
EPRINT VERSION 1

FELIX (XGCD for FALCON):
FPGA-based Scalable and Lightweight Accelerator

for Large Integer Extended GCD
Sam Coulon, Tianyou Bao, and Jiafeng Xie

Abstract—The Extended Greatest Common Divisor (XGCD)
computation is a critical component in various cryptographic ap-
plications and algorithms, including both pre- and post-quantum
cryptosystems. In addition to computing the greatest common
divisor (GCD) of two integers, the XGCD also produces Bézout
coefficients ba and bb which satisfy GCD(a, b) = a× ba + b× bb.
In particular, computing the XGCD for large integers is of
significant interest. Most recently, XGCD computation between
6,479-bit integers is required for solving N -th degree Trun-
cated polynomial Ring Unit (NTRU) trapdoors in FALCON, a
National Institute of Standards and Technology (NIST)-selected
Post-Quantum digital signature scheme. To this point, existing
literature has primarily focused on exploring software-based
implementations for XGCD. The few existing high-performance
hardware architectures require significant hardware resources
and may not be desirable for practical usage, and the lightweight
architectures suffer from poor performance. To fill the re-
search gap, this work proposes a novel FPGA-based scalable
and Lightweight accelerator for large Integer XGCD (FELIX).
First, a new algorithm suitable for scalable and lightweight
computation of XGCD is proposed. Next, a hardware accelerator
(FELIX) is presented, including both constant- and variable-
time versions. Finally, a thorough evaluation is carried out
to showcase the efficiency of the proposed FELIX. In certain
configurations, FELIX involves 81% less equivalent area-time
product (eATP) than the state-of-the-art design for 1,024-bit
integers, and achieves a 95% reduction in latency over the
software for 6,479-bit integers (FALCON parameter set) with
reasonable resource usage. Overall, the proposed FELIX is highly
efficient, scalable, lightweight, and suitable for very large integer
computation, making it the first such XGCD accelerator in the
literature (to the best of our knowledge).

Index Terms—FALCON, field-programmable gate array, hard-
ware accelerator, large integer extended GCD, cryptographic
applications.

I. INTRODUCTION

RAPID progression in computer security has initiated a
new round of cryptographic engineering research [1]–[3].

For instance, the Greatest Common Divisor (GCD) computa-
tion serves as one of the major components in many critical
cryptographic applications and algorithms [4]–[6]. One appli-
cation, the RSA cryptosystem requires verification that some
large key parameters are coprime, which equates to confirming
GCD(·) = 1 [7]. Accordingly, many related research activities
have been carried out, including its implementation on both
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software and hardware platforms [5], [6]. The recent advance
in the field, however, has gradually switched from software
design to hardware implementation since the latter typically
offers better performance [4], [6], [8].

Recently, a variant of the GCD algorithm, namely the
large integer extended GCD (XGCD), has attracted significant
attention from the research community [4], [6], [8]. Unlike the
basic GCD function, XGCD also produces Bézout coefficients
ba and bb, which satisfy GCD(a, b) = a × ba + b × bb
[4]. The major cryptographic applications for XGCD are
verifiable delay functions [9] and modular inversion [10]. More
recently, the NIST-selected post-quantum digital signature
scheme FALCON requires XGCD between 6,479-bit integers
when solving NTRU trapdoors [11]. Accordingly, the research
community has initiated to develop efficient implementations
of XGCD on various platforms [4]–[6], [8], [10].

Prior Works and Existing Challenges. Overall, the re-
search community has proposed four major methods to imple-
ment the above-mentioned large integer XGCD function [8],
namely the extended Euclidean algorithm (EEA) [12], plus-
minus (PM) algorithm [13], Two-Bit PM algorithm [14], and
k-ary algorithm [15].

Meanwhile, related software and hardware implementations
have been reported, which have mostly focused on high-
performance implementations [4], [5], [8], [10]. The recent
works in [4], [8] target high-performance applications. They
have demonstrated the efficiency of hardware acceleration over
software-based ones, and seem to represent the state-of-the-art
in the literature. The work of [4] modified the Two-Bit PM
algorithm to reduce the total number of necessary algorithm
iterations. They further developed a high-speed architecture
by performing single-cycle large integer arithmetic and reduc-
ing carry-propagation delay with CSAs (Carry-Save Adders).
More recently, [8] adopted the k-ary algorithm, employing
some strategies from Two-Bit PM and using redundant sign
digit (RSD) representation to reduce carry-propagation for
large integer arithmetic. On the other hand, [6] is the most
recent (and only, to the best of our knowledge) existing
lightweight XGCD accelerator. They utilize the BEEA algo-
rithm and a sequential processing strategy to reuse hardware
resources and avoid large integer arithmetic.

The major limitations of the existing works for XGCD
hardware acceleration lie in the following three aspects. (i)
The existing works like [4], [8] only consider the fast compu-
tation, and hence their applications are somewhat limited. For
instance, design (1) in [4] requires 225,776 LUTs, 31,438 FFs,
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and 57,012 slices for 1,024-bit integers on Kintex-7 FPGA.
Such large resource usage may not be ideal for FPGA-based
practical applications for parameters as large as 6,479-bit
integers, and especially when XGCD computation is just one
component of a larger cryptographic scheme. (ii) The existing
lightweight designs lack severely in speed. For example, the
work of [6] presents a lightweight implementation, but the
resulting performance is not sufficient for many applications.
The fastest configuration of [6] for 2,048-bit integers still
requires 1.68 ms for processing, and extrapolating from the
given performance results, we estimate that it would take
around 5.58 ms for 6,479-bit computation, which is 21%
slower than our test of the FALCON software implementation
[11]. (iii) Lastly, the existing works (including software ones)
only reported the XGCD design for up to 1,024 or 2,048-
bit integers, so an architecture for very large integers for
applications like FALCON is missing in the literature.

Target Platform. This work targets the implementation of
XGCD as one component of a theoretically larger scheme
rather than a standalone chip. As such, FPGA was selected
as the prototyping platform. FPGA-based platform provides
many benefits for hardware accelerator design, including flex-
ibility and relatively short development cycles. Application-
specific integrated circuits (ASIC) could be selected in fu-
ture work if a complete scheme was being implemented
(FALCON, for example) with the goal of creating an end-
product. Although [8] presented results only on the ASIC
platform, [4], [6] presented implementation results on FPGA,
so we primarily compare [4], [6] with our work. We also
compare with the FALCON reference software code [11] for the
evaluation of the XGCD computation over 6,479-bit integers.

Contributions. Following the above discussion, we aim
to develop a novel FPGA-based scalable and lightweight
accelerator for large integer XGCD (FELIX). In pursuit of
this goal, we have made the following contributions.

• We have proposed a new algorithm for scalable XGCD
computation based on the Two-Bit PM GCD algorithm.
The proposed algorithm enables both constant- and
variable-time processing options and features extensions
based on our thorough analysis of potential speedup
factors that are suitable for pipelined processing.

• We have proposed an efficient accelerator, FELIX, to
perform the computation on the FPGA platform. The
accelerator implements a pipelined, sequential process-
ing strategy which achieves excellent balance between
lightweight resource usage and efficient processing. We
have given the architecture details and related design
techniques for FELIX, including its different components,
functions, and constant- and variable-time modes.

