 1
for 0 ≤ i ≤ n− 1 do

5 p := (l + i) mod n
if l + i ≥ n then

6 Σi := Σi − s
(k)
p

7 else

8 Σi := Σi + s
(k)
p

9 end if

10 end for

11 end if

12 if c
(k)
l = −1 then

13 N̂ := N̂ + 1
for 0 ≤ i ≤ n− 1 do

14 p := (l + i) mod n
if l + i ≥ n then

15 Σi := Σi + s
(k)
p

16 else

17 Σi := Σi − s
(k)
p

18 end if

19 end for

20 end if

21 end for

22 end for
23 for 0 ≤ i ≤ n− 1 do

24 ei := ⌊Σi/N̂⌉

25 end for

Remark 2. In Algorithm 1, the notation ⌊Σi/N̂⌉ denotes the value of Σi/N̂ rounded
to the nearest integer. Observe that Σi/N̂ ≈ ϵl,iclE[sl+i] = ei. The algorithm will
recover ei correctly if |Σi

N̂
− ei| < 0.5.

3.3 The Number of Required Signatures

In this section, we estimate the number N of signatures required for the statistical
attack described in Algorithm 1 above.
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Since u ∈ Sγ , it follows that each coordinate uj of u follows the uniform distribu-
tion Uγ on [−γ, γ] ∩ Z. Recall that the mean and standard deviation of Uγ is 0 and√

γ(γ + 1)/3 respectively.
Similarly, each coordinate ej of e follows the uniform distribution Uη with mean 0

and standard deviation
√

η(η + 1)/3. On the other hand, as c ∈ Bτ , we may treat each
coordinate cj of c as following the distribution Xτ . This distribution has mean and

standard deviation of 0 and
√

τ/n respectively. Thus, letting (w0, w1, . . . , wn−1) := ce,

then by Lemma 5 each wj approximates to the normal distributionN (0, n· η(η+1)
3 · τn ) =

N (0, τη(η + 1)/3).

Therefore, by Lemma 1(a), each (u
(k)
j + w

(k)
j ) follows a probability distribution

with mean 0 and standard deviation

σ :=

√
γ(γ + 1) + τη(η + 1)

3
.

Moreover, 1
N̂

∑N̂
k=1[u

(k)
j + w

(k)
j ] approximates to the normal distribution N (0, σ2

N̂
) =

N
(
0, γ(γ+1)+τη(η+1)

3N̂

)
.

Theorem 2. Let U1, U2, . . . , UN̂ be independent and identically distributed probability

distributions with mean µ and standard deviation σ. Let Û := 1
N̂

∑N̂
i=1 Ui. Then,

Û−µ ∼ N
(
0, σ2/N̂

)
. Moreover, the required number N̂ of samples such that |Û−µ| ≤

d with probability Φ(Z)− Φ(−Z) is N̂ =
(
Zσ
d

)2
.

Proof. By the Central Limit Theorem (Theorem 1), we have Û − µ = 1
N̂

∑N̂
i=1 Ui −

µ ∼ N
(
0, σ2/N̂

)
and limN̂→∞ Pr

(
Û−µ

σ/
√

N̂
≤ Z

)
= Φ(Z). It then follows that

limN̂→∞ Pr

(∣∣∣∣ Û−µ

σ/
√

N̂

∣∣∣∣ ≤ Z

)
= Φ(Z)− Φ(−Z).

For large enough N̂ , we have Pr

(∣∣∣∣ Û−µ

σ/
√

N̂

∣∣∣∣ ≤ Z

)
= Φ(Z) − Φ(−Z). Equivalently,

Pr

(
|Û − µ| ≤ Zσ√

N̂

)
= Φ(Z)− Φ(−Z) Then, we may set Zσ√

N̂
= d. Consequently,

N̂ =

(
Zσ

d

)2

.

In Algorithm 1, we need to ensure that |Σi/N̂ − E[ϵl,iclsl+i]| < 0.5. As such, we
may take d = 0.49 and apply Theorem 2 to estimate the number of samples needed as

N̂ = (Zσ/0.49)2.
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Since c ∈ Bτ , the number of nonzero element in c is wtH(c) = τ . Thus, the number
of required signatures is

N =
N̂

τ
=

(
Zσ

0.49

)2

/τ. (4)

We list some values of Z with the corresponding probability (Φ(Z) − Φ(−Z)) in
the following Table 1.

Table 1 Some Values of Z with Their Corresponding Probabilities

Z 1.96 2.326 2.576 2.807 3.090 3.2905 3.8905 4.4171
Prob. 0.95 0.98 0.99 0.995 0.998 0.999 0.9999 0.99999

We end this section by giving the following remark.
Remark 3. Note that in the case when there is no aborts in the signature generation
process, we have

Pr[(wl+i = k) ∧ (ul+i = t)] = Pr[wl+i = k] · Pr[ul+i = t]

=

{
pk/(2γ + 1) if |t| ≤ γ,

0 otherwise.

3.4 Key Recovery Attack on EagleSign [4]

EagleSign [4] is a lattice-based signature submitted to the NIST Call for PQC Addi-
tional Signature. It is a Schnorr-type signature without aborts. In this section, we
apply the statistical attack technique given in Section 3.2 on EagleSign 2. We briefly
describe certain important part of the EagleSign 2 signature which is sufficient to
launch the statistical attack. For more details on the EagleSign signature, please refer
to [4].

