
Tailoring two-dimensional codes for structured
lattice-based KEMs and applications to Kyber

Thales B. Paiva1, Marcos A. Simplicio Jr1,2, Syed Mahbub Hafiz1,
Bahattin Yildiz1, and Eduardo L. Cominetti1

1 Future Security Team, LG Electronics, USA
{thalespaiva, msimplicio, ecominetti}@larc.usp.br

{syedmahbub.hafiz, bahattin.yildiz}@lge.com
2 Universidade de Sao Paulo, Brazil

August 6, 2024

Abstract. Kyber is a post-quantum lattice-based key encapsulation
mechanism (KEM) selected by NIST for standardization as ML-KEM.
The scheme is designed to ensure that the unintentional errors accumu-
lated during decryption do not prevent the receiver to correctly recover
the encapsulated key. This is done by using a simple error-correction code
independently applied to each bit of the message, for which it is possible
to show that the decryption failure rate (DFR) is negligible. Although
there have been other proposals of more complex error-correction codes
for Kyber, these have important limitations. Some proposals use inde-
pendence assumptions on the noise distribution that do not hold. Others
require significant changes in Kyber’s core parameters, which make them
unpractical. In this work, we propose a family of 2-dimensional codes that
can, in principle, be applied to any lattice-based scheme. Even though our
2D codes have a rather simple construction, they can be tailored for the
specific noise distribution observed for different Kyber parameters, and
reduce Kyber’s DFR by factors of 24.8, 25.4, and 29.9, for security levels
1, 3, and 5, respectively, without requiring independence assumptions.
Alternatively, the proposed codes allow for up to 6% ciphertext com-
pression in Kyber Level 5 while maintaining the DFR lower than 2−160,
which is the target value defined in Kyber’s specification. Furthermore,
we provide an efficient isochronous implementation of the encoding and
decoding procedures for our 2D codes. Compared with Kyber’s reference
implementation, the performance impact of the 2D codes in the decap-
sulation time is negligible (namely, between 0.08% to 0.18%, depending
on the security level).

1 Introduction

Post-quantum cryptography (PQC) refers to the study of cryptographic algo-
rithms whose underlying security properties rely on computational problems
believed to be hard both for classical and quantum computers. The importance
of post-quantum (also called quantum-resistant) cryptographic schemes has been

2 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

growing in recent years due to continuous advances in the construction of quan-
tum computers, led by multiple players from private companies and government
agencies [30]. While existing symmetric primitives are relatively easy to adapt
for operating in a quantum setting, the concern of the cryptography community
lies on classical and widely adopted public-key schemes based on discrete loga-
rithms (e.g., ECDSA [21]) or integer factorization (e.g., RSA [34]), which can be
broken by large-scale quantum computers running the Shor algorithm [39].

Aiming to mitigate this threat, the National Institute for Standards and Tech-
nology (NIST) launched in 2016 the PQC Standardization Program to identify
suitable post-quantum schemes to be standardized by the institute [29]. After
evaluating dozens of submissions over six years, NIST finally announced the
initial set of algorithms selected for standardization in July 2022. Among the
proposals for key encapsulation mechanisms (KEM), which enables the secure
transmission of symmetric key material, NIST chose Kyber [5], a lattice-based
scheme, to be standardized as FIPS203 [28].

One relevant property of Kyber, shared with other efficient KEMs built upon
lattices or linear codes, is that the decryption mechanism recovers a shared key
from its noisy representation, a procedure prone to failure with some probability.
At first sight, decryption failures may seem to be only a minor inconvenience,
which were overcome simply by having the sender re-encrypt the message with
different randomness. However, decryption failures can be exploited in the so-
called reaction attacks [19], which are today a major concern in both code-
based [12, 17] and lattice-based schemes [7, 8, 18]. This prompted designers to
adopt different error-correction strategies, aiming to minimize the decryption
failure rates (DFR) to negligible levels in practice.

One challenge in this task, though, lies in the nature of the noise to be
corrected: since it is typically close to a bell-shaped distribution, traditional
error-correction codes that assume uniform bit-error models are not ideal in this
scenario. Kyber, for example, uses a 1-dimensional encoding mechanism that
facilitates the computation of its DFR without relying on any independence
assumptions on the coefficients of the noise polynomial. Nevertheless, this simple
encoding is suboptimal with respect to error correction, as it is well-known that
better codes can be found in higher dimensions [11,23,26,36,37].

Recently, there have been studies aimed at adapting Kyber for using higher-
dimensional lattice codes [23,36,37]. Unfortunately, existing proposals come with
severe limitations. For example, the recent work by Liu and Sakzad [23] as-
sumes the coefficients of the noise polynomial accumulated during decryption
are independent, which does not hold in practice [7]. Meanwhile, although the
work by Saliba et al. [36, 37] does not require independence assumptions, the
resulting Kyber variant has a larger ciphertext size. Moreover, all of these ap-
proaches [23,36,37] require changing at least one of Kyber’s core parameters: the
polynomial degree n and/or the modulo q. Consequently, the resulting construc-
tions are unable to take advantage of Kyber’s NTT-based efficient polynomial
multiplications, a main feature behind the scheme’s high performance.

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 3

Contributions. We present a new framework for obtaining suitable error-
correction codes in two dimensions for lattice-based schemes. While most existing
approaches first define an error-correction code to be used, and only then com-
pute its decryption failure rate given a noise distribution, our framework works
in the reverse order. More precisely, we start by showing how to compute the
2-dimensional noise distribution for pairs of coefficients in the noise polynomial
accumulated during decryption. Then we provide a family of error-correction
codes that can be efficiently explored, finding the one providing the minimum
decryption failure rate for the observed noise distribution.

When compared to previous work, our proposal has the following benefits:

1. Concrete DFR improvements upon Kyber, without independence assump-
tions. Unlike Liu and Sakzad [23], our work does not rely on additional inde-
pendence assumptions. Furthermore, different than Saliba’s et al. [23,36,37],
our codes are able to provide both ciphertext compression and lower DFR.
For Kyber’s highest security parameters, our approach lowers the DFR from
2−175 to 2−185 without changing any parameters. Moreover, our proposed
codes allow 2% to 6% ciphertext compression while maintaining Kyber’s
DFR close to the values targeted by the current standard.

2. Emphasis on crypto-agility. All previous encoding proposals for Kyber re-
quire changes in its core parameters n and q, which define the polynomial
ring Rq = Zq[x]/(x

n + 1), used in all operations. This undermines crypto-
agility since most optimizations for NTT-based multiplication and modular
operations from existing implementations would not be directly applicable.
In contrast, this work only proposes changes to the parameters related to
ciphertext compression, namely du and dv, while n and q are kept unchanged.

3. Simpler security analysis. Our construction is rather straightforward com-
pared with previous work, which heavily relies on the theory and practice
of lattice codes. This makes our proposal more suitable for real-world adop-
tion since complex schemes are commonly more prone to errors both in their
security analyses and implementation.

4. Negligible performance impact, while avoiding timing side-channels. Unlike
previous work, we evaluate our proposal’s performance via an isochronous
implementation – i.e., one built to ensure that the number of operations
does not depend on any secret information. Even so, the performance impact
obtained remains between 0.08% and 0.18%.

5. Fully reproducible. To facilitate independent verification, we have prepared
the code and data that allow anyone to reproduce the results presented in
this work. As soon as we get authorization from our legal team, the whole
code will be made publicly available at https://github.com/thalespaiva/
kyber2d.

Paper organization. Section 2 reviews background concepts and our notation.
Section 3 describes Kyber and discusses related works on alternative encoding
methods. Section 4 describes how to compute the distribution of pairs of coef-
ficients of the accumulated noise polynomial. Section 5 describes our proposed

https://github.com/thalespaiva/kyber2d
https://github.com/thalespaiva/kyber2d

4 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

2-dimensional codes and how good parameters can be chosen to minimize the
decryption failure rate based on the distribution computed in the previous sec-
tion. Section 6 shows how more aggressive compression factors and algorithms
can be used to obtain smaller ciphertexts for Kyber. Section 7 summarizes our
proposed parameters and discusses how they impact crypto-agility. Section 8
concludes the discussion with open questions and ideas for future work.

2 Background and notation

For any prime q, we write Zq to denote the field of integers modulo q. When n is a
fixed positive integer, we let Rq denote the polynomial ring Zq[x]/(x

n+1). Then,
Rk

q is the free module1 of rank k whose scalars are polynomials in Rq. Polynomials
a ∈ Rq are denoted using lowercase letters. Vectors a ∈ Rk

q and matrices A ∈
Rk×k

q are denoted in bold using lowercase and uppercase, respectively, where
k ⩾ 1. When u,v ∈ Rk

q , we let ⟨u,v⟩ ∈ Rq denote their dot product.
To get the vector-equivalent of a polynomial, we define the poly_to_vec

function, which, given a polynomial a ∈ Rq, returns its n coefficients as a vector
in Zn

q . In other words, given the polynomial a = a0 + a1x+ . . .+ an−1x
n−1, we

have a = poly_to_vec(a) =
[
a0, a1, . . . , an−1

]
. With a slight abuse of notation,

we denote the i-th coefficient of a polynomial a ∈ Rq, associated with the power
xi, by either ai (when discussing the polynomial form of a) or by a[i] (when
discussing its vector equivalent), where 0 ⩽ i < n. Analogously, pairs of coeffi-
cients from polynomial a are denoted by a[i, j] = (a[i], a[j]). If a polynomial has
n coefficients, the circular distance between the coefficients associated with xi

and xj is min(i− j mod n, j − i mod n).
We represent discrete probability distributions as key-value mappings, and,

accordingly, if X is a variable whose distribution follows D, then D[k] denotes
the probability that X = k. We denote by Bη the centered binomial distribu-
tion (CBD) with range [−η, η].

Let negashifti be the function that returns a negacyclic shift of the vector-
equivalent of a polynomial a by i positions. For example, if a = a0 + a1x +
. . .+an−1x

n−1, then negashifti(a) =
[
ai, . . . , a0,−an−1, . . . ,−ai+1

]
. With this

notation, we can represent the product of polynomials a and b in the negacyclic
ring Rq using its vector form, whose i-th coefficient is given by

poly_to_vec(ab)[i] = ⟨poly_to_vec(a), negashifti(b)⟩ . (1)

If x ∈ Zq, then |x| denotes the minimum between the absolute values of
x and x − q. Furthermore, y ← Compress(x, d) denotes the lossy compres-
sion of x to d bits, where d < ⌈log2 q⌉. The compression function is defined
as Compress(x, d) =

⌊(
2d/q

)
x
⌉
mod 2d, where ⌊·⌉ denotes the rounding function

that rounds up on ties. The decompression is defined as x′ = Decompress(y, d) =⌊(
q/2d

)
y
⌉
. The error |x′ − x| caused by compression and decompression is then

1 Modules are generalizations of vector spaces that allow scalars to be members of a
ring instead of requiring a field.

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 5

approximately uniform over the set
{
−
⌊
q/2d+1

⌋
, . . . ,

⌈
q/2d+1

⌉}
, with possibly

some slight skewness due to q not being a power of 2.