• We have lastly provided a thorough performance evalua-
tion to demonstrate the efficiency of the proposed FELIX
over the state-of-the-art designs. We also showcase the
proposed FELIX’s superior performance and practical
resource usage when implementing XGCD for very large
integers such as FALCON’s 6,479-bit parameters.

To the authors’ best knowledge, this is the first report in the
literature of a scalable and lightweight XGCD accelerator with

efficient processing, especially for computation over integers
as large as 6,479 bits. We hope this work can stimulate many
related research studies in the field.

The rest of the paper is arranged as follows. Section II
introduces the preliminary knowledge. Section III introduces
the algorithm background information. Section IV discusses
the formulation of the proposed algorithm. Section V presents
the proposed FELIX. Evaluation of the accelerator is provided
in Section VI, including the extension to FALCON’s parameter
sets. The conclusion is finally given in Section VII.

II. PRELIMINARIES

A. XGCD

Definition. Given two integer inputs a and b, basic GCD
computes the greatest common divisor, GCD(a, b). While the
extended version, XGCD, computes GCD(a, b) and a pair of
Bézout coefficients ba and bb satisfying the Bézout identity
GCD(a, b) = a× ba + b× bb.

Some Applications. XGCD has been deployed in interest-
ing applications such as verifiable delay functions (VDF) [16]
and modular inversion (suitable for elliptic curve cryptosys-
tem) [5]. For example, given an integer a and a modulus b,
one can find the modular inverse (a−1 mod b) by solving
GCD(a, b) = a× ba + b× bb. If GCD(a, b) = 1 (meaning a
and b are coprime), then (ba mod b) can be returned as the
modular inverse. The challenge is to solve for GCD(a, b), ba,
and bb when inputs a and b are very large.

B. XGCD in FALCON

Recently, XGCD has been found in the NTRUSolve func-
tion of FALCON, a critical operation that exists in its Key
Generation phase [11]. FALCON’s Key Generation phase sam-
ples polynomials f and g and solves the NTRU equation to
find polynomials F and G, where a valid set of (f , g, F , G)
constitutes a valid private key [11]. f and g are initially poly-
nomials over ring Z[x]/(xn+1) where n = 1, 024 with small
coefficients (5-8 bits). Polynomials f and g are repeatedly cast
onto smaller rings Z[x]/(xn/2+1), ..., Z[x]/(xn/4+1), ..., etc.,
until f and g are plain integers over ring Z. With each iteration,
polynomial degree halves and coefficient size approximately
doubles, so the final f and g become very large integers. In the
reference code [11], they are represented in RNS notation with
209, 31-bit primes. Given 209×31 = 6, 479, we estimate this
as the maximum f and g bitsize, though the reference states
they average around 6,307 bits [11]. From here we must find
F and G such that f ×G− g×F = q. Substituting u× q and
v×q for G and F respectively yields f×u×q−g×v×q = q,
and factoring out q reduces to f ×u− g× v = 1. This overall
process equates to the computing of XGCD, where f and g are
the 6,479-bit input integers, u and v are the resultant Bézout
coefficients, and the expected result is GCD(f, g) = 1. Note
that further steps are needed to raise F and G back to ring
Z[x]/(xn +1), but those steps are not the focus of this work.

C. Notations

We have used the following notations throughout the paper.
N denotes the bit-width of the integer inputs; (a0, b0) and
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(a, b, u, m, y, n) are N -bit variables used in the algorithm
and accelerator descriptions. Q refers to the bit-width of the
parsed sections of the above-mentioned variables. Therefore,
a0, b0, a, b, u, m, y, n values are stored and processed as
N/Q individual Q-bit sections. RE and RO are the power-of-
two reduction factors used to configure the proposed XGCD
algorithm. L is the pipeline latency (Table I). I is the average
number of iterations (Table II). In Algorithms 1, 2, and 3, “//”
indicates floor division, which is bit-shifting in hardware.

A valid set of (N , Q, RE , RO) constitutes a configuration
for the architecture of the proposed FELIX, while a set of
just (RE , RO) is sufficient to characterize the configuration of
the underlying algorithm. As such, we denote configurations
of the algorithm as (RE , RO) which is discussed in the next
section. For a given N , smaller Q, RE , and RO results in lower
resource usage and slower processing, while larger Q, RE , and
RO results in greater resource usage and faster processing.

III. ALGORITHM BACKGROUND

This section provides some background on GCD algorithms
as a basis for our work. We start by detailing some information
on the Stein family of GCD algorithms [17] and then discuss
the one we choose to build from, Two-Bit PM [14].

A. Background and Algorithm Selection

Existing work suggests that Euclid’s (division-based) [18]
and Stein’s (subtraction-based) [17] algorithm families per-
form favorably for large integer implementations of GCD.
Given our objective of low resource usage and the relatively
high cost of division operations in hardware, we chose Stein’s
algorithm family for our design. Stein’s algorithm (also known
as Binary GCD) [17] and its variants [19], [13], [14] operate on
the basis that given two integers a and b, one of two conditions
must always be true: (1) a or b is even, or (2) a± b is even.
These algorithms reduce their inputs by dividing the inputs
directly when they are even or dividing the sum/difference of
the inputs when they are both odd. Division operations are
always executed by a power-of-two reduction factor, which
equates to simple bit-shifting in hardware design.

Stein-based algorithms [17], [19], [13], [14] can be classi-
fied according to the maximum number of bits they can reduce
per iteration when a or b is even and when a and b are both
odd. We follow [4] and denote this as (RE , RO), where RE

is the maximum reduction factor when a or b is even and
RO the factor when a and b are both odd. The algorithms
can further be classified by whether they operate in constant-
or variable-time, where constant-time efficiency is based on
the worst-case iteration time, and variable-time mode finishes
when the inputs a or b have been reduced to 0 [14].

Purdy’s algorithm divides by 2 when a or b is even and 2
when a and b are both odd (2,2). Purdy’s algorithm is simple
but suffers from quadratic worst-case time complexity [19].
The PM algorithm introduced swapping mechanisms and still
has reduction factors (2,2) but finishes in at most (3.012 ·N)
iterations [13]. The Two-Bit PM algorithm extended the PM
algorithm, exploiting the fact that when a and b are both odd,
one of (a + b)%4 = 0 or (a − b)%4 = 0 is always true,

and thus some PM operations can be combined [14]. Two-Bit
PM divides by at most 4 when a or b is even, and divides
by 4 when a and b are both odd, so the original Two-Bit PM
has reduction factors (4,4) for both constant- and variable-time
modes, with worst-case reduced to (1.51 · N + 1) iterations.
When [4] modified Two-Bit PM, they noted that while the
option to reduce by 4 (instead of 2) when a or b is even does
improve average iteration time for variable-time mode, it does
not improve worst-case iteration time. So we remove these
operations for Two-Bit PM constant-time GCD, resulting in
reduction factors (2,4). In summary, Two-Bit PM in variable-
time mode has reduction factors (4,4) and completes when
a = 0 or b = 0. Constant-time mode has reduction factors
(2,4) and finishes in (1.51 ·N + 1) iterations.

