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This paper presents a collection of lessons learned from analyzing the real-world security of various
Byzantine Fault Tolerant (BFT) consensus protocol implementations. Drawing upon our experience
as a team of security experts who have both developed and audited BFT systems, including BA⋆,
HotStuff variants, Paxos variants, and DAG-based algorithms like Narwhal and Bullshark, we identify
and analyze a variety of security vulnerabilities discovered in the translation of theoretical protocols into
real-world code. Our analysis covers a range of issues, including subtle logic errors, concurrency bugs,
cryptographic vulnerabilities, and mismatches between the theoretical model and the implementation. We
provide detailed case studies illustrating these vulnerabilities, discuss their potential impact, and propose
mitigation strategies. This work aims to provide valuable insights for both designers and implementers
of BFT consensus protocols, ultimately contributing to the development of more secure and reliable
distributed systems.
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1 Introduction

In 2008, Satoshi Nakamoto introduced Bitcoin:
a novel way for anyone in the world to partic-
ipate in the shared management of a database
of account balances, as well as to participate
in the policing of new transactions coming in.
To contribute, anyone willing could play in a
Bitcoin “lottery” by solving a computational puz-
zle (called “proof of work”) and get a chance
to win some newly printed Bitcoin (a process
called “mining”). In addition, the lottery winner
would also get the opportunity to write the next
page of transactions into the ledger while at the

same time pocketing transaction fees. In Bitcoin
terms, that page is a block, and as they extend
each other, they naturally form what we call a
“blockchain”. Note that Bitcoin’s proof of work is
often criticized as contributing to wasteful energy
consumption across the world1.

Bitcoin’s lottery (more formally called “leader
election”) has many possible winners, leading to
naturally occurring “forks” where multiple lead-
ers are elected at the same time, leading to mul-
tiple proposals being made to extend the latest

1Bitcoin Energy Consumption Index compares the
carbon footprint of Bitcoin to the one of Uzbekistan
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block. As conflicting views of the state are an un-
desirable outcome, Bitcoin users have accepted
a waiting period of about an hour called “confir-
mation time” to give time for the participants
to agree on which branch they should continue
building on top of. The more time they wait, the
more confidence they get that they are looking at
the canonical chain (which was originally defined
as the longest one). The intuition behind this
solution is that the proof of work mechanism
makes it harder and harder for someone to com-
pute a competing branch of the same size (or
longer).

The “Waiting enough” solution is problematic
for users, as transactions can be felt as slow to
process (a metric called “finality”). In addition, it
only really works against short-term forks, and as
long as 51% of the computing power participating
in the distributed protocol remains honest. A
“51% attack” can happen when a majority of the
participating computing power decides to collude
to attack the network, leading to a fork that
reorganizes a large portion of the ledger. This
can, in turn, lead to thought-to-be-confirmed
transactions being canceled or, worse, being sent
to someone else (which we call a “double spend”).

In addition, Bitcoin’s solution to decentralize
the security of a financial system and produce
an ordering of transactions only works in the
“synchronous” setting, in which the network is
expected not to get partitioned for too long, and
messages are expected to get delivered under a
certain amount of time. In practice, this is a
troublesome assumption, as networks tend to
behave in unpredictable ways. Violation of this
assumption can lead to two (or more) forks of
Bitcoin coexisting for some dangerous period of
time (until the network partition resolves).

On the other hand, long before Bitcoin was in-
vented, in 1989, Leslie Lamport was submitting a
paper called “The Part-Time Parliament”, now fa-
mous for having introduced the Byzantine Fault
Tolerance (BFT) problem. Not so long after,
several solutions were proposed, including the
seminal paper Practical Byzantine Fault Toler-
ance in 1999. It turns out that this now-old
BFT problem was essentially the same problem
that Bitcoin was trying to solve: how to tolerate
faulty (or “Byzantine”) nodes within a group of
nodes that are trying to come to consensus on a
value (or set of values).

Bitcoin did have a novel contribution to the liter-
ature of BFT consensus protocols: it introduced
the idea of “permissionless” protocols, allowing
anyone to join the group of consensus partici-
pants (which had been fixed, or “permissioned”,
in BFT papers so far). It did that by using the
proof of work mechanism as a way to computa-
tionally limit the barrier of entry to participate
in the protocol. (In the literature, this problem
of preventing someone from creating infinite ac-
counts is often referred to as “Sybil resistance”.)

