
Koala: A Low-Latency Pseudorandom Function

Parisa Amiri Eliasi1, Yanis Belkheyar1, Joan Daemen1, Santosh Ghosh2,
Daniël Kuijsters1, Alireza Mehrdad1, Silvia Mella1, Shahram Rasoolzadeh1,

and Gilles Van Assche3

1 Radboud University, Nijmegen, The Netherlands firstname.lastname@ru.nl
2 Intel Labs, Hillsboro, USA firstname.lastname@intel.com

3 STMicroelectronics, Diegem, Belgium firstname.lastname@noekeon.org

Abstract. This paper introduces theKoala PRF, which maps a variable-
length sequence of 64-bit input blocks to a single 257-bit output block. Its
design focuses on achieving low latency in its implementation in ASIC.
To construct Koala, we instantiate the recently introduced Kirby con-
struction with the Koala-P permutation and add an input encoding
layer. The Koala-P permutation is obtained as the 8-fold iteration of a
simple round function inspired by that of Subterranean. Based on care-
ful preliminary cryptanalysis, we made a variant of the Subterranean
permutation by reordering and modifying it in a way that does not in-
troduce any implementation overhead and enhances the cryptographic
resistance of the resulting PRF. Indeed, we demonstrate that Koala
exhibits a high resistance against integral, cube, division property, and
higher-order differential attacks. Additionally, we compare the hardware
implementation of Koala with the smallest latency with state-of-the-art
low-latency PRF Orthros and Gleeok and the block cipher Prince
in the same ASIC synthesis setup. Our results show that Koala outper-
forms these primitives not only in terms of latency but also with respect
to various other performance metrics.

Keywords: PFR · pseudorandom function · cryptographic permutation
· Kirby construction · low latency · integral attacks

1 Introduction

The design of cryptographic primitives with minimum evaluation time in hard-
ware implementation, so-called low-latency cryptography, is a relatively young
line of research. Modern digital technologies often require a high level of security,
but are expected to operate within very short timeframes.

Important examples of such technologies are memory encryption and in-
tegrity mechanisms provided by, for example, IBM’s SecureBlue, Intel’s SGX,
and AMD’s SEV. Smart cards, like the ones of NXP and STMicroelectronics,
perform local memory encryption in an ultra-constrained setting.

Another example is formed by the secure caches in modern CPUs. This ap-
plication has received significant attention in the last few years, for microar-
chitectural attacks, e.g., Meltdown and Spectre, have revealed serious security

2 Amiri et al.

shortcomings in widely deployed high-end processors. Many hardware-based mit-
igations for such attacks call for a higher level of encrypted communication inside
of CPUs, as well as between CPUs and their surrounding hardware components.
To implement new features of this kind in the next generations of mainstream
processors, without causing a large performance penalty, low-latency encryption
primitives are among the most important building blocks. Suffice it to say that
the design of low-latency primitives is an important domain of research.

While various primitives have been developed with a focus on low latency,
a significant portion of them are (tweakable) block ciphers. We just mention
Prince [9,10],Mantis [5],Qarma [2], Speedy [29], BipBip [6] and Scarf [12].

Interestingly, in recent times low-latency pseudorandom functions (PRF)
have been proposed in the form of Orthros [4] and Gleeok [1], allowing ultra-
fast stream encryption or authentication of short messages. Both are based on
the sum-of-block-ciphers paradigm: To achieve beyond birthday bound PRF se-
curity, in the former the output is the sum of two block cipher invocations and in
the latter even three. We investigate a different way to achieve n bits of security,
namely with a 2n-bit permutation and a feedforward, leading to a more efficient
implementation in terms of area and latency.

In this paper, we present the design of a PRF with a variable-length input
and fixed-length output suitable for a low-latency implementation in hardware
as an ASIC. Koala is an instantiation of the Kirby [30] construction with a
new permutation Koala-P inspired by Subterranean [13,19], and an additional
input encoding. Moreover, Koala can be used as a stream cipher by taking as
input the nonce followed by a counter. For this cipher the marginal cost per
256-bit keystream block is one call to Koala-P. We compare the performance
of Koala with that of Orthros and the two instances of Gleeok, to the
best of our knowledge the only PRFs in the literature with the main goal of
providing a low-latency ASIC implementation. Our synthesis results, in Table 4,
show thatKoala has a lower latency and outperformsOrthros andGleeok in
various other performance measures. We believe that Koala is a promising new
addition to the family of low-latency cryptographic primitives, and we welcome
any third-party cryptanalysis.

Contribution. The main contributions of this paper are as follows:

– The design of Koala, a low-latency PRF that maps a variable-length se-
quence of 64-bit input blocks to a single 257-bit output block.

– An integral cryptanalysis of Koala, using bit-based division properties and
the open source implementation of all algorithms used.1

– An RTL design of Koala in Verilog, an evaluation of the corresponding
ASIC performance, and a comparison with Orthros Gleeok and Prince.

Organization of the paper. The paper is organized as follows. We establish some
notation and conventions in Section 2. In Section 3, we present the specifica-
tion of the permutation Koala-P, the pseudorandom function Koala, and the

1 https://github.com/parisaeliasi/KoalaHW

https://github.com/parisaeliasi/KoalaHW

Koala: A Low-Latency Pseudorandom Function 3

security claim of Koala. We present a short formalism to describe conditional
cube attacks in Section 4 and in Section 5, we use this formalism and bit based
integral distinguisher to analyse Koala. Bounds on the weights of linear and
differential trails over Koala-P are provided in Section 6. In Section 7, we pro-
vide the rationale for all components of Koala. Finally, we present a hardware
implementation in Verilog in Section 8, together with area and latency figures
for implementation in ASIC. Appendices contains some figures, missing proofs
for the interested reader, along with avalanche behaviour and differential, linear
and integral distinguishers.

2 Notation and Conventions

We fix the notation and conventions that are used throughout the paper.
We denote the cardinality of a set S by |S|. For sets S and T , we write

Funcs[S, T] for the set of all functions from S to T . By the set N we mean the
non-negative integers, i.e, 0 ∈ N. Typically, n and m denote elements of N. A
finite sequence s = (s0, s1, . . . , sn−1) of elements of a set S is called an n-tuple.
In particular, we reserve the word (bit) string for n-tuples over the set {0, 1}.
We may also call a bit string a block if it has a fixed length of either 64 or 257
bits. The n-bit string consisting of all ones is denoted as 1n. When we endow
the set {0, 1} with the structure of a finite field, we write F2 instead. Indices of
tuples are computed modulo n, i.e., these indices are assumed to be elements of
Z/nZ. If s and s′ are two bit strings, then we write s||s′ for the concatenation
of s and s′. For example, (0, 0, 1)||(1, 0, 1) is equal to (0, 0, 1, 1, 0, 1). We often
treat n-bit strings as (bit) vectors u = (u0, u1, . . . , un−1) in the n-dimensional
vector space Fn

2 over the field F2. We write ei for the ith standard basis vector
of Fn

2 . That is to say, ei has a 1 in position i and zeros elsewhere. Sometimes,
we refer to vectors as points. We make the set Fn

2 into a partially ordered set
by defining u ≤ v if and only if ui ≤ vi for all i ∈ Z/nZ. The Hamming weight
of a vector u is defined as the number of its non-zero coordinates. That is,
HW(u) = |{i : i ∈ Z/nZ ∧ ui ̸= 0}|. We define an affine subspace of Fn

2 to be
any set of the form a+ L, where a ∈ Fn

2 is a point and L is a linear subspace of
Fn
2 . Let S be a subset of Fn

2 and f a function defined on Fn
2 . We write f |S for

the restriction of f to S.

3 Specification of Koala

Our design consists of two layers of abstraction: a permutation called Koala-P,
and a PRF called Koala, that consists of a prefix-free input encoding function
and the instantiation of the Kirby construction with Koala-P.

First, in Section 3.1, we recall the Kirby construction, introduced in [30].
Second, we specify the Koala-P permutation in Section 3.2. Third, we present
the specification of the Koala PRF in Section 3.3 and its security claim in
Section 3.4.

4 Amiri et al.

Ps

y0

P

y1

P

y2

zPk||id

Fig. 1: Illustration of Kirby applied to a 3-tuple of input blocks.

