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Abstract

We give the first construction of non-interactive zero-knowledge (NIZK) arguments from
post-quantum assumptions other than Learning with Errors. In particular, we achieve NIZK
under the polynomial hardness of the Learning Parity with Noise (LPN) assumption, and the
exponential hardness of solving random under-determined multivariate quadratic equations
(MQ). We also construct NIZK satisfying statistical zero-knowledge assuming a new vari-
ant of LPN, Dense-Sparse LPN, introduced by Dao and Jain (CRYPTO 2024), together with
exponentially-hard MQ.

The main technical ingredient of our construction is an extremely natural (but only in hind-
sight!) construction of correlation-intractable (CI) hash functions from MQ, for a NIZK-friendly
sub-class of constant-degree polynomials that we call concatenated constant-degree polynomi-
als. Under exponential security, this hash function also satisfies the stronger notion of approx-
imate CI for concatenated constant-degree polynomials. The NIZK construction then follows
from a prior blueprint of Brakerski-Koppula-Mour (CRYPTO 2020). In addition, we show how
to construct (approximate) CI hashing for degree-d functions from the (exponential) hardness
of solving random degree-d equations, a natural generalization of MQ. To realize NIZK with
statistical zero-knowledge, we design a lossy public-key encryption scheme with approximate
linear decryption and inverse-polynomial decryption error from Dense-Sparse LPN. These
constructions may be of independent interest.

Our work therefore gives a new way to leverage MQ with uniformly random equations,
which has found little cryptographic applications to date. Indeed, most applications in the
context of encryption and signature schemes make use of structured variants of MQ, where the
polynomials are not truly random but posses a hidden planted structure. We believe that the
MQ assumption may plausibly find future use in the designing other advanced proof systems.
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1 Introduction

Zero-knowledge (ZK) proofs [GMR85] have played a central role in the theory and practice of
cryptography for almost four decades. At a high level, a zero-knowledge proof enables an efficient
prover to convince a verifier about the validity of a statement without disclosing any other infor-
mation. While ZK proofs have found countless applications in cryptography, they are most useful
in their non-interactive variant, where both the prover and verifier gets access to a common refer-
ence string generated by a trusted party, and the proof consists of a single message from the prover
to the verifier. This notion is known as non-interactive zero knowledge (NIZK) [DMP88]. NIZKs are
widely used in various applications, including CCA-secure encryption [NY90, DDN91], signature
schemes [BMW03, BKM06], blockchains [BCG+14], and more.

Constructions of NIZK have had a curious history. While NIZKs can be easily built in the ran-
dom oracle model using the Fiat-Shamir Heuristic [FS87], only a handful number of assumptions
are known to give rise to NIZKs in the standard model with reduction-based security proofs. Since
the seminal work building the first NIZK [DMP88], there has been tremendous efforts in designing
new NIZKs from a variety of assumptions [BFM88, FLS90, BY93, CHK03, GOS06b, GOS06a, GR13,
SW14, CL18, CCRR18, CCH+19, PS19, CKU20, BKM20, JJ21, GLS22, CJJQ23, CW23]. However, up
until six years ago, we only knew NIZKs from Factoring and Bilinear-group-based assumptions
[BFM88, FLS90, BY93, CHK03, GOS06b, GOS06a, GR13, SW14, CL18, CCRR18].

This changed drastically with recent progress on instantiating the Fiat-Shamir Heuristic via
correlation-intractable hash functions [CCH+19]. Informally, a hash function H is correlation in-
tractable with respect to a relation R if it is computationally difficult to find any input x such that
(x,H(x)) ∈ R. These recent breakthroughs culminated in the first constructions of post-quantum
NIZK from Learning with Errors (LWE) [CCH+19, PS19], a central assumption [Reg05] in post-
quantum cryptography that has enabled a vast array of other advanced primitives [BV11, GSW13,
GVW13, GVW15, GKW17, WZ17, GKW18, BCM+18, Mah18b, Mah18a, Bra18].

Correlation-intractability has proven to be a game-changer not only in the design of NIZKs
but also in the construction of other advanced proof systems such as batch arguments (BARGs)
for NP [CJJ21, WW22, DGKV22, PP22, GSWW22, KLVW23], succinct non-interactive arguments
(SNARGs) for P [CJJ22, HJKS22, CGJ+23] and other subclasses of NP [JKKZ21, KLV23, BBK+23,
NWW23], or incrementally verifiable computation [WW22, DGKV22, PP22]. In the context of
NIZKs, the community has designed new techniques that enabled constructions of NIZK from
new sets of well-studied assumptions such as DDH and LPN [BKM20], and eventually just (subex-
ponentially hard) DDH [JJ21].

Unfortunately, constructing NIZKs from purely post-quantum assumptions (other than LWE)
has remained elusive. There has been almost no progress on this goal since the original construc-
tions from LWE in [CCH+19, PS19]. This brings us to the central question for this paper:

Question. Can we build NIZKs from well-studied post-quantum assumptions other than
Learning with Errors (and its variants)?

To make progress on this question along the correlation intractability (CI) framework, it is
crucial to explore constructions of CI hash functions from other post-quantum assumptions, for a
function class that proves sufficient for NIZK. This leads us to the second question:

Question. Can we build CI hashing for function classes expressive enough to imply NIZK
from post-quantum assumptions other than LWE?
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Why other post-quantum assumptions? We believe that it is important to base NIZKs on other
post-quantum assumptions for the following reasons.

First, the state of affairs in terms of variety of assumptions implying advanced post-quantum
cryptography is highly unsatisfactory. While LWE is known to imply many advanced primi-
tives [BV11, GSW13, GVW13, GVW15, GKW17, WZ17, GKW18, BCM+18, Mah18b, Mah18a, Bra18],
it remains the only known post-quantum assumption, or even the only known assumption, for
most of these advanced applications. This motivates the search for alternate constructions of ad-
vanced primitives from other post-quantum assumptions. In this light, NIZK is one such primitive
that still remains a challenging test of expressivity for assumptions. NIZK constructions have al-
ways been surprisingly difficult to realize, and often once NIZK is built from an assumption, we
have also found ways to use the same assumption for designing other advanced cryptography,
e.g. [CJJ21, CJJ22, HJKS22, CGJ+23, GS08, GOS06b].

Second, while LWE is the only known post-quantum assumption implying NIZK (or even
much stronger primitives like fully homomorphic encryption), it turns out not to be as useful
for building other primitives such as indistinguishability obfuscation (iO) [BGI+01], for which
we know of constructions from other assumptions (that are not all post-quantum secure) [JLS21,
JLS22]. Thus, we believe that new techniques for leveraging other well-studied post-quantum
assumptions to build NIZKs could be helpful for other post-quantum, or quantum, cryptography
applications for which LWE might not be the best assumption (besides iO, another such example
is public-key quantum money [LMZ23]).

1.1 Our Results

We answer the above questions by constructing NIZK from two well-studied post-quantum as-
sumptions: the polynomial hardness of the Learning Parity with Noise (LPN) [BFKL94] assump-
tion, in a regime slightly stronger than that implying public-key encryption, and the exponential
hardness1 of solving random underdetermined multivariate quadratic (MQ) [OSS84] equations.
These are arguably the central assumptions in code-based and multivariate-based cryptography,
respectively, and have been subject to intense cryptanalysis over several decades.

Learning Parity with Noise [BFKL94] posits the hardness of decoding codewords from a ran-
dom linear code that has been corrupted with a random sparse noise. More formally, the LPNn,m,η

assumption states that

(A, s ·A+ e) is indistinguishable from (A,u), (1)

for a random matrix A ∈ Fn×m
2 , random s ∈ F1×n

2 , random u ∈ F1×m
2 , and the sparse noise

vector e ∈ F1×m
2 is Bernoulli distributed with some probability η. We use LPN with noise rate

η = n−1/2−δ for any δ > 0, which is slightly lower than the noise rate n−1/2 sufficient for public-
key encryption [Ale03]. In this regime, the best known attacks (see [BCGI18, BCG+20] for a survey
of attacks) run in time 2Õ(n1/2−δ).

The Multivariate Quadratic problem has an even longer history of study, whose first usage
in cryptography can be found in e.g. [OSS84, MI88]. Specifically, the MQn,m assumption (over
F2) states that it is computationally difficult to find a solution to a system of m random quadratic

1In this work, we say that an assumption satisfies exponential hardness if there exists some (however small) con-
stant τ > 0 so that any polynomial-time adversary has at most 2−τm chance of breaking the assumption on input length
m.
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equations in n variables:
q1(X) :=

∑n
i,j=1 a

(1)
i,j XiXj +

∑n
i=1 b

(1)
i Xi + c(1) = 0,

...

qm(X) :=
∑n

i,j=1 a
(m)
i,j XiXj +

∑n
i=1 b

(m)
i Xi + c(m) = 0.

(2)

The MQ assumption is considered in two regimes: underdetermined (when m < n), and overde-
termined (when m > n).2 Arguably the central target for algebraic cryptanalysis, a tremendous body
of works [Pat97, KS98, KS99, KPG99, CKPS00, CGMT02, TW12, MHT13, CHMT14] have studied
MQ in both parameter regimes. The best known attacks against MQ runs in exponential time
when m ≈ n, with a gradual decrease in runtime to polynomial time when m = Ω(n2) [KS99] or
m = O(

√
n) [KPG99, CGMT02, TW12, MHT13, CHMT14]. In this work, we rely on the exponential

hardness of underdetermined MQn,m, where m = n1−ϵ for an arbitrarily small constant ϵ > 0.
Hardness in this regime is well-supported by the best known attacks (see Section 4.1 for details).

Theorem 1.1 (Informal). There exists NIZK for NP in the common random string model, assuming the
following:

• no polynomial-time algorithm succeeds in solving LPNn,m,η with noticeable probability, where m =
poly(n) and η = O(n−1/2−δ), for some δ > 0,

• no polynomial-time algorithm succeeds in solving MQn,m with Ω(2−τm) probability, where m =
n1−ρ, for some ρ, τ > 0.

On Exponential Security. Our notion of exponential security for MQ requires that a polynomial-
time adversary has exponentially-small success probability. We could also consider a different
notion of exponential security where an exponential-time adversary has negligible success proba-
bility. While contrived examples exist where the latter do not imply the former,3 for most natural
problems (including MQ) it is expected that the former notion is weaker. Our exponential hard-
ness assumption is also qualitatively weaker than the “almost optimal security” notion of earlier
CI hash constructions [CCRR18, HL18, CCH+18], which requires poly-time adversary to have
roughly poly(λ)/2λ success probability.

