
Legendre Sequences are Pseudorandom
under the Quadratic-Residuosity Assumption

Henry Corrigan-Gibbs David J. Wu
MIT UT Austin

Abstract. The Legendre sequence of an integer x modulo a prime p
with respect to offsets a⃗ = (a1, . . . , aℓ) is the string of Legendre sym-
bols (x+a1

p
), . . . , (x+aℓ

p
). Under the quadratic-residuosity assumption, we

show that the function that maps the pair (x, p) to the Legendre sequence
of xmodulo p, with respect to public random offsets a⃗, is a pseudorandom
generator. This answers an open question of Damg̊ard (CRYPTO 1988),
up to the choice of the offsets a⃗.

1 Introduction

In a 1988 paper, Damg̊ard [10] proposed a pseudorandom generator (PRG)
based on strings of Legendre symbols. In particular, he posited that, for a se-
cret random prime p, a secret random value x ∈ Z∗

p, and any sequence length

ℓ = polylog(p), the sequence of Legendre symbols (x+1
p), (x+2

p), . . . , (x+ℓ
p) is

pseudorandom. Damg̊ard was not able to prove the security of this construction
under any pre-existing cryptographic assumption; that problem remains open.

In this work, we show that a generalization of Damg̊ard’s PRG is indeed
secure under the standard quadratic-residuosity assumption. In particular, we
consider a variant of Damg̊ard’s generator that outputs the Legendre symbols
(x+a1

p), (x+a2

p), . . . , (x+aℓ

p), where the integers a⃗ = (a1, . . . , aℓ) are part of the
generator’s public parameters. We prove that, if the public offsets a⃗ are random
values of bitlength O(log p), the resulting pseudorandom generator is secure un-
der the standard quadratic residuosity assumption.

Along the way, we show that, under the quadratic-residuosity assumption,
the function L((p, x), a) := (x+a

p), keyed by a secret prime p and offset x, is
a weak pseudorandom function. Roughly speaking, no efficient adversary can
distinguish the outputs of L((p, x), ·) from those of a truly random function,
given only access to evaluations of the function at random elements of its domain.

Throughout this paper, we focus exclusively on the setting in which the prime
modulus p is secret—i.e., part of the seed of the pseudorandom generator or the
key to the weak pseudorandom function—as in Damg̊ard’s original paper. More
recent work [2, 3, 13, 16, 18, 22] has studied a variant of Damg̊ard’s generator
where the prime modulus p is public—i.e., part of the public parameters of the
pseudorandom generator. Relating the security of the public-prime variant to a
more common number-theoretic assumption is a second open problem.

Technical overview. Before sketching our techniques, we recall the quadratic-
residuosity assumption. Given an integer N = pq, for distinct primes p and q, the
quadratic-residuosity problem [5,15] asks an algorithm to determine whether an
integer x ∈ ZN with Jacobi symbol 1 modulo N is a quadratic residue modulo
N—i.e., whether there exists y ∈ ZN such that y2 = x mod N . Throughout, we
actually require p ≡ q ≡ 3 mod 4, which makes N = pq a “Blum integer.” We
note that restricting the modulus to a Blum integer does not make the quadratic-
residuosity problem any easier (we refer to Theorem A.2 in Appendix A for one
possible proof of this fact provided to us by Brent Waters [25]).

The proof of our main result proceeds in two steps. Our first step is to show
that a new variant of the quadratic-residuosity problem, which we call the ℓ-time
full-domain Legendre problem (Definition 3.3), is as hard as standard quadratic
residuosity. In this new problem, we give an algorithm a Blum integer N = pq,
a list of independent random values x1, . . . , xℓ ←R Z∗

N , and bits (β1, . . . , βℓ) ∈
{−1, 1}ℓ. The algorithm must distinguish the case in which the β values are the
Legendre symbols (x1

p), . . . , (xℓ

p) modulo one prime factor p of N , or whether

the β values are independent random values in {−1, 1}. The key distinction
here from standard quadratic-residuosity problems is that the challenge values
(x1, . . . , xℓ) are sampled from all of Z∗

N , not just the set of elements with Jacobi
symbol 1.

We show that for every ℓ = polylog(N), the ℓ-time full-domain Legendre
problem is as hard as standard quadratic residuosity (Corollary 3.6). To do so,
we use a standard argument to show that a decisional variant of quadratic resid-
uosity (Definition 3.1) is as hard as standard quadratic residuosity (Lemma 3.5).
Via a randomization procedure that exploits the structure of Z∗

N , we then show
that hardness of the decisional quadratic-residuosity variant implies that the
ℓ-time full-domain-Legendre problem is hard (Lemma 3.2).

The second piece of the proof of our main theorem is to show that distin-
guishing sequences of Legendre symbols modulo a hidden prime p is as hard as
the ℓ-time full-domain-Legendre problem. In particular, our main task is to show
that for a secret prime p and secret offset x, for large-enough random integers
a1, . . . , aℓ, distinguishing the string (x+a1

p), . . . , (x+aℓ

p) from a random string in

{−1, 1}ℓ is as hard as the ℓ-time full-domain Legendre problem.

In fact, we prove the stronger statement that the function L((p, x), a) :=
(x+a

p) is a weak pseudorandom function (PRF) under the ℓ-time full-domain

Legendre problem. In this PRF construction, the pair (p, x) is the PRF key and
a is the input.

We use an ℓ-query distinguisher for the Legendre weak PRF to construct a
distinguisher for the ℓ-time full-domain Legendre problem. Let (N, x1, . . . , xℓ,
y1, . . . , yℓ) be a challenge for the ℓ-time full-domain-Legendre problem. Here,
N = pq is a random Blum integer, and for all i ∈ [ℓ], xi ←R Z∗

N and either
yi = (xi

p) or yi ←R {−1, 1}. The reduction algorithm needs to transform this

challenge into ℓ evaluations y′1, . . . , y
′
ℓ ∈ {−1, 1} of the weak PRF on random

points a1, . . . , aℓ, where either y′i = (x+ai

p) or y′i ←R {−1, 1}, p is a random Blum
prime, and x is a random integer. Suppose that p, q are λ-bit Blum primes and

2

x is a random λ-bit integer. If we sample each ai to be a random 3λ-bit integer
(i.e., ai ←R [23λ]), we can rely on a smudging argument to argue that following
two distributions are statistically indistinguishable, for all choices of x:{

x+ ai mod p : ai ←R [23λ]
}

and {xi mod p : xi ←R Z∗
N} .

In particular, this means the following distributions are also statistically indis-
tinguishable:{(

x+ ai
p

)
: ai ←R [23λ]

}
and

{(
xi

p

)
: xi ←R Z∗

N

}
.

This means the reduction algorithm can simply sample ai ←R [23λ] and set
y′i = yi. By the above smudging argument, we can show that when yi = (xi

p),

then the challenge (a1, . . . , aℓ, y
′
1, . . . , y

′
ℓ) is statistically close to the pseudoran-

dom distribution for the Legendre weak PRF. If yi ←R {−1, 1}, then the re-
duction algorithm perfectly simulates the random distribution. Taken together,
this shows that distinguishing the Legendre weak PRF is at least as hard as
solving the ℓ-time full-domain-Legendre problem, which in turn is as hard as
quadratic residuosity. We conclude then that under the quadratic-residuosity
assumption, the Legendre weak PRF is secure. Correspondingly, this implies se-
curity of Damg̊ard’s PRG with a hidden prime and uniformly random offsets. We
give the formal proof in Section 4 (see Lemma 4.3 in Section 4.1 for the analysis
of the Legendre weak PRF and Theorem 4.5 in Section 4.2 for the implication
to Damg̊ard’s PRG).

Related work. We study Legendre-symbol-based cryptographic constructions
in which the prime modulus p is secret. A more recent conjecture is that these
constructions remain secure even when the prime modulus p is public [2, 3, 4,
13, 16, 18, 22]. Specifically, these works conjecture that, for a public prime p,
on secret key x ∈ Z∗

p and input a ∈ Z∗
p, the function Lp(x, a) := (x+a

p) is

a (strong) pseudorandom function. There are better-than-brute-force attacks
against this construction in both the classical [19] and quantum [14] settings.
There is also a quantum polynomial-time attack [24], provided that the adver-
sary can make superposition queries to the pseudorandom function. There are
no known polynomial-time (or even sub-exponential-time) attacks against the
Legendre pseudorandom function in the classical setting.

