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Abstract

SNARKs are powerful cryptographic primitives that allow a prover to produce a succinct proof of a
computation. Two key goals of SNARK research are to minimize the size of the proof and to minimize
the time required to generate the proof. In this work, we present new SNARK constructions that push the
frontier on both of these goals.

Our first construction, PARI, is a SNARK that achieves the smallest proof size amongst all known
SNARKs. Specifically, PARI achieves a proof size of just two group elements and two field elements,
which, when instantiated with the BLS12-381 curve, totals just 160 bytes, smaller than that of Groth16
[Groth, EUROCRYPT ’16] and Polymath [Lipmaa, CRYPTO ’24].

Our second construction, GARUDA, is a SNARK that reduces proof generation time by supporting,
for the first time, arbitrary “custom” gates and free linear gates. To demonstrate GARUDA’s performance,
we implement and evaluate it, and show that it provides significant prover-time savings compared to both
the state-of-the-art SNARKs (Groth16 and HyperPlonk [EUROCRYPT ’23])

Both constructions rely on a new cryptographic primitive: “equifficient” polynomial commitment
schemes that enforce that committed polynomials have the same representation in particular bases. We
provide both rigorous security definitions for this primitive as well as efficient constructions for univariate
and multilinear polynomials.

Keywords: succinct arguments; polynomial interactive oracle proofs; custom gates; equifficient polyno-
mial commitments
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1 Introduction

Succinct Non-interactive ARguments of Knowledge (SNARKs) are cryptographic proofs that enable a prover
to efficiently convince a computationally weak verifier of claims of the form “Given a program P and public
input x, I know a private input w such that P (x,w) = 1”. Two fundamental metrics in the study of SNARKs
are proof size and prover time.

Proof size. From the proof-size perspective, the state-of-the-art SNARK is that of Groth [Gro16], henceforth
referred to as Groth16. The latter achieves the smallest proof size amongst all known SNARKs: just three
group elements. When instantiated with the BLS12-381 curve, Groth16 proofs are just 1536 bits.

An important open question has thus been: what is the shortest proof size for a SNARK for NP?

Prover time. From a prover time perspective, all known SNARKs require time at least linear in the size of
the circuit C being proven, and so much effort has been invested in reducing the size of C. An important line
of work in this direction has been the study of more expressive circuits that support “custom” gates that can
compute arbitrary functions of their inputs, rather than just addition and multiplication. Examples of such
gates include high-degree polynomial gates [GW19] and lookup gates [GW20]. State-of-the-art SNARKs are
able to prove such expressive circuits in time linear in the circuit size [CBBZ23; STW23]. Unfortunately, the
proving algorithms of these SNARKs perform cryptographic operations that scale with the number of linear
and non-linear gates in the circuit. In contrast, prior SNARKs for simpler circuit models [GGPR13; Gro16]
only pay cryptographic costs for non-linear gates, and are able to prove linear gates “for free”. A key open
question in the literature has been whether we can obtain the best of both worlds and construct SNARKs that
support both custom gates and free linear gates.

This question is interesting from both theoretical and practical perspectives. From a theory standpoint,
cheap linear gates would align custom-gate SNARKs not only with prior SNARKs [GGPR13; Gro16], but
also with other cryptographic primitives such as MPC [DPSZ12; KS08] and FHE [Gen09] where linear
operations are often much cheaper than non-linear ones. From a practical perspective, linear gates can
impose a significant cost in practice, and so eliminating cryptographic costs for them can lead to significant
performance improvements. Indeed, we show in Section 2.7 that constraint systems that support free linear
gates can be much smaller than those that do not.

1.1 Our contributions

In this work, we answer all the foregoing questions in the affirmative by constructing two new SNARKs:
• PARI: a SNARK whose proofs consist of 2 group elements and 2 field elements; over BLS12-381 this

requires just 1280 bits.
• GARUDA: a SNARK that supports custom gates and free linear gates with a linear-time prover.
We detail the ideas behind these SNARKs next.

PARI: a 2-group element SNARK. PARI is a new SNARK for ‘square’ R1CS [GM17] that achieves a
proof size of two group elements (and two field elements). When instantiated with the BLS12-381 curve,
PARI achieves a proof size of just 1280 bits, which is the smallest in the literature. More generally, no matter
the choice of pairing-friendly curve, PARI’s proof size is always smaller than that of the state-of-the-art prior
work [Gro16; Lip24]. The prover and verifier times for PARI are also similar to those for Groth16 [Gro16]:
for a circuit of size n, PARI’s prover requires O(n log n) field operations and O(n) group operations, while
its verifier requires O(1) pairings. We prove (an interactive version of) PARI secure in the algebraic group
model (AGM) [FKL18].
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GARUDA: custom gates and free linear gates. GARUDA is a SNARK for Generalized Rank-1 Constraint
Satisfiability (GR1CS), an NP-complete language that we introduce, and which extends the popular Rank-1
Constraint Satisfiability (R1CS) language with support for custom gates. For a constraint system of size
n, GARUDA achieves O(n) prover time and O(log n) proof size and verifier time. Like PARI, we prove an
interactive version of GARUDA secure in the AGM.

New methodology: SNARKs from equifficient polynomial commitments. We present a methodol-
ogy for constructing SNARKs for GR1CS that extends the popular ‘PIOP + PC→ SNARK’ framework
[CHMMVW20; BFS20] to work with a new kind of polynomial commitment scheme that enforces “equal-
coefficient”, or equifficient, constraints. Roughly, such equifficient polynomial commitment (EPC) schemes
enforce the additional property that given a batch of polynomials p1, . . . , pn and associated bases B1, . . . ,Bn,
the coefficient vectors of these polynomials in their respective bases are equal.

Our new ‘PIOP + EPC→ SNARK’ methodology leverages EPC schemes to enforce linear constraints,
as opposed to prior PIOP-based SNARKs [CHMMVW20; Set20] which use complex PIOPs for this task.
This shift enables SNARK constructions that can use simpler PIOPs that are responsible only for non-linear
checks.

We extend the popular KZG [KZG10] and PST [PST13] PC schemes to construct EPC schemes for
univariate and multilinear polynomials respectively. Our constructions support commitment batching, which
is crucial for attaining the small proof size in our construction of PARI. Our constructions are inspired by
techniques from prior “Linear PCP”-based SNARKs [BCIOP13]. We believe that our EPC schemes could
find application in places where PC schemes are used today (e.g., verifiable secret sharing); we leave these
explorations to future work.

Implementation and evaluation. We implement GARUDA in a new library built atop the arkworks
framework [arkworks]. Our library flexibly extends the constraint-writing framework of arkworks to
support GR1CS. We use our implementation to compare the performance of GARUDA to two baselines:
Groth16, a SNARK with free linear gates but no support for custom gates, and HyperPlonk [CBBZ23], a
SNARK that supports custom gates, but does not have free linear gates. When benchmarked on the same
computation (iterations of the Rescue-Prime [SAD20] hash function), our implementation of GARUDA is
almost 5× faster than Groth16 and 2.67× faster than HyperPlonk, thus demonstrating that the combination
of free linear gates and custom gates indeed leads to much faster proving times.

Remark 1.1 (circuit-specific setup). GARUDA, unlike all prior SNARKs for custom gates, requires circuit-
specific setup to sample the proving and verification keys. Indeed, universal setup suffices for all prior
SNARKs that support custom gates [GWC19; CBBZ23], and in fact some prior works [STW23] can
even be instantiated with a transparent setup. However, as stated above, none of these works are able to
avoid cryptographic prover work for linear gates. In fact, it is an important open problem to construct a
universal-setup SNARK even for standard circuits (i.e. without custom gates) that is able to avoid the latter
costs.

PARI also requires a circuit-specific trusted setup, but the relevant prior work (namely, Groth16) also
require such a setup. Achieving proof size similar to Groth16 without a circuit-specific setup is again an
important open problem.

1.2 Related work

Campanelli et al. [CFQ19] describe a “linear-subspace” SNARK that shows that multiple commitments
commit to the same vector. Their technique is similar to how our equifficient polynomial commitment
schemes enforce that the coefficients of committed polynomials are equal, but does not seem to support
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important features such as commitment batching and enforcing that the committed polynomials are in
particular bases.

In the rest of this section, we discuss work related to our specific SNARKs.

1.2.1 SNARKs with small proof size

As discussed in Section 1, Groth16 [Gro16] is the state-of-the-art SNARK with the smallest proof size: just
three group elements. PARI improves upon this as its proof consists of just two group elements and two
scalar field elements, and is always at most as large as a Groth16 proof. As noted above, PARI’s proof size is
smaller than Groth16 when instantiated with the BLS12-381 curve. Groth also proved a lower bound on the
size of pairing-based SNARKs: every such SNARK must have a proof size of at least two group elements
[Gro16]. However, Groth’s lower bound only applies to SNARKs that rely only on the generic group model,
and so does not apply to PARI which relies on the AGM and the ROM. Interesting open questions include
achieving a two-group element SNARK in the generic group model and extending Groth’s lower bound to
apply also in the joint AGM + ROM. Either result would demonstrate the tightness of Groth’s lower bound
(either via the new construction, or via PARI).
Concurrent work. A concurrent work [Lip24] constructs Polymath, a SNARK with proof size consisting of
three G1 elements and one F element. Over the BLS12-381 curve, Polymath proofs require 1408 bits, which
is smaller than Groth16 proofs (1536 bits), but is larger than PARI proofs (1280 bits). Polymath implicitly
uses similar “equal-coefficient” checks as PARI, but does not formalize these into a separate primitive as we
do, and also does not support commitment batching. On the other hand, Polymath supports zero-knowledge,
and proves security directly in the AGM with oblivious sampling (AGMOS) [LPS23], whereas we prove
security only in the AGM. While we believe that PARI can be extended to support zero-knowledge and can
be proven secure in the AGMOS, we leave this for future work.

We provide an asymptotic comparison of PARI with Groth16 and Polymath in Table 1.

construction prover verifier proof size

Groth16
[Gro16]

F O(m logm) — —
G1 2 MSMs of size m

O(|x|) muls + 3 pairings 2
G2 1 MSM of size m 1

Polymath
[Lip24]

F O(m logm) O(|x|) 1
G1 14 MSMs of size m

3 pairings 3
G2 — —

PARI
[ours]

F O(m logm) O(|x|) 2
G1 4 MSMs of size 2m

3 pairings 2
G2 — —

Table 1: Comparison of small-proof-size SNARKs. Above m is the number of multiplication gates.

Other related work. Barta et al. [BIOW20] constructed a designated-verifier SNARK that achieves
two-group elements in the designated verifier setting, but by relaxing their soundness error to be non-
negligible. They also provide a construction that achieves a single group element SNARK, but by relying on
a non-standard assumption, and furthermore by settling for non-negligible completeness error.

Finally, a line of work [BISW17; BISW18] constructed succinct designated-verifier proofs from lattice
assumptions. They are able to achieve “quasi-optimal” SNARKs where the proof size is O(λ) and the prover
time is O(|C|+ polylog(λ, |C|)).
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Nitulescu [Nit19] showed how to construct an LIP for Square Arithmetic Programs [GM17] that achieves
a query complexity of just two. Nitulescu shows that when after applying to this LIP the methodology of
Bitansky et al. [BCIOP13], the resulting SNARK achieves a proof size of two lattice ciphertexts. Groth
[Gro16] and Groth and Maller [GM17] note that applying this idea to groups with Type-I pairings results in
a two-group element SNARK. This work focuses on the more challenging setting of Type-III pairings, for
which no prior two-group element SNARK was known.

1.2.2 SNARKs supporting custom gates

TurboPlonk [GW19] introduced the concept of “high-degree” polynomial gates in circuits. These gates
compute arbitrary (fixed) polynomials of the input wires, and can be used to construct smaller circuits for
certain computations. Plookup [GW20] introduced the concept of “lookup” gates, which check whether the
input wires are in a predefined table. Subsequent work showed how to combine these two kinds of gates in a
single constraint system [PFMBM22; XCZBFKC23]. All these works require quasilinear prover time, and so
we next discuss the works that improve upon this to achieve linear prover time.

HyperPlonk [CBBZ23] constructed the first SNARK for custom gates with linear prover time. We provide
an asymptotic comparison of HyperPlonk with GARUDA in Table 2.

Setty, Thaler, and Wahby [STW23] introduced a generalization of R1CS that they call “Customizable
Constraint Systems” (CCS), and described how to generalize the Spartan SNARK [Set20] to support CCS.
The resulting SNARK, SuperSpartan, also achieves linear prover time. Our generalization of R1CS (GR1CS)
subsumes both CCS and its variant CCS+ which additionally supports lookup gates, and we find it easier to
work with. Indeed, we were able to easily extend the arkworks framework to support GR1CS, inheriting
all the existent gadgets for R1CS “for free.” Notably, we know of no implementations of CCS or CCS+.

As noted in Section 1, all the foregoing works must pay cryptographic proving costs (e.g., group scalar
multiplications) for linear gates. In contrast, GARUDA avoids these costs. We provide an asymptotic
comparison of GARUDA with HyperPlonk and SuperSpartan in Table 2. We provide an empirical comparison
of GARUDA with HyperPlonk in Section 2.7 which demonstrates that GARUDA achieves almost 3× lower
proving times.

construction universal setup prover verifier proof size

HyperPlonk
[CBBZ23]

✓
F O(η(t+ d log

2
d)) O(|x|+ t log η) O(t+ d log η)

G1 O(t) MSMs of size η O(t) muls + O(log η) pairings O(t+ log η)

SuperSpartan
[STW23]

✓
F O(m(t+ d log

2
d) + ηt) O(|x|+ t log η) O(t+ d log η)

G1 O(1) MSMs of size tη O(log tη) pairings O(log tη)

GARUDA
[ours]

✗
F O(m(t+ d log

2
d) + ηt) O(|x|+ t log η) O(t+ d logm)

G1 O(t) MSMs of size m O(t+ logm) pairings O(t+ logm)

m: number of non-linear gates η: total number of gates (= Ω(m))
t: maximum arity of any custom gate d: maximum degree of any (polynomial) custom gate

Table 2: Comparison of SNARKs with custom gate support. Here MSM (multi-scalar multiplication) denotes the
time to compute the sum

∑
i siPi, where si are scalars and Gi are group elements.
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2 Techniques

We obtain both GARUDA and PARI by instantiating a generic framework for constructing SNARKs for
GR1CS, a straightforward generalization of Rank-1 Constraint Satisfiability (R1CS), which is the constraint
system of choice for many SNARKs [GGPR13; BCTV14; Gro16; CHMMVW20; Set20]. To describe our
generalization and how we construct SNARKs for it, we first recall R1CS and how SNARKs for R1CS are
constructed.

Background: R1CS. Recall that the indexed NP relation RR1CS is the set of triples (i,x,w) =
((F,m,A,B,C), x, w) where F is a finite field, A,B,C are matrices in Fm×m, and z := (x,w) ∈ Fm

satisfies Az ◦Bz = Cz.
In R1CS, addition gates are captured via the linear combinations introduced by the matrix-vector products

Az,Bz,Cz, while multiplication gates are captured by the Hadamard product relation between the latter.
Thus, a SNARK with “free” addition gates for R1CS would pay cryptographic prover costs that scale only
with the cost of the Hadamard product, as opposed to costs that scale also with those of the matrix-vector
multiplications. In other words, the cryptographic work of such a SNARK scales with the number of rows in
the matrix, as opposed to the number of non-zero entries in the matrix.

Background: circuit-specific-SNARKs for R1CS. The checks performed by all existing SNARKs for
R1CS can be decomposed into two complimentary kinds:
• Linear checks (linchecks) that enforce that there exist vectors z, zA, zB, zC satisfying zA = Az, zB = Bz,

and zC = Cz, and
• Non-linear row-wise checks (rowchecks) that enforce that zA ◦ zB = zC .
Existing circuit-specific SNARKs perform these checks as follows.

For linear checks, these SNARKs rely on the following probabilistic test for each matrix M ∈ {A,B,C}:
⟨r, zM ⟩

?
= ⟨r⊤M, z⟩, where r is a random vector sampled uniformly at random from Fm. In fact, for

efficiency, the random vector r is replaced by LK(τ), which is a vector whose i-th element is the i-th
Lagrange polynomial LKi (X) evaluated at a field element τ sampled uniformly at random from F \K (K is

an appropriate subset of F of size equal to the number of constraints m). The check thus becomes ⟨LK(τ), zM ⟩
?
=

⟨LK(τ)⊤M, z⟩, and its soundness follows from the Schwartz–Zippel lemma [Sch80; Zip79].
To construct a SNARK from this check, the key insight in prior work [GGPR13] is that the special form

of the vector LK(X) allows us to write the foregoing check as ⟨LK(τ), zM ⟩ = ⟨m(τ), z⟩, where m(X) is
the vector whose i-th element mi(X) = ⟨LK(X),Mi⟩ is the polynomial interpolating the i-th column of
M . For efficiency, these checks can then be further batched together via random coefficients αA, αB, αC as
follows: ∑

M∈{A,B,C} αM · ⟨L
K(τ), zM ⟩ = ⟨

∑
M∈{A,B,C} αM ·m(τ), z⟩

To compile this into a SNARK, existing works [GGPR13; BCTV14] rely on a pairing-friendly group
⟨group⟩ = (G1,G2,GT , G,H, e) as follows. A setup phase, on input the R1CS index (F,m,A,B,C),
samples αA, αB, αC ← F and τ ← F \K, and constructs the proving key pk = (Σ1 = LK(τ) ·G,Σ2 =
(
∑

M αMm(τ)) ·G) and the verifying key vk = (αAH,αBH,αCH). To produce a proof, the prover, for
each M ∈ {A,B,C}, commits to zM via the Pedersen [Ped92] commitment cM := ⟨zM ,Σ1⟩ and to z via
the Pedersen commitment c := ⟨z,Σ2⟩. The verifier then checks that the linear relation is satisfied via the
following pairing check: ∏

M∈{A,B,C}

e(cM , αMH) = e(c,H) . (1)
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The soundness of this SNARK can be proven in the Algebraic Group Model [FKL18]. This SNARK is highly
efficient, requiring only 4 m-sized G1-MSMs from the prover, and 4 pairings from the verifier.

For non-linear row-wise checks, SNARKs for R1CS rely on the following polynomial identity:

ẑA(X) · ẑB(X)− ẑC(X) = 0 mod vK(X) . (2)

Here ẑM (X) = ⟨LK(X), zM ⟩ is the polynomial interpolating zM , and vK(X) =
∏

k∈K(X − k) is the
polynomial that is 0 at every point in K. (For an exposition of this identity, see prior work [GGPR13;
BCRSVW19]). To see how we can compile this check into a SNARK, notice that the group elements
cA, cB, cC in the lincheck SNARK are Pedersen commitments to ẑA, ẑB, ẑC respectively. Prior work
[GGPR13; BCTV14] performs the check directly over these commitments by relying on pairings as follows.