We can also relax the exponential hardness requirement by relying on the polynomial hardness
of a new Approximate MQ assumption, which only requires a polynomial-time adversary to solve
any constant (say 99%) of the random quadratic equations. We believe that this assumption is very
natural, and its hardness is implied by the exponential hardness of MQ (see Section 4.1 for details).
Statistical Zero-Knowledge. Our NIZK from Theorem 1.1 satisfies adaptive computational sound-
ness and adaptive computational zero-knowledge. We may upgrade our construction to satisfy
statistical zero-knowledge (which requires weakening soundness to only be non-adaptive [Pas13])
by leveraging a recently introduced variant of LPN, called Dense-Sparse LPN [DJ24]. At a high
level, the DS-LPNn,m,k,η assumption states that

(A, s ·A+ e) is indistinguishable from (A,u), (3)

2In the overdetermined case, since a solution is often not available for random MQ equations, Equation (2) is
modified to be in the planted regime, where the right-hand side is not all-zero but is the evaluation (q1(x), . . . , qm(x)) for
a random x ∈ Fn

q . We will only focus on the underdetermined regime, where a solution will exist with overwhelming
probability (if m ≪ n).

3An example is as follows: define a problem that is unsolvable with 1− 2−λ probability, and trivially solvable with
1/2−λ probability.
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Assumptions CRS SND ZK Post-Quantum

Factoring [BFM88, FLS90, BY96] random S C no

Bilinear Maps [CHK07, GOS06b]
random C S

no
structured S C

Bilinear Maps [GOS06a]
structured C S

no
random S C

Learning with Errors [CCH+19, PS19]
random C S

yes
structured S C

DDH + LPN [BKM20] random C C no

sub-exponential DDH [JJ21] random C S no

LPN + exponential MQ (Ours) random C C yes

DS-LPN + exponential MQ (Ours) structured C S yes

Figure 1: Known constructions of NIZK from concrete/well-studied assumptions. In the above,
assumptions are polynomially-secure unless stated otherwise. We abbreviate the following: CRS =
(type of) common reference string; SND = soundness guarantee; ZK = zero-knowledge guarantee;
S = statistical; C = computational.

for a random s ∈ F1×n
2 , random u ∈ F1×m

2 , a Bernoulli-distributed noise e ∈ F1×m
2 with error

probability η, and a structured matrix A = TM ∈ Fn×m
2 that is the product of a random (dense)

matrix T ∈ Fn×2n
2 and a random k-sparse matrix M ∈ F2n×m

2 (with only k non-zero entries per
column). In [DJ24], the authors showed that for any constant k ≥ 3, a small enough constant δ > 0
and some function 1 < ρ(δ) < k/2, Dense-Sparse LPN with η = O(1/n1−δ) and m = nρ(δ) implies
lossy trapdoor functions [PW08], and is plausibly secure against subexponential time adversaries.

Using Dense-Sparse LPN, we construct a lossy public-key encryption [PVW08, BHY09, HLOV11]
scheme with 1/ poly(λ)-approximate linear decryption,4 which suffices for building NIZK with
statistical zero-knowledge. Our construction crucially relies on the inverse-polynomial noise rate;
we do not know of any lossy PKE construction (with 1/ poly(λ)-approximate linear decryption)
from LPN with any error probability ϵ, even in the quasi-polynomial time broken regime of ϵ =
O(log2 n/n) [BLVW19]. See Section 4.2 for details on this assumption, and Section 6 for our con-
struction.

Theorem 1.2 (Informal). There exists NIZK for NP in the common reference string model with sta-
tistical zero-knowledge, assuming exponential hardness of MQn,m1−ρ (as in Theorem 1.1) together with
polynomial hardness of DS-LPNn,m,k,ϵ for some constant k ≥ 3, ϵ = O(n1−δ), and m = nρ(δ), where
δ > 0 is a small enough constant and 1 < ρ(δ) < k/2.

Correlation-Intractable Hash Functions. The main enabler behind our NIZK construction, as in
a number of previous constructions, is a correlation-intractable hash function family for a class

4This does not follow directly from generic transformations from lossy trapdoor functions, since the decryption
function may no longer be approximately linear.
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of relations expressive enough for NIZK. In our case, these are function relations (x, f(x)), for all
functions f that are well-approximated by a suitable sub-class of all constant-degree polynomials.

We generalize the MQn,m assumption to posit the hardness of solving random polynomial
systems for some constant degree d > 2; we call this assumption MPSn,m,d.5 We show that the
MPSn,m,d assumption naturally implies a CI hash function for the class of degree-d polynomials.
Under exponential hardness of MPSn,m,d, the same hash function is CI for a larger class of func-
tions that only need to be well-approximated by degree-d polynomials. Finally, we show how to
base CI hashing with (almost) the same requirement on just MQn,m, weakening the approxima-
tion function class to concatenated constant-degree polynomials. These are polynomial tuples of
the form P1(x)

...
Pm(x)

 =

 P1,1(x1)∥ . . . ∥P1,ℓ(xℓ)
...

Pm,1(x1)∥ . . . ∥Pm,ℓ(xℓ)

 ∈ Fmℓ
2 for some ℓ ∈ N, (4)

where x = x1∥ . . . ∥xℓ ∈ Fnℓ
2 and “∥” denotes string concatenation.

Theorem 1.3 (Informal). For every small enough constant ϵ > 0 and constant degree d ≥ 2, there exists
correlation-intractable hash functions for the following function classes:

• Functions ϵ-approximable by degree-d polynomials, from exponential hardness of MPSn,m,d, where
m = n1−ρ for any 0 < ρ < 1/2,

• Functions ϵ-approximable by ℓ-concatenation of degree-d polynomials, from exponential hardness of
MQn,m, where m = n1−ρ for any 0 < ρ < 1/2 and ℓ is large enough.

We expect that for MPS of degree d > 2, the compression can be made even lower than m =
ω(n1/2); we leave determining the right hardness threshold for general degree d to future work.

1.2 Discussion and Related Works

We note that our construction is a rare departure from typical applications of MQ-based assump-
tions to design primitives such as signatures [Pat97, KPG99, PCG01, DS05, BP17, Beu22b] and
encryption schemes [MI88, Pat96, PGC98, HLY12, TDTD13]. To the best of our knowledge, all
known constructions of signatures and encryption schemes from MQ-based systems (in the stan-
dard model) make use of structured variants of MQ, where the polynomials are not truly randomly
chosen. In many cases, this planted structure is not sufficiently hiding, leading to countless attacks
against various MQ-based schemes over the years [Pat95, KS98, FJ03, WBP05, DFSS07, DDY+08,
BFP11, AFF+14, DDS+20, Beu21, Beu22a]. In our case, the polynomials are identically random,
giving rise to the first advanced cryptographic primitive from random MQ systems (together with
LPN).

We also note some prior applications of truly random MQ: as a PRG [BGP06, LLY08] (in the
overdetermined regime), a low-complexity universal one-way hash function [AHI+17], and in
the context of pseudorandom correlation generators [BCG+19]. To date, it is not known how to
construct either collision-resistant hashing or public-key encryption from random MQ. A prior
work [DY08] suggested that the same hash function as ours (for MPS with degree 3 and above)
is collision-resistant, though their argument was heuristic and no provable reductions were pre-
sented.

5Short for Multivariate Polynomial Solving.
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Moreover, both LPN and MQ in our parameter regime are not known to imply many advanced
cryptographic primitives. Indeed, LPN with error probability O(n−0.5−ρ), for an arbitrarily small
ρ > 0, is currently only known to imply basic Cryptomania primitives such as CPA and CCA-
secure public-key encryption [Ale03, DMN12, KMP14, YZ16], along with UC-secure oblivious
transfer [DGH+20]. This is a stark contrast from prior NIZK constructions from standard assump-
tions, where the underlying assumptions can be shown to imply highly structured primitives such
as trapdoor permutations (in the case of Factoring) or additively homomorphic encryption (for all
other assumptions implying NIZK). In this sense, we achieve NIZK under arguably the weakest
standard assumptions to date.

Our work thus once again proves the power of devising new ways to use combination of
assumptions. Similar effect was observed in the works [JLS21, JLS22] which constructed in-
distinguishability obfuscation leveraging the subexponential security of Bilinear Maps, together
with Minicrypt-like assumptions of PRGs in NC0 and LPN with noise probability n−δ for arbi-
trarily small constant δ > 0. There are also similar recent examples in other contexts (such as
[AY20, LLL22]).

1.3 Open Questions

We believe that our work opens up many exciting avenues for future work. First, our work mo-
tivates the study of random MQ for the design of other post-quantum advanced cryptographic
primitives (potentially in conjunction with other assumptions). Second, it is plausible that one
might be able to extend the techniques in this work to realize correlation intractability for the
class of TC0 circuits, which might lead to realizing more advanced proof systems such as BARGs
and SNARGs. Finally, we motivate studying the complexity of solving underdetermined higher-
degree equations, which has not received as much attention compared to the quadratic case.

2 Technical Overview

To obtain our NIZK constructions, we follow the paradigm for building NIZKs via Fiat-Shamir
and correlation-intractable hashing (CIH) as described in [CCH+19]. Our main technical contri-
bution is a new construction of CIH from the MQ (or more generally MPS) assumption, for a class
of functions expressive enough to give rise to NIZK. As such, we will start our technical overview
by talking about our CIH constructions, with the motivation for NIZK in mind. Next, we will
recall the NIZK template via Fiat-Shamir and CIH in [CCH+19, BKM20], and show why our CIH
is sufficient for instantiating this template. Finally, we briefly mention our lossy PKE construction
which suffices for statistical zero-knowledge.

CIH for Constant Degree Polynomials. A hash function Hash is correlation-intractable for a func-
tion classF if for any function f ∈ F , it is hard to efficiently find an input x such that Hash(hk,x) =
f(x), where the key hk is honestly generated and given to the adversary. We start by describing
how we can leverage the hardness of solving underdetermined random degree-d multivariate
equations over F2 to realize CIH for constant degree-d polynomials.

Our CIH construction is extremely simple (but only in hindsight!). To build a CIH with in-
put length n and output length m < n, we first sample m polynomials of degree d,6 denoted

6By this, we mean polynomials with terms of every degree from d to 0. We denote by Poly(n, d) the set of such
polynomials (over F2).
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P1, . . . , Pm ∈ Poly(n, d), with uniformly random coefficients, and set the CIH hash key hk =
(Pi)i∈[m]. The hash on an input x ∈ Fn

2 is simply polynomial evaluation:

Hash(hk,x) = (P1(x), . . . , Pm(x)) ∈ Fm
2 . (5)

We now sketch the proof of correlation intractability for Hash, assuming the hardness of MPSn,m,d.
For any fixed degree-d polynomial function (g1, . . . , gm), we can view the sampling of (P1, . . . , Pm)
as first sampling random degree-d polynomials (h1, . . . , hm) with uniformly random coefficients,
and then setting Pi = gi + hi for every i ∈ [m]. If an adversary breaks the correlation intractability
for (g1, . . . , gm), then it must be the case that Pi(x) = gi(x) for every i ∈ [m], or equivalently,
gi(x) + hi(x) = gi(x) for every i. However, this implies hi(x) = 0 for every i, which contradicts
the hardness of solving a random system of degree-d equations.

While the above CIH construction and proof are elegant and immediate, they suffer from the
following drawbacks:

1. First, the hardness of solving random underdetermined degree-d equations (for any d ≥ 3)
is not as well-established as that of solving quadratic equations, namely MQn,m. We would
like to build CIH for degree-d polynomials, where d may be an arbitrarily large constant,
from the hardness of MQn,m.