The public-prime function Lp is of special interest because it has a small
arithmetic circuit over Zp via the identity Lp(x, a) = (x+ a)

p−1
2 mod p. The

function’s arithmetic nature makes it concretely efficient to evaluate inside a
multiparty computation [2,4,13,16] or zero-knowledge proof. Some applications,
such as to post-quantum signatures [4], only require that the public-prime func-
tion Lp is weakly pseudorandom. Because of these many applications, a worth-
while direction for future work is to prove pseudorandomness of the public-prime
function Lp under a standard number-theoretic assumption.

Starting from the turn of the 20th century, number theorists have studied
the statistical properties of Legendre sequences [1,8,11,12,17,20]. Notably, Dav-

3

enport [11,12] showed that for any prime p and any sequence of Legendre sym-

bols y⃗ ∈ {−1, 1}ℓ, the number of values x ∈ Zp where y⃗ =
(
(x+1

p), . . . , (x+ℓ
p)
)
is

in the range p
2ℓ
± ℓ · O(pε) for some ε ≥ 1

2 . Davenport’s analysis applied to se-
quences of length ℓ ≤ 9. Using the Weil bound [26], Peralta [20] later improved
this bound to show for arbitrary length ℓ, the number of values x ∈ Zp that

generates any sequence y⃗ ∈ {−1, 1}ℓ is in the range p
2ℓ
± ℓ ·O(

√
p). Both sets of

results show that for any fixed length ℓ ∈ N, the distribution of length ℓ (consec-
utive) Legendre sequences statistically converges to the uniform distribution over

{−1, 1}ℓ as p grows. These results provide evidence that Legendre sequences are
uniformly distributed, and related heuristics have applications to certain factor-
ing algorithms [21]. In our work, we show that to any computationally-bounded
adversary, Legendre sequences (with random offsets) are indeed indistinguishable
from uniform under the quadratic-residuosity assumption.

In the same 1988 paper that inspired this work [10], Damg̊ard also intro-
duced a pseudorandom generator based on Jacobi symbols. This construction
is the same as the one we study, except that it replaces the Legendre symbol
modulo p by the Jacobi symbol modulo a composite integer N . More precisely,
the Jacobi pseudorandom generator JN,ℓ with modulus N , output length ℓ, and
seed x ∈ Z∗

N outputs the string JN,ℓ(x) := (x+1
N), . . . , (x+ℓ

N). Recent work [9]
showed that for a composite modulus of the form N = p2q, where p, q are
distinct primes, the function JN,ℓ is one-way assuming the hardness of factor-
ing N = p2q, together with Boneh and Lipton’s number-theoretic conjecture on
the uniqueness of residue sequences [6]. Moreover, under an additional stronger
conjecture on the uniqueness of Jacobi sequences, they also show that JN,ℓ is
collision resistant. That work does not show that the function JN,ℓ satisfies any
sort of pseudorandomness property.

2 Background

Notation. We let N = {1, 2, 3, . . . } denote the natural numbers. We use x := 1
to denote definition and x ← 1 to denote assignment. Let N be a positive
integer. We use Z∗

N to denote the multiplicative group of integers modulo N .
Then, we let JN ⊂ Z∗

N denote the set of elements of Z∗
N with Jacobi symbol 1:

JN := {x | x ∈ Z∗
N ,
(

x
N

)
= 1}. We let QRN ⊂ JN denote the set of quadratic

residues modulo N : QRN :=
{
x2 | x ∈ Z∗

N

}
. For a finite set S, we use x ←R S

to denote an independent uniform sample from S and we write Uniform(S) to
denote the uniform distribution over S. We say an algorithm is efficient if it runs
in probabilistic polynomial time in the length of its input. We say a function f(λ)
is negligible if f = o(λ−c) for all c ∈ N and denote this by writing f(λ) = negl(λ).

We use BPrimesλ to denote the set of λ-bit primes congruent to 3 mod 4 (i.e.,
“Blum primes”). A “Blum integer” is the product of two distinct Blum primes.

4

2.1 The Quadratic-Residuosity Problem

Goldwasser and Micali [15] define the quadratic-residuosity relative to a standard
RSA modulus N = pq, for arbitrary large (distinct) primes p and q. Later on,
Blum, Blum, and Shub [5] introduced a variant that restricts the modulus N to a
Blum integer (i.e., N = pq where p, q are primes that are congruent to 3 mod 4).

It is a folklore claim that the Blum-Blum-Shub variant of quadratic residu-
osity is as hard as the standard Goldwasser-Micali version of the problem. For
completeness, we give a self-contained reduction due to Brent Waters [25] in
Appendix A that proves this fact. Using the Blum-Blum-Shub variant simplifies
our analysis, so we use it throughout since this change does not affect our main
results.

Definition 2.1 (Quadratic Residuosity). For an algorithm A, security pa-
rameter λ, and bit b ∈ {0, 1}, we define ρA,b(λ) to be

ρA,b(λ) := Pr

A(N, xb) = 1 :

p, q ←R BPrimesλ

N ← pq

x0 ←R QRN , x1 ←R JN∖QRN

 .

We define the quadratic-residuosity advantage of an algorithm A as:

QRAdv[A](λ) := |ρA,0(λ)− ρA,1(λ)| .

2.2 Sampling Quadratic Residues and Non-Residues

Here, we describe how to efficiently sample integers with a given quadratic char-
acter. Throughout, we take N ∈ N to be a positive integer.

Sampling from QRN (quadratic residues). We can efficiently sample x ←R QRN

by sampling y ←R Z∗
N and outputting x = y2.

Blum integers and sampling from JN ∖QRN (quadratic non-residues). Recall
that a Blum integer is an integer N = pq for distinct primes p and q such that
p ≡ q ≡ 3 mod 4. When N is a Blum integer, −1 is a quadratic non-residue
modulo N . Thus, we can sample a random quadratic non-residue modulo N as
−x2 mod N , where x←R Z∗

N .

Sampling from JN (elements of Jacobi symbol 1 or −1). There is an efficient
algorithm for computing the Jacobi symbol of an element modulo N without
knowing the factorization of N [23, Chapter 12.3]. Since half of the elements of
Z∗
N are in JN , rejection sampling is enough to sample a random element of either

JN or Z∗
N∖JN . After λ samples, such an algorithm fails with probability 2−λ.

2.3 Standard Definitions of Pseudorandomness

Next, we recall some standard notions of pseudorandomness. Since we will be
working throughout with Legendre symbols, it will be convenient for us to define
standard pseudorandomness notions with respect to values in {−1, 1}.

5

Definition 2.2 (Pseudorandom Generator). Let G = {Gλ | λ ∈ N} be a
family of sets of functions. For each λ ∈ N, Gλ is a set of efficiently-computable
length-increasing functions G : SG → {−1, 1}ℓ(λ), where SG is a set of seeds,
which may differ for each function G. We assume that the function implicitly
describes its seed space SG, and that there is an efficient explicit algorithm
for sampling from SG. Then for an algorithm A, security parameter λ, and
bit b ∈ {0, 1}, define

ρA,b(λ) := Pr

[
A(G, σb) = 1 :

G←R Gλ r ←R SG

σ0 ← G(r) σ1 ←R {−1, 1}ℓ(λ)

]
.

We define the advantage of algorithm A at attacking G as a pseudorandom
generator as PRGAdv[A,G] := |ρA,0(λ)− ρA,1(λ)|.