First, the prover’s commitment cB to ẑB is changed to be over G2 instead of G1. Second, the prover
provides a commitment ch ∈ G1 to the polynomial h(X) := (ẑA(X) · ẑB(X)− ẑC(X))/vK(X).

Then, the verifier uses the following pairing equation to check Equation (2) at a random point τ in the
exponent:

e(cA, cB) = e(cC , H) · e(ch, vK(τ) ·H) (3)

As above, the soundness of this check can be proven in the AGM [FKL18].

2.1 Generalizing R1CS

A natural way to extend R1CS to support custom gates would be to consider more complex predicates on
the witness. For example, one could ask that each entry of (Az,Bz,Cz) is an element of a table T . As
another example, instead of asking that Az ◦Bz = Cz, we could ask z to satisfy more complex polynomial
equations (e.g., Az ◦Bz ◦ Cz = Dz). More generally, one can imagine enforcing an arbitrary predicate L
on vectors M1z, . . . ,Mtz for some matrices M1, . . . ,Mt that depend on the predicate L. Formalizing this
ideation leads to Generalized R1CS (GR1CS), our extension of R1CS that supports arbitrary custom gates.

Definition 2.1 (informal version of Definition 3.3). The NP relation GR1CS is the set of triples (i,x,w) =
((F,m,C ), x, w) where F is a finite field and C is a set of constraints, each of which is a tuple (M1, . . . ,Mt, L)
such that z := (x,w) ∈ Fm satisfies L(M1z, . . . ,Mtz) = 0.

SNARKs for GR1CS. Let us attempt to construct a SNARK for GR1CS. We begin by noticing that, like
for R1CS, the checks for GR1CS can also be decomposed into linchecks and (generalized) rowcheck checks.
We can then try to adapt the foregoing SNARKs for these checks to work for GR1CS:

• Linchecks: In GR1CS, we also need to compute matrix-vector products. We can adapt the foregoing
linear-check SNARK to work with GR1CS by simply increasing the number of matrices in the check of
Eq. (1):

∏
M∈{M1,...,Mt} e(cM , αMH) = e(c,H).

• Rowchecks: Instead of proving the R1CS identity of Equation (2), GR1CS requires proving the custom gate
L(ẑ1(X), . . . , ẑt(X)) = 0 over a domain K. Unfortunately, this is not straightforward: while Eq. (2) can
be straightforwardly adapted to this more complex check, its cryptographic realization in Eq. (3) cannot:
the bilinear map only allows us to check quadratic relations, which rules out custom gates that enforce
higher-degree polynomial relations, and also completely rules out non-algebraic gates like table lookups.

It thus seems that trying to generalize existing circuit-specific SNARKs for R1CS to work with GR1CS
does not work because these perform the non-linear check in Eq. (2) “in the exponent” by using pairings to
multiply polynomials, and then checking that the resulting products are equal as group elements.
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An alternative approach that has been developed in the past few years instead directly checks polynomial
identities like those of Eq. (2) directly in plain, outside the exponent. This approach follows the popular
‘PIOP + PC scheme→ SNARK’ methodology [CHMMVW20; BFS20]. Briefly, this methodology combines
two components: a Polynomial Interactive Oracle Proof (PIOP), and a Polynomial Commitment (PC) scheme.
The former is an interactive proof system where the prover’s messages are polynomials, and the verifier
does not read these messages but instead queries them at evaluation points of its choice. The latter is a
cryptographic tool that allows the prover to commit to a polynomial and later prove that it evaluates to a
claimed value at a claimed point. The methodology constructs a SNARK from these components by replacing
the PIOP prover’s polynomials with commitments to them, and then uses the PC scheme to prove that the
commitments are consistent with the PIOP verifier’s queries.

In existing constructions [CHMMVW20; Set20; STW23], the PIOP is responsible for both the linear and
non-linear checks. While non-linear checks like those of Eq. (2) have efficient PIOPs, linear checks require
PIOPs whose proving costs scale with the number of non-zero entries in the matrix, and which require the
prover to compute numerous oracles. After compilation to a SNARK, this results in proving costs that require
cryptographic work for addition gates, and also result in larger proof sizes.

To overcome these issues, we propose a new methodology that combines the best of both worlds: we
use efficient PIOPs for non-linear custom gates, and rely on efficient linear-check SNARKs for linear gates.
To do so, we introduce a new notion of equifficient polynomial commitments that allows us to link the two
components cleanly. We devote the rest of this section to describing our new notion, and describing how to
construct SNARKs for GR1CS using it.

2.2 New tool: Equifficient polynomial commitments

Background: polynomial commitments. Recall that a (standard) polynomial commitment (PC) scheme
allows a committer to commit to a polynomial p in a commitment c, and to then later prove to a verifier
an “evaluation claim” that asserts that the committed polynomial evaluates to a claimed evaluation v at a
given point u. For use in SNARKs, the PC scheme is required to satisfy additional properties, with the
relevant one being extractability [CHMMVW20]. Roughly, the latter says that whenever the verifier is
convinced by an adversarial committer’s evaluation claim, then the committer must “know” a polynomial
underlying the commitment that is consistent with the evaluation claim (i.e., evaluates to the claimed value
at the claimed point). This is formalized by requiring the existence of an efficient extractor that is able to
extract such a polynomial from any adversary that convinces the verifier with non-negligible probability. (See
[CHMMVW20] for a formal definition of extractability.)

Coefficient-equality constraints. We extend the standard notion of extractability by enforcing a new
property called coefficient equality. Let K be a D-dimensional vector space of polynomials over a field F,
and let p1, . . . , pn be polynomials in K. Associate with each pi a basis Bi of K, and denote by [pi]Bi

the list
of coefficients of pi when expressed in the basis Bi. Then, a coefficient-equality (or equifficient) constraint Λ
on polynomials p = [p1, . . . , pn] in K is a list [B1, . . . ,Bn] of bases for K that enforces that the coefficient
vectors of the polynomials in their respective bases are equal; that is, [p1]B1

= · · · = [pn]Bn
. We denote

this constraint satisfaction by the predicate Λ(p) = 1. If Λ is specified by a single basis, then we call the
constraint trivial, and assume without loss of generality the basis is the canonical basis for K, denoted by U .

Definition: equifficient PC schemes. An equifficient polynomial commitment scheme (EPC) is a PC scheme
in the standard sense with the additional property that equifficient constraints are enforced on committed
polynomials. Formally, an EPC scheme for the D-dimensional vector space K over a field F in the field
family F consists of algorithms (Setup,Specialize,Commit,Open,Verify) whose syntax and properties are
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as follows.

Syntax. EPC.Setup samples public parameters pp containing a description of K along with its canonical
basis U . The algorithm EPC.Specialize then specializes these public parameters pp for a set of equifficient
constraints Ω = {Ω1, . . . ,Ωs}, constructing committer, opener, and verifier keys (ck, ok, vk) that collectively
enforce the constraints in Ω on committed polynomials.

The committer can then use EPC.Commit to commit to a list of polynomials p = [p1, . . . , pn] while
enforcing that these polynomials are subject to an equifficient constraint Λ ∈ Ω. Later on, the committer
can use EPC.Open to produce a proof that the committed polynomials evaluate to claimed evaluations
v = [v1, . . . , vn] at a claimed point u. Finally, the verifier can use EPC.Verify to check this proof, with the
guarantee that if the proof passes, then the resulting evaluations are correct, and moreover that the committed
polynomials satisfy the equifficient constraint Λ.

Extractability. EPC schemes are required to satisfy strong equifficient extractability guarantees. Roughly,
this means that, given an equifficient constraint Λ ∈ Ω, for every adversarial committer who can produce a
commitment-proof pair that causes EPC.Verify to accept, there exists an efficient extractor that outputs the
polynomials in the adversarial commitment that satisfy the evaluation claims and the claimed equifficient
constraints.

Formalizing the foregoing informal description in a way that suffices for our application of constructing
SNARKs for GR1CS requires some care. For instance, we generalize our definition to support committing to
batches of polynomials such that each batch is subject to a different equifficient constraint. We also consider
a strong extractability definition that supports multiple commitments produced across multiple rounds of
interaction. All of these changes require a more detailed formalization, which we provide in Section 4.1.

2.3 SNARKs from equifficient polynomial commitments

We now describe how to use equifficient polynomial commitments to construct SNARKs for GR1CS. We
begin with an intuitive explanation, and then provide a more detail description. We make two simplifying
assumptions when discussing the techniques.
• We assume that there is a single custom gate.
• We assume that the NP instance x is empty, and defer describing the modifications required to handle

non-empty instances to Remark 2.2.

Construction intuition. At a high level, our construction follows the ‘PIOP + PC → SNARK’ recipe
[CHMMVW20; GWC19], but replaces the standard PC scheme used in that recipe with an equifficient PC
scheme. This EPC scheme is then used to enforce linear constraints, while the PIOP is tasked only with
enforcing non-linear constraints. We explain the intuition behind this reasoning next.

Recall that the construction attempt in Section 2.1 enforces linear constraints via the randomized check∑t
i=1 αi·⟨L

K(τ), zMi
⟩ ?
= ⟨

∑t
i=1 αi·mi(τ), z⟩. Our insight is that this check can be viewed as an equifficient

constraint on the polynomials zM1
, . . . , zMt

: they are required to have the same coefficient representation
(i.e., z) in their respective “matrix” bases (m1, . . . ,mt). Therefore, to enforce these constraints, we can
just require the argument prover to commit to the polynomials ẑM1

, . . . , ẑMt
with an EPC scheme under the

equifficient constraint Λ = (m1, . . . ,mt). We can then use a PIOP that enforces non-linear constraints over
these committed polynomials to complete the argument.

The security of this approach is ensured by the extractability property of the EPC scheme (which
guarantees that if the prover can produce a valid evaluation proof, then it must know polynomials that satisfy
the linear constraints), and by the soundness of the PIOP.

We provide a detailed overview of the construction below.
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Construction overview. We begin by introducing some notation. A GR1CS index i = (F,m,C ) is satisfied
by an instance-witness pair (x,w) = (x,w) if the local predicate L is satisfied by the vectors M1z, . . . ,Mtz.
In the exposition below, we assume that the matrices M1, . . . ,Mt are square matrices of size m, and moreover
that their columns are linearly-independent (and hence form a basis for Fm).1 Below D will be a subset of the
field F of size m. (The particular choice of subset depends on whether we are using univariate or multilinear
polynomials; it does not affect the exposition.)

Our construction will rely on PIOPs for the non-linear component of GR1CS, which we characterize via
the following NP relation:

Definition 1 (informal version of Definition 5.1). The rowcheck NP oracle relation is a tuple (i,x,w) =
((F, L,D), [JẑiK]

t
i=1, [ẑi]

t
i=1), where the index consists of a field description F, a local predicate L, and a

subset D of F. The instance contains polynomial oracles Jẑ1K, . . . , JẑtK, while the witness contains the
corresponding polynomials. A triple is in the relation if the local predicate is satisfied by the polynomials at
all points in D, i.e., for all x ∈ D, L(ẑ1(x), . . . , ẑt(x)) = 0.

Given a PIOP for rowcheck, and an appropriate compatible equifficient polynomial commitment scheme
EPC, we are now ready to describe our SNARK construction.
Generator. On input the GR1CS index i = (F,m, ([Mi]

t
i=1, L)), the argument generator G samples proving

and verification keys (ipk, ivk) as follows.
First, G samples EPC public parameters via EPC.Setup. Then, for each matrix Mi, G constructs the basis

set Mi := [m̂i,j ]
k
j=1 where m̂i,j is a polynomial that interpolates the j-th column of Mi over the domain D.

It then invokes the EPC specialization algorithm with input the equifficient constraint Λ := (M1, . . . ,Mt) to
obtain the commitment keys (ck, ok, vk) specialized to these constraints. (It also ensures that these keys allow
committing to unconstrained polynomials.) Next, it constructs from the GR1CS index i a corresponding
rowcheck index, and invokes the PIOP indexer on the latter to obtain indexer polynomials p0. It commits to
these via EPC.Commit to obtain the commitment c0.

Finally, G constructs the proving key ipk = (ck, ok,p0) and the verification key ivk = (vk, c0), and
outputs these.
Prover and verifier. We describe the interaction between the argument prover P and verifier V . The prover
gets as input the proving key ipk, the GR1CS instance x, and the GR1CS witness w, while the verifier gets as
input the verifying key ivk and the instance x. (Recall that in this high-level exposition, we make the simplifying
assumption that the GR1CS instance x is empty. We include it here syntactically anyway for familiarity.)

The prover P starts by setting z := (x,w), and then computing the vectors zi := Mi · z ∈ Fm for each i
in 1, . . . , t. It then low-degree extends these vectors over the domain D to get the polynomials ẑ1, . . . , ẑt. P
uses EPC.Commit to commit to these polynomials under the equifficient constraint Λ, and sends the resulting
commitments to the verifier V .

The prover and verifier then proceed as in the methodology of Chiesa et al. [CHMMVW20], i.e.,
by simulating the rowcheck PIOP prover and verifier respectively. In each round, instead of sending the
polynomials produced by the PIOP prover in the plain, P instead commits to these using EPC.Commit, but
without enforcing any equifficient constraints. At the end of the interaction, when the PIOP verifier wishes to
query the committed polynomials, V sends the query set to P , who responds with the claimed evaluations and
the evaluation proofs produced by EPC.Open. V concludes the protocol by checking that these evaluation
proofs are valid using EPC.Verify, and by checking that the claimed evaluations satisfy the PIOP verifier’s
checks.

1Ensuring that the matrices are square and full-rank can be done by adding an appropriate number of dummy constraints and/or
variables.
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To compile this to a non-interactive argument, we can invoke the Fiat–Shamir transform [FS86] as in
prior work.

To prove this construction secure, it suffices to require equifficient extractability of the EPC scheme and
soundness of the PIOP for rowcheck. This is unlike prior work [CHMMVW20], which requires extractability
from both components. We can get away with this weaker requirement because, informally, our SNARK
guarantees that the witness is committed via the EPC scheme, and only relies on the PIOP to check some
constraints on the committed witness. In contrast, in prior work [CHMMVW20], the prover only commits to
PIOP prover polynomials, and because these could encode the witness in an arbitrary manner, one needs a
PIOP extractor to be able to recover the witness. We provide a formal proof of this argument in Section 5.1.

Remark 2.2 (handing non-empty public inputs). Our discussion thus far has only considered the case where
the GR1CS instance is empty. When the instance is non-empty, the GR1CS variable assignment z does not
equal the witness w, but instead is the concatenation (x∥w). This change means that the verifier must now
additionally check that each polynomial ẑi is indeed an LDE of Mi · z, and not of some other vector.

Our approach to this problem will allow the verifier to directly obtain oracle access to the correct ẑi
by construction. The key idea is to force the prover to leave “empty slots” in the commitments to these
polynomials that can be filled in by the verifier with information derived from the instance. In more detail,
we leverage the linearity of the low-degree extension operation to write ẑi as the sum of x̂i and ŵi, where x̂i
and ŵi are the low-degree extensions of Mi · (x∥0) and Mi · (0∥w) respectively.

Then, if the prover can be forced to send commitments to ŵi, the verifier can evaluate ẑi at any point u by
computing the sum x̂i(u) + ŵi(u): the first part the verifier can compute itself, while the second part will be
provided by the prover (along with a corresponding evaluation proof).

To enable this sketch to work, we need to modify the EPC layer to enable equifficient constraints that
support “punctured bases”: roughly, the latter enable us to enforce coefficient-equality constraints only for
certain coefficients, while enforcing that the remaining “punctured” coefficients are zero. EPC schemes that
support these new equifficient constraints can enforce that the prover indeed commits to the vector (0∥w),
and not to other vectors that have non-zero initial coefficients. For a detailed discussion of punctured bases
and EPC schemes that support these, see Sections 3.1 and 4.1.

Succinct verification requires an additional change: the ability for the verifier to evaluate the polynomials
x̂i in time that scales with |x| (as opposed to time that scales with the number of constraints m). This
is possible when the corresponding matrix bases elements are efficiently evaluatable, e.g. when they are
Lagrange polynomials (or are a sparse linear combination of a constant number of these). To enable this, we
adapt a technique from Lipmaa [Lip24] that introduces new witness variables whose values are supposed to
equal the instance variables, and then enforces this equality via equality constraints; we refer the reader to
[Lip24, Section 3, page 11] for details.

2.4 Constructing PARI

To construct PARI, we instantiate the blueprint from Section 2.3 with a new univariate EPC scheme (Sec-
tion 2.4.1) and a univariate PIOP for rowcheck specialized to ‘Square’ R1CS (Section 6.1). We briefly
describe this PIOP below, and provide details about the EPC scheme construction in Section 2.4.1.
Square R1CS [GM17] is a special case of GR1CS that enforces constraints of the form Az ◦ Az = Bz.
This translates to a rowcheck relation where the local predicate is the claim that ẑ2A(X) − ẑB(X) = 0 on
D. A PIOP for this relation follows by adapting PIOPs for R1CS ‘rowcheck’ from prior work e.g. Aurora
[BCGGRS19] or Marlin [CHMMVW20]. See Section 6 for details.
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Applying the blueprint from Section 2.3 with the univariate EPC scheme and this univariate PIOP for
Square R1CS, along with optimizations in Section 6.2 gives us the following theorem:

Theorem 1 (informal). PARI is a SNARK for NP with proof size consisting of 2 G1 and 2 F elements.

Remark 2.3. We note that it is possible to construct a variant of PARI that is specialized to R1CS by changing
the rowcheck to enforce that ẑA(X)ẑB(X)− ẑC(X) = 0 on D. The resulting proof would achieve improved
prover time compared to PARI by avoiding the overhead of SR1CS, but would have a worse proof size of 2
G1 and 3 F elements. We remark that over BLS12-381, this proof size is equal to that of Groth16, while over
larger curves (e.g., BW6-761 [EG20]), it is smaller.

2.4.1 An EPC scheme for univariate polynomials

We construct an EPC scheme for univariate polynomials by building upon the popular KZG polynomial
commitment scheme [KZG10]. Recall that in the latter, the committer can commit to a polynomial and prove
its evaluation claim in a constant number of group elements, and our EPC construction will inherit these
attractive properties.

We now provide a high-level sketch of our construction. Note that our description below first describes a
variant that omits any discussion of the ‘commitment batching’ property that is necessary to obtain the proof
size in Theorem 1, and then discusses how to add this property in Remark 2.5. We do so because it makes the
exposition simpler, and also because it makes it easier to discuss the multilinear version in Section 2.5. We
provide full details on the batched construction in Section 4.2.