In this section, we use the same notation as in [4]. In the EagleSign 2 signature,
we have

z = Gu, u = y1 + c, w = y2 −Du,

where G and D are secret key uniformly chosen from Sl×l
1 and Sk×l

1 respectively,
y1 ∈ Bl

t,ηy1
, y2 ∈ Bk

t,ηy2
and c ∈ Bl

τ is an output of a hash function depending on the
message and some other inputs. Therefore,

z = Gy1 +Gc, w = y2 −Dy1 −Dc.

The above signature z and w are without aborts. Hence, the secret key G and
D can be recovered by applying the technique given in Section 3.2. After recovering
G and D, one can easily recover another secret key A from the public key E as
A = EG−D. The EagleSign signature uses n = 1024 and q = 12289. The simulation
results on the following parameters are given as follows.
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Table 2 Timing results of our proof-of-concept Sagemath implementation of the attack on
EagleSign

Level k l τ t ηy1 ηy2 σz σw N Nexp Time

3 1 1 38 140 1 64 10.8934 17.5991 663 665 104.67 sec
5 1 2 18 86 1 32 11.7756 12.9881 762 765 151.63 sec

Note:

(1) σz is the standard deviation of z and is equal to
√

2
3 (τ + t)l.

(2) σw is the standard deviation of w and is equal to

√
2
3 (τ + t)l +

t(ηy2
+1)(2ηy2

+1)

6n .

(3) N is the number of required signatures, which is computed using Equation (4) as

N =
⌈(

Z·σw

0.49

)2
/τ
⌉
, where Z = 4.4171.

(4) Nexp is the number of signatures used in our proof-of-concept experiment.
(5) Time is the time taken to recover the secret key of G,D in the experiment.

4 Schnorr-type Signatures with Aborts

Let β = ητ , γ and δ be positive integers and 0 < β ≪ B = γ − δ < q1. We shall
consider the following setting of Schnorr-type lattice-based signature with aborts as
s = u + ce ∈ Rq, where e ∈ Sη is a (long-term) secret key, u is chosen randomly
from Sγ , c ∈ Bτ is an output of a hash function depending on the message and
some other inputs, and we impose the condition that ∥s∥∞ ≤ B = γ − δ (i.e. if
∥s∥∞ > B = γ − δ, then the signature is aborted and the signer repeats the signature
generation process). The idea of introducing aborts in the signature is to avoid the
statistical attack described in the previous section. In this section, we analyze the
expected value of s. This will show whether it will hide or reveal the secret key e.

In this case (where the signature is only outputted if ∥s∥∞ ≤ B = γ − δ), we note
that Pr[(wl+i = k) ∧ (ul+i = t)] is proportionate to pk/(2γ + 1) if |t| ≤ γ and
|sl+i| = |wl+i+ul+i+ ϵl,iclei| ≤ B; the probability is equal to 0 otherwise. As (2γ+1)
is a constant, then we may take Pr[(wl+i = k) ∧ (ul+i = t)] to be proportionate
to pk if |t| ≤ γ and |sl+i| = |wl+i + ul+i + ϵl,iclei| ≤ B. Thus,

Pr[(wl+i = k) ∧ (ul+i = t)] =

{
pk/N if |t| ≤ γ and |sl+i| ≤ B,

0 otherwise,

where N is a fixed normalization factor that makes the sum of all probabilities equals
to 1.

4.1 General Formula for E[sl+i]

In this section, we shall give a general formula for computing E[sl+i] when cl = 1.
However, due to the abort condition in the signing process, ul+i and wl+i are now
dependent, so we may not have E[sl+i] = E[ul+i] + ϵl,iei + E[wl+i] anymore. We now
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compute E[sl+i] as

E[sl+i] =

B∑
j=−B

j Pr[sl+i = j].

As |wl+i| ≤ β − η by Lemma 6 and sl+i = wl+i + ul+i + ϵl,iei, we then have for any
−B ≤ j ≤ B,

Pr[sl+i = j] =

β−η∑
t′=−(β−η)

Pr[(wl+i = t′) ∧ (ul+i + ϵl,iei = j − t′)]

=

j+β−η∑
t=j−β+η

Pr[(wl+i = j − t) ∧ (ul+i + ϵl,iei = t)],

and

Pr[(wl+i = j − t) ∧ (ul+i + ϵl,iei = t)] =

{
pj−t/N if |t− ϵl,iei| ≤ γ,

0 otherwise,

=

{
pj−t/N if ϵl,iei − γ ≤ t ≤ ϵl,iei + γ,

0 otherwise.

Thus,

E[sl+i] =

B∑
j=−B

j Pr[sl+i = j] =

B∑
j=−B

j

min{j+β−η, ϵl,iei+γ}∑
t=max{j−β+η, ϵl,iei−γ}

pj−t

 /N. (5)

Since γ = B + δ, by Equation (5), we have

E[sl+i] =

B∑
j=−B

j

min{ϵl,iei+B+δ, j+β−η}∑
t=max{ϵl,iei−B−δ, j−β+η}

pj−t

 /N

=

B∑
j=−B

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

jpj−t/N

(as pk = 0 if |k| > β − η by Remark 1(i))

=

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

B∑
j=−B

jpj−t/N

=

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

f(t)/N,

where f(t) :=
∑B

j=−B jpj−t.

12



We now compute the normalization factor N as follows:

N =

B∑
j=−B

min{ϵl,iei+B+δ, j+β−η}∑
t=max{ϵl,iei−B−δ, j−β+η}

pj−t

=

B∑
j=−B

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

pj−t

=

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

B∑
j=−B

pj−t

=

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

B−t∑
j=−B−t

pj

=

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

g(t),

where

g(t) :=

B−t∑
j=−B−t

pj .