3.1 The Kirby Construction

Kirby is a construction for building a variable-input-length pseudorandom func-
tion (VIL-PRF) from a permutation. This construction is specified in Algo-
rithm 1 and illustrated in Figure 1.

To summarize Algorithm 1, Kirby is parameterized by a b-bit permutation
P and a key length κ. It operates on a b-bit state that is initialized with a κ-bit
secret key k and a (b− κ)-bit identifier. Then, it alternates between absorption
of b-bit input blocks and transformations of the state by means of a call to the
permutation P and a feed-forward. The input tuple of strings is assumed to be
a codeword in a prefix code [14] (sometimes called a prefix-free code). It returns
the final value of the b-bit state as the output. The paper [30] contains a proof of
multi-user PRF security in the random permutation model, i.e., security against
generic attacks.

From now on, we use the term key to refer to the master key k and secret to
any intermediate state unknown to the attacker.

Algorithm 1 Definition of construction Kirby[P, κ] copied from [30], where P
is a b-bit permutation and κ is a positive integer.

Input
k A κ-bit key string.
id A (b− κ)-bit key identifier string.
y An n-tuple of b-bit blocks with n ≥ 1.

Output
z A b-bit block.

s← k||id
s← s⊕ P(s)
for i = 0 to n− 1 do

s← s⊕ yi
s← s⊕ P(s)

end for
z ← s
return z

Koala: A Low-Latency Pseudorandom Function 5

s0 s1 s2 s3 . . . Sn

π

H PP XX �� �� �

�
121

��
242

H
1

...

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 . . . s17 . . .

θ

?

�
�
���
�
�⊕ ?

�
�
����⊕ ?

�
�����⊕

ιn
`
◦

E
E
E
E

�
�
�
�

χ?⊕ �◦
� ?⊕ �◦

� ?⊕ �◦
�

s0 s1 . . . Sn+1

Fig. 2: The Koala-P round function.

3.2 The Koala-P Permutation

Koala-P is a permutation of F257
2 parameterized by the number of rounds r ≤ 8.

It is obtained by the self-composition of a round function, which, in turn, consists
of a sequence of step functions.

First, we introduce the step functions: a bit shuffle π, a mixing layer θ, a round
constant addition ιj , and a non-linear layer χ. These functions are defined by
how they compute the bit with index i ∈ Z/257Z of a state vector s ∈ F257

2

according to the following rules:

π : si ← s121i ,

θ : si ← si + si+3 + si+10 ,

ιj : si ←

{
si + 1 if i = 0 and j /∈ {2, 5, 6} ,
si otherwise ,

χ : si ← si + si+2 + si+1si+2 .

Second, we define the round function ρj parameterized by the round index j as

ρj = χ ◦ ιj ◦ θ ◦ π .

Note that the only difference between the round functions lies in the value of
the round constant. Lastly, we denote the composition of r rounds as

Koala-P[r] =
r−1

⃝
j=0

ρj .

6 Amiri et al.

3.3 The Koala PRF

The Koala PRF is composed of the following two parts:

– Kirby[Koala-P[8], κ]: the instantiation of Kirby with the permutationKoala-P[8]
in which the key length κ is left as a parameter.

– An encoding function EncodePrefixFree defined in Algorithm 3 that maps an
n-tuple of 64-bit blocks into a n-tuple of 257-bit blocks.

– An encoding of k and id as k||id||lenght(id) instead of k||id in the original
Kirby construction, with length the encoding of the bitlength of id encoded
in a single byte.

The ExpandBlock function makes it possible to use 64-bit blocks as input to the
Kirby instance. Each 64-bit input block is transformed into a 256-bit string by
the ExpandBlock function defined in Algorithm 2. Every 64-bit input block is
split into a sequence of 32 2-bit strings. Each of these 2-bit strings naturally
encodes an integer value between 0 and 3. This value serves as an index of the
single non-zero element in a 4-bit string. The bits of this string are then diffused
to different positions of the corresponding 256-bit output string.

The 256-bit strings are each padded with the bit 0, except for the last string,
which is padded with the bit 1. This padding is what guarantees that the input
tuple y to Algorithm 1 is an element of a prefix code.

The encoding of the k and id is injective, allowing use of different lengths
without risking state collision for different keys. Concretely, given a κ-bit key, k,
a (257 − κ)-bit key identifier, id, and an n-tuple, d, of 64-bit blocks, we define
Koala by

Koala[κ](k, id, d) = Kirby[Koala-P[8], κ](k, id,EncodePrefixFree(d)) .

3.4 The Koala Security Claim

We present a claim of multi-user PRF security of Koala in the case of µ users.
We assume the existence of s identifiers and suppose that µi users share the ith
identifier. Hence, we have µ = µ1 + · · ·+ µs.

Claim 1 We consider an adversary that is restricted to the following resources:

– The computational complexity is N and it is equal to the number of evalua-
tions of Koala-P[8].

– The data complexity is M and it is equal to the number of distinct input
blocks that are processed by Koala.

The advantage of an adversary in distinguishing an array of µ instances of
Koala[κ] loaded with µ independent κ-bit keys, sampled randomly and uni-
formly, from an array of µ independent random oracles, is upper bounded by

M(M − 1)

2257
+

2NM

2257
+

∑s
i=1 µi(µi − 1)

2κ+1
+
N maxi µi

2κ
.

This claim follows the proven bound of Kirby in [30] Lemma 1 page 15 against
generic attacks using a κ-bit key.

Koala: A Low-Latency Pseudorandom Function 7

Algorithm 2 Definition of ExpandBlock.

Input
s A 64-bit block.

Output
t A 256-bit string.

for i = 0 to 255 do

ti ←

(s2i + 1)(s2i+1 + 1) if i ∈ [0, 31] ,

(s2i + 1)s2i+1 if i ∈ [32, 63] ,

s2i(s2i+1 + 1) if i ∈ [64, 95] ,

s2is2i+1 if i ∈ [96, 127] ,

0 otherwise ,

where the indices of s are computed modulo 64.

end for
return (t0, t1, . . . , t255)

Algorithm 3 Definition of EncodePrefixFree

Require: n ≥ 1
Input

d An n-tuple of 64-bit blocks.

Output
y An n-tuple of 257-bit blocks.

for i = 0 to n− 2 do
yi ← ExpandBlock(di)||0

end for
yn−1 ← ExpandBlock(dn−1)||1
return (y0, y1, . . . , yn−1)

4 Formalism for Integral Cryptanalysis

Together with differential and linear cryptanalysis, integral cryptanalysis form
the three most important attack vectors. We use integral attacks as an umbrella
term for attacks relying on summing the outputs of a function over a well-chosen
input set, using different heuristics for constructing the set. To improve the
understandability of our explanations of the attacks mounted against Koala,
we first describe the general method used for integral attacks with the minimum
mathematical formalism necessary to describe such attacks.

4.1 Framework of Integral Attacks

Integral attacks consist of an offline phase followed by an online phase:

8 Amiri et al.

Offline Phase is an analysis step where the adversary accesses the secret de-
pendent polynomial representations of the step functions of a primitive. They
apply rewrite rules to these polynomial representations in order to simplify
them, e.g., to eliminate variables and lower the degree. Importantly, the
rewrite rules determine an affine input space V . Using combinatorial argu-
ments involving the degree or by propagating an initial division property
vector [37], the adversary is able to determine the vector of coefficients of
some target monomial. To be able to mount a successful attack, this vector
should either be a constant that does not depend on the secret at all or
depend on the secret in a way that leads to a system of equations that is
easy to solve, e.g., linear dependence. The outcome of this step is an affine
input space V and a target monomial xu.

Online Phase is an execution step where the adversary accesses a crypto-
graphic oracle for a fixed master key. They recover the vector of coefficients
of the target monomial xu by summing over the affine input space V that
was obtained during the offline phase. The vector of coefficients is then used
as a distinguisher or to set up a system of equations in the secret bits that
may lead to the recovery of the master key.

We restrict ourselves to input sets that form an affine space. Within this
restriction, examples of integral attacks include higher-order differential crypt-
analysis [28], square attacks [18], and (conditional) cube attacks [21, 27]. We
present a unified mathematical foundation upon which these attacks are built.