Define the D-dimensional vector space of univariate polynomials K := F<D[X] where F = Fq is a
prime field.
Background: KZG polynomial commitments. Let ⟨group⟩ = (G1,G2,GT , G,H, e) be a pairing-friendly
group and D ∈ N an upper-bound on the degree of the polynomials over Fq that commitments are supported
to. The setup phase consists of sampling τ ← Fq uniformly at random and constructing the SRS as the list
Σ = [τ jG]D−1

j=0 . To commit to p under Σ, the committer expresses p as a coefficient vector in the monomial
basis and computes the Pedersen [Ped92] commitment c := ⟨p,Σ⟩ = p(τ)G.

To prove that the committed polynomial in c evaluates to a claimed evaluation v at the point u, the
committer opens c by computing the unique witness polynomial w(X) := (p(X)−p(u))/(X−u) ∈ F<D

q [X],
and then commits to it under Σ via the Pedersen commitment w := ⟨w,Σ⟩ = w(τ)G.

To verify the proof, the verifier takes the claimed evaluation v and checks e(c,−vH) = e(w, τH − uH).
Our construction. The key differences between our KZG-based EPC scheme and the standard KZG scheme
arise from the equifficient properties imbued by the specialization algorithm; we describe this next.

EPC.Specialize, when given as input an equifficient constraint Λ = [B1, . . . ,Bt] of size t, starts by
creating basis-specific SRSes as follows. Let Ti denote the linear transformation from the monomial basis
to the basis Bi. Then the specialized committer key for Bi is computed as cki := Ti · Σ = (b

(i)
1 (τ) ·

G, . . . , b
(i)
D (τ) ·G), where (b

(i)
1 (X), . . . , b

(i)
D (X)) are the basis elements that comprise Bi.

Next, EPC.Specialize computes an additional consistency key that will eventually force the committer to
commit the same coefficient under these keys with a single coefficient vector. The consistency key ckΛ is
computed as a linear combination of the basis-specific committer keys with respect to powers of a random
element α← F: ckΛ :=

∑t
i=1 α

i−1 · cki. The opening key ok is simply Σ, while the verifier key vk consists
of the G2-encodings of the random coefficients, i.e., αi−1 ·H .

EPC.Commit commits to input polynomials p1, . . . , pt by first committing to these under the basis-
specific committer keys: ci := ⟨cki, pi⟩. It additionally computes a consistency commitment to these under
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the key ckΛ: letting p denote the coefficient vector of p1 in the B1-basis, it commits to p via the Pedersen
commitment cΛ := ⟨ckΛ, p⟩. The full commitment to p1, . . . , pt is then the tuple (c1, . . . , ct, cΛ).

In the opening phase, the committer opens each ci by computing the witness polynomial wi(X) =
(pi(X) − v)/(X − u) and committing to it under Σ, exactly like in KZG. Note that the consistency
commitment cΛ is not opened.

In the verification phase, the verifier verifies the evaluation proof for each commitment ci as in KZG,
and additionally checks that the basis-specific commitments are consistent with each other and satisfy the
equifficient constraint Λ via the pairing product check e(cΛ, H)

?
=

∏t
i=1 e(ci, α

i−1 ·H).
Security. The extractability of this construction follows in the AGM from a straightforward application of
the Schwartz–Zippel lemma [Zip79; Sch80]. We provide a formal proof in Theorem 4.3.
Efficiency. Commitment cost is dominated by the cost to compute the commitments c1, . . . , ct and cΛ, i.e.
a total of t+ 1 D-sized multi-scalar multiplications (MSMs) in G1. Similarly, opening cost is dominated by
the cost to commit to the witness polynomials, which is t D-sized MSMs in G1. Finally, the verifier cost is
t+ 1 pairings, while the commitment size is t+ 1 G1 elements.

Remark 2.4 (connections with linear interactive proofs). One can view our EPC scheme as implicitly
constructing a “trivial” Linear Interactive Proof (LIP) [BCIOP13]. Briefly, in the latter, the verifier specifies
vectors that are queries to a linear function, and the prover responds by applying its linear function to these
queries. In our case, the prover’s linear function is the coefficient vector of the polynomials under their
respective bases, while the verifier queries are the bases evaluated at the point τ . Bitansky et al. ensure
that the prover answers multiple queries to its linear function consistently by having the verifier specify a
“consistency query” that is a linear combination of the original queries; this corresponds to our consistency
key ckΛ.

Remark 2.5 (commitment batching). In the foregoing construction, the consistency commitment cΛ can be
viewed as a batch commitment to the polynomials p1, . . . , p|Λ| with respect to the commitment key ckΛ.

⟨ckΛ, p⟩ = ⟨
∑|Λ|

i=1 α
i−1 · cki, p1⟩ =

∑|Λ|
i=1 α

i−1 · ⟨cki, pi⟩ =
∑|Λ|

i=1 α
i−1 · ci

This observation enables us to directly use this consistency commitment as the only commitment to the
polynomials p1, . . . , p|Λ|. After appropriate changes to the commitment, opening, and verification keys, we
can ensure that opening these polynomials at a point u can be achieved via a single “batch” evaluation proof,
thus allowing us to commit to and then open multiple polynomials with just two group elements. We provide
details in Section 4.2.

2.5 Constructing GARUDA

To construct GARUDA, we instantiate the blueprint from Section 2.3 with a new multilinear EPC scheme and
a multilinear PIOP for rowcheck that supports multiple predicates. We describe these components next.
Multilinear PIOP for rowcheck. To support multiple predicates, we propose to “stack” the matrices for
different predicates together to get a single set of matrices M∗

1 , . . . ,M
∗
t . Then, the prover’s oracles consist

of the multilinear LDEs ẑ1, . . . , ẑt of the matrix-vector products M∗
i · z. To enforce the j-th local predicate

Lj , the PIOP leverages selector polynomials Sj that activate the entries of M∗
i · z that correspond to the j-th

predicate. That is, instead of directly checking Lj(ẑ1, . . . , ẑt) = 0 in checking the satisfaction of (which
would not work), we instead use the polynomials Sj · ẑ1, . . . , Sj · ẑt.

2 The satisfaction of each local predicate
2In fact, when Lj is a polynomial predicate, we can leverage a better strategy that avoids doubling the individual degree of each

polynomial by simply applying the selector to the entire expression Lj(ẑ1, . . . , ẑt).
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Lj is then enforced by a separate PIOP for rowcheck that checks that the polynomials Sj · ẑ1, . . . , Sj · ẑt
satisfy the predicate at all points in D.3 We choose multivariate-sumcheck-based PIOPs for this purpose, as
they allow us to obtain the desired linear prover time.

Multilinear EPC scheme. The unbatched univariate construction described in Section 2.4.1 can be naturally
extended to multilinear polynomials by using as a starting point the multilinear PC scheme of Papamanthou
et al. [PST13], instead of the univariate KZG scheme.

Overall, after applying the optimizations in Section 7.2, we obtain the following theorem:

Theorem 2 (informal). GARUDA is a SNARK for GR1CS that achieves linear prover complexity and
logarithmic proof size and verifier time.

2.6 Implementation

We implemented GARUDA as a Rust library in only 900 lines of code. Our library is built atop the arkworks
framework, and also uses some components from the HyperPlonk implementation. We did not implement
PARI because the relevant metric for it (proof size) is easily inferred from the protocol description, and does
not vary with the implementation. Our implementation contributions are twofold.

Interface for programming GR1CS. We extend the R1CS programming interface provided by the
ark-relations crate to also support programming GR1CS constraints in just 1500 lines of code. Our ex-
tension is user-friendly, and can take advantage of arkworks’ strong library of R1CS constraint “gadgets”.4

Indeed, our benchmarks use this feature to ensure consistency across all the SNARKs we consider.

Implementation of GARUDA. We implement GARUDA atop the multilinear polynomial framework offered
by the ark-poly library. Our implementation consumes constraint systems produced by the foregoing
constraint-writing interface. For the time being, our implementation supports multiple polynomial predi-
cates/custom gates, but we plan to extend it to support more general custom gates in the future. This change
would require updating the aforementioned GR1CS programming interface to support these gates as well.

2.7 Evaluation

Experimental setup. All measurements were conducted using a MacBook Pro with 18 GB of RAM
and a 12-core Apple M3 Pro chip. All times except verifying are reported in both the single-threaded and
multithreaded settings. When using multithreading, we set the number of threads used by the prover to be 4.

Our benchmark circuit consists of iterations of the popular arithmetization-oriented Rescue-Prime hash
function [SAD20]. Our implementation of the latter builds upon the general interface for sponge-based
hashes in the ark-crypto-primitives crate. The configuration of each hash function is as follows: it
has a 12-round permutation, a rate of 3, and a capacity of 1. The hash function operates over the 256-bit prime
scalar field of the BLS12-381 curve, with the S-box exponent α set to 5 in the forward S-boxes. The linear
operator parameters are derived from the rescue prime.sage script provided in the Marvellous
repository.5

To implement the hash function circuit, we utilized two types of local predicates: a standard R1CS
predicate and a polynomial predicate of degree 5 that evaluates the exponentiation by α. The latter predicate
is used to check the correct evaluation of both the forward and inverse S-boxes.

3In practice, PIOPs for separate predicates can again be batched together to reduce the prover work and proof size.
4github.com/arkworks-rs/r1cs-std and github.com/arkworks-rs/crypto-primitives.
5github.com/KULeuven-COSIC/Marvellous.
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To evaluate the efficiency benefits of GARUDA, we compared it against two state-of-the-art baselines:
HyperPlonk6 [CBBZ23] and Groth167 [Gro16]. Our experiments tested various metrics including prover
time, verification time, setup time, verifying key size, and proving key size, and also the number of constraints
required by the native constraint systems of each SNARK.

Number of constraints. We illustrate the expressive power of GR1CS by comparing in Fig. 1 the number
of constraints required to express our computation (N iterations of Rescue-Prime for some integer N ) in
GR1CS with the number required to do so in R1CS and Plonkish. Our measurements demonstrate that
GR1CS consistently requires fewer constraints: the number of GR1CS constraints is 0.28× the number of
R1CS constraints, and is 0.63× the number of Plonkish constraints.
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Figure 1: Number of constraints for a circuit invoking N iterations of Rescue-Prime.

Setup time. Our experiments demonstrate that the setup time of GARUDA is comparable to the setup time
of Groth16 and the (deterministic) indexing time of HyperPlonk.

Proving and verifying key sizes. Our measurements indicate that the size of GARUDA’s proving key is
consistently smaller than that of Groth16 (0.75×) and of HyperPlonk (0.81×). The size of the verifying key
grows logarithimically with the number of constraints, topping out at 14.78 kB for the largest circuit size
we benchmarked. This is approximately 1.05× smaller than that of HyperPlonk, but is significantly larger
(≈ 13×) than that of Groth16.

6github.com/EspressoSystems/hyperplonk.
7github.com/arkworks-rs/groth16.
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Figure 2: Comparison of proving and verifying key sizes for GARUDA, HyperPlonk, and Groth16 over BLS12-
381.

Scalability of proving. We provide a comparison of the proving latency for Groth16, HyperPlonk, and
GARUDA in Fig. 3. In both the single-thread and multithreaded cases, GARUDA achieves significantly lower
latency than both baselines.
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(a) Number of threads = 1
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Figure 3: Comparison of prover time for GARUDA, HyperPlonk, and Groth16 over BLS12-381.

In particular, GARUDA’s prover time, using 1 thread, is approximately 0.37-0.47× that of HyperPlonk
and 0.22-0.32× that of Groth16. Our measurements show that increasing the number of threads to 4, reduces
the prover time of all three SNARKs consistently by a factor of 2.5-3.5.

Verifier time and proof size. By Keeping the input size constant and increasing the number of constraints,
The verifier time of Groth16 stays the same; However, the verifier time of GARUDA and HyperPlonk SNARKs
grows logarithmically, as shown in Fig. 4. Moreover, Groth16 consistently demonstrates the best verification
time (1ms ∼ 1.5ms) across all invocation counts. In contrast, HyperPlonk and GARUDA show more
variability in their verification times and are comparable in performance.

Groth16 consistently has the smallest proof size of 192B regardless of invocation counts. GARUDA’s
proof size, though larger (29-43×) than that of Groth16, is consistently 0.24× smaller than that of Hyper-
Plonk.
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Figure 4: Comparison of verification time and proof size of GARUDA, HyperPlonk, and Groth16 over BLS12-381.
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3 Preliminaries

We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable n, we implicitly
assume that n = poly(λ). We denote by negl(λ) an unspecified function that is negligible in λ. When a
function can be expressed in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that A
is an efficient adversary we mean that A is a family {Aλ}λ∈N of non-uniform polynomial-size circuits. If the
adversary consists of multiple circuit families A1,A2, . . . then we write A = (A1,A2, . . . ).

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a shorthand for the tuple/list

(a1, . . . , an); |a| denotes the number of entries in a. If M is a matrix then ∥M∥ denotes the number of
nonzero entries in M . If S is a finite set then |S| denotes its cardinality and x ← S denotes that x is an
element sampled at random from S. If each element vi in the list v is a vector, then v[j] denotes the list
containing the j-th element of each vector, i.e., v[j] = [vi[j]]

n
i=1.

If f is a function, the JfK is an oracle for the function. Also, we sometimes abuse the notation and write
JfK to denote the list of oracles JfiK for each function fi in the list f .

We generally denote variables by the uppercase letters X1, . . . , Xn, while points, or values that the
variables can take on, are denoted by the lowercase letters x1, . . . , xn. As shorthand, we write X =
(X1, . . . , Xn) and x = (x1, . . . , xn).

Random oracles. We denote by Uλ the set of all functions that map {0, 1}∗ to {0, 1}λ. We denote by U∗
the set

⋃
λ∈N Uλ. A random oracle with security parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ sampled

uniformly at random from Uλ.

3.1 Algebraic background

We denote by F a finite field and by K a finite-dimensional vector space of polynomials over F. The notation
Fn is used to denote the field is of size n. Let K be of dimension D ∈ N. Then, denote by B an ordered basis
of K consisting of D linearly independent elements {bi}i∈[D]. For a polynomial p ∈ K and choice of basis
B, denote by [p]B the list of coefficients when p is expressed in B. More precisely, [p]B := [a1, . . . , aD]
when p is written as

∑
i∈[D] ai · bi.

We define a punctured basis to be any subset of the basis elements of a specified ambient basis B.
Formally, a punctured basis P is a tuple (J ,B) where J ⊂ [D] is an indexing set that enumerates the basis
elements of B appearing in P . We denote by |P| := |J | the size of the punctured basis, and say that a
polynomial p is expressible in a punctured basis P if it can be written as p =

∑
j∈J aj · bj for coefficients

aj ∈ F and basis elements bj ∈ B. As before, we denote by [p]P the coefficient vector of p when expressed
in P , i.e. the list of coefficients [aj ]j∈J . We emphasize that p is expressible in a punctured basis P if and
only if all its coefficients with respect to basis elements bj for j /∈ J are zero.

3.1.1 Background on univariate polynomials

Smooth multiplicative subgroups of finite fields. Our protocols for univariate polynomials work with
subgroups K of the multiplicative group F∗ of a finite field F, and will be most efficient when K has
order equal to a power of two. Such domains allow for optimized interpolation techniques via the use of
Fast-Fourier Transforms (FFTs). We call such subgroups smooth, or FFT-friendly, and associate with them
an ordering ϕ

K
that is a bijection from K to the set {0, 1, . . . , |K| − 1}.

Polynomial encodings. For a finite field F, multiplicative subgroup K ⊆ F∗, and function f : {0, 1, . . . , |K|−
1} → F we denote by f̂ the (unique) univariate polynomial over F with degree less than |K| such that
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f̂(a) = f(ϕ
K
(a)) for every a ∈ K. That is, if ai is the i-th element of K according to the ordering ϕ

K
, then

f̂(ai) = f(i). We sometimes abuse notation and write f̂ to denote some polynomial that agrees with f on K,
which need not equal the (unique) such polynomial of minimal degree.

Vanishing polynomials. For a finite field F and subgroup S ⊆ F, we denote by vS the unique non-zero
monic polynomial of degree at most |S| that is zero everywhere on S; vS is called the vanishing polynomial of
S. If S is a multiplicative coset in F then vS can be evaluated in polylog(|S|) field operations. For example,
if S is a multiplicative subgroup of F then vS(X) = X |S| − 1 and, more generally, if S is a ξ-coset of a
multiplicative subgroup K (i.e., S = ξK) then vS(X) = ξ|S|vK(X/ξ) = X |S| − ξ|S|; in either case, vS can
be evaluated in O(log |S|) field operations.

Lagrange polynomials. For F a finite field, S ⊆ F, a ∈ S, we denote by LSa the unique polynomial of
degree less than |S| such that LSa (a) = 1 and LSa (b) = 0 for all b ∈ S \ {a}. Note that

LSa (X) =
a · vS(X)

|S|(X − a)
(4)

This means that if S is a multiplicative subgroup, and a ∈ S, we can evaluate LSa (X) at any α ∈ F in
polylog(|S|) field operations.

3.1.2 Background on multivariate and multilinear polynomials

A multivariate polynomial p in ν variables X = (X1, X2, . . . , Xν) over a field F is a sum of terms of the form
p(X) =

∑
i1,i2,...,iν∈N ai1,i2,...,iνX

i1
1 X

i2
2 · · ·X

iν
ν where ai1,i2,...,iν ∈ F and only finitely many ai1,i2,...,iν are

non-zero. We denote by F[X1, . . . , Xν ] the ring of multivariate polynomials over F.

Total degree and individual degree. The individual degree of a variable Xj in a term ai1,i2,...,inX
i1
1 X

i2
2 · · ·X

iν
ν

is defined as degj(p) := ij . The maximum individual degree is defined as deg∗(p) := maxi∈[n] degi(p). The
total degree of a term ai1,i2,...,iνX

i1
1 X

i2
2 · · ·X

iν
ν is the sum of the exponents i1 + i2 + · · · + iν . The total

degree of the polynomial p, denoted by deg(p), is the maximum total degree of any term.

Boolean hypercube. The boolean hypercube of dimension ν is the set of all binary vectors of length n.
Formally, it is defined as Bν := {0, 1}ν = {(x1, x2, . . . , xν) | xi ∈ {0, 1} for all i ∈ {1, 2, . . . , ν}} .

Multilinear extension (MLE). A multivariate polynomial p(X) is multilinear if it is a linear function
in each variable Xi when the remainder of the variables are held constant. This implies that the individual
degree of each variable in p is at most one. Furthermore, any function f : Bν → F has a unique multilinear
extension defined as the polynomial f̂(X) such that f̂ agrees with f on all points in Bν .

Multilinear polynomial vector space. We denote the 2ν-dimensional vector space of multilinear polyno-
mials over F in the ring F[X1, . . . , Xν ] by Mult(F[X1, . . . , Xν ]).

Lagrange multilinear polynomials. For a given point α = (α1, α2, . . . , αν) ∈ Bν , the Lagrange multilinear
basis polynomial χα is defined as χα(X) :=

∏ν
i=1(1− (1− 2αi)Xi)

Computing the MLE using Lagrange polynomials. The unique multilinear extension of any function
f : Bν → F is f̂(X) :=

∑
α∈{0,1}ν f(α) · χα(X). Note f̂ can be computed in O(2ν) field operations.