We have thus shown the following result.
Proposition 1. Suppose B = γ − δ for some δ > 0. Then

E[sl+i] =

 min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

f(t)

 /

 min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

g(t)

 ,

where f(t) :=
∑B

j=−B jpj−t and g(t) :=
∑B−t

j=−B−t pj for any t ∈ Z.
Remark 4. We have

(i) min{ϵl,iei +B + δ, B + β − η} = B + β − η if and only if δ ≥ β − η − ϵl,iei.
(ii) min{ϵl,iei +B + δ, B + β − η} = ϵl,iei +B + δ if and only if δ ≤ β − η − ϵl,iei.
(iii) max{ϵl,iei −B − δ, −B − β − η} = −B − β + η if and only if δ ≥ β − η + ϵl,iei.
(iv) max{ϵl,iei −B − δ, −B − β − η} = ϵl,iei −B − δ if and only if δ ≤ β − η + ϵl,iei.

We now divide into a few cases depending on the value of δ.

β − 2η β − η − |ei| β − η + |ei| β

4.2 Case 1: δ ≥ β − η + |ei| (including δ ≥ β)

In this section, we consider the case when B = γ − δ for some δ ≥ β − η + |ei|. Note
that as e ∈ Sη, we have β ≥ β − η + |ei|. So, this case includes in particular the

13



situation when δ ≥ β. We shall show that E[sl+i] = 0 in this case. We start by proving
the following properties of f(t).

Lemma 7. For t ∈ Z, define f(t) :=
∑B

j=−B jpj−t. Then

(a) f(0) = 0;
(b) f(−t) = −f(t) for any t ∈ Z.

Proof. For (a), note that since p−j = pj for any j, then we have

f(0) =

B∑
j=−B

jpj =

−1∑
j=−B

jpj + 0 +

B∑
j=1

jpj

=

B∑
j=1

(−j)p−j +

B∑
j=1

jpj

= −
B∑

j=1

jpj +

B∑
j=1

jpj (since p−j = pj)

= 0.

As for (b),

f(−t) =

B∑
j=−B

jpj+t =

B∑
j=−B

(−j)p−j+t = −
B∑

j=−B

jp−(j−t)

= −
B∑

j=−B

jpj−t (since p−(j−t) = pj−t)

= −f(t).

Theorem 3. If δ ≥ β − η + |ei|, then E[sl+i] = 0. In particular, E[sl+i] = 0 if δ ≥ β.

Proof. As δ ≥ β− η+ |ei| ≥ β− η− |ei|, therefore, by Proposition 1 and Remark 4(i),
(iii), we have

E[sl+i] =

 min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

f(t)

 /N

=

B+β−η∑
t=−(B+β−η)

f(t)/N

=

 −1∑
t=−(B+β−η)

f(t) + f(0) +

B+β−η∑
t=1

f(t)

 /N

14



=

(
B+β−η∑

t=1

f(−t) + f(0) +

B+β−η∑
t=1

f(t)

)
/N

=

(
−

B+β−η∑
t=1

f(t) + 0 +

B+β−η∑
t=1

f(t)

)
/N (by Lemma 7)

= 0.

Note that if δ ≥ β, then by Theorem 3, we have E[sl+i] = 0 (independent of the
value of ei). We conclude that if δ ≥ β, then e cannot be recovered using the method
given in Algorithm 1.

4.3 Case 2: 0 < δ ≤ β − η − |ei| (including 0 < δ ≤ β − 2η)

In this section, we shall simplify the formula for E[sl+i] given in Proposition 1 in the
case when B = γ − δ for some 0 < δ ≤ β − η − |ei|. We start by proving the following
properties of g(t).

Lemma 8. For t ∈ Z, define g(t) :=
∑B−t

j=−B−t pj. Then

(a) If t > B + β − η, then g(t) = 0.
(b) If t < −B − β + η, then g(t) = 0.
(c) If −(B − β + η) ≤ t ≤ B − β + η, then g(t) = 1.
(d) For any t ≥ 1, we have g(t) = g(−t).

Proof. For (a), note that if t > B + β − η, then for any j ∈ [−B − t, B − t] we have
j < −(β−η) and so pj = 0 by Remark 1(i). Thus, g(t) = 0. Similarly, for (b), we note
that if t < −B − β + η, then for any j ∈ [−B − t, B − t] we have j > β − η and so
pj = 0 by Remark 1(i). Consequently, g(t) = 0 in this case as well.

For (c), if −(B−β+ η) ≤ t ≤ B−β+ η, then −B− t ≤ −(β− η) < β− η ≤ B− t.
It then follows from Remark 1(i), (ii) that

g(t) =

B−t∑
j=−B−t

pj =

β−η∑
−(β−η)

pj = 1.

For (d), as pj = p−j for any j, we have

g(−t) =

B+t∑
j=−B+t

pj =

−(−B+t)∑
j=−(B+t)

p−j =

B−t∑
j=−B−t

pj = g(t).

15



Suppose 0 < δ ≤ β − η − |ei|. Then by Remark 4(ii), (iv), the numerator in
Proposition 1 becomes

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

f(t) =

B+δ+ϵl,iei∑
t=−(B+δ−ϵl,iei)

f(t)

=

B+δ+ϵl,iei∑
t=1

f(t)−
B+δ−ϵl,iei∑

t=1

f(t) (by Lemma 7)

=



0 if ei = 0
B+δ+ϵl,iei∑

t=B+δ−ϵl,iei+1

f(t) if ϵl,iei > 0

−
B+δ−ϵl,iei∑

t=B+δ+ϵl,iei+1

f(t) if ϵl,iei < 0.