Definition 2.3 (Weak Pseudorandom Function). Let F = {Fλ | λ ∈ N}
be a family of functions, where for all λ ∈ N, Fλ is an efficiently-computable
function Fλ : Kλ × Dλ → {−1, 1} with key-space Kλ and domain Dλ, respec-
tively. We assume there are efficient explicit algorithms for sampling from Kλ

and Dλ. For an algorithm A and a security parameter λ, we define ρA,b(λ) as

ρA,b(λ) := Pr

[
AOb(1λ) = 1 :

f ←R Funs[Dλ, {−1, 1}]
k ←R Kλ

]
,

where Funs[Dλ, {−1, 1}] is the set of all functions from Dλ to {−1, 1} and we
define the oracles O0 and O1 as follows:

– O0: Sample x←R Dλ and output (x, Fλ(k, x)).

– O1: Sample x←R Dλ and output (x, f(x)).

We define the advantage of algorithm A at attacking F as a weak pseudorandom
function as wPRFAdv[A,F](λ) := |ρA,0(λ)− ρA,1(λ)|. For a parameter ℓ, we say
that A is an ℓ-query adversary if it makes at most ℓ oracle queries.

3 New Variants of Quadratic Residuosity

This section prepares the ground for the proof of our main result by defining
two variants of the quadratic-residuosity problem and showing that both are as
hard as the standard version.

3.1 Decisional Quadratic Residuosity
is as Hard as Standard Quadratic Residuosity

The following variant of the quadratic residuosity problem asks an algorithm to
distinguish, for a Blum integer N = pq and a random element x ← Z∗

N , the
Legendre symbol (xp) from an independent random value in {−1, 1}.

6

Definition 3.1 (Decisional Quadratic Residuosity). For an algorithm A,
security parameter λ, and bit b ∈ {0, 1}, we define ρA,b(λ) to be

ρA,b(λ) := Pr

A(N, x, yb) = 1 :

p, q ←R BPrimesλ, N ← pq
x←R JN

y0 ←
(

x
p

)
, y1 ←R {−1, 1}

 .

We define the decisional-quadratic-residuosity advantage of an algorithm A as:

QRDAdv[A](λ) := |ρA,0(λ)− ρA,1(λ)| .

We now show that if the quadratic residuosity assumption is hard, then the
decisional quadratic residuosity assumption is also hard. This analysis follows
readily from Yao’s classic argument showing that an unpredictable bit is also
pseudorandom [27]. We state the result below:

Lemma 3.2 (If QR is hard, decisional QR is hard). For every efficient
decisional-quadratic-residuosity adversary A, there exists an efficient quadratic-
residuosity adversary B where

QRDAdv[A](λ) = 1

2
· QRAdv[B](λ).

Proof. Let A be an efficient decisional-quadratic-residuosity adversary. We first
use Algorithm A to construct the quadratic-residuosity adversary B and then
we argue about its advantage.

Algorithm B, on input a quadratic-residuosity challenge (N, x), operates as
follows:

– Sample y ←R {−1, 1}.
– Compute b← A(N, x, y). Without loss of generality, we assume that on

all inputs, Algorithm A outputs a value b ∈ {0, 1}; any non-conforming
algorithm can be transformed into one with this property without de-
creasing its advantage.

– If b = 1, output y. Otherwise, output −y.

To analyze the advantage of Algorithm B, we first define the following quantities,
for z ∈ {0, 1}:

νQR,z(λ) = Pr
[
A(N, x, z) = 1 : p, q ←R BPrimesλ, N ← pq, x←R QRN

]
νQNR,z(λ) = Pr

[
A(N, x, z) = 1 : p, q ←R BPrimesλ, N ← pq, x←R JN∖QRN

]
.

By definition,

QRDAdv[A](λ) =
∣∣∣∣12(νQR,1(λ) + νQNR,−1(λ))

− 1

4
(νQR,1(λ) + νQR,−1(λ) + νQNR,1(λ) + νQNR,−1(λ))

∣∣∣∣
=

1

4
|νQR,1(λ) + νQNR,−1(λ)− νQR,−1(λ)− νQNR,1(λ)| .

7

Let (N, x) be a quadratic-residuosity challenge. We consider the probability that
Algorithm B outputs 1. Algorithm B only outputs 1 when:

– A(N, x, y) = 1 and y = 1, or

– A(N, x, y) = −1 and y = −1.
We now compute the probability that Algorithm B outputs 1 depending

on whether x ∈ QRN or x ∈ JN ∖QRN . Recall that Algorithm B samples
y ←R {−1, 1}.
– Case x ∈ QRN . Algorithm B outputs 1 with the following probability:

Pr[B outputs 1] =
1

2
· νQR,1(λ)︸ ︷︷ ︸

y=1 and A(N,x,y)=1

+
1

2
· (1− νQR,−1(λ))︸ ︷︷ ︸

y=−1 and A(N,x,y)=−1

=
1

2
+

1

2

(
νQR,1(λ)− νQR,−1(λ)

)
.

– Case x ∈ JN∖QRN . Algorithm B outputs 1 with the following probability:

Pr [B outputs 1] =
1

2
· νQNR,1(λ)︸ ︷︷ ︸

y=1 and A(N,x,y)=1

+
1

2
· (1− νQNR,−1)︸ ︷︷ ︸

y=−1 and A(N,x,y)=−1

=
1

2
+

1

2

(
νQNR,1(λ)− νQNR,−1(λ)

)
.

We take the difference of the probability that Algorithm B outputs 1 in each of
the two cases to find the quadratic-residuosity advantage:

QRAdv[B](λ) =
∣∣∣∣12(νQR,1(λ) + νQNR,−1(λ)− νQR,−1(λ)− νQNR,1(λ)

)∣∣∣∣
= 2 · QRDAdv[A](λ).

3.2 The Full-Domain-Legendre Problem
is as Hard as Standard Quadratic Residuosity

Standard quadratic residuosity asks an algorithm to determine, for a modulus
N = pq, whether a random element of Jacobi symbol 1 modulo N (i.e., in JN)
is a quadratic residue or non-residue modulo N . In the following variant, we
ask an algorithm to determine whether a random element of the full group Z∗

N

is a quadratic residue or non-residue modulo a prime factor p of N . The key
difference is that here, we sample the challenge element from all of Z∗

N , rather
than the smaller set of elements JN .

This subsection studies the following computational problem:

Definition 3.3 (ℓ-Time Full-Domain Legendre Problem). For an algo-
rithm A, security parameter λ, challenge length ℓ, and a bit b ∈ {0, 1}, we define

8

ρA,b(λ) to be

ρA,b(λ) := Pr

A
(
N,

x1, . . . , xℓ

y
(b)
1 , . . . , y

(b)
ℓ

)
= 1 :

p, q ←R BPrimesλ, N ← pq
x1, . . . , xℓ ←R Z∗

N

∀i ∈ [ℓ] : y
(0)
i ←

(
xi

p

)
∀i ∈ [ℓ] : y

(1)
i ←R {−1, 1}

 .

We define the ℓ-time full-domain-Legendre advantage of A to be

LegAdvℓ[A](λ) := |ρA,0(λ)− ρA,1(λ)|.

The following lemma is key to the proof of Definition 3.3:

Lemma 3.4. For all composite integers N = pq (where p, q are distinct primes)
and for every

– z0 ∈ Z∗
N that is a quadratic non-residue modulo both p and q, and

– z1 ∈ Z∗
N that is a quadratic non-residue modulo p and a residue modulo q,

and every value u ∈ JN , the following distributions are identical:(x, β) :

r ←R QRN , ρ0, ρ1 ←R {0, 1}
x← urzρ0

0 zρ1

1 ∈ Z∗
N

β ← (−1)ρ0+ρ1

(
u
p

)
 ≡

(x, β) :
x←R Z∗

N

β ←
(

x
p

) .

Proof. We prove the following claim before returning to the proof of the lemma.

Claim. For all N, z0, z1 as in Lemma 3.4 and for all u ∈ JN , the first compo-
nent x ∈ Z∗

N of the left-side distribution of Lemma 3.4 is distributed uniformly
over Z∗

N .

Proof of Claim. We prove the lemma by showing that rzρ0

0 zρ1

1 , as computed in
the lemma, is distributed uniformly over Z∗

N .
To do so, it is sufficient to show two things about the mapping µz0,z1 : QRN×

{0, 1}2 → Z∗
N that takes (r, ρ0, ρ1) 7→ rzρ0

0 zρ1

1 : (1) that the domain and co-
domain of have equal size; and (2) that it is invertible.