3 Kyber

This section briefly reviews Kyber’s main procedures and selection of security
parameters. We also discuss previous work on alternative encoding mechanisms
proposed for Kyber that are related to our construction.

3.1 Parameters and algorithms

Kyber is a lattice-based key encapsulation mechanism (KEM) whose security
relies on the intractability of the module learning with errors (MLWE) prob-
lem. Essentially, it enables two parties to establish a shared 256-bit secret. In
what follows, we present a slightly simplified version of Kyber that, although
lacking some details, is enough for the purpose of our discussion. In particu-
lar, we describe only the underlying algorithms that make the core of Kyber
secure against chosen-plaintext attacks (CPA), ignoring the implicit-rejection
Fujisaki-Okamoto (FO) transformation that makes Kyber secure against adap-
tive chosen-ciphertext attacks (CCA) [14, 20]. Furthermore, we omit the opti-
mizations based on the number theory transform (NTT) that are part of the
original Kyber specification.

Setup. Kyber supports three (out of the five) security levels defined by NIST,
namely levels 1, 3, and 5. For all security levels, Kyber fixes parameters q = 3329
and n = 256. These parameters define the polynomial ring Rq = Zq[x]/(x

n + 1),
over which most of the operations are performed. This is interesting from a
crypto-agility point of view, as it allows any optimizations or hardware acceler-
ation for operations in Rq to be reused across all security settings.

Given a desired security level, the setup takes public parameters k, η1, η2, du,
and dv from Table 1. Parameter k defines the sizes of the modules used in the
scheme. Parameters η1 and η2 define the centered binomial distributions Bη1

and
Bη2

used to generate coefficients with small norm in Zq. Integers du and dv are
the number of bits into which coefficients from the two parts of the ciphertext
are compressed. Table 1 also provides an upper bound on the decryption failure
rate (DFR) for each parameter set according to Kyber’s security analysis.

Kyber comprises three operations for every security level: Key Generation,
Encryption, and Decryption, which are detailed next.

Key generation. Let A be a k×k matrix of polynomials sampled uniformly at
random from Rq. Sample two vectors s and e from Bη1

(
Rk

q

)
, i.e., the coefficients

of their polynomials are sampled according to the centered binomial distribu-
tion Bη1

. Compute vector t = As+ e ∈ Rk
q . The resulting public key is the pair

(A, t), while the private key is vector s ∈ Rk
q .

6 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

Table 1. Kyber parameters for each security level [5].

NIST security Parameter set k η1 η2 du dv
Ciphertext
size (bytes) DFR

Level 1 Kyber512 2 3 2 10 4 768 2−139.1

Level 3 Kyber768 3 2 2 10 4 1088 2−165.2

Level 5 Kyber1024 4 2 2 11 5 1568 2−175.2

Encryption. Let m be an n-bit message to be encrypted using public-key
(A, t). Sample two vectors r and e1 from Bη1

(
Rk

q

)
and Bη2

(
Rk

q

)
, respectively.

Similarly, sample a polynomial e2 from Bη2
(Rq). Let u = ATr + e1. Compute

polynomial z = ⟨t, r⟩+e2. Let v = Encode (m)+z, where the encoding function,
when applied to each bit b of m, behaves as follows

Encode (b) =

{
0, if b = 0, and
⌈q/2⌉, if b = 1.

Compress the coefficients of vector u and polynomial v to du and dv bits,
respectively, obtaining cu = Compress(u, du) and cv = Compress(v, dv). Finally,
return the ciphertext (cu, cv).

Decryption. To decrypt a ciphertext (cu, cv) using secret key s, first de-
compress the ciphertext components obtaining u′ = Decompress(cu, du) and
v′ = Decompress(cv, dv). Then compute m′ = v′ − ⟨u′, s⟩. If we let{

∆u = Decompress(cu, du)− u, and
∆v = Decompress(cv, dv)− v,

then expanding m′ gives us m′ = Encode (m) + ∆m, where the accumulated
noise polynomial ∆m is given by

∆m = ⟨e, r⟩ − ⟨s, e1 +∆u⟩+ e2 +∆v.

Kyber’s parameters are carefully chosen to ensure that polynomial ∆m has
only relatively small coefficients. Therefore, the message can be recovered by
computing m̂ = Decode (m′), where the decoding function, applied to each co-
efficient m′[i] of the noisy message polynomial m′, returns

Decode (m′[i]) =

{
0, if |m′[i]| < ⌈q/4⌉, and
1, otherwise.

In the next section, we briefly discuss how Kyber parameters are chosen to
guarantee security and a negligible decryption failure rate.

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 7

3.2 Security and decryption failure rate

Kyber’s design and security analysis revolve around finding parameters that
ensure the MLWE problems protecting the secret key and the ciphertext are
hard to solve while maintaining a negligible DFR. To facilitate the scheme’s
security analysis, the Kyber team provides public scripts2 that compute the
complexity of known attacks and the resulting DFR for a given parameter set.

The parameters having the most impact on the MLWE security are the mod-
ulus q, the degree n, and the module dimension k, together with the parameters
η1 and η2 that control the noise added to the LWE samples. Though not as
much, the ciphertext compression parameters du and dv can also affect security.
For example, lowering du and dv compresses the ciphertext, which results in
some additional noise that must be handled during decompression, translating
to a harder MLWE instance for the ciphertext.

A necessary condition for a KEM to provide chosen-ciphertext attack (CCA)
security is to resist attacks exploiting decryption failures [8,18]. In Kyber’s round
2 specification, the DFR target was defined as 2−160 for all security levels [4, §1.5].
However, in Kyber’s most recent specification, the authors relaxed the DFR
requirement to 2−128 for level 1, while keeping the 2−160 target for levels 3 and
5 [5, §1.4 and §4.4]. In this work, we only propose parameter sets that meet the
DFR targets required by Kyber’s latest specification [5], for each security level.

For a given parameter set, the DFR is algorithmically computed as follows.
Since the distribution of all coefficients ∆m[i] are individually the same, we can
start by computing the distribution of ∆m[0]. This is done by considering the
sums of the distributions corresponding to the right-hand side of the following
equation

∆m[0] = ⟨e, r⟩ [0]− ⟨s, e1 +∆u⟩ [0] + e2[0] + ∆v[0],

which are easy to compute. Then, an upper bound on the DFR is computed
using the union bound:

Pr (Decryption fails) = Pr (|∆m[i]| ⩾ q/4 for any 0 ⩽ i < n)

⩽ nPr (|∆m[0]| ⩾ q/4).

Notice that, although the coefficients of ∆m[i] are not independent, the fact
that each message bit is encoded into one polynomial coefficient allows us to
eliminate any dependence problems with the union bound. In contrast, we show
in Section 4 how encoding pairs of bits into two polynomial coefficients requires
a more complicated analysis. In particular, to compute the DFR for such 2-
dimensional encoding schemes, one needs to accurately compute the probability
distribution of pairs of coefficients ∆m[i, j] = (∆m[i],∆m[j]) of the noise poly-
nomial ∆m.

We remark that, within all of our work, we do not propose changes to param-
eters q, n, k, η1, or η2. However, we consider ciphertext compression by proposing
2 https://github.com/pq-crystals/security-estimates

https://github.com/pq-crystals/security-estimates

8 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

smaller choices for du or dv while keeping the DFR close to the values originally
proposed by Kyber for each security level. Therefore, the resulting scheme should
provide better MLWE-related security without significantly lowering Kyber’s re-
silience against attacks that rely on decryption failures.

3.3 Previous work on alternative encoding methods for Kyber

Following Regev’s [33] work, most of the efficient lattice-based schemes, in-
cluding Kyber, use the same encoding scheme during encryption: each bit b
of the message is encoded into Zq as b⌈q/2⌉. However, some schemes take ad-
ditional steps to achieve better error correction. For example, some lattice-
based candidates in the first round of NIST’s post-quantum standardization
process [1] apply distinct error-correction codes to the message before encryp-
tion: LAC [25] uses well-known BCH codes; Round5 [6] uses a custom code
named XEf [35]; and NewHope [2] uses repetition codes. Interestingly, a previ-
ous version of NewHope [3] used more complex, 4-dimensional lattice codes, but
those were superseded in favor of the simpler repetition codes, which are easier
to understand and to analyze.

There are also more recent proposals [23,36,37] that, similarly to this work,
propose the use of higher-dimensional codes in Kyber. One example is Liu and
Sakzad [23], who propose using lattice codes with dimensions 16 and 24. While
their construction requires a different polynomial degree n, they claim results
that improve both the DFR and the ciphertext size. Unfortunately, their work,
like most proposals for error-correction in lattice-based schemes, requires inde-
pendence assumptions on the coefficients of the noise polynomial ∆m, which do
not hold in practice [7]. In particular, these assumptions would break Kyber’s
DFR arguments from Section 3.2, so it would be hard (if at all feasible) to adapt
Liu and Sakzad’s [23] work to Kyber’s design.

More closely related to our work is the approach taken by Saliba et al. [37],
which is explained in depth in Saliba’s PhD thesis [36]. Their work proposes a
variant of Kyber based on reconciliation, which in lattice-based schemes refers
to a procedure in which the sender and receiver produce the same shared string
from different noisy versions of it. This contrasts with the encoding-decoding
paradigm, where the intended shared message is predefined. Their construction
uses 8-dimensional lattice codes and does not require independence assumptions,
so it can be seen as an extension of the original NewHope’s DFR analysis [3,31]
to Kyber. While Saliba et al. were able to obtain between 10 to 15 extra bits
of LWE security for Kyber’s 3 security levels, their proposal has a few practical
shortcomings that can be seen in Table 2. One of the main shortcomings of their
proposal is that the values of the modulo q are powers of two, which means they
cannot use the NTT for polynomial multiplication. Furthermore, their scheme
increases the ciphertext size in all security levels, while the DFR is increased
in both levels 1 and 5. For example, when compared with Kyber, there is a
noticeable increase in the DFR for level 5, by a factor of 237.

In summary, since the approaches found in the literature [23,36,37] on alter-
native Kyber encoding mechanisms require either changing n or q, they do not

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 9

Table 2. The DFR and ciphertext sizes obtained by Saliba et al. [36, 37].

