
1

AutoHoG: Automating Homomorphic Gate Design
for Large-Scale Logic Circuit Evaluation

Zhenyu Guan, Member, IEEE, Ran Mao, Qianyun Zhang, Member, IEEE, Zhou Zhang, Zian Zhao, and Song
Bian, Member, IEEE

Abstract—Recently, an emerging branch of research in the field
of fully homomorphic encryption (FHE) attracts growing atten-
tion, where optimizations are carried out in developing fast and
efficient homomorphic logic circuits. While existing works have
pointed out that compound homomorphic gates can be constructed
without incurring significant computational overheads, the exact
theory and mechanism of homomorphic gate design have not yet
been explored. In this work, we propose AutoHoG, an automated
procedure for the generation of compound gates over FHE. We
show that by formalizing the gate generation procedure, we can
adopt a match-and-replace strategy to significantly improve the
evaluation speed of logic circuits over FHE. In the experiment, we
first show the effectiveness of AutoHoG through a set of bench-
mark gates. We then apply AutoHoG to optimize common Boolean
tasks, including adders, multipliers, the ISCAS’85 benchmark
circuits and the ISCAS’89 benchmark circuits. We show that for
various circuit benchmarks, we can achieve up to 5.7× reduction
in computational latency when compared to the state-of-the-art
implementations of logic circuits using conventional gates.

Index Terms—homomorphic encryption, compound gate design,
circuit synthesis, logic replacement

I. INTRODUCTION

COMPUTING over homomorphically encrypted data is
drawing increasing attention across different academic

disciplines, ranging from cryptography, security, and machine
learning to hardware design and electronic design automation
(EDA). The main reason that the EDA community is involved
in the development of fully homomorphic encryption (FHE)
is because of the fact that computing over FHE is funda-
mentally similar to that over electronic devices. Therefore,
design philosophies devised for integrated circuits can easily
be ported to formulate new methods of computing over FHE
ciphertexts [1]–[3]. In particular, we see rising interest in the
design and optimization of logic circuits over FHE [3], [4],
since non-linear operations are the main bottleneck in FHE
applications [5], [6].

We thank the anonymous reviewers and shepherds for their helpful feedback.
This work was partially supported by the National Key R&D Program of

China (2023YFB3106200), the National Natural Science Foundation of China
(62002006, 62172025, U21B2021, 61932011, 61932014, 61972018, 61972019,
62202028, U2241213). This work is also supported by Huawei Technologies
Co., Ltd.

Corresponding author is Song Bian.
Z. Guan, R. Mao, Q. Zhang, Z. Zhang, Z. Zhao and S. Bian are

with School of Cyber Science and Technology, Beihang University, Beijing
100191, China (e-mail: guanzhenyu@buaa.edu.cn; maoran 44@buaa.edu.cn;
zhangqianyun@buaa.edu.cn; zhouzhang@buaa.edu.cn; zhaozian@buaa.edu.cn;
sbian@buaa.edu.cn).

The main motivation behind the design of logic circuits stems
from the fact that logic operations are intrinsically slower than
arithmetic tasks. Here, we take the comparison between the
amount of 16-bit multiply-accumulate [7] (MAC) (a typical
type of arithmetic operation) and single-bit AND gates [8] (a
clear logic operation) that can be homomorphically evaluated
within a second as an example. While the computational com-
plexity of MAC is at least 16× (on the basis of bit width) than
that of 1-bit AND, using the-state-of-the-art implementations,
we can achieve a running speed of homomorphic MAC that is
more than 22,000× higher than that of homomorphic AND. As
it turns out, the cost of the homomorphic evaluation of poly-
nomial and non-polynomial circuits are extremely imbalanced.

To narrow the gap between polynomial and non-polynomial
homomorphic evaluations, there are two existing approaches:
one is to use polynomial approximation [6], [9], and the
other is based on designated logic circuit [10]. While the
polynomial approximation can attain sufficient accuracy with
lower computational costs in certain applications [6], the ap-
proximation error renders such an approach impractical for
high-precision logic circuits which can be widely found in HE
applications [11]–[13]. Meanwhile, the other lane of research
investigates how to improve the efficiency of logic evaluation,
notably works related to the torus FHE (TFHE) scheme [3]–
[5], [10], [14], [15]. In particular, it was first shown in [4]
that certain compound logic gates (e.g., a full adder) can be
homomorphically evaluated at the same computational cost as
standard cells (e.g., an AND). Consequently, we can reduce
the overall costs of logic circuit evaluation by substituting con-
catenated standard cells with low-cost compound homomorphic
gates.

Unfortunately, the gate derivation in [4] appears to be rather
empirical. We point out two important questions that were left
unanswered in previous works on homomorphic logic circuits.
First, it is not known if the compound gates and non-linear
functions derived in [4] and [8] represent the complete set of
homomorphic logic elements that are computable under the
TFHE scheme, especially under parameter variation. Second,
most existing works only provide decryptability analyses for
TFHE ciphertexts under certain homomorphic evaluations. In
other words, while we know that we can construct certain
compound gates under a given the TFHE parameter set, we
do not have formal noise analyses of why such gates are
permitted, and if the same analyses apply to other types of
compound homomorphic gates. Consequently, we are much in

2

Server

Client

Encryption Decryption

Fig. 1. The protocol illustration for a round of homomorphic evaluation. Here,
the client first encrypts certain inputs and sends them to the server. The server
then performs operations on the ciphertext and sends the modified ciphertext
back to the client. Upon decryption, the client gets the same the result as if
the execution is performed locally on its plaintext inputs.

need of concrete theories and design methodologies for FHE-
based Boolean circuit designs.

In this work, we propose AutoHoG, an automated algorithm
for the generation of homomorphic compound logic gates
from a predefined set of FHE parameters. The insights and
contributions of this work are summarized as follows.

• Automatic Gate Generation: We establish a general
procedure for automatically generating compound logic
gates over FHE schemes. Using such a procedure, we
develop the AutoHoG framework to automatically replace
simple gates with the generated compound gates.

• Gate Decryptability Formulation: To enable the above
automatic gate generation procedure, we provide a theo-
retical formulation of the noise growth characteristics for
the derived compound logic gates.

• Applying to Complex Logic Circuits: In the experiment,
we show that, using the generated gates, the evaluation
latency of homomorphic circuits can be reduced by as
much as 5.7× compared to the state-of-the-art methods.
Our code is publicly available1.

The rest of this paper is organized as follows. First, in Sec-
tion II, we introduce preliminaries on FHE over logic circuits.
Second, the AutoHoG framework is outlined in Sections III,
where we detail the exact procedures for the automatic gate
generation algorithms and gate decryptability derivations. Next,
examples of generated gates along with circuit performance
are presented in Section IV. Finally, we conclude our work in
Section V.

II. PRELIMINARIES AND RELATED WORKS

A. Notations

Similar to previous works on FHE over the learning with er-
rors (LWE) problem [16], [17], we use integers p to denote the
plaintext modulus and integer q the ciphertext modulus. Integer
n refers to the lattice dimension of integer LWE ciphertexts,
and N is the lattice dimension of RLWE ciphertexts.

Besides, we note that a sequence of gates (i.e., a Boolean
circuit) can be represented by a directed acyclic graph (DAG),
where a cut refers to a set of graph nodes that can be mapped
onto some Look-Up Tables (LUTs) [18]. In this work, we use
the terms cut and sequence of gates interchangeably.

1https://github.com/Lavendes/AutoHog

B. Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is an advanced cryp-
tographic scheme that allows arbitrary computations to be
performed directly on encrypted data without the need of trans-
ferring secret keys. Almost all known FHE schemes are based
on hard lattice problems [19], [20], mostly on the (variants of)
LWE problem [16]. Lattice-based FHE enjoys a high level of
security, as cryptographic primitives built over LWE are known
to have worst-case to average-case reductions [21], [22] and are
secure against quantum attacks [16], [17].