For the first part: The domain has size |QRN | · 4 = 4 · (ϕ(N)/4) = ϕ(N),
where ϕ(·) is Euler’s totient function. The co-domain has size |Z∗

N | = ϕ(N).
For the second part, we show that the mapping µz0,z1 is injective. Take

any pair (r, ρ0, ρ1) and (r′, ρ′0, ρ
′
1) where µz0,z1(r, ρ0, ρ1) = µz0,z1(r

′, ρ′0, ρ
′
1). By

definition of µz0,z1 , this means

(r/r′)z
ρ0−ρ′

0
0 z

ρ1−ρ′
1

1 = 1 ∈ Z∗
N . (1)

This means that(
r/r′

p

)(
z
ρ0−ρ′

0
0

p

)(
z
ρ1−ρ′

1
1

p

)
= 1 =

(
r/r′

q

)(
z
ρ0−ρ′

0
0

q

)(
z
ρ1−ρ′

1
1

q

)
. (2)

9

Since r, r′ ∈ QRN , z0 is a quadratic non-residue modulo q and z1 is a quadratic
residue modulo q, Eq. (2) modulo q asserts that

1 = (−1)ρ0−ρ′
0 .

Since ρ0, ρ
′
0 ∈ {0, 1}, this means that ρ0 = ρ′0. Next, z0, z1 are both quadratic

non-residues modulo p, so Eq. (2) modulo p asserts that

1 = (−1)ρ0−ρ′
0 · (−1)ρ1−ρ′

1 = (−1)ρ1−ρ′
1 .

Since ρ1, ρ
′
1 ∈ {0, 1}, this also means that ρ1 = ρ′1. Since ρ0 = ρ′0 and ρ1 = ρ′1,

Eq. (1) now implies that r = r′, in which case we have (r, ρ0, ρ1) = (r′, ρ′0, ρ
′
1),

as required. The claim follows.

All that remains is to argue about the second component β in the lemma’s

left-hand distribution is equal to
(

x
p

)
. This holds via the multiplicative nature

of the Jacobi symbol:(
x

p

)
=

(
u

p

)(
r

p

)(
z0
p

)ρ0
(
z1
p

)ρ1

= α · 1 · (−1)ρ0 · (−1)ρ1 = β,

since r ∈ QRN and z0, z1 are non-residues modulo p.

Lemma 3.5 (If decisional QR is hard, ℓ-time full-domain Legendre is
hard). For every polynomial ℓ = ℓ(λ) and every efficient ℓ-time full-domain-
Legendre adversary A, there exists an efficient decisional-Legendre adversary B
where

LegAdvℓ[A](λ) = ℓ · QRDAdv[B](λ).

Proof. Take any polynomial ℓ = ℓ(λ) and any efficient adversary A for the ℓ-time
full-domain Legendre problem. For each i ∈ [0, ℓ], we define a hybrid experiment
Hybi that is (implicitly) parameterized by a security parameter λ:

– Hybi: In this experiment, the challenger starts by sampling p, q ←R BPrimesλ
and sets N ← pq. Then, it samples x1, . . . , xℓ ←R Z∗

N . For all j ∈ [i], the
challenger computes βj ←R {−1, 1} and for all j ∈ [i + 1, ℓ], the challenger

computes βj ←
(

xi

p

)
. It gives the tuple (N, (x1, β1), . . . , (xℓ, βℓ)) to A. The

output of the experiment is whatever A outputs.

For all i ∈ {0, . . . , ℓ}, we write Hybi(A) to denote the output distribution of an
execution of Hybi with adversary A (and an implicit security parameter λ). For
convenience, we define the following function:

The algorithm is parameterized by an integer N ∈ N and values z0, z1 ∈ Z∗
N .

RerandN,z0,z1(u ∈ Z∗
N , y ∈ {−1, 1}) :

– Sample r ←R QRN and ρ0, ρ1 ←R {−1, 1}.
– Let x← urzρ0

0 zρ1

1 ∈ Z∗
N and β ← (−1)ρ0+ρ1 · y ∈ {−1, 1}.

– Return (x, β).

10

By definition of the hybrids,

LegAdvℓ[A](λ) = |Pr[Hyb0(A) = 1]− Pr[Hybℓ(A) = 1]|

We now use A to construct an adversary B where

QRDAdv[B](λ) = LegAdvℓ[A](λ) = |Pr[Hyb0(A) = 1]− Pr[Hybℓ(A) = 1]|.

Algorithm B works as follows:

– Algorithm B receives a decisional-quadratic-residuosity challenge (N, x, y)
and samples an index i∗ ←R [ℓ].

– Algorithm B fixes elements z0 ∈ Z∗
N ∖QRN and z1 ∈ Z∗

N ∖JN , using the
sampling techniques described in Section 2.2.

– For each j ∈ [ℓ], Algorithm B now constructs (xj , βj) as follows:

• If j < i∗, sample xj ←R Z∗
N and βj ←R {−1, 1}.

• If j = i∗, set (xj , βj)←R RerandN,z0,z1(x, y).

• If j > i∗, set (xj , βj)← RerandN,z0,z1(1, 1).

– Algorithm B invokesA on input (N, (x1, β1), . . . , (xℓ, βℓ)), and outputs what-
ever A outputs.

In the following analysis, we assume that z1 is a quadratic non-residue mod-
ulo p and a quadratic residue modulo q. The reverse case where z1 is a quadratic
non-residue modulo q and a quadratic residue modulo p follows by an analogous
argument, where we interchange the roles of p and q. Note that the roles of p, q
are symmetric because they are identically distributed (i.e., p, q ←R BPrimesλ),
and moreover, for all x ∈ JN , (xp) = (xq).

We now compute the advantage of B conditioned on a particular value of
i∗ = i. First, we analyze the distribution of values (xj , βj) for all j ∈ [ℓ]∖{i}.
– If j < i, the values (xj , βj) are independent random values in Z∗

N ×{−1, 1},
just as in Hybi−1 and Hybi.

– If j > i, by Lemma 3.4, the values (xj , βj) are distributed exactly as
(
xj , (

xj

p)
)

where xj ←R Z∗
N , just as in Hybi−1 and Hybi.

What remains is to analyze the distribution of the pair (xi, βi). The decisional-
quadratic-residuosity challenger samples p, q ←R BPrimesλ and sets N = pq. It
also samples x←R JN . We consider the two possibilities for (x, y):

– By Lemma 3.4, if y = (xp), then (xi, βi) is distributed exactly as
(
xi, (

xi

p)
)
for

xi ←R Z∗
N . Therefore, the distribution of values (N, x1, . . . , xℓ, β1, . . . , βℓ) is

exactly as in Hybi−1. The output of B is then distributed exactly according
to the output distribution of Hybi−1 for A. Thus, when i∗ = i, Algorithm B
outputs 1 with probability Pr[Hybi−1(A) = 1].

– If y ←R {−1, 1}, then, again by Lemma 3.4, the value xi is distributed exactly
as xi ←R Z∗

N . In addition, since βi = (−1)ρ0+ρ1y, for a value y ←R {−1, 1}
that is independent of ρ0 and ρ1, the value βi is distributed as βi ←R {−1, 1}.
Then the values (N, x1, . . . , xℓ, β1, . . . , βℓ) are distributed exactly as in Hybi.
The output of B is distributed exactly according to the output distribution

11

of Hybi for A. Thus, when i∗ = i, Algorithm B outputs 1 with probability
Pr[Hybi(A) = 1].

Since B samples i∗ ←R [ℓ], our analysis above shows that

ρB,0(λ) =
1

ℓ

∑
i∈[ℓ]

Pr[Hybi−1(A) = 1] and ρB,1(λ) =
1

ℓ

∑
i∈[ℓ]

Pr[Hybi(A) = 1],

where ρB,b(λ) is the function from Definition 3.1. The advantage of Algorithm B
is then

QRDAdv[B](λ) = |ρB,0(λ)− ρB,1(λ)|

=
1

ℓ
|Pr[Hyb0(A) = 1]− Pr[Hybℓ(A) = 1]|

=
1

ℓ
LegAdvℓ[A](λ).