We select the Two-Bit PM (Algorithm 1) as the ba-
sis to develop our algorithm for implementation because
of its excellent balance between simple operations (addi-
tion/subtraction/shifting) and reasonable worst-case speed.
Further, those operations are easily converted to sequential
processing, i.e., they can be executed bit by bit. Furthermore,
the variable-time version of the algorithm (4,4) can easily
be extended to accommodate optimizations for our pipelined
sequential processing strategy, which is discussed in the next
section. Lastly, the original Two-Bit PM source [14] also
provides insight on extension from GCD to XGCD, which
is relevant to this work.

Algorithm 1: Two-Bit PM GCD [14]
Input : a0, b0 (odd N -bit integers);
Output: GCD(a0, b0);
Initialization step

1 a← a0, b← b0, g ← 0;
Main step

2 while !end do
3 if !constant time and a%4 == 0 then
4 a← a//4; g ← g − 2;
5 else if !constant time and b%4 == 0 then
6 b← b//4; g ← g + 2;
7 else if a%2 == 0 then
8 a← a//2; g ← g − 1;
9 else if b%2 == 0 then

10 b← b//2; g ← g + 1;
11 else if g ≥ 0 and (b + a)%4 == 0 then
12 a← (a + b)//4; g ← g − 1;
13 else if g ≥ 0 and (b− a)%4 == 0 then
14 a← (a− b)//4; g ← g − 1;
15 else if g < 0 and (b + a)%4 == 0 then
16 b← (a + b)//4; g ← g + 1;
17 else
18 b← (a− b)//4; g ← g + 1;
19 end
20 if constant time then
21 iterations← iterations + 1;
22 end← (iterations ≥ 1.51 ∗N + 1);
23 else
24 end← (a == 0) or (b == 0);
25 end
26 end

Final step
27 GCD(a0, b0)← a + b;
28 return GCD(a0, b0);

B. Two-Bit PM Algorithm for GCD

The procedure for Two-Bit PM GCD computation is shown
in Algorithm 1. The algorithm initializes with a ← a0 and
b← b0. There is also a small variable g that tracks how many
times a or b has been reduced and determines which should be
reduced next. g increments or decrements when a or b is being
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reduced, so the lesser-reduced between a and b can always be
determined by the sign of g. The Main Step of Algorithm 1
implements the main iteration loop of Two-Bit PM. On each
iteration, when a or b is even, they are reduced by a factor
of 2 (or 4 in variable-time mode), and g is incremented or
decremented accordingly. When a and b are both odd, either
(a+b)%4 = 0 or (a−b)%4 = 0 must be true [14]. When this
is the case, g indicates whether a or b should be reduced. This
procedure loops for (1.51 ·N + 1) iterations in constant-time
mode or until a = 0 or b = 0 in variable-time mode, and
returns GCD(a0, b0)← a+ b.

IV. FELIX: THE PROPOSED ALGORITHM

In this section, we start by extending the Two-Bit PM GCD
procedure (Algorithm 1) to Two-Bit PM XGCD to additionally
calculate Bézout coefficients ba and bb. Then some further ex-
tensions to the algorithm are proposed to optimize processing,
finally resulting in the proposed algorithm (Algorithm 2).

A. Proposed New Two-Bit PM Algorithm for XGCD

The original Two-Bit PM source [14] provides steps for the
extension from GCD to XGCD computation. Our version is
shown in Algorithm 2, where operations highlighted in blue
are the only operations used for constant-time mode and where
(RE ,RO) is set to (2,4). Note that these are the same constant-
time operations found in Algorithm 1. For variable-time mode,
all operations in Algorithm 2 are available depending on the
(RE ,RO) configuration. We will discuss extension from GCD
to XGCD, and the next subsection will discuss extensions for
larger (RE ,RO) configurations.

For extension to XGCD, we take Algorithm 1 and introduce
Bézout variables u, m, y, and n, such that

a =u× a0 +m× b0,

b =y × a0 + n× b0,
(1)

are always true, with a← a0, b← b0, u← 1, m← 0, y ← 0,
and n ← 1 on startup. Similar to Algorithm 1, we proceed
by reducing a or b directly when a or b are even, or reducing
a+ b or a− b when a and b are both odd. With each iteration
we accordingly update u, m, y, and n to preserve the equality
with a and b in (1). Thus, u and m must be updated when a
is reduced, while y and n do not need to be updated because
their equality with b in equation (1) still holds, and vice versa.

The procedure for updating u and m or y and n is shown in
Algorithm 3 which is based on a similar procedure in [4]. Al-
gorithm 3 is used in Algorithm 2 and called as bez update(·).
To understand its function, let us first consider the case where
a%2 = 0, so u and m need to be updated such that (1) still
holds with a← a//2. Remember that a0 and b0 are required
to be odd. Assuming equation (1) currently holds, this means
u and m must either be both even or both odd [14]. When
u and m are even, we can reduce u and m directly so that
u← u//2 and m← m//2. When u and m are odd, dividing
by 2 will discard the lowest bit and break the equality. Instead,
we add b0 to u and subtract a0 from m. Again, since a0 and
b0 are odd, this produces an even result. Then the values can
safely be reduced as u← (u+b0)//2 and m← (m−a0)//2.

Algorithm 2: Proposed new Two-Bit PM algorithm
for large integer XGCD computation

Input : a0, b0 (Odd N -bit Integers);
Output: GCD(a0, b0), ba, bb (N -bit Integers) such that

GCD(a0, b0) = a0 × ba + b0 × bb;
Initialization step

1 a← a0, b← b0, u← 1, m← 0, y ← 0, n← 1, g ← 0;
Main step

2 while !end do
3 if RE ≥ 32 and a%32 == 0 then
4 a← a//32; g ← g − 5;
5 u,m← bez update(u,m, a0, b0, 5);
6 else if RE ≥ 32 and b%32 == 0 then
7 b← b//32; g ← g + 5;
8 y, n← bez update(y, n, a0, b0, 5);
9 . . .∗

10 else if RE ≥ 2 and a%2 == 0 then
11 a← a//2; g ← g − 1;
12 u,m← bez update(u,m, a0, b0, 1);
13 else if RE ≥ 2 and b%2 == 0 then
14 b← b//2; g ← g + 1;
15 y, n← bez update(y, n, a0, b0, 1);
16 else if RO ≥ 32 and g ≥ 0 and (b + a)%32 == 0 then
17 a← (a + b)//32; g ← g − 4;
18 u,m← bez update(u + y,m + n, a0, b0, 5);
19 else if RO ≥ 32 and g ≥ 0 and (b− a)%32 == 0 then
20 a← (a− b)//32; g ← g − 4;
21 u,m← bez update(u− y,m− n, a0, b0, 5);
22 else if RO ≥ 32 and g < 0 and (b + a)%32 == 0 then
23 b← (a + b)//32; g ← g + 4;
24 y, n← bez update(u + y,m + n, a0, b0, 5);
25 else if RO ≥ 32 and g < 0 and (b− a)%32 == 0 then
26 b← (a− b)//32; g ← g + 4;
27 y, n← bez update(u− y,m− n, a0, b0, 5);
28 . . .∗∗
29 else if RO ≥ 4 and g ≥ 0 and (b + a)%4 == 0 then
30 a← (a + b)//4; g ← g − 1;
31 u,m← bez update(u + y,m + n, a0, b0, 2);
32 else if RO ≥ 4 and g ≥ 0 and (b− a)%4 == 0 then
33 a← (a− b)//4; g ← g − 1;
34 u,m← bez update(u− y,m− n, a0, b0, 2);
35 else if RO ≥ 4 and g < 0 and (b + a)%4 == 0 then
36 b← (a + b)//4; g ← g + 1;
37 y, n← bez update(u + y,m + n, a0, b0, 2);
38 else
39 b← (a− b)//4; g ← g + 1;
40 y, n← bez update(u− y,m− n, a0, b0, 2);
41 end
42 if constant time then
43 iterations← iterations + 1;
44 end← (iterations ≥ 1.51 ∗N + 1);
45 else
46 end← (a == 0) or (b == 0);
47 end
48 end