On the other hand, in this case (where 0 < δ ≤ β− η−|ei|), by Remark 4(ii), (iv),
the normalization factor is

B+δ+ϵl,iei∑
t=−(B+δ−ϵl,iei)

g(t) =

−(B−β+η+1)∑
t=−(B+δ−ϵl,iei)

g(t) +

B−β+η∑
t=−(B−β+η)

1 +

B+δ+ϵl,iei∑
t=B−β+η+1

g(t) (by Lemma 8(c))

= 2B − 2β + 2η + 1 +

−(B−β+η+1)∑
t=−(B+δ−ϵl,iei)

g(t) +

B+δ+ϵl,iei∑
t=B−β+η+1

g(t)

= 2B − 2β + 2η + 1 +

B+δ−ϵl,iei∑
t=B−β+η+1

g(t) +

B+δ+ϵl,iei∑
t=B−β+η+1

g(t) (by Lemma 8(d))

=


2B − 2β + 2η + 1 + 2

B+δ−ϵl,iei∑
t=B−β+η+1

g(t) +

B+δ+ϵl,iei∑
t=B+δ−ϵl,iei+1

g(t) if ϵl,iei ≥ 0

2B − 2β + 2η + 1 + 2

B+δ+ϵl,iei∑
t=B−β+η+1

g(t) +

B+δ−ϵl,iei∑
t=B+δ+ϵl,iei+1

g(t) if ϵl,iei < 0.

Combining the above with Proposition 1, we have thus shown the following result.
Lemma 9. Suppose B = γ − δ for some δ satisfying 0 < δ ≤ β − η − |ei|.
• If ei = 0, then E[sl+i] = 0.
• If ϵl,iei > 0, then

E[sl+i] =

 B+δ+ϵl,iei∑
t=B+δ−ϵl,iei+1

f(t)

 /

2B − 2β + 2η + 1 + 2

B+δ−ϵl,iei∑
t=B−β+η+1

g(t) +

B+δ+ϵl,iei∑
t=B+δ−ϵl,iei+1

g(t)

 ;
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• if ϵl,iei < 0, then

E[sl+i] = −

 B+δ−ϵl,iei∑
t=B+δ+ϵl,iei+1

f(t)

 /

2B − 2β + 2η + 1 + 2

B+δ+ϵl,iei∑
t=B−β+η+1

g(t) +

B+δ−ϵl,iei∑
t=B+δ+ϵl,iei+1

g(t)

 ,

where f(t) :=
∑B

j=−B jpj−t and g(t) :=
∑B−t

j=−B−t pj for any t ∈ Z.
In particular, the above formulas hold when δ ≤ β − 2η.
We now explore further properties of f(t) =

∑B
j=−B jpj−t =

∑B−t
j=−B−t(j + t)pj

and g(t) =
∑B−t

j=−B−t pj .
Lemma 10. If β − η − 2B ≤ k ≤ β − η, then

f(B + k) = B

β−η∑
j=k

pj −
β−η∑
j=k

(j − k)pj ≈ B

β−η∑
j=k

pj ,

and

g(B + k) =

β−η∑
j=k

pj .

Proof. We have

f(B + k) =

−k∑
j=−2B−k

(j +B + k)pj

=

−k∑
j=−(β−η)

(j +B + k)pj (as β − η − 2B ≤ k)

=

β−η∑
j=k

(B + k − j)pj = B

β−η∑
j=k

pj +

β−η∑
j=k

(k − j)pj

= B

β−η∑
j=k

pj −
β−η∑
j=k

(j − k)pj

≈ B

β−η∑
j=k

pj .

We also note that

g(B + k) =

−k∑
j=−2B−k

pj =

−k∑
j=−(β−η)

pj =

β−η∑
j=k

pj .

The following corollaries are direct consequences of Lemma 10.
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Corollary 1. If δ + |ei| ≤ β − η, then

B+δ+|ei|∑
t=B+δ−|ei|+1

f(t) = B

δ+|ei|∑
k=δ−|ei|+1

β−η∑
j=k

pj −
δ+|ei|∑

k=δ−|ei|+1

β−η∑
j=k

(j− k)pj ≈ B

δ+|ei|∑
k=δ−|ei|+1

β−η∑
j=k

pj .

Corollary 2. If δ − |ei| ≤ β − η, then

B+δ−|ei|∑
t=B−β+η+1

g(t) =

δ−|ei|∑
k=−(β−η−1)

β−η∑
j=k

pj .

Corollary 3. If δ + |ei| ≤ β − η, then

B+δ+|ei|∑
t=B+δ−|ei|+1

g(t) =

δ+|ei|∑
k=δ−|ei|+1

β−η∑
j=k

pj .

Theorem 4. Suppose B = γ − δ for some δ satisfying 0 < δ ≤ β − η − |ei|.
• If ei = 0, then E[sl+i] = 0.
• If ϵl,iei > 0, then

E[sl+i] =

B

δ+ϵl,iei∑
k=δ−ϵl,iei+1

β−η∑
j=k

pj −
δ+ϵl,iei∑

k=δ−ϵl,iei+1

β−η∑
j=k

(j − k)pj

2B − 2β + 2η + 1 + 2

δ−ϵl,iei∑
k=−(β−η−1)

β−η∑
j=k

pj +

δ+ϵl,iei∑
k=δ−ϵl,iei+1

β−η∑
j=k

pj

≈

 δ+|ei|∑
k=δ−|ei|+1

β−η∑
j=k

pj

 /2.