We conclude that

LegAdvℓ[A](λ) = ℓ · QRDAdv[B](λ).

Corollary 3.6 (If QR is hard, full-domain Legendre is hard). For every
polynomial ℓ = ℓ(λ) and every efficient adversary A with ℓ-time full-domain-
Legendre advantage LegAdvℓ[A](λ), there exists an efficient adversary B with
quadratic-residuosity advantage QRAdv[B](λ) where

LegAdvℓ[A](λ) = ℓ · QRAdv[B](λ).

Proof. An immediate consequence of Lemmas 3.2 and 3.5.

4 Secret-Prime Legendre Sequences are Pseudorandom
Under the Quadratic-Residuosity Assumption

In this section, we show that Legendre sequences with a secret prime and random
offsets are pseudorandom, assuming the quadratic-residuosity assumption. This
answers the original question of Damg̊ard [10], up to the choice of offsets. We will
first show (Section 4.1) the stronger statement that a simple generalization of
Damg̊ard’s pseudorandom generator is actually a weak pseudorandom function.
We obtain the Legendre pseudorandom generator, by fixing the evaluation points
of the weak pseudorandom function in advance. We then (Section 4.2) show that
the Legendre pseudorandom generator is secure under quadratic residuosity.

4.1 Analysis of the Legendre Weak Pseudorandom Function

This subsection studies the following construction:

12

Definition 4.1 (Hidden-Prime Legendre Weak PRF). Let λ be a security
parameter. Define the function Lλ : (BPrimesλ × [2λ])× [23λ]→ {−1, 1} where

Lλ((p, x), a) :=

(
x+ a

p

)
.

We define LwPRF = {Lλ}λ∈N to be the hidden-prime Legendre weak pseudoran-
dom function.

Much prior work has conjectured that the public-prime variant of the Legen-
dre PRF [2,3,13,16,18,22] satisfies strong pseudorandomness, where the adver-
sary is able to adaptively choose the inputs to the oracle in the pseudorandom-
ness game. For some of these applications (e.g., [4]), a weak PRF also suffices.

We prove that the hidden-prime Legendre weak PRF Definition 4.1 satisfies
weak pseudorandomness under quadratic residuosity:

Theorem 4.2 (Hidden-Prime Legendre Weak PRF is Secure Under
Quadratic Residuosity). For every efficient ℓ-query algorithm A that breaks
weak pseudorandomness of LwPRF with advantage wPRFAdv[A](λ), there exists
an efficient algorithm B for the quadratic-residuosity problem with advantage
QRAdvℓ[B](λ) and a negligible function negl(·) such that

wPRFAdv[A,LwPRF](λ) = ℓ · QRAdv[B](λ) + negl(λ).

Proof idea. We prove Theorem 4.2 by showing that any ℓ-query adversary that
can break pseudorandomness of the hidden-prime Legendre weak PRF implies
an adversary that can break the ℓ-time full-domain-Legendre problem (Defini-
tion 3.3). We rely on a smudging argument. To illustrate, consider the following
two distributions:

– Legendre weak PRF outputs: In this distribution, an adversary making
exactly ℓ queries sees a random vector a⃗ = (a1, . . . , aℓ)←R [23λ]ℓ and Legendre
symbols (x+a1

p), . . . , (x+aℓ

p), where p←R BPrimesλ and x←R [2λ].

– ℓ-time full-domain Legendre instance: In this distribution, the adver-
sary sees a random vector x⃗ = (x1, . . . , xℓ) ←R Z∗

N and Legendre symbols
(x1

p), . . . , (xℓ

p), where p, q ←R BPrimesλ, N = pq, and x1, . . . , xℓ ←R Z∗
N .

The key argument in the proof is that when ai ←R [23λ], the distribution of
(ai+x mod p) is statistically indistinguishable from (xi mod p) where xi ←R Z∗

N .
In this case, the Legendre symbols from the ℓ-time full-domain Legendre instance
can be used to simulate the weak PRF outputs. Since the Legendre symbols in
the ℓ-time full-domain Legendre instance is computationally indistinguishable
from uniform random, the same applies to the weak PRF outputs and the claim
holds. We now give the proof.

Proof of Theorem 4.2. The key lemma required to prove Theorem 4.2 is the
following:

13

Lemma 4.3. For every polynomial ℓ = ℓ(λ), every efficient ℓ-query algorithm
A that breaks the pseudorandomness of LwPRF with advantage wPRFAdv[A](λ),
there exists an efficient algorithm B for the ℓ-time full-domain Legendre problem
with advantage LegAdvℓ[B](λ) and a negligible function negl(·) where

wPRFAdv[A,LwPRF] = LegAdvℓ[B](λ) + negl(λ).

Proof. Take any polynomial ℓ = ℓ(λ) and let A be an efficient ℓ-query algorithm
for the weak PRF distinguishing game. Without loss of generality, assume that
A makes exactly ℓ queries. Any adversary that makes fewer than ℓ queries can
be generically transformed into one that makes exactly ℓ queries with no loss in
advantage. We begin by defining a sequence of hybrid experiments:

– Hyb0: This is the “pseudorandom” experiment. Namely, the challenger starts
by sampling the following components:

• p←R BPrimesλ and x←R [2λ];

• ai ←R [23λ] for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←
[(

x+a1

p

)
,
(

x+a2

p

)
, . . . ,

(
x+aℓ

p

)]
.

The challenger gives (⃗a, y⃗) to Algorithm A as the answer to its ℓ queries.
Algorithm A outputs a bit b ∈ {0, 1}, which is the output of the experiment.

– Hyb1: Same as Hyb0 except the challenger changes how it samples ai:

• p←R BPrimesλ and x←R [2λ];

• a′i ←R [23λ] and ai ← a′i − x for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←
[(

a′
1

p

)
,
(

a′
2

p

)
, . . . ,

(
a′
ℓ

p

)]
.

– Hyb2: Same as Hyb1 except the challenger changes how it samples a′i:

• p, q ←R BPrimesλ, N ← pq, and x←R [2λ];

• B ←
⌊
23λ/N

⌋
;

• xi ←R ZN , wi ←R [0, B − 1], a′i ← wiN + xi (computed over the integers),
and ai ← a′i − x for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←
[(

x1

p

)
,
(

x2

p

)
, . . . ,

(
xℓ

p

)]
.

– Hyb3: Same as Hyb2 except the challenger samples xi ←R Z∗
N :

• p, q ←R BPrimesλ, N ← pq, and x←R [2λ];

• B ←
⌊
23λ/N

⌋
;

• xi ←R Z∗
N , wi ←R [0, B − 1], a′i ← wiN + xi (computed over the integers),

and ai ← a′i − x for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←
[(

x1

p

)
,
(

x2

p

)
, . . . ,

(
xℓ

p

)]
.

– Hyb4: Same as Hyb3 except the challenger samples y⃗ ←R {−1, 1}ℓ:
• p, q ←R BPrimesλ, N ← pq, and x←R [2λ];

• B ←
⌊
23λ/N

⌋
;

14

• xi ←R Z∗
N , wi ←R [0, B − 1], a′i ← wiN + xi (computed over the integers),

and ai ← a′i − x for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←R {−1, 1}ℓ.
– Hyb5: Same as Hyb4 except the challenger samples xi ←R ZN :

• p, q ←R BPrimesλ, N ← pq, and x←R [2λ];

• B ←
⌊
23λ/N

⌋
;

• xi ←R ZN , wi ←R [0, B − 1], a′i ← wiN + xi (computed over the integers),
and ai ← a′i − x for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←R {−1, 1}ℓ.
– Hyb6: Same as Hyb5 except the challenger changes how it samples a′i:

• p←R BPrimesλ and x←R [2λ];

• a′i ←R [23λ] and ai ← a′i − x for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←R {−1, 1}ℓ.
– Hyb7: Same as Hyb4 except the challenger changes how it samples ai:

• p←R BPrimesλ and x←R [2λ];

• ai ←R [23λ] for all i ∈ [ℓ];

• a⃗← (a1, . . . , aℓ) and y⃗ ←R {−1, 1}ℓ.
This is the “random” experiment.