Once people realized that there were decades
of untapped research that could benefit the
blockchain community, many more BFT schemes
were proposed and then adapted into real-world
cryptocurrency systems (see Tendermint: Byzan-
tine Fault Tolerance in the Age of Blockchains
and Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing).

Today, most modern blockchain protocols have
moved on from Bitcoin’s consensus protocol
(sometimes referred to as Nakamoto consensus)
and have instead adopted protocols from the
BFT literature. These protocols are orders of
magnitude faster (both in terms of throughput
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and finality), have a minimal footprint, and can
be proven not to fork in the harshest network
conditions.

In our work as security researchers and auditors,
we’ve had a front-row seat to the challenges of
translating BFT theory into robust, real-world
implementations. This paper distills the lessons
we’ve learned from analyzing a wide array of
BFT systems currently operating in production
environments. To set the stage for this deep dive,
we first survey the diverse landscape of BFT con-
sensus protocols in use today in the next section.
We then delve into the vulnerabilities and issues
we’ve uncovered or seen – from subtle logic flaws
to cryptographic oversights – providing practical
insights that can guide the design and implemen-
tation of more secure and reliable distributed
systems.

Figure 1: The different steps involved in production-
izing a BFT consensus protocol.

2 The State of BFT Consensus
Protocols in The Wild

Before delving into the meat of this paper, let’s
briefly take a look at the current state of BFT
consensus protocols running in production and
at the terminology that they use.

A BFT consensus protocol typically involves a
fixed set of participants called validators (or
nodes or replicas), who get elected as leaders to
propose blocks of transactions (as we are mostly
in a cryptocurrency context). Validators can
then “vote” on proposals, so they can eventu-
ally get confirmed in the system, which we call
“committed”. Votes get aggregated into “quorum
certificates”, which can be used to prove that a
quorum of participants has seen something. As
there are many blocks to process in the system,
a protocol is often iterated on through several
consecutive views (which are often called rounds
unless, confusingly, they themselves are made
up of several rounds), with some views leading
to commits and some views failing to commit
anything.

The set of validators is fixed in a “genesis block”
and then dynamically updated based on some
application-level mechanism (for example, based
on the amount of tokens that they have in the
cryptocurrency). Different validator sets are split
into different epochs.

We say that a validator is Byzantine or faulty
when it acts maliciously: it does not follow the
written protocol. This often translates into nodes
“equivocating”, meaning producing contradicting
protocol messages. In addition, a validator who
refuses to participate is also considered faulty, as
honest validators will always attempt to partici-
pate even if it means that their message must be
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retried multiple times. The honesty of nodes is
most often obtained through different incentiviza-
tion mechanisms, which produce some “economic
security”; this is out of the scope of this paper.

In BFT systems, a fork can never happen unless
more than a certain threshold (often written as f)
of validators decide to act Byzantine and collude
at the same time. The property that a fork can
never occur under these assumptions is called
“safety”, while the property that the protocol
continually makes progress (i.e., that it doesn’t
get “stuck”) is called “liveness”. We will explain
these in a second, but first, let’s mention that
BFT protocols are designed in one of these three
models:

• Synchronous model: which is the model
that Bitcoin uses, and which assumes that
the network will never delay messages for
more than some fixed upper bound of time
(around an hour for Bitcoin).

• Asynchronous model: which assumes
that network messages can be delayed ad-
infinitum (but will eventually reach their
destination).

• Partially-synchronous model: this is
a mix between the two previous models,
which assumes that while a network might
behave asynchronously (for example, the
network might partition), it will do so only
for some definite-but-unknown (emphasis
on unknown) period of time that will even-
tually be followed by a stable network that
resembles a synchronous one.