2. Second, CIH for constant-degree polynomials is not sufficient for obtaining NIZK. Looking
ahead, we will need to build CIH for a larger class of functions that are well-approximated by
constant-degree polynomials.

We say that a function f : Fn
2 → Fm

2 is ϵ-approximable by degree-d polynomials if there exists
some distributions G1, . . . ,Gm ⊆ Poly(n, d) such that for g1, . . . , gm independently sampled from
these distributions and for any input x, it holds that f(x)i = gi(x) for at least (1 − ϵ)-fraction of
the output length with overwhelming probability. In other words, we have

Pr [∆ (f(x), (g1(x), . . . , gm(x))) ≤ ϵm] ≤ negl(m), (6)

where ∆(·, ·) denotes the Hamming distance. We want to achieve CIH for this class of functions
that are ϵ-approximable by degree-d polynomials, for a constant ϵ > 0 that can be arbitrarily small.
We call this an approximate CI hash.

It turns out that the hash construction in Equation (5) already satisfies this notion, with a loss
in security that depends on ϵ. The idea is simple: since we know that the Hamming difference
between f(x) and (g1(x), . . . , gm(x)) is small, we may simply guess this difference, written as a
vector e ∈ Fm

2 . If our guess e is correct, then we may continue the proof strategy above with the
following modification. We now view sampling (P1, . . . , Pm) as first sampling degree-d polyno-
mials h = (h1, . . . , hm), then setting Pi = gi + hi + ei for all i ∈ [m] (with ei added to the constant
term). Violating the CI property for f now translates to having

h(x) = f(x) + g(x) + e, which is equal to 0 if our guess e is correct.

As a consequence, our reduction loses a factor Γ which is equal to the size of all possible error
vectors e ∈ Fm

2 . Since e is at most (ϵm)-sparse, this factor is Γ ∼ 2H(ϵ)m = 2Ω(m), where H(·) is the
binary entropy function. This is why we need to assume exponentially-small success probability
of breaking MPSn,m,d.
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Basing CIH from MQ. Going back to the first problem, namely that of basing degree-d (ap-
proximate) CIH solely on MQ, we may try the following degree-reduction approach via tensor-
ing. For instance, we may represent any degree-4 polynomial in x ∈ Fn

2 as a degree-2 polyno-
mial in x ⊗ x ∈ Fn2

2 . This means that we may instead hand out random degree-2 polynomials
hk = (Q1, . . . , Qm) ∈

(
Poly(n2, d)

)m as the hash key, and evaluate the hash by first tensoring x
then applying Q:

Hash(hk,x) = (Q1(x⊗ x), . . . , Qm(x⊗ x)) ∈ Fm
2 .

Using a similar argument as above, to prove CIH for a fixed degree-4 function g = (g1, . . . , gm),
we first sample random quadratic polynomials h = (h1, . . . , hm), then set Q = h + g. Breaking
correlation intractability then implies finding x such that h(x⊗x) = 0, which violates the MQn2,m

assumption.
The problem with this approach is that in order for MQn2,m to be difficult, we must have m >√

n2 = n, meaning that the hash function is no longer compressing! To get around this issue, we
need to restrict ourselves to achieving (approximate) CIH only for a suitable sub-class of constant-
degree polynomials. In this work, we consider the following sub-class of concatenated polynomials.
Our inputs x, which we think of as growing in length, are now divided into consecutive chunks
that are of a fixed length p(λ); for simplicity, assume that p(λ) = λ. Formally, we write x =
x1∥ . . . ∥xℓ ∈ Fλ·ℓ

2 , where each xi ∈ Fλ
2 , and ℓ may be chosen to be an arbitrarily large polynomial

in λ. Given x, we consider only degree-d polynomials of the form P = P1∥ . . . ∥Pℓ : Fλℓ
2 → Fℓ

2 such
that P (x) = P1(x1)∥ . . . ∥Pℓ(xℓ), and each Pj : Fλ

2 → F2 is of degree d. We denote by CPoly(ℓ, d) the
set of such ℓ-concatenated degree-d polynomials.

The tensoring approach now works with this new class of concatenated polynomials. To de-
sign an (approximate) CIH for the class CPoly(ℓ, d) (assuming d is even for simplicity), we may
sample random quadratic polynomials hk = (Q1, . . . , Qℓ) ∈ (Poly(n, 2))ℓ as the hash key, where
n = λd/2ℓ is the input length. Hashing now works as follows: given an input x = x1∥ . . . ∥xℓ ∈ Fλℓ

2 ,

Hash(hk,x) = (Q1(z), . . . , Qℓ(z)) ∈ Fm
2 , where z := x

⊗d/2
1 ∥ . . . ∥x⊗d/2ℓ .

The proof of approximate CI for this hash function is almost exactly the same as our above proof
sketch for MPSn,m,d. What is new here is that the parameters now allow for compression: we have
n = λd/2ℓ and m = ℓ. Therefore, we may assume that n1−δ < m < n for any δ > 0 for which MQn,m

is plausibly exponentially secure, and then set ℓ large enough so that the inequality happens.
A final question remains: is approximate CIH for concatenated constant-degree polynomials

sufficient for obtaining NIZK? To answer this question, we will describe the NIZK via Fiat-Shamir
and CIH template in [CCH+19, BKM20], then note how our CIH notion suffices for NIZK in this
template.

NIZK from Approximate CIH for CPoly. The starting point for prior NIZK constructions in the
CI framework is a Sigma protocol Σ for a NP-complete language L that satisfies some special
properties.7 Denoting the messages of Σ by (α, β, γ), we want the following to hold for Σ:

1. The first message α = Enc(pk,m) is an encryption of some underlying content m, with pk
part of the common reference string;

2. The challenge β ∈ {0, 1} is a bit;

7A concrete example for Σ is the Graph Hamiltonicity protocol [Blu86, FLS90].
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3. Given sk as the trapdoor, for every false instance x ̸∈ L, there exists an efficiently computable
BadChalsk that on input the first message α, outputs the unique challenge β∗ ∈ {0, 1} for
which there does not exist γ that would make the Σ-protocol’s verifier accept.

The NIZK construction now applies the Fiat-Shamir heuristic [FS87] on this Σ protocol, deriv-
ing the challenge as β = Hash(hk, α). The soundness of this construction then relies on the
hash function being correlation-intractable for an expressive enough function class that captures
the BadChalsk functions. Thus, it is crucial that BadChalsk is as simple as possible. In particular,
Brakerski-Koppula-Mour showed in [BKM20] that assuming the PKE scheme satisfies approxi-
mate linear decryption (which they instantiate from LPN), we can make the BadChalsk function
to be ϵ-approximable by constant degree-d polynomials. This is exactly the function class that we con-
structed CIH for (in our construction from MPSn,m,d)!

We now show that in fact ϵ-approximation by concatenated polynomials CPoly(ℓ, d) suffices.
This is because we can always do parallel repetition on the base NIZK protocol, which has the
effect of driving down soundness to be exponentially small. If we repeat the base protocol ℓ
times, then a proof π consists of (α1, . . . , αℓ, γ1, . . . , γℓ), and the overall bad challenge function
BadChalssk(α) → β is now a concatenation of individual bad challenge functions, i.e., we would
compute BadChalssk(α) = BadChalsk(α1)∥ . . . ∥BadChalsk(αℓ). Therefore, by
choosing ℓ to be large enough, we will be able to apply our approximate CIH construction from
MQn,m.

Achieving Statistical Zero-Knowledge. To build NIZKs with statistical zero-knowledge prop-
erty, we only need to replace the commitment scheme in the Sigma protocol mentioned above with
a lossy PKE scheme. This strategy was described in [CCH+19], and here we recall the high-level
ideas. A lossy PKE has two indistinguishable modes of public keys: normal (where decryption
can be carried out), and lossy (where the ciphertext statistically loses information about the plain-
text). Statistical zero-knowledge then follows from this statistical hiding property: we first switch
the lossy key in the CRS to a normal decryption key, then proceed as before.

To make such a strategy work, we need to rely on a lossy PKE that simultaneously has a de-
cryption procedure approximable by linear functions and an inverse-polynomial decryption error
probability. Known constructions from LPN with extremely-low noise rate O

(
log2 n

n

)
[BLSV18,

BLVW19] do not suffice, because there the decryption error is 1/2− 1/ poly(n).
Instead, we build a new lossy PKE based on a recently introduced assumption called the dense-

sparse LPN [DJ24]. On a high-level, this assumption achieves the same lossiness property as LPN
with extremely-low noise O

(
log2 n

n

)
, but at a much higher inverse-polynomial noise probability.

Once we have this assumption our constructions are structurally very similar to prior construc-
tions of lossy encryptions built from lattices [PVW08]. We refer the reader to Section 6 for details.

3 Preliminaries

Notation. Let N = {1, 2, . . . } be the natural numbers, and define [a, b] := {a, a+ 1, . . . , b}, [n] :=
[1, n]. We denote sampling from a distribution by x ← D; for a finite set S, we write x ← S
to denote uniformly sampling from S. We denote the security parameter by λ; our parameters
depend on λ, e.g. n = n(λ), and we often drop the explicit dependence. We write negl(λ) to
denote negligible functions in λ.

We abbreviate PPT for probabilistic polynomial-time. Our adversaries are non-uniform PPT
algorithms A = {Aλ}λ∈N. Two ensembles of distributions D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are

9



computationally (resp. statistically) indistinguishable, denoted D ≈c D′ (resp. D ≈s D′), if for any
non-uniform PPT (resp. unbounded) adversary A, there exists a negligible function negl such that
A can distinguish between the two distributions with probability at most negl(λ).

We denote by F a finite field, and Fq the finite field with q elements. We will use F2 interchange-
ably with the set {0, 1}. Vector and matrices are written in boldcase, e.g. v ∈ Fm

q and A ∈ Fn×m
q .

We write ∆(u,v) to denote the Hamming distance (number of different entries) between two vec-
tors u,v ∈ Fn, and write ∥v∥0 to denote the Hamming weight of v.

Bernoulli Distribution. We denote the Bernoulli distribution over a finite field Fq with noise
rate ϵ ∈ (0, 1) by Ber(Fq, ϵ); this distribution gives 0 with probability 1− ϵ, and a random non-zero
element of Fq with probability ϵ. We omit the field when it is binary (Fq = F2).

Hamming Balls. We define Ball(n, k,Fq) = {x ∈ Fn
q | ∥x∥0 ≤ k} to be the Hamming ball of

radius k, and omit the field when it is binary (Fq = F2). Note that we may uniformly sample from
Ball(n, k,Fq) in poly(n, log q) time (for instance, first choose the Hamming weight s of x according
to the right probability, then uniformly sample x of weight s).

We also define the regular (binary) Hamming ball

Ballreg(n, k) :=
{
x = x1∥ . . . ∥xk ∈ Fn

2 | xi ∈ Fn/k
2 ∧ ∥xi∥0 = 1 ∀ i ∈ [k]

}
.