As illustrated in Fig. 1, a typical protocol based on FHE starts
with the client sending some encrypted inputs to the server for
further processing. The guarantee here is that computations over
ciphertexts generate encrypted outcomes that, when decrypted,
are the same as the results produced by a set of desired opera-
tions executed on the plaintexts. FHE has critical applications
in various areas, particularly in scenarios involving sensitive
information processed on untrusted servers, such as secure
computation outsourcing [13] and privacy-preserving machine
learning [5], [7], [23].

Despite numerous optimization strategies [23]–[27], homo-
morphic encryption still faces key challenges hindering its
practical use. In particular, the computational complexity and
ciphertext expansion limit the deployment of FHE in delay-
sensitive or bandwidth-limited applications.

C. Bootstrapping and Types of FHE

Bootstrapping [19] is required for LWE-based HE schemes
to actually be fully homomorphic. Specifically, for a ciphertext
encrypting some plaintext message, applying bootstrapping on
the ciphertext generates another ciphertext that encrypts the
same plaintext message with a reduced ciphertext noise level.
Bootstrapping is known to be a very costly operation in terms
of latency and memory consumption.

Based on the differences in the exact bootstrapping process,
we can divide existing FHE schemes [9], [20], [28]–[32] into
two subcategories: arithmetic FHE and logic FHE. Here, we
take CKKS [9] and TFHE [29] as representative examples
of arithmetic and logic FHE schemes, respectively. In CKKS,
bootstrapping is done through polynomial approximation. Here,
the ciphertext modulus is first raised to a relatively large size
(e.g., ≥ 600 bits). Then, an approximate sine function is
evaluated, such that the level of the noise can be reduced [33].
While CKKS bootstrapping can be efficient when batching
a large number of plaintext messages, the per-bootstrapping
latency is relatively high [34]. For example, using the CKKS
bootstrapping technique [35], it takes a CPU 903 seconds to
precisely bootstrap a 420-bit message, which translates to an
average bootstrapping speed of 2.15-bit per second.

Differing from the arithmetic approach, TFHE-like logic
FHE directly applies non-linear operations on the FHE ci-
phertexts using techniques such as blind rotation [29]. The
process of blind rotation is to homomorphically rotate an
encrypted vector by a certain amount, such that the zeroth
element in the decrypted vector corresponds to the original
plaintext message. As a result, logic FHE not only enjoys lower

3

LUT()

LWE0

LWE1

LWE -1

...

Post
Process LWETLinear

HomGate

Client Server

Verilog
module add(c, a, b);
input [4:0] a, b;
output [4:0] sum;
output cout;

LWE = Enc(a)
LWE = Enc(b)

0

1

Inputs
a, b,

Ciphertext

-1h...

Fig. 2. A conceptual illustration for the workflow of the two-party homomor-
phic evaluation over logic gates as originally proposed in [29]. The evaluation
of a homomorphic logic gate consists primarily of three steps: i) Linear: a linear
combination of the input ciphertext, ii) LUT: a LUT evaluation performed
through the ciphertext, iii) Post Processing: Operations restoring the ciphertext
parameters to the original state, including the key switch process. The entire
evaluation process is conducted on the server side.

per-ciphertext bootstrapping latency [34], but is also highly
flexible in applying non-linear logic functions [8]. For logic
FHE [29], [30], the state-of-the-art implementation can evaluate
bootstrapping at a speed of 62.5-bit per second [10], nearly 30×
faster than arithmetic FHE for high-precision bootstrapping.
Therefore, TFHE-like FHE schemes are generally preferred for
homomorphic tasks that mainly evaluate logic circuits [5], [11].
While the parameterization and operator designs for arithmetic
FHE have already become relatively well-understood [36], the
potential in the capability of logic FHE is still under extensive
research [3]–[5], [15].

As one of the important optimizations, homomorphic evalu-
ation of a single-bit gate can be achieved through two additions
for the input ciphertexts and a TFHE bootstrapping [29].
Specifically, two inputs and a constant offset are added together
to determine the rotation degree during the blind rotation, while
the output of the logic gate is encrypted as the vector to rotate
(more details are discussed in Section II-D). [4] expanded
this scheme to accommodate more compound gates, such as
Full Adder and AOI21, by exploiting the additional degrees
of freedom of the underlying linear relation. Nonetheless,
[4] did not investigate the core mechanism for homomorphic
gate generation, and it is not known if such gate designs are
optimal. Therefore, the main objective of this work is to further
explore the fundamental theories and practical applications of
compound homomorphic gate designs.

D. Homomorphic Logic Gate Construction

Evaluation Procedure for Homomorphic Gate: Here, we
first provide a high-level description of the homomorphic gate
evaluation process, and explain some of the key operators later
in this section. As abstractly shown in Fig. 2, the homomor-
phic gate evaluation mainly consists of three steps: i) linear
combination Linear of a set of h input LWE ciphertexts, ii)
the so-called LUT evaluation of the linearly combined result
LUT(Linear(LWE0, · · · ,LWEh−1)), and iii) a post-processing
stage that carries out the key switching procedure. In i),

0 1 2
3

4
5
6
7

9
10

11
12

131415161718
19

20
21

22
23
24
25
26

27
28

29 30 31

± q
2

－q
4+ q

4
m0

m1m

1m

0

m0m0 ...m1m1 ... {

8 Copies0

8

Dec

Fig. 3. The construction of LUT(T) that corresponds to the bootstrapping of
the plaintext message m encrypted by LWEm, where m can take two possible
values, namely m0 and m1. Here, T = {m0,m1} represents the identity
function, N = 16. Dec is the decryption function. The [N, 2N) part is the
negative of [0, N).

Linear computes a linear combination between the input LWE
ciphertexts, i.e.,

Linear(LWE0, · · · ,LWEh−1)

= w0 · LWE0 + · · ·wh−1 · LWEh−1 =

h−1∑
i=0

wi · LWEi + offset,

(1)

where + is homomorphic addition and · is homomorphic
constant multiplication. Here, both the set of weights W =
{w0, w1, · · · , wh−1} and offset are plaintext.

Since the post-processing stage is not directly related to the
contributions of this work, we omit the details to simplify our
presentation (more details can be found in [4], [29]).

LWE Ciphertext: An LWE ciphertext can be represented as
LWEm = (a, b) ∈n+1

q , an n + 1 dimensional integer (modulo
q) vector encrypting some plaintext message m ∈p. It holds
that

b = (a · s+∆m+ e) mod q, (2)

where a ∈n
q is a uniform random vector, s ∈n

{0,1} is a
uniform random vector over the set {0, 1}, ∆ ≤ ⌊q/p⌋ ∈ is
a scaling factor and e is some noise. Specifically, we define the
decryption function as

Dec(LWEm) = b− (a · s) mod q = ∆m+ e. (3)

Since e is sufficiently small, we can calculate m = ⌊∆m+e
∆ ⌉.

We note that, in all LWE ciphertexts. e is sampled from a
discrete Gaussian distribution with standard deviation σ, and
is added during the fresh encryption process. Homomorphic
function evaluation amplifies the noise level until the cipher-
text becomes undecryptable. Therefore, as discussed in earlier
works [2], [29] and further elaborated in Section III-D, automat-
ing noise estimation is essential in the design of homomorphic
functions.

Lookup Table: As mentioned above, bootstrapping in
TFHE-like FHE schemes [29], [37] is essentially the homo-
morphic rotation of an encrypted LUT, where the LUT is
the encryption of some polynomial generated by table T . In

4

Netlist to Graph

Error Analysis

LUT
Construction

Security Analysis

Preprocess

MISO Gate
Construction

netlist Conversion

1

Logic Replacement 4Truth Table Matching2

Gate Generation3

Parameter Analysis |T | ≤

T

Combination5

max

max

Every node is
 traversed Sort

Replacement

MIMO Gate
Construction

parameter
graph

graph
true

false gate sequence

graph

graph

true

Truth Table
Generation

truth table

gate sequence

false

Fig. 4. An overview on the proposed AutoHoG framework with five steps: ➀ Netlist to Graph transforms a netlist into a directed acyclic graph, ➁ Truth Table
Matching analyzes the graph by examining gate sequences and generating truth tables, ➂ Gate Generation generates MISO compound gates based on the truth
tables, ➃ Logic Replacement replaces the sequences of gates that match with the compound gates generated in ➂ and ➄ Combination replaces multiple MISO
gates with a single MIMO gate. The resulting graph represents a circuit that has been optimized to have a smaller size, as compared to the original circuit.

practice, we initialize the LUT encrypting some table T =
{t0, t1, · · · , tℓ−1} as the following degree-N polynomial

LUT(T) = Enc(
N−1∑
i=0

τix
i) = Enc(

ℓ−1∑
i=0

N/ℓ−1∑
j=0

tix
j+N/ℓ·i), (4)

where x denotes the variable for the univariate polynomial, and
T is a set of ℓ integers, and n is the lattice dimension specified
in Section II-A.A conceptual illustration of the LUT rotation
process is depicted in Fig. 3, where table T is equivalent to the
identity function (i.e., t0 = 0, t1 = 1, and so on).