As most BFT protocols have moved away from
the synchronous model, as it is deemed an un-
realistic assumption in practice, we will focus
on partially-synchronous and asynchronous BFT

consensus protocols in the rest of this paper. Be-
tween these two, the partially-synchronous model
is often the most adopted one as it is quite prag-
matic. On the other hand, asynchronous con-
sensus protocols require additional primitives2

which are annoying to implement, have higher la-
tency than partially-synchronous consensus pro-
tocols, and are less understood, although they
are not necessarily more complex, and have some
benefits against some attacks (as we will see
later).

In addition, most consensus protocols choose a
model that tolerates around a third of Byzantine
nodes. There exist different trade-offs, and we
will mention some of the benefits of tolerating
less faulty nodes in the section 3.1 (f+1 Attacks
and Slashing).

In BFT whitepapers, the liveness of a consen-
sus protocol is often deemed less important than
its safety, and as such, their proofs and analy-
sis are often much more handwavy. This is to
some degree justified as in the popular partial-
synchronous setting, for example, we pragmat-
ically assume that periods of instability in the
network won’t last forever. Of course, although
safety breaks lead to direct loss of funds, we
recognize that network delays do also indirectly
lead to loss of funds (e.g., a merchant can’t get
paid and so is not able to make a sale).

On the other hand, proving that a BFT protocol

2the 1985 FLP impossibility result is well-known
for having proven that consensus is impossible in asyn-
chronous settings without a common coin (Impossibility
of Distributed Consensus with One Faulty Process). The
intuition is that if the leader is known in advance, a
network attacker could always force other messages to
be prioritized, forcing participants to advance the proto-
col without the leader’s messages. Choosing the leader
randomly after committing to a set of messages fixes that.
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is safe is often pretty straightforward, and papers
often do so in small and self-contained proofs (see
figure 2). In addition, ignoring the synchronous
setting, the safety of consensus protocol is usually
proven to hold in the harshest conditions: in
periods of asynchrony (and thus in any lengthy
partitioning of the network). That’s right, even
when the protocol is supposed to work in the
partially-synchronous model (where a network
could be partitioned for an unknown-but-bonded
time), the protocol would still not fork in long
periods of asynchrony.

The bugs examined in this study all affect the
safety and/or liveness of the protocol, either di-
rectly or indirectly.

We refer to other papers for more information
about these protocols, and from now on, assume
that the reader knows about such BFT proto-
cols. For example, see Reaching Consensus in
the Byzantine Empire: A Comprehensive Review
of BFT Consensus Algorithms, The Bedrock of
Byzantine Fault Tolerance: A Unified Platform
for BFT Protocols Analysis, Implementation,
and Experimentation, and the great collabora-
tive blog Decentralized Thoughts.

3 Left As An Exercise For The
Reader

We start our tour of gotchas and vulnerabilities
with a focus on what the BFT literature is miss-
ing. In the next examples, we’ll look at bugs
that stem from ambiguities or omissions in the
original “paper protocols”, which implementers
are supposed to address by themselves. These
gaps can be substantial and create fertile ground
for numerous bugs, from the susceptibility to
f+1 attacks despite slashing mechanisms, to the

complexities of reconfiguration and long-range
attacks arising from the impracticality of fixed
validator sets. Assumptions about weighted vot-
ing, fast processing mechanisms, message retries,
leader election, and node catch-up further expose
the fragility of real-world systems. These chal-
lenges underscore the need for a deeper under-
standing of the intricacies involved in translating
theoretical BFT protocols into robust and secure
real-world systems.

3.1 f + 1 Attacks and Slashing

In general, real-world instantiations of BFT pro-
tocols decide on an optimal number of partici-
pants n that they want to be able to support
and then derive the number of Byzantine nodes
f it can tolerate based on that (which is dictated
by the BFT protocol that is implemented). If
the number is too small, the process is restarted
for a new increased value n. Rinse and repeat.
For example, a lot of implementations use BFT
protocols that work with n = 3f+1 participants,
meaning that they can tolerate roughly a third
of the participants acting Byzantine. Intuitively,
the closer f is to the number of participants n,
the more Byzantine participants the protocol can
tolerate. (So a protocol that uses n = 5f +1 can
tolerate less faulty nodes than a protocol that
uses n = 3f + 1.)