• If ϵl,iei < 0, then

E[sl+i] =

−B

δ−ϵl,iei∑
k=δ+ϵl,iei+1

β−η∑
j=k

pj −
δ−ϵl,iei∑

k=δ+ϵl,iei+1

β−η∑
j=k

(j − k)pj

2B − 2β + 2η + 1 + 2

δ+ϵl,iei∑
k=−(β−η−1)

β−η∑
j=k

pj +

δ−ϵl,iei∑
k=δ+ϵl,iei+1

β−η∑
j=k

pj

≈ −

 δ+|ei|∑
k=δ−|ei|+1

β−η∑
j=k

pj

 /2.

Proof. This is a direct consequence of Lemma 9 and Corollaries 1, 2, 3.
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Remark 5. It is clear from Theorem 4 that E[sl+i] ̸= 0 when ei ̸= 0 in this case.
Moreover, we observe that E[sl+i] for ϵl,iei < 0 is equal to −E[sl+i] for ϵl,iei > 0.

4.4 Case 3: β − η − |ei| < δ < β − η + |ei|
In this section, we consider the case when B = γ−δ for some δ satisfying β−η−|ei| <
δ < β − η + |ei|. Note that ei ̸= 0 in this case. The situation when ei = 0 (in which
case we have E[sl+i] = 0 by Theorems 3 and 4) has been fully covered in Sections 4.2
and 4.3. We then only need to split into two subcases depending on whether ϵl,iei > 0
or ϵl,iei < 0.

4.4.1 ϵl,iei > 0

Proposition 2. Suppose β − η − ϵl,iei < δ < β − η + ϵl,iei (and ϵl,iei > 0). Then

E[sl+i] =

B

β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj −
β−η∑

k=δ−|ei|+1

β−η∑
j=k

(j − k)pj

(2B − 2β + 2η + 1) + 2

δ−|ei|∑
k=−β+η+1

β−η∑
j=k

pj +

β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj

≈

 β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj

 /2.

Proof. As β − η − ϵl,iei < δ < β − η + ϵl,iei, by Remark 4(i), (iv), the numerator in
Proposition 1 becomes

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

f(t) =

B+β−η∑
t=−B−δ+ϵl,iei

f(t) =

B+β−η∑
t=−B−δ+|ei|

f(t)

=

B+δ−|ei|∑
t=1

f(−t) + f(0) +

B+β−η∑
t=1

f(t)

= −
B+δ−|ei|∑

t=1

f(t) +

B+β−η∑
t=1

f(t) (by Lemma 7)

=

B+β−η∑
t=B+δ−|ei|+1

f(t)

=

β−η∑
k=δ−|ei|+1

f(B + k)

= B

β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj −
β−η∑

k=δ−|ei|+1

β−η∑
j=k

(j − k)pj ,

19



where the last equality follows from Lemma 10.
Moreover, Remark 4(i), (iv) also implies that the normalization factor N in

Proposition 1 becomes

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

g(t) =

B+β−η∑
t=−B−δ+ϵl,iei

g(t) =

B+β−η∑
t=−B−δ+|ei|

g(t)

=

−B+β−η−1∑
t=−(B+δ−|ei|)

g(t) +

B−β+η∑
t=−(B−β+η)

1 +

B+β−η∑
t=B−β+η+1

g(t) (by Lemma 8)

= (2B − 2β + 2η + 1) +

B+δ−|ei|∑
t=B−β+η+1

g(t) +

B+β−η∑
t=B−β+η+1

g(t)

= (2B − 2β + 2η + 1) + 2

B+δ−|ei|∑
t=B−β+η+1

g(t) +

B+β−η∑
t=B+δ−|ei|+1

g(t)

= (2B − 2β + 2η + 1) + 2

δ−|ei|∑
k=−β+η+1

g(B + k) +

β−η∑
k=δ−|ei|+1

g(B + k)

= (2B − 2β + 2η + 1) + 2

δ−|ei|∑
k=−β+η+1

β−η∑
j=k

pj +

β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj ,

where the last equality follows from Lemma 10.
The proof is then concluded by applying Proposition 1.

4.4.2 ϵl,iei < 0

Proposition 3. Suppose β − η + ϵl,iei < δ < β − η − ϵl,iei (and ϵl,iei < 0). Then

E[sl+i] =

−B

β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj +

β−η∑
k=δ−|ei|+1

β−η∑
j=k

(j − k)pj

(2B − 2β + 2η + 1) + 2

δ−|ei|∑
t=−β+η+1

β−η∑
j=k

pj +

β−η∑
t=δ−|ei|+1

β−η∑
j=k

pj

≈ −

 β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj

 /2.
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Proof. As β − η + ϵl,iei < δ < β − η − ϵl,iei, by Remark 4(ii), (iii), the numerator in
Proposition 1 becomes

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

f(t) =

B+δ+ϵl,iei∑
−B−β+η

f(t) =

B+δ−|ei|∑
−B−β+η

f(t)

=

B+β−η∑
t=1

f(−t) + f(0) +

B+δ−|ei|∑
t=1

f(t)


=

−B+β−η∑
t=1

f(t) +

B+δ−|ei|∑
t=1

f(t)

 (by Lemma 7)

= −
B+β−η∑

t=B+δ−|ei|+1

f(t)

= −
β−η∑

k=δ−|ei|+1

f(B + k)

= −B

β−η∑
k=δ−|ei|+1

β−η∑
j=k

pj +

β−η∑
k=δ−|ei|+1

β−η∑
j=k

(j − k)pj ,

where the last equality follows from Lemma 10.
Moreover, Remark 4(ii), (iii) also implies that the normalization factor N in