The input of the LUT is the ciphertext calculated by the
Linear function, denoted as LWEm. This ciphertext encrypts the
plaintext message m. Let ∆ ·m = Dec(LWEm). The key idea
of TFHE-like logic bootstrapping is first to fill LUT(T) with all
possible values of m (in Fig. 3, m can either be m0 or m1).
Then, we can homomorphically evaluate x∆m, and compute
LUT(T) · x∆m. With an appropriate choice of parameters, we
have that ∆ · m = ∆ ·m + ϵ for some approximation error ϵ,
and multiplying the LUT(T) with x∆m gives us

LUT(T) · xEnc(∆m) = Enc(
n−1∑
i=0

τix
i · x∆m+e mod xn + 1)

(5)

= Enc(
n−1∑
i=0

(±1)τ(i+∆m+e) mod 2N · xi),

(6)

where Enc is the encryption function. Here, as long as we can
make sure that τ0+∆m = ∆m when LUT(T) is generated,
the zeroth coefficient in the shifted polynomial automatically
encode the plaintext message ∆m. Using Fig. 3 as an example,
when ∆m = 3 and the norm of the approximation error ||ϵ|| ≤
3, m = ∆m + ϵ is within the range of 0 to 7. If we set all
of the coefficients of x0, · · · , x7 in the LUT(T) polynomial to
be m0, the rotation LUT(T) · x∆m will always have m0 as the
coefficient of the constant term.

E. LUT Technology Mapping
LUT mapping is an important step in field-programmable

gate array (FPGA) design. A typical procedure for LUT map-
ping involves the following steps [38]: i) cut enumeration, ii)

delay-optimum mapping, iii) area recovery and iv) writing out
the resulting LUT network. Cut enumeration [38], [39] is a
prevalent cut computation approach. For FPFAs with K-input
LUTs, mapping involves computing K-feasible cuts for each
two-input internal node. Unfortunately, this process becomes
computationally intensive and storage intensive when the circuit
sizes and K values become large. Some structural algorithms,
like FlowMap [40] and CutMap [41], use the maximum-flow
algorithm to find one optimal cut per node, reducing memory
usage but increasing computational complexity and potentially
mapping area. In contrast, some hardware synthesis tools, such
as ABC [42], employ various optimization algorithms, includ-
ing priority cut mapping [18], [43] and cut pruning [39], [44]
to reduce the memory usage. Despite these efforts, practical
constraints restrict the value of cut enumeration typically to
be K ≤ 8 due to computational and storage limitations.
Second, in the delay-optimum mapping step, the computed
cuts are sorted based on some specific order. Third, for area
recovery, we first note that solving for an exact solution of
the area minimization problem is categorized as NP- hard [45],
rendering it intractable for larger circuits. Subsequently, various
heuristics for approximate area minimization during mapping
have been proposed, demonstrating promising results [46], [47].
Here, to reduce the mapping area, existing works [46] employ
greedy strategies to iteratively modify the representative cuts
of the nodes. Finally, the resulting network, where each and
every node is covered by some LUT, is returned.

While LUT technology mapping shares similarity to the
automated homomorphic gate generation problem, the differ-
ence lies in the fact that homomorphic compound gates can
have a relatively large number of inputs when compared to
semiconductor gates. Hence, for cuts with the number of inputs
less than 5, the two problems are virtually equivalent. However,
as sketched in Table III, homomorphic compound gates can
have up to 32 inputs. As a result, the K-cut optimization
algorithm needs to map cuts into a 32-input LUT, which
requires a prohibitive amount of storage. Thus, it can be
hard to directly apply conventional LUT technology mapping
algorithms in optimizing homomorphic circuits.

5

III. AUTOHOG: AUTOMATED HOMOMORPHIC GATE
GENERATION

Here, we first provide an overview of each of the compo-
nents in our framework in Section III-A. Next, the automatic
construction methodology for multi-input single-output (MISO)
and multi-input multi-output (MIMO) gates are explained in
Section III-B and Section III-C, respectively. Finally, details
on security analyses are presented in Section III-D.

A. Procedure Overview

An illustration of the AutoHoG procedure is provided in
Fig. 4, which contains five main subcomponents: ➀ Netlist
to Graph, ➁ Truth Table Matching, ➂ Gate Generation, ➃
Logic Replacement, and ➄ Combination. First, ➀ Netlist to
Graph converts a circuit netlist into a DAG, which is similar
to that in conventional circuit synthesis flow. Second, ➁ Truth
Table Matching traverses the graph and outputs one truth table
that expresses the logic of a sequence of gates to be replaced.
After receiving the truth table from ➁, ➂ Gate Generation
tries to construct one multi-input single-output homomorphic
compound gate that completely matches the above truth table
while meeting the security and accuracy requirements. Then,➃
Logic Replacement replaces the matching sequences of gates
with the homomorphic compound gates generated in ➂ in a
decremental manner based on the number of gates replaced.
Finally, the ➄ Combination step reduces the circuit size by
replacing the generated MISO compound gates with multi-
input multi-output logic gates, producing a circuit DAG as the
output of the overall AutoHoG framework. In what follows, we
provide further details on each of the subcomponents.

➀ Netlist to Graph: First, we use the Netlist to Graph block
to represent the circuit netlists as DAGs such that compound
gates can be identified more easily. As mentioned above, the
Netlist to Graph procedure is much similar to that in the
conventional synthesis flow, where logic wires (i.e., input-
output ports) are the nodes, and logic gates are the edges
that connect the nodes. We numbered the nodes in a natural
sequential order as they appear in the circuit graph.

➁ Truth Table Matching: The Truth Table Matching algo-
rithm iterates over each node in the given DAG to identify the
longest sequence of gates that can be represented by a single
homomorphic logic gate. We first take the largest numbered
node in the graph as the input, a gate sequence is created with
the input node as its member. We employ a graph traversal
algorithm to sequentially add the preceding nodes of the input
node into the gate sequence. Every time a gate is added to the
sequence, we generate the truth table associated with the gate
sequence. Then, we proceed to Component ➂ to check if such
a truth table can be constructed using one MISO homomorphic
compound gate. If Component ➂ reports that such a gate
cannot be constructed, or if the newly added nodes in the
sequence are part of the circuit inputs, the algorithm aborts.
Then, the gate sequence and the homomorphic gate constructed
in the previous iteration by Component ➂ is returned. The
process is repeated until every node in the graph has been
traversed.

➂ Gate Generation: The Gate Generation block contains
two sub-components: the parameter analysis and the gate
construction steps. The parameter analysis is composed of error
analysis and security analysis, where we check if a set of TFHE
parameters meets the required decryption accuracy and security
standard. The output of the parameter analysis step is ℓmax,
i.e., the maximum possible values LUT(T) can contain under
such a parameter set (the maximum |T |). More details on the
parameter analysis can be found in Section III-D. This step
is a one-time operation performed during the setup phase of
the proposed workflow. Then, upon receiving the truth table,
we follow Algorithm 1 to execute the LUT Construction step,
where we construct a look-up table T for the input truth
table. The critical condition that T needs to be satisfied is
that |T | ≤ ℓmax. If such condition is not met, we report
to ➁ Truth Table Matching component and re-execute the
matching process. More details on the construction of T and
the homomorphic compound gates are available in III-B.