It was shown in several studies (see Good-case
Latency of Byzantine Broadcast: A Complete
Categorization and figure 4) that f out of 3f +
1 participants is the best ratio we can obtain
outside of the synchronous model (which can
tolerate half but is rarely used in practice due to
the reasons we mentioned above). Yet, it imposes
at least 3 “rounds” to reach an agreement, which
is not ideal as each round adds more complexity

5

https://arxiv.org/pdf/2204.03181v3
https://arxiv.org/pdf/2204.03181v3
https://arxiv.org/pdf/2204.03181v3
https://www.usenix.org/system/files/nsdi24-amiri.pdf
https://www.usenix.org/system/files/nsdi24-amiri.pdf
https://www.usenix.org/system/files/nsdi24-amiri.pdf
https://www.usenix.org/system/files/nsdi24-amiri.pdf
https://decentralizedthoughts.github.io/
https://arxiv.org/pdf/2102.07240
https://arxiv.org/pdf/2102.07240
https://arxiv.org/pdf/2102.07240


Figure 2: The safety proof of HotStuff-2: Optimal Two-Phase Responsive BFT.

to the protocol.

The idea of chaining/pipelining was introduced
in HotStuff: BFT Consensus in the Lens of
Blockchain to increase the throughput of BFT
consensus protocols despite a large number of
rounds. Instead of waiting for the view to finish
(for the three rounds to finish in our previous ex-
ample), Chained BFT consensus protocols have
each new round start a new view in parallel. We
illustrate the optimization in figure 3. This al-
lows each round to not only contribute to their
view, but to potentially commit the value of a
previous on-going view, reducing the overhead
that a large-number-of-rounds protocol can have.

But chained variants of BFT protocols also tend
to add additional complexity and are also more
susceptible to some liveness attacks (see sec-
tion 3.6 (Consecutive Bad Leaders And The View

Figure 3: A simplified illustration of the pipelining
introduced in HotStuff: BFT Consensus in the Lens
of Blockchain.

Synchronization Problem) and section 4.1 ((Dis-
tributed) Denial of Service Attacks)).

On the other hand, less fault-tolerant protocols
seem to be able to achieve better round com-
plexity. For example, a BFT consensus protocol
can achieve agreement in only two rounds if it
is willing to use 5f − 1 participants, tolerating
only around a fifth of faulty nodes.
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Figure 4: Table from Good-case Latency of Byzantine
Broadcast: A Complete Categorization.

In practice, BFT protocols can get quite com-
plex, and as such trying to reduce the number of
rounds or the communication complexity can be
a well-worth trade off. As we all know, complex
code more easily leads to bugs.

On another note, these thresholds assume a num-
ber f of Byzantine actors that is hard to quantify
in reality. Who knows really how many partici-
pants of a protocol will collude at the same time?
Although these numbers seem to often be chosen
arbitrarily, we have yet to observe a verifiable
“f + 1 attack” in the wild.

Such f + 1 attacks in real-world BFT systems
happen when too many nodes decide to attack
the system together (breaking the safety assump-
tion that only f nodes are malicious). They can
be seen as the equivalent to the 51% attacks of
the proof of work schemes like Bitcoin. Some
systems try to disincentivize such f + 1 attacks
using “economic security”. For example, some
protocols can “slash” nodes that exhibit faulty
behavior, where slashing is implemented by wip-
ing the tokens that a node had locked in order
to participate in the consensus protocol (often
called “stake” in “proof of stake” protocols).

The question is: how hard is it for the attacking
nodes to avoid getting slashed during an f + 1
attack, and how easy is it to get slashed unin-

tentionally? To our knowledge, only validator
mistakes have triggered the slashing of stake so
far. As operators of validators are not necessar-
ily aware of how BFT systems work, they can
easily violate some rules, for example, by run-
ning outdated versions of the node software or by
not migrating nodes correctly and not recovering
important historical states that would prevent
Byzantine behavior. This can make slashing
more of a nuisance and a huge monetary risk to
users who want to participate in the system.

To our knowledge, most BFT consensus protocols
are implemented without slashing3, which still
benefits from an interesting implied economic
security slashing mechanism: if users of the sys-
tem detect an attack they will most likely lose
trust in the token, which will, in turn, decrease
its price dramatically (this is sometimes referred
to as “token toxicity”, see The cryptoeconomics
of slashing).