This section is organized as follows. In Section 4.2, we make explicit the
link between functions defined on an affine space and their representation on
this space as a multivariate polynomial, called the algebraic normal form. In
Section 4.3, we introduce an notion of the derivative of a function and show how
it can be computed by means of the summation of outputs of the function.

4.2 Algebraic Normal Form

To understand how to find input spaces for an integral attack, we need to ex-
plain how to represent the restriction of a vectorial Boolean function to some
affine space as a tuple of multivariate polynomials: the algebraic normal form
(ANF). We present the necessary tools and results from computational commu-
tative algebra and make the relation between the algebraic normal form and
substitutions, which determine the input sets, explicit. We also illustrate in Ex-
ample 1 the notation and terminology used. For an accessible introduction to
computational commutative algebra, we refer to the book by Cox et al. [15].

A monomial in the variables x0, . . . , xn−1 is a product of the form xu0
0 · · ·x

un−1

n−1

with u ∈ Nn. To abbreviate, we write this as xu. The degree of the monomial
xu is defined as u0 + · · · + un−1. Polynomials are finite linear combinations of
monomials with coefficients in F2. The degree of a polynomial is the largest
of the degrees of its monomials. The zero polynomial has degree −∞. We de-
note the set of polynomials in the variables x0, . . . , xn−1 and with coefficients in

Koala: A Low-Latency Pseudorandom Function 9

F2 by Rn = F2[x0, . . . , xn−1]. These variables correspond to the bits which are
controlled by an adversary, e.g., the input bits.

Let p0, . . . , pn−1 be polynomials of the form pi = xi or pi = ci+
∑n−1

j=i+1 aijxj
for constants ci ∈ F2 and coefficients aij ∈ F2. During cryptanalysis, we make
use of a set of rewrite rules of the form xi → pi, i.e., we substitute xi with the
polynomial pi. Rules of the form xi → xi are said to be trivial in the sense that
no substitution is performed. A set of rewrite rules defines a set of polynomials of
the form xi−pi, which is completely specified by a tuple (A, c), where A = (aij)
is an n× n matrix over F2 and c = (c0, . . . , cn−1) is a vector in Fn

2 . The matrix
A is in row echelon form, up to a permutation of its rows, which implies that
the order in which the corresponding rewrite rules are applied does not matter.
The tuple (A, c) defines the affine space V = {v ∈ Fn

2 : Av = c} of points that
satisfy the equation Av = c.

We have seen that a rewrite rule of the form xi → pi gives us a relation of
the form xi = pi. Moreover, we have relations of the form x2i = xi due to the
fact that the square on F2 is the identity map. We can introduce these relations
by working with polynomials modulo the ideal I generated by the set

G = {x20 − x0, . . . , x2n−1 − xn−1, x0 − p0, . . . , xn−1 − pn−1} .

For our purposes, the central algebraic object is the quotient ring Rn/I.
Polynomials in Rn give rise to elements of Funcs[V,F2]. Indeed, for any point

a ∈ V , there is a unique ring homomorphism εa : Rn → F2 with εa(xi) = ai
given by substituting xi by ai. This leads to a map ϕ : Rn → FV

2 that is defined
by ϕ(p) = f with f(a) = εa(p) for all a ∈ V . The kernel of ϕ is equal to I. By
the first isomorphism theorem for rings [15, p. 247], there is an isomorphism ϕ
between FV

2 and Rn/I.
The set G forms a Gröbner basis [15, p. 78] for I with respect to the lexi-

cographic order. Define W = {u ∈ Fn
2 : ui = 0 if xi ̸= pi} as the set of vectors

for which the ith component is zero if xi is eliminated by a substitution. The
remainder of any polynomial p ∈ Rn on division by G, denoted pG, is unique
and of the form

pG =
∑
u∈W

αux
u ,

for certain constant bits αu ∈ F2 [15, p. 83]. Therefore, the set of all possible
remainders after division by G, which we denote as RG, forms a complete set of
coset representatives of I in Rn. Indeed, let ψ : Rn → Rn be defined by ψ(p) = pG

for all p ∈ Rn. The kernel of ψ is equal to I. By the first isomorphism theorem
for rings, there is an isomorphism ψ between Rn/I and RG.

To conclude, we have an isomorphism N = ψ ◦ ϕ between the set of Boolean
functions defined on V and the set of remainders RG. We are now able to make
precise how a function is represented on V .

Definition 1. Let f : V → F2 be a Boolean function defined on V . The rep-
resentation of f as a multivariate polynomial, called the algebraic normal form
(ANF) of f , is defined as the unique remainder N (f) upon division by G.

10 Amiri et al.

The degree of a remainder p ∈ RG with p ̸= 0 is defined as deg (p) = max{HW(u) :
u ∈W and αu ̸= 0}.
Definition 2. Let f : V → F2 be a Boolean function defined on V . The algebraic
degree of f , denoted by deg(f), is defined as the degree of its ANF.

If f depends on a secret vector s ∈ Fκ
2 , e.g., a secret key or state, then the

coefficients αu of N (f) are Boolean functions of the secret bits, i.e., αu maps
the secret s to some bit αu(s) ∈ F2. In this case, we can rewrite the defini-
tion of the degree as deg (f) = max{HW(u) : u ∈ W and there exists an s ∈
Fκ
2 with αu(s) ̸= 0}. Note that our definitions match with the usual definitions

of ANF and algebraic degree in the case that both A and c are zero.
There is a straightforward generalization of these notions to vectorial Boolean

functions defined on V .

Definition 3. The algebraic normal form of F = (f0, . . . , fm−1) : V → Fm
2 is

defined as N (F) = (N (f0), . . . ,N (fm−1)) ∈ Rm
n . Its algebraic degree is defined

as deg(F) = max{deg(f0), . . . ,deg(fm−1)}.
We illustrate how to apply rewrite rules to N (f), where f is some Boolean

function, in order to change its properties, such as the presence of certain mono-
mials. The resulting polynomial is the ANF of the restriction of f to the affine
space determined by the rewrite rules.

Example 1. The function f : F3
2 → F2 is defined by the truth table in Table 1. It

follows that N (f)(x0, x1, x2) = x0 + x2 + x1x2. Therefore, the algebraic degree
of f is 2. Now we make the isomorphism N implicit.

Table 1: Truth table of f .

x 000 001 010 011 100 101 110 111

f(x) 0 1 0 0 1 0 1 1

We apply the rewrite rule x1 → x2. This rule, together with the trivial rules,
defines the matrix

A =

0 0 0
0 1 1
0 0 0

 .

and the constant c = (0, 0, 0). Clearly, A is in row echelon form, up to a per-
mutation of its rows. Moreover, V = {v ∈ F3

2 : Av = 0} = {v ∈ F3
2 : v1 = v2}.

When we restrict f to V , i.e., when we consider f |V : V → F2, we find that its
ANF is equal to x0. The restriction has algebraic degree 1 and it depends on a
single variable.

An alternative way of wording this is that we compose f with the map
L : F2

2 → V given by (x0, x1) 7→ (x0, x1, x1) and that the algebraic normal form
of f ◦ L is equal to x0.

Koala: A Low-Latency Pseudorandom Function 11

Like in the example, we make implicit in the nexts section the correspondence
between Boolean functions and their representation as a tuple of remainders.

4.3 Properties of Derivatives

The integral attacks that we consider in this section, rely on practically com-
putable properties of the derivative of a Boolean function. All definitions and
results are extended to the case of vectorial Boolean functions by applying them
to each coordinate Boolean function.

Definition 4. For vectors u, v ∈ Fn
2 , define the derivative of the monomial xv

with respect to u by

∂ux
v =

{
xv−u if u ≤ v ,
0 otherwise ,

and extend linearly to functions f : Fn
2 → F2. We call ∂uf the derivative of f

with respect to u.

Note that this definition coincides with that of the usual partial derivative.