3.2 Cryptographic assumptions

We describe the cryptographic assumptions that underlie the constructions of the polynomial commitment
schemes (Section 4) and SNARKs (Section 5) in this paper. In Section 3.2.1 we provide background on
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bilinear groups and define the bilinear group sampler. In Section 3.2.2 we define (a minor variant of) the
Strong Diffie–Hellman Assumption. In Section 3.2.3 we recall the Algebraic Group Model.

3.2.1 Bilinear groups

The cryptographic primitives that we construct rely on cryptographic assumptions about bilinear groups. We
formalize these via a bilinear group sampler, which is a probabilistic polynomial-time algorithm SampleGrp
that, on input a security parameter λ (represented in unary), outputs a tuple ⟨group⟩ = (G1,G2,GT , G,H, e)
where G1,G2,GT are cyclic groups of a prime order q ∈ N, G generates G1, H generates G2, and
e : G1 × G2 → GT is a (non-degenerate) bilinear map. In more detail, e satisfies the following two
properties: (i) bilinearity: for all nonzero elements α, β ∈ Fq, it holds that e(αG, βH) = e(G,H)αβ; (ii)
non-degeneracy: e(G,H) is not the identity element in GT . Moreover, e is called a cryptographic pairing if
it is efficiently computable. The SNARK constructions presented in this paper are based on cryptographic
pairings.

3.2.2 Strong Diffie–Hellman

Assumption 1 ([BB04]). The Strong Diffie–Hellman (SDH) assumption states that for every efficient
adversary A and degree bound d ∈ N, the following probability is negligible in the security parameter λ:

Pr

 C = 1
β+cG

∣∣∣∣∣∣∣∣
⟨group⟩ ← SampleGrp(1λ)

β ← Fq

Σ← {{βiG}di=0, βH}
(c, C)← A(⟨group⟩,Σ)

 .

3.2.3 Algebraic group model

In order to achieve additional efficiency, we construct polynomial commitment schemes in the Algebraic
Group Model (AGM) [FKL18] which replaces specific knowledge assumptions (such as Power Knowledge
of Exponent [Gro10] assumptions). In the AGM, all algorithms are modeled as algebraic, which means that
whenever an algorithm outputs a group element G, the algorithm must also output an “explanation” of G in
terms of the group elements it has seen.

Definition 3.1 (algebraic algorithm). Let G be cyclic group of prime order q and Aalg a probabilistic
algorithm run on initial inputs including description ⟨group⟩ of G. During its execution Aalg may interact
with oracles or other parties and receive further inputs including obliviously sampled group elements (which it
cannot sample directly8). Let L ∈ Gn be the list of all group elementsAalg has been given so far such that all
other inputs it has received do not depend in any way on group elements. We call Aalg algebraic if whenever
it outputs a group element G ∈ G it also outputs a vector a = [ai]

n
i=1 ∈ Fn

q such that G =
∑n

i=1 aiLi. The
coefficients a are called the “representation” of G with respect to L, denoted G := ⟨a,L⟩.

3.3 Indexed relations

An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance, and w is the witness.
An indexed oracle relation is an indexed relation where the index i and the instance x contain “implicit”

8Outputting obliviously sampled group elements (with unknown representation) is forbidden in the AGM. Instead, Aalg must
obliviously sample elements through an additional oracle O(·) such that they are by definition added to the list L. Simulating O(·)
to an algebraic algorithm during a reduction is straightforward and always possible. Integrating the ROM and AGM indeed works for
this reason that any outputs from random oracles are added to the list L.
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inputs that are specified as oracles, i.e., the membership-checking algorithm for such a relation has only
query access to these oracles. We adopt notation from [CBBZ23] and use JzK to denote when the input z is
provided as an oracle.

In this work, we will consider constraint systems that support a rich variety of constraints. We begin by
formalizing these constraints first, and then describe our new constraint system relation, which we call the
Generalized Rank-1 Constraint System (GR1CS) relation.

Definition 3.2 (local predicate). Given a finite field F and an input arity t ∈ N, a local predicate L is a
function L : Ft → {0, 1}. An input x ∈ Ft is said to satisfy L if L(x) = 0.

Examples of local predicates include:
• Polynomial predicate P defined by a polynomial p ∈ F[X1, . . . , Xt], so that P (X1, . . . , Xt) = 0 if and

only if p(X1, . . . , Xt) = 0.
• Table membership predicate T defined by a finite subset T ⊂ Ft, so that T (X1, . . . , Xt) = 0 if and only if
(X1, . . . , Xt) ∈ T .

For simplicity, we will stipulate that all the local predicates considered in this paper have the same number of
input variables n, same number of total variables k, and same arity t.
Generalized R1CS (GR1CS). To capture constraint systems that support richer kinds of constraints, we
introduce a new NP relation that we call Generalized R1CS (GR1CS). Informally, GR1CS generalizes R1CS
along two dimensions.

First, instead of considering just a simple quadratic polynomial predicate of the form (Az)i · (Bz)i −
(Cz)i = 0, we support arbitrary local predicates (e.g., using a different polynomial predicate (Az)i · (Bz)i ·
(Cz)i = 0, or using a lookup predicate), and furthermore support multiple different kinds of lookup predicates
in the same instance. Second, instead of three constraint matrices, a GR1CS instance can contain an arbitrary
natural number t of matrices. This corresponds to the arity of the local predicates in an instance. We formalize
this high-level description below.

Definition 3.3 (generalized R1CS (GR1CS) indexed relation). The indexed relationRGR1CS is the set of all
triples

(i,x,w) =
(
(F, n, k,m, c, t,C ) , x, w

)
where:
• F is a finite field,
• n is the number of public input (instance) variables,
• k is the total number of variables in the constraint system,
• c is the number of constraint sets.
• t is the arity of the predicates
• C = [C]ci=1 is a set of custom constraints, where for each constraint C := (Li,Mi,mi),

– Mi := Mi,1, . . . ,Mi,t ∈ Fmi×k are constraint matrices, and
– Li is a local predicate (Definition 3.2).

A triple (i,x,w) ∈ RGR1CS if for each (Li,Mi,mi) ∈ C and each j ∈ [mi],

L((Mi,1z)[j], . . . , (Mi,tz)[j]) = 0

where z := (x,w) ∈ Fk.

Note that the foregoing definition assumes that all predicates have the same arity t. This is without loss
of generality, as one can always pad the arity of the predicates with dummy variables.
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It is clear that GR1CS generalizes R1CS, as the latter is a special case of the former where t = 3 and L is
the quadratic polynomial predicate L(a, b, c) = ab− c. We will also consider the following special case of
GR1CS called the Square R1CS (SR1CS) relation [GM17], which is a special case of GR1CS where t = 2
and L is the polynomial predicate L(a, b) = a2 − b.

Definition 3.4 (Square R1CS [GM17]). The indexed relationRSR1CS is the set of all triples

(i,x,w) =
(
(F, n, k,m,A,B), x, w

)
where F is a finite field, n, k, and m are natural numbers, x ∈ Fn and w ∈ Fk−n are vectors over F, and
A,B are m× k matrices over F such that Az ◦Az = Bz, where z := (x,w) is a vector in Fk.

Groth and Maller [GM17] show that R1CS can be reduced to SR1CS, thus making SR1CS NP-complete.

Remark 3.5. In this paper, we will consider instances of GR1CS where the matrices obtained by concatenating
the constraint matrices all have rank at least equal to the number of variables in the GR1CS instance. This is
without loss of generality, as one can always add a small number of dummy constraints to ensure this property.
This requirement arises due to technicalities in the knowledge-soundness proof of our SNARK construction.

3.4 Polynomial interactive oracle proofs

A polynomial interactive oracle proof (PIOP) [CHMMVW20; BFS20] over a field family F for an indexed
oracle relationR is a tuple

PIOP = (F,K, r, s, I,P,V)

where F ∈ F is a finite field, K is a polynomial vector space over F with a canonical basis U and dimension
d, r, s, : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms known as
the indexer, prover, and verifier. The parameter r specifies the number of interaction rounds and s specifies
the number of polynomials in each round.

In the offline phase (“0-th round”), the indexer I receives as input a field F ∈ F and an index i forR, and
outputs s(0) polynomials p0,1, . . . , p0,s(0) ∈ K. Note that the offline phase does not depend on any particular
instance or witness, and merely considers the task of encoding the given index i.

Given an instance x and witness w such that (i,x,w) ∈ R, the prover P receives (i,x,w) and the
verifier V receives (F,x) with oracle access to the polynomials output by I(F,w). IfR is an oracle relation,
then the verifier also has oracle access to the polynomials in the instance. The prover P and the verifier V
interact over r = r(|i|) rounds, where in the i-th round, the verifier V sends a message ρi ∈ F∗ to the prover
P; then the prover P replies with s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ K. After the interaction, the
verifier invokes the query algorithm QV to form a query set Q that contains queries to all of the polynomials
provided to the verifier. Afterward, The verifier invokes the decision algorithm DV to decide whether to
accept or reject on the basis of the responses to these queries and its internal state.

In this paper, we only consider PIOPs that are public-coin and where the verifier’s queries are non-
adaptive. PIOPs must satisfy standard notions of completeness, soundness, knowledge-soundness and zero
knowledge.

• Completeness. For every field F ∈ F and index-instance-witness tuple (i,w,x) ∈ R, the probability that
P(F, i,w,x) convinces V(F,x) to accept in the interactive oracle protocol is 1.

• Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and prover P, the probability that
P convinces VI(F,i)(F,x) to accept in the interactive oracle protocol does not exceed ϵ, defined as the
soundness error.
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We note that prover’s strategy can be characterized by the next-message functions (one for each round)
that given the inputs so far and an internal state, outputs the next message to be sent to the verifier. We denote
the next message function for the i-th round as Pi(st, [ρj ]

i−1
j=1)→ (st′, [pi,j ]

s(i)
j=1)

3.5 Succinct arguments of knowledge

An argument of knowledge ARG for an indexed NP relationR is a tuple of algorithms (G,P,V) that satisfies
the following syntax and properties.
• The generator G is a probabilistic algorithm that takes as input a security parameter λ (in unary) and an

index i and outputs the proving and verifying keys (ipk, ivk).
• The prover P is a probabilistic algorithm that takes as input the proving key ipk, an instance x, and a

witness w and outputs a proof π.
• The verifier V is a deterministic algorithm that takes as input the verifying key ivk, an instance x, and a

proof π and outputs a bit indicating whether π is valid.
These above algorithms must satisfy the following properties:
• Completeness. For all size bounds N ∈ N and efficient adversaries A,

Pr

 (i,x,w) ∈ RN

∧
⟨P(ipk,x,w),V(ivk,x)⟩(x) = 1

∣∣∣∣∣∣ (i,x,w)← A(1λ)
(ipk, ivk)← G(1λ, i)

 = 1 .

• Knowledge soundness. For every size bound N ∈ N and efficient adversary P̃ = (P̃1, P̃2, P̃3), there
exists an efficient extractor E such that the following holds:

Pr


(i,x,w) ̸∈ RN

∧
⟨P̃3(st

′),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣∣∣
(i, st)← P̃1(1

λ)

(ipk, ivk)← G(1λ, i)
(x, st′)← P̃2(st, ipk)

w← E(ipk,x)

 = negl(λ) .

• Succinctness. The size of the communication transcript between the prover P(ipk,x,w) and verifier
V(ivk,x) is poly(log |i|, λ) and the running time of V(ivk,x) is poly(log |i|, λ, |x|).

• Public-coin. ARG is public-coin if every message output by the verifier V is a uniform random string of
some prescribed length. All constructions in this paper are public-coin, and have sublinear length, hence
can be transformed into SNARKs using the Fiat-Shamir transformation [FS86].
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4 Equifficient polynomial commitments

We describe our new notion of polynomial commitment (PC) schemes that enforce coefficient-equality (or
equifficient) constraints on committed polynomials. We begin by defining equifficient constraints, and then
use this definition to formally define our notion of equifficient polynomial commitment (EPC) schemes in
Section 4.1. We then provide constructions of EPC schemes for univariate and multivariate polynomials in
Sections 4.2 and 4.3, respectively.

Coefficient-equality constraints. Let K be a D-dimensional vector space of polynomials over a field F.
Then, a coefficient-equality (or equifficient) constraint Λ on polynomials in K is a list [P1, . . . ,P|Λ|] of
punctured bases (Section 3.1) for K. We say that Λ is satisfied for a list of polynomials p = [p1, . . . , p|Λ|]
if and only if these polynomials are expressible in their respective punctured bases, and that the coefficient
vectors of the polynomials in these punctured bases are equal:9 [p1]P1

= · · · = [p|Λ|]P|Λ|
. We denote this

constraint satisfaction by the predicate Λ(p) = 1. If Λ is specified by a single punctured basis, then we call
the constraint trivial, and assume without loss of generality the basis is the unpunctured canonical basis for
K, denoted by U .

4.1 Definition

An equifficient polynomial commitment scheme EPC = (Setup, Specialize,Commit,Open,Verify) over the
field family F for univariate or multilinear polynomials is a tuple of algorithms with the following syntax
and properties.

• EPC.Setup(1λ, D) → pp. On input a security parameter 1λ (in unary) and a maximum dimension D,
EPC.Setup samples public parameters pp containing a description of a finite field F ∈ F and a polynomial
vector space K over F of dimension D, along with a canonical basis U for K.

• EPC.Specializepp(Ω) → (ck, ok, vk). Given oracle access to the parameters pp, and input a set Ω =
{Ω1, . . . ,Ωn} of equifficient constraints, EPC.Specialize specializes pp to create committer, opener, and
verifier keys (ck, ok, vk) that enable enforcing the constraints in Ω on committed polynomials. The keys
contain a description of the vector space K and the constraints Ω.

• EPC.Commit(ck,P ,Λ)→ c. On input a committer key ck, a list P = [p1, . . . ,pm] whose i-th element
pi = [pi,1, . . . , pi,|Λi|] is a list of polynomials, and a set of equifficient constraints Λ = {Λ1, . . . ,Λm}
indicating that pi is subject to the constraint Λi, EPC.Commit outputs a commitment c to P .

• EPC.Open(ok,P ,Λ, u) → π. On input an opener key ok, a list P = [p1, . . . ,pm], a set of equifficient
constraints Λ = {Λ1, . . . ,Λm}, and an evaluation point u, EPC.Open outputs an evaluation proof π.

• EPC.Verify(vk, c, u,V ,Λ, π)→ b. On input a verifier key vk, a commitment c, an evaluation point u, a
list V = [v1, . . . ,vm] whose i-th element vi = [vi,1, . . . , vi,|Λi|] is a list of claimed evaluations, a set of
equifficient constraints Λ = {Λ1, . . . ,Λm} indicating that vi is associated to the constraint Λi, and an
evaluation proof π, EPC.Verify accepts if and only if for every i ∈ [m], the following conditions hold:

– the constraint Λi is contained in the vk; that is, Λi ∈ Ω.
– for each evaluation vi,j ∈ vi, the polynomial pi,j committed to in c evaluates to vi,j at u.
– the polynomials associated to vi are equifficient with respect to Λi, that is, Λi(pi) = 1.

9Without loss of generality, we assume that |P1| = · · · = |P|Λ||.
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We now define our new notions of completeness and equifficient extractability for EPC schemes that extend
the standard notions for standard PC schemes [CHMMVW20]. We often tactfully abuse notation by denoting
P as the vector p1 | · · · | pm and V as the vector v1 | · · · | vm.
Completeness. For every maximum dimension D and efficient adversary A = (A1,A2):

Pr


dim(P ) ≤ D

⇓
EPC.Verify(vk, c, u,V ,Λ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← EPC.Setup(1λ, D)

Ω← A1(1
λ, pp)

(ck, ok, vk)← EPC.Specializepp(Ω)
(P ,Λ, u)← A2(ck, ok)

c← EPC.Commit(ck,P ,Λ)
π ← EPC.Open(ok,P ,Λ, u)

V := P (u)


= 1 .

Extractability. For every maximum dimension D, and every efficient stateful adversary (A1,A2), there
exists an efficient extractor E such that for every round bound r ∈ N, efficient public-coin sampler C, efficient
query samplerQ, efficient constraint sampler S , and efficient adversaryA3, the probability below is negligibly
close to 1 (as a function of λ):

Pr



∀i ∈ {1, . . . , r} :
EPC.Verify(vk, ci, u,Vi,Λi, πi) = 1

⇓
Pi(u) = Vi

∧∧mi

j=1 Λi,j(pi,j) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← EPC.Setup(1λ, D)

Ω← A1(1
λ, pp)

(ck, ok, vk)← EPC.Specializepp(Ω)

For i ∈ {1, . . . , r} :
Λi = {Λi,1, . . . ,Λi,mi

} ← S(ck, ok)
ρi ← C(ck, ok, i)

ci ← A2(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)

Pi = [pi,1, . . . ,pi,mi
]← E(ck, ok, [Λj ]

i
j=1, [ρj ]

i
j=1)

u← Q(ck, ok, [Λi]
r
i=1, [ci]

r
i=1, [ρi]

r
i=1)

([Vi]
r
i=1, [πi]

r
i=1)← A3(u)


.

The foregoing definition assumes that the adversary A3 shares state with the adversaries A1 and A2.

Succinctness. An equifficient polynomial commitment scheme is succinct if the size of the commitments,
the size of the evaluation proofs, the time to check an opening, and the representation of the lists of punctured
bases Λ1, . . . ,Λm are all independent of the dimension of K. Note that achieving succinct verification cost
requires EPC.Verify to take as input a succinct representation of the punctured bases Λ1, . . . ,Λm. This can be
achieved by modifying EPC.Verify so that instead of taking as input the equifficient constraints {Λ1, . . . ,Λm}
directly, it instead takes as input their indices in Ω. In this section we stick to the original syntax as we found
it easier to use, but briefly describe the modified syntax below, with differences highlighted in blue.
• EPC.Verify(vk, c, u,V ,Λ, π)→ b. On input a verifier key vk, a commitment c, an evaluation point u, a

list V = [v1, . . . ,vm] whose i-th element vi = [vi,1, . . . , vi,|Λi|] is a list of claimed evaluations, a set of
indices Λ = {ind1, . . . , indm} indicating that vi is associated to the constraint Ωindi

, and an evaluation
proof π, EPC.Verify accepts if and only if for every i ∈ [m], the following conditions hold:
– the index indi references a constraint in Ω; that is, 1 ≤ indi ≤ n.
– for each evaluation vi,j ∈ vi, the polynomial pi,j committed to in c evaluates to vi,j at u.
– the polynomials associated to vi are equifficient with respect to Ωindi

; that is, Ωindi
(pi) = 1.