3.2 Reconfiguration and Long-Range
Attacks

As we will see throughout this paper, the “f
faulty nodes” assumption is far from the only
assumption that papers make and that imple-
menters have to figure out. In addition, some of
the assumptions made by papers are much more
problematic as they are implied rather than ex-
plicitly stated.

For example, most papers assume that the set
of validators is fixed forever. In practice, this is
rarely the case. Participants often need to be
able to join and leave the committee at some
point, rotate their keys, and even revoke their
keys in case an accident happens.

3notably, Cosmos Zones in the Cosmos ecosystem, as
well as Ethereum, have implemented slashing
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Thus, protocols are almost always implemented
so that they can be “reconfigured”, allowing the
protocol to periodically agree on a change of
validator set. In practice, we have found that
reconfiguration protocols are often overlooked if
not totally dismissed. Such protocols are impor-
tant because they can cause safety and liveness
issues. For example, DiemBFT’s reconfigura-
tion protocol had to enforce empty blocks up to
the commitment of the reconfiguration (usually
triggered by a transaction) to avoid safety is-
sues (see State Machine Replication in the Libra
Blockchain or diem consensus specification)4.

It is worth mentioning, though, that some pa-
pers do attempt to analyze (see Byzantine Gen-
erals in the Permissionless Setting) or specify a
permissionless setting for BFT consensus pro-
tocols (see Algorand: Scaling Byzantine Agree-
ments for Cryptocurrencies and SUI LUTRIS: A
Blockchain Combining Broadcast and Consen-
sus).

In addition, validators that leave the validator
set (or committee) create a problem: they are
still in control of their cryptographic keys. Since
cryptographic keys are usually used to authen-
ticate participants in the instantiated protocols
this leads to a problem called “long-range at-
tacks” (see Winkle: Foiling Long-Range Attacks
in Proof-of-Stake Systems) (also called “posterior
corruption” and “costless simulation”, see Snow
White: Robustly Reconfigurable Consensus and
Applications to Provably Secure Proof of Stake )
in which old validators who have left the protocol
later turn Byzantine (themselves or by selling
their cryptographic keys). Thus, a long-range

4Note that this is related to the pipelined/chained
version of HotStuff, which interestingly adds additional
challenges when combined with reconfiguration protocols.

attack allows an attacker who collects enough
old keys to fork an older part of the chain and
fool a new node that is catching up into thinking
that it is being fed the true canonical chain.

Figure 5: An illustration of a long-range attack where
a threshold of faulty nodes manages to collude and
rewrite the history of the blockchain.

Long-range attacks are the elephant in the
room when it comes to BFT elephants. In prac-
tice, we can’t necessarily assume that validators
will always delete their keys when leaving the
validator set. A validator is incentivized not to
mess with the protocol while they have tokens
at stake, not just because of slashing (if imple-
mented), but also because a public fiasco would
likely impact the value of their staked assets
(they have skin in the game). However, once
they leave the protocol, recover their stake, and
sell their tokens, they will have zero incentives
to play by the book.

Different solutions have been proposed to solve
this issue, we discuss them here. Note that so-
lutions that rely on the honesty of nodes (like
deleting keys after rotating them) are not dis-
cussed here (see section 6.5 (Key Management
for Validators)).

The naive solution: Snapshots/Check-
points. Checkpoints are tuples that uniquely
identify a specific point in the history of a
blockchain. They usually are implemented as
the hash of a block, and come hardcoded into
the node’s code. As such, they are updated peri-
odically and become a distribution of software
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issues. As such, most systems rarely rely on them
alone and will check other “organic” checkpoints
(for example, from blockchain explorers).