There is a simple bijection between Fk log(n/k)
2 and Ballreg(n, k), which decomposes y ∈ Fk log(n/k)

2

into chunks y1∥ . . . ∥yk of length log(n/k) each, then turn each chunk into an indicator vector
ind(yk) ∈ Fn/k

2 that has 1 in the (yk)-th entry (interpreted as a number in binary), and 0 otherwise.
We call this mapping sparsification, and denote it by spfy(y) := ind(y1)∥ . . . ∥ind(yk).

Binary Entropy Function. The binary entropy function H : [0, 1] → [0, 1] is defined by H(x) :=
−x log x − (1 − x) log(1 − x). It gives an upper bound on the size of the Hamming ball, e.g.,
|Ball(n, ϵn)| ≤ 2H(ϵ)n

3.1 Probability Lemmas

Lemma 3.1 (Piling-Up Lemma). For any ϵ ∈ (0, 1), we have that

Pr

[
ℓ∑

i=1

ei = 1

∣∣∣∣∣ e1, . . . , eℓ ← Ber(ϵ)

]
=

1− (1− 2ϵ)ℓ

2
< min

(
ϵℓ,

1

2
− 2−4ϵℓ−1

)
.

Lemma 3.2 (Chernoff/Hoeffding bound). Let X1, . . . , Xn ∈ {0, 1} be i.i.d random variables with mean
at most ϵ. Then for every κ ≥ 1,

Pr[X1 + · · ·+Xn > (1 + κ)ϵn] ≤ e−2κ
2ϵn.

Definition 3.1 (Statistical Difference). Given two random variables X,Y over the same underlying finite
set U , we define their statistical difference to be

SD(X,Y ) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]|.
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Definition 3.2 (Min-entropy). For a random variable X taking range over a finite set X , we define its
average min-entropy to be

H∞(X) = − logmax
x∈X

Pr[X = x].

Given two random variables X,Y taking range over finite sets X ,Y respectively, and any y ∈ Y , we define
the conditional min-entropy of X given Y = y to be

H∞(X | Y = y) = − logmax
x∈X

Pr[X = x | Y = y].

We define the average conditional min-entropy of X given Y to be

H∞(X | Y ) = − log E
y←Y

[
max
x∈X

Pr[X = x | Y = y]

]
= − log E

y←Y

[
2−H∞(X|Y=y)

]
.

Lemma 3.3. Let X,Y be random variables where Y has range in Y . Then we have H∞(X | Y ) ≥
H∞(X)− log|Y|.

Leftover Hash Lemma. A family of hash functions {h : X → Y}h∈H is called universal if for all
x ̸= x′ ∈ X , we have Prh←H[h(x) = h(x′)] ≤ 1

|Y| . We need the following generalized leftover hash
lemma from [DRS04].

Lemma 3.4 (LHL with leakage [DRS04], restated). Assume {h : X → Y}h∈H is a universal family of
hash functions. Then for any random variables X taking range in X and Z possibly dependent on X , we
have

SD((h, h(X), Z), (h, U(Y), Z)) ≤ 1

2

√
|Y|

2H∞(X|Z)
.

3.2 Relations

Definition 3.3 (Searchable Relations). For n,m ∈ N, we say that a relation R ⊆ {0, 1}n × {0, 1}m is
searchable by a function class F = {0, 1}n → {0, 1}m ∪ ⊥ if the following two conditions are satisfied:

• It is unique-output, namely that for every x ∈ {0, 1}n there exists at most one y ∈ {0, 1}m such
that (x,y) ∈ R. We denote R : {0, 1}n → {0, 1}m ∪ ⊥ to be the unique (partial) function such that
R(x) = y if there exists y such that (x,y) ∈ R, and R(x) = ⊥ otherwise.

• For every R ∈ R, there exists a function fR ∈ F such that for all x with R(x) ̸= ⊥, we have
(x, fR(x)) ∈ R.

Definition 3.4 (Probabilistic Representation [BKM20]). Let n,m ∈ N and ϵ ∈ (0, 1). Let f : {0, 1}n →
{0, 1}m ∪ ⊥ be a function with f(x) = (f1(x), . . . , fm(x)), where fi : {0, 1}n → {0, 1} ∪ ⊥ for all
i ∈ [m]. A (bit-wise) ϵ-probabilistic representation of f by a class of functions C : {0, 1}n → {0, 1}
consists of m distributions C1, . . . ,Cm ⊆ C that satisfy the following:

∀i ∈ [m], ∀ x such that f(x) ̸= ⊥, Pr
Ci←Ci

[fi(x) = Ci(x)] > 1− ϵ.

Using Chernoff bound, we immediately get the corollary (also found in [BKM20]) that f is
(point-wise) well-approximated by C.
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Lemma 3.5. Let n = n(λ), m = m(λ), ϵ = ϵ(λ) ∈ (0, 1) be polynomial-time computable functions
in λ such that ϵm ≫ λ. Let f = {fλ : {0, 1}n(λ) → {0, 1}m(λ) ∪ ⊥}λ∈N be a function ensemble
and C = {Cλ : {0, 1}n(λ) → {0, 1}} be a function class ensemble such that for every λ ∈ N, fλ has
a ϵ-probabilistic representation by Cλ,1, . . . ,Cλ,m ⊆ Cλ. Then for all inputs x = {xλ}λ∈N such that
fλ(xλ) ̸= ⊥ for all λ ∈ N, we have

Pr
C=(Ci)mi=1←

∏m
i=1 Cλ,i

[∆ (fλ(xλ), C(xλ)) > 2ϵm] < negl(λ).

Definition 3.5 (Probabilistically Searchable Relations). A relationR is ϵ-probabilistically searchable
by a function class C if it is searchable by some function class F , and for every R ∈ R, letting fR ∈ F be
the corresponding search function, we have that fR has an ϵ-probabilistic representation by C.

3.3 Correlation Intractability

We start by defining the syntax of a hash family H = (Gen,Hash) with input length n(λ) and
output length m(λ) (we require that m < n):

• Gen(1λ)→ hk. A PPT algorithm that on input the security parameter 1λ returns a key hk.

• Hash(hk,x)→ h. A deterministic poly-time algorithm that on input a key hk and an element
x ∈ {0, 1}n(λ), returns a hash output h ∈ {0, 1}m(λ).

We now define various notions of correlation intractability forH.

Definition 3.6 (Correlation Intractability [CGH04]). A hash family H is said to be correlation in-
tractable (CI) for a relation familyR = {Rλ}λ∈N if for every PPT adversary A = {Aλ}λ∈N, there exists a
negligible function negl(λ) such that for every R ∈ Rλ,

AdvCI
H,R(A) := Pr

[
(x,H.Hash(hk,x)) ∈ R

∣∣∣∣∣ hk← H.Gen(1λ)x← Aλ(hk)

]
≤ negl(λ).

Definition 3.7 (Programmability [CCH+19]). A hash family H with input length n(λ) and output
length m(λ) is said to be programmable if there exists a PPT algorithm Sim such that the following
conditions hold for every λ ∈ N, x ∈ {0, 1}n, and h ∈ {0, 1}m:

• 1-Universality. We have

Pr
[
H.Hash(hk,x) = h

∣∣∣ hk← H.Gen(1λ)] = 2−m.

• Programmability. Sim(1λ,x, h) samples from the conditional distribution{
hk← H.Gen(1λ) | H.Hash(hk,x) = h

}
.

Definition 3.8 (CI for Approximable Relations [BKM20]). Let C = {Cλ : {0, 1}n(λ) → {0, 1}m(λ)}λ∈N
be a function class and let ϵ ∈ (0, 1). For every C ∈ C, we define the relation ϵ-approximable by C to be

Rϵ
C = {(x,y) ∈ {0, 1}n × {0, 1}m | ∆(y, C(x)) ≤ ϵm}.

A hash familyH that is CI for all relations {Rϵ
C | C ∈ C} is said to satisfy ϵ-approximate CI (CI-Apxϵ) for

C.

It is known that approximate CI for a function class C implies (exact) CI for any function class
approximable by C.

Lemma 3.6 (Theorem 4.2 in [BKM20]). Let F be a function class that has a ϵ-probabilistic representation
by C. IfH is a hash function satisfying CI-Apx2ϵ for C, thenH satisfies CI for relations searchable by F .
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3.4 Non-Interactive Zero-Knowledge

Definition 3.9 (NIZK). A non-interactive zero knowledge (NIZK) argument Π for a NP relation
R = {Rλ}λ∈N, with instance length n = n(λ) and associated NP language L = {Lλ}λ∈N, is a tuple of
three PPT algorithms NIZK = (Setup,P,V) satisfying the following properties:

• Syntax:

– Setup(1λ)→ crs. On input the security parameter 1λ, output a common reference string crs.

– P(crs, x, w) → π. On input the common reference string crs and an instance-witness pair
(x,w) ∈ Rλ with x ∈ {0, 1}n(λ), output a proof π.

– V(crs, x, π) → b. On input the common reference string crs, an instance x ∈ {0, 1}n(λ) and a
proof π, outputs a bit b indicating acceptance or rejection.

• Completeness: For every λ ∈ N and (x,w) ∈ Rλ, there exists a negligible function negl(λ) such
that

Pr

[
V(crs, x, π) = 1

∣∣∣∣∣ crs← Setup(1λ)

π ← P(crs, x, w)

]
≥ 1− negl(λ).

• Adaptive Computational Soundness: For every polynomial-size adversary P∗, there exists a neg-
ligible function negl(λ) such that

Pr

[
x ∈ {0, 1}n ∧ x ̸∈ L
∧ V(crs, x, π) = 1

∣∣∣∣∣ crs← Setup(1λ)

(x, π)← P∗(crs)

]
≤ negl(λ).

• Adaptive Computational Zero-Knowledge: There exists a stateful PPT simulator S such that for
any polynomial-size adversary A, there exists a negligible function negl(λ) such that∣∣∣Pr[RealA(1λ) = 1]− Pr[IdealS,A(1

λ) = 1]
∣∣∣ ≤ negl(λ).

Here the games are defined as follows:

RealA(1
λ):

1. crs← Setup(1λ)

2. (x,w)← A(crs)
If (x,w) /∈ Rλ, output 0.

3. π ← P(crs, x, w)

4. Output A(π)

IdealS,A(1
λ):

1. crs← S(1λ)

2. (x,w)← A(crs)
If (x,w) /∈ Rλ, output 0.

3. π ← S(crs, x)

4. Output A(π)

If the above holds for an unbounded adversary A, we say that NIZK satisfies adaptive statistical
zero-knowledge.
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3.5 Public-Key Encryption

Definition 3.10 (PKE). A public-key (bit) encryption scheme is a tuple of PPT algorithms PKE =
(Gen,Enc,Dec) with the following properties:

• Syntax:

– Gen(1λ) → (pk, sk). On input the security parameter 1λ, output a public key pk and a secret
key sk.

– Enc(pk, µ)→ ct. On input the public key pk and a message µ ∈ {0, 1}, output a ciphertext ct.

– Dec(sk, ct) → µ ∈ {0, 1} ∪ {⊥}. On input the secret key sk and the commitment ct, output a
message µ ∈ {0, 1} or failure ⊥.