Security q
Ciphertext
size (bytes) DFR Relative

ciphertext size
Relative
DFR

Advantages
(ciphertext
size and DFR)

Level 1 211 832 2−133 108.3% 26 None
Level 3 211 1184 2−174 108.8% 2−10 Better DFR
Level 5 211 1600 2−137 102.0% 237 None

benefit from a core feature in Kyber: the fast NTT-based multiplication. For in-
stance, Saliba et al.’s proposal [37] requires different values of q for each security
level, hindering Kyber’s crypto-agility properties. Furthermore, their proposal’s
performance impact is not reported, and we were unable to find any publicly
available implementation for conducting an independent evaluation.

4 The joint distribution of two noisy coefficients

In this section, we describe the initial step of our work, which is the computation
of the joint distribution of pairs of coefficients within the noise polynomial ∆m.
These results are then used in an optimization step that aims to find the best
possible 2-dimensional code without changing Kyber’s original parameters.

As discussed in Section 3, Kyber uses exactly one coefficient of the message
polynomial to encode each message bit. This choice avoids the problem of dealing
with the natural dependence between the coefficients of the accumulated noise
polynomial ∆m and allows using the union bound to compute an upper bound
on the decryption failure probability. However, the cost to pay for this simplicity
is a suboptimal encoding strategy [11,23,26,36,37].

Conversely, this section shows that it is possible to efficiently compute the
joint distribution of two coefficients of ∆m when their circular distance is n/2.
In other words, we characterize the joint probability distribution

Pr (∆m[i, i+ n/2 mod n]) = Pr (∆m[i],∆m[i+ n/2 mod n]).

Our main motivation is that, with this distribution at hand, we can search
for an optimal encoding scheme for Kyber using two coefficients of the message
polynomial to encode a pair of bits from the message m to be encrypted.

4.1 The source of dependence among entries of the noise polynomial

Consider the noise polynomial ∆m = ⟨e, r⟩ − ⟨s, e1 +∆u⟩ + e2 + ∆v. Notice
that, by definition, all coefficients from e2 and ∆v are independent. However,
the coefficients of the polynomials resulting from the two dot products ⟨e, r⟩ and
⟨s, e1 +∆u⟩ cannot be assumed to be independent, because they are computed
through sums of polynomial multiplications. If ignored, this dependence is known
to cause issues when estimating the DFR in scenarios where error-correction

10 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

Table 3. Possible outcomes considering the equiprobable possibilities of poly-
nomials a, b ∈ F2[x]/

(
x2 + 1

)
, and c = ab.

a0 a1 b0 b1 c0 c1

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0

a0 a1 b0 b1 c0 c1

0 1 0 0 0 0
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 1 1 1

a0 a1 b0 b1 c0 c1

1 0 0 0 0 0
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 1 1

a0 a1 b0 b1 c0 c1

1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 0

codes are used, leading to theoretical and practical effects studied in detail by
D’Anvers et al. [7].

For a concrete demonstration of this dependence, consider, as a toy example,
the case when a and b are random polynomials with n = 2 binary coefficients, say
a, b ∈ Z2[x]/

(
x2 + 1

)
. If we let c = ab = c0+c1x, then c0 = a0b0−a1b1 and c1 =

a0b1+a1b0. Consider Table 3, which shows all equiprobable outcomes for c = ab.
We notice that c0 and c1 are not independent because Pr (c1 = 1) = 3/8 but
Pr (c1 = 1|c0 = 0) = 1/5.

Now, let us focus on ⟨e, r⟩, which is the simplest of the two dot products
that define ∆m in Kyber. Since both e and r are vectors of polynomials whose
coefficients are taken from the centered binomial distribution Bη1

, their dot
product can be written as

⟨e, r⟩ = e[0]r[0] + . . .+ e[k − 1]r[k − 1].

We start by noticing that every product of polynomials e[i]r[i] is independent
of e[j]r[j] for j ̸= i. Also, because all e[i] and r[i] are sampled from the same
Bη1

, every product e[i]r[i] follows the same distribution for all i. Therefore, in
what follows, we focus our attention on the joint distribution of e[i]r[i] for any
particular i to analyze the distribution of ⟨e, r⟩.

4.2 The joint distribution of coefficients in a polynomial product

In this section, we present a mathematical result that allows us to separate
the joint probability distribution of two coefficients of a polynomial product in
Rq = Zq[x]/(x

n + 1) into a sum of independent distributions, provided that
three conditions are met: (i) n must be a power of 2; (ii) the circular distance
between the two coefficients is n/2; and (iii) the probability distribution for the
coefficients of at least one of the polynomials must be symmetric.

Let a, b ∈ Rq and consider their product c = ab. Suppose we want to compute
the joint distribution of the two coefficients c[i, j]. Using a direct, naive approach,
we would have to consider all possible values of a and b, as well as their products.
At first sight, that task might appear to be reasonably easy in Kyber because the
k polynomials that build e and r come from the centered binomial distribution
with a small parameter η1. However, since there are (2η1 + 1)

n possibilities for
each polynomial, such a naive approach ends up being highly impractical even
for small values of η1.

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 11

To handle this issue, we proceed as follows. First, we build upon Lemma 1
to obtain a complete characterization of the probability distribution of c[i, i +
n/2 mod n] as the sum of smaller, efficiently computable distributions. We prove
the lemma for the joint distribution of c[0, n/2], aiming for a cleaner presentation.
Then, in Proposition 1, we show that, under the same conditions required by
Lemma 1, the distributions of c[i, i+ n/2 mod n] and c[0, n/2] are the same.

Lemma 1. Let n ⩾ 4 be a power of 2. Consider the distribution Pn over pairs
(c0, cn/2) defined by the following experiment. Let D1 be any distribution over
Zq, and D2 be a symmetric distribution over the same set. Choose polynomials
a and b in Rq = Zq[x]/(x

n + 1) by taking its coefficients from distributions D1

and D2, respectively. Compute their product c = ab ∈ Rq, and output the pair
(c0, cn/2) consisting of the coefficients of c associated with powers x0 and xn/2,
correspondingly. Then Pn can be split as Pn = Pn/2 + Pn/2.

Proof. Let n = 2ℓ, for some ℓ ⩾ 2. Take polynomials a and b from Rq. If c = ab,
then, using Equation 1 from Section 2, we can write each coefficient of the
product as

ci = poly_to_vec(c)[i] = ⟨poly_to_vec(a), negashifti(b)⟩ .

Let a = poly_to_vec(a) and b = negashift0(b), i.e., b is the first column
of the negacyclic matrix generated by the coefficients of b. Notice that, since D2

is symmetric, then b = (b0,−bn−1, . . . ,−b1) has the same distribution as b.
Since n ⩾ 4 is a power of 2, then a and b can be split into 4 parts of equal

length such that

c0 =
〈[
aI , aII , aIII , aIV

]
,
[
bI , bII , bIII , bIV

]〉
, and

cn/2 =
〈[
aI , aII , aIII , aIV

]
,
[
−bIII , −bIV , bI , bII

]〉
.

We can then write c0 = c′0 + c′′0 and cn/2 = c′n/2 + c′′n/2, where{
c′0 = ⟨aI ,bI⟩+ ⟨aIII ,bIII⟩ ,
c′n/2 = −⟨aI ,bIII⟩+ ⟨aIII ,bI⟩ ,

{
c′′0 = ⟨aII ,bII⟩+ ⟨aIV ,bIV⟩ ,
c′′n/2 = −⟨aII ,bIV⟩+ ⟨aIV ,bII⟩ .

In other words, we have
(
c0, cn/2

)
=

(
c′0, c

′
n/2

)
+
(
c′′0 , c

′′
n/2

)
. But notice that

the pairs
(
c′0, c

′
n/2

)
and

(
c′′0 , c

′′
n/2

)
are independent, and both follow distribution

Pn/2. Therefore, Pn is the sum of equal distributions Pn/2 + Pn/2. ⊓⊔

Proposition 1. Let a and b be two polynomials in Rq = Zq[x]/(x
n + 1), for

some even n. Also, suppose that the coefficients of a and b are sampled from two
distributions D1 and D2, respectively, where D2 is symmetric. If c = ab is their
product, then, for all 0 ⩽ i < n− 1, we have Pr (c[0, n/2]) = Pr (c[i, n/2 + i]).

Proof. The proof is done in two steps. First we observe that c[0, n2] and c[i, n/2+
i] share a common structure. Then, we use the symmetry of D2 to show that
they are identically distributed.

12 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

Let (uI ,uII) and (vI ,vII) denote the two halves of vectors negashift0(b) and
negashiftI(b), respectively. If we let a = poly_to_vec(a), then{

c0 = ⟨a, [uI , uII]⟩ ,
cn/2 = ⟨a, [uII , −uI]⟩ ,

{
ci = ⟨a, [vI , vII]⟩ ,
cn/2+i = ⟨a, [vII , −vI]⟩ .

Now notice that both (uI ,uII) and (vI ,vII) contain all the coefficients of b,
although possibly reordered and with different signs. But since the distribution
D2 is symmetric, then (uI ,uII) and (vI ,vII) follow the same distribution. There-
fore Pr (c[0, n/2]) = Pr (c[i, n/2 + i]). ⊓⊔

We remark that Lemma 1 can be seen as a consequence of the polynomial
splitting for recovery used in NewHope’s original analysis [3, Section C]. The
main difference is that we present the result in a way that allows for a more
direct construction of the joint distribution, which, in previous approaches, did
not need to be effectively computed. In particular, in the next section, we show
how to use this lemma to efficiently compute the joint probability distribution
of ∆m[i, i+ n/2].

4.3 Computing the joint distribution of the accumulated noise’s
coefficients

Let us first briefly discuss the applicability of Lemma 1 to Kyber. Consider
the two dot products ⟨e, r⟩ and ⟨s, e1 +∆u⟩ that appear in the computation of
∆m. The first one is done with polynomials whose coefficients are taken from
the centered binomial Bη1 , which is symmetric. In the second one, elements
from s are also drawn from Bη1

. Therefore, we can swap the operands of the
commutative product so that all of the lemma’s hypotheses are satisfied.

Let P
(ϕa,ϕb)
prod denote the probability distribution of a product c = ab of two

polynomials a, b ∈ Zq/
(
x2 + 1

)
, whose coefficients are selected according to dis-

tributions ϕa and ϕb, correspondingly. Let D∆u denote the distribution of the
coefficients of ∆u. Then, by Lemma 1, we have:⟨e, r⟩ [i, i+ n/2] ∼ kn

2 P
(Bη1

,Bη1)
prod ,

⟨s, e1 +∆u⟩ [i, i+ n/2] ∼ kn
2 P

(Bη2
,Bη1

+D∆u)
prod .