Example 2. Let f : F3
2 → F2 be given by f(x) = x0 + x2 + x1x2. Its derivatives

are equal to

∂(0,0,0)f(x) = x0 + x2 + x1x2 ∂(1,0,0)f(x) = 1

∂(0,0,1)f(x) = x1 + 1 ∂(1,0,1)f(x) = 0

∂(0,1,0)f(x) = x2 ∂(1,1,0)f(x) = 0

∂(0,1,1)f(x) = 1 ∂(1,1,1)f(x) = 0

The first important property of the derivative is the duality between the
derivatives of f and outputs of f on an affine space by means of integral.

Proposition 1. Let f : Fn
2 → F2 and a, u ∈ Fn

2 . We have

f(x+ a) =
∑

0≤u≤a

∂uf(x) , and

∂uf(x) =
∑

0≤a≤u

f(x+ a) .

See in Appendix A, Proposition 6 for the proof.
The following corollary shows how to compute the coefficient αu of xu in f

by summing over the outputs of f corresponding to inputs for which u takes on
all possible values.

Corollary 1. Let f : Fn
2 → F2 and a, u ∈ Fn

2 . We have

αu =
∑

0≤a≤u

f(a) .

12 Amiri et al.

Proof. This follows from the second equality in Proposition 1 and the fact that
∂uf(0) = αu, by definition. ⊓⊔

The second important property of the derivative concerns its degree.

Proposition 2. The degree of the derivative of f with respect to u satisfies

deg (∂uf) ≤ deg (f)−HW(u) .

Proof. By definition, we have ∂uf =
∑

u≤v αvx
v−u. Let w be such that αw ̸= 0

and deg(∂uf) = HW(w− u). Using that u ≤ w and that xw is a monomial in f ,
we find that deg (∂uf) = HW(w−u) = HW(w)−HW(u) ≤ deg (f)−HW(u). ⊓⊔

The coefficient of any monomial xu with the Hamming weight of u exceeding
the degree of the function is 0.

Proposition 3. If HW(u) ≥ deg (f(x)), then ∂uf(x) is the coefficient αu of xu

in f . In particular, if HW(u) > deg (f(x)), then this coefficient αu is 0.

Proof. If HW(u) ≥ deg (f(x)), then deg (∂uf(x)) ≤ 0. This implies that ∂uf(x)
is a constant, i.e., ∂uf(x) = ∂uf(a) for any a ∈ Fn

2 . In particular, this is true for
a equal to 0. By definition, it follows that ∂uf(0) = αu. If HW(u) > deg (f(x)),
then deg (∂uf(x)) < 0, which implies that αu is 0. ⊓⊔

5 Integral Attacks Applied to Koala

In this section we focus on the class of integral attacks. They forms an important
attack vector to consider in the analysis of Koala, due to the fact that the
Koala-P round function has degree 2. In particular, we restrict ourselves to
analyzing the substructure Er of Koala in which only a single block is processed
and consider a round-reduced version of Koala-P.

Definition 5. Define an expansion function γ : F257
2 × F64

2 → F257
2 by

γ(s, x) = (ExpandBlock(x)||1) + s .

The substructure Er : F257
2 × F64

2 → F257
2 is given by

Er(s, x) = γ(s, x) + Koala-P[r](γ(s, x)) .

The summary of the following is that we believe that Er with the number of
rounds r ≥ 6 is secure against integral attacks.

We first investigate distinguishing bit-based division properties. The divi-
sion property was introduced in [36] as a generalization of integral distinguish-
ers. Based on previous works [20, 25, 26, 35, 37, 38], we created different tools to
search for two-subset and two types of three-subset division properties within
round-reduce version of Koala. Then, we look at cube and conditional cube
distinguishers, exploiting the inner structure of the ExpandBlock function and

Koala: A Low-Latency Pseudorandom Function 13

the round function to search for integral distinguishers with smaller input size.
Based on the results found, we conjecture on the feasibility of key recovery at-
tacks using those distinguishers. In both cases, the goal of the attack is to find
an affine subspace V of F64

2 , the domain of the 64-bit input string x, such that
the ANF of Er on this subspace has a coefficient that is independent of or linear
in key variables, for some monomial in input variable.

5.1 Bit-based Division Property Analysis

We divided our work into two steps, first using the two-subset division property
and then using different types of three-subset division property. For further ex-
planation on the division property we refere to [36] for basic concepts and the
two subset division property, and to [26] for the three subset division property.

Using the algorithm from [35], and the model from [20] for the two subset di-
vision property, we check whether distinguishers exist within the round-reduced
version of Koala. The model from [20] was very powerful to model the large
state of Koala, and combined with the algorithm from Sun et al., we managed
to model the propagation of division trails and to compute the existence of distin-
guisher up to 6 rounds. This technique, consisting in modeling the propagation
of division trail using linear constraint, can lead to false positive results due to
the lossy modeling of the constraint. However, from a designer’s point of view,
finding no distinguisher is enough, as this model captures all valid two-subset
division trails. We found some distinguishers for up to 5 rounds but none for 6,
showing the absence of exploitable two-subset division property for 6 rounds.

Then, we look at the three-subset-division property. We also used the model
from [20] to model the propagation of division trail combined with the algorithm
from [38]. For a specific set of input, we could compute the coefficient of the
monomial containing all input variables after a certain number of rounds.

The result obtained was the monomial’s presence, absence, or unknown status
for each output coordinate, meaning for the latter that either the tool did not find
the result or that such input is unlikely to result in an exploitable distinguisher.
Due to the degree 2 round function used and the result found with the two-subset
division property, we assume that there are distinguishers for up to 5 rounds.
Therefore, we investigate 5 and 6 rounds distinguishers with our three-subset
division property tools. As for five rounds, the expected maximum degree is 64
(25 for the round function time 2 for the ExpandBlock). This mean that for all

secrets s for each output bit coordinates
⊕
x∈F64

2

E5(s, x) = 0, leading to a 5-round

integral distinguisher. Therefore, we investigated for 6 rounds, and we found that
with the same input set, there is no unexploitable distinguisher for each output
coordinate. We assume that this result came from the presence of monomials of

the form

63∏
i=0

xi
∏
j∈Jp

sj for each coordinate p after 6 rounds. Therefore, we search if

some quadratic secret dependency, meaning |Jp| = 2, could lead to an exploitable
distinguisher. For all pairs of secret-bit tested, we did not found any distinguisher

14 Amiri et al.

for 6 rounds. We provide in https://github.com/parisaeliasi/KoalaHW all
code used to compute those results, and we give in Appendix C some of the
affine space leading to distinguisher for reduced round version.

5.2 Conditional Cube Attack

To push the analysis further, we consider what happens when we restrict our view
of Er to non-trivial affine subspaces of F64

2 . These affine subspaces are obtained
by applying substitutions that limit the interaction of variables through the
rounds. In other words, we looked at a subspace of the input vector space that
can decrease the degree of the ANF of specific output coordinates.

A variable xi is said to interact with a variable xj in F if xj appears in ∂eiF .
When it does not interact with any other variable, we call it isolated.

Definition 6. Let F : Fn
2 → Fm

2 be a vectorial Boolean function and let i ∈
Z/nZ. We call the variable xi isolated in F if deg (∂eiF) ≤ 0, i.e., if the deriva-
tive is a constant. We call F linear with respect to a set of variables xi1 , . . . , xil if
these variables are isolated in F . By linearization of F , we mean the application
of substitutions, after which F is linear with respect to the remaining variables.

Linearizing γ: The following proposition shows that linearization of γ with re-
spect to the variables xi1 , . . . , xil , by applying suitable substitutions that lead
to an affine space V , causes the absence of the monomial xi1 · · ·xil in Er|V . In-
tuitively, this is a consequence of the function having a much lower algebraic
degree when restricted to particular affine subspaces than it has on the entire
vector space. For a proof, we refer to Appendix A.

Proposition 4. Let r ≥ 0, l ≥ 2r + 1, and {i1, . . . , il} ⊆ Z/64Z be a subset
of indices of size l. If V is an affine subspace of F64

2 such that xi1 , . . . , xil are
isolated in γ|V , then ∂ei1+···+eil

Er|V = 0.

Each monomial of degree 2 in γ is of the form xixi+1 for some index i ∈
Z/64Z. To linearize such a monomial, i.e., to have it depend on only a single
variable, we can restrict ourselves to substitutions of the form xi → xi+1 and
xi → a for a constant a ∈ F2.