• Correctness. For every λ ∈ N and (pk, td) ← Gen(1λ), there exists a negligible function negl(λ)
such that for every µ ∈ {0, 1} :

Pr
[
Dec(sk,Enc(pk, µ)) = µ

∣∣∣(pk, sk)← Gen(1λ)
]
≥ 1− negl(λ).

• Semantic Security. The following two distributions are computationally indistinguishable:{
ct← Enc(pk, 0)

∣∣ (pk, sk)← Gen(1λ)
}
≈c

{
ct← Enc(pk, 1)

∣∣ (pk, sk)← Gen(1λ)
}
.

Definition 3.11 (Lossy PKE). A public-key encryption scheme PKE is called lossy if there exists a PPT
algorithm LossyGen(1λ)→ p̃k satisfying the following:

• Statistical Hiding. The following two distributions are statistically indistinguishable:{
ct← Enc(p̃k, 0)

∣∣∣ p̃k← LossyGen(1λ)
}
≈s

{
ct← Enc(p̃k, 1)

∣∣∣ p̃k← LossyGen(1λ)
}
.

• Mode Indistinguishability. The following two distributions are computationally indistinguishable:{
pk

∣∣∣ (pk, sk)← Gen(1λ)
}
≈c

{
p̃k

∣∣∣ p̃k← LossyGen(1λ)
}
.

3.6 Commit-then-Open Protocols

We define commit-then-open Σ-protocols as in [BKM20], including properties that are sufficient
for instantiating NIZK with adaptive security. Examples of such protocols for an NP-complete
language (such as Graph Hamiltonicity) can be found in [Blu86, FLS90, CCH+19].

Definition 3.12 (Commit-then-Open). A commit-then-open Σ-protocol for an NP language L is a
public-coin, 3-message, honest-verifier zero-knowledge argument Π = (Setup,P,V) for L, relying on a
public-key encryption scheme PKE = (Gen,Enc,Dec), where the verifier’s challenge is a single bit c ∈
{0, 1}, and with the following requirements:

• Auxiliary Algorithms. There exists four PPT algorithms with the following syntax:

– Setup′(1λ, pk) → crs′. On input the security parameter 1λ and encryption key pk, outputs
auxiliary common reference string crs′.

– P1(crs, x, w) → (a′, π, st′). On input crs, and instance x, and witness w, outputs auxiliary
information a′, underlying proof string to be encrypted π ∈ {0, 1}ℓ, and state st′.
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– P′(crs, x, w, st′)→ I. Takes input crs, x, w, st as above, and outputs a subset I ⊆ [ℓ].
– V′(crs, x, (I, πI))→ b. Takes as input crs, x, I ⊆ [ℓ] as above, together with the proof substring

πI , and returns a bit b ∈ {0, 1}.

• Format. The protocol is of the following form:

– Setup(1λ)→ crs. Sample a public key (pk, sk)← PKE.Gen(1λ) and possibly additional output
crs′ ← Setup′(1λ, pk), and return crs = (crs′, pk).

– P(crs, x, w) → (a, st). The prover computes (a′, π, st′) ← P1(crs, x, w), then encrypts ct ←
PKE.Enc(pk, π; r). It sets the first message to be a = (a′, ct), and sets its state as st =
(π, st′, r).

– P(crs, x, w, st, c) → z. Upon receiving a random challenge c ∈ {0, 1}, if c = 1, the prover
computes the opening slots I ← P′(crs, x, w, st′), then retrieves the proof substring πI along
with the associated encryption randomness rI . It sets the third message to be z = (I, πI , rI).
There is no restriction for c = 0.

– V(crs, x, a, c, z) → b ∈ {0, 1}. Upon receiving all messages, if c = 1, the verifier checks that
the encryptions are correct ctI = Enc(pk, πI ; rI), runs the auxiliary verification procedure
b← V′(crs, x, (I, πI)), then outputs b. There is no restriction for c = 0.

We define the following properties for Π:

• Instance-Universal. The bad challenge relation

Rcrs := {(a, c) | ∃ x ̸∈ L and z such that V(crs, x, a, c, z) = 1}

is unique-output (Definition 3.3), and the computation of P′ and V′ are independent of x,w, and the
prover’s state st′.

• Unique Bad Challenge. Given that Π is instance-universal, we require that the bad challenge rela-
tion

Rcrs := {(a, c) | ∃ x ̸∈ L and z such that V(crs, x, a, c, z) = 1}

is searchable by the function BadChalsk(a) (where sk is generated during Setup) that is of the follow-
ing form:

1. Parse a = (a′, ct), then compute PKE.Dec(sk, ct)→ π ∈ {0, 1,⊥}∗.
2. If π ∈ {0, 1}∗, then compute P′(crs)→ I and V′(crs, (I, πI))→ b, and return 1 if b = 1.
3. Else return 0.

• Delayed-Input. The computation of P1 is independent of the instance x and witness w.

• 3CNF Verification. The verification procedure V′(crs, x, (I, πI)) is the evaluation of a 3CNF formula
on (I, πI).

We now recall the transformation in [BKM20] that takes in a commit-then-open Σ-protocol and
turn it into a related protocol Π̃ with 3CNF verification.8

8At a high level, the transformation uses a Cook-Levin reduction to turn Ccrs,x(I, πI) := V′(crs, x, (I, πI)) into a
3CNF formula Φcrs,x, such that Ccrs,x(I, πI) = 1 if and only if there exists a witness w so that Φcrs,x(I, πI , w) = 1. The
prover of Π̃ would compute this witness w and send its commitment in the first round, opening the commitment if the
challenge is c = 1.
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Lemma 3.7 (Implicit in Theorem 3.16 of [BKM20]). Let Π be a commit-then-open Σ-protocol for a
language L. Then there exists an efficient transformation of Π into a new commit-then-open Σ-protocol Π̃
for the same language L, but with 3CNF verification. The transformation preserves the instance-universal,
unique bad challenge, and delayed-input properties.

4 Assumptions

4.1 Multivariate Cryptography

Notation. Let m,n, d ∈ N and F be a finite field. For a tuple of degrees α⃗ = (α1, . . . , αn) ∈ Nn

and a vector x = (x1, . . . , xn) ∈ Fn, we write xα⃗ :=
∏n

i=1 x
αi
i ∈ F. We also define |α⃗| :=

∑n
i=1 αi

to be the (total) degree of α⃗. A polynomial system P of degree (at most) d over F, with n variables
and m equations, is a tuple((

pj,α⃗
)
|α⃗|=d

, . . . ,
(
pj,α⃗

)
|α⃗|=1

, pj,0

)
j∈[m]

∈
(
F(

n+d−1
d ) × · · · × Fn × F

)m
.

More compactly, we may write

P =
(
pj,α⃗

)
|α⃗|≤d,j∈[m]

∈ Poly(n,m, d,F) :=
(
F(

n+d
d )

)m
.

We may evaluate the system on any input x ∈ Fn, giving output P(x) ∈ Fm. We say that x is a
solution to P if P(x) = 0, or more explicitly:

∑
|α⃗|≤d p1,α⃗ · xα⃗ = 0,
...∑

|α⃗|≤d pm,α⃗ · xα⃗ = 0.

The central assumption in multivariate cryptography is that it is difficult to solve a random system
of polynomial equations. In this work, we also consider the problem of approximately solving a
system of polynomial equations, where a solution only needs to satisfy some (1− ϵ)-fraction of all
equations. We will state the most general assumption of this form and say how it specializes to
other assumptions that are more well-studied in the literature.

Definition 4.1 ((Approximate) Multivariate Polynomial Solving). Let d ≥ 2 be a constant, F be a
finite field, ϵ = ϵ(λ) ∈ [0, 1) be the error rate, and n = n(λ), m = m(λ) be polynomials in λ. We say that
the approximate multivariate polynomial solving assumption Apx-MPSn,m,d,ϵ,F is (T (λ), δ(λ))-hard
if for every adversary A running in time at most T , the following holds for every λ ∈ N:

AdvApx-MPS
n,m,d,ϵ,F(A) := Pr

[
∆(P(x),0) ≤ ϵm

∣∣∣∣∣ P ← Poly(n,m, d,F)
x← A(P)

]
≤ δ(λ).

When ϵ = 0, we get the multivariate polynomial solving assumption MPSn,m,d,F. When d = 2 and
F = F2, we get the approximate multivariate quadratics assumption Apx-MQn,m,ϵ, and furthermore
when ϵ = 0, we get the multivariate quadratics assumption MQn,m.

In our applications, we will work in the underdetermined regime of MPS or MQ, where n≫ m.
In this regime, as long as n is sufficiently larger than m, the image of a random system of polyno-
mial equations would be relatively “well-spread”, and hence a solution exists with overwhelming
probability.
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Lemma 4.1. Let n,m, d ∈ N and F = Fq be a finite field. When n > 5m, over the random choice of
P ← Poly(n,m, d,F), the system of equations P(x) = t has a solution x ∈ Fn for every t ∈ Fm with
probability at least 1− q−m.

Proof. We define the d-th symmetric tensor product of a vector x ∈ Fn as Symd(x) =
(
xα⃗

)
|α⃗|=d

∈

F(
n+d−1

d ). Define Sym≤d(x) = (Symd(x), . . . ,Sym2(x),x, 1). For any t ∈ Fm (expressed as a row
vector), we can rewrite the system of equations P(x) = t as a vector-matrix multiplication:

Sym≤d(x) ·Mat(P) = t, where Mat(P) :=
(
(p1,α⃗)

⊤
|α⃗|≤d ∥ . . . ∥ (pm,α⃗)

⊤
|α⃗|≤d

)
.

Note that the mapping x 7→ Sym≤d(x) is an injection, hence we have that H∞(Sym≤d(x)) =
H∞(x) = n log q > 5m log q. Since the coefficients of P are chosen randomly, we can apply the
Leftover Hash Lemma to get that (for uniformly random u← Fm):

E
P
[SD(P(x),u)] = SD

((
P,Sym≤d(x) ·Mat(P)

)
, (P,u)

)
≤ q−2m.

If the equation Sym≤d(x) ·Mat(P) = t have no solution for some t ∈ Fm, then

SD(P(x),u) =
∑
u∈Fm

∣∣∣∣ Pr
x←Fm

[
Sym≤d(x) ·Mat(P) = u

]
− q−m

∣∣∣∣ ≥ q−m,

since one of the probabilities (for u = t) will be 0. This cannot happen except for at most q−m

fraction of P , which gives the desired conclusion.

We now provide a reduction from the exact problem MPSn,m,d,F2 to the approximate problem
Apx-MPSn,m,d,ϵ,F2 , with a loss in success probability that is exponential in m (assuming ϵ > 0 is
a constant). We give this reduction in the case of the binary field, though it also generalizes to
arbitrary finite field Fq (where the reduction loss additionally depends on q).

Lemma 4.2. For every adversary A running in time T against Apx-MPSn,m,d,ϵ,F2 , there exists an adver-
sary B running in time T ′ ≈ T against MPSn,m,d,F2 such that

AdvApx-MPS
n,m,d,ϵ,F2

(A) ≤ 2H(ϵ)m ·AdvMPS
n,m,d,F2

(B).