Notice that the base distributions over coefficient pairs, namely P
(Bη1

,Bη1)
prod

and P
(Bη2 ,Bη1+D∆u)
prod , are easily computed by enumerating the corresponding

polynomials in Zq/
(
x2 + 1

)
and computing their products while keeping track

of the associated probabilities. Now let P(∆v+e2) be the probability distribution
of pairs (∆v[i, i+ n/2] + e2[i, i+ n/2]). The product rule can directly compute
this distribution since the coefficients in both ∆v and e2 are all independent.
Then, we have

∆m[i, i+ n/2] ∼ kn

2
P
(Bη1

,Bη1)
prod +

kn

2
P
(Bη2

,Bη1
+D∆u)

prod + P(∆v+e2).

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 13

-8
00

-6
00

-4
00

-2
00 00

20
0

40
0

60
0

80
0

∆m[i]

-800

-600

-400

-200

00

200

400

600

800

∆
m

[i
+
n
/
2
]

−256 −192 −128 −64

Probability (log2)

(a) Level 3.

-9
50

-7
60

-5
70

-3
80

-1
90 00

19
0

38
0

57
0

76
0

95
0

∆m[i]

-950
-760
-570
-380
-190

00
190
380
570
760
950

∆
m

[i
+
n
/
2
]

−256 −192 −128 −64

Probability (log2)

(b) Level 5.

Figure 1. Joint distributions Pr (∆m[i, n/2 + i]) for security levels 3 and 5.
Notice that the distribution for Level 3 has a slightly more squared shape.

While the Python scripts3 provided by the Kyber team are fast enough
to compute the distribution of a single coefficient of ∆m, their approach is
highly inefficient when computing sums of joint distributions. An interesting
approach to speed up the computation of the convolutions would be to use the
2-dimensional FFT. However, most available implementations use only double-
or up to quadruple-precision floating-point arithmetic, which are not reliable
when computing negligibly small cryptographic probabilities.

For example, the error accumulated by each FFT computation would be
around 8.48ε log2 n, where ε denotes the machine epsilon [15, 38]. In our setup,
the machine epsilon is ε = 1.0842 × 10−19 for quadruple precision, resulting in
errors of the order 7.3× 10−18 ≈ 2−56.9. These errors are much larger than the
negligible probabilities we are interested in computing, which would make the
output of the computation to have no practical value.

To address this problem, we implemented a custom 2-dimensional FFT with
multiprecision complex arithmetic using the MPC [10] and MPFR [13] libraries.
For simplicity, and mainly because we observed acceptable computation time
and memory requirements, we did not attempt to incorporate any optimizations
that might be applicable – such as taking advantage of the fact that the inputs
are real and the distributions are symmetric [32].

We ran the computations on a standard PC, which has an Intel Core i7-8700
CPU at 3.20GHz and 32G of RAM, using its 12 threads. Under this setup, the
computation of the joint probability distribution Pr (∆m[i, i+ n/2]) with 260
bits of precision takes less than 3 minutes for each parameter set.

3 https://github.com/pq-crystals/security-estimates

https://github.com/pq-crystals/security-estimates

14 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

Figure 1 shows the joint distribution Pr (∆m[i, i+ n/2]) considering levels 3
and 5 of Kyber. We can see that the distribution for level 3 has, overall, a slightly
more squared shape than the one for level 5. This results from the difference in
dv, which causes the somewhat uniform rounding error components of ∆v. Since
dv = 5 in level 5, the uniform errors are less noticeable than in level 3, in which
dv = 4. Intuitively, since the overall shapes of the distributions are different,
then we should not expect that the best error correction code for one case would
also be optimal for the other.

4.4 Challenges when extending the results beyond 4 dimensions

It is possible to extend Lemma 1 and Proposition 1 to any power of two between
2 and n. Indeed, this type of idea has already appeared in previous works on
NewHope [3, 31], and also have been applied to a variant of Kyber [36, 37].
However, unlike previous works, our proposal requires the computation of the
joint probability distribution of coefficients of the noise polynomial, making it
harder to generalize in practice.

For example, for the 4-dimensional setup, we need to compute the joint dis-
tribution Pr (∆m[0, n/4, n/2, 3n/4]). Using the FFT-based convolutions would
require three forward 4-dimensional FFT computations, followed by the inverse
transform. Notice that the FFT needs to be computed with padding so that the
convolutions do not cause cyclic interference.

Suppose we use ρ-bit precision values for the operations and consider param-
eters for Kyber Level 5. In particular, let k = 4 and η1 = η2 = 2. Let us use
the value µ ≈ 2η1kn = 4096 as the dimension of each 1-dimensional FFT, with
padding. Since this is the same value µ used in our 2D computations, we consider
it to be a good starting point for this estimate. The number of operations for
each 4-dimensional FFT would be approximately µ4 log2(µ

4) ≈ 254 operations
with ρ-bit complex numbers, which is computationally expensive. In terms of
memory usage, without optimizations, we would need at least 2ρµ4 bits to store
the 4D array, where the 2 factor comes from the entries being complex numbers.
Such memory requirements could possibly be reduced to ρ(µ/2)

4 bits using FFT
symmetries [32], that are applicable since the inputs are real numbers and we
deal mostly with symmetric distributions. Unfortunately, for ρ = 200 bits, this
translates to about 248 bytes ≈ 280 terabytes of memory. Therefore, it appears
to be hard to extend our results beyond 4 dimensions without significantly im-
proving how the joint distribution is computed or with a more efficient way to
directly compute the DFR.

5 Proposed 2-dimensional codes for Kyber

In this section, we show an important application of the results discussed in
Section 4: the construction of new encoding schemes that are provably better at
error correction than the one used in Kyber’s current specification.

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 15

−q/2 0 q/2 q 3q/2

−q/2

0

q/2

q

3q/2

11 01 11 01 11

10

11

00

01

10

11

00

01

10

11

10

11

00

01

10

11

00

01

10

11

(a) Kyber’s code with minimum
distance of ⌊q/2⌋ = 1664.

−q/2 0 q/2 q 3q/2

−q/2

0

q/2

q

3q/2

10

11

10

11

01

00

01

00

01

11

10

11

10

01

00

01

00

11

10

(b) A lattice code with minimum
distance of about 1722.

Figure 2. Comparison between the original Kyber code seen as a 2-dimensional
code and a denser lattice code. The shaded areas represent the Z2

q square.

5.1 Motivation

Consider Kyber’s mechanism for encoding the message into a polynomial. We
can treat it as a two-dimensional code by pretending it encodes a pair (b0, b1) of
message bits into coefficients (b0⌈q/2⌉, b1⌈q/2⌉) ∈ Z2

q. This code is illustrated in
Figure 2a, where dots denote the codewords, and the circles around them show
the radius of minimum distance decoding (i.e., any point falling into the area
of a given circle is corrected to the valid codeword at its center). We remark
that the minimum distance is computed considering all representatives of the
codewords, not only the leading ones in Z2

q. Notice that the minimum distance
of Kyber’s code is ⌊q/2⌋ = 1664.

The two-dimensional view of Kyber’s code in Figure 2a highlights one possible
problem: it leaves too much uncovered space under its minimum distance. A
notable code family that supports denser codes in 2 or more dimensions are the
so-called lattice codes, which are very effective in correcting Gaussian noise. For
example, Figure 2b shows a lattice code with minimum distance ≈ 1722.

Even though lattice codes are useful in a variety of contexts, there is an
important limitation when trying to employ them in Kyber: the operations are
done in Zq, so the noise polynomial ∆m to be corrected is guaranteed to be small
only when considering the modulo q representatives of the coefficients centered
at 0. Consequently, if we want to use lattice codes in Kyber, it has to be periodic
in Z2

q. This q× q square is represented as the shaded areas in Figures 2a and 2b.
Previous proposals [36, 37] deal with this issue by changing parameter q to

powers of 2, so that one can easily employ an 8-dimensional lattice that is pe-
riodic in Z8

q. While this allows such proposals to exploit the lattice structure
when proving the DFR of the resulting scheme, these values of q significantly
impact Kyber’s performance, because fast NTT multiplication would no longer
be available. Furthermore, the resulting scheme requires larger ciphertexts than

16 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

Kyber. Conversely, in our proposal (detailed in the next section), we show a
core application of the capability of efficiently computing the joint distribution
Pr (∆m[i, i+ n/2]): we can find an optimal 2-dimensional encoding scheme via
exhaustive search, without needing it to be a lattice code.

5.2 Optimal 2-dimensional codes for Kyber

Our proposal consists essentially in generating a family of suitable 2-dimensional
codes and then evaluate their performance when correcting errors distributed
according to the joint probability distribution Pr (∆m[i, i+ n/2]). Naturally, we
want to choose codes that minimize the decryption failure rate (DFR) when
plugged into Kyber.

While it may be tempting to simply pick the code with the largest minimum
distance, we must be mindful that the best code depends on the nature of the
error. For example, if the noise was approximately normally distributed, then
a code with the largest minimum distance indeed exists. However, if the noise
were uniform in a region, then Kyber’s original code would be a better choice.
Interestingly, Kyber’s errors ∆m consist of both an approximately normal factor,
coming from (⟨e, r⟩ − ⟨s, e1 +∆u⟩+ e2), and a somewhat uniform term yielded
from ∆v. As shown in Figure 1, this can significantly impact the overall shape of
the error distribution, so the optimal 2D code may not be the same for different
Kyber parameters. Our goal is, then, to find optimal 2D codes by taking into
account the particular shapes of the noise ∆m[i, i + n/2] when different Kyber
parameters are used.

Algorithm 1 shows the steps to compute the DFR for a code C when the error
distribution comes from a known precomputed distribution Pr (∆m[i, i+ n/2]).
First, it computes the error probability pfailure for the 2-dimensional code C.
This is done by accumulating the probabilities that noise coefficients drawn from
Pr (∆m[i, i+ n/2]) cause decoding failures for each of the 4 possible codewords.
Since each codeword appears with probability 1/4, the error probabilities have
to be weighed by this factor when updating the value of pfailure in Line 8. Then,
the algorithm returns the upper bound on the DFR by considering the union
bound over the decoding failure for the n/2 = 128 encoded pairs.

We want to define a family F of codes with two main properties: (i) codes
in F should be efficiently decodable; and (ii) the set F must not be intractably
large. Then, we can do an exhaustive search for the best code Cbest in F as the
one with the lowest DFR. Formally, we would have

Cbest = argmin
C∈F

{DFR(C,Pr (∆m[i, i+ n/2]))}.