A hardware solution: using TEEs. A solu-
tion to force validators to only use their keys in
legitimate ways was proposed in Securing Proof-
of-Stake Blockchain Protocols. The protocol put
forward requires validators to use trusted execu-
tion environments (TEEs) like Intel SGX and
AMD SEV to generate (and thereafter use) their
secret keys. To enforce that validators follow
that requirement, the TEE must support remote
attestation, which accompanies any execution
output with a signature over the program, in-
puts, and outputs used (as long as the program
was computed within the TEE). This way, val-
idators can register their public keys along with
a signature as attestation from the TEE that
the private key only exists there, and the rest
of the network can verify that. In order to pre-
vent rollback attacks, which an attacker could
use to replay queries to the TEE, they rely on
replay-protected monotonic counters (RPMCs)
that can keep track of the last epoch, view, and
round in which a validator has participated, and
are protected areas of memory. As the private
key only exists in the TEE, the logic in control
of it can use the monotonic counters to prevent
equivocations and enforce the safety rules of the
protocol.

Note that TEEs are not silver bullets. As the
signatures they produce come from a hardcoded
and hardware-protected key (from Intel or AMD,
for example), the trust assumption is reduced
to a number of assumptions about hardware
security (which hasn’t been the greatest in the
past5) as well as to trust the TEE manufacturer

5See Foreshadow, MDS: Microarchitectural Data Sam-

and their supply chain.

A protocol solution: user-based consensus.
In Winkle: Foiling Long-Range Attacks in Proof-
of-Stake Systems, a protocol is introduced to
allow users to individually vote for checkpoints
as part of their transactions. Such votes are
weighted by users’ balances, and a checkpoint is
formed when a new epoch (and its validator set)
receives a quorum of votes from users. As such,
accounts must track their latest signed votes,
and the highest checkpoint might lag behind the
latest epoch. Nodes still must ensure that the
latest checkpoint is not too far from the current
epoch, and verify all signatures from all accounts
to ensure the validity of the latest checkpoint.

In addition, this system does not seem to be com-
patible with catchup mechanisms where a node
simply trusts the latest state based on a quorum
of signatures from the validator set and epoch
transitions based on a quorum of signatures from
the previous validator set without re-executing
and verifying every single transaction. Due to
the high throughput of these BFT consensus
protocols, nodes often have trouble catching up
if they have to re-execute every single transac-
tion, and as such, this catchup mechanism seems
to be the most widely deployed one in practice.
Although, we note that user-based consensus sys-
tems could become practical if augmented with
zero-knowledge proofs to allow nodes to avoid
having to re-execute everything.

As long-range attacks tend to target new clients
that are bootstrapping, or clients that have
paused their node for a very long time (which
tends not to happen much in practice), organic

pling, Plundervolt, and CacheOut: Leaking Data on Intel
CPUs via Cache Evictions and SGAxe: How SGX Fails
in Practice.
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checkpoints (i.e., manually checking that a node’s
state is the same as other node’s after bootstrap-
ping) are often deemed enough in practice.

3.3 Proof of Stake and Weighted BFT
Variants

Implementations of BFT consensus protocols of-
ten work on top of proof-of-stake systems, that is,
systems where participants apply to participate
in the consensus by locking (staking) a minimum
amount of tokens. This “open participation” is
often referred to as a “permissionless” system in
the cryptocurrency world, and it usually means
that the BFT consensus protocol is augmented
with a reconfiguration protocol.

In addition, to handle consensus participants
who stake more (which is inevitable), a “weighted”
BFT variant is often implemented (which most
often counts as a deviation from the paper proto-
cols). In a weighted BFT protocol, the number of
votes a participant has is based on their weight,
so they can potentially weigh for more than 1
vote.

In this case, an exact quorum of 2f + 1 votes,
for example, might be impossible to achieve as
the weights of votes collected in a certificate
might sum as either less or more than the thresh-
old. Therefore, code that requires a threshold
of exactly 2f + 1 votes might not work. In-
terestingly, some BFT protocols specify their
cryptographic signature schemes as threshold
signature schemes, which amplify these kinds of
subtle issues.

This subtlety can lead to liveness bugs in pro-
tocols where assumptions are made about quo-
rums that only works when certificates collect an
exact number of votes. For example, one imple-

mentation we looked at assumed that a quorum
certificate of 4f + 1 votes has a unique “subquo-
rum” of 2f + 1 votes on the same value. This
assumption was violated if the quorum certificate
included slightly more than the 4f +1 threshold,
which led to a liveness issue due to the weighted
implementation.

3.4 Fast Processing Against Garbage
Transactions

Most