In particular, for a constant ϵ > 0 and every T = poly(λ), if MPSn,m,d,F2 is
(
T, 2−H(ϵ)m · negl(m)

)
-hard,

then Apx-MPSn,m,d,ϵ,F2 is (T ′, negl(m))-hard, where T ′ = T + p(λ) for some fixed polynomial p.

Proof. From an adversary A, we build the adversary B as follows:

1. B receives the MPS instance P ← Poly(n,m, d,F2) and samples a noise vector e← Ball(m, ϵm).9

2. B runs A on the MPS instance P ′ := P + e (where addition occurs at the constant terms,
i.e., P ′(x) = P(x) + e for all x), and receives A’s output x′.

3. B returns x′.

Note that B runs in almost the same time asA, plus the sampling of e. From the description of B, it
is clear that B wins MPSn,m,d,F2 , meaning that P(x′) = 0, if both of the following events happen:

9Recall that uniform sampling from a Hamming ball is possible in polynomial time (See Section 3).
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• A wins Apx-MPSn,m,d,ϵ,F2 , meaning there exists some e′ ∈ Fm
2 such that P ′(x′) = e′ and

∥e′∥0 ≤ ϵm,

• B correctly guesses e = e′.

We note that these events are independent. This is because e is independently sampled from P ,
and conditioned on any fixed e we still have that P ′ is uniformly random over the randomness
of P . The first event has probability exactly AdvApx-MPS

n,m,d,ϵ,F2
(A). We can calculate the probability of

the second event using the following simple result.

Claim 4.1. Let X be a finite set, D be an arbitrary distribution on X , and UX be the uniform distribution
from X . Then Pr[x = y | x← D, y ← UX ] = 1

|X| .

Proof. We have

Pr[x = y | x← D, y ← UX ] =
1

|X|
∑
y∈X

Pr[x = y | x← D] = 1

|X|
.

Using the claim with D being the distribution of e′ generated by A (conditioned on the event
that A wins Apx-MPS), it follows that the second event happens with probability 1

|Ball(m,ϵm)| ≥
1

2H(ϵ)m . The conclusion follows since

AdvMPS
n,m,d,F2

(B) ≥ AdvApx-MPS
n,m,d,ϵ,F2

(A) · 1

2H(ϵ)m
.

Security of MQ and MPS. We now summarize the best known algorithms for solving underdeter-
mined constant-degree systems of equations, and explain why MQn,m and MPSn,m,d are plausibly
(poly(m), 2−Ω(m))-secure for our parameter regime:

1. For quadratic equations, the best known attack over an arbitrary field Fq is by Cheng, Hashimoto,
Miura, and Takagi [CHMT14], improving over a sequence of prior works [MHT13, TW12,
CGMT02, KPG99]. These attacks have time complexity 2Ω(m−n/m); in other words, they run
in polynomial time when m = Θ(

√
n), and exponential time once m = n1/2+δ for any con-

stant 0 < δ < 1/2. As MQn,m is a “natural” problem, we expect that (2Ω(m), negl(m))-security
should translate to (poly(m), 2−Ω(m))-security, following our discussion after Theorem 1.1.

2. The threshold m = ω(
√
n) also seems to hold for higher-degree equations, for the (intuitive)

reason that they should be harder to solve than quadratic ones.10 However, we do not know
of any reference for the complexity of solving MPSn,m,d for general values of m ≪ n, and
leave the task of determining the threshold τ ∈ (0, 1) at which MPSn,O(nτ ),d is polynomial-
time solvable to future work.

10Assuming we have a worst-case algorithm for solving (say) cubic equations, then it will also solve quadratic equa-
tions as a subclass. However, it is more tricky when considering average-case algorithms, since the distribution of
random cubic equations is different from the distribution of random quadratic ones.
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4.2 Learning Parity with Noise

Definition 4.2 (Decisional LPN). Let F be a finite field, and n = n(λ), m = m(λ), ϵ = ϵ(λ) ∈
(0, 1) be polynomial-time computable functions in λ. Given an efficiently sampleable distribution M =
M(n,m,F) over matrices in Fn×m, we say that the LPNn,m,M,ϵ,F assumption is (T (λ), δ(λ))-hard if for
every adversary A running in time at most T , the following holds for every λ ∈ N:

AdvLPN
n,m,M,ϵ,F(A) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b = 1

∣∣∣∣∣∣∣∣∣∣
A←M

s← F1×n

e← Ber(F, ϵ)1×m

b← A(A, sA+ e)

− Pr

b = 1

∣∣∣∣∣∣∣
A←M

u← F1×m

b← A(A,u)


∣∣∣∣∣∣∣∣∣∣
≤ δ.

We say that LPNn,m,M,ϵ,F is (polynomially) hard if it is (poly(λ), negl(λ))-hard. When F = F2 andM is
the uniform distribution over matrices in Fn×m

2 , we say that this is the LPNn,m,ϵ assumption [BFKL94].

Security of LPN. We summarize the best known attacks against LPNn,m,ϵ. While there have been
multiple attack strategies against LPN over the years (see [BCGI18, BCG+20] for a survey of at-
tacks), these attacks can all be captured by the linear test framework (see e.g. [CRR21] for a formal
statement, though this observation goes back to at least [MST03]). As a consequence, their time
complexity in solving LPN with error ϵ = o(1) is at least 2Õ(ϵn). In particular, this means that
LPNn,m,ϵ is plausibly polynomially secure for m = poly(n) and ϵ = 1/n0.5+δ for any 0 < δ < 1/2.
This is the parameter regime required for the PKE construction in [BKM20] that suffices for build-
ing NIZK in Theorem 5.3.

We now define the Dense-Sparse LPN assumption with a different distribution of A, as in-
troduced in [DJ24]. Before introducing the assumption, however, we first discuss a technicality
regarding sampling sparse matrix M that has no constant-weight vectors in its kernel with over-
whelming probability.

Definition 4.3 (Good Distributions of Sparse Matrices). For every n ∈ N, k = k(n), m = m(n) <
nk/2 and d = ω(1), define

SpMat(n,m, k, d) =

{
M ∈ SpMat(n,m, k)

∣∣∣∣∣ ∀x ∈ Fm
2 such that Mx = 0,

we have x = 0 or ∥x∥0 ≥ d

}

to be the subset of SpMat(n,m, k) consisting of matrices with dual distance of at least d. We say that
an efficiently sampleable distributionMsp over SpMat(n,m, k) is (d, δ)-good ifMsp has min-entropy at
least nc for some constant c, and furthermore,

Pr[M ̸∈ SpMat(n,m, k, d) |M←Msp] ≤ δ.

We say thatMsp is good if it is (d, δ)-good for some d = ω(1) and δ = negl(n).

Random sampling of k-sparse matrices A ← SpMat(n,m, k) do not give a good distribution
(for any constant k), because the probability of getting a good matrix is only 1− 1/ poly(n). How-
ever, there exists other instantiations of a good distribution of sparse matrices, which can be used
for our constructions.

Theorem 4.1 (Theorem 7.18 [AK19], adapted). For every even k ≥ 6, every 1 < c < k/4 with
γ = k−4c, there exists an efficiently computable,

(
O(nδ), negl(n)

)
-good distribution over SpMat(n,m, k),

where m = nc and δ = k−4c−γ
k−γ−4 . We call this the AK19 distribution.
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Definition 4.4 (Dense-Sparse LPN). Let k ∈ N, k ≥ 3 be a constant, and let n = n(λ), m = m(λ) <
nk/2, and ϵ = ϵ(λ) ∈ (0, 1) be polynomial-time computable functions of λ. LetMsp be a good distribu-
tion over SpMat(n,m, k). We define the Dense-Sparse LPN assumption DS-LPNn,m,k,Msp,ϵ to be the
LPNn,m,M,ϵ,F2 assumption for the following distribution of matricesM:

M = {T ·M | T← Fn/2×n
2 ,M←Msp}.

In other words, the assumption states that the following two distributions are computationally indistin-
guishable:

{(A, sA+ e)}n∈N ≈c {(A,u)}n∈N,

where T← Fn/2×n
2 , M←Msp, A = T ·M, s← F1×n/2

2 , e← Ber(ϵ)1×m, and u← Fm
2 .

In particular, we will use Dense-Sparse LPN in its compression regime as defined in [DJ24].

Definition 4.5 (Compression Regime of Dense-Sparse LPN). Let k ∈ N, k ≥ 3 and D > 1 be con-
stants. Define δ(4.5)(k,D) := 1 − k/2−1

Dk−1 . For any constant δ ∈ (δ(4.5)(k,D), 1), we define the (D, δ)-
compression regime of Dense-Sparse LPN to be the regime where m ≥ n1+(Dk−1)(1−δ).

This compression regime satisfies the following property. Let t = nδ. Consider the hash func-
tion

fA : Ballreg(m, t)→ Fn/2
2 defined by fA(x) = A · x,

where A = TM is drawn from the DS-LPNn,m,k,Msp,ϵ distribution. If the number of samples m is
in the (D, δ)-compression regime, then fA achieves output size compression with ratio D, e.g.,

|Ballreg(m, t)| = 2t log(m/t) > (|Ball(n, kt)|)D ≥ (|f(Ballreg(m, t))|)D .

Security of Dense-Sparse LPN. We summarize the security of Dense-Sparse LPN according to [DJ24].
For DS-LPNn,m,k,Msp,ϵ with n < m < nk/2, andMsp being any good distribution, the best attacks

run in subexponential time that is min
(
2Õ(ϵn), 2Õ(ñ)

)
, where ñ = n

(
n
m

) 1
k/2−1 . Roughly speaking,

the first asymptotic comes from generic attacks against LPN (see “Security of LPN” above), and
the second asymptotic comes from finding cycles of size ñ in A = TM, which exist with high
probability and can be used to break Dense-Sparse LPN.

In particular, Dense-Sparse LPN is plausibly polynomially secure for any m = nk/2−ρ and
ϵ = 1/nτ , for any ρ > 0 and τ ∈ (0, 1). This in particular is the parameter regime required for our
lossy PKE construction in Section 6.

5 NIZK and CI Hash Constructions

In this section, we present our constructions of correlation-intractable hashing (Section 5.1) and
NIZK arguments (Section 5.2).
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Parameters. Let d ≥ 2 be the degree, ϵ ∈ [0, 1/2) be the approximation error, n be the input
length, and m = n1−ρ be the output length for any ρ ∈ (0, 1/2).

Construction. We defineH = (Gen,Hash) as follows.

• Gen(1λ)→ hk. Return hk := P ← Poly(n,m, d,F2).

• Hash(hk,x)→ h. On input x ∈ Fn
2 , return h := P(x) ∈ Fm

2 .

Figure 2: Correlation-intractable hashing from MPS for functions ϵ-approximable by constant-
degree polynomials

5.1 Correlation Intractability from Approximate MPS

First, we construct correlation-intractable hashing for functions approximable by constant-degree
polynomials (or by a NIZK-friendly suitable subclass). Our first construction works for approx-
imate degree-d polynomials assuming the exponential hardness of solving degree-d polynomial
equations, or more generally, the polynomial hardness of approximately solving degree-d equa-
tions.