Final step
49 GCD(a0,b0) ← a + b, ba ← u + y, bb ← m + n;
50 if GCD(a0,b0) < 0 then
51 GCD(a0,b0) ← −GCD(a0,b0), ba ← −ba, bb ← −bb;
52 return GCD(a0,b0), ba, bb;

∗ (. . . ) indicates repetitive else-if cases for RE ≥ 16, RE ≥ 8, RE ≥ 4
have been removed at Line 9;
∗∗ (. . . ) indicates repetitive else-if cases for RO ≥ 16, RO ≥ 8 have been
removed at Line 28;
∗ ∗ ∗ else-if conditions in blue are used for constant-time mode;

Let us now consider the case where a and b are both odd.
Suppose g ≥ 0 and (a + b)%4 = 0 is met, so u and m need
to be updated such that (1) still holds with a← (a+b)//4. In
the same way that b is added to a, y and n must be added to
u and m, respectively. This can be observed in Algorithm 2
where u±y and m±n are sometimes fed into bez update(·).
From this point, the procedure is the same as when a or b are
even and follows the operations of Algorithm 3.

We now have obtained all necessary procedures to update
a, b, u, m, y, and n such that (1) holds on each iteration. The
algorithm iterates until it reaches (1.51 ·N + 1) iterations in
constant-time mode [14], or until a = 0 or b = 0 in variable-
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Algorithm 3: Bézout coefficient update function
(bez update(·)) based on [4]

Input : uy, mn, a0, b0 (N -bit integers), numshift;
Output: uy, mn (N -bit integers);
Main step

1 for i← 0 to numshift− 1 do
2 if uy%2 == 0 then
3 uy ← uy//2;
4 mn← mn//2;
5 else
6 uy ← (uy + b0)//2;
7 mn← (mn− a0)//2;
8 end
9 end

10 return uy,mn;

time mode. At this point, the GCD and Bézout coefficients can
obtained as GCD(a0, b0) = a+b, ba = u+y, and bb = m+n.
There is also a final step to invert GCD(a0, b0), ba, and bb,
when GCD(a0, b0) < 0.

B. Extensions of the Proposed Algorithm

To this point, we have established a constant-time (2,4)
and variable-time (4,4) Two-Bit PM XGCD algorithm based
on [14]. We now explore options to extend the variable-
time version of the Two-Bit PM algorithm for optimized
processing. Recall that the variable-time algorithm terminates
when either of the input integers has been reduced to 0, so
average-case analysis is concerned with the average number
of iterations required to reach this point. If the implementation
only supports division by 4 (basic (4,4) version), then it takes
many iterations to reduce a or b to 0. However, when a, b,
or a ± b is divisible by a larger power of 2, the algorithm
can be extended to reduce more bits in a single iteration, thus
reducing the average number of iterations required [4].

The trade-off is that reducing more bits per iteration requires
the loop in the bez update(·) function (Algorithm 3) to run
longer. As opposed to [4] who operate over whole N -bit
integers and evaluate all possible outcomes of bez update(·)
in a single cycle, we have unrolled the loop and implemented
it as a pipeline (Fig. 3), operating over Q-bit sections. This
strategy is explained further in Section V-A, but for now the
important note is that more iterations of the bez update(·)
loop equates to a longer, more resource-intensive pipeline. We
observe that our sequential processing strategy already requires
at least N/Q (the number of sequential processing sections)
cycles per iteration, so extending the pipelines to any length
lower than N/Q cycles imposes no latency penalty for the
length of a single iteration. Overall, we have conducted a
simple analysis of these possible extensions, and the results
are listed in Tables I, II, and III, respectively.

Table I presents the pipeline latency L (in number of cycles)
for the extensions of the proposed algorithm. For example, if
we configure to allow reduction by 32 in a single iteration
(32,32), the pipeline latency is 11 clock cycles. For reduction
by 32, we need log2(32) iterations of the bez update(·)
loop (2 cycles each), and an optional 1 cycle for adding or
subtracting inputs to bez update(·) when it is called. So L
is calculated as Max(2 × log2(RE), 1 + 2 × log2(RO)). The

pipeline latency (and majority of pipeline resource usage) is
determined by the greater of RE and RO, so there is no
latency benefit (and only minimal resource usage benefit) to
setting RE < RO or RO < RE , so we maintain RE = RO.
Table II presents the average number of iterations (I) required
to reduce a or b to 0 for a given configuration (RE ,RO),
which was obtained by simulating Algorithm 2 with uniformly
random inputs. Table III then uses this data to compute the
average number of clock cycles required to reduce a or b to 0,
where values are calculated as [Max(N/Q,L) + 1]× I (L is
the pipeline latency and I is the average number of iterations).

TABLE I: Processing Pipeline Latency (L) (Num. Cycles)

(RE ,RO) (2,4)* (4,4)* (8,8) (16,16) (32,32)
L 5 5 7 9 11

*: Basic Two-Bit PM without extensions for comparison [14].

TABLE II: Average Number of Iterations (I)
N (4,4)* (8,8) (16,16) (32,32)

1024 1198 924 815 765
2048 2396 1849 1606 1531

6479** 7580 5937 5157 4917

*: Basic Two-Bit PM without extensions for comparison [14].
**: For XGCD used in FALCON [11].

TABLE III: Average Number of Clock Cycles
N Q (4,4)* (8,8) (16,16) (32,32)

1,024 8 154,542 119,196 105,135 98,685
1,024 16 77,870 60,060 52,975 49,725
1,024 32 39,534 30,492 26,895 25,245
1,024 64 20,366 15,708 13,855 13,005
1,024 128 10,782 8,316 8,150 9,180
2,048 16 309,084 238,521 207,174 197,499
2,048 32 155,740 120,185 104,390 99,515
2,048 64 79,068 61,017 52,998 50,523
2,048 128 40,732 31,433 27,302 26,027
2,048 256 21,564 16,641 16,060 18,372

6,479** 32 1,542,293 1,207,994 1,049,288 1,000,456
6,479** 64 774,937 606,965 527,223 502,686
6,479** 128 391,258 306,451 266,190 253,802
6,479** 256 199,419 156,194 135,673 129,359
6,479** 512 103,500 81,066 70,415 67,138

*: Basic Two-Bit PM without extensions for comparison [14].
**: For XGCD used in FALCON [11].