Now, we can use heuristics to define the code family with the desired prop-
erties. Since we want to have an efficient encoding, it is a good idea to have a
linear encoding procedure. More precisely, if we let z ∈ Z2

2 be the pair of bits
to be encoded, we would like to encode it as Cz ∈ Z2

q, using a basis matrix

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 17

1: procedure DFR(code C, distribution Pr (∆m[i, i+ n/2]))
2: pfailure ← 0 ▷ Accumulates the decoding error probability for C

3: for each codeword c ∈ C do
4: for each possible error e ∈ Z2

q do
5: c’ = c + e
6: if Decode (c′) ̸= c then
7: ▷ Updates pfailure considering that c appears with probability 1/4
8: pfailure ← pfailure +

1
4
Pr (∆m[i, i+ n/2])[e]

9: return n
2
pfailure ▷ Union bound over the n/2 = 128 pairs.

Algorithm 1. Computation of the decryption failure rate (DFR) for a given
2-dimensional code C.

C ∈ Z2×2
q . We can also make decoding more efficient by exploiting symmetries4,

so we can require that C is symmetric.
Using these constraints, we propose the family of codes F where each code

is described by parameters α and β in Zq, which define the basis matrix C.
Formally, we can write

F =
{
C(α,β) : (α, β) ∈ Z2

q

}
, where C(α,β) =

{[
α β
β α

]
z : z ∈ Z2

2

}
.

For example, when viewed in two dimensions, we notice that C(1664,0) is
equivalent to Kyber’s original code5. As extra examples, Figures 3a and 3b show
two codes from F, namely C(1800,200) and C(1664,446). Notice that, in addition
to the radius, the figures also show the polygons representing the Voronoi cells6
associated with each codeword. With C(1800,200), the minimum distance is 1542 <
1664, so it can be considered reasonably worse than Kyber’s original code. In
contrast, C(1664,446) maximizes the minimum distance in F, so it appears to
be an interesting intermediate between Kyber’s code and the lattice code from
Figure 2b: it has the minimum distance of 1722 while being periodic in Z2

q.
To find the actual best codes C(α,β) in F for each of Kyber’s security levels,

we simply performed an exhaustive search over all possible parameters. The
best parameter α for all levels was 1664 = ⌊q/2⌋. However, the best value for
β varied, as shown in Figure 4. As an important sanity check, notice that we
observe essentially the same DFR values as the original Kyber for C(1664,0).

The best codes obtained for each security level are shown in Table 4. It is
interesting to notice that none of the best codes achieves the maximum minimum
distance of 1722 seen in Figure 3b. Even though this may seem counterintuitive
initially, the explanation is related to the nature of the error factor ∆v. Recall
that coefficients in ∆v are errors caused by compression and decompression,
which are approximately uniform in

{
−
⌊
q/2dv+1

⌋
, . . . ,

⌈
q/2dv+1

⌉}
. Furthermore,

4 We explicitly show in Section 5.3 how to exploit symmetries for decoding.
5 While C(1665,0) would be a more precise definition than C(1664,0) for Kyber’s original

code viewed in 2D, they are equivalent with respect to error correction and DFR.
6 The Voronoi cell of a codeword c is the set of points that are closer to c than to any

other codeword.

18 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

0 q 2q

0

q

2q

11 01 11 01 11 01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10 00 10 00 10 00

(a) Code C(1800,200) with minimum
distance ≈ 1542.

0 q 2q

0

q

2q

11
01

11
01

11
01

10

11

00

01

10

11

00

01

10

11

00

01

10

10

11

00

01

10

11

00

01

10

11

00

01

10

10
00

01

10
00

01

10
00

01

10

(b) Code C(1664,446) that maximizes
the minimum distance over F, which
is ≈ 1722.

Figure 3. Examples of codes in F. The radiuses of the circles are half of the
code’s minimum distance, and polygons represent the Voronoi cells of each code-
word.

0 100 200 300 400 500

Code parameter β

2−208

2−195

2−182

2−169

2−156

2−143

D
ec

ry
p
ti

o
n

fa
il
u
re

ra
te

Best code

Level 1

Level 3

Level 5

Figure 4. The DFR of codes C(1664,β), considering Kyber parameters for the
different security levels.

when the impact of the uniform factor ∆v in the coefficients of ∆m is high, the
overall shape of Pr (∆m[i, i+ n/2]) looks more like a squared circle, as illustrated
in Figure 1. In this case, the best code is not the one that maximizes the minimum
Euclidean between codewords, but a code that balances between maximizing the
Euclidean and Manhattan distances among its codewords.

In our proposed code family F, when α = 1664, the balance between Eu-
clidean and Manhattan distances is controlled by parameter β. When β = 0, the
minimum Manhattan distance between codewords is maximized, which makes
the code better at correcting errors with a stronger uniform component. Con-
versely, when β approaches 446, the code gets better at correcting bell-shaped

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 19

1 void poly_frommsg(poly *r, const uint8_t msg [32]) {
2 size_t base = 0; // Invariant: base = 8*i + j/2
3 for(size_t i = 0; i < KYBER_N /8; i++) {
4 for(size_t j = 0; j < 8; j += 2) {
5 // The masks below are 0xffff if bit is 1, and 0x0000 if 0.
6 uint16_t bit0_mask = -((msg[i] >> j) & 1);
7 uint16_t bit1_mask = -((msg[i] >> (j + 1)) & 1);
8 uint16_t coeff0 = (ALPHA & bit1_mask) + (BETA & bit0_mask);
9 uint16_t coeff1 = (BETA & bit1_mask) + (ALPHA & bit0_mask);

10 r->coeffs[base] = coeff0;
11 r->coeffs[base + KYBER_N /2] = coeff1;
12 base ++;
13 }
14 }
15 }

Algorithm 2. Isochronous implementation of proposed encoding function.

errors. Now, since dv = 4 in levels 1 and 3, and dv = 5 in level 5, we observed
the same value for β in levels 1 and 3, but a slightly larger β for level 5.

Table 4. The best codes in F for each security level, together with their DFRs.
Security Best code in F Minimum distance DFR

Level 1 C(1664,422) 1716 2−143.9

Level 3 C(1664,422) 1716 2−170.6

Level 5 C(1664,435) 1720 2−185.1

5.3 Implementation and performance

We now discuss how the optimal codes found in Section 5.2 can lead to efficient
isochronous implementations – i.e., one where the number of operations does not
depend on any secret information. Since the encoding and decoding algorithms
can be listed using just a few lines of code, we present the algorithms in C. This
is useful because it facilitates showing how the proposal can be implemented
in an isochronous manner, following programming practices usually employed
to protect against timing attacks. In addition, for any interested developer, the
encoding and decoding procedures can be directly applied to Kyber’s existing C
implementations quite easily.

Encoding. The encoding function is shown in Algorithm 2. The function iter-
ates through adjacent pairs z of message bits, outputting the encoded coefficients
as c0 = αz[1]+βz[0] and c1 = βz[1]+αz[0]. These values are then put into poly-
nomial coefficients separated by a circular distance of n/2, which is required by
our analysis of the joint probability distribution from Section 4.

Decoding based on approximate Voronoi cells. In Kyber’s implementa-
tion, the input polynomial to the decoding function is represented by a sequence

20 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

−q/2 0 q/2

−q/2

0

q/2

11

01

11

10

11

00

01

10

11

x

(a) Symmetry used for decoding a
point x in the upper triangle.

−q/2 0 q/2

−q/2

0

q/2

11

01

11

10

11

00

01

10

11A

B

C

D

E

F

`1

`2

`3`4`5

(b) Lines ℓ1, . . . , ℓ5 used for char-
acterizing the closest codewords of
points in the lower triangles.

Figure 5. The geometric properties of our codes used during decoding.

of n coefficients modulo q, with the representatives centered around 0. Therefore,
for better compatibility, we now use the [−q/2, q/2]2 square instead of the Z2

q

square employed so far while discussing 2D codes.

We start by observing a symmetry, illustrated in Figure 5a, that can be ex-
ploited for decoding. We can see that, by construction, the codewords of code
C(α,β) are symmetric over the identity line, which separates the [−q/2, q/2]2
square in two triangles. Because of this property, if a point is closer to a code-
word associated with (1, 0) in the upper triangle, it will be closer to a codeword
associated with (0, 1) in the lower triangle and vice-versa – e.g., see point x
in Figure 5a. However, we can also see that closeness to codewords associated
with (0, 0) and (1, 1) is preserved by reflection around the identity line. Building
upon this symmetry, any point in the upper triangle can be reflected, decoded
in the lower triangle, and then reflected once again. Consequently, we only need
to devise an efficient decoding mechanism for the lower triangle.

Suppose we are given a point in the lower triangle and want to find the
closest codeword to this point. One simple way to accomplish that task would
be to compute the distance to all six codewords whose Voronoi cells overlap the
lower triangle, and then output the closest one. Although we considered this
simple strategy, the resulting isochronous implementation was not very efficient
due to the number of comparisons to the closest codeword.

For the sake of building our argument, assume for a moment that q is divisible
by 2. In this setting, we can construct the Voronoi cells of each codeword relevant
for decoding points in the lower triangle, as illustrated in Figure 5b. Let us now
fix α = q/2, as this choice typically provides the codes C(α,β) with the best
properties. By the definition of C(q/2,β), the points whose Voronoi cells intersect

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 21

the lower triangle, which are shown in Figure 5b, are defined as:

A = (q/2 + β, q/2 + β), B = (0, 0), C = (β − q/2, β − q/2),

D = (q/2, β), E = (β,−q/2), F = (q/2 + β,−q/2 + β).

The Voronoi cells intersecting the lower triangle can be defined by the perpen-
dicular bisector lines, which we call ℓi, between the codewords and their neigh-
bors. First we define ℓ1, ℓ4 and ℓ5 as the bisectors between pairs (A,D), (B,C),
and (C,E), respectively. Now, since we assume q is even, the set of codewords
{B,D,E, F} forms a square, thus line ℓ2 is the bisector of the pairs of points
(B,E) and (D,F). Similarly, line ℓ3 is simultaneously the bisector of both pairs
(B,D) and (E,F). This means that, for an even q, we can characterize the
Voronoi cells of these codewords using only 5 lines. To effectively use these lines
to decode a point (x, y) in the lower triangle, we can verify whether (x, y) is
above or below ℓi for each i. For example, if (x, y) is above lines ℓ4 and ℓ2, but
below ℓ3, then it should be decoded as (0, 0).

Now that we have explained how to handle an even q, we have to deal
with the real-world q, which is an odd prime. Since q is not divisible by 2,
we must use α = ⌊q/2⌋. This impacts the definition of some of the points.
In particular, we now have D = (⌊q/2⌋, β), E = (β,−⌊q/2⌋ − 1), and F =
(⌊q/2⌋+ β,−⌊q/2⌋ − 1 + β). Therefore, the set of points {B,D,E, F} does not
form a rectangle anymore. However, since q = 3329 is relatively large, we ob-
serve that {B,D,E, F} can be relatively well approximated by a square. More
specifically, if we define ℓ3 as the bisector between points (B,D) and ℓ2 as the bi-
sector of points (B,E), then we can say that lines ℓ1, . . . , ℓ5 give an approximate
characterization of the Voronoi cells when q is prime.