Theorem 5.1. Let d ≥ 2, 0 ≤ ϵ < 1/2, 0 < ρ < 1/2 be constants such that for every polynomial n = n(λ)
and m(λ) = n(λ)1−ρ, either

• MPSn,m,d,F2 is
(
poly(m), 2−H(ϵ)m · negl(m)

)
-hard, or

• Apx-MPSn,m,d,ϵ,F2 is (poly(m), negl(m))-hard.

Then Figure 2 gives a construction of correlation-intractible hashing for all functions ϵ
2 -approximable by

degree-d polynomials. In particular, when ϵ = 0, Figure 2 gives a hash function that is CI for degree-d
polynomials assuming MPSn,n1−ρ is (poly(m), negl(m))-hard.

Proof. From Lemma 3.6, it suffices to show that the hash function H in Figure 2 satisfies CI-Apxϵ
for the function class Poly(n,m, d,F2) of degree-d polynomials. Since the former assumption (ex-
ponential hardness of MPS) implies the latter assumption (polynomial hardness of Apx-MPS) by
Lemma 4.2, we only need to show CI-Apxϵ based on the polynomial hardness of Apx-MPSn,m,d,ϵ,F2 .

Recall that H satisfies CI-Apxϵ for the function class Poly(n,m, d,F2) if it satisfies CI for every
relation of the form

Rϵ
C = {(x,y) ∈ {0, 1}n × {0, 1}m | ∆(y,C (x)) ≤ ϵm},

for every C ∈ Poly(n,m, d,F2). Fix such a polynomial tuple C . We will show that for every
A in the CI game for relation Rϵ

C , there exists an adversary B (nearly as efficient as A) in the
Apx-MPSn,m,d,ϵ,F2 game such that

AdvCI
H,Rϵ

C
(A) ≤ AdvApx-MPS

n,m,d,ϵ,F2
(B).

This claim would finish the proof. The adversary B works as follows:

1. B receives input P from the Apx-MPS game, and runs Awith hash key hk := P + C .

2. B receives output x from A and returns x.
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Note that the hash key hk is uniformly distributed by the uniform distribution of P , which is
guaranteed by the Apx-MPS game. It suffices to show that B wins the Apx-MPS game wheneverA
wins the CI game. Indeed, if the latter happens, then (x,H.Hash(hk,x)) ∈ Rϵ

C , which is equivalent
to ∆((P + C )(x),C (x)) ≤ ϵm, and this is equivalent to ∆(P(x),0) ≤ ϵm, meaning that B wins.

Our second construction is based on the exponential hardness of MQ, which is more well-
studied in the literature than the general constant-degree version MPS, with the tradeoff that to
guarantee compression, we can only support a subclass of constant-degree polynomials that we
define below. In Section 5.2, we show that this subclass is expressive enough to obtain NIZK,
along with a public-key encryption scheme having approximate linear decryption.

Definition 5.1 (Concatenated Constant-Degree Polynomials). For any constant degree d ≥ 1, indi-
vidual input length n, individual output length m, and number of concatenation ℓ, we define the class
CPoly(n,m, d, ℓ,F2) of ℓ-concatenated degree-d polynomials to be

CPoly(n,m, d, ℓ,F2) := {(P1∥ . . . ∥Pℓ) |Pi ∈ Poly(n,m, d,F2) ∀ i ∈ [ℓ]} ,

with the notation that (P1∥ . . . ∥Pℓ)(x) = P1(x1)∥ . . . ∥Pℓ(xℓ) ∈ Fmℓ
2 for every x = x1∥ . . . ∥xℓ ∈ Fnℓ

2

with xi ∈ Fn
2 for all i. Here ∥ denotes string concatenation.

The key property we use for ℓ-concatenated degree-d polynomials is that they can be linearized
with an input size blowup that is independent of ℓ, simply by linearizing each concatenated term.
In other words, given P = (P1∥ . . . ∥Pℓ) ∈ CPoly(n,m, d, ℓ,F2), there exists a linear form L :

F(
n+d
d )ℓ

2 → Fmℓ
2 such that for every x1, . . . ,xℓ ∈ Fn

2 , we have

L
(
Sym≤d(x1)∥ . . . ∥Sym≤d(xℓ)

)
= P (x1∥ . . . ∥xℓ) .

This linear form is obtained by concatenating the linearization of each polynomial. Namely, if
P = P1∥ . . . ∥Pℓ, and each Pi =

(
pi,j,α⃗

)
j∈[m],|α⃗|≤d, then we simply define L = L1∥ . . . ∥Lℓ

where Li =
((

pi,j,α⃗
)
0<|α⃗|≤d , pi,j,0

)
j∈[m]

is a linear form.

Theorem 5.2. Let d ≥ 2, 0 ≤ ϵ < 1/2, 0 < ρ < 1/2 be constants such that either of the following happens
for every polynomial n(λ) and every n(λ)1−ρ < m(λ) < n(λ):

• MQn,m is
(
poly(m), 2−H(ϵ)m · negl(m)

)
-hard, or

• Apx-MQn,m,ϵ is (poly(m), negl(m))-hard.

Then for every m̃ and ñ > m̃ that are polynomials in λ, Figure 3 gives a construction of a correlation-
intractible hashH for all functions ϵ

2 -approximable by the class CPoly(ñ, m̃, d, ℓ,F2) for every large enough
ℓ (as determined in Figure 3). Furthermore,H satisfies programmability.

Proof. First, note that programmability holds since the constant part of hk = Q is chosen uniformly
at random. Similar to the proof of Theorem 5.1, we may assume the polynomial hardness of
Apx-MQn,m,ϵ (by Lemma 4.2), and we only need to show that H satisfies CI-Apxϵ for the class
CPoly(ñ, m̃, d, ℓ,F2) (by Lemma 3.6).

Fix some C ∈ CPoly(ñ, m̃, d, ℓ,F2). We will show that H satisfies CI for the relation Rϵ
C . Let

A be an adversary in the corresponding CI game. We will construct an adversary B (nearly as
efficient as A) in the Apx-MQn,m,ϵ game, where n =

(
ñ+d
d

)
ℓ and m = m̃ℓ, such that

AdvCI
H,Rϵ

C
(A) ≤ AdvApx-MQ

n,m,ϵ (B).

The adversary B works as follows:
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Parameters.

• Let d ≥ 2 be the degree, ϵ ∈ [0, 1/2) be the approximation error, and ρ ∈ (0, 1/2) be such
that Apx-MQn,m,ϵ is polynomially-hard for every polynomial n(λ) and every n1−ρ <
m < n.

• Let m̃ and ñ > m̃ be polynomials in λ. Choose ℓ >
(
ñ+d
d

) 1−ρ
ρ m̃

− 1
ρ large enough so that((

ñ+d
d

)
ℓ
)1−ρ

< m̃ℓ.

Construction. We defineH = (Gen,Hash) as follows.

• Gen(1λ)→ hk. Return hk := Q ← Poly
((

ñ+d
d

)
ℓ, m̃ ℓ, 2,F2

)
.

• Hash(hk,x) → h. On input x ∈ Fñℓ
2 , decompose it as x = x1∥ . . . ∥xℓ where xi ∈ Fñ

2 for
all i ∈ [ℓ].

Return h := Q
(
Sym≤d(x1)∥ . . . ∥Sym≤d(xℓ)

)
∈ Fm̃ℓ

2 .

Figure 3: Correlation-intractable hashing from MQ for functions ϵ-approximable by concatenated
constant-degree polynomials

1. B receives input Q ← Poly(n,m, 2,F2) from the Apx-MQ game.

2. B constructs the linearized polynomial L : F(
ñ+d
d )ℓ

2 → Fm̃ℓ
2 corresponding to C (following

the discussion after Definition 5.1).

3. B runs A on the hash key hk := Q + L .

4. B receives output x ∈ Fñℓ
2 from A, parses x = x1∥ . . . ∥xℓ where xi ∈ Fñ

2 for all i ∈ [ℓ], and
returns x̃ = Sym≤d(x1)∥ . . . ∥Sym≤d(xℓ).

Note that the hash key hk is randomly distributed since Q is. It remains to show that B wins
whenever A wins. Indeed, if A wins then we have that ∆(H.Hash(hk,x),C (x)) ≤ ϵm, which is
equivalent to

∆
(
(Q + L )

(
Sym≤d(x1)∥ . . . ∥Sym≤d(xℓ)

)
,C (x)

)
≤ ϵm.

Since L is the linearized polynomial corresponding to C , we have that
L

(
Sym≤d(x1)∥ . . . ∥Sym≤d(xℓ)

)
= C (x). Hence the above is equivalent to

∆
(
Q

(
Sym≤d(x1)∥ . . . ∥Sym≤d(xℓ)

)
,0

)
≤ ϵm,

which implies that B wins in the Apx-MQ game.

5.2 NIZK Constructions

We now show that our CI hash functions in Section 5.1 suffice for achieving NIZK, together with a
public-key encryption scheme satisfying approximate linear decryption. In particular, we explain
how the framework of Brakerski-Koppula-Mour [BKM20] for building NIZK can accommodate
the CI hash constructed in Theorem 5.2.
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Theorem 5.3. There exists NIZK for NP with adaptive computational soundness and adaptive computa-
tional zero-knowledge, assuming the following:

(a) For every polynomial p(λ) and some large enough constant d ∈ N, there exists a public-key encryption
scheme PKE where the decryption function Dec(td, ·) has a 1

p(λ) -probabilistic representation by d-
degree polynomials;

(b) For some large enough constant d′, small enough constant ϵ > 0, and polynomial n = n(λ), there
exists some large enough polynomial ℓ(λ) and a programmable CI hash function H for relations ϵ-
probabilistically searchable by the class CPoly(n, 1, d′, ℓ,F2) of ℓ-concatenated degree-d′ polynomials.

Furthermore, we achieve NIZK with non-adaptive computational soundness and adaptive statistical zero-
knowledge for NP under the conditions above and

(c) The public-key encryption scheme PKE in part (a) is lossy.

Since our statement is different from the corresponding result from [BKM20, Corollary 3.16],
we will sketch how their framework gives rise to Theorem 5.3. To do so, we recall the NIZK
construction at a high level in Figure 4. From Figure 4, it is clear that the bad challenge function
BadChal has the following properties:

1. It is the concatenation of the bad challenge function BadChal
(i)
td for each execution i ∈ [ℓ] of the

parallel-repeated protocol. That is, we have
BadChaltd(a) = BadChal

(1)
td (a1)∥ . . . ∥BadChal(ℓ)td (aℓ).

2. Therefore, if each BadChal
(i)
td has a ϵ-probabilistic representation by constant-degree polyno-

mials, then BadChaltd has a ϵ-probabilistic representation by ℓ-concatenated constant-degree
polynomials. Note that this is the case if the encryption scheme PKE satisfies condition (a)
of Theorem 5.3.

Therefore, as long as we set the number of repetitions ℓ to be large enough so that the CI hash from
Theorem 5.2 achieves compression, then the hash function satisfies condition (b) of Theorem 5.3.
Finally, the fact that condition (c) implies statistical zero-knowledge follows from [CCH+19, The-
orem 5.5].