➃ Logic Replacement: The Logic replacement block simply
replaces the sequence of gates matched in ➁ by the MISO com-
pound gate generated in ➂. The replacement process begins
with the sequence having the largest number of gates. Whenever
a node is replaced, the corresponding gate sequence is emptied
before the next sort. The replacement block generates a new
DAG with the corresponding gates replaced.

➄ Combination: With a fully replaced DAG in hand, we
use Combination to further reduce the number of gates in the
logic circuit. We point out that TFHE is capable of constructing
multi-output gates, and we optimize the circuit by combining
multiple MISO gates to form MIMO gates. Hence, we search
for logic gates that have the same inputs in the final DAG
given by ➃. A more detailed explanation on the construction
of MIMO gate can be found in Section III-C.

Complexity Analysis for AutoHoG: The time complexity
of the AutoHoG framework can be expressed as:

T (s) = K
s−1∑
i=0

Hi, (7)

where s is the number of gates in the circuit, K is a constant
related to the chosen security parameter, and Hi is the time re-
quired to generate the i-th gate, which will be further explained
in Section III-B.

In most cases, the gate generation time H for each node
can be considered as a constant. Additionally, since the circuit
graph is traversed only once, the time complexity of AutoHoG
can be expressed as O(s). In other words, the time consumption
of the AutoHoG framework is linear to the size of the circuit.

B. Multi-Input Single-Output Gate Construction

In this subsection, we explain the construction of a homo-
morphic logic gate in accordance with a given truth table.

Construction of Table T : The construction of table T is
the key step in building a logic gate over FHE. As depicted in
Fig. 3, T is basically a sequence of logic 0’s and 1’s. Every
logic value in the sequence represents the output of a particular
combination of inputs, i.e., a row in some given truth table.

6

TABLE I
TABLE T FOR LOGIC FUNCTION Y = a ∧ b ∨ c ∨ (¬d)

WITH Linear = 2a+ 2b+ 4c+ d+ 9/2

a b c d Linear T Y

−1/2 −1/2 −1/2 −1/2 0 1 1

−1/2 −1/2 −1/2 1/2 1 0 0

−1/2 −1/2 1/2 −1/2 4 1 1

−1/2 −1/2 1/2 1/2 5 1 1

−1/2 1/2 −1/2 −1/2 2 1 1

−1/2 1/2 −1/2 1/2 3 0 0

−1/2 1/2 1/2 −1/2 6 1 1

−1/2 1/2 1/2 1/2 7 1 1

1/2 −1/2 −1/2 −1/2 2 1 1

1/2 −1/2 −1/2 1/2 3 0 0

1/2 −1/2 1/2 −1/2 6 1 1

1/2 −1/2 1/2 1/2 7 1 1

1/2 1/2 −1/2 −1/2 4 1 1

1/2 1/2 −1/2 1/2 5 1 1

1/2 1/2 1/2 −1/2 8 1 1

1/2 1/2 1/2 1/2 9 1 1

Let F be the truth table, and assume that the i-th row in the
truth table is (Xi = {xi,0, · · · , xi,h−1}, Yi ∈ {0, 1}) where
F (Xi) = Yi. The main task in building T is then to find a
group of weights W = {w}, such that, for all rows in T ,

T [LinearW (xi,0, · · · , xi,h−1)] = T [

h−1∑
j=0

wjxi,j] = Yi. (8)

In other words, T represents a de-duplicated rearrangement of
Y indexed by LinearW (X). The objective is to establish the
mapping map : LinearW (X) → Y , under the condition that

LinearW (Xi) = LinearW (Xj) =⇒ yi = yj

∀i, j ∈ {0, 1, . . . , 2h − 1}. (9)

Note that LinearW (Xi) = W ·Xi is essentially an un-encrypted
version of Eq. (1).

In Table I, we take a four input logic gate Y = a∧b∨c∨(¬d)
as an example to better explain the above description. The
input values are encoded from {0, 1} to {− 1

2 ,
1
2}. We set

W = {2, 2, 4, 1} with the constraint that a and b are considered
equivalent within the scope of this logical function. Addition-
ally, an offset of 9

2 is utilized to guarantee the minimum value
of the index of T is set to zero. Consequently, we derive T
as {1, 0, 1, 0, 1, 1, 1, 1, 1, 1}, where each value in the set T
corresponds to the output value of the truth table. Hence, if
the outcome of Linear is 8 (i.e., {a, b, c, d} = { 1

2 ,
1
2 ,

1
2 ,−

1
2}),

we can effortlessly locate the index 8 in T to obtain the output
value 1, corresponding to Y = 1 ∧ 1 ∨ 1 ∨ (¬0).

To accomplish the above objective, we derive a table con-
struction procedure as given in Algorithm 1. First, on line 2–4
we set the weights of the inputs that are irrelevant to the output
to be 0. If the truth table obtained by inverting a certain input
is the same as the original truth table, we consider such inputs
to be irrelevant to the output. Next, on line 5–9, we test for
irrelevant inputs by exchanging the order of inputs in the truth

Algorithm 1: LUT Construction Algorithm
Input : Truth table: X={X0, X1, . . . Xh−1};Y
Output: Linear combination weights: W = {w0, w1, . . . wh−1};T

1 Initialize Group
2 for i = 0 to h− 1 do
3 if Y [Xi] = Y [Xi] then
4 Add i to Group0
5 for i = 0 to h− 1 do
6 if i not in any Group then
7 for j = i+ 1 to h− 1 do
8 if Y [Xi,j] = Y [Xj,i] then
9 Add j to Groupi

10 if i in Group0 then wi = 0;
11 if i, j in same Group then wi = wj ;
12 g = number of distinct groups
13 Wsample ← Permutations({0, 1, 2, 4, . . . 2h−1}, g)
14 foreach Wtemp in Wsample do
15 if Eq. (9) holds then Ttemp[LinearWtemp (X)] =Y;
16 if |Ttemp| ≤ |T | then T = Ttemp;W = Wtemp;
17 return W,T

table. If we can obtain an equivalent truth table even if the order
of inputs is swapped, we consider such a pair of inputs to be
equivalent. Here, we use Groupi to denote the i-th equivalent
input group. Finally, on line 10–17, we identify the values of
W that minimize |T |. Here, on line 10–11, the inputs from the
same group are first set to have identical weight values, while
inputs allocated to distinct groups are assigned with unique
weight values. Then, on line 12–13, we calculate the total
number of distinct groups, and generate the permutations over
the set {0, 1, 2, 4, . . . , 2h−1}, representing the set of samples for
W . Here, Permutations(S, g) computes the full permutation of
g elements chosen from the set S. Lastly, on line 14–17, all
samples in the set Wsample are tested, and the permutation that
results in the minimum |T | while meeting Eq. (9) is recorded.
Ultimately, the algorithm concludes by returning the result with
the minimum |T |.

After identifying the distinct input groups, the task of con-
structing T can be equivalently transformed into an integer
programming problem, expressed as:

Minimize |T |
Subject to
Eq. (9) holds

0 ≤ wi ∀i ∈ {0, 1, . . . , 2h−1},
wi = 0 ∀i ∈ Group0,

wi = wj ∀i, j in same Group,

and

W ∈h

(10)

The conditions imposed by Eq. (9) and the requirements of
values assigned to W serve as the constraints in the integer pro-
gramming problem. The objective is to determine the optimal
value of the integer vector W , which minimizes |T |. A typical
non-linear solver can be used to generate an (approximate) op-
timal W . A subtle difference between Algorithm 1 and Eq. (10)
is the range of wi. In Algorithm 1, we sample weights from
the set {0, 1, 2, 4 . . . , 2h−1}, while Eq. (10) samples weights
from all the integers between 0 and 2h−1. This more flexible

7

approach allows the solver to explore a broader set of W values,
potentially leading to better outcomes.