In other terms, linearization of γ fixes 32 of the 64 input variables xi. There-
fore, using Proposition 4 and choosing r equal to 5, we find a distinguisher over
E5.

Linearizing γ and ρ0: The following proposition shows how to decrease the
number of variables that are involved in the target monomial, i.e., to decrease
the size of the input set over which we need to sum to obtain the coefficient of
this target monomial. For a proof, we refer to Proposition 8 in Appendix A.

Proposition 5. Let r ≥ 1, l ≥ 2r, and {i1, . . . , il} ⊆ Z/64Z be a subset of
indices of size l. If V is an affine subspace of F64

2 such that xi1 is isolated in
ρ0 ◦ γ|V and xi2 , . . . , xil are isolated in γ|V , then ∂ei1+···+eil

Er|V = 0.

https://github.com/parisaeliasi/KoalaHW

Koala: A Low-Latency Pseudorandom Function 15

With Proposition 5, we sketch how to use a conditional cube attack [27] to
recover particular bits of the secret. Let Vg be an affine subspace of F64

2 that
depends on a guess g ∈ Fm

2 for some subset of bits of the secret s. We call Pi the
property that xi1 is isolated in ρ0 ◦ γ|Vg . The attack consits in finding such Vg
for wich a correct secret guess will make Pi true and false for an incorrect guess.
We obtain Vg by applying substitutions that depend on g. For example, Er adds
xi to si, so if we apply the rewrite rule xi → gj , where gj is a guess for si, then a
correct guess for si effectively removes the effect of si in any further processing.
To verify our guess, we recover the coefficient of the monomial xi1 · · ·xil in Er|Vg

by means of summation in the online phase. We write u ∈R S if u is randomly
and uniformly selected from the set S, and for s ∈R F257

2 , we have

g = (si1 , . . . , sim) =⇒ ∂ei1+···+eil
Er|Vg (s, ·) = 0 ,

g ̸= (si1 , . . . , sim) =⇒ Pr
(
∂ei1+···+eil

Er|Vg
(s, ·) ̸= 0

)
≈ 1 .

We used that technique first to analyze a simpler version of our scheme: an
Even-Mansour construction [22] in which the permutation is a round-reduced
variant of the Subterranean permutation. As both elements are already well
known, this was the starting point of our design. We found a key recovery attack
for 6 rounds, using 32 isolated variables. The attack led to the recovery of key
bits 0 and 2, requiring three days of computation on a desktop computer and it
is possible to use this attack to recover each pair of bits; each can be performed
in parallel. Consequently, a theoretical attack on 7 and 8 rounds exist using
respectively 64 and 128 isolated variables. Those attacks would work the same
with the Koala-P permutation instead of the Subterranean permutation as the
components of the round function are very similar. However, together with the
ExpandBlock function, we did not manage to attack the same number of rounds.
The restriction from 257 to 64 bits for the input reduces the number of possible
input sets for the attacker. With the degree 2 ExpandBlock function, it also
reduces the number of rounds required to reach the maximum degree term in
the ANF. Based on our observation, by using linearization, we can obtain the
degree estimation as shown in Table 10 in the Appendix C.

From the three-subset division property, we saw that the degree after 5
rounds reaches 64, following the upper bound. Attempts at attacking more than
5 rounds, the trivial input set containing all 64 input variables can be used as a
distinguisher, or the input set with 32 variables chosen carefully to linearize the
ExpandBlock function. However, none of those methods can attack 6 rounds as
the input is too small. Linearizing the input injection and the first round would
mean that after 6 rounds, it could be possible to find the output coordinate for
which the maximum degree would be 32. To linearize one variable for the input
injection and the first round, we need to set 10 variables to constant, meaning
that, at most, 6 variables can be linearized for these two rounds. As for the con-
ditional cube attack above, we investigate a combination of variables linearized
for the ExpandBlock function and linearized for the ExpandBlock function and
the first round. So, let’s assume we linearize one variable for the input injection
and the first round. Then, we have 54 variables left, and to linearize those for the

16 Amiri et al.

input injection, we reduce the space to 27. This leads us to think it is impossible
to attack 6 rounds using this technique.

6 Trail Bounds of Koala-P

In this section, we present bounds on the weights of differential and linear trails
over the Koala-P permutation. We support this analysis with the best linear
and differential trails for up to 3 rounds in Appendix D. Since we introduced a
new permutationKoala-P, we decided to investigate first the permutation alone
without considering the input injection. However we believe that with the result
provided and the restriction on the input to 64-bit due to the input ExpandBlock
function, it is very unlikely that a 7/8-round differential with high enough prob-
ability or a 7/8-round linear approximation with high enough correlation could
be found that would be useful in an attack on Koala.

6.1 Bounds on Differential Trails

To investigate the differential propagation properties of Koala-P, we used the
differential trail search approach introduced in [32]. For more details, we refer
the reader to [31,32]. The general idea of this approach is to generate all 2-round
trail cores with high differential probability (DP) and extend them iteratively
to longer trail cores. A trail core represents a set of trails that are equal in
all intermediate differences and only their input and the output difference are
different. The restriction weight wr of a trail core is the minimum among the
restriction weights of all trails in it. For a differential trail Q, we use this restric-
tion weight to approximate the differential probability DP(Q). Hence, if wr ≪ b
(the permutation width), then DP(Q) ≈ 2−wr(Q).

We report on the lower bounds on the restriction weights of trails for different
numbers of rounds of Koala-P and also Subterranean in Table 2. The bounds
for Koala-P are tight for up to 3 rounds since we scanned the space up to
restriction weight 26.

For 4-round trails, we scanned the space up to restriction weight 51 and
found there is no trail up to this weight. During our search, we found a 4-round
trail with restriction weight 60, implying that the best 4-round trail should weigh
between 52 and 60. This means that 4-round trail for Koala-P are likely to have
a lower bound close the one for Subterranean. For 5, 6, and 7 rounds, we found
no trails, but the space was scanned up to the limits listed in Table 2. Moreover,
in the case of 8 rounds, since each 8-round trail can be divided into two 4-round
trails and since all 4-round trails have weight at least 52, each 8-round trail has
weight at least 2× 52 = 104.

6.2 Bounds on Linear Trails

For the linear trail search we could not build further on a similar work for
Subterranean as there are no results known. Instead, we adapted works on Simon

Koala: A Low-Latency Pseudorandom Function 17

Table 2: Lower bounds on the restriction weight of differential trails in Koala-P.

number of rounds 1 2 3 4 5 6 7 8

Koala-P 2 8 26 [52, 60] ≥ 54 ≥ 60 ≥ 78 ≥ 104
Subterranean 2 8 25 58 ≥ 62 ≥ 78 ≥ 80 ≥ 116

Table 3: Lower bounds on the correlation weight of linear trails in Koala-P.

number of rounds 1 2 3 4

correlation weight 2 8 26 [38, 54]

and Speck in [23, 33] to create a mixed integer linear programming (MILP)
model for the propagation of linear masks. Our model provides lower bounds
on the correlation weight of linear trails for a low number of rounds, where the
correlation weight of a trail is the binary log of its correlation squared [16]. We
use the Gurobi optimizer [24] to solve the model and find linear trails with the
minimum correlation weight over 1,2,3 and 4 rounds.

During our trail search, we scanned the space up to correlation weight 26 and
found a tight bound on the correlation weight of up to 3 rounds. For 4 rounds,
we found a trail with the weight 54. Since the search is top-down, we only know
that the minimum weight for a trail of 4 rounds is between 38 and 54. Table 3
represents the lower bounds on the correlation weight of up to 4 rounds.

6.3 Clustering

Trails may cluster, differential trails that have the same input and output dif-
ferences contribute to the same differential. Similarly, linear trails that have
the same input and output masks contribute to the same linear approximation.
Even if each contribution is small, the sum of all the contributions might not be.
Still, as studied in [8], in permutations such as Koala-P, the maximum DP of
differentials and the maximum correlation of linear approximations is typically
very close to that of a single dominant trail. We decided to leave the study of
clustering as future work.