We use this approach based on approximate Voronoi cells for decoding in all
DFR results presented in this paper. In particular, after comparing this approach
with a slower but trivial algorithm based on the exhaustive search for the closest
codeword, we observed that the difference in DFR is negligible. Therefore, this
approach can be safely used without any significant impact on the DFR.

Implementation of the decoding procedure. Algorithm 3 shows the full
algorithm for decoding using these ideas. It builds upon macros ABOVE_Li, that
return 0xffffffff if point (x, y) is above ℓi and 0x0 otherwise. Notice that
the equations that define lines ℓi have only integer coefficients because the rep-
resentatives of all codewords themselves have integer coefficients. Furthermore,
since all points are integers, the implementation of ABOVE_Li based on the lines’
equations uses only 32-bit integer multiplications, which most implementations,
including the ones of Kyber, assume to be isochronous. Furthermore, we note
that a reflection mask is used to reflect (x, y) in case it is needed, and then to
reflect the result in case codewords corresponding to (0, 1) or (1, 0) are found.

One interesting remark regarding this algorithm is that decoding could be
made slightly more efficient if a different square of representatives was used.
In particular, if we considered the q × q square whose bottom left point is
(⌊−q/2⌋ − ϵ, ⌊−q/2⌋ − ϵ), then comparison with line ℓ1 would not be necessary.

22 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

1 static __inline__ int decode_msg_pair(int32_t x, int32_t y) {
2 // mask_lower_than(x, y) is 0xffffffff if (x < y) and 0x0 otherwise
3 uint32_t reflect_mask = mask_lower_than(x, y);
4 int32_t x_prime = (x & ~reflect_mask) | (y & reflect_mask);
5 int32_t y_prime = (y & ~reflect_mask) | (x & reflect_mask);
6
7 uint8_t abovel1 = ABOVE_L1(x_prime , y_prime);
8 uint8_t abovel2 = ABOVE_L2(x_prime , y_prime);
9 uint8_t abovel3 = ABOVE_L3(x_prime , y_prime);

10 uint8_t abovel4 = ABOVE_L4(x_prime , y_prime);
11 uint8_t abovel5 = ABOVE_L5(x_prime , y_prime);
12 // It is unnecessary to check for (00), but conceptually:
13 // uint8_t c00 = (~abovel3 & abovel2 & abovel4);
14 uint8_t c01 = ~abovel2 & ~abovel5 & ~abovel3;
15 uint8_t c10 = abovel2 & abovel3 & ~abovel1;
16 uint8_t c11 = abovel1 | (abovel3 & ~abovel2) | (abovel5 & ~abovel4);
17
18 c01 &= (1 ^ reflect_mask);
19 c10 &= (2 ^ reflect_mask);
20 return (c01 | c10 | c11) & 3;
21 }
22
23 void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a) {
24 size_t base = 0;
25 for (size_t i = 0; i < KYBER_N /8; i++) {
26 msg[i] = 0;
27 for (size_t j = 0; j < 8; j += 2) {
28 int x = a->coeffs[base];
29 int y = a->coeffs[base + KYBER_N /2];
30 base ++;
31 msg[i] |= (decode_msg_pair(x, y) << j);
32 }
33 }
34 }

Algorithm 3. Isochronous C implementation of proposed message decoding
algorithm using 2-dimensional codes.

However, since this would complicate the explanation, we leave the analysis of
possible extra optimizations for future work.

Performance impacts. To evaluate the impact of the proposed 2-dimensional
codes over Kyber, we adapted its reference implementation7 replacing the orig-
inal encoding and decoding algorithms with the isochronous implementations
hereby described. The code was compiled with gcc using flags -march=native,
-mtune=native and -O3. Then, we tested its performance on a 64-bit Linux PC
with an Intel Core i7-8700 CPU with a clock frequency of 3.20GHz.

Table 5 shows the difference in cycles for the affected operations. We can
see that, unsurprisingly, decoding 2D codes is indeed more complex, taking 233
more cycles than observed for the original Kyber code. However, since the cycle
count for the decapsulation is orders of magnitude larger than this difference, the
overall impact of the more complex decoding on the total decapsulation is very
small – specifically, between 0.08% and 0.18%. We can also see that, in some
cases, the decapsulation is even faster for the 2D codes. However, this likely

7 We considered commit b628ba78711bc28327dc7d2d5c074a00f061884e from https:
//github.com/pq-crystals/kyber/ (main branch).

https://github.com/pq-crystals/kyber/
https://github.com/pq-crystals/kyber/

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 23

Table 5. Comparison of the number of cycles for encoding, decoding, and full
decapsulation when using the original Kyber code and the proposed 2D codes.
These values are the medians of 10,000 runs.

Code Encoding
(poly_frommsg)

Decoding
(poly_tomsg)

Decapsulation
Level 1 Level 3 Level 5

Kyber’s code 210† 171 126,903 203,902 292,359‡

2D code 66† 404 127,318 203,686 292,081‡

† Kyber’s encoding performance can be slightly improved using partial unrolling of
loops, which naturally occur for the encoding with 2D codes.
‡ The improved performance for 2D codes may be the result of optimizations auto-
matically done by the compiler and does not indicate that our proposal is faster.

stems from fortuitous optimizations by the compiler rather than an indication
that our proposal is more efficient in terms of processing time.

6 Shorter ciphertexts for Kyber

This section shows how our proposed 2D codes improve the balance between
ciphertext size and DFR compared with Kyber’s original encoding strategy.

We start by noticing that the size, in bytes, of a ciphertext (cu, cv) in Kyber
is completely determined by the parameters n, k, du, and dv. Namely, it is given
by the following equation:

∥(cu, cv)∥ =
⌈
1

8
n(kdu + dv)

⌉
= 32(kdu + dv) bytes.

Hence, to obtain shorter ciphertexts, one has to adjust parameters du and dv.
There are, however, two caveats. The first one is that, if du or dv gets too low,
the increased noise factors ∆u and ∆v may result in an increased DFR, which
is a security concern. Exploring this trade-off is the main focus of this section.

The second (and trickier) caveat is that, while it is easy to argue that de-
creasing du and dv cannot make the MLWE scheme less secure (see Section 3.2),
it could be the case that increasing one of them leads to lower security. Luckily
for us, the security of Kyber depends very lightly on du and dv. In particular,
for all 3 parameter sets adopted by Kyber, picking even the maximal values of
du and dv does not affect the underlying MLWE security, as we explain next.

Security impacts of changing parameters du and dv. The static security of Ky-
ber is computed as the minimum between the complexity of solving the two
MLWE instances responsible for protecting the secret key and the ciphertext.
However, notice that the ciphertext compression parameters (du, dv) only affect
the ciphertext MLWE. Using Kyber’s security estimation scripts, we observed
the following. For Level 1, we can set (du, dv) to any pair of values such that
du ⩽ 10 and the resulting LWE security will be the same as the original Kyber.

24 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

In contrast, we are free to choose any pair (du, dv) for levels 3 and 5 without any
security loss. In any case, there is no reason to use dv or du larger than ⌈log2 q⌉
since they are used to compress elements in Zq.

6.1 The effect of dv in the DFR of 2D codes

We are now in place to discuss how the proposed codes can enable shorter cipher-
texts in Kyber. For that purpose, we start by evaluating an important relation
between dv and the DFR advantage obtained using 2D codes. We then proceed
to find a suitable balance between du and dv that allows for reduced cipher-
texts. Finally, we present a generalization of Kyber’s compression procedure to
build parameter sets that are strictly better than its original configurations, in
particular for level 5, and discuss the proposal’s crypto-agility.

When discussing the best code C(α=1664,β) for each parameter set in Sec-
tion 5.2, we observed that the parameter minimizing the DFR was β = 422 for
levels 1 and 3 (with dv = 4), but β = 436 for level 5 (with dv = 5). While these
results suggest some correlation between the best β and the compression factor
dv, the exact details regarding this dependence are not necessarily obvious. To
further evaluate this correlation, we ran the following experiment. For Kyber
Level 5, we changed parameter dv from 1 to 12, and computed the DFR for
codes C(α=1664,β) using β = 0 to 500.

Figure 6 shows the result of this experiment. We can see that, when dv = 3,
the best code is the original Kyber code, where β = 0. However, when dv
increases, the best β also increases, although not linearly. More interestingly,
though, we see that larger dv values support 2D codes, providing progressively
better DFR margin when compared with the original Kyber code. Furthermore,
we notice that there are diminishing returns as we increase dv, i.e., the larger
the dv, the lower the DFR reduction as we move to dv + 1.

0 100 200 300 400 500

Code parameter β

2−210

2−189

2−168

2−147

2−126

2−105

2−84

2−63

D
ec

ry
p

ti
o
n

fa
il

u
re

ra
te

Best code

dv = 3

dv = 4

dv = 5

dv = 6

dv = 7

Figure 6. The effect of dv in the DFR and best code, for Kyber Level 5.

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 25

Concerning ciphertext compression, the main conclusion from the above men-
tioned experiment is that lowering dv alone is unlikely to yield ciphertext com-
pression even when using 2D codes. Moreover, the 2D codes are better exploited
when v is less compressed, which leads to a larger dv. The main question is, thus,
how to balance du and dv to obtain ciphertext compression while maintaining
the DFR values as low as those targeted by the original Kyber.

6.2 Balancing the compression factors to obtain shorter ciphertexts

We now consider how changing both du and dv simultaneously impacts the
DFR of Kyber’s original code and our 2D codes. Since the main goal is to obtain
ciphertext compression, we only explore pairs of parameters (du, dv) that yield
smaller ciphertexts than the original Kyber parameters.

Figure 7 compares Kyber’s code and our proposed 2D codes under multiple
security levels and different values of (du, dv) providing ciphertext compression.
Considering Level 1, it does not appear to be possible to get some advantage in
ciphertext compression from the 2D codes without significantly compromising
the DFR, which becomes much higher than 2−128 at points (10, 3) and (9, 4).
Unfortunately, similar results were observed for Level 3. In particular, for both
cases, the second lowest DFR parameters were (10, 3), for which the best 2D
code is exactly Kyber’s code.

608
672

736
800

864
928

992
1056

1120
1184

1248
1312

1376
1440

1504
1568

1632
1696

Ciphertext size (bytes)

2−192

2−176

2−160

2−144

2−128

2−112

2−96

2−80

2−64

D
ec

ry
p

ti
o
n

fa
il

u
re

ra
te

(9, 3)

(9, 4)

(9, 5)

(10, 3)

(10, 4)

(9, 3)

(9, 4)

(9, 5)

(10, 3)

(10, 4)

(10, 4)

(10, 5)

(10, 6)

(11, 4)

(11, 5)

Level 1 Level 3 Level 5

Kyber code

Best 2D code

Figure 7. How changing parameters (du, dv) affect the DFR, considering Ky-
ber’s original code and our 2D codes, under the security levels 1, 3, and 5.