For completeness, we describe the corresponding required modifications to equifficient extractability for this
succinct verifier below.
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Pr



∀i ∈ {1, . . . , r} :
EPC.Verify(vk, ci, u,Vi,Λi, πi) = 1

⇓
Pi(u) = Vi

∧∧mi

j=1 Ωindi,j
(pi,j) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← EPC.Setup(1λ, D)

Ω← A1(1
λ, pp)

(ck, ok, vk)← EPC.Specializepp(Ω)

For i ∈ {1, . . . , r} :
Λi = {indi,1, . . . , indi,mi

} ← S(ck, ok)
ρi ← C(ck, ok, i)

ci ← A2(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)

Pi = [pi,1, . . . ,pi,mi
]← E(ck, ok, [Λj ]

i
j=1, [ρj ]

i
j=1)

u← Q(ck, ok, [Λi]
r
i=1, [ci]

r
i=1, [ρi]

r
i=1)

([Vi]
r
i=1, [πi]

r
i=1)← A3(u)


.

4.2 EPC scheme for univariate polynomials

In this section, we describe a construction of EPC schemes for univariate polynomials that supports batched
commitments.

4.2.1 Construction

Setup. On input a security parameter λ (in unary) and a maximum dimension D ∈ N, EPC.Setup samples
public parameters pp as follows. Sample a bilinear group ⟨group⟩ ← SampleGrp(1λ, q) and parse ⟨group⟩
as a tuple (G1,G2,GT , G,H, e). Let K be the vector space F≤D

q [X] whose canonical basis U is the set of
monomials {1, x, x2, . . . , xD−1}. Sample a uniformly random field element τ ← Fq, and compute the vector
of monomial encodings:

Σ :=
(
G, τ ·G, τ2 ·G, . . . , τD−1 ·G

)
∈ GD

1 (5)

Set pp := (K, ⟨group⟩,Σ, τ ·H) and output the public parameters pp. These public parameters will support
univariate polynomials over the field Fq of degree at most D − 1.

Specialize. Given oracle access to public parameters pp and input a set of equifficient constraints Ω =
{Ωi}

n
i=1, EPC.Specialize will compute committer, opener, and verifier keys as follows.

Sample randomness as follows. For every non-trivial constraint S ∈ Ω, sample uniformly random field
elements αS := (1, αS , α

2
S , . . . , α

|S|−1
S )← F|S|

q and γS , δS ← Fq. Then, for every trivial constraint V ∈ Ω,
sample the uniformly random field element αV := (αV )← Fq.

Construct the committer key ck as follows. First, for each non-trivial constraint S ∈ Ω,
1. Parse S as [P1, . . . ,P|S|], and each Pi as (Ji,Bi), and each Bi as the basis elements {b(i)s }

D
s=1

(expressed in the monomial basis).
2. For each i ∈ [|S|], compute encodings of the basis elements in Pi: b

(i)
S := (b(i)s (τ) ·G)s∈Ji

∈ G|P1|
1 .

3. Construct the ‘consistency’ committer key ckS for S by taking a linear combination of the vectors
b
(1)
S , . . . , b

(|S|)
S with respect to the coefficients αS :

ckS :=

∑|S|
i=1 α

i−1
S · b(i)S

δS
∈ G|P1|

1
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Next, to construct keys for trivial constraints, denote by W the first non-trivial constraint in Ω; commitments
to polynomials with trivial constraints will be batched with commitments to polynomials constrained by
W . (Note that W is not necessarily the first constraint Ω1.) For every trivial constraint V ∈ Ω, compute the
committer key for V as ckV := αV

δW
· Σ ∈ GD

1 . (Recall that we assume that all trivial constraints are just the
canonical monomial basis.)
Finally, construct the committer key ck := (K, ⟨group⟩,Ω,Σ, (ckT )T∈Ω).

Next, construct the opener key ok as follows. For each non-trivial constraint S ∈ Ω, compute the opener key

for S as okS := ( 1
γS
·Σ, αS

γS
·Σ, . . . ,

α
|S|−1
S
γS
·Σ) ∈ G|S|·D

1 , while for every trivial constraint V ∈ Ω, construct

the opener key as okV := αV
γW
·Σ ∈ GD

1 . Set the opener key to be ok := (K, ⟨group⟩,Ω,Σ, (okT )T∈Ω).

Finally, construct the verifier key as follows. Denote by Θ the set of non-trivial constraints in Ω. Then
the verifier key vk is defined as vk := (K, ⟨group⟩,Ω, (αV ·G

γW
)V ∈Ω\Θ, {(αS ·G

γS
), (γS · H), (γSτ · H), (δS ·

G)}S∈Θ).

Commit. On input the committer key ck = (K, ⟨group⟩,Ω,Σ, (ckT )T∈Ω), a list of polynomial lists
P = [pi]

m
i=1, and a set of equifficient constraints Λ = {Λi}

m
i=1, EPC.Commit computes a commitment c as

follows.
First, if for any pi,j ∈ P , deg(pi,j) ≥ D, output ⊥.

Next, compute the commitments to the constrained polynomials. For every list pj ∈ P such that Λj is a
non-trivial constraint, proceed as follows. For notational convenience, set g := pj and S := Λj . Parse g

as [g1, . . . , g|S|] and S as [P1, . . . ,P|S|]. Denote by g the coefficient vector of the polynomial g1 in P1.10

Construct the ‘consistency’ commitment of g with respect to S as cS := ⟨g, ckS⟩ ∈ G1.

Then, compute the commitments to the unconstrained polynomials. For every list pk ∈ P such that Λk is
a trivial constraint, proceed as follows. Parse pk as h and set V := Λk. Commit to h under ckV via the
Pedersen commitment cV := ⟨h, ckV ⟩ ∈ G1.
Let W be the first non-trivial constraint in Ω and let cW be the commitment to the polynomials in P
constrained by W (if there are no such polynomials, i.e., W ̸∈ Λ, then set cW := 0 · G). Update cW to
cW +

∑
V ∈Ω\Θ cV .

Finally, output the commitment c := (cS)S∈Λ∩Θ ∪ (cW ), where Λ ∩ Θ denotes the set of non-trivial
constraints in Λ.

Open. On input opener key ok parsed as ok := (K, ⟨group⟩,Ω,Σ, (okT )T∈Ω), a list of polynomial lists
P = [pi]

m
i=1, a set of equifficient constraints Λ = {Λi}

m
i=1, and an evaluation point u, EPC.Open outputs an

evaluation proof π computed as follows.
First, if for any pi,j ∈ P , deg(pi,j) ≥ D, output ⊥.

Next, compute the evaluation proofs for the constrained polynomials. For every list pj ∈ P such that Λj is a
non-trivial constraint, proceed as follows. For notational convenience, set g := pj and S := Λj .
1. Parse g as [g1, . . . , g|S|] and okS as (ok1, . . . , ok|S|).
2. For each i ∈ [|S|], compute the unique witness polynomial wi(X) = (gi(X)−gi(u))/(X−u) ∈ F<D[X],

and commit to it under the opener key oki via the Pedersen commitment ŵi := ⟨wi, oki⟩ ∈ G1.

10Note that if the polynomials in g are equifficient, then g is the coefficient vector for each gj in the Pj punctured basis.
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3. Compute the batched evaluation proof for the polynomials in g as wS :=
∑|S|

i=1 ŵi.

Next, compute the evaluation proofs for the unconstrained polynomials. For every list pk ∈ P such that Λk

is a non-trivial constraint, proceed as follows. Parse pk as h and set V := Λk. Compute the unique witness
polynomial w(X) = (h(X)− h(u))/(X − u) ∈ F<D[X], and commit to w under the opener key okV via
the Pedersen commitment wV := ⟨w, okV ⟩ ∈ G1.
Let W be the first non-trivial constraint in Ω and let wW be the evaluation proof for the polynomials in P
constrained by W (if W ̸∈ Λ, then set wW := 0 ·G). Update wW to wW +

∑
V ∈Ω\Θ wV .

Finally, output the proof π := (wS)S∈Λ∩Θ ∪ (wW ), where Λ ∩Θ denotes the set of non-trivial constraints
in Λ.
Verify. On input the verifier key vk parsed as (K, ⟨group⟩,Ω, (αV ·G

γW
)V ∈Ω\Θ, {(αS ·G

γS
), (γS · H), (γSτ ·

H), (δS · G)}S∈Θ), a commitment c = (cS)S∈Λ∩Θ ∪ (cW ), an evaluation point u, claimed evaluations
V = [vi]

m
i=1, a set of equifficient constraints Λ = {Λi}

m
i=1, and a proof π = (wS)S∈Λ∩Θ ∪ (wW ),

EPC.Verify proceeds as follows.
First, check that the constraint Λi is contained in the vk; that is, Λi ∈ Ω.

Next, let W denote the first non-trivial constraint appearing in Ω. For notational clarity, let vT denote vi
where i is the index of T in Λ. If there are no polynomials constrained by W (that is, W ̸∈ Λ), then set
vW := 0.
For each non-trivial constraint S ∈ Λ ∩Θ \ {W}, check the pairing equality:

e (cS , δS ·H) = e

(
⟨αS ,vS⟩

γS
·G, γS ·H

)
· e (wS , γSτ ·H − γSu ·H)

Else for S = W , check the pairing equality:

e (cW , δW ·H) = e

⟨αW ,vW ⟩
γW

·G+
∑

V ∈Λ\Θ

⟨αV ,vV ⟩
γW

, γW ·H

 · e(wW , γW τ ·H − γWu ·H)

4.2.2 Extractability

We begin by arguing, in Lemma 4.2, that the construction of EPC in Section 4.2.1 satisfies evaluation binding,
a property stating that for any point u ∈ Fq and a commitment c, no efficient adversary can produce valid
proofs that open c to different values at u. Then, in Theorem 4.3, we use this lemma to show EPC achieves
equifficient extractability.

Formally, we adapt the definition of evaluation binding from [CHMMVW20] to EPC schemes as follows.

Definition 4.1 (Evaluation binding). EPC satisfies evaluation binding if for every maximum dimension D
and efficient adversary A = (A1,A2,A3), the following probability is negligible in the security parameter
λ:

Pr


V ̸= V ′

∧
EPC.Verify(vk, c, u,V ,Λ, π) = 1

∧
EPC.Verify(vk, c, u,V ′,Λ, π′) = 1

∣∣∣∣∣∣∣∣∣∣
pp← EPC.Setup(1λ, D)

Ω← A1(1
λ, pp)

(ck, ok, vk)← EPC.Specializepp(Ω)
(c, u,V ,V ′,Λ, st)← A2(ck, ok)

(π, π′)← A3(st)

 .

Lemma 4.2. If the bilinear group sampler SampleGrp satisfies the SDH assumption (Assumption 1), the
construction EPC from Section 4.2.1 achieves evaluation binding (Definition 4.1).
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Proof. Suppose for contradiction there exists a maximum dimension D and efficient adversary A =
(A1,A2,A3) that breaks the evaluation binding of EPC with non-negligible probability (Definition 4.1).
We describe how to use A to construct an efficient adversary B that breaks SDH (Assumption 1) with
non-negligible probability.

Denote by Θ the set of non-trivial constraints in Ω, and by Λ ∩Θ the set of non-trivial constraints in Λ,
and by W the first non-trivial constraint appearing in Ω. We often abuse notation by denoting vi as vΛi

.

B(⟨group⟩,Σ′):
1. Parse Σ′ as {{τ iG}D−1

i=0 , τH}, and set Σ := {τ iG}D−1
i=0 , and set K := F<D

q [X].
2. Set the public parameters pp := (K, ⟨group⟩,Σ, τH).
3. Invoke the adversary against EPC to compute Ω← A1(1

λ, pp).
4. Compute the committer, opener, and verifier keys (ck, ok, vk)← EPC.Specializepp(Ω).
5. Invoke the adversary against EPC to compute (c, u,V ,V ′,Λ, st)← A2(ck, ok).
6. Invoke the adversary against EPC to compute (π, π′)← A3(st).
7. Parse Λ as {Λ1, . . . ,Λm}.
8. Parse π as (wS)S∈Λ∩Θ ∪ (wW ) and π′ as (w′

S)S∈Λ∩Θ ∪ (w′
W ).

9. If uG = τG (i.e. u = τ ), choose any a ∈ Fq \ {u} and output
(
a, 1

a+uG
)

.
10. Else if uG ̸= τG, do as follows. For each i ∈ [m],

(a) If S := Λi is a non-trivial constraint, and if wS ̸= w′
S and vS ̸= v′

S , output:(
−u, γS
⟨αS ,vS − v′

S⟩
(w′

S − wS)

)
(b) Else if V := Λi is a trivial constraint, and if wW ̸= w′

W and vV ̸= v′
V , output:(

−u, γW
⟨αV ,vV − v′

V ⟩
(w′

W − wW )

)
11. Else output ⊥.

Whenever A wins the evaluation binding game against EPC with non-negligible probability, we show that B
outputs a valid tuple to break SDH with the same non-negligible probability. First, we show that B outputs a
valid SDH tuple if the predicates from Step 9, Step 10a, or Step 10b are satisfied. Second, we show that the
probability these predicates are not satisfied, i.e., that B fails by outputting ⊥, is negligible.
B succeeds if it outputs a valid SDH tuple. Note that if u = τ , then B can construct an arbitrary solution
to the SDH problem (Step 9). Otherwise, suppose uG ̸= τG and there exists a non-trivial constraint S := Λi

such that wS ̸= w′
S and vS ̸= v′

S (Step 10). (Note we forego the analysis for trivial constraints, as it is similarly
done with the corresponding pairing check.) Since EPC.Verify(vk, c,V ,Λ, π) and EPC.Verify(vk, c,V ′,Λ, π′)
accept, the pairing checks produce the following equalities, respectively, over random choice of δS and γS :

e(cS , δS ·H) = e

(
⟨αS ,vS⟩

γS
·G, γS ·H

)
· e (wS , γSτ ·H − γSu ·H) (6)

e(cS , δS ·H) = e

(
⟨αS ,v

′
S⟩

γS
·G, γS ·H

)
· e

(
w′
S , γSτ ·H − γSu ·H

)
(7)

The above equations together imply, when written in G1, that:

γS
⟨αS ,vS − v′

S⟩
· (w′

S − wS) =
1

τ − u
·G
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making
(
−u, γS

⟨αS ,vS−v
′
S⟩
· (w′

S − wS)
)

a pair that breaks the SDH assumption.

B fails if it outputs ⊥. We analyze the probability that B outputs ⊥, i.e., that uG ̸= τG and wT = w′
T

or vT = v′
T for all T ∈ Λ. (As above, we only perform the analysis below for non-trivial constraints; the analysis

for trivial constraints is similarly done with the corresponding pairing check.) By assumption we have V ̸= V ′,
so suppose vS ̸= v′

S for some non-trivial constraint S. By hypothesis, it must be that wS = w′
S . Since the

verification algorithms accept, Eq. (6) and Eq. (7) together imply:

e

(
⟨αS ,vS⟩

γS
·G, γS ·H

)
= e

(
⟨αS ,v

′
S⟩

γS
·G, γS ·H

)
(8)

e (⟨αS ,vS⟩ ·G,H) = e
(
⟨αS ,v

′
S⟩ ·G,H

)
(9)

Applying the Schwartz–Zippel lemma [Zip79; Sch80], since vS ̸= v′
S then Eq. (9) holds with probability at

most |S|−1
|Fq |

over random choice of αS . Hence B fails with probability at most |S|−1
|Fq |

.

Theorem 4.3. If the bilinear group sampler SampleGrp satisfies the SDH assumption against algebraic adver-
saries (Assumption 1), the construction EPC in Section 4.2.1 achieves equifficient extractability (Section 4.1)
in the Algebraic Group Model (AGM).

Proof. Let (A1,A2) be an efficient stateful adversary against EPC. We show how to construct an efficient
extractor E against (A1,A2) that succeeds with overwhelming probability, such that for every round bound
r ∈ N, efficient public-coin sampler C, query sampler Q, constraint sampler S, and adversary A3, the
following probability is negligibly close to 1 (as a function of λ):

Pr



∀i ∈ {1, . . . , r} :
EPC.Verify(vk, ci, u,Vi,Λi, πi) = 1

⇓
Pi(u) = Vi

∧∧mi

j=1 Λi,j(pi,j) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← EPC.Setup(1λ, D)

Ω← A1(1
λ, pp)

(ck, ok, vk)← EPC.Specializepp(Ω)

For i ∈ {1, . . . , r} :
Λi = {Λi,1, . . . ,Λi,mi

} ← S(ck, ok)
ρi ← C(ck, ok, i)

ci ← A2(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)

Pi = [pi,1, . . . ,pi,mi
]← E(ck, ok, [Λj ]

i
j=1, [ρj ]

i
j=1)

u← Q(ck, ok, [Λi]
r
i=1, [ci]

r
i=1, [ρi]

r
i=1)

([Vi]
r
i=1, [πi]

r
i=1)← A3(u)


.

Denote by Θ the set of non-trivial constraints in Ω, and by W the first non-trivial constraint appearing in Ω.
Also, denote by Λi ∩Θ the set of non-trivial constraints in Λi, and by mi the number of constraints output
by the constraint sampler S for round i.

For each round i ∈ [r], we construct the extractor E for EPC below and argue that it succeeds with
overwhelming probability.

E(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)→ P :

1. Parse the committer key ck as (K, ⟨group⟩,Ω,Σ, (ckT )T∈Ω).
2. Parse Λi as {Λ1, . . . ,Λmi

}.
3. Invoke the algebraic adversary: {⟨aΛj

,LΛj
⟩}mi

j=1 ← A2(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1).

4. If LS ̸= ckS for any S ∈ Λi ∩Θ ∪ {W}, output ⊥.
5. For each non-trivial constraint S ∈ Λi ∩Θ ∪ {W}, proceed as follows.

(a) Parse S as [P1, . . . ,P|S|], and parse each Pj as (Jj ,Bj), and each Bj as {b(j)s }
D
s=1.

(b) For each j ∈ [|S|],
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i. Set the punctured basis vector Bj := [b(j)s ]s∈Jj
.

ii. Define the constrained polynomial pj := ⟨aS ,Bj⟩.
(c) Set the list of polynomials pk := [p1, . . . , p|S|], where k is the index of S in Λi.
(d) If S = W , additionally define the unconstrained polynomial pℓ = [⟨aV ,U ⟩] for each trivial constraint

V ∈ Λi \Θ, where ℓ is the index of V in Λi.
6. Output the list P := [p1, . . . ,pmi

].