7 Design Rationale of Koala

This section presents the rationale behind the design of Koala. The starting
point of the design was the Even-Mansour construction, instantiated with 8 iter-
ations of the Subterranean round function for use in counter mode. We selected
the round function for its short critical path, consisting of one 2-bit NAND gate
and three 2-bit XOR gates, together with an INV gate. As we alluded to in Sec-
tion 5, the evolution from this initial design to Koala has been driven by the
goal of resistance against integral attacks. Indeed, when we allow an adversary

18 Amiri et al.

to inject 257-bit blocks, a practical attack exists on 6 rounds and a theoretical
attack on 7 rounds. Hence, 8 rounds would not be sufficient. Instead of changing
the number of rounds, we started looking for changes in the design preferably
with no or small implementation overhead.

The first step was to consider the round function itself. We changed ι to
remove symmetry between the rounds that could possibly be exploited in crypt-
analysis, e.g., slide attacks [7]. We changed θ and π to increase the number of
variables that appear in the derivatives of the first few rounds for any variable.
Finally, we reversed the order of the step functions. In particular, we moved χ
to the end of the round to increase the diffusion of input before the non-linear
layer of the first round. Also, at the permutation output, any linear layer after
the non-linear does not contribute to its cryptographic strength. The result of
these changes is the Koala-P permutation. However, those modifications alone
were not enough to prevent 6 and 7-round attacks working on Subterranean.
The next step was to allow only injecting a single 64-bit input block into the
state instead of a 257-bit block. This ExpandBlock function is tailored to the
Koala-P permutation in the sense that they have been designed together to
resist integral attacks as described in 5. The ExpandBlock function essentially
cuts the dimension of any affine space that an adversary can inject into half,
and its implementation cost in terms of additional gates and gate delay is small
compared to that of an extra round. Due to the input restriction to 64-bit, we
adopted the Kirby construction instead of Even-Mansour, as it allows for in-
puts consisting of an arbitrary number of 64-bit blocks. It is very suitable for
low-latency applications, has a tight security bound in multi-user settings, and
we handle the requirement of prefix-free input to Koala with a padding at the
output of the ExpandBlock function.

8 Performance

We discuss a hardware architecture aimed for ASICs and report the synthesis re-
sults. The corresponding Verilog code and a software reference code for generat-
ing test vectors can be found at https://github.com/parisaeliasi/KoalaHW.

8.1 Hardware Architecture of Koala

The block diagram for Koala is illustrated in Figure 3. It has one 257-bit state
register S, a combinational circuit for computing h(s, sqz) := ExpandBlock(s)|| sqz,
a circuit for computing Koala-P, and control logic for absorbing and squeezing
driven by two control signals: init and sqz.

- init = 1 the state is initialized with the image of key and id.

- init = 0 the operation is driven by sqz.

- sqz = 0 a non-final block absorbed, S updated and no output,

- sqz = 1 a final block absorbed, S not updated and output generated.

https://github.com/parisaeliasi/KoalaHW

Koala: A Low-Latency Pseudorandom Function 19

init

S

K
o
a
la

−
P

h
s

sqz

k||id

0

1

sqz

0

1

sqz 0

1
z

Fig. 3: Block diagram of the Koala circuit.

The circuit guarantees that the input to Koala is a prefix code by adding sqz in
the input block, effectively indicating a final block. In stream cipher operation
one first initializes the state, absorbs the blocks of the nonce with sqz = 0 and
squeezes the keystream blocks by absorbing successive counter value blocks with
sqz = 1. Four 2-bit NOR gates and two INV gates can encode the 2-bit input word
(s2i and s2i+1) to a 4-bit output word, as explained in Algorithm 2. Koala-P
is implemented with a fully unrolled circuit, where the logic of the 8 rounds is
replicated and chained. Unrolling is the natural strategy to achieve low-latency,
since it allows the evaluation of the whole permutation in one clock cycle.

8.2 Hardware Results and Comparison

We compareKoala with two other low-latency PRFs:Orthros [4] andGleeok [1].
Both provide 128-bit output blocks. For additional comparison, we also con-
sider the 64-bit block cipher Prince [9] and an instantiation of Koala where
Koala-P is replaced by 8 rounds of the Subterranean permutation denoted by
Kirby+sub.

For Orthros, Gleeok, and Prince, we used the RTL code publicly avail-
able [3, 11]. Note that these circuits are completely combinational. In fact, they
do not need any flip-flop to store the intermediate cipher state. On the contrary,
Koala’s circuit has the storage element S to support variable-length inputs.
Nevertheless, Koala has smaller area than Orthros and Gleeok.

The RTL codes were synthesized with Cadence Genus version 21.15 using
the standard cell library Nangate 15nm. We ran the synthesis flow multiple
times for each cipher with different timing constraints, until the clock period
is just above the critical path of the circuit. In Table 4, we report the best
results in terms of maximum throughput/area2 for each cipher. The maximum
throughput (MaxTp) is intended here as the maximum number of bits that a
circuit can output per second, and it is computed as output width divided by
latency. More results, including the minimum latency reached by each cipher,
are given in Table 13.

20 Amiri et al.

We can observe that Koala and Kirby+sub achieve the lowest latency and
highest throughput among all ciphers and have similar area. This confirms that
the modifications we made to Subterranean round function do not introduce
significant implementation overhead while improving the security as shown in
Section 5.2. Koala takes twice the area of Prince, but compensates this with
a 257-bit output, 4 times longer than that of Prince. Gleeok-128 occupies
twice the area of Koala and its output is 128 bits, only half that of Koala.
While Gleeok-256 has block width similar to that of Koala, but its area is
more than 5 times bigger. With respect to the metric MaxTp/Area2, Prince
achieves the best tradeoff, thanks to its very compact circuit. However, when we
consider the lowest latency in Table 13, Koala outperforms Prince, Orthros
and Gleeok thanks to its small area and larger output width.

Table 4: Synthesis results for the Nangate 15nm library.
Cipher Output width Area Latency MaxTp MaxTp/Area

[bits] [µm2] [GE] [ps] [Gbits/s] [Mbits/(s × µm2]
Koala 257 4175 21236 395 651 156

Kirby+sub 257 4167 21196 399 644 155
Prince 64 1696 8627 482 133 78.4
Orthros 128 5993 30482 400 320 53.4

Gleeok-128 128 9887 50291 400 320 32.4
Gleeok-256 256 26043 132462 550 465 17.8

9 Conclusion

With the design of Koala, we provide an open-source implementation of a new
PRF for low-latency that performs much better than Orthrosand Gleeokon
several metrics. The security analysis performed and supported with all open-
source tools used, shows that using 8 rounds of Koala-P with the ExpandBlock
should be secure against known attacks.

Acknowledgements

This work was partially funded by Intel through the Crypto Frontiers Research
Center. Alireza Mehrdad, Joan Daemen, and Daniël Kuijsters are supported
by the European Research Council under the ERC advanced grant agreement
under grant ERC-2017-ADG Nr. 788980 ESCADA. Shahram Rasoolzadeh is
supported by the Netherlands Organisation for Scientific Research (NWO) under
TOP grant TOP1.18.002 SCALAR. Parisa Amiri Eliasi is supported by the
Cryptography Research Center of the Technology Innovation Institute (TII),
Abu Dhabi (UAE), under the TII-Radboud project with the title Evaluation and
Implementation of Lightweight Cryptographic Primitives and Protocols. Silvia
Mella was funded by the Dutch Research Council (NWO) through the PROACT
project (NWA.1215.18.014).