When selecting a configuration (N , Q, RE , RO), there
are two speedup factors to consider: (1) average number
of iterations and (2) cycles per iteration. The total average
number of clock cycles for processing is a product of these
two values. First, given N , the average number of itera-
tions is purely determined by the reduction factor (RE ,RO)
configuration of the algorithm. Table II demonstrates that
increasing the reduction factor decreases the average number
of iterations required, though the percent reduction decreases
with each successive extension. For example, extension from
(4,4) to (8,8) decreases the average number of iterations by
23%, while further extensions to (16,16) and (32,32) yield
only a further 12% and 5% decrease, respectively. For this
reason, we chose not to explore further extensions such as
(64,64). Second, given N , cycles per iteration is computed as
Max(N/Q,L) + 1. In other words, cycles per iteration is the
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greater of the number of sequential processing sections (N/Q)
and pipeline latency (L). If N/Q < L, then pipeline utilization
will be sub-optimal. For example, in Table III, for N = 1024,
Q = 128, it can be seen that average number of clock cycles
actually increases from (16,16) to (32,32) since the pipeline
length L = 11 is greater than N/Q = 8. For optimal cycles
per iteration, it is best to make N/Q as small as possible (i.e.
make Q as large as possible) without dipping below L.

From Table III, we conclude that extensions from (4,4) to
(8,8) and (16,16) generally provide tangible reductions in av-
erage number of cycles, which should outweigh the increases
in resource usage. However, further extension to (32,32) seems
relatively ineffective, and will require trade-off analysis with
the related increase in resource usage. On the other hand,
doubling Q yields significant reductions in average number
of cycles, since doubling Q halves the number of cycles per
iteration if the updated N/Q is still greater than L. However,
we expect that larger Q, such as Q = 512, will incur serious
max frequency penalties due to carry-propagation delay for
larger integer arithmetic. Overall, the various configurations
and trade-offs are explored in Section VI.

V. FELIX: THE PROPOSED ARCHITECTURE

A. Overall Design Strategy

In keeping with our objective of scalability and lightweight
resource usage, FELIX implements a sequential processing
strategy where N -bit integer variables are parsed into Q-
bit sections, and each operation found in Algorithms 2
& 3 (Addition/Subtraction/Shifting) is executed sequentially,
section-by-section, from least to most significant. Large integer
arithmetic, such as addition, incurs carry-propagation delay
proportional to the bit-width of the operands. Our strategy of
processing section-by-section reduces this delay by operating
over smaller Q-bit sections instead of the entire N -bit inte-
gers. Then, carry bits between those sections are registered,
rendering carry-propagation between sections negligible.

The necessary pipelined sub-components are AddSub(),
Add(), Sub(), and Shift(s), where AddSub() is configurable for
Q-bit addition or subtraction, Add() and Sub() implement only
addition or only subtraction respectively, and Shift(s) shifts a
Q-bit value right by s number of bits. The sub-components are
assembled into processing pipelines that execute all possible
permutations of operations in Algorithms 2 & 3. Overall,
the proposed accelerator (FELIX) is shown in Fig. 1, which
consists of four major components: (i) Variable Memory, (ii)
PipeAB (a,b processing pipeline), (iii) PipeUY and PipeMN,
and (iv) Control Unit. These components, along with some
other important design details, are described below.

B. Data Flags

Attached to each Q-bit section are a series of flags that
assist with dataflow throughout the accelerator, i.e., valid,
first, final, sub, target, and numshift. The valid flag
indicates that the current section is valid data. The first flag
indicates that the current section contains the least significant
bits of the data, while the final flag indicates that the
current section contains the most significant bits. The sub flag
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Fig. 1: Top Level of FELIX (MEM is Variable Memory).

configures the AddSub() blocks in the processing pipelines to
perform subtraction. The target flag indicates which variables
are being processed (a, u,m or b, y, n). The numshift flag
indicates the reduction factor of the current operation, which
configures the Shift(numshift) block in PipeAB and enables
and disables stages within PipeUY and PipeMN.

C. Constant- and Variable-Time Architectures

Overall, the architectures for constant- and variable-time
processing are mostly the same. It can be seen in Algorithm
2 that, in general, the operations in blue (constant-time op-
erations) require the same processing primitives (AddSub(),
Add(), Sub(), Shift()) as the non-blue operations. Necessary
components are mostly determined by Q and Max(RE , RO),
so (2,4) and (4,4) configurations with the same Q require the
same components, for example. The only difference is that
the constant-time Control Unit maintains an iteration count for
its termination condition, while the variable-time one contains
logic to monitor when a or b has been reduced to 0.

D. Component Descriptions

Variable Memory. Input integers a0 and b0 and system
variables a, b, u, m, y, n are all N -bit integers stored in
RAM-like register structures of width Q and depth N/Q. With
a stored in MEMa, bits a[N − 1..N −Q] and a[Q− 1..0] are
stored at indices MEMa[N/Q−1] and MEMa[0] respectively.
Each structure has a dual port setup, with one read port and
one write port. We tried using traditional BRAMs, but found
that implementing with LUT/FF was much more efficient
than BRAM when computing the equivalent number of slices
(ENS) [20], which will be discussed later. Memory access is
managed by the Control Unit. Since values always need to be
processed in the order from section 0 to section N/Q − 1,
the access pattern is simply incrementing addresses from 0 to
N/Q − 1. To facilitate quicker next-state decisions, we also
store an additional copy of the least significant bits of a and b
in separate registers alsb and blsb (which are used to determine
the divisibility of a, b, and a± b within each iteration).
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PipeAB Component. The PipeAB component is shown in
Fig. 2 and implements the operations to reduce the a and
b variables, which can be seen as the first assignment in
each of the cases of the loop in Algorithm 2. Overall, this
processing pipeline consists of one configurable AddSub()
and one configurable Shift(numshift). The sub flag received
with input data configures the AddSub() to perform sub-
traction when necessary, and the numshift flag configures
the Shift(numshift) block to shift by the correct number
of bits. The maximum numshift that must be supported is
log2(Max(RE , RO)), which is the highest possible reduction
factor set by the implementer. In cases where a or b is even,
addition and subtraction are unnecessary, so the AddSub()
block is inactive and acts as a pass-through register. Thus,
the pipeline latency is 2 clock cycles in all cases.

PipeUY and PipeMN Components. The PipeUY and
PipeMN components are shown in Fig. 3, which act as
processing pipelines to implement the operations of the
bez update(·) function (Algorithm 3). Note that for cases
where a and b are both odd in Algorithm 2, when
bez update(·) is called, the inputs u, y, m, and n need to
be added or subtracted before they are fed to the function.
So, similar to the PipeAB component, the first processing
element in PipeUY and PipeMN is a configurable AddSub()
block. The structure of the rest of the pipeline is dependent
on (RE ,RO) configuration. Let us consider a basic variable-
time configuration (4,4) as a basis. The pipelines must support
reduction by 4, which is 2 iterations of the bez update(·)
loop. This is at most 2 Add() blocks for PipeUY or 2 Sub()
blocks for PipeMN, as well as 2 Shift(1) blocks for both. With
the initial AddSub(), this equates to a 5 clock cycle latency
for each pipeline. For (8,8), the pipelines in Fig. 3 need to be
extended with an additional Add() or Sub() and an additional
Shift(1). This continues up to (32,32), which has an AddSub(),
5 total Add() or Sub(), and 5 total Shift(1) blocks to support a
maximum of 5 iterations of the bez update(·) loop, totaling
11 clock cycle pipeline latency. These pipeline latencies can
be seen in Table I.