The extractor E can fail with non-negligible probability due to at least one of three reasons. We analyze each
case separately and argue it occurs with negligible probability, or that it contradicts our original assumptions.
1. Incorrect evaluation: there exists a polynomial pi,j ∈ P whose evaluation is incorrect.
2. Coefficient non-equality: the equifficient property fails, i.e., there exists a round i ∈ [r] and a (non-trivial)

constraint Λj ∈ Λi such that Λj(pj) = 0.
3. E outputs⊥: there exists a round i ∈ [r] in which the adversaryA2 outputs a group element corresponding

to a non-trivial constraint Λj ∈ Λi such that LΛj
̸= ckΛj

.
(1) Incorrect evaluation. Suppose that with non-negligible probability there exists a round i ∈ [r] where the
extractor E outputs the polynomials Pi, and suppose that the adversary A3 outputs the claimed evaluations
Vi, such that Pi(u) ̸= Vi holds. We argue this scenario would break evaluation binding of EPC with the
same non-negligible probability, a contradiction to Lemma 4.2. We use the adversary A = (A1,A2,A3), the
extractor E , the constraint sampler S , the public-coin challenger C, and the query sampler Q to construct the
efficient adversary B = (B1,B2,B3) against evaluation binding defined as follows.

B1(1
λ, pp) :

1. Invoke the adversary Ω← A1(1
λ, pp).

2. Output Ω.

B2(ck, ok) :
1. For j ∈ {1, . . . , r}:

(a) Sample the constraints: Λj ← S(ck, ok).
(b) Sample the challenge: ρj ← C(ck, ok, j).
(c) Obtain the commitment: cj ← A2(ck, ok, [Λk]

j
k=1, [ρk]

j
k=1).

(d) Extract the polynomials Pj ← E(ck, ok, [Λk]
j
k=1, [ρk]

j
k=1).

2. Sample the query: u← Q(ck, ok, [Λj ]
r
j=1, [cj ]

r
j=1, [ρj ]

r
j=1).

3. Obtain the evaluations: ([Vj ]
r
j=1, [πj ]

r
j=1)← A3(u).

4. Compute the alternate evaluation vector: V ′
i := Pi(u).

5. Set st := (ck, ok,Pi,Λi, u, πi).
6. Output (ci, u,Vi,V

′
i ,Λi, st).

B3(st) :
1. Parse st as (ck, ok,Pi,Λi, u, πi).
2. Compute the alternate proof π′

i ← EPC.Open(ok,Pi,Λi, u).
3. Output (πi, π

′
i).

If A causes EPC.Verify(vk, ci, u,Vi,Λi, πi) to accept with non-negligible probability and Pi is the poly-
nomials extracted from the commitment ci, then B causes EPC.Verify(vk, ci, u,V

′
i ,Λi, π

′
i) to accept by

the completeness property (since V ′
i are the corresponding evaluations of the polynomials in Pi and π′

i is
computed from EPC.Open) with the same non-negligible probability. This is a contradiction to Lemma 4.2.
(2) Coefficient non-equality. Note that if the extractor E does not output ⊥, the equifficient property must
be satisfied for every round i ∈ [r], as by construction for every list of polynomials pj ∈ Pi and every
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polynomial pj,k ∈ pj corresponding to the (non-trivial) constraint Λj , we have [pj,k]Pk
= aΛj

(Step 5).

(3) E outputs ⊥. Fix a round i ∈ [r]. The extractor E outputs ⊥ whenever it receives a commitment cS for
a non-trivial constraint S from the algebraic adversary A2 such that the corresponding vector of coefficients
aS has non-zero coefficients for group elements outside ckS . We now show that this happens with negligible
probability whenever EPC.Verify accepts. (Note the analysis below applies to any S ∈ Λi ∩Θ \ {W}; for the case
S = W , we forego this analysis as it is similarly done using the corresponding pairing check.)

Recall the ‘consistency’ check in EPC.Verify for the non-trivial constraint S ∈ Λi ∩Θ \ {W}:

e (cS , δS ·H) = e

(
⟨αS ,vS⟩

γS
·G, γS ·H

)
· e (wS , γSτ ·H − γSu ·H) (10)

The commitment cS that the extractor E receives from the algebraic adversary A2 is expressed via the linear
combination of group elements ⟨aS ,LS⟩ (Step 3). Rewriting Eq. (10) in terms of this representation, we
obtain the following equation in G1:

⟨aS ,LS⟩ · δS =
⟨αS ,vS⟩

γS
· γS ·G+ wS · γS · (τ − u)

Expressing ⟨aS ,LS⟩ as
∑

j ajLj ·G and factoring out γS , we obtain:

δS ·
|P1|∑
j=1

ajLj ·G = γS ·
[
⟨αS ,vS⟩

γS
·G+ wS · (τ − u)

]
(11)

By viewing Eq. (11) as an equality of polynomials (in the exponent of G1) in the indeterminates δS and γS ,
we apply the Schwartz–Zippel lemma to deduce the left-hand side must be constant as a function of δS , and
similarly the right-hand side must be constant as a function of γS , except with negligible probability. Hence,

each Lj is of the form L
′
j

δS
∈ Fq. Crucially, this implies LS = ckS . To see this, note the only committer key

in the ck written in terms of the component δS is ckS . Since δS is independent randomness, except with

negligible probability, A2 can express L
′
j

δS
·G exclusively with linear combinations of the group elements in

ckS .

4.3 EPC scheme for multilinear polynomials

We now describe our construction of an EPC scheme that supports multilinear polynomials.

4.3.1 Construction

Setup. On input a security parameter λ (in unary) and a maximum dimension D, EPC.Setup samples public
parameters pp as follows. Sample a bilinear group ⟨group⟩ ← SampleGrp(1λ, q) and parse ⟨group⟩ as a tuple
(G1,G2,GT , G,H, e). Define ν := log2D to be the number of variables, and let K be the D-dimensional
vector space Mult(F[X1, . . . , Xν ]) whose canonical basis U is the set of Lagrange multilinear polynomials
{χ1, . . . , χν}. Sample a uniformly random vector β ← Fν

q , and compute the vector of multilinear Lagrange
basis encodings:

Σ := (χ1(β) ·G,χ2 · (β)G, . . . , χD(β) ·G) ∈ GD
1

Construct and output the public parameters pp := (D, ⟨group⟩,Σ,β ·H).
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Specialize. Given oracle access to public parameters pp and input a set of equifficient constraints Ω =
{Ωi}

n
i=1, EPC.Specialize will compute committer, opener, and verifier keys as follows.

Sample randomness as follows. For each non-trivial constraint S ∈ Ω, sample uniformly random field
elements αS := (1, αS , α

2
S , . . . , α

|S|−1
S )← F|S|

q and δS ← Fq.

Construct the committer key ck as follows. First, for each non-trivial constraint S ∈ Ω,
1. Parse S as [P1, . . . ,P|S|] and each Pi as (Ji,Bi), and each Bi as the basis elements {b(i)s }

D
s=1 (expressed

in the Lagrange basis).
2. For each i ∈ [|S|], compute encodings of the basis elements in Pi: b

(i)
S := (b(i)s (β) ·G)s∈Ji

∈ G|P1|
1 .

3. Construct the ‘consistency’ committer key ckS for S by taking a linear combination of the vectors
b
(1)
S , . . . , b

(|S|)
S with respect to the coefficients αS :

ckS :=

|S|∑
i=1

αi−1
S · b(i)S ∈ G|P1|

1 (12)

Next, the key for every trivial constraint V ∈ Ω is Σ. Construct the committer key ck := (K, ⟨group⟩,Ω,Σ, (ckS)S∈Θ),
where Θ denotes the non-trivial constraints in Ω.

Next, construct the opener key ok as ok := (K, ⟨group⟩,Ω,Σ).
Finally, construct the verifier key vk as vk := (K, ⟨group⟩,Ω,β ·H, (αS ·H)S∈Θ).
Commit. On input the committer key ck parsed as (K, ⟨group⟩,Ω,Σ, (ckS)S∈Θ), a list of polynomial lists
P = [pi]

m
i=1, and a set of equifficient constraints Λ = {Λi}

m
i=1, EPC.Commit computes the commitment c

as follows.
First, if any pi,j ∈ P is not multilinear in at most ν variables, output ⊥.

Compute the commitments to the constrained polynomials. For every list pj ∈ P such that Λj is a non-trivial
constraint, proceed as follows. For notational convenience, set g := pj and S := Λj .
1. Parse g as [g1, . . . , g|S|], S as [P1, . . . ,P|S|], each Pi as (Ji,Bi), and each Bi as the basis elements

{b(i)s }
D
s=1.

2. For each i ∈ [|S|], compute the encodings of the basis elements in Pi: b
(i)
S := (b(i)s (β) ·G)s∈Ji

∈ G|P1|
1 .

3. Denote by g the coefficient vector of the polynomial g1 in P1.11 Commit to g under the ‘consistency’ key
ckS via the Pedersen commitment c̃S := ⟨g, ckS⟩ ∈ G1.

4. For each i ∈ [|S|], commit to gi under b(i)S via the Pedersen commitment ĉi := ⟨gi, b
(i)
S ⟩ ∈ G1.

5. Set the list of commitments to g as cS := (ĉ1, . . . , ĉ|S|, c̃S).

Next, compute the commitments to the unconstrained polynomials. For every list pk ∈ P such that Λk is a
trivial constraint, proceed as follows. Parse pk as h and set V := Λk. Commit to h under Σ via the Pedersen
commitment cV := ⟨h,Σ⟩.

Finally, output the commitment c := (cT )T∈Λ.
Open. On input opener key ok parsed as (K, ⟨group⟩,Ω,Σ), a list of polynomial lists P = [pi]

m
i=1, a set of

equifficient constraints Λ = {Λi}
m
i=1, and an evaluation point u = (ui)

ν
i=1, EPC.Open outputs an evaluation

proof π computed as follows.
11Note that if the polynomials in g are equifficient, then g is the coefficient vector for each gi in the Pi punctured basis.
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First, if any pi,j ∈ P is not multilinear in at most D variables, output ⊥.

Compute the evaluation proofs to the polynomials as follows. For each i ∈ [m], set T := Λi and proceed as
follows.
1. Parse pi as [p1, . . . , p|T |]. (Recall that if T is a trivial constraint, pi consists of a single polynomial.)
2. For each i ∈ [|T |],

(a) Compute the unique witness polynomials wi,1, . . . , wi,ν satisfying pi(X) − pi(u) =
∑ν

j=1(Xj −
uj) · wi,j(X).

(b) For each j ∈ [ν], commit to wi,j under Σ via the Pedersen commitment wi,j := ⟨wi,j ,Σ⟩ ∈ G1.
(c) Set ŵi := (wi,1, . . . ,wi,ν) ∈ Gν

1 .

3. Set wT := (ŵ1, . . . ŵ|T |) ∈ Gν·|T |
1 .

Finally, output the proof π := (wT )T∈Λ.

Verify. On input verifier key vk parsed as (K, ⟨group⟩,Ω,β·H, (αS ·H)S∈Θ), a commitment c = (ci)
m
i=1, an

evaluation point u = (ui)
ν
i=1, claimed evaluations V = [vi]

m
i=1, a set of equifficient constraints Λ = {Λi}

m
i=1,

and a proof π = (wT )T∈Λ, EPC.Verify proceeds as follows.

First, check that the constraint Λi is contained in the vk; that is, Λi ∈ Ω.

Next, for each constraint T ∈ Λ, where i is the index of T in Λ, parse cT as (ĉ1, . . . , ĉ|T |, c̃T ), and parse vi

as [vj ]
ν
j=1, and parse wT as (ŵj)

|T |
j=1, and parse each ŵj as (wj,k)

ν
k=1.

For each j ∈ [|T |], check the following equality:

e(ĉj ,−vj ·H) =
ν∏

k=1

e
(
wj,k, βk ·H − uk ·H

)
Next, denote by Λ ∩Θ the set of non-trivial constraints in Λ. For each non-trivial constraint S ∈ Λ ∩Θ,
parse αS ·H as (αj−1

S ·H)
|S|
j=1, and perform the ‘consistency’ check with respect to S:

e (c̃S , H) =

|S|∏
j=1

e
(
ĉj , α

j−1
S ·H

)

4.3.2 Extractability

Theorem 4.4. If the bilinear group sampler SampleGrp satisfies the SDH assumption against algebraic adver-
saries (Assumption 1), the construction EPC in Section 4.3.1 achieves equifficient extractability (Section 4.1)
in the Algebraic Group Model (AGM).

Proof. Let (A1,A2) be an efficient stateful adversary against EPC. We show how to construct an efficient
extractor E against (A1,A2) that succeeds with overwhelming probability, such that for every round bound
r ∈ N, efficient public-coin sampler C, query sampler Q, constraint sampler S, and adversary A3, the
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following probability is negligibly close to 1 (as a function of λ):

Pr



∀i ∈ {1, . . . , r} :
EPC.Verify(vk, ci, u,Vi,Λi, πi) = 1

⇓
Pi(u) = Vi

∧∧mi

j=1 Λi,j(pi,j) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← EPC.Setup(1λ, D)

Ω← A1(1
λ, pp)

(ck, ok, vk)← EPC.Specializepp(Ω)

For i ∈ {1, . . . , r} :
Λi = {Λi,1, . . . ,Λi,mi

} ← S(ck, ok)
ρi ← C(ck, ok, i)

ci ← A2(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)

Pi = [pi,1, . . . ,pi,mi
]← E(ck, ok, [Λj ]

i
j=1, [ρj ]

i
j=1)

u← Q(ck, ok, [Λi]
r
i=1, [ci]

r
i=1, [ρi]

r
i=1)

([Vi]
r
i=1, [πi]

r
i=1)← A3(u)


.

Denote by Θ the set of non-trivial constraints in Ω, and by W the first non-trivial constraint appearing in Ω.
Also, denote by Λi ∩Θ the set of non-trivial constraints in Λi, and by mi the number of constraints output
by the constraint sampler S for round i.

For each round i ∈ [r], we construct the extractor E for EPC below and argue that it succeeds with
overwhelming probability.

E(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)→ P :

1. Parse the committer key ck as (K, ⟨group⟩,Ω,Σ, (ckS)S∈Θ).
2. Parse Λi as {Λ1, . . . ,Λmi

}.
3. Invoke the adversary: {⟨âΛj ,1

, L̂Λj ,1
⟩, . . . , ⟨âΛj ,|Λj |, L̂Λj ,|Λj |⟩, ⟨ãΛj

, L̃Λj
⟩}mi

j=1 ← A2(ck, ok, [Λj ]
i
j=1, [ρj ]

i
j=1)

a.
4. If LS ̸= ckS for any S ∈ Λi ∩Θ, output ⊥.
5. For each non-trivial constraint S ∈ Λi ∩Θ,

(a) Parse S as [P1, . . . ,P|S|], and each Pj as (Jj ,Bj), and each Bj as {b(j)s }
D
s=1.

(b) For each j ∈ [|S|],
i. Set the vector of punctured basis elements Bj := [b(j)s ]s∈Jj

, and their encodings bj := Bj(β) ·G.
ii. Perform a change of basis to solve the following equation for y: ⟨âS,j ,Σ⟩ = ⟨y, bj⟩. If there is no

solution, output ⊥. Else, update âS,j to y.
iii. Define the constrained polynomial pj := ⟨âS,j ,Bj⟩.

(c) Set pk := [p1, . . . , p|S|], where k is the index of S in Λi.
6. For each trivial constraint V ∈ Λi \Θ, define the unconstrained polynomial pℓ = [⟨aV ,U ⟩], where ℓ is the

index of V in Λi.
7. Output the polynomials P := [p1, . . . ,pmi

].

aIf Λj is a trivial constraint, i.e., |Λj | = 1, then omit ⟨ãΛj
, L̃Λj

⟩.

The extractor E can fail with non-negligible probability due to at least one of three reasons. We analyze each
case separately and argue it occurs with negligible probability, or that it contradicts our original assumptions.
1. Incorrect evaluation: there exists a polynomial pi,j ∈ P whose evaluation is incorrect.
2. Coefficient non-equality: the equifficient property fails, i.e., there exists a round i ∈ [r] and a (non-trivial)

constraint Λj ∈ Λi such that Λj(pj) = 0.
3. E outputs⊥: there exists a round i ∈ [r] in which the adversaryA2 outputs a group element corresponding

to a non-trivial constraint Λj ∈ Λi such that LΛj
̸= ckΛj

(Step 4), or there is a polynomial pj,k associated
to the non-trivial constraint Λj that cannot be written in terms of its designated punctured basis Pj

(Step 5(b)ii).
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(1) Incorrect evaluation. Recall that the following evaluation proof verification is performed for each
constraint T ∈ Λi, for every j ∈ [|T |]:

e(ĉj ,−vj ·H) =

ν∏
k=1

e
(
wj,k, βk ·H − uk ·H

)
For each polynomial contained in the commitment ĉj , this a multilinear KZG verification. Thus by the
evaluation binding of [PST13], the evaluations are correct with overwhelming probability.
(2) Coefficient non-equality. Fix a round i ∈ [r]. If EPC.Verify accepts and the extractor E does not output
⊥ for round i, we argue that the probability any list of extracted polynomials pj ∈ Pi fails to be equifficient
with respect to Λj ∈ Λi is negligible.

First, we recall the ‘consistency’ check for each non-trivial constraint S ∈ Λi ∩Θ for the commitment
cS = (ĉ1, . . . , ĉ|S|, c̃S):

e (c̃S , H) =

|S|∏
k=1

e
(
ĉk, α

k−1
S ·H

)
(13)

The commitment cS that the extractor E receives from the algebraic adversary A2 is expressed via linear
combinations of group elements: ⟨â1, L̂1⟩, . . . , ⟨â|S|, L̂|S|⟩, ⟨ãS , L̃S⟩ (Step 3). Rewriting Eq. (13) in terms
of these representations, we obtain the following equation in G1:

⟨ãS , L̃S⟩ =
|S|∑
k=1

αk−1
S · ⟨âk, L̂k⟩ (14)

From Step 4 it holds that L̃S = ckS and from Step 5(b)ii we can assume without loss of generality that
L̂k = bk. Recall ckS is computed as

∑|S|
k=1 α

k−1
S · bk, thus rewriting the above we obtain:〈

ãS ,

|S|∑
k=1

αk−1
S · bk

〉
=

|S|∑
k=1

αk−1
S · ⟨âk, bk⟩

Rewriting the inner product as a sum over the coefficients αk
S , we obtain:

|S|∑
k=1

αk−1
S · ⟨ãS , bk⟩ =

|S|∑
k=1

αk−1
S · ⟨âk, bk⟩ (15)

Applying the Schwartz–Zippel lemma [Zip79; Sch80] to the exponent of Eq. (15) by treating the coefficients
αk
S as indeterminates, with probability greater than 1− |S|−1

|Fq |
it holds that ⟨ãS , bk⟩ = ⟨âk, bk⟩ for all k ∈ [|S|].