Koala: A Low-Latency Pseudorandom Function 21

References

1. Anand, R., Banik, S., Caforio, A., Ishikawa, T., Isobe, T., Liu, F., Minematsu, K.,
Rahman, M., Sakamoto, K.: Gleeok: A family of low-latency prfs and its applica-
tions to authenticated encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2024(2), 545–587 (2024). https://doi.org/10.46586/TCHES.V2024.I2.545-587

2. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

3. Banik, S.: Orthros (2021), https://github.com/subhadeep-banik/orthros
4. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros: A low-latency

PRF. IACR Trans. Symmetric Cryptol. 2021(1), 37–77 (2021)
5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-

drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 9815, pp. 123–153. Springer (2016)

6. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: BipBip: A
low-latency tweakable block cipher with small dimensions. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023(1), 326–368 (2023)

7. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) Fast Software En-
cryption. pp. 245–259. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

8. Bordes, N., Daemen, J., Kuijsters, D., Assche, G.V.: Thinking outside the super-
box. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 -
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 12827, pp. 337–367. Springer (2021)

9. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in Cryp-
tology - ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2-
6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp. 208–225.
Springer (2012)

10. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T.,
Nikov, V., Rasoolzadeh, S., Todo, Y., Wiemer, F.: PRINCEv2 - more security for
(almost) no overhead. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) Selected
Areas in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 12804, pp. 483–511. Springer (2020)

11. Caforio, A.: Gleeok (2023), https://github.com/qantik/gleeok
12. Canale, F., Güneysu, T., Leander, G., Thoma, J.P., Todo, Y., Ueno, R.: SCARF

- A low-latency block cipher for secure cache-randomization. In: Calandrino, J.A.,
Troncoso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023. USENIX Association (2023)

13. Claesen, L.J.M., Daemen, J., Genoe, M., Peeters, G.: Subterranean: A 600 mbit/sec
cryptographic VLSI chip. In: Proceedings 1993 International Conference on Com-

https://doi.org/10.46586/TCHES.V2024.I2.545-587
https://doi.org/10.46586/TCHES.V2024.I2.545-587
https://github.com/subhadeep-banik/orthros
https://github.com/qantik/gleeok

22 Amiri et al.

puter Design: VLSI in Computers & Processors, ICCD ’93, Cambridge, MA, USA,
October 3-6, 1993. pp. 610–613. IEEE Computer Society (1993)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 2nd edn. (2001)

15. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics, Springer, fourth edn. (2015)

16. Daemen, J.: Cipher and hash function design, strategies based on linear and differ-
ential cryptanalysis, PhD Thesis. K.U.Leuven (1995), http://jda.noekeon.org/

17. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

18. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, Proceedings. Lecture Notes in Computer Science, vol. 1267,
pp. 149–165. Springer (1997)

19. Daemen, J., Massolino, P.M.C., Rotella, Y.: The Subterranean 2.0 cipher suite,
2019 (2019)

20. Derbez, P., Lambin, B.: Fast MILP models for division property. IACR Trans.
Symmetric Cryptol. 2022(2), 289–321 (2022). https://doi.org/10.46586/TOSC.
V2022.I2.289-321

21. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. IACR
Cryptol. ePrint Arch. p. 385 (2008)

22. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)

23. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: Milp-based automatic search algo-
rithms for differential and linear trails for Speck. In: Peyrin, T. (ed.) Fast Soft-
ware Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 9783, pp. 268–288. Springer (2016)

24. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023)
25. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset

division property without unknown subset - improved cube attacks against Triv-
ium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp. 466–495.
Springer (2020). https://doi.org/10.1007/978-3-030-45721-1_17

26. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. J. Cryptol. 34(3), 22 (2021)

27. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round Keccak sponge function. IACR Cryptol. ePrint Arch. p. 790 (2016)

28. Lai, X.: Higher order derivatives and differential cryptanalysis (01 1994)
29. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block

ciphers engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–545
(2021)

30. Lefevre, C., Belkheyar, Y., Daemen, J.: Kirby: A robust permutation-based prf con-
struction. Cryptology ePrint Archive, Paper 2023/1520 (2023), https://eprint.
iacr.org/2023/1520

31. Mehrdad, A., Mella, S., Grassi, L., Daemen, J.: Differential trail search in crypto-
graphic primitives with big-circle chi: Application to Subterranean. IACR Trans.
Symmetric Cryptol. 2022(2), 253–288 (2022)

http://jda.noekeon.org/
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17
https://eprint.iacr.org/2023/1520
https://eprint.iacr.org/2023/1520

Koala: A Low-Latency Pseudorandom Function 23

32. Mella, S., Daemen, J., Assche, G.V.: New techniques for trail bounds and appli-
cation to differential trails in Keccak. IACR Trans. Symmetric Cryptol. 2017(1),
329–357 (2017)

33. Shi, D., Hu, L., Sun, S., Song, L., Qiao, K., Ma, X.: Improved linear (hull) crypt-
analysis of round-reduced versions of SIMON. Sci. China Inf. Sci. 60(3), 39101:1–
39101:3 (2017)

34. Stanley, R.P.: Enumerative Combinatorics, Cambridge Studies in Advanced Math-
ematics, vol. 1. Cambridge University Press, Cambridge, NY (2012)

35. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primi-
tives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2020).
https://doi.org/10.1049/IET-IFS.2018.5283

36. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9056, pp. 287–314. Springer (2015)

37. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
IACR Cryptol. ePrint Arch. p. 285 (2016)

38. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP method of searching integral
distinguishers based on division property using three subsets. IACR Cryptol. ePrint
Arch. p. 1186 (2018), https://eprint.iacr.org/2018/1186

Appendix

A Missing Proofs

Proposition 6. Let f : Fn
2 → F2 and a, u ∈ Fn

2 . We have

f(x+ a) =
∑

0≤u≤a

∂uf(x) , and

∂uf(x) =
∑

0≤a≤u

f(x+ a) .

Proof. The first equality can be seen as follows. Using the ANF of f , we find
that

f(x+ a) =
∑
0≤w

αw(x+ a)w =
∑
0≤w

αw

 ∑
0≤u≤w

xw−uau

=

∑
0≤w

 ∑
0≤u≤w

αwx
w−uau

 =
∑
0≤u

∑
u≤w

αwx
w−uau

=

∑
0≤u

∑
u≤w

αwx
w−u

 au =
∑

0≤u≤a

∑
u≤w

αwx
w−u

=

∑
0≤u≤a

∂uf(x) ,

https://doi.org/10.1049/IET-IFS.2018.5283
https://doi.org/10.1049/IET-IFS.2018.5283
https://eprint.iacr.org/2018/1186

24 Amiri et al.

where we have applied the definition of the derivative and used the fact that
au = 1 if and only if 0 ≤ u ≤ a. The second equality follows from the Möbius
inversion formula [34, p. 264] applied to the first. ⊓⊔

Proposition 7. Let r ≥ 0, l ≥ 2r + 1, and {i1, . . . , il} ⊆ [0, 63] be a subset
of indices of size l. If V is an affine subspace of F64

2 such that xi1 , . . . , xil are
isolated in γ|V , then

∂ei1+···+eil
Er|V = 0 .

Proof. This proof is in the same style as Theorem 2 from [27]. Let V be an
affine subspace such that each xij is isolated in γ|V . By linearity, it suffices to
prove both ∂ei1+···+eil

γ|V = 0 and ∂ei1+···+eil
Koala-P[r] ◦ γ|V = 0. The first

equality is trivial, so we only prove the second. To that end, let f1, . . . , ft be the
monomials containing xi1 , . . . , xil in the output of γ|V . By definition, the degree
of each fj is at most one with respect to xi1 , . . . , xil . Now, any monomial T in
Koala-P[r]◦γ|V of maximum degree with respect to xi1xi2 · · ·xil is of the form

T = f1f2 · · · fh for some h ∈ Z≥0 with h ≤ 2r ,

because the algebraic degree of each ρj is 2. It follows that T contains at most
h different xi1 , . . . , xil . Suppose now that

∂ei1+···+eil
T ̸= 0 .

Then xi1 · xi2 · · ·xil divides T , which implies that h ≥ l. Therefore,

h ≥ l ≥ 2r + 1 > 2r

which is a contradiction. Since T does not appear in the derivative, any lower
degree monomials do not appear either and the result follows. ⊓⊔

Proposition 8. Let r ≥ 1, l ≥ 2r, and {i1, . . . , il} ⊆ [0, 63] be a subset of
indices of size l. If V is an affine subspace of F64

2 such that xi1 is isolated in
ρ0 ◦ γ|V and xi2 , . . . , xil are isolated in γ|V , then

∂ei1+···+eil
Er|V = 0 .