Note that within the bez update(·) function, uy is checked
on each iteration to see if it is even. This decision is im-
plemented with the dec blocks in PipeUY in Fig. 3. When
dec sees data with the first flag (indicating these are the
least significant bits), it checks the lowest bits of the z output
of the preceding AddSub() or Add() block as well as the
current overall state operation that is being carried out. If the
overall state operation requires only reduction by 2, then the
following stage(s) of Add()/Sub() and Shift(1) will be disabled
and act as pass-through registers. If the overall state operation
enables another stage of Add()/Sub() and Shift(1), but z is odd,
then both the proceeding Add()/Sub() and shift(1) components

are enabled. If z is already even, Shift(1) is enabled but Add()
or Sub() are disabled. When state indicates that no more
reduction is necessary, the remaining stages of Add() or Sub()
and Shift(1) will be disabled, regardless of whether z is even or
odd. This would indicate that the current operation is complete,
and values should be passed through to the pipeline output.

Control Unit. The Control Unit manages the state machine
and coordinates timing throughout the system. The primary
function of the Control Unit is to manage memory access and
send data to the correct processing pipelines (PipeAB, PipeUY,
PipeMN). The Control Unit is also responsible for managing
termination conditions. When running in constant-time mode,
the Control Unit maintains an iteration count and terminates
the process when iteration count exceeds 1.51·N+1. When
in variable-time mode, the Control Unit monitors the output
of PipeAB and terminates when the result is 0 (i.e. either a
or b has been reduced to 0).

E. Dataflow

To understand the dataflow of the proposed FELIX, we con-
sider an example using the constant-time configuration (2,4).
The necessary operations are highlighted in blue in Algorithm
2. The discussed dataflow process can then be extrapolated for
the variable-time operations and overall processing.

Initialization Step. On startup, a0 and b0 are shifted into
the system section-by-section, from the least significant bits
to most significant bits, and stored in variable memory. Note
that these values are stored twice, (i) as a0 and b0 that will
be accessed but not modified by the bez update(·) function,
and (ii) as a and b that will be accessed as well as modified.
Other variables are also initialized per Initialization Step in
Algorithm 2. Then we enter the processing loop, i.e., the Main
Step of Algorithm 2. Each iteration proceeds as follows:
• First, the least significant section of a and b (stored in alsb

and blsb) as well as g are read to determine which state
operation of Algorithm 2 is selected. For example, if a
is even, then the first constant-time condition (a%2 = 0)
in Algorithm 2 is met. g is decremented as g ← g − 1
since a is being reduced by 1 bit.

• Next, flags are set according to the determined state. For
this case, sub← 0, target← 0, and numshift← 1.

• The Control Unit begins reading sections from a, u, m,
a0, and b0. Values b, y, and n are not needed during
this operation, so they are not read. From here, the data
sections from a are fed to PipeAB, sections from u and
a0 are fed to PipeUY, and sections from m and b0 are fed
to PipeMN. The sub, target, and numshift flags travel
with the data, and the valid, first, and final flags are
also appended to the proper data sections.

• Data populates the pipelines in parallel. For this state, a
just needs to be reduced by a factor of 2, so the AddSub()
block in PipeAB is disabled, and data gets shifted by
numshift = 1. For PipeUY and PipeMN, the AddSub()
blocks are also disabled, so data passes through to the
first Add() or Sub(). When this happens, the first dec
unit observes the first flag from the first section of u
passing through. If u is even, then the first Add() and
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Sub() blocks in PipeUY and PipeMN can be disabled.
If u is odd, then Add() and Sub() are enabled. Then,
they pass through the first Shift(1) block which shifts
data by 1. At this point, the operation is complete, so the
second dec block in PipeUY disables remaining stages of
Add()/Sub() and Shift(1) in both PipeUY and PipeMN.

• Two clock cycles after data enters the processing
pipelines, the first section of a exits PipeAB and is sent
to be saved back in Variable Memory. The target flag
determines whether to save the resultant values in a or b
(a since target = 0). After 3 more clock cycles, the first
sections of u and m exit PipeUY and PipeMN (5 cycle
total pipeline latency) and are also sent to be saved in
Variable Memory via the same method.

• At this point, the first section of a data should have
already returned to the Variable Memory, with its lowest
bits updated in alsb. With alsb, blsb, and g all updated, the
Control Unit can determine the next state ahead of time.
The system continues reading a, u, m, a0, and b0 sections
and sending them to the processing pipelines until the
final section has been sent.

• The Control Unit then increments the iteration count in
constant-time mode, or checks the output of PipeAB
to see if the output is 0 in variable-time mode, and
terminates if these conditions are true. This sequence of
procedures repeats until the termination condition is met.

Final Step. When the termination condition is met, we enter
the post-processing and data shift-out phase, the Final Step in
Algorithm 2. Flags are set to perform the final addition and
potential value inversion, with sub← 0 and numshift← 0.
The Control Unit begins reading sections from a, b, u, y, m,
n. Sections from a and b are fed to PipeAB, u and y are
fed to PipeUY, and m and n are fed to PipeMN. The values
are added together using the first AddSub() of each pipeline
with the remaining pipeline stages disabled. The results a+ b,
u+y, and m+n are returned to memory as they sequentially
exit the pipelines. When the final result section of a+ b exits
PipeAB, the data is analyzed to determine if a + b, u + y,
and m + n must be inverted. If a + b is positive (i.e. MSB
is a 0), then results are returned as GCD(a0, b0) ← a + b,
ba ← u + y, and bb ← m + n. If the a + b is negative, then
GCD(a0, b0) and Bézout results need to be inverted. Results
are then returned as GCD(a0, b0)← −(a+b), ba ← −(u+y),

and bb ← −(m+ n).

TABLE IV: ENS Computation Sheet

Type Slice DSP BRAM(18K) BRAM(36K)
#Slice 1 128 166 327
Weight 1.0 0.8 0.7 0.6
ENS 1 102.4 116.2 196.2

The listed data apply to AMD-Xilinx Series 7 FPGAs, as specified in [20].

VI. FELIX: EVALUATION AND COMPARISON

This section gives a detailed evaluation of the proposed
FELIX on the FPGA platform. Results cover the implementa-
tion and comparison with a state-of-the-art high-performance
XGCD accelerator, comparison with an existing lightweight
XGCD design, and evaluation under the FALCON parameters.

A. Performance Metrics

We invoke many of the common FPGA performance met-
rics, such as Throughput, Throughput per Slice (TPS), and
Area-Time Product (ATP). One shortcoming of a metric like
ATP, which is generally calculated as (LUTs × Latency), is
that it does not account for other resource usage, such as
BRAM and DSP. So we additionally present results for ENS
and Equivalent Area-Time Product (eATP). ENS is effective
as a holistic resource-usage metric and is computed according
to Table IV [20], where eATP=ENS×Latency.