Correctness Analysis for Gate Generation: Eq. (8) holds
if the mapping between the Linear results and the truth table
is satisfied. The mapping is achieved by appropriately setting
the offset and weights for each input combination. The offset is
set to make the smallest sum of products in Linear to be zero,
while the weights differentiate the different inputs(i.e., Xi) and
their corresponding truth table results. For a single input, the
weight w1 should be at least 1 to distinguish the two possible
input value {− 1

2 ,
1
2} and the offset = −min(w1× (− 1

2)) =
1
2 .

As a result, Linear = {0, 1}. For two inputs, to differentiate
not only the two possible values of a single input (i.e., X0 = 0
or X0 = 1) but also between the two different inputs (i.e., X0

and X1), w2 needs to be equal to 2, while the offset is given
by −min(w1+w2×(− 1

2)) =
3
2 . The output of Linear function

is {0, 1, 2, 3}. If the two inputs are equivalent, i.e., in the same
group as depicted in Algorithm 1, they can share the same
weight since there is no need to distinguish between them. The
parity argument suggests that for an h-input gate, a sequence
of weights that satisfy the necessary conditions for the logic
function to hold will always exist. Specifically, the sequence of
weights will be of the form {w0, · · · , wh−1}, where each wi ∈
{0, 20, · · · , 2h−1}, and the linear mapping satisfies Eq. (8) with
the interval for each output is 1.

Complexity Analysis for Gate Generation: The most
time-consuming part of the algorithm is the weight sampling
process on line 14–16. The loop iterates through all possible
permutations of W and records T that satisfy Eq. (9). The result
with the shortest length is determined through comparison. The
input size of Algorithm 1 is denoted by h, which is the length
of the inputs, and the group number is g. In the worst case, this
process involves a full permutation of g elements from a set of
h elements, resulting in a time complexity that is proportional
to the total number of possible permutations, which is

H(h, g) = O(
h!

(h− g)!
). (11)

Despite the high level of computational complexity, in practice,
h and g are typically small due to the encryption parameters
satisfying the necessary security and accuracy requirements.

Negacyclic Property: The polynomial multiplication opera-
tion involved in the LUT rotation takes place under the modular
arithmetic of the 2N-th cyclotomic polynomial. Therefore, it
presents a negacyclic property [24], denoting that a polynomial
p satisfies p · xN = −p. As depicted in Fig. 3, ∆m and
∆m + N are situated in opposite positions, suggesting an
inverse correlation between their corresponding values. This
characteristic is leveraged to achieve a smaller T . We search
from the middle of the table backward until an ℓ is judged in
accord with the set:

ti = ¬ ti+ℓ (i = {0, 1, . . . , |T | − 1− ℓ}, |T |
2

≤ ℓ ≤ |T |)
(12)

The T is updated to T = {t0, t1, . . . tℓ}. The rest part is
regarded as the (N, 2N] coefficients of the polynomial, which
equals the inversion of T .

m0 e0

...
m1 e1

mh-1 eh-1

m e
0

m e’
02N

Linear

LUT Evaluation

Post Processing

rounding error

0q

q

mout eout

0

𝔪

𝔪

q

Fig. 5. Variation of noise in the homomorphic evaluation. The noise is a
product of the given input noise (blue) and the rounding error inherent in the
computations (red).

C. Multi-Input Multi-Output Gate Construction

Multi-value Bootstrapping: The idea of multi-value boot-
strapping described in [48] is a technique to evaluate multiple
LUTs at the cost of a single bootstrapping. We observe that such
a technique can easily be integrated into our framework, such
that multiple MISO gates can be merged to form one MIMO
gate. Recall that, the rotation of LUT(T) can be expressed as

LUT(T) · xEnc(∆m) = Enc(
ℓ−1∑
i=0

N/ℓ−1∑
j=0

tix
j+N/ℓ·i · x∆m) (13)

= Enc((

N/ℓ−1∑
i=0

xi · x∆m) ·
ℓ−1∑
i=0

tix
N/ℓ·i). (14)

The main observation is that
∑N/ℓ−1

i=0 xi can be regarded as
a common factor for different tables T . The LUT evaluation
is divided into two parts: the expensive homomorphic rotation
over the common factor, and the cheap multiplication with a
polynomial constructed by a given T . To evaluate multiple
LUTs, we can re-run Post Processing several times without
repeating the LUT rotation step, which is the most time-
consuming step in gate bootstrapping. In other words, in multi-
value bootstrapping, we can generate multiple outputs at the
cost of only one bootstrapping.

Single-Output Gate to Multi-Output Gate Combination:
Using multi-value bootstrapping, we can combine multiple
logic gates sharing the same inputs into one multi-output logic
gate, where all gates share the same weight W . Hence, the
objective here is to find a W so that multiple output mappings
can be implemented simultaneously. Concretely, suppose we
have k gates sharing the same inputs, where the truth table
outputs are labeled as Yj for j ∈ {0, · · · , k − 1}. Based
on Algorithm 1, we first obtain k independent sets of MISO
linear combination weights, namely {W0, · · · ,Wk−1} for each
{Y0, · · · , Yk−1}. Then, we can merge the gates if there exists
a corresponding lookup table Tj such that at least one of the
Wi satisfies

Tj [LinearWi(Xi)] = Yj , (15)

for j ̸= i. Note that we do not need Eq. (15) to hold for
every j ∈ {0, · · · , k − 1}. However, the more gates that meet
Eq. (15), the better acceleration ratios we can get. Eventually,

8

TABLE II
PARAMETER SETTING AND SECURITY IN DIFFERENT WORKS

Technique LUT(T) LWE
λ (bit)

log2 q N log2 q n

TFHE
32 1024 32 630 ≥ 127Remeo

WAHC 636
AutoHoG 64 2048 32 667 ≥ 127

TFHE
WAHC
AutoHoG

14x

7x

1x

10x

5x

1x

7x

4x

1x

2x

1x

8

2x

1x

3x

Fig. 6. Performance comparisons on a set of 5-, 6-, 16-, 24- and 32-input
benchmark gates between AutoHoG and existing works. All tests considered
are restricted to single input gate designs and allow for only one bootstrapping
operation to construct the logic expressions. We are able to achieve a speedup
of up to 7.4 ×.

a maximum of k× improvement in evaluation speed can be
achieved if Eq. (15) holds for all j ̸= i. Additionally, some
small gates with different inputs can also be combined into
MIMO gates. Their inputs are irrelevant and are combined as
a new input to the MIMO gate.

D. Security Analyses

In this section, We first perform an evaluation of the security
of the AutoHoG framework. Then we provide a theoretical
analysis of the noise growth characteristics during the homo-
morphic gate evaluation, In particular, we show how such noise
determines the size of the plaintext space, which in turn decides
what kind of lookup tables T can be evaluated using a single
homomorphic compound gate.

Security of AutoHoG: We point out that no additional se-
curity vulnerabilities are induced by the AutoHoG framework.
The security of the AutoHoG procedure can be directly reduced
to that of the underlying TFHE scheme, as the homomorphic
evaluation of a logic gate is essentially a TFHE-like boot-
strapping. The level of security is primarily influenced by the
selection of the encryption parameters, such as the modulus
and the ciphertext dimension, as well as the noise level in the
ciphertexts. In general, larger parameter sizes and lower noise
levels can provide stronger security assurances but also lead to
increased computational complexity.

Gate Decryptability Analyses: As shown in Fig. 5, for an
input LWE ciphertext, the ciphertext noise is mainly amplified
by the Linear and LUT procedures. Given the modulus q,
the scaling factor ∆, the LWE dimension n and the LUT(T)

dimension N , we can derive the noise growth characteristic as
follows.