Putting everything together, we derive our NIZK constructions. First, we get NIZK from LPN
and MQ using [BKM20, Theorem 6.1] and our Theorem 5.2.

Corollary 5.1. There exists NIZK for NP in the common random string model, with adaptive computa-
tional soundness and adaptive computational zero-knowledge, under the following assumptions:

1. For some δ ∈ (0, 1/2) and polynomial p, LPNn,m,ϵ with m = p(n) and ϵ = n−0.5−δ is (poly(λ), negl(λ))-
hard, and

2. For some ρ ∈ (0, 1/2) and τ ∈ (0, 1), MQn,m with m = n1−ρ is (poly(λ), 2−τm)-hard.

Proof. It suffices to show how the conditions of the corollary can enable constructions of NIZK
according to prior results. We choose parameters as follows:

• Choose ξ such that H(2ξ) = τ/2. This will guarantee that the MQ-based hash will be CI for
functions ξ-approximable by concatenated constant-degree polynomials (see 5.2).

• Choose d such that 2−d < ξ/2. This will be the degree of the constant-degree approximation
of the 3CNF verification predicate.
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Ingredients.

• Let PKE be a (lossy) public-key encryption scheme.

• Let Π be a commit-then-open Σ-protocol for an NP-complete language L, using PKE
for encrypting the first round’s message, satisfying instance-universality, delayed-input,
3CNF verification, and unique bad challenge, with BadChaltd be the bad challenge func-
tion (See Section 3.6). Denote the transcript for one execution of Π by (a, c, z), where
c ∈ {0, 1}.

• LetH be a CI hash for the class of bad challenge functions BadChaltd.

Construction.

• Setup(1λ) → (crs, td). Sample hk ← H.Gen(1λ). For statistical zero-knowledge, sample
pk← PKE.LossyGen(1λ). Else sample (pk, sk)← PKE.Gen(1λ). Return crs = (pk, hk) and
td = sk.

• P(crs, x, w) → π = (a, z). Parse (x,w) as an instance-witness pair for Π. Do a parallel
repetition of Π for ℓ = poly(λ) times, giving prover’s messages (a, z), and where the
challenges are derived via c← H.Hash(hk,a).

• V(crs, x, π) → b. Parse π = (a, z), and check π according to Π’s verifier, with challenges
derived via c← H.Hash(hk,a).

• BadChaltd(a) → c. For each i ∈ [ℓ], compute ci ← BadChaltd(ai). Concatenate the bad
challenges to form c ∈ Fℓ

2.

Figure 4: Template for NIZK from correlation intractability [CCH+19, BKM20]. The purple parts
denote modifications for achieving statistical zero-knowledge.

• Let n be the length of the proof string π to be encrypted by P . Choose n1 large enough so
that the linear-approximate PKE scheme in [BKM20, Construction 6.1] has decryption error
1/nδ

1 < ξ/(2n). This guarantees that when decrypting all encrypted bits of π, the correctness
error is less than ξ/2.

• Combining the above two settings of d and n1, together with [BKM20, Theorem 3.15], gives
a ξ-approximate degree-d′ representation of the BadChaltd function, for some constant d′.

• Finally, choose the repetition parameter ℓ large enough so that the MQ-based hash will hash
inputs of length ℓ

(
n1+d′

d′

)
= ℓ1−ρ to ℓ bits.

From this choice of parameters, we can see that our PKE scheme and CI hash satisfies the condi-
tions of 5.3, which finishes the corollary.

Second, we get NIZK with statistical zero-knowledge from Dense-Sparse LPN and MQ, using
Theorem 6.1, Theorem 5.2, and a similar parameter instantiation as in 5.1.

Corollary 5.2. There exists NIZK for NP in the common reference string model, with non-adaptive com-
putational soundness and adaptive statistical zero-knowledge, under the following assumptions:
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1. For parameters n,m, k,Msp, ϵ defined in Figure 5, DS-LPNn,m,k,Msp,ϵ is
(poly(λ), negl(λ))-hard, and

2. For some ρ ∈ (0, 1/2) and τ ∈ (0, 1), MQn,m with m = n1−ρ is (poly(λ), 2−τm)-hard.

Remark 5.1. We briefly explain why our NIZK in Corollary 5.1 is in the common random string.
The hash key for our CI hash from MQ (Theorem 5.2) is uniformly random. For the PKE scheme
from LPN [BKM20], the public key is of the form (A,B), where B = SA+ E is not close to being
randomly distributed. However, we can circumvent this issue and have a random public key by
just sampling B uniformly at random. In the security proof, we switch to B = SA+E in the first
hybrid, which is indistinguishable due to the LPNn,m,ϵ assumption.

6 Lossy PKE from Dense-Sparse LPN

In this section, we describe a lossy public-key encryption scheme from the Dense-Sparse LPN
assumption (Definition 4.4), whose decryption function is 1/ poly(λ)-approximable by a linear
function. Our parameters for this lossy PKE scheme is in a similar regime to that enabling lossy
trapdoor functions in [DJ24].

Theorem 6.1. Let p(λ) be an arbitrarily large polynomial. Assume that the DS-LPNn,m,k,Msp,ϵ assumption
is (polynomially) secure with parameters as defined in Figure 5). Then Figure 5 gives a construction of a
lossy PKE scheme such that the decryption function has a 1/p(λ)-probabilistic representation by linear
forms.

Proof. We establish the desired properties of the construction one-by-one.

Mode Indistinguishability. Recall that this means pk = (A,SA + E) is indistinguishable from
p̃k = (A,B), for A = TM from the Dense-Sparse distribution, S ← Fℓ×n/2

2 , E ← Ber(ϵ)ℓ×m, and
B ← Fℓ×m

2 . This follows directly from DS-LPNn,m,k,Msp,ϵ and a hybrid argument over the rows of
B.

Statistical Hiding. Since the message µ is only present in the second part of the ciphertext Bx̃+
(µ, . . . , µ︸ ︷︷ ︸

ℓ

), it suffices to show that Bx̃ is statistically close to random given the public key and the

first part of the ciphertext. In other words, we need to show that:

(A,B,Ax̃,Bx̃) ≈s (A,B,Ax̃,u),

where x̃ = spfy(x) with x ← Ft log(m/t)
2 , and u ← Fℓ

2 is also uniformly sampled. In fact, we show
that the above holds for every fixed A, namely

(B,Bx̃,Ax̃) ≈s (B,u,Ax̃).

This is now the setting for us to apply the Leftover Hash Lemma (Lemma 3.4), with X = x̃ =
spfy(x) as the random variable, Z = Ax̃ as the leakage, h = B as the description of a universal
hash function, and h(X) = Bx̃ ∈ Fℓ

2 as the hash value. Since our parameters for Dense-Sparse
LPN are in the (D, δ)-compression regime, it means that

2t log(m/t) > |Z|D ,
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Parameters.

• Let p(λ) be a polynomial in λ such that we want the decryption function to have a
1/p(λ)-probabilistic representation by linear polynomials.

• Let k ≥ 3 be an integer, D > 1, and δ ∈
(
δ(4.5)(k,D), 1

)
. Let ρ ∈ (0, 1−δ) be an arbitrarily

small constant.

• Let n > (2p(λ))1/ρ, m = n1+(Dk−1)(1−δ), and consider a good distribution Msp ⊆
SpMat(n,m, k).

• Let ϵ = 1
nδ+ρ , τ = 2

nρ and t = ℓ = nδ.

Construction. We define PKE as follows.

• Gen(1λ) → (pk, sk). Sample A = TM ∈ Fn/2×m
2 , where T ← Fn/2×n

2 and M ← Msp,
according to the Dense-Sparse LPN distribution. Sample S ← Fℓ×n/2

2 , E ← Ber(ϵ)ℓ×m,
and compute B = SA+E. Return pk := (A,B) and sk := S.

• LossyGen(1λ)→ p̃k. Sample A = TM ∈ Fn/2×m
2 as above. Sample B← Fℓ×m

2 and return
p̃k := (A,B).

• Enc(pk, µ ∈ F2) → ct. Sample x ← Ft log(m/t)
2 , compute x̃ = spfy(x) ∈ Ballreg(m, t), and

return ct :=
(
Ax̃,Bx̃+ (µ, . . . , µ︸ ︷︷ ︸

ℓ

)
)

.

• Dec(sk, ct)→ µ′ ∈ {0, 1,⊥}. Parse ct = (c ∈ Fn/2
2 ,d ∈ Fℓ

2), then return Majorityτ (Sc+d).
Here the gap majority function is defined as follows:

Majorityτ (v ∈ Fk
2) :=


0 if ∥v∥0 ≤ τℓ,

1 if ∥v∥0 ≥ (1− τ)ℓ,

⊥ otherwise.

Figure 5: Lossy PKE from Dense-Sparse LPN

where Z = {A · spfy(x) | x ∈ Ft log(m/t)
2 }. Hence, using Lemma 3.3 we have that

2H∞(X|Z) ≥ 2H∞(X)

|Z|
> 2t log(m/t)(1−1/D).

In other words, Ax̃ loses at least (1/D)-th of the information on x̃. Now we conclude by Lemma 3.4
that

SD ((B,Bx̃,Ax̃), (B,u,Ax̃)) ≤ 1

2

√
2ℓ

2t log(m/t)(1−1/D)
= 2−Ω(t log(m/t)) = negl(λ),

by the choice of ℓ = t.
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Correctness. Consider any public key (A,B = SA + E) as in the construction. Note that if
(c,d) = (Ax̃,Bx̃+ (µ, . . . , µ)) is a ciphertext of µ in our scheme, then we have

Sc+ d = SAx̃+ (SA+E)x̃+ (µ, . . . , µ︸ ︷︷ ︸
ℓ

) = Ex̃+ (µ, . . . , µ︸ ︷︷ ︸
ℓ

).

Therefore, we have that decryption is correct if and only if ∥Ex̃∥0 ≤ τℓ. Since x̃ ∈ Ballreg(m, t) is
always t-sparse, it follows that e := Ex̃ is Bernoulli distributed with probability ϵ′ = 1−(1−2ϵ)ℓ

2 <
ϵℓ = 1

nρ = τ
2 , by Lemma 3.1 and the choice of ϵ, ℓ, and τ . Now by Chernoff bound (Lemma 3.2), it

follows that

Pr[∥e∥0 > τℓ] ≤ exp(−Ω(τℓ)) = exp(−Ω(nδ−ρ)) = negl(λ),

which is what we want. Note that δ > ρ since δ > δ(4.5)(k,D) > 1/2 and ρ ≤ 1− δ by our choice.

Linear Approximate Decryption. Consider the following randomized family of linear functions

Lsk=S

(
ct = (c,d) ∈ Fn/2+ℓ

2

)
:

Sample i← [ℓ], and output µ′ = (S)ic+ di, where (S)i is the i-th row of S.

It follows that if Dec(sk, ct) = µ ̸=⊥, then cS+ d agrees with (µ, . . . , µ) for at least (1− τ)-fraction
of the entries. Thus a randomly chosen i-th entry (Sc + d)i = (S)ic + di will agree with µ with
probability at least 1− τ . This finishes the proof.
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