26 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

In contrast, we can see that 2D codes offer a significant advantage in Level
5, creating ciphertext compression opportunities. Unlike any other result with
Kyber’s original code, the parameter pair (10, 6) used with the 2D codes yields
a DFR below the value of 2−160, which is targeted by Kyber levels 3 and 5.
These parameters compress the ciphertext from 1568 to only 1472 bytes, which
corresponds to a compression factor of about 6.1%.

6.3 Strictly better parameters from generalized compression

During Kyber’s encryption, the coefficients of each polynomial in u are com-
pressed to du bits. We propose a simple generalization of this compression strat-
egy, by allowing each polynomial in u to be compressed to a possibly different
number of bits. Formally, we let du ∈ Zk define the compression factors for each
of the k polynomials in u. Under this setup, the error caused by compression
and decompression of u have to be defined for each block i = 0 to k − 1 as

∆u[i] = Decompress(Compress(u[i],du[i]),du[i])− u[i].

The use of multiple factors for compressing u has only a minor impact on
the computation of the joint distribution. This can be shown by evaluating how
using multiple factors for compressing u affects the computation of ∆m. We
start by writing

∆m = ⟨e, r⟩ − ⟨s, e1 +∆u⟩+ e2 +∆v

= ⟨e, r⟩ −
k∑

i=1

s[i](e1[i] + ∆u[i]) + e2 +∆v.

Remember that ⟨s, e1 +∆u⟩ is a sum of independent products, which have the
same distribution equally distributed. Therefore, we can compute the joint distri-
bution Pr (∆m[i],∆m[i+ n/2]) for this generalization at the cost of computing
(k − 1) extra 2-dimensional FFTs.

To understand if this generalization gives us an advantage, we ran computa-
tions similar to the ones in the previous section, but now with multiple values
of (du, dv) ∈ Zk × Z instead of (du, dv). The results are illustrated in Figures 8
and 9, which show the results for levels 3 and 5, respectively. For conciseness,
we omit results for level 1, as they are similar to the ones for level 3.

With respect to level 3, Figure 8 shows that the proposed generalization
leads to at least one point below the first DFR target of 2−128, represented by
parameters (du, dv) = ([10, 10, 9], 4). Interestingly, only the point corresponding
to our 2D codes crossed the threshold. However, although this point compresses
the level 3 ciphertext from 1088 to 1056 bytes, the DFR was not below the target
of 2−160 defined by Kyber for levels 3 and 5.

On the other hand, when we consider level 5, Figure 9 presents several dif-
ferent points below the 2−160 DFR target. Notice that the one that achieves
the highest compression of 6% is equivalent to (du, dv) = (10, 6). Interestingly,
though, there are now points that, because of the usage of 2D codes, are strictly

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 27

better than the original Kyber both concerning ciphertext size and smaller DFR.
For example, point (du, dv) = ([11, 11, 10, 10], 6) provides 2% ciphertext com-
pression with DFR of only 2−177.9, less than the 2−175.2 achieved by the orig-
inal Kyber. Furthermore, point (du, dv) = ([11, 11, 11, 10], 6) achieves DFR of

992 1024 1056 1088

Ciphertext size (bytes)

2−80

2−96

2−112

2−128

2−144

2−160

2−176

2−192

D
ec

ry
p

ti
o
n

fa
il

u
re

ra
te

([10, 9, 9], 3)

([10, 9, 9], 4)

([10, 9, 9], 5)

([11, 9, 9], 3)

([11, 9, 9], 4)

([11, 9, 9], 5)

([11, 10, 10], 3)

([10, 10, 9], 3)

([10, 10, 9], 4)

([10, 10, 9], 5)

([11, 11, 9], 3)

([9, 9, 9], 4)

([9, 9, 9], 5)

([10, 10, 10], 3)

([10, 10, 10], 4)

Level 3

Kyber code

Best 2D code

Figure 8. The DFR for generalized compression parameters (du, dv) ∈ Zk × Z
considering Kyber security parameters achieving level 3.

1472
1504

1536
1568

Ciphertext size (bytes)

2−192

2−184

2−176

2−168

2−160

2−152

2−144

2−136

2−128

D
ec

ry
p

ti
o
n

fa
il

u
re

ra
te

([11, 10, 10, 10], 5)

([11, 10, 10, 10], 6)

([12, 10, 10, 10], 4)

([12, 10, 10, 10], 5)

([12, 10, 10, 10], 6)

([12, 11, 11, 11], 4)

([11, 11, 10, 10], 4)

([11, 11, 10, 10], 5)

([11, 11, 10, 10], 6)

([12, 12, 10, 10], 4)

([12, 12, 10, 10], 5)

([11, 11, 11, 10], 4)

([11, 11, 11, 10], 5)

([11, 11, 11, 10], 6)

([10, 10, 10, 10], 6) ([11, 11, 11, 11], 4)

([11, 11, 11, 11], 5)

Level 5

Kyber code

Best 2D code

Figure 9. The DFR for generalized compression parameters (du, dv) ∈ Zk × Z
considering Kyber security parameters achieving level 5.

28 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

2−187.3, which is even lower than the DFR of 2−185.1 previously observed for our
2D codes considering parameters (du, dv) = (11, 5) obtained in Section 5.

7 Proposed parameters and crypto-agility considerations

This section summarizes the most important practical results obtained in this
work, and discusses how their adoption may impact crypto-agility.

While the proposed 2D codes can be directly integrated into Kyber by sim-
ply replacing functions poly_frommsg and poly_tomsg, the generalized com-
pression method requires changing Kyber’s parameters and compression-related
algorithms. Notice, however, that compression and decompression are rather
simple algorithms. Furthermore, they are not part of Kyber’s main performance
bottlenecks, which are hash computations and polynomial multiplications. Since
most hardware acceleration and device-dependent optimizations in the literature
target those bottleneck operations, we argue that the impact of the generalized
compression algorithms should be minor in practice.

All in all, aiming to make the proposed parameters more easily comparable,
we can classify the crypto-agility impact of our proposals in the 3 following levels.

1. Drop-in replacement of encoding and decoding functions.
2. Same as 1, and minor change of compression parameters (du, dv).
3. Same as 2, and generalization of the compression algorithms.

Table 6. Proposed parameters for Kyber using 2D codes C(α=1664,β). All settings
lead to negligible performance impact. Remember that the DFR values obtained
by Kyber are 2−139.1, 2−165.2, and 2−175.2 for levels 1, 3, and 5, respectively.
Crypto-

agility
impact

Security Compression
parameters β DFR Ciphertext

compression Advantages

1 Level 1 (du, dv) = (10, 4) 422 2−143.9 0% Lower DFR
than 2−139.1

1 Level 3 (du, dv) = (10, 4) 422 2−170.6 0% Lower DFR
than 2−165.2

1 Level 5 (du, dv) = (11, 5) 435 2−185.1 0% Lower DFR
than 2−175.2

2 Level 5 (du, dv) = (10, 6) 442 2−161.8 6%

Smaller
ciphertexts and
DFR below
2−160 target†

3 Level 5 (du, dv) =

([
11
11
10
10

]
, 6

)
442 2−177.9 2%

Smaller
ciphertexts and
lower DFR
than 2−175.2

† Kyber’s specification [4, 5] define the DFR target for levels 3 and 5 as 2−160 (see Sec-
tion 3.2).

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 29

Table 6 shows our proposed parameters using 2D codes, their impact on
crypto-agility, and a brief description of their advantages compared with their
original Kyber counterparts. In summary, our 2D codes effectively improve Ky-
ber DFR for all security levels when all parameters remain unchanged. Second,
we observed that level 5 is the one most positively affected by the usage of 2D
codes. In particular, we can obtain a 6% ciphertext compression for this security
level, keeping the DFR below the value targeted by Kyber’s designers. Fur-
thermore, the generalized compression algorithms, together with the 2D codes,
provide strictly better parameters concerning both DFR and ciphertext size.

8 Conclusion and future work

In this work, we present a novel framework for obtaining better encoding mech-
anisms for lattice-based schemes, in particular Kyber. Our construction relies on
simpler assumptions than related works and provides concrete benefits, both with
respect to lowering Kyber’s decryption failure rate (DFR) and ciphertext sizes.
Our proposed configurations are practical and only require changes in parame-
ters related to ciphertext compression. Also, we provide an efficient isochronous
implementation of the encoding and decoding procedures that causes only a
minor impact on the full decapsulation execution time.

This work also raises several questions, both in theory and practice. We
believe the most important theoretical question is what kind of improvements
concerning DFR and ciphertext compression can be obtained using codes
with dimensions higher than 2. However, the main challenge of exploring
this venue is the increased computational complexity of computing the joint
higher-dimensional noise distribution and searching for the best code. Even if
these problems can be solved, it would be important to understand whether we
can design isochronous decoders for higher-dimensional codes without incurring
significant performance overhead.

Although we focus on Kyber, the proposed construction can, at least in
theory, be applied to any lattice-based scheme whose dimension n is a power of
two. It would be intriguing, for example, to see if our framework can improve
prominent lattice-based schemes such as Saber [9] and NewHope [3]. Conversely,
while in principle the some of our ideas could be applied to code-based solutions
(e.g., HQC [27]), such schemes typically require a prime n to avoid structural
attacks [16, 24], which prevents us from using the FFT-based convolutions to
compute the joint noise distribution.

Finally, the isochronous decoding algorithm presented in this work was effi-
cient enough to show that our construction is practical. However, we only consid-
ered Kyber’s reference implementation, which does not leverage either vectorized
instructions (e.g., AVX2) or Assembly-optimized code. It would, thus, be inter-
esting to understand the performance impact of our 2-dimensional codes with
optimized implementations in different platforms (e.g., integrating the proposal
into a fork of pqm4 [22]).

30 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

References

1. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu, Y.K., Miller,
C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D.: Status re-
port on the first round of the NIST post-quantum cryptography standardization
process. US Department of Commerce, National Institute of Standards and Tech-
nology (2019). https://doi.org/10.6028/NIST.IR.8240 Cited on 8.

2. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D., Albrecht, M.R., Orsini, E., Osheter, V., Paterson, K.G.,
Peer, G., Smart, N.P.: NewHope: Algorithm specifications and supporting doc-
umentation (2020), https://newhopecrypto.org/data/NewHope_2020_04_10.pdf
Cited on 8.