Error(output) ≈ 2N

q
Error(input) + RoundingError. (16)

In the LUT procedure, there is a step where we map a ciphertext
LWE = (a, b) from q to 2N . Let e be the initial noise contained
in (a, b), this step re-scales the noise e to e′ = 2N

q e. In
parallel, convert (a, b) to (⌊ 2N

q a⌉], ⌊ 2N
q b⌉), which introduces

a new noise caused by rounding. By simply adjusting the FHE
encryption parameters (i.e., N and q), e′ can be made small.
Note that a is an n-dimensional vector, and each element
introduces a rounding error. Thus, the RoundingError is, in
fact, the accumulation of n rounding noises. As rounding errors
follow a uniform distribution, the distribution of RoundingError
can be described as the sum of n uniformly distributed random
variable. Hence, the probability that RoundingError is greater
than (or equal to) a certain threshold E can be expressed as:

P (RoundingError ≥ E) =

1− 1

2nrnn!

k∑
i=0

(−1)i
(

n
i

)
(E + nr − 2ir)n, (17)

where r = q
4N×∆ and k = rn+E

2r [49]. Based on the maximum
error rate that can be accepted, we can calculate E . In order to
get the correct result in LUT evaluation, each 2E consecutive
segments in LUT(T) should have the same logic value (e.g.,
2E = 8 in Fig. 3). Consequently, we get ℓmax = ⌊ N

2E ⌋

IV. EXPERIMENT

A. Experiment Setup

Here, we compare the circuit evaluation latency between
AutoHoG and existing works, notably TFHE [29], WAHC [4]
and Remeo [3]. We apply AutoHoG to a set of standard bench-
mark circuits, including adders, multipliers (i.e., C6288), the IS-
CAS’85 [50] benchmark circuits and the ISCAS’89 [51] bench-
mark circuits. The experiments for TFHE [29], WAHC [4] and
AutoHoG are performed on a single core of the Intel Xeon Gold
6226R processor with 503 GBytes of RAM and the results of
Romeo are directly taken from [3].

The parameters instantiated in AutoHoG and existing works
are summarized in Table II. We doubled the dimension of
LUT(T), and adjusted other parameters to reduce noise. This
parameter is estimated to achieve 127-bit security by lwe-
estimator [52], which is similar to existing works [3], [4], [29].
Although doubling dimensions N makes the running time of
one bootstrapping expansion more than twice, using the replace
strategy can still perform well in large-scale circuits.

B. Gate Benchmarks and Performance Comparisons

First, we summarize evaluation latency on a set of benchmark
compound logic gates in Fig. 6. Since we can use only
one bootstrapping to construct all of the tested MISO logic
expressions, we can obtain as much as 7.4× speedup. From
the TFHE parameters and gate decryptability analyses, we get

9

TABLE III
EXAMPLES OF HOMOMORPHIC BENCHMARK GATES WITH ℓmax = 32

input number weights expression

≥33 [0,0,0. . . 0,0,0] Y = 0;Y = 1

32 [1,1,1. . . 1,1,1] Y1 = X1 ∧X2 ∧ · · · ∧X31 ∧X32;Y2 = X1 ∨X2 ∨ ... ∨X31 ∨X32

24 [1,1,1. . . 1,1,32] Y = X1 ∨X2 ∨ · · · ∨X23 ⊕X24

16 [1,2,2. . . ,2,2,2] Y1 = X1 ∧X2 ⊕ · · · ⊕ ¬((X16);Y2 = ¬(X1) ∨X2 ∧ · · · ∧X16

8 [1,1,1,1,8,8,8,8] Y1 = ¬((X1 ∧ · · · ∧X4)⊕ (X5 ∨ · · · ∨X8);Y2 = ¬((X1 ∨ · · · ∨X4)⊕X5 ⊕ · · · ⊕X8

6
[1,2,4,4,8,8] Y = X1 ⊕ (X1 ∨X2)⊕ (X3 ∧X4) · · · ⊕X6

[1,1,4,4,4,4] Y = (X1 ∨X2) ∧ (X3 ∨X4 ∨X5 ∨X6)

≤5 All 5,4,3,2,1 input gate

4-bit-adder c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552
0

10

20

30

40

tim
e

(s
)

TFHE
WHAC
Romeo
AutoHoG

0.10 0.100.060.04

8.99 8.51
6.46

1.49

35.71

45.81

23.73

8.06

Fig. 7. Performance comparisons on ISCAS’85 benchmark circuits between AutoHoG and existing works. Our proposed approach has demonstrated a maximum
improvement of up to 5.7×. While the actual acceleration ratios achieved may vary depending on the specific circuit topology, AutoHoG remains capable of
outperforming most existing methods, as demonstrated by an average speedup of 2.8×.

0 1000 2000 3000
Number of gates

0

500

1000

1500

2000

2500

3000

3500

G
at

e
ge

ne
ra

tio
n

tim
e

(s
)

c17
c432

c499 c880

c1355

c1908

c2670

c3540

c5315

c6288

c7552

Fig. 8. Circuit replacement time of ISCAS’85 benchmark circuits. The
horizontal axis represents the number of logic gates in the original circuit, while
the vertical axis indicates the total time required to complete the replacement
process after entering a netlist. As a general trend, the time consumption
increases proportionally with the original circuit size.

ℓmax = 32, i.e., we are able to construct logic gates with up
to 32 inputs. However, the main reason that such large input
gates can be evaluated is that the logic expressions contain
many irrelevant or equivalent inputs.

Second, in order to effectively demonstrate the benchmark
gates, we provide some specific logic expressions in Table III.

First of all, we point out that in a tree of AND or OR gates,
all inputs are equivalent. In such structures, all weights can
be assigned to the value of 1, allowing for the evaluation
of one compound gate with up to 32 inputs with only one
gate bootstrapping. Meanwhile, the 8-input and 16-input gates
give two expressions that share identical weights, enabling
the construction of MIMO gates. Finally, our decryptability
analyses in Section III-D show that one gate bootstrapping
operation is sufficient to evaluate arbitrary gates with up to
five inputs. We note that, when ℓmax = 32, it is impossible
to generate all gates with six or more inputs. For instance,
consider the logic expression Yexample = X1∧(¬X2)⊕((X3)∨
(¬X4))⊕X5∨(¬X6). This expression can only be represented
with W = {1, 2, 4, 6, 8, 16, 32}, leading to |T | = 61. Even with
the utilization of a solver, the minimum |T | is 40, much larger
than ℓmax. As a result, Yexample cannot be expressed through
a linear combination with the given parameter. Like Yexample,
gates with six or more inputs involving few or no irrelevant
inputs must have some large weights, leading to a |T | larger
than lmax, which makes them impossible to be constructed.

Last but not least, we conducted a comparison experiment
between Algorithm 1 and the Z3 SMT solver [53]. On average,
the Z3 SMT solver achieves the same level of latency reduction
compared to Algorithm 1, but requires much longer running

10

s386 s420 s713 s820 s1196 s1238 s1488 s5378 s13207 s15850 s35932 s38584

100

101

102

TFHE
WHAC
Romeo
AutoHoG

7.11
4.93

3.69

1.51

209.56
189.85

322.19

65.69

lo
g

 (t
im

e)
 (s

)
10

Fig. 9. Performance comparisons on ISCAS’89 benchmark circuits between AutoHoG and existing works.The execution time is the amortized execution cost
per cycle over 10 cycles. Our proposed approach has demonstrated a maximum improvement of up to 5.2×.

TABLE IV
EVALUATION TIME OF ISCAS’89 BENCHMARK CIRCUITS

Benchmark TFHE(s) WAHC(s) ROMEO(s) AutoHoG(s)

s27 0.14 0.12 0.09 0.11
s298 2.06 1.48 0.20 0.60
s344 1.77 1.50 0.38 0.58
s349 1.87 1.58 0.31 0.67
s382 2.50 1.65 0.73 0.56
s386 3.16 1.81 0.99 0.54
s400 2.60 1.69 0.73 0.55
s420 2.76 2.03 1.79 0.94
s444 2.84 2.06 0.82 0.60
s510 3.50 2.76 0.74 1.02
s526 4.32 3.00 0.50 1.03
s641 2.67 1.96 2.10 1.25
s713 3.40 2.49 2.25 1.39
s820 7.12 4.94 3.69 1.50
s832 7.71 5.34 2.59 1.61
s838 5.68 4.13 2.47 1.89
s953 5.93 4.54 2.43 1.69
s1196 6.44 4.32 5.00 1.55
s1238 6.62 4.38 3.83 1.81
s1423 8.40 6.64 3.79 2.79
s1488 12.66 8.04 4.80 1.70
s5378 23.15 16.35 4.64 3.15
s9234 40.25 30.64 12.65 11.18
s13207 53.28 41.99 85.28 22.84
s15850 66.71 61.92 114.03 30.11
s35932 209.56 189.85 322.19 65.69
s38584 231.75 162.80 351.93 92.21

time. For instance, when applying AutoHoG to the c432
benchmark circuit, both algorithms are able to reduce the circuit
latency from 3.00 s to 1.39 s. However, Algorithm 1 only takes
122 s, while the Z3 SMT solver takes 2223 s (roughly 18×
faster). In addition, we also compare the two algorithms on the

larger c3540 circuit. Here, AutoHoG completes the replacement
process using Algorithm 1 in 1509 s, reducing the latency from
21.82 s to 5.60 s. In comparison, the Z3 SMT solver did not
finish running within 12 hours, and we terminated its exe-
cution. Therefore, although integer programming solvers can
generate better homomorphic compound gates as mentioned in
Section III-B, the practical efficacy can be limited.