Recall that each bk is an encoding of linearly independent basis elements, hence ⟨ãS , bk⟩ = ⟨âk, bk⟩ implies
ãS = âk with probability greater than 1− ν

|Fq |
. To see the foregoing statement, express ⟨ãS − âk, bk⟩ as∑

j(ãj − âj)bj(β) ·G and apply the Schwartz–Zippel lemma to the polynomial
∑

j(ãj − âj)bj(β) in the
indeterminates bj(β), which are independently random due to the linear independence of the underlying
basis elements.
(3) E outputs ⊥. We follow the strategy from Theorem 4.3 and thereby omit details for the sake of brevity.
The extractor E outputs ⊥ in the ith round if L̃S ̸= ckS for some non-trivial constraint S ∈ Λi ∩Θ (Step 4),
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or if for some j ∈ [|S|] the system ⟨âS,j ,Σ⟩ = ⟨y, bj⟩ is unsolvable for y (Step 5(b)ii). We proceed to argue
that if EPC.Verify accepts, this occurs with negligible probability.

From Eq. (14), we deduce that except with negligible probability the jth entry of L̃S must be expressed
exclusively with linear combinations of group elements from ckS since ckS is the only key expressed in terms
of the components αk

S .
For notational clarity, denote âS,j by âj . Now, suppose ⟨âj ,Σ⟩ = ⟨y, bj⟩ is unsolvable for y (Step 5(b)ii).

Letting Σj be the Bj encodings, solve the equation ⟨âj ,Σ⟩ = ⟨y
′,Σj⟩ for y′. (Note this is simply a change-of-

basis from U to Bj .) Since the prior equation had no solution, there must exist some index κ ∈ [D] \ Jj such
that y′κ ̸= 0. Furthermore, since the verifier accepts, using Eq. (15) and isolating in terms of αj−1

S , by the
Schwartz–Zippel lemma ⟨ãS , bj⟩ = ⟨y

′,Σj⟩ holds with high probability. Since the left and right-hand side
of this equation are linear combinations of different basis element encodings of Bj (e.g., they differ at κ),
this contradicts the linear independence of Bj .
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5 SNARKs for GR1CS from EPC schemes

We now describe and prove secure our blueprint for designing SNARKs with a circuit-specific setup for
GR1CS. We begin by introducing a new oracle relation, rowcheck, which captures the non-linear constraints
in a GR1CS instance. To construct our SNARK, we will rely on a PIOP for rowcheck and an equifficient
polynomial commitment scheme.

Definition 5.1. Rowcheck is the indexed oracle relation consisting of all triples of the form

(i,x,w) = ((F,K, t, c, [Li,Di]
c
i=1), [JẑiK]

c
i=1, [ẑi]

c
i=1)

where F is a finite field, K is a m-dimensional vector space of polynomials over F, Li is a local predicate
(Definition 3.2) with arity t, and Di is a domain consisting of elements from F. Also, each element ẑi of the
witness consists of a list of polynomials [ẑi,j ]

t
j=1 in K such that for all i ∈ [c] and for all x ∈ Di it holds that

Li(ẑi(x)) = 0. The instance contains the oracles corresponding to the witness polynomials.

Without loss of generality, we assume that the domains D1, . . . ,Dc are disjoint, namely for all i ̸= j, we
have that Di ∩Dj = ∅. In our instantiations, each domain Di is either a subgroup of the multiplicative group
F∗ (Section 6) or a subset of the boolean hypercube Bν (Section 7).

5.1 Construction

We describe our construction of a SNARK for GR1CS in Fig. 5 using two ingredients: a Polynomial Interactive
Oracle Proof PIOP = (F,K, r, s, I,P,V) for rowcheck, and an equifficient polynomial commitment scheme
EPC = (Setup,Specialize,Commit,Open,Verify). To enable the verifier to succinctly handle public inputs,
we assume that the GR1CS instance has been transformed as per Remark 2.2.

Remark 5.2. In Fig. 5, we assume in Step 8 that the query set Q consists of a single point, as this suffices
for our instantiations in Sections 6 and 7. To handle the general case, one would need to generalize the
EPC definition to handle arbitrary query sets. We believe that this can be done in straightforward manner by
adapting the transformations of [CHMMVW20]; we leave this to future work.

The following theorem captures key properties of our construction:

Theorem 5.3. Let F be a field family. Consider the following components:
• PIOP = (I,P,V) is a complete and sound PIOP (Section 3.4) over F for rowcheck (Definition 5.1),
• EPC = (Setup, Specialize,Commit,Open,Verify) is a complete and multi-round extractable (Section 4.1)

equifficient polynomial commitment scheme (Section 4) over F .
Then, the construction ARG = (G,P,V) in Fig. 5 is a public-coin succinct interactive argument of knowledge
with a circuit-specific trusted setup for GR1CS.

Proof. Completeness and the public-coin property follows straightforwardly by construction; therefore, we
only prove succinctness and knowledge soundness.

Succinctness. Suppose d is the maximum degree of the predicates. The verification key is of size O(dc). The
verifier performs the vector-matrix product in Step 3d which due to the technique introduced in Remark 2.2
becomes sublinear in m. Invoking the PIOP verifier for is also assumed to be sublinear. At last, V verifies
the opening of the commitments which is discussed in Section 4.1 to be sublinear. Hence, the verification
process of the above blueprint is asymptotically sublinear in the number of constraints, but is linear to the
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Generator: G(1λ, i)→ (ipk, ivk):

1. Parse the GR1CS index i as
(
F, n, k,m, c, t, [Li, (Mi,1, . . . ,Mi,t),mi]

c
i=1

)
.

2. Construct the verifier’s portion of the GR1CS index: is := (F, n, k,m, c, t, C = [Li,mi]
c
i=1).

3. Generate the EPC public parameters: pp := EPC.Setup(1λ, k). Let F and K be the field and polynomial space
defined by pp.

4. For each i ∈ [c] and j ∈ [t]:
(a) Compute the LDE of the columns of Mi,j over the domain Di to obtain Mi,j := [m̂

(s)
i,j (x)]

k
s=1.

(b) If k < m, add m− k orthogonal polynomials to Mi,j to form a basis for K.
(c) Construct the matrix-specific punctured basis Pi,j := (Jw,Mi,j) where Jw := {n+ 1, . . . , k}.

5. Construct the rowcheck index: iR := (F,K, t, c, [Li,Di]
c
i=1).

6. Define the non-trivial equifficient constraint Ω1 := [[Pi,j ]
t
j=1]

c
i=1, and the trivial constraints Ωi,1 :=

U , . . . ,Ωi,s(i) := U for each round i ∈ {0, 2, . . . , r(iR) + 1}. Denote by Ω the set of these constraints.
7. Specialize the EPC public parameters: (ck, ok, vk) := EPC.Specializepp(Ω).
8. Invoke the PIOP indexer I on iR to obtain the polynomials P0 := [p0,j ]

s(0)
j=1.

9. Commit to the indexer polynomials: c0 := EPC.Commit(ck,P0,Ω0).
10. Construct and output the following keys: ivk := (is, c0, vk) and ipk := (i, ivk, [p0,j ]

s(0)
j=1, ck, ok).

Prover-Verifier Interaction: ⟨P(ipk,x,w),V(ivk,x, π)⟩:

1. P parses the instance x as x, the witness w as w, the proving key ipk as (i, ivk, [p0,j ]
s(0)
j=1, ck, ok), and the index

i as
(
F, n, k,m, c, t, [Li, (Mi,1, . . . ,Mi,t),mi]

c
i=1

)
where M ′

i,j ∈ Fmi×k.
2. V parses the instance x as x, the verification key ivk as (is, c0, vk), and the succinct index is as

(F, n, k,m, c, t, [Li, (M
′
i,1, . . . ,M

′
i,t),mi]

c
i=1) where M ′

i,j ∈ Fmi×n only has the first n columns of Mi,j .
3. For each i ∈ [c]:

(a) For each j ∈ [t], P computes the vectors wi,j := Mi,j · (0
n, w)T and zi,j := Mi,j · (x,w)

T .
(b) P assembles wi := [wi,j ]

t
j=1 and zi := [zi,j ]

t
j=1.

(c) P computes LDEs ŵi and ẑi of wi and zi respectively over the domain Di.
(d) V computes the vectors xi := [M ′

i,jx
T ]tj=1 and their LDEs x̂i over Di.

4. V sends the empty message ρ1 := ⊥ to P .
5. P forms the set P1 := [[ŵi]

t
j=1]

c
i=1, commits to it as c1 := EPC.Commit(ck,P1,Ω1), and sends this to V .

6. P initializes the rowcheck PIOP prover P with index polynomials in P0 and witness polynomials [ẑi]
c
i=1.

7. For the i-th round of the rowcheck PIOP where i ∈ {1, . . . , r(i)}:
(a) V invokes PIOP Verifier V to compute the next verifier message ρi+1, and sends this to P .
(b) P forwards this to the PIOP prover P to compute the next-round polynomials Pi+1.
(c) P computes the commitment ci+1 := EPC.Commit(ck,Pi+1,Ωi+1), and sends this to V .

8. V invokes the PIOP query algorithm QV to obtain the query set Q := {u} and sends it to P (Remark 5.2).
9. P evaluates the polynomials P0, . . . ,Pr(i)+1 on u to obtain the evaluations V0, . . . ,Vr(i)+1.

10. For i ∈ {0, . . . , r(i) + 1}, P computes opening proofs for these polynomials: πi ← EPC.Open(ok,Pi,Ωi, u).
11. P sends to V the evaluations and the corresponding evaluation proofs.
12. V evaluates the polynomials [x̂i]

c
i=1 on Q to obtain the evaluation vector Px and computes Vz := P1 + Px.

13. V checks that the PIOP decision algorithm DV accepts on input the evaluations Vz and V0,V2, . . . ,Vr(i)+1.
14. For i ∈ {0, . . . , r(i)+1}, V checks that the evaluations claims are valid: EPC.Verify(vk, ci, u,Pi,Ωi, πi) = 1.

Figure 5: Our generic SNARK for GR1CS.
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number of predicates (c), the degree of the predicates (d) and the arity of the predicates (t). The proof size is
consequently succinct.

Knowledge soundness. Suppose for contradiction that there exists an efficient adversarial prover P̃ =
(P̃1, P̃2, P̃3) for ARG that breaks knowledge soundness of ARG with non-negligible probability ϵARG(λ).
That is, for every efficient extractor E ,

Pr


(i,x,w) ̸∈ RN

∧
⟨P̃3(st

′),V(ivk,x)⟩ = 1

∣∣∣∣∣∣∣∣∣
(i, st)← P̃1(1

λ)

(ipk, ivk)← G(1λ, i)
(x, st′)← P̃2(st, ipk)

w← E(ipk,x)

 > ϵARG(λ) . (16)

We will use P̃ to construct efficient adversaries P̃ and AEPC = (A1,A2) against the soundness of the PIOP
and extractability of EPC, respectively. That is, the following will hold for P̃ and AEPC:

Pr

 (i,x) ̸∈ L(RN)
∧

⟨P̃(st′),VI(i)(ivk,x)⟩ = 1

∣∣∣∣∣∣∣
(i, st)← P̃1(1

λ)

(ipk, ivk)← G(1λ, i)
(x, st′)← P̃2(st, ipk)

+Pr

[
AEPC wins the EPC
extractability game

]
> ϵARG(λ) .

This suffices because either (i) by averaging there exists a choice of prover key ipk that yields prover state st′

and (i,x) ̸∈ L(RN) such that P̃ wins the PIOP soundness game, or (ii) AEPC wins the EPC extractability
game for any efficient extractor. In either case, we derive a contradiction against our assumptions.

Constructing AEPC. We begin by describing how we will construct the adversary A2 against EPC:

A2(ck, ok, [Λj ]
i
j=0, [ρj ]

i
j=0)→ ci:

1. Assume that A2 is passed i, st from A1

2. Run Steps 8 to 10 of the generator G to (deterministically) construct the keys (ipk, ivk).
3. Run the prover P̃2(st, ipk) to obtain the instance x and the prover state st′.
4. If i = 0: obtain the index polynomial commitments c0 from ivk, and output these.
5. If i ∈ {1, . . . , r(i) + 1}, run P̃3(st

′, ipk, ρ1, . . . , ρi) and output the commitment generated by P̃3.

Let EEPC be the extractor for A2.12 We now describe how to use EEPC to construct the adversary P̃ against
the soundness of the PIOP.

Constructing P̃. P̃ invokes EEPC to obtain each round polynomial:

P̃(st, ρ2, . . . , ρi):
1. Set ρ0 = ρ1 := ⊥.
2. Run EEPC(ck, ok,Ω, [ρj ]

i
j=0) to obtain the i-th round polynomials.

We can use these algorithms to construct an extractor E for ARG as follows:
12Note that the round-0 polynomials output by EEPC are exactly the polynomials output by the rowcheck PIOP. To capture that

these commitments do not need extractability but rather only evaluation binding, we can consider an augmented extractor E ′
EPC that

just runs the PIOP indexer in round 0 and outputs the resulting polynomials. We ignore this technicality for the moment.
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E(ipk,x)→ w:
1. Parse ipk as (i, ivk, [p0,j ]

s(0)
j=1, ck, ok) and ivk as (is, c0, vk). Also parse ck to get Ωw.

2. For i ∈ {0, . . . , r(i)}:
(a) Run the challenger C to obtain the randomness ρi.
(b) Invoke EEPC(ck, ok,Ωw, [ρj ]

i
j=0) to obtain the i-th round polynomials Pi.

3. Solve for the witness w by solving the system of linear equations implied by the extracted polynomials
P1 and the matrix-basis polynomials in Ω1. (The condition in Remark 3.5 ensures that we only deal with
GR1CS instances where this system has a solution.)

4. Output w.

With this definition of E , let us now analyze the knowledge soundness of ARG. We begin by rewriting
Equation (16) in three steps. First, we inline the definition of E . Next, we fully write out the execution of the
protocol between P̃ and V . Then, we move the interactive portion of this interaction to the conditional part of
the probability expression. (This change results in the inequality.)

ϵARG(λ) ≤ Pr



(i,x,w) ̸∈ RN

∧
DV([Vi]

r(i)+1
i=0 ) = 1

∀i ∈ {0, . . . , r(i) + 1} :
EPC.Verify(vk, ci, u,Vi,Ωi, πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i← P̃1(1
λ)

pp← EPC.Setup(1λ, D)
form Ω as in G

(ck, ok, vk)← EPC.Specialize(pp,Ω)

set ρ0 := ⊥
P0 = [p0,j ]

s(0)
j=1 ← I(F, i)

c0 ← EPC.Commit(ck,P0,U )

ivk := (is, c0, vk)

ipk := (i, ivk, [p0,j ]
s(0)
j=1, ck, ok)

x← P̃2(ipk)

set ρ1 := ⊥
c1 ← P̃3(ipk)

P1 ← EEPC(ck, ok,Ω)

for i ∈ {1, . . . , r(i)} :
ρi+1 ← V(ivk,x, ρw, [ρj ]

i
j=1)

ci+1 ← P̃3(ipk, ρw, [ρj ]
i+1
j=1)

Pi+1 ← EEPC(ck, ok,Ω, [ρj ]
i+1
j=0)

set w to be the coefficients of P1

u← V(ivk,x, [ρi]
r(i)+1
i=1 )

([Vi]
r(i)+1
i=0 , [πi]

r(i)+1
i=0 )← P̃3(ipk, [ρi]

r(i)+1
i=1 , u)



(17)

Note that the extracted witness w can be invalid if either (1) the equifficient constraints on it are not satisfied,
or (2) the polynomials ẑi = ŵi + x̂i formed from it do not satisfy rowcheck. We can now consider two
cases, depending on the success or failure of the EPC extractor.

If the EPC extractor succeeds, then we know that Condition (1) cannot occur, and that the evaluations
[Vi]

r(i)+1
i=0 are correct. This means that Condition (2) can only occur if the PIOP prover P̃ (that is implicitly

executed on the right side) breaks the soundness of the PIOP.
On the other hand, if the EPC extractor fails, then it can either be because the equifficient constraints

are not satisfied, or because the evaluations are incorrect. (Note that P̃ could still succeed even if the EPC
extractor fails, but the probability of this joint event is subsumed by the probability of just the EPC extractor
failing.) In either situation, this would violate the extractability of the EPC scheme.
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Formally, we can write this as follows.

ϵARG(λ) ≤ Pr


DV([Vi]

r(i)+1
i=0 ) = 1

and
EEPC fails:

EPC.Verify accepts, but either
w = w is not a solution to Ωw, or
∃i such that Pi(u) ̸= Vi

∣∣∣∣∣∣∣∣∣∣∣∣
same as
Eq. (17)

+ Pr


(i,x,w) ̸∈ RN

and
DV([Vi]

r(i)+1
i=0 ) = 1

and
EEPC succeeds

∣∣∣∣∣∣∣∣∣∣
same as
Eq. (17)


We are now able to write the second term as the PIOP soundness error ϵPIOP, because it can be seen as an

execution of the interaction between P̃ and V in the PIOP soundness game. This leaves us with the following
inequality:

ϵARG(λ) ≤ Pr

[
EEPC fails

∣∣∣∣ same as
Eq. (17)

]
+ ϵPIOP

Now notice that the conditional part of Eq. (17) can be viewed as an execution of an extractability game for
the EPC scheme. In more detail, the adversary A1, on input security parameter and the public parameters pp,
invokes P̃1(1

λ) to compute the index (i, st), performs Steps 4 and 6 of the generator G to compute the set of
equifficient constraints Ω, and outputs these. The constraint sampler S outputs the canonical basis U in the
0-th round, outputs Ω in the next round, and outputs U thereafter. The public-coin challenger C is defined to
output ⊥ in rounds 0 and 1, and to equal the interactive phase of V in the remaining rounds. This means that
in the i-th round of the EPC extractability game (for i ∈ {2, . . . , r(i) + 1}) the challenger C will output the
randomness ρi−1 output by V in the PIOP round i− 1. Finally, the adversary A3 runs P̃3 and outputs the
evaluations and evaluation proofs produced by the latter.

This allows us to write the first term in the above inequality as the EPC extractability error ϵEPC(λ). This
completes the proof.
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6 PARI: a 2-group element SNARK for NP

We describe PARI, a SNARK for Square R1CS (Definition 3.4). PARI is obtained by instantiating the
construction in Fig. 5 with the EPC scheme from Section 4.2 and a univariate PIOP for a variant of the
rowcheck relation (Definition 5.1) specialized for the local polynomial predicate L(a, b) = a2 − b, which we
describe below (Section 6.1). After the optimizations in Section 6.2, the final construction has a proof size of
just two group elements plus two scalar field elements, making it the smallest known SNARK for NP.

6.1 Univariate PIOP for SR1CS rowcheck

PARI proves Square R1CS (SR1CS) statements; the corresponding rowcheck relation consists of tuples of the
form:

(i,x,w) = ((F,K,m,K), (JẑAK, JẑBK), (ẑA, ẑB))

where F is a finite field, m is the number of constraints, K is a smooth multiplicative subgroup of F∗ where
|K| ≥ m is a power of two, K is a |K|-dimensional vector space of polynomials over F, and ẑA and ẑB are
polynomials, such that:

ẑ2A(κ)− ẑB(κ) = 0 ∀κ ∈ K

A PIOP for SR1CS is described below, and underlies the PARI construction.