We write Hybi(A) to denote an output of hybrid Hybi with Algorithm A. We now
show that the outputs of each pair of adjacent experiments are indistinguishable:

– Hyb0(A) and Hyb1(A) are statistically indistinguishable. First, consider the
distribution of ai in the two experiments:

• In Hyb0, ai ←R [23λ].

• In Hyb1, ai ← a′i − x, where a′i ←R [23λ] and x ∈ [2λ].

The statistical distance between these two distributions is 2λ/23λ = negl(λ).
Finally, the vector y⃗ in Hyb1 is constructed exactly as in Hyb0: namely, in
Hyb1, we have x+ ai = x+ a′i − x = a′i. The claim then follows by a hybrid
argument over each ai for i ∈ [ℓ] and the fact that ℓ = ℓ(λ) is polynomially-
bounded.

– Hyb1(A) and Hyb2(A) are statistically indistinguishable. First, consider the
distribution of a′i in the two experiments:

• In Hyb1, a
′
i ←R [23λ].

• In Hyb2, a
′
i = wiN + xi where wi ←R [0, B − 1] and xi ←R ZN .

By construction, the distribution of a′i in Hyb2 is Uniform([0, NB − 1]).
In Hyb2, we have B = ⌊23λ/N⌋. This means 23λ = NB + r where r ∈
[0, N − 1]. Since N < 22λ, the statistical distance between Uniform([23λ])
and Uniform([0, NB − 1]) is bounded by r/23λ < N/23λ < 2−λ = negl(λ).
Finally, the vector y⃗ in Hyb2 is constructed exactly as in Hyb1: namely, in

15

Hyb2, we have for all i ∈ [ℓ],(
a′i
p

)
=

(
wiN + xi

p

)
=

(
wiN + xi mod p

p

)
=

(
xi

p

)
.

The claim then follows by a hybrid argument over each ai for i ∈ [ℓ].

– Hyb2(A) and Hyb3(A) are statistically indistinguishable. The only difference
between these two distributions is the distribution of xi. In Hyb2, each xi is
uniform over ZN while in Hyb3, each xi is uniform over Z∗

N . Since N = pq
is a product of two λ-bit primes, the statistical distance between these two
distributions is (p+ q−1)/N = negl(λ). The claim again follows by a hybrid
argument over each xi for i ∈ [ℓ].

– We show that there exists an efficient adversary B for the ℓ-time full-domain
Legendre problem where

LegAdvℓ[B](λ) = |Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]|. (3)

Algorithm B works as follows:

• On input a modulus N and a challenge (x1, y1), . . . , (xℓ, yℓ), Algorithm
B samples x←R [2λ] and for each i ∈ [ℓ], it samples wi ←R [0, B−1], where
B =

⌊
23λ/N

⌋
. It then sets a′i ← wiN + xi and ai ← a′i− x for all i ∈ [ℓ].

• Algorithm B gives a⃗ ← (a1, . . . , aℓ) and y⃗ ← (y1, . . . , yℓ) to A and out-
puts whatever A outputs.

By definition, the ℓ-time full-domain Legendre challenger samples p, q ←R
BPrimesλ, sets N = pq, and samples x1, . . . , xN ←R Z∗

N . When yi = (xi

p),
then Algorithm B perfectly simulates an execution of Hyb3 and outputs 1
with probability Pr[Hyb3(A) = 1]. When yi ←R {−1, 1}, then Algorithm B
perfectly simulates an execution of Hyb4 and outputs 1 with probability
Pr[Hyb4(A) = 1]. Thus, Eq. (3) holds.

– Hyb4(A) and Hyb5(A) are statistically indistinguishable by the same argu-
ment as used to argue statistical indistinguishability of Hyb2(A) and Hyb3(A).

– Hyb5(A) and Hyb6(A) are statistically indistinguishable by the same argu-
ment as used to argue statistical indistinguishability of Hyb1(A) and Hyb2(A).

– Hyb6(A) and Hyb7(A) are statistically indistinguishable be the same argu-
ment as used to argue statistical indistinguishability of Hyb0(A) and Hyb1(A).

By a hybrid argument, we conclude that there exists a negligible function negl(·)
and an efficient adversary B such that for all λ ∈ N,

PRGAdv[A,LPRG
ℓ](λ) = |Pr[Hyb0(A) = 1]− Pr[Hyb7(A) = 1]|

= LegAdvℓ[B](λ) + negl(λ).

Theorem 4.2 then follows from the fact that breaking the hidden-prime Legendre
weak PRF is as hard as the ℓ-time full-domain Legendre problem (Lemma 4.3)
and the fact that the ℓ-time full-domain Legendre problem is as hard as the
standard quadratic residuosity problem (Corollary 3.6).

16

4.2 Analysis of the Legendre Pseudorandom Generator

We precisely define the secret-prime Legendre pseudorandom generator:

Definition 4.4 (Generalized Hidden-Prime Legendre PRG). Let λ ∈ N
be a security parameter. For a sequence length ℓ and a vector a⃗ = (a1, . . . , aℓ) ∈
Zℓ, we define the length-ℓ generalized hidden-prime Legendre-sequence function
La⃗,ℓ : (BPrimesλ × [2λ]})→ {−1, 1}ℓ as the function

La⃗,ℓ(p, x) :=

[(
x+ a1

p

)
,

(
x+ a2

p

)
, . . . ,

(
x+ aℓ

p

)]
∈ {−1, 1}ℓ.

Then, for any polynomial ℓ = ℓ(λ), we define the set

Lλ,ℓ =
{
La⃗,ℓ | a⃗ ∈ [23λ]ℓ

}
.

We define LPRG
ℓ = {Lλ,ℓ | λ ∈ N} to be the generalized hidden-prime Legendre

pseudorandom generator with output length ℓ.

Comparison to Damg̊ard’s PRG Damg̊ard’s formulation of the Legendre
sequence pseudorandom generator [10] is a special case of Definition 4.4 where
each set Lλ,ℓ is a singleton set containing the function La⃗,ℓ(p, x) where a⃗ =
(1, 2, . . . , ℓ) is a fixed vector, and where we also allow the input p to be any
λ-bit prime. In this work, we consider the function family with random large
offsets a⃗ ∈ [23λ]ℓ and the input prime p is restricted to a Blum prime (i.e., p ≡
3 mod 4). We then reduce the problem of distinguishing the generalized hidden-
prime Legendre pseudorandom generator to the standard quadratic-residuosity
problem. Extending our results to the fixed-offset setting of Damg̊ard’s original
paper remains an interesting open problem.

Our main theorem is the following:

Theorem 4.5 (Generalized Hidden-Prime Legendre PRG is Secure Un-
der Quadratic Residuosity). For all polynomials ℓ = ℓ(λ) and for every
efficient algorithm A that breaks pseudorandomness of LPRG

ℓ with advantage
PRGAdv[A](λ), there exists an efficient algorithm B for the quadratic-residuosity
problem with advantage QRAdvℓ[B](λ) and a negligible function negl(·) where

PRGAdv[A,LPRG
ℓ](λ) ≤ ℓ · QRAdv[B](λ) + negl(λ).

Theorem 4.5 follows by combining Theorem 4.2 with the following standard
lemma:

Lemma 4.6 (Weak PRF Security Implies PRG Security). For all polyno-
mials ℓ = ℓ(λ) and for every efficient algorithm A that breaks pseudorandomness
of LPRG

ℓ with advantage PRGAdv[A](λ), there exists an efficient ℓ-query algorithm
B that breaks weak pseudorandomness of LwPRF with advantage wPRFAdv[B](λ)
where

wPRFAdv[B,LwPRF] = PRGAdv[A,LPRG
ℓ](λ).

17

Proof. We use A to construct an algorithm B as follows:

– On input the function Lλ, Algorithm B makes ℓ queries to the weak PRF
oracle to obtain values (a1, y1), . . . , (aℓ, yℓ).