C. Circuit Performance Comparisons and Generation Time

We apply the generated gates to the ISCAS’85 circuit
benchmark [50], and the latency results are summarized in
Fig. 7. We observe that AutoHoG outperforms existing works
on all circuits in ISCAS’85, with as much as 5.7× speedup
compared to [4] and 4.3× over [3]. However, the concrete
acceleration ratios can depend on circuit topology. For example,
for the c1355 circuit, where we obtain a significant latency
reduction, we discover that such reduction is mainly due to the
large number of multi-stage NAND trees in the circuit. The
reduction in latency is mainly due to the presence of certain
structures in the circuit. This may make it difficult to fully
utilize homomorphic logic gates to replace existing structures
in the circuit. Despite such variations, AutoHoG is still able
to outperform most existing works with an average speedup of
2.8×.

We present the time required to replace each circuit in Fig. 8.
The computational cost of the gate replacement process is
usually directly proportional to the size of the original circuit.
Meanwhile, as indicated in Eq. (11), the impact of adding a
substantial number of gates to the sequence in the Truth Table
Matching process can lead to longer processing times. This
issue is particularly pronounced when encountering a large
number of multi-input gates within a given netlist, such as the
multiple eight-input gates presented in c1908.

We also apply AutoHoG to the ISCAS’89 circuit bench-
mark [51], and the results are depicted in Fig. 9. For se-
quential circuits with flip flops, we adopt the same gate re-
evaluation technique proposed in [3]. Numbers annotated

11

1

1
1

2
2

2

2

3

3
3

4

4
4

(a) (b) (c)

Hom
Gate1

Hom
Gate2

Hom
Gate3

Hom
Gate4

Hom
Gate5

(d)
Fig. 10. The illustration of a sub-circuit in c432. (a) is the original Verilog gate-level netlist. (b) and (c) are the optimized circuits generated by Roemo and
WAHC, respectively. (d) is the circuit optimized by AutoHoG based on (a). Here, gates with the same label are replaced by a single compound homomorphic
gate, and gates with the same color are combined into a multi-output gate.

−7σ −4σ 0 4σ 7σ-

0.05

0.1

0.15

0.2

0.25

0.3

Pr
ob

ab
ilit

y
De

ns
ity

LUT Error
Rounding Error

Fig. 11. The simulated probability distributions of the LUT errors and
theoretical rounding errors exhibit notable similarities. The theoretical upper
bound on the noise E lies within the range of 4 to 7 times the standard deviation
(σ) of the noise, which is far enough from the simulated results.

in Fig. 9 indicate the amortized execution cost per cycle
over ten clock cycles. We see that, for most reasonably-large
circuits (circuits with ≥ 100 gates), AutoHoG outperforms
existing works in ISCAS’89, achieving up to 5.2× speedup
compared to [4] and 4.9× over [3]. However, we do see that
for small circuits, AutoHoG exhibits a marginal slowdown
compared to Romeo [3], attributed to the longer running time
per gate bootstrapping due to the different parameter setups. In
more complex circuits, such as s35932 and s38584, AutoHoG
demonstrates a substantial advantage over [3], [29] and [4].
The full comparison results of the ISCAS’89 benchmark are
summarized in Table IV.

In Fig. 10, we take a portion of the c432 benchmark, namely
Module M5, as an example to better explain the comparison
with prior works. Module M5 is a 9-line-to-4-line priority
encoder, and Fig. 10a is its Verilog gate-level netlist. Fig. 10b
illustrates the circuit converted from the Verilog code through
RTL synthesis and compiled into an encrypted circuit using
Romeo [3], and Fig. 10c depicts the homomorphic circuit
optimized by WAHC [4]. First, we note that TFHE [29] and
Romeo [3] execute nearly identical circuits as they share
the same homomorphic gate library. Next, we observe that
the circuit generated by [4] is slightly more optimized. In
comparison, Fig. 10d illustrates the circuit optimized using

AutoHoG. The gates sharing the same label in Fig. 10a are
replaced by a single homomorphic gate (e.g., the gates labeled
with ➀ are replaced by HomGate1), while gates colored the
same way are combined into a multi-output gate (e.g., the
gates colored in grey are combined into a two-output gate,
HomGate5). Hence, we demonstrate that using AutoHoG the
number of gates in c432 M5 can be reduced from 26 to 5 (more
than 5× reduction in the number of gates).

D. Results on Noise Distribution

In addition to latency results, we empirically verified the
proposed decryptability analyses using 100K Monte Carlo
simulations for the decryption of the proposed gates, and the
probability density for the error is given in Fig. 11. We note two
facts. First, we confirm that the total noise in LUT evaluation
is dominated by the rounding noise. Second, the theoretical
upper bound on the noise E is far enough from the simulated
results, and corresponds to a decryption failure probability that
is < 10−6.

V. CONCLUSION

We propose AutoHoG, an automated procedure to generate
compound gates and optimize large-scale logic circuits over
FHE. We formalize the mechanism of homomorphic gate
design and develop gate replacement policies that help reduce
the overall circuit evaluation latency. We demonstrate that,
compared to the state-of-the-art homomorphic gate designs, Au-
toHoG can greatly boost the performance of the homomorphic
evaluation over large-scale logic circuits.

REFERENCES

[1] S. Bian, M. Hiromoto, and T. Sato, “Scam: Secured content addressable
memory based on homomorphic encryption,” in 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2017, pp.
984–989.

[2] ——, “Darl: Dynamic parameter adjustment for lwe-based secure in-
ference,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2019, pp. 1739–1744.

[3] C. Gouert and N. G. Tsoutsos, “Romeo: conversion and evaluation of
hdl designs in the encrypted domain,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2020, pp. 1–6.

12

[4] K. Matsuoka, Y. Hoshizuki, T. Sato, and S. Bian, “Towards better standard
cell library: Optimizing compound logic gates for tfhe,” in Proceedings of
the 9th on Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2021, pp. 63–68.

[5] W.-j. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “Pegasus: bridging
polynomial and non-polynomial evaluations in homomorphic encryption,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 1057–1073.

[6] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi,
“Low-complexity deep convolutional neural networks on fully homomor-
phic encryption using multiplexed parallel convolutions,” in International
Conference on Machine Learning. PMLR, 2022, pp. 12 403–12 422.

[7] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 809–826.

[8] I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap, “Improved programmable
bootstrapping with larger precision and efficient arithmetic circuits for
tfhe,” in Advances in Cryptology–ASIACRYPT 2021: 27th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6–10, 2021, Proceedings, Part III 27.
Springer, 2021, pp. 670–699.

[9] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in ASIACRYPT, 2017, pp. 409–
437.

[10] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila, and S. Tap, “CONCRETE:
Concrete operates on ciphertexts rapidly by extending tfhe,” in WAHC
2020-8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2020.

[11] R. Banno, K. Matsuoka, N. Matsumoto, S. Bian, M. Waga, and K. Sue-
naga, “Oblivious online monitoring for safety ltl specification via fully
homomorphic encryption,” in Computer Aided Verification: 34th In-
ternational Conference, CAV 2022, Haifa, Israel, August 7–10, 2022,
Proceedings, Part I. Springer, 2022, pp. 447–468.