PIOP 1: Univariate PIOP for SR1CS rowcheck

⟨P(x,w),V(x)⟩:
1. P receives as input the witness w = (ẑA, ẑB).

2. P computes the quotient polynomial q := ẑ
2
A−ẑB
vK

, and sends JqK to V.
3. V samples r ← F \K, and queries the oracles JẑAK, JẑBK, JqK at r.

4. V checks that q(r) = ẑ
2
A(r)−ẑB(r)

vK(r)

Security. Completeness follows straightforwardly, and soundness follows by applying the Schwartz–Zippel
lemma [Zip79; Sch80] to the check ẑ2A − ẑB = q · vK .

6.2 Unrolled SNARK

We describe the unrolled PARI construction in Fig. 6. For an SR1CS index (F, n, k,m,A,B) with k variables,
m constraints, and n instance variables, and letting η denote the number of non-zero entries in A and B,
PARI has the following efficiency properties:
• setup time is O(η +m logm) F operations plus 4k G1 operations.
• prover time is O(η +m logm) F operations, 1 MSM of size k − n in G1, and 3 MSMs of size m in G1.
• verifier time is dominated by O(|x|) F operations and 3 pairings.
• verification key size is O(n)F+ 2G1 + 5G2 elements.
• proving key size is O(η)F+ (4k − n)G1 elements.
• proof size is 2G1 + 2F elements.
To obtain these efficiency figures, we make the following optimizations to the generic construction of Fig. 5.

Batch commitment and opening. We designed the EPC scheme in Section 4.2 to allow the prover to
‘batch’ commitments and opening proofs for different polynomials, enabling us to reduce proof size in PARI.
This batching allows PARI to commit to the polynomials ẑA, ẑB and the quotient polynomial q with a single
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group element. Similarly, the opening proof for these polynomials also consists of a single group element,
leading to the proof containing just two group elements, as required.

Reducing the number of evaluations. Naively performing the verifier’s check in PIOP 1 would require the
prover to send evaluations of ẑA, ẑB and the quotient polynomial q. We eliminate one of these evaluations

by having the verifier compute the evaluation of q using the equation q(r) := ẑ
2
A(r)−ẑB(r)

vK(r) . This requires
the prover to only send the evaluations of ẑA, ẑB at the challenge point r, thus reducing the number of field
elements in the proof to two.
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G(1λ, i)→ (ipk, ivk):
1. Parse the Square R1CS index i as (F, n, k,m,A,B) where A ∈ Fm×k, B ∈ Fm×k.
2. Set the succinct index is := (F, n, k,m,A′, B′) where A′ ∈ Fm×n, B′ ∈ Fm×n.
3. Sample a bilinear group ⟨group⟩ = (G1,G2,GT , G,H, e)← SampleGrp(1λ).
4. Sample random field elements α, β, δ1, δ2, τ ← F.
5. Interpolate the columns of A and B over K to obtain the bases A := [ai(X)]ki=1 and B := [bi(X)]ki=1.

6. Compute the group elements ΣA := [ατ
i

δ1
G]ki=1, ΣB := [βτ

i

δ1
G]ki=1, and ΣQ := [ τ

i

δ1
G]ki=1.

7. Compute the commitment key Σ = [αai(τ)+βbi(τ)
δ2

G]ki=n+1.
8. Output ipk = (⟨group⟩, i,Σ,ΣA,ΣB ,ΣQ) and ivk = (⟨group⟩, is, αG, βG, δ1H, δ2H, τH, δ1τH).

Pρ(ipk,x,w)→ π:
1. Parse ipk as (⟨group⟩, i,Σ,ΣA,ΣB ,ΣQ).
2. Parse the Square R1CS index i as (F, n, k,m,A,B) where A,B are matrices in Fm×k.
3. Construct the variable assignment z by concatenating the instance and witness assignments: z := (x∥w).
4. Compute zA := Az and zB := Bz, and interpolate these over K to obtain polynomials ẑA and ẑB .
5. Compute wA := A · (0∥w) and wB := B · (0∥w), and interpolate these over K to obtain polynomials ŵA and

ŵB .
6. Compute a batched commitment to the polynomials ŵA and ŵB : TAB :=

∑k
i=n+1 wi · Σ[i].

7. Compute the quotient polynomial q := ẑ
2
A−ẑB
vK

, and commit to it: TQ :=
∑

i∈[m] q[i]ΣQ[i].
8. Batch the commitments: T := TAB + TQ

9. Sample an evaluation point from the random oracle: r := ρ(transcript).
10. Evaluate ŵA and ŵB at r to get evaluations va := ŵA(r) and vb := ŵB(r), respectively.
11. Compute the opening witness polynomials:

ŴA(X) :=
ŵA(X)− ŵA(r)

(X − r)
; ŴB(X) :=

ŵB(X)− ŵB(r)

(X − r)
; ŴQ(X) :=

q(X)− q(r)

(X − r)
.

12. Compute the separate opening proofs:
WA :=

∑
i∈[m]

ŴA[i] · ΣA[i]; WB :=
∑
i∈[m]

ŴB [i] · ΣB [i]; WQ :=
∑
i∈[m]

ŴQ[i] · ΣQ[i]

13. Batch the opening proofs: U := WA +WB +WQ

14. Output proof π := (T ,U, va, vb).

Vρ(ivk,x, π)→ b:
1. Parse the verification key ivk = (⟨group⟩, is, αG, βG, δ1H, δ2H, τH, δ1τH).
2. Parse the proof π as (T,U, va, vb).
3. Sample an evaluation point from the random oracle r := ρ(transcript).
4. Compute the vectors xA := A · (x∥0) and xB := B · (x∥0), and interpolate them on K to obtain x̂A and x̂B .
5. Compute the quotient polynomial evaluation:

vq :=
(va + x̂A(r))

2 − (vb + x̂B(r))

vK(r)
.

6. Check the following pairing equation:
e(T, δ2H)

?
= e(U, δ1τH − r · δ1H) · e(va · αG+ vb · βG+ vq ·G,H) .

Figure 6: The unrolled PARI SNARK.

46



7 GARUDA: a linear-time prover SNARK for GR1CS

We describe GARUDA, a SNARK for GR1CS. GARUDA is obtained by instantiating the generic construction
in Section 5.1 with the EPC scheme from Section 4.3 and a sumcheck-based PIOP for “Stacked” rowcheck, a
variant of rowcheck that we introduce (see Section 2.5 for a high-level discussion of this relation). The key
feature of GARUDA is a linear-time prover for GR1CS that avoids cryptographic costs for linear gates.

We begin by describing in Section 7.1 our PIOP, and then describe in Section 7.2 the optimizations we
make to obtain our concrete SNARK construction.

7.1 Multilinear PIOP for Stacked rowcheck

Before we describe our PIOP for the stacked rowcheck relation, we first recall key building blocks that we
use to construct the latter, namely PIOPs for multivariate sumcheck and zerocheck.

Tool: multivariate PIOP for sumcheck. The sumcheck PIOP allows the prover to prove that the evaluations
of a µ-variate polynomial f ∈ K with maximum individual degree d := deg∗(f) over an appropriate Boolean
hypercube sum to a claimed value, i.e. that

∑
x∈{0,1}µ f(x) = 0.

PIOP 2: Sumcheck [LFKN92]

⟨P(x,w),V(x)⟩:
1. P receives as input a polynomial f , and V has oracle access to the same.
2. P sends to V a univariate polynomial g1(x1) such that g1(x1) =

∑
{x2,...,xµ}∈{0,1}µ−1 f(x1, x2, . . . , xµ)

3. V checks that the degree of g1(x1) is at most the degree of f in x1. It computes S1 = g1(0) + g1(1) and
checks that S1 = S. If not, V rejects. It then picks a random r1 ∈ F and sends it to the Prover (P).

4. For each i from 2 to µ (subsequent rounds):
(a) P sends to V the univariate polynomial gi(xi) =

∑
{xi+1,...,xµ}∈{0,1}µ−i f(r1, . . . , ri−1, xi, . . . , xµ)

(b) V checks that the degree of gi(xi) is at most the degree of f in xi. It computes Si = gi(0) + gi(1) and
checks that Si = gi−1(ri−1). If not, V rejects. It picks a random ri ∈ F and sends it to P.

5. P sends the value f(r1, r2, . . . , rµ−1, rµ) for the random values r1, r2, . . . , rµ chosen by V.
6. V checks that this value is correct by querying the instance oracle JfK at (r1, r2, . . . , rµ−1, rµ).

This PIOP enjoys perfect completeness and a soundness error of O(dµ|F|). The verifier time is O(dµ) field
operations, the query complexity is 1, the round complexity is µ, and the number of field elements sent by
the prover is dµ. Additionally, if f is a sum of products of multilinear polynomials (i.e., our case), then the
prover’s running time is O(d log2 d · 2µ) field operations [CBBZ23].

Tool: multivariate PIOP for Zerocheck. A PIOP for zerocheck asserts that the evaluations of a µ-variate
polynomial f ∈ K with maximum individual degree d := deg∗(f) over the Boolean hypercube are all zero,
i.e. that f(x) = 0 for all x ∈ {0, 1}µ.

PIOP 3: Zerocheck

⟨P(x,w),V(x)⟩:
1. P receives as input a polynomial f , and V has oracle access to the same.

2. V sends P a random vector r $← Fµ.
3. P and V invoke PIOP 2 for the claim that

∑
x∈{0,1}µ f(x) · eq(x, r) = 0.

This PIOP has completeness, soundness, and efficiency properties similar to those of the sumcheck PIOP,
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PIOP for stacked rowcheck. We are now ready to define a PIOP for the stacked rowcheck relation. We
define this relation first, and then construct a PIOP for it.

Definition 7.1. Stacked rowcheck is the indexed oracle relation consisting all triples of the form

(i,x,w) = ((F,K, t, c, (Li,Ki)i∈[c]), JẑK, ẑ)

where F is a finite field, K is a m-dimensional vector space of polynomials over F, ẑ := [ẑi]
t
i=1 is a list

of polynomials in K, JẑK := [JẑiK]
t
i=1 are oracles to these polynomials, Li is a local predicate with arity t,

and Ki is a subset of the boolean hypercube Bν where ν := ⌈logm⌉, such that for all i ∈ [c] it holds that
Li(ẑi(x)) = 0 for each x ∈ Ki.

For concreteness we restrict our attention to the polynomial stacked rowcheck relation where the local
predicates are constrained to be polynomials, but replacing this with a more general rowcheck relation is
straightforward. Below we present a PIOP for polynomial stacked rowcheck and describe its security and
efficiency properties in Lemma 7.2.

PIOP 4: Polynomial stacked rowcheck

Indexer I(i)→ {Si}i∈[c]:
Parse the polynomial stacked rowcheck index i as (F,K, t, c, (Li,Ki)i∈[c]). Set ν = log2 m. For i ∈ [c], build
the selector polynomials Si : F

ν → {0, 1} of degree m as:

Si(h) =

{
1 if h ∈ Ki

0 otherwise

Output the set of selector polynomials {Si}i∈[c].

⟨P(I(i),x,w),VI(i)(x)⟩:
The prover P parses the polynomial stacked rowcheck instance x as the oracles JẑK := [ẑi]

t
i=1 and witness w as

the polynomials ẑ := [JẑiK]
t
i=1. P builds the grand polynomial P : Fν → F as:

P (x) =
∑
i∈[c]

Si(x) · Li(ẑ1(x), . . . , ẑt(x))

P and V then invoke PIOP 3 for the claim P (x) = 0 on all x ∈ Bν .

Lemma 7.2. If we denote the maximum degree of local predicates as d, the foregoing PIOP for polynomial
stacked rowcheck has a soundness error of O(d log(m)

|F| ) and the following efficiency properties:
• time(I) = O(m).
• time(P) = O(md log2 d).
• time(V) = O(logm).
• query complexity is O(1).
• round complexity is O(logm).
• number of field elements sent by the prover is O(logm).

7.2 Unrolled SNARK

We describe the unrolled GARUDA construction in Fig. 7. For a GR1CS index (F, n, k,m, c, t,C ) with k
variables, m constraints, and n instance variables, and letting η := denote the total number of non-zero
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entries across the constraint matrices and d denote the maximum degree of the local predicates, GARUDA has
the following efficiency properties:
• setup time is O(m+ ηt) F operations and (m+ t+ c) G1 operations.
• prover time is O(m(t+ d log2 d) + ηt) F operations, O(t) vMSMs of size m in G1.
• verifier time is O(|x|+ t log(η)) F operations, and O(t+ log(m)) pairings.
• verification key size is O(c) G1 elements and O(t+ logm) G2 elements.
• proving key size is m+ c+ k G1 elements.
• proof size is O(t+ log(m)) G1 elements and O(t+ d · log(m))F elements.
To obtain these efficiency numbers, we apply the following optimizations to the generic construction in Fig. 5.

Stacked GR1CS. As discussed in Section 7.1, we reduce the number of oracles sent by the prover by
stacking the matrices of different predicates on top of each other. This reduces the number of oracles sent
by the prover from ct to t. This optimization is crucial for reducing the proof size and the prover time
complexity.

Batch opening. GARUDA requires the prover to open multiple polynomials at a single point. To reduce
prover cost and proof size we use standard batch opening techniques [CHMMVW20] to provide a single
evaluation proof for all these evaluation claims. Overall, this reduces the prover work by t− 1 n-sized MSMs,
and shrinks the proof size by t− 1 group elements.

Specializing for a single local predicate. In the case where there is only a single local predicate (e.g., in
R1CS), there is no need for stacking and using selector polynomials. This reduces proof size and (slightly)
improves prover time complexity.
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Generator G(1λ, i)→ (ipk, ivk):

1. Parse the index i as
(
F, n, k,m, c, t, [Li, (Mi,1, . . . ,Mi,t),mi]

c
i=1

)
, and set ν := ⌈logm⌉.

2. Construct the ‘succinct’ index is := (F, n, k,m, c, t, [Li, (M
′
i,1, . . . ,M

′
i,t),mi]

c
i=1) where M ′

i,j only has the
first n columns of Mi,j .

3. Sample a bilinear group ⟨group⟩ = (G1,G2,GT , G,H, e)← SampleGrp(1λ).

4. Sample uniformly random field elements τ $← Fν and α1, . . . , αt ← F. Set ivkα := (α1H, . . . , αtH).
5. Construct the unconstrained commitment key: ckl := [χi(τ )]

m
i=1.

6. For each i ∈ [t], construct the stacked matrix M∗
i , and extend its columns over Bν to obtain basis polynomials

M ∗
i = [m̂∗

i,j(X)]j∈[k].
7. Construct the consistency commitment key ckc := [(

∑t
i=1 αim̂

∗
i,j(τ ))G]kj=n+1.

8. Construct the consistency verification key vkc := [(
∑t

i=1 αim̂
∗
i,j(τ ))G]nj=1.

9. Compute the selector polynomials ipks := [Si(X)]ci=1 as in PIOP 4, and commit to them: ivks := [Si(τ )G]ci=1.
10. Set ipk = (i, ⟨group⟩, ckc, ckl, ipks) and ivk = (is, ⟨group⟩, ivkα, ivks, vkc), and output the keys (ipk, ivk).

Prover Pρ(ipk,x,w)→ π:

1. Parse ipk as (i, ⟨group⟩, ckc, ckl, ipks), the instance x as x, the witness w as w, and define z := (x∥w).
2. Parse the GR1CS index as i =

(
F, n, k,m, c, t, [Li, (Mi,1, . . . ,Mi,t),mi]

c
i=1

)
.

3. For each i ∈ [t],
(a) Construct the vectors zi := M∗

i z and wi := M∗
i (0∥w), and their MLEs over Bν : ẑi(X) and ŵi(X).

(b) Commit to ŵi(X): cw,i := ŵi(τ ) ·G.
4. Compute the consistency commitment cc :=

∑k−n
i=1 w[i]·ckc[i] and assemble the commitments cw := [cw,i]

t
i=1.

5. Simulate the prover-verifier interaction for PIOP 3 for the polynomial P :=
∑c

i=1 Si · Li(ẑ1, . . . , ẑt). Namely,
in the i-th round of the PIOP where i ∈ [ν]:
(a) Compute the next prover message and state: (pi, sti+1)← Pi(sti, [ρi]

i−1
i=1).

(b) Sample a random field element from the random oracle ρi := ρ(transcript).
6. Form the set of PIOP prover messages πp := [pi]

ν
i=1.

7. Compute the evaluations v := [ŵi(ρ)]
t
i=1 ∪ [Si(ρ)]

c
i=1.

8. Sample linear combination coefficients ζ1, . . . , ζt+c := ρ(transcript), and use these to obtain the linearly
combined polynomial B(X) :=

∑c
i=1 ζiSi(X) +

∑t
i=0 ζi+cŵi(X).

9. Compute the PST opening proof for B: πo := [Wi(τ )G]i∈[ν], where the polynomials Wi are given by the
equation B(X)−B(ρ) =

∑
i∈[ν](X[i]− ρ[i]) ·Wi(X).

10. Output the proof π := (cw, cc, πp,v, πo)

Verifier Vρ(ivk,x, π)→ {0, 1}:

1. Parse ivk as (is, ⟨group⟩, ivkα, ivks, vkc), and is as (F, n, k,m, c, t, [Li, (M
′
i,1, . . . ,M

′
i,t),mi]

c
i=1).

2. Parse the instance x as x and the proof π as (cw, cc, πp,v, πo).
3. Simulate the prover-verifier interaction for PIOP 3 for the polynomial P :=

∑c
i=1 Si · Li(ẑ1, . . . , ẑt). Namely,

in the i-th PIOP round where i ∈ [ν]:
(a) Obtain the prover’s next message from πp, and add it to the transcript.
(b) Sample a random field element from the random oracle: ρi := ρ(transcript).

4. For each i ∈ [t]: compute the vector xi := M∗
i x and the evaluation of its MLE: ẑi(ρ) := ŵi(ρ) + x̂Mi

(ρ).
5. For the last round of the PIOP, provide v and [ẑi(ρ)]

t
i=1 to the PIOP verifier V and check the PIOP decision.

6. Check that the equifficient constraint is satisfied: (cc, H)
?
=

∑t
i=1 e(cw[i], ivkα[i])

7. Sample coefficients ζ1, . . . , ζt+c := ρ(transcript), and use these to obtain a commitment cB to B(X), and the
evaluation vB of B at ρ by linearly combining the commitments to, and evaluations of, Si and ŵi.

8. Check the evaluation proof for B: e(cB − vBG,H)
?
=

∏
i∈[ν] e(πo[i], τiH − ρ[i] ·H)

Figure 7: The unrolled GARUDA SNARK.
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