– Algorithm B sets a⃗ = (a1, . . . , aℓ) and y⃗ = (y1, . . . , yℓ). It gives the function
La⃗,ℓ and the vector y⃗ to A and outputs whatever A outputs.

By definition, the weak PRF challenger samples ai ←R [23λ]ℓ for all i ∈ [ℓ]. This
means the function La⃗,ℓ is distributed uniformly over the set Lλ,ℓ. Consider now
the distribution of y1, . . . , yℓ:

– If yi = (x+ai

p) where x←R [2λ] and p←R BPrimesλ are the components of the

weak PRF key, then y⃗ = La⃗,ℓ(p, x). Thus, Algorithm B perfectly simulates
the pseudorandom distribution for A and outputs 1 with probability ρA,0(λ),
where ρA,0 is the function from Definition 2.2.

– If yi ←R {−1, 1}, then Algorithm B perfectly simulates the truly random
distribution for A and outputs 1 with probability ρA,1(λ), where ρA,1 is the
function from Definition 2.2.

We conclude that

wPRFAdv[B,LwPRF] = |ρA,0(λ)− ρA,1(λ)| = PRGAdv[A,LPRG].

5 Open Questions

This paper leaves a number of questions open:

– Prior work assumes the security of the Legendre pseudorandom function
when instantiated with a public prime modulus [2,3,13,16,18,22]. How does
this assumption relate to other number-theoretic assumptions?

– Is there a better-than-exponential-time classical attack on the Legendre
pseudorandom generator, in either the public- or secret-prime setting? There
is a quantum polynomial-time attack on the Legendre pseudorandom func-
tion [16], given superposition queries [24] to the function. This attack does
not apparently affect the Legendre pseudorandom generator.

– Given a quadratic-residuosity oracle, is there an efficient attack on the Leg-
endre pseudorandom generator? Prior work [9] shows an efficient attack on
the Jacobi pseudorandom function, given a factoring oracle.

– Is it possible to construct a key-exchange protocol from the assumption that
Legendre sequences are pseudorandom?

Acknowledgments.We thank Brent Waters for insightful discussions about the
quadratic-residuosity assumption and in particular, the proof of Theorem A.2.
This work was funded in part by NSF and gifts from Capital One, Facebook,
Google, Microsoft, Mozilla, NASDAQ, Seagate, and MIT’s FinTech@CSAIL Ini-
tiative.

18

References

[1] N.S. Aladov. Sur la distribution des résidus quadratiques et non-
quadratiques d’un nombre premier p dans la suite 1, 2, . . . , p − 1. Matem-
aticheskii Sbornik, 18(1):61–75, 1896.

[2] Marshall Ball, Justin Holmgren, Yuval Ishai, Tianren Liu, and Tal Malkin.
On the complexity of decomposable randomized encodings, or: How friendly
can a garbling-friendly PRF be? In ITCS, pages 86:1–86:22, 2020.

[3] Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto. Crypt-
analysis of the Legendre PRF and generalizations. IACR Trans. Symmetric
Cryptol., 2020(1):313–330, 2020.

[4] Ward Beullens and Cyprien Delpech de Saint Guilhem. LegRoast: Efficient
post-quantum signatures from the Legendre PRF. In PQCrypto, pages 130–
150, 2020.

[5] Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable
pseudo-random number generator. SIAM J. Comput., 15(2):364–383, 1986.

[6] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and
their application to cryptography (extended abstract). In CRYPTO, pages
283–297, 1996.

[7] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-
key encryption under subgroup indistinguishability - (or: Quadratic residu-
osity strikes back). In CRYPTO, pages 1–20, 2010.

[8] David A Burgess. The distribution of quadratic residues and non-residues.
Mathematika, 4(2):106–112, 1957.

[9] Henry Corrigan-Gibbs and David J. Wu. The one-wayness of Jacobi signa-
tures. In CRYPTO, 2024.

[10] Ivan Damg̊ard. On the randomness of Legendre and Jacobi sequences. In
CRYPTO, pages 163–172, 1988.

[11] Harold Davenport. On the distribution of quadratic residues (mod p). Jour-
nal of the London Mathematical Society, 1(1):49–54, 1931.

[12] Harold Davenport. On the distribution of quadratic residues (mod p). Jour-
nal of the London Mathematical Society, 1(1):46–52, 1933.

[13] Dankard Feist. Legendre pseudo-random function, 2019. https://

legendreprf.org/.
[14] Paul Frixons and André Schrottenloher. Quantum security of the Legendre

PRF. Mathematical Cryptology, 1(2):52–69, 2021.
[15] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to

play mental poker keeping secret all partial information. In STOC, pages
365–377, 1982.

[16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. MPC-friendly symmetric key primitives. In ACM CCS,
pages 430–443, 2016.

[17] Richard H Hudson. On the first occurrence of certain patterns of quadratic
residues and non-residues. Israel Journal of Mathematics, 44(1):23–32, 1983.

https://legendreprf.org/
https://legendreprf.org/

[18] Novak Kaluj.erović, Thorsten Kleinjung, and Dušan Kostić. Cryptanalysis
of the generalised Legendre pseudorandom function. In Algorithmic Number
Theory Symposium, 2020.

[19] Dmitry Khovratovich. Key recovery attacks on the Legendre PRFs within
the birthday bound. IACR Cryptol. ePrint Arch., 2019.

[20] Rene Peralta. On the distribution of quadratic residues and nonresidues
modulo a prime number. Mathematics of Computation, 58(197):433–440,
1992.

[21] René Peralta and Eiji Okamoto. Faster factoring of integers of a special
form. IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, 79(4), 1996.

[22] István András Seres, Máté Horváth, and Péter Burcsi. The Legendre pseu-
dorandom function as a multivariate quadratic cryptosystem: Security and
applications. IACR Cryptol. ePrint Arch., 2021.

[23] Victor Shoup. A computational introduction to number theory and algebra.
Cambridge University Press, 2006.

[24] Wim van Dam and Sean Hallgren. Efficient quantum algorithms for shifted
quadratic character problems. arXiv preprint quant-ph/0011067, 2000.

[25] Brent Waters, 2024. Personal communication.
[26] André Weil. On some exponential sums. Proceedings of the National

Academy of Sciences, 34(5), 1948.
[27] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-

tended abstract). In FOCS, pages 80–91, 1982.

A Hardness of Quadratic Residuosity for Blum Integers

Goldwasser and Micali [15] defined the quadratic-residuosity assumption relative
to a standard RSA modulus N = pq. In this work, we consider the formulation
by Blum, Blum, and Shub [5] where N is a Blum integer. A folklore claim
(c.f., [7, Footnote 7]) says that because the Blum integers have constant density
among random RSA modulus, the quadratic-residuosity assumption relative to
RSA moduli implies the quadratic-residuosity assumption for Blum integers.

Since the implication was not immediate to us, we include a formal proof of
this statement here for completeness. This proof was described to us by Brent
Waters [25] and we are grateful that he has allowed us to include it here.

A.1 An Algorithm that Solves QR Modulo Blum Integers
Might Not Solve QR Modulo Arbitrary RSA Moduli

We first show that an algorithm that solves quadratic residuosity with respect
to a Blum integer might not not simultaneously solve quadratic residuosity with
respect to a random RSA modulus. To illustrate this, we show that there could
exist an efficient algorithm A that has advantage 1 at solving quadratic resid-
uosity modulo Blum integers and advantage 0 at solving quadratic residuosity
modulo arbitrary RSA moduli.

One such algorithm A could have the following behavior:

20

– Let ν(λ) < 1/2 be the density of Blum integers among RSA moduli that are
the product of λ-bit primes. Suppose that on input a Blum integer N and a
challenge x,

• if x ∈ QRN , algorithm A outputs 1, and

• if x ∈ JN∖QRN , algorithm A outputs 0.

In particular, Algorithm A has advantage 1 for solving quadratic residuosity
with respect to Blum integers.

– Take any positive constant ε < 1 − 2ν(λ). Suppose that on input a non-
Blum-integer N = pq and a challenge x,

• if x ∈ QRN , Algorithm A outputs 1 with probability ε/(1− ν(λ)), and

• if x ∈ JN∖QRN , Algorithm A outputs 1 with probability (ν(λ)+ε)/(1−
ν(λ)).