Proof. This proof has been adapted from Theorem 2 from [27]. Let V be an
affine subspace of F64

2 such that xi1 is isolated in ρ0 ◦ γ|V and xi2 , . . . , xil are
isolated in γ|V . By linearity, it suffices to prove both ∂ei1+···+eil

γ|V = 0 and
∂ei1+···+eil

Koala-P[r] ◦ γ|V = 0. The first equality is trivial, so we only prove
the second. To that end, let f1, . . . , fs be the monomials containing xi1 in ρ0◦γ|V .
By definition, the degree of each fi is exactly one with respect to xi1 . Similarly,
let g1, . . . , gt be the monomials containing xi2 , . . . , xil in ρ0 ◦ γ|V . By definition
the degree of each gj is at most two with respect to xi2 , . . . , xim . Moreover, xi1
does not divide any gj , because that would contradict the assumption that it is

Koala: A Low-Latency Pseudorandom Function 25

isolated. Now, any monomial T in Koala-P[r] ◦ γ|V of maximum degree with
respect to xi1xi2 · · ·xil is of the form

T = f1f2 · · · fhg1g2 · · · gh′ for some h, h′ ∈ Z≥0 with h+ h′ ≤ 2r−1 ,

because the algebraic degree of G is 2. It follows that T contains at most 2h′

different xi2 , . . . , xil and at most one xi1 . Suppose now that

∂ei1+···+eil
T ̸= 0 .

Then xi1 · xi2 · · ·xil divides T , which implies that 2h′ ≥ l and h ≥ 1. Therefore,

h+ h′ ≥ 1 +
l

2
= 1 +

2r

2
= 1 + 2r−1 > 2r−1 ,

which is a contradiction. Since T does not appear in the derivative, any lower
degree monomials do not appear either and the result follows. ⊓⊔

B Diffusion Test

In Table 5 we use the definition of [17] for the avalanche dependency weight and
entropy. We report on the avalanche behaviour for the Subterranean permuta-
tion, the Koala-P permutation and the Koala-P permutation with the input
injection. We provide at https://github.com/parisaeliasi/KoalaHW the C
code use to produce those result.

Table 5: Diffusion test for the Subterranean permutation, the Koala-P permu-
tation and the Koala-P with the ExpandBlock function. For each we compute
the dependency (D), the weight (W) and the entropy (E).

Subterranean Koala-P Koala-P + ExpandBlock

number
of round

D W E D W E D W E

1 9 6.00 5.99 9 6.002 5.99 36 12.18 30.90

2 81 36.00 65.20 81 35.99 65.20 167 55.43 140.72

3 255 109.20 236.54 251 108.75 230.97 257 122.95 254.62

4 257 128.36 256.99 257 128.39 256.99 257 128.50 256.99

C Integral Distinguishers

We give in the Table 6, Table 8 and Table 9 integral distinguishers found with
our tool for reduced-round versions of Koala. We represent the input affine
space used with the list of input variable indexes, and the output bit coordinate
correspond to the output bit index after r round where this affine space leads to a

https://github.com/parisaeliasi/KoalaHW

26 Amiri et al.

integral distinguisher. We also provide at https://github.com/parisaeliasi/
KoalaHW all code to reproduce our result and to search for integral distinguisher.

Due to the input injection we can consider terms in monomials as a product
of two input variable. Therefore, we know in advance that if x2i appears than
it will always be together with x2i+1. This strongly reduces the search space for
monomials.

D Differential and Linear Trails

In this section we provide the trail with least weight for 1, 2 and 3 round as
found by our tools. We represent trails with a list of pair of indices, one for the
round number and one for the index position within the state.

E Additional Hardware Results

In Table 13, we present more synthesis results and highlight the best result for
each metric.

Table 6: 1 Round integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29] 6, 233

[32, 33, 60, 61] 14, 44, 74

[0, 1, 36, 37] 48, 78

[16, 17, 52, 53] 184, 214

[2, 3, 38, 39] 65, 95

[8, 9, 12, 13] 97, 127

[10, 11, 14, 15] 114, 144, 174

[22, 23, 50, 51] 216, 246

Table 7: 2 Rounds integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29, 32, 33, 60, 61] 157, 161, 164, 166, 168

[0, 1, 36, 37, 16, 17, 52, 53] 29, 33, 36, 39, 43

[2, 3, 38, 39, 22, 23, 50, 51] 62, 66, 69, 72, 73, 76

https://github.com/parisaeliasi/KoalaHW
https://github.com/parisaeliasi/KoalaHW

Koala: A Low-Latency Pseudorandom Function 27

Table 8: 3 Rounds integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29, 32, 33, 60, 61,
0, 1, 36, 37, 16, 17, 52, 53] 87, 94, 97, 155, 165, 206, 213, 216

[2, 3, 38, 39, 8, 9, 12, 13, 10,
11, 14, 15, 22, 23, 50, 51] 38, 200

Table 9: 4 Rounds integral distinguisher
Affine Space Output Bit Coordinate

[24, 25, 28, 29, 32, 33, 60, 61, 0, 1, 36, 37, 16, 17, 52,
53, 2, 3, 38, 39, 8, 9, 12, 13, 10, 11, 14, 15, 22, 23, 50, 51] 15, 49, 54, 84, 91, 94, 239

Table 10: Upper bound on the degree growth based on the type of linearization
used.

number of rounds

type of linearization 1 2 3 4 5 6

0 round 4 8 16 32 64 128

ExpandBlock function 2 4 8 16 32 64

ExpandBlock function
+ first round

1 2 4 8 16 32

Table 11: Differential trail for Koala
Round Weight Indexes

1 2 [1, 0]

2 6 [2, 0], [2, 247], [2, 254]

3 18 [3, 0], [3, 65], [3, 72], [3, 75], [3, 141], [3, 148], [3, 151], [3, 247], [3, 254]

Table 12: Linear trail for Koala
Round Weight Indexes

1 2 [1, 0]

2 6 [2, 0], [2, 106], [2, 182]

3 18 [3, 0], [3, 26], [3, 82], [3, 102], [3, 106], [3, 158], [3, 177], [3, 182], [3, 233]

28 Amiri et al.

Table 13: Extended synthesis results on Nangate 15nm.
Cipher Output width Area Latency MaxTp MaxTp/Area MaxTp/Area2

[bits] [µm2] [GE] [ps] [Gbits/s] [Mbits/(s× µm2)] [Gbits/(s×mm4)]

Koala 257 4079.67 20750 472 544 133.34 32.715
4175.07 21236 395 651 155.92 37.326
5639.80 28686 300 857 151.95 26.933
6621.41 33678 290 886 133.80 20.213

Kirby+sub 257 4167.30 21196 399 644 154.53 37.089
5203.97 26469 300 857 164.68 31.633
6035.42 30698 290 886 146.80 24.329

Prince 64 1696.19 8627 482 133 78.41 46.152
1935.95 9847 450 142 73.38 37.947
2957.03 15040 410 156 52.75 17.852

Orthros 128 5898.98 30004 499 257 43.57 07.372
5978.75 30410 449 285 47.67 07.975
5993.05 30482 400 320 53.39 08.910
7295.73 37108 370 346 47.42 06.499
8556.58 43521 360 356 41.60 04.856

Gleeok-128 128 9726.98 49474 436 294 30.22 03.103
9887.61 50291 400 320 32.36 03.273

13270.55 67498 370 346 26.07 01.964

Gleeok-256 256 25986.71 132175 600 427 16.43 00.632
26043.19 132462 550 465 17.85 00.686
29288.50 148969 520 492 16.79 00.574
31468.54 160057 510 502 15.95 00.507

	Koala: A Low-Latency Pseudorandom Function
	Introduction
	Notation and Conventions
	Specification of Koala
	The Kirby Construction
	The Koala-P Permutation
	The Koala PRF
	The Koala Security Claim

	Formalism for Integral Cryptanalysis
	Framework of Integral Attacks
	Algebraic Normal Form
	Properties of Derivatives

	Integral Attacks Applied to Koala
	Bit-based Division Property Analysis
	Conditional Cube Attack

	Trail Bounds of Koala-P
	Bounds on Differential Trails
	Bounds on Linear Trails
	Clustering

	Design Rationale of Koala
	Performance
	Hardware Architecture of Koala
	Hardware Results and Comparison

	Conclusion
	Missing Proofs
	Diffusion Test
	Integral Distinguishers
	Differential and Linear Trails
	Additional Hardware Results