B. Experimental Setup

To test the effectiveness of the proposed FELIX, we have
implemented the design in various (N , Q, RE , RO) config-
urations on the FPGA platform. The experimental setup is as
follows: (a) The accelerator code is written in VHDL with
functionality verified in ModelSim. (b) We have identified
parameter combinations (N , Q, RE , RO) that effectively
demonstrate the performance of FELIX compared with ex-
isting literature. (c) We have implemented the design (in both
constant- and variable-time modes) in Vivado 2020.2 on the
Kintex-7 (XC7K410TFBG676-1) for N = 1, 024 and on the
Ultrascale+ (XCZU7EG-FFVF1517-3-E) for N = 2, 048 and
N = 6, 479. Note that for a fair comparison, we do not include
the ASIC- or software-based designs (such as [8], [10]) for
direct comparison, though we have discussed them in Section
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TABLE V: Comparison with High-Performance Variable-Time XGCD Accelerator Based on FPGA Implementation

Device Method N Q LUT/FF/Slice Fmax CCs Latency Throughput TPSa ENSb ATPc eATPd

(MHz) (µs) (Mbps) (K) (K) (K)
Variable-Time Reference [4] (RE = 8,RO = 4)

Kintex-7 Modified Two-Bit PM 1,024 - 225,776/31,438/57,012 204.00 1,147 5.62 182.12 3.19 57.01 1,269.44 320.55
This Work (RE = 8,RO = 8)

Kintex-7 New Two-Bit PM 1,024
32 1,717/1,426/547 277.78 30,492 109.77 9.33 17.05 0.55 188.48 60.04
64 3,419/2,727/1,065 277.01 15,708 56.71 18.06 16.96 1.07 193.88 60.39

128 6,201/5,331/1,897 212.77 8,316 39.09 26.20 13.81 1.90 242.37 74.14
This Work (RE = 16,RO = 16)

Kintex-7 New Two-Bit PM 1,024
32 2,029/1,701/657 275.48 26,895 97.63 10.49 15.96 0.66 198.09 64.14
64 3,920/3,275/1,205 267.38 13,855 51.82 19.76 16.40 1.21 203.13 62.44

128 7,120/6,388/2,313 209.64 7,335 34.99 29.27 12.65 2.31 249.11 80.93
This Work (RE = 32,RO = 32)

Kintex-7 New Two-Bit PM 1,024
32 2,255/1,976/792 262.47 25,245 96.18 10.65 13.44 0.79 216.89 76.18
64 4,283/3,805/1,356 259.74 13,005 50.07 20.45 15.08 1.36 214.45 67.89

128 -/-/- - 9,180 - - - - - -

a: TPS=Throughput/Slice. b: BRAMs and DSPs are converted to ENS. c: ATP=#LUTs×Latency. d: eATP=#ENS×Latency.

TABLE VI: Comparison with Lightweight Constant-Time XGCD Accelerator Based on FPGA Implementation

Device Method N Q LUT/FF/CLB BRAM Fmax CCs Latency Throughput TPSa ENSb eATPd

(18K) (MHz) (µs) (Mbps) (K) (K)
Constant-Time Reference [6]

Ultrascale+ BEEA 2,048

16 -/275/136 1.5 335.57 - 13,592.00 0.15 1.11 0.31 4,217.60
32 -/370/220 1.5 312.50 - 7,335.00 0.28 1.27 0.39 2,892.19
64 -/390/291 6.0 263.16 - 4,399.00 0.47 1.60 0.99 4,347.09

128 -/564/554 12.0 232.56 - 2,540.00 0.81 1.46 1.95 4,948.94
256 -/932/933 22.5 182.82 - 1,680.00 1.22 1.307 3.55 5,959.80

This Work (RE = 2,RO = 4)

Ultrascale+ New Two-Bit PM 2,048

16 1,187/665/237 0 588.24 399,059 678.40 3.02 12.74 0.24 160.78
32 2,272/1,995/467 0 495.05 201,076 406.17 5.04 18.34 0.28 111.70
64 2,775/2,209/520 0 450.45 102,085 226.63 9.04 17.38 0.52 117.85

128 5,471/4,326/1,071 0 401.61 52,589 130.95 15.64 14.60 1.07 140.24
256 11,955/8,432/1,939 0 348.43 27,841 79.90 25.63 13.22 1.94 154.93

a: TPS=Throughput/Slice (CLB). b: BRAMs and DSPs are converted to ENS. d: eATP=#ENS×Latency.

VI-F. The FPGA utilization results are post place-and-route,
but were not implemented on a physical FPGA, so listed
frequencies may be slightly higher than what is achievable
in a real system. Lastly, FALCON reference code for XGCD
(zint bezout(·) from keygen.c [11]) was benchmarked on the
CPU: (i) the microbenchmark support library from Google
[21] is used as the benchmark library; (ii) a single core of
AMD Ryzen Threadripper 3960X processor (@3.8 GHz) is
used; (iii) the Ubuntu 20.04 LTS OS (virtual machine) was
used for testing; (iv) g++ 9.4.0 was used to compile the code
and disable the optimization flag.

C. Comparison with High-Performance Variable-Time XGCD

Comparison. Table V reports the FELIX implementation
results for comparison with the only (to our knowledge) high-
performance large integer XGCD implementation on FPGA
[4]. The design from [4] is also based on a modified Two-
Bit PM with (RE = 8,RO = 4). Since [4] operates in
variable-time with N = 1, 024, we implemented FELIX with
(N = 1, 024, Q = 32/64/128) with (RE = 8/16/32, RO =
8/16/32). We focus on higher performance configurations
of FELIX, ignoring lower Q, RE , RO. Also, (N = 1, 024,
Q = 128, RE = 32, RO = 32) is not recorded because
of inefficient pipeline utilization, which was discussed in the
proposed algorithm section (Section IV-B).

Analysis. Since [4] targets high-performance applications,
and FELIX instead targets low resource usage and scalability,

it is unsurprising that [4] utilizes significantly more ENS, but
is generally much faster. Still, FELIX configuration Q = 32
with (RE = 8,RO = 8) achieves an 81% reduction in eATP
over [4]. Further, the fastest presented FELIX configuration
Q = 128 with (RE = 16,RO = 16) achieves a 96% reduction
in ENS, and is only 6.2× slower than [4]. As expected,
increasing Q significantly reduces processing time, but at the
cost of resource usage approximately doubling and a lower
max frequency. The optimal selection based on eATP seems
to be Q = 32/64. For (RE ,RO) configuration, (8,8) gave the
best eATP, extension to (16,16) yielded the fastest possible
processing, but extenstion to (32,32) provided no real benefit.

D. Comparison with Lightweight Constant-Time XGCD

Comparison. Next, Table VI reports the FELIX imple-
mentation results for comparison with a lightweight constant-
time XGCD architecture which follows a similar sequential
processing strategy to FELIX [6]. The design from [6] is based
on a variant of the binary EEA from [5]. Since [6] operates in
constant-time with N = 2, 048 and Q = 16/32/64/128/256,
we also implemented FELIX with those same parameters with
(RE = 2, RO = 4), which is our constant-time configuration.
[6] does not indicate whether 18K or 36K BRAMs are used,
so we conservatively assess them as 18K.