If we then consider the behavior of Algorithm A on a random RSA modulus,
which might or might not be a Blum integer, we find that:

– if x ∈ QRN , Algorithm A outputs 1 with probability

ρA,0(λ) = ν(λ) · 1 + (1− ν(λ)) · ε/(1− ν(λ)) = ν(λ) + ε,

and

– if x ∈ JN∖QRN , Algorithm A outputs 1 with probability

ρA,1(λ) = ν(λ) · 0 + (1− ν(λ)) · (ν(λ) + ε)/(1− ν(λ)) = ν(λ) + ε = ρA,0(λ).

As such, the advantage of Algorithm A for breaking quadratic residuosity with
respect to a random RSA modulus is 0, even though it has advantage 1 at
breaking quadratic residuosity with respect to a Blum integer. In other words,
because quadratic residuosity is a decisional assumption, the behavior of A on
non-Blum-integers N can potentially exactly counteract the advantage of A on
Blum integers, yielding an adversary with no overall advantage.

A.2 Waters’ Proof that QR Modulo Blum Integers
is as Hard as QR Modulo Arbitrary RSA Moduli

We now give a proof that quadratic residuosity modulo Blum integers is indeed
as hard as quadratic residuosity modulo arbitrary RSA moduli. This proof was
described to us by Brent Waters [25].

Definition A.1 (Quadratic Residuosity for RSA Moduli). Let Primesλ
be the set of λ-bit primes. For an algorithm A, security parameter λ, and bit
b ∈ {0, 1}, we define ρA,b(λ) to be

ρA,b(λ) := Pr

A(N, xb) = 1 :

p, q ←R Primesλ

N ← pq

x0 ←R QRN , x1 ←R JN∖QRN

 .

21

We define the quadratic-residuosity advantage with respect to RSA moduli of an
algorithm A as:

QRAdvRSA[A](λ) := |ρA,0(λ)− ρA,1(λ)| .

Theorem A.2 (QR for RSA moduli implies QR for Blum integers).

Let δ(λ) := |BPrimesλ|
|Primesλ| be the density of Blum primes. Then, for every efficient

quadratic-residuosity adversary A with respect to Blum integers, there exists an
efficient quadratic-residuosity adversary B with respect to RSA moduli where

QRAdvRSA[B](λ) ≥ δ(λ)2 · QRAdv[A](λ).

Proof. Let A be an efficient quadratic-residuosity adversary with respect to
Blum integers. Let NonBPrimesλ = Primesλ∖BPrimesλ be the set of non-Blum-
primes (i.e., the primes p where p ≡ 1 mod 4). For a bit b ∈ {0, 1}, we define the
following two quantities:

ρBlumA,b (λ) := Pr

A(N, xb) = 1 :

p, q ←R BPrimesλ

N ← pq

x0 ←R QRN , x1 ←R JN∖QRN


ρNonBlumA,b (λ) := Pr

A(N, xb) = 1 :

p, q ←R NonBPrimesλ

N ← pq

x0 ←R QRN , x1 ←R JN∖QRN

 .

By definition,
QRAdv[A](λ) =

∣∣ρBlumA,0 (λ)− ρBlumA,1 (λ)
∣∣ .

For β ∈ {0, 1}, we define an Algorithm Bβ as follows:

– Algorithm Bβ receives a quadratic-residuosity challenge (N, x) from the chal-
lenger. First, if N ≡ 3 mod 4, then Algorithm Bβ outputs 0.

– Otherwise, if N ≡ 1 mod 4, then Algorithm Bβ runs Algorithm A on input
(N, (−1)β · x) and outputs whatever A outputs.

Certainly, if Algorithm A is efficient, then Algorithm Bβ is efficient. We now
compute the advantage of Algorithm Bβ .
– Suppose the challenger samples x←R QRN . We consider three subcases:

• Suppose N ≡ 3 mod 4, then Algorithm Bβ always outputs 0.

• Suppose N = pq and p ≡ q ≡ 1 mod 4. In this case, −1 ∈ QRN , so the
distribution of x is Uniform(QRN). In this case, Algorithm Bβ outputs 1
with probability ρNonBlumA,0 (λ).

• Suppose N = pq and p ≡ q ≡ 3 mod 4. In this case, −1 ∈ JN ∖QRN .
Thus, if β = 0, then the distribution of x is Uniform(QRN) whereas if
β = 1, then the distribution of x is Uniform(JN ∖QRN). We conclude
that Algorithm Bβ outputs 1 with probability ρBlumA,β (λ).

We conclude then that Algorithm Bβ outputs 1 with probability

ρB,0(λ) = (1− δ(λ))2 · ρNonBlumA,0 (λ) + δ(λ)2 · ρBlumA,β (λ).

22

– Suppose x ∈ JN∖QRN . We consider the same three subcases:

• Suppose N ≡ 3 mod 4, then Algorithm Bβ always outputs 0.

• Suppose N = pq and p ≡ q ≡ 1 mod 4. Then the distribution of x is
Uniform(JN∖QRN), so Algorithm Bβ outputs 1 with probability ρNonBlumA,1 (λ).

• Suppose N = pq and p ≡ q ≡ 3 mod 4. If β = 0, the distribution of x
is Uniform(JN ∖QRN) whereas if β = 1, then the distribution of x is
Uniform(QRN). We conclude that Algorithm Bβ outputs 1 with proba-
bility ρBlumA,1−β(λ).

We conclude then that Algorithm Bβ outputs 1 with probability

ρB,1(λ) = (1− δ(λ))2 · ρNonBlumA,1 (λ) + δ(λ)2 · ρBlumA,1−β(λ).

Next, define the functions

εBlum(λ) := ρBlumA,0 (λ)− ρBlumA,1 (λ)

εNonBlum(λ) := ρNonBlumA,0 (λ)− ρNonBlumA,1 (λ).

Then, the advantage of Algorithm B0 and B1 can be written as

QRAdvRSA[B0](λ) = |ρB0,0(λ)− ρB0,1(λ)|
=
∣∣(1− δ(λ))2 · εNonBlum(λ) + δ(λ)2 · εBlum(λ)

∣∣
QRAdvRSA[B1](λ) = |ρB1,0(λ)− ρB1,1(λ)|

=
∣∣(1− δ(λ))2 · εNonBlum(λ)− δ(λ)2 · εBlum(λ)

∣∣ .
Since the sign of εNonBlum either matches the sign of εBlum or the sign of −εBlum,
we conclude that there exists β ∈ {0, 1} such that

QRAdvRSA[Bβ] ≥ δ(λ)2 · |εBlum(λ)| = δ(λ)2 · QRAdv[A](λ).

Finally, as p → ∞, the density of Blum primes tends to 1
2 (c.f., [23, The-

orem 5.21]). Combined with Theorem A.2, this shows that hardness of the
quadratic residuosity assumption with respect to general RSA moduli implies
hardness of quadratic residuosity with respect to Blum integers.

23

	Legendre Sequences are Pseudorandom under the Quadratic-Residuosity Assumption
	1 Introduction
	2 Background
	2.1 The Quadratic-Residuosity Problem
	2.2 Sampling Quadratic Residues and Non-Residues
	2.3 Standard Definitions of Pseudorandomness

	3 New Variants of Quadratic Residuosity
	3.1 Decisional Quadratic Residuosity is as Hard as Standard Quadratic Residuosity
	3.2 The Full-Domain-Legendre Problem is as Hard as Standard Quadratic Residuosity

	4 Secret-Prime Legendre Sequences are Pseudorandom Under the Quadratic-Residuosity Assumption
	4.1 Analysis of the Legendre Weak Pseudorandom Function
	4.2 Analysis of the Legendre Pseudorandom Generator

	5 Open Questions

	References
	A Hardness of Quadratic Residuosity for Blum Integers
	A.1 An Algorithm that Solves QR Modulo Blum Integers Might Not Solve QR Modulo Arbitrary RSA Moduli
	A.2 Waters' Proof that QR Modulo Blum Integers is as Hard as QR Modulo Arbitrary RSA Moduli