Proposition 1 becomes

min{ϵl,iei+B+δ, B+β−η}∑
t=max{ϵl,iei−B−δ, −B−β+η}

g(t) =

B+δ+ϵl,iei∑
−B−β+η

g(t) =

B+δ−|ei|∑
−B−β+η

g(t)

=

−B+β−η−1∑
t=−(B+β−η)

g(t) +

B−β+η∑
t=−(B−β+η)

1 +

B+δ−|ei|∑
t=B−β+η+1

g(t) (by Lemma 8)

= (2B − 2β + 2η + 1) +

B+β−η∑
t=B−β+η+1

g(t) +

B+δ−|ei|∑
t=B−β+η+1

g(t)

= (2B − 2β + 2η + 1) + 2

B+δ−|ei|∑
t=B−β+η+1

g(t) +

B+β−η∑
t=B+δ−|ei|+1

g(t)

= (2B − 2β + 2η + 1) + 2

δ−|ei|∑
t=−β+η+1

g(B + k) +

β−η∑
t=δ−|ei|+1

g(B + k)

= (2B − 2β + 2η + 1) + 2

δ−|ei|∑
t=−β+η+1

β−η∑
j=k

pj +

β−η∑
t=δ−|ei|+1

β−η∑
j=k

pj ,
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where the last equaltiy follows from Lemma 10.
The proof is then concluded by applying Proposition 1.

Remark 6. Comparing Propositions 2 and 3, we see that E[sl+i] for ϵl,iei < 0 is equal
to −E[sl+i] for ϵl,iei > 0.
Remark 7. From Propositions 2 and 3, we see that E[sl+i] can be approximated as
a sum of (β + |ei| − η − δ) terms when β − η − |ei| < δ < β − η + |ei|, where each

term is of the form
∑β−η

j=k pj. Together with Theorems 3 and 4, the number of terms
in E[sl+i] for various δ and ϵl,iei are given in the following table.

ei = 0 ϵl,iei = 1 ϵl,iei = 2 . . . ϵl,iei = η − 1 ϵl,iei = η

δ ≥ β 0 0 0 . . . 0 0

δ = β − 1 0 0 0 . . . 0 1 term
δ = β − 2 0 0 0 . . . 1 2 terms

...
...

...
...

...
...

...
δ = β − η 0 1 2 . . . η − 1 η terms

...
...

...
...

...
...

...
δ = β − (2η − 2) 0 2 4 . . . 2η − 3 2η − 2 terms
δ = β − (2η − 1) 0 2 4 . . . 2η − 2 2η − 1 terms

δ = β − 2η 0 2 4 . . . 2η − 2 2η terms

0 < δ ≤ β − 2η 0 2|ei| = 2 2|ei| = 4 . . . 2|ei| = 2η − 2 2|ei| = 2η terms

Table 3 Number of terms in E[sl+i] for various values of ϵl,iei

From Table 3 above, we observe that when δ ≤ β− η, distinct values of ϵl,iei result
in distinct values of E[sl+i]. Therefore, we can theoretically recover e completely if
δ ≤ β − η.

4.5 Normal Approximation of pk

Recall that for k ∈ Z, we define

pk := Pr[wl+i = k],

where (from Equation (2))

wl+i :=
∑

0≤j≤n−1
j ̸=l

±cjel+i−j .

Moreover, as argued in Section 3.3, each wl+i approximates to the normal distribution
N (0, σce), where

σce :=

√
τη(η + 1)

3
.
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Then, for −(β − η) ≤ k ≤ (β − η), we may estimate the value of pk as follows:

pk := Pr[wl+i = k] = Pr

[
wl+i ∈

(
k − 1

2
, k +

1

2

)]
≈ Φ

(
k + 1

2

σce

)
− Φ

(
k − 1

2

σce

)
,

where Φ(Z) := 1√
2π

∫ Z

−∞
e−t2/2dt.

On the other hand, as mentioned in Remark 1(i), it is clear that pk = 0 if |k| > β−η.

Remark 8. We now give an estimate on the value of
∑β−η

j=k pk as follows.

β−η∑
j=k

pk = Pr [wl+i ≥ k] = 1− Pr [wl+i ≤ k − 1]

= 1− Pr

[
wl+i < k − 1

2

]
≈ 1− Φ

(
k − 1

2

σce

)
= Φ

(
−
k − 1

2

σce

)
.

(i) For small k (more precisely, if
∣∣∣k− 1

2

σce

∣∣∣ < 4), the value of Φ
(
−k− 1

2

σce

)
can be obtained

from the standard normal distribution table.

(ii) For general k, the value of Φ
(
−k− 1

2

σce

)
can be approximated using Lemma 4.

4.6 Illustrative Example of Key Recovery Attack

In this section, we shall give an example to illustrate the fact that one could still
perform key recovery attack on Schnorr-type signature scheme with aborts when the
parameters are not carefully chosen.

Consider the following parameter: n = 64, τ = 16, η = 4, γ = 300, δ = 7,
β = η · τ = 64, B = β − δ = 293. Note that 7 = δ ≤ β − 2η = 56. So, we may apply
Theorem 4 to estimate E[sl+i].

For this parameter, σce =
√

τη(η + 1)/3 = 10.3279555. Recall from Remark 8 that∑β−η
j=k pk ≈ Φ(−k− 1

2

σce
). We list the values for Φ(−k− 1

2

σce
) for 5 ≤ k ≤ 11 in the following

table (the values are obtained from the standard normal distribution table).

k 4 5 6 7 8 9 10 11

−
k− 1

2
σce

−0.33 −0.43 −0.53 −0.62 −0.72 −0.82 −0.91 −1.01
β−η∑
j=k

pk 0.37070 0.33360 0.29806 0.26763 0.23576 0.20611 0.18141 0.15625

Table 4 Estimate for
∑β−η

j=k pk
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For any fixed, 1 ≤ ϵl,iei ≤ 4, by Theorem 4, we have E[sl+i] =
1
2

7+ϵl,iei∑
k=8−ϵl,iei

β−η∑
j=k

pk.