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
– a new hope. In: 25th USENIX Security Symposium (USENIX Security 16). pp.
327–343 (2016) Cited on 8, 12, 14, and 29.

4. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: Algorithm specifications
and supporting documentation (version 2.0) (2019), https://pq-crystals.org/
kyber/data/kyber-specification-round2.pdf. Cited on 7 and 28.

5. Avanzi, R., Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: Algorithm specifica-
tions and supporting documentation (version 3.02) (2021), https://pq-crystals.
org/kyber/data/kyber-specification-round3-20210804.pdf. Cited on 2, 6, 7,
and 28.

6. Baan, H., Bhattacharya, S., Fluhrer, S., Garcia-Morchon, O., Laarhoven, T., Ri-
etman, R., Saarinen, M.J.O., Tolhuizen, L., Zhang, Z.: Round5: Compact and
fast post-quantum public-key encryption. In: Post-Quantum Cryptography: 10th
International Conference, PQCrypto 2019, Chongqing, China, May 8–10, 2019 Re-
vised Selected Papers 10. pp. 83–102. Springer (2019). https://doi.org/10.1007/
978-3-030-25510-7_5 Cited on 8.

7. D’Anvers, J.P., Vercauteren, F., Verbauwhede, I.: The impact of error dependencies
on Ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.) Post-
Quantum Cryptography. pp. 103–115. Springer International Publishing, Cham
(2019). https://doi.org/10.1007/978-3-030-25510-7_6 Cited on 2, 8, and 10.

8. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: Public-
Key Cryptography–PKC 2019: 22nd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Pro-
ceedings, Part II 22. pp. 565–598. Springer (2019). https://doi.org/10.1007/
978-3-030-17259-6_19 Cited on 2 and 7.

9. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Interna-
tional Conference on Cryptology in Africa. pp. 282–305. Springer (2018). https:
//doi.org/10.1007/978-3-319-89339-6_16 Cited on 29.

10. Enge, A., Gastineau, M., Théveny, P., Zimmermann, P.: MPC – A library for
multiprecision complex arithmetic with exact rounding (Dec 2022), http://www.
multiprecision.org/mpc/ Cited on 13.

11. Erez, U., Zamir, R.: Achieving 1/2 log (1 + SNR) on the AWGN channel with
lattice encoding and decoding. IEEE Transactions on Information Theory 50(10),
2293–2314 (2004). https://doi.org/10.1109/TIT.2004.834787 Cited on 2 and 9.

https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8240
https://newhopecrypto.org/data/NewHope_2020_04_10.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-25510-7_6
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
http://www.multiprecision.org/mpc/
http://www.multiprecision.org/mpc/
https://doi.org/10.1109/TIT.2004.834787
https://doi.org/10.1109/TIT.2004.834787

Tailoring 2D codes for lattice-based KEMs and applications to Kyber 31

12. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A re-
action attack on the QC-LDPC McEliece cryptosystem. In: Post-Quantum Cryp-
tography: 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands,
June 26-28, 2017, Proceedings 8. pp. 51–68. Springer (2017). https://doi.org/
10.1007/978-3-319-59879-6_4 Cited on 2.

13. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software (TOMS) 33(2), 13–es (2007). https://doi.org/
10.1145/1236463.1236468 Cited on 13.

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual International Cryptology Conference. pp. 537–554.
Springer (1999) Cited on 5.

15. Gentleman, W.M., Sande, G.: Fast Fourier transforms: for fun and profit. In: Pro-
ceedings of the November 7-10, 1966, AFIPS Fall Joint Computer Conference. pp.
563–578 (1966). https://doi.org/10.1145/1464291.1464352 Cited on 13.

16. Guo, Q., Johansson, T., Löndahl, C.: A new algorithm for solving Ring-LPN with
a reducible polynomial. IEEE Transactions on Information Theory 61(11), 6204–
6212 (2015). https://doi.org/10.1109/TIT.2015.2475738 Cited on 29.

17. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) Advances in
Cryptology – ASIACRYPT 2016. pp. 789–815. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_29 Cited on
2.

18. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors
against LAC. In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology –
ASIACRYPT 2019. pp. 82–111. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5_4 Cited on 2 and 7.

19. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) Information and Communi-
cation Security. pp. 2–12. Springer Berlin Heidelberg, Berlin, Heidelberg (1999).
https://doi.org/10.1007/978-3-540-47942-0_2 Cited on 2.

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography.
pp. 341–371. Springer International Publishing, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2_12 Cited on 5.

21. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). International journal of information security 1(1), 36–63 (2001).
https://doi.org/10.1007/s102070100002 Cited on 2.

22. Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-
quantum crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4
Cited on 29.

23. Liu, S., Sakzad, A.: Lattice codes for CRYSTALS-Kyber (Sep 2023), http:
//arxiv.org/abs/2308.13981 Cited on 2, 3, 8, and 9.

24. Löndahl, C., Johansson, T., Koochak Shooshtari, M., Ahmadian-Attari, M., Aref,
M.R.: Squaring attacks on McEliece public-key cryptosystems using quasi-cyclic
codes of even dimension. Designs, Codes and Cryptography 80, 359–377 (2016).
https://doi.org/10.1007/s10623-015-0099-x Cited on 29.

25. Lu, X., Liu, Y., Zhang, Z., Jia, D., Xue, H., He, J., Li, B., Wang, K.: LAC: Practical
Ring-LWE based public-key encryption with byte-level modulus. Cryptology ePrint
Archive, Paper 2018/1009 (2018), https://eprint.iacr.org/2018/1009 Cited
on 8.

https://doi.org/10.1007/978-3-319-59879-6_4
https://doi.org/10.1007/978-3-319-59879-6_4
https://doi.org/10.1007/978-3-319-59879-6_4
https://doi.org/10.1007/978-3-319-59879-6_4
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1109/TIT.2015.2475738
https://doi.org/10.1109/TIT.2015.2475738
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-030-34578-5_4
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://github.com/mupq/pqm4
http://arxiv.org/abs/2308.13981
http://arxiv.org/abs/2308.13981
https://doi.org/10.1007/s10623-015-0099-x
https://doi.org/10.1007/s10623-015-0099-x
https://eprint.iacr.org/2018/1009

32 Paiva, Simplicio, Hafiz, Yildiz and Cominetti

26. Lyu, S., Liu, L., Ling, C., Lai, J., Chen, H.: Lattice codes for lattice-based PKE.
Designs, Codes and Cryptography pp. 1–23 (2023). https://doi.org/10.1007/
s10623-023-01321-6 Cited on 2 and 9.

27. Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Bos, J., Deneuville,
J.C., Dion, A., Gaborit, P., Lacan, J., Persichetti, E., Robert, J.M., Véron,
P., Zémor, G.: Hamming Quasi-Cyclic: HQC (2021), https://pqc-hqc.org/doc/
hqc-specification_2021-06-06.pdf Cited on 29.

28. National Institute of Standards and Technology: FIPS203: Module-lattice-based
key-encapsulation mechanism standard (initial public draft). Federal Inf. Process.
Stds. (NIST FIPS), National Institute of Standards and Technology (2023-08-24
2023), https://doi.org/10.6028/NIST.FIPS.203.ipd Cited on 2.

29. NIST: Post-quantum crypto project. http://csrc.nist.gov/groups/ST/
post-quantum-crypto/ (2016) Cited on 2.

30. NIST: Quantum-resistant cryptography technology interoperability and perfor-
mance report (preliminary draft). Tech. rep., National Institute of Standards and
Technology, Department of Commerce, Washington, D.C. (2023), Special Publica-
tion (SP 1800-38C) Cited on 2.

31. Plantard, T., Sipasseuth, A., Susilo, W., Zucca, V.: Tight bound on NewHope
failure probability. IEEE Transactions on Emerging Topics in Computing 10(4),
1955–1965 (2022). https://doi.org/10.1109/TETC.2021.3138951 Cited on 8
and 14.

32. Rabiner, L.: On the use of symmetry in FFT computation. IEEE Transactions
on Acoustics, Speech, and Signal Processing 27(3), 233–239 (Jun 1979). https:
//doi.org/10.1109/TASSP.1979.1163235 Cited on 13 and 14.

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009). https://doi.org/10.1145/
1568318.1568324 Cited on 8.

34. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978).
https://doi.org/10.1145/359340.359342 Cited on 2.

35. Saarinen, M.J.O.: Hila5: On reliability, reconciliation, and error correction for ring-
lwe encryption. In: Selected Areas in Cryptography–SAC 2017: 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers
24. pp. 192–212. Springer (2018) Cited on 8.

36. Saliba, C.: Error correction and reconciliation techniques for lattice-based key
generation protocols. Ph.D. thesis, CY Cergy Paris Université (2022), https:
//theses.hal.science/tel-03718212v1/document Cited on 2, 3, 8, 9, 14, and 15.

37. Saliba, C., Luzzi, L., Ling, C.: A reconciliation approach to key generation based
on Module-LWE. In: 2021 IEEE International Symposium on Information The-
ory (ISIT). pp. 1636–1641 (2021). https://doi.org/10.1109/ISIT45174.2021.
9517882 Cited on 2, 3, 8, 9, 14, and 15.

38. Schatzman, J.C.: Accuracy of the discrete Fourier transform and the fast Fourier
transform. SIAM Journal on Scientific Computing 17(5), 1150–1166 (1996). https:
//doi.org//10.1137/S106482759324702 Cited on 13.

39. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997). https://doi.org/10.1137/S0097539795293172 Cited on 2.

https://doi.org/10.1007/s10623-023-01321-6
https://doi.org/10.1007/s10623-023-01321-6
https://doi.org/10.1007/s10623-023-01321-6
https://doi.org/10.1007/s10623-023-01321-6
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://doi.org/10.6028/NIST.FIPS.203.ipd
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1109/TETC.2021.3138951
https://doi.org/10.1109/TETC.2021.3138951
https://doi.org/10.1109/TASSP.1979.1163235
https://doi.org/10.1109/TASSP.1979.1163235
https://doi.org/10.1109/TASSP.1979.1163235
https://doi.org/10.1109/TASSP.1979.1163235
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://theses.hal.science/tel-03718212v1/document
https://theses.hal.science/tel-03718212v1/document
https://doi.org/10.1109/ISIT45174.2021.9517882
https://doi.org/10.1109/ISIT45174.2021.9517882
https://doi.org/10.1109/ISIT45174.2021.9517882
https://doi.org/10.1109/ISIT45174.2021.9517882
https://doi.org//10.1137/S106482759324702
https://doi.org//10.1137/S106482759324702
https://doi.org//10.1137/S106482759324702
https://doi.org//10.1137/S106482759324702
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172

	Tailoring two-dimensional codes for structured lattice-based KEMs and applications to Kyber