Analysis. It is easily seen that FELIX outperforms [6] in
almost all metrics. Since [6] utilizes BRAMs, they do achieve
lower resource usage in terms of FF/CLB (LUTs not reported).
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TABLE VII: Comparison with FALCON XGCD Reference Implementation Performance

Device Method N Q LUT/FF/CLB Fmax CCs Latency Throughput TPSa ENSb ATPc eATPd

(MHz) (µs) (Mbps) (K) (K) (K)
FALCON [11]

CPU Binary GCD 6,479 - -/-/- - - 4,412.92 - - - - -
This Work Constant-Time (RE = 2,RO = 4)

Ultrascale+ New Two-Bit PM 6,479

32 2,841/1,234/502 568.18 1,990,797 3,503.80 1.85 3.68 0.50 9,954.30 1,758.91
64 3,938/2,261/747 448.43 1,000,291 2,230.65 2.90 3.89 0.75 8,784.29 1,666.29

128 6,082/4,365/1,079 398.41 505,038 1,267.64 5.11 4.74 1.08 7,709.81 1,367.79
256 11,523/8,465/2,014 378.79 257,411 679.56 9.53 4.73 2.01 7,830.63 1,368.64
512 25,507/16,748/4,100 308.64 133,598 432.86 14.97 3.65 4.10 11,040.86 1,774.71

This Work Variable Time (RE = 4,RO = 4)

Ultrascale+ New Two-Bit PM 6,479

32 2,919/1,212/564 444.44 1,542,293 3,470.16 1.87 3.31 0.56 10,129.40 1,957.17
64 4,018/2,248/717 432.90 774,937 1,790.10 3.62 5.05 0.72 7,192.64 1,283.50

128 6,218/4,352/1,048 390.63 391,258 1,001.62 6.47 6.17 1.05 6,228.08 1,049.70
256 12,506/8,499/1,977 357.14 199,419 558.37 11.60 5.87 1.98 6,983.02 1,103.90
512 25,741/16,750/4,193 315.46 103,500 328.09 19.75 4.71 4.19 8,445.46 1,375.70

This Work Variable Time (RE = 32,RO = 32)

Ultrascale+ New Two-Bit PM 6,479

32 3,588/2,051/725 411.52 1,000,456 2,431.11 2.67 3.68 0.73 8,722.81 1,762.55
64 5,373/3,866/994 390.63 502,686 1,286.88 5.03 5.07 0.99 6,914.39 1,279.16

128 8,547/7,469/1,564 383.14 253,802 662.42 9.78 6.25 1.56 5,661.72 1,036.03
256 18,341/14,737/3,290 332.23 129,359 389.37 16.64 5.06 3.29 7,141.47 1,281.03
512 38,660/29,187/6,406 301.20 67,138 222.90 29.07 4.54 6.41 8,617.27 1,427.89

a: TPS=Throughput/Slice (CLB). b: BRAMs and DSPs are converted to ENS. c: ATP=#LUTs×Latency. d: eATP=#ENS×Latency.

However, when accounting for BRAMs, FELIX achieves sig-
nificantly lower ENS, eATP, and Latency. In particular, the
fastest implementation (Q = 256) achieves 45% lower ENS,
97% lower eATP, and 95% lower Latency than [6] with the
same Q. Even when configuring for lowest possible resource
usage, FELIX implementation for Q = 16 achieves 23% lower
ENS than [6] with the same Q while still achieving a 95%
reduction in Latency. The BEEA algorithm used in [6] requires
some integer division, which seems to lengthen their time per
iteration, compared to FELIX’s use of simple operations in
Two-Bit PM. Further, our strategy to implement memory with
LUT/FF instead of BRAM seemed to yield better ENS usage,
especially for storing wide Q-bit data.

E. Comparison with FALCON XGCD Reference Code

Comparison. Finally, Table VII reports the FELIX imple-
mentation results for comparison with the FALCON reference
code [11] which is written in C and was tested on CPU. Since
FALCON reference documents do not indicate whether XGCD
should be computed in constant- or variable-time, we present
our results for both. Further, since the FALCON XGCD is
implemented on the CPU, we only compare the Latency.

Analysis. For the constant-time implementation (RE = 2,
RO = 4), the fastest implementation of FELIX (Q = 512)
achieves a 90% reduction in Latency over the reference
implementation. Then, in terms of the lowest resource usage
implementation (Q = 32), FELIX achieves ENS of just 0.50K
while still producing a 21% reduction in Latency.

For the variable-time implementation, the proposed accel-
erator of Q = 512 with (RE = 32, RO = 32) yields the
fastest overall processing and produces a 95% reduction in
Latency over [11]. In terms of eATP, FELIX (Q = 128)
with (RE = 32, RO = 32) leads to the lowest eATP of
1,036.03K, while still giving 85% lower Latency compared
to the reference implementation of [11].

F. Some Additional Considerations with Other Works

Note that there also exists other GCD/XGCD implementa-
tions like [10], [22], [23], but we do not explicitly compare
them here since they belong to either software/ASIC imple-
mentations and have also been discussed and outperformed by
[4]. However, we do want to mention that [8] is an ASIC-based
XGCD design and represents the fastest existing accelerator
in the literature. Although the direct comparison with their
ASIC-based design is difficult, from Table III of [8], one can
observe that [8] involves around 50.5% less eATP than [4]
for N = 1, 024. Since our design can achieve at most an
81% reduction in eATP when compared with [4] on the FPGA
platform, we conclude that FELIX indirectly outperforms [8].

G. Discussion and Future Work

From the above analysis, it can be seen that FELIX performs
very competitively with [4], significantly outperforms [6], and
effectively implements the XGCD found in FALCON [11].
Regarding [4], it is clear that their accelerator targets vastly
different applications from FELIX, and the authors seem
to indicate that ASIC is the primary target of their work.
However, their implementation on FPGA is the most advanced
such design in the literature and is thus helpful for comparison
using metrics like ATP and eATP, where it is shown that our
accelerator performs favorably. [6] is effective for comparison
because it implements a sequential processing strategy similar
to FELIX. Considering this was the only recent lightweight
implementation we could find in the literature, the need for a
lightweight and scalable XGCD with reasonable efficiency like
FELIX becomes even more evident. Lastly, we believe we have
sufficiently proven the viability of a reasonably lightweight
XGCD accelerator for extremely large parameter sets like the
one used in FALCON. As new cryptographic schemes are being
developed, we hope our research provides a foundation for
potentially even larger parameters such as N = 16, 384.
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VII. CONCLUSION

This paper presents an FPGA-based scalable and
lightweight accelerator for XGCD computation (FELIX).
We have developed a modified version of the Two-Bit PM
algorithm for XGCD computation suitable for pipelined
sequential processing, and an FPGA-based accelerator to
efficiently implement its functionality. We found that our
proposed accelerator achieved more efficient area-time
complexity compared to the state-of-the-art designs for
both high-performance and lightweight accelerators in the
literature. Lastly, we proved the viability of an FPGA-based
accelerator for extremely large parameter sets such as the
one used in FALCON, which has not yet been shown in the
literature (to our best knowledge). We hope this work can
positively impact related research in the field.
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