Using the estimate given in Table 4, we may compute E[sl+i] for various ϵl,iei as
follows.

ϵl,iei 0 ±1 ±2 ±3 ±4
E[sl+i] 0 ±0.251695 ±0.503780 ±0.761285 ±1.024760

Table 5 The values of E[sl+i] for different ϵl,iei

Suppose we have collected a number of samples s
(1)
l+i, s

(2)
l+i, . . . , s

(N̂)
l+i from some

known signatures. Then E[sl+i] can be estimated as E[sl+i] ≈
∑N̂

k=1 s
(k)
l+i/N̂ . One may

then recover ei as follows:

ϵl,i
∑N̂

k=1 s
(k)
l+i/N̂ ei

> 0.88 4
(0.62, 0.88] 3
(0.37, 0.62] 2
(0.12, 0.37] 1
[−0.12, 0.12] 0
[−0.37,−0.12) −1
[−0.62,−0.37) −2
[−0.88,−0.62) −3

< −0.88 −4

Table 6 Recovering ei

from
∑N̂

k=1 s
(k)
l+i/N̂

Due to the abort condition, we have s ∈ SB . The standard deviation of s can be
approximated as

σs ≈
√

B(B + 1)

3
= 169.452.

Since c ∈ Bτ , the expected number of 1 in c is τ/2. Thus, taking d = 0.12 in
Proposition 2, the number of required signatures is

N =
N̂

τ/2
= 2

(
Zσs

0.12

)2

/τ.

Taking Z = 3.2905, we have N = 2, 698, 763.
We perform a simulation using Sagemath with Nexp = 2, 700, 000. The simulation

successfully recovers the secret key e completely in less than 2.5 hours.

4.7 2018 Dilithium Signature with Abort Only on ∥s∥∞

Dilithium [7] is a lattice-based signature submitted to the NIST Call for PQC Stan-
dardization. It is a Schnorr-type signature with aborts. We briefly describe certain
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important part of the Dilithium signature, which is sufficient for our purpose. For
more details on the Dilithium signature, please refer to [7].

In the Dilithium signature, we have

z = y + cs1,

where s1 ∈ Sl
η is part of the secret key, y ∈ Sl

γ1−1, and c ∈ B60 is a hash value of
the message and some other inputs. The signature is outputted if and only if ∥z∥∞ ≤
(γ1 − 1) − δ (note that if ∥z∥∞ > (γ1 − 1) − δ, then the signer should repeat the
signature generation process).

The 2018 version of Dilithium [7] uses q = 8380417, n = 256, and τ := wtH(c) = 60.
The other parameters for the 2018 version of Dilitihium is given in Table 7.

γ1 − 1 δ γ1 − 1− δ η β := ητ

weak 523775 375 523400 7 420
medium 523775 325 523450 6 360

recommended 523775 275 523500 5 300
high 523775 175 523600 3 180

Table 7 Parameters of Dilithium 2018

Now we will derive an estimate on the number of signatures required to launch the
statistical attack. Observe that all parameters except for the high security level satisfy
δ ≤ β − 2η. Thus, for these parameters, we may apply Theorem 4 to conclude that

E[sl+i] is of the form ±

 δ+|ei|∑
k=δ−|ei|+1

β−η∑
j=k

pj

 /2. We estimate d in Theorem 2 using

Remark 8(ii) as

d ≈ 1

2
·

δ+1∑
k=δ

β−η∑
j=k

pj

 /2 ≈
δ+1∑
k=δ

Ck/4,

where Ck := [0.4361836 × (1 + 0.33267|κk|)−1 − 0.1201676 × (1 + 0.33267|κk|)−2 +

0.937298 × (1 + 0.33267|κk|)−3] × exp(−κ2
k/2)√

2π
and κk := (k − 1

2 )/σce for k = δ, δ + 1,

and σce =
√

τη(η + 1)/3.
On the other hand, for the high security level, the parameter satisfies δ = β−2η+1.

We can still perform key recovery attack in this case as explained in Remark 7. The
only difference is that when |ei| = η, E[sl+i] is a sum of (2β − 1) terms (instead of
2β terms). As such, for the high security level, we estimate d more conservatively as

d ≈ 1
4

(∑δ+1
k=δ

∑β−η
j=k pj

)
/2 ≈

∑δ+1
k=δ Ck/8.

Since c ∈ Bτ , the expected number of 1 in c is τ/2. Thus, by Theorem 2, the
number of required signatures is

N =
N̂

τ/2
≈ 2

(
Zσs

d

)2

/τ.
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Due to the abort condition, we have s ∈ SB where B := γ1 − 1 − δ. The standard

deviation of s can then be approximated as σs ≈
√

B(B+1)
3 . Since n = 256, we will

take Z = 3.8905.
In the following Table 8, we list an estimate on the number of required signatures

to perform our proposed key recovery attack on the Dilithium 2018 parameters.