[12] T. Hackenjos, F. Hahn, and F. Kerschbaum, “SAGMA: secure aggregation
grouped by multiple attributes,” in Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020. ACM, 2020, pp.
587–601. [Online]. Available: https://doi.org/10.1145/3318464.3380569

[13] K. Matsuoka, R. Banno, N. Matsumoto, T. Sato, and S. Bian, “Virtual
secure platform: A five-stage pipeline processor over tfhe.” in USENIX
Security Symposium, 2021, pp. 4007–4024.

[14] A. Guimarães, E. Borin, and D. F. Aranha, “Revisiting the functional
bootstrap in TFHE,” IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2021, no. 2, pp. 229–253, 2021. [Online]. Available: https:
//doi.org/10.46586/tches.v2021.i2.229-253

[15] S. Gorantala, R. Springer, S. Purser-Haskell, W. Lam, R. Wilson,
A. Ali, E. P. Astor, I. Zukerman, S. Ruth, C. Dibak et al., “A general
purpose transpiler for fully homomorphic encryption,” arXiv preprint
arXiv:2106.07893, 2021.

[16] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, p. 34, 2009.

[17] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning
with errors over rings,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2010, pp. 1–23.

[18] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in 2007 IEEE/ACM Interna-
tional Conference on Computer-Aided Design. IEEE, 2007, pp. 354–361.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in STOC,
2009, pp. 169–178.

[20] Z. Brakerski, “Fully homomorphic encryption without modulus switching
from classical gapsvp,” pp. 868–886, 2012.

[21] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing,
1996, pp. 99–108.

[22] D. Micciancio and O. Regev, “Worst-case to average-case reductions
based on gaussian measures,” SIAM Journal on Computing, vol. 37, no. 1,
pp. 267–302, 2007.

[23] S. Bian, D. Kundi, K. Hirozawa, W. Liu, and T. Sato, “APAS: application-
specific accelerators for rlwe-based homomorphic linear transformations,”
IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4663–4678, 2021.

[24] A. Guimarães, E. Borin, and D. F. Aranha, “MOSFHET: Optimized
software for fhe over the torus,” Cryptology ePrint Archive, 2022.

[25] S. Halevi and V. Shoup, “Design and implementation of helib: a homo-
morphic encryption library,” IACR Cryptol. ePrint Arch., 2020.

[26] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient homomorphic
conversion between (ring) LWE ciphertexts,” in ACNS, 2021, pp. 460–
479.

[27] L. Jiang, Q. Lou, and N. Joshi, “MATCHA: A fast and energy-efficient
accelerator for fully homomorphic encryption over the torus,” CoRR,
2022.

[28] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” in ITCS, S. Goldwasser, Ed.,
2012, pp. 309–325.

[29] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: fast
fully homomorphic encryption over the torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[30] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic en-
cryption in less than a second,” in Advances in Cryptology–EUROCRYPT
2015: 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I 34. Springer, 2015, pp. 617–640.

[31] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in CRYPTO, 2013, pp. 75–92.

[32] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Des. Codes Cryptogr., vol. 71, no. 1, pp. 57–81, 2014.

[33] Y. Lee, J.-W. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and H. Kang, “High-
precision bootstrapping for approximate homomorphic encryption by
error variance minimization,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2022,
pp. 551–580.

[34] A. Al Badawi and Y. Polyakov, “Demystifying bootstrapping in fully
homomorphic encryption,” Cryptology ePrint Archive, 2023.

[35] Y. Bae, J. H. Cheon, W. Cho, J. Kim, and T. Kim, “META-BTS:
Bootstrapping precision beyond the limit,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 223–234.

[36] M. Albrecht, “Homomorphic encryption security standard. homomorphi-
cencryption,” org, Technical report, Tech. Rep., 2018.

[37] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polyno-
mial error,” in Advances in Cryptology–CRYPTO 2014: 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I 34. Springer, 2014, pp. 297–314.

[38] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for lut-based fpgas,” in Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate
arrays, 2006, pp. 41–49.

[39] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient fpga mapping solution,” in Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field programmable
gate arrays, 1999, pp. 29–35.

[40] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based fpga designs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 1, pp. 1–12, 1994.

[41] J. Cong and Y.-Y. Hwang, “Simultaneous depth and area minimization
in lut-based fpga mapping,” in Proceedings of the 1995 ACM third
international symposium on Field-programmable gate arrays, 1995, pp.
68–74.

[42] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

[43] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
“Mapping into lut structures,” in 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 1579–1584.

[44] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 12, pp. 2894–2903, 2006.

[45] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table
minimization problem for fpga technology mapping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
no. 11, pp. 1319–1332, 1994.

[46] S. Jang, B. Chan, K. Chung, and A. Mishchenko, “Wiremap: Fpga
technology mapping for improved routability and enhanced lut merging,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 2, no. 2, pp. 1–24, 2009.

13

[47] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in lut-based fpga technology mapping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 11, pp. 2331–2340, 2006.

[48] S. Carpov, M. Izabachène, and V. Mollimard, “New techniques for
multi-value input homomorphic evaluation and applications,” in Topics in
Cryptology–CT-RSA 2019: The Cryptographers’ Track at the RSA Con-
ference 2019, San Francisco, CA, USA, March 4–8, 2019, Proceedings.
Springer, 2019, pp. 106–126.

[49] H. Cramér, Mathematical methods of statistics. Princeton university
press, 1999, vol. 43.

[50] F. Brglez, “A neutral netlist of 10 combinational benchmark circuits and
a target translator in fortran,” in Proc. Intl. Symp. Circuits and Systems,
1985, 1985.

[51] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in 1989 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 1989, pp. 1929–1934.

[52] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” Journal of Mathematical Cryptology, vol. 9, no. 3,
pp. 169–203, 2015.

[53] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

Zhenyu Guan (Member, IEEE) received the Ph.D.
degree in electronic engineering from Imperial Col-
lege London, the United Kingdom, in 2013. Now,
he is a professor of the School of Cyber Science
and Technology at Beihang University. His current
research interests include image processing and high
performance computing. He has published more than
45 technical papers in international journals and con-
ference proceedings.

Ran Mao received the B.E. degree in School of
Computer Science and Engineering(School of Cyber-
security) from University of Electronic Science and
Technology of China, Chengdu, China, in 2021, and
is currently pursuing the Ph.D. degree at School of
Cyber Science and Technology, Beihang University,
Beijing, China. Her current research interests include
homomorphic encryption and hardware security.

Qianyun Zhang (Member, IEEE) received her B.Sc.
degree from Beijing University of Posts and Telecom-
munications, China, in 2014, and her Ph.D. degree
from Queen Mary University of London, United
Kingdom, in 2018. She is currently an Associate
Professor with the School of Cyber Science and
Technology, Beihang University, Beijing, China. Her
research interests include wireless network security,
intelligent sensing and recognition, and novel antenna
designs.

Zhou Zhang received his B.S. in Beihang University,
China, in 2021, and is now pursuing a M.S. degree at
the School of Cyber Science and Technology, Beihang
University, Beijing, China. His current research in-
terests include encrypted database and homomorphic
encryption.

Zian Zhao received the B.E. degree in electronic
engineering from Beihang University in 2020, where
he is currently pursuing the Ph.D. degree with the
School of Cyber Science and Technology. His current
research interests include applied cryptography and
homomorphic encryption compilers.

Song Bian (Member, IEEE) Song Bian is currently
an associate professor at Beihang University. His
main areas of interest include fully homomorphic en-
cryption, privacy-preserving computing and domain-
specific hardware accelerator. He received B.S. from
University of Wisconsin-Madison in 2014. He re-
ceived M.S. and Ph.D. from Kyoto University, in 2017
and 2019, respectively. He was an assistant professor
at Kyoto University from 2019 to 2021. He served
as technical committee members/reviewers for top-
tier international conferences/journals across different

fields of studies, including CVPR, IEEE TIFS and IEEE TCAD. He is a
member of ACM and IEEE.