σce d σs log2(N)

weak 33.4664 1.05× 10−29 302185.419 227.9
medium 28.9827 9.63× 10−30 302214.287 228.2

recommended 24.4948 8.35× 10−30 302243.154 228.6
high 15.4919 1.97× 10−30 302300.889 232.7

Table 8 Estimate on the number of required signatures to perform
the proposed key recovery attack on Dilithium 2018 parameters

From Table 8, we see that the number of required signatures is > 2227, which is
more than the claimed security level. Therefore, this does not violate the security claim
of the Dilithium 2018 parameters. Nevertheless, our attack gives a potential weakness,
and the complexity of performing the attack should be considered when analysing the
security of similar schemes.
Remark 9. Note that the attack theoretically works on the parameters of Dilithium
2018 because δ ≤ β − η. However, the parameters for Dilithium have been updated.
The current parameters satisfy δ = β = ητ . As shown in Theorem 3, in this case,
E[sl+i] = 0 regardless of the value of ei. Therefore, the attack does not work on the
current parameters of Dilithium. It is thus important to set the parameters carefully.
In particular, one should choose δ ≥ β.

5 Information-Theoretic Analysis for δ ≥ β

In Section 4.2, we have shown that E[sl+i] = 0 if δ ≥ β. As such, we cannot use an
attack similar to Algorithm 1 in order to recover the secret key e. However, it does
not rule out the possibility that there could be other methods of recovering e from s.
In this section, we shall show that in fact s does not leak any information about e.

Recall that due to the abort condition, we have s ∈ SB (where (s, c) is a signature
produced using the secret key e). We shall now show that the probability that any
particular s′ ∈ SB appears as a signature does not depend on the secret key e if δ ≥ β.
Lemma 11. If δ ≥ β, then for any s′ ∈ SB and any e′ ∈ Sη, we have

Pr[s = s′ | e = e′] =
1

(2γ + 1)n
,

where the probability is taken over all c ∈ Bτ and all u ∈ Sγ

Proof. Fix any s′ ∈ SB and any e′ ∈ Sη. Note that

Pr[s = s′ | e = e′] =
1

|Bτ | · |Sγ |
|{(c,u) ∈ Bτ × Sγ | s′ = ce′ + u}|

26



=
1

|Bτ | · |Sγ |
|{c ∈ Bτ | s′ − ce′ ∈ Sγ}|.

Observe that since s′ ∈ SB and e′ ∈ Sη, then for any c ∈ Bτ , we have

∥s′ − ce′∥∞ ≤ ∥s′∥∞ + ∥ce′∥∞
≤ ∥s′∥∞ + τ · ∥c∥∞ · ∥e′∥∞
≤ B + τη

= γ − δ + β

≤ γ.

Thus, the condition s′ − ce′ ∈ Sγ is always satisfied. It follows that

Pr[s = s′ | e = e′] =
1

|Bτ | · |Sγ |
|Bτ | =

1

|Sγ |
=

1

(2γ + 1)n
.

As the probability is independent of e′ (and s′), we conclude that any given value of
s in the signature does not reveal any information about the secret key e. Consequently,
one cannot learn any information about the secret key e (in particular, one cannot
recover e) from s.

6 Conclusion

In this paper, we examined the security of Schnorr-type signature schemes against sta-
tistical attack. We first considered the signature schemes without aborts. We showed
that by considering the signatures with cl = 1 and those with cl = −1 separately, the
expected value E[s] of the signature reveals the secret key e. This enables us to launch
a key recovery attack via statistical method. We presented an algorithm to perform key
recovery attack and gave a general formula for determining the number of signatures
required to successfully recover the secret key using this statistical attack. Moreover,
we applied our attack to EagleSign [4] signature scheme, which is a lattice-based sig-
nature scheme submitted to the NIST Call for PQC Additional Signature. Our results
show that we can perform key recovery attack on the EagleSign 2 signature schemes
with as few as 665 signatures, and our proof-of-concept Sagemath implementation of
the attack can recover the secret key in less than 3 minutes.

We also analyzed Schnorr-type signature schemes with aborts. The use of aborts in
Schnorr-type signature scheme was proposed as a countermeasure against statistical
attacks. Our detailed analysis in this paper considered all possible cases with regards to
a parameter δ related to the abort condition. We showed that the expected value E[s]
is correlated with the secret key e if δ ≤ β− η. Therefore, one could theoretically still
launch a statistical attack to recover e completely if δ ≤ β − η. If β − η < δ < β, then
the statistical attack can only recover the secret key e partially. On the other hand,
we proved that the statistical attack does not work if δ ≥ β. Furthermore, we proved
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information-theoretically that in fact the signature s does not leak any information
about e at all if δ ≥ β, thereby ruling out any possible attack to recover e from s.

We gave an example to demonstrate our proposed key recovery attack in the case
when there is an abort during signature generation. We also analyzed the security
of Dilithium [7] against our attack. We observed that the parameters of Dilithium
proposed in 2018 satisfies δ ≤ β − η and as such is susceptible to our attack. We
provided an estimate on the number of signatures required to perform the proposed
key recovery attack on the Dilithium 2018 parameters. On the other hand, the current
parameters of Dilithium is secure against the attack as the updated parameters satisfy
δ = β. Our analysis shows that even when abort condition is employed, it is crucial to
set the parameters carefully in order to defend against statistical attack. In particular,
it is recommended to set δ ≥ β.

In this paper, we focus on the Schnorr-type signatures with aborts where the
abort condition is on the infinity norm of the signature s. This is the case for many
signature schemes available in the literature, including the Lyubashevsky’s signature
[1], qTESLA [6], Dilithium [7], etc. Recently, there are a number of proposals for
signature schemes (such as HAETAE [15], HuFu [16], etc.), where the abort condition
is imposed on the Euclidean/ℓ2 norm instead of the infinity norm. We leave the analysis
of the ℓ2-abort condition for future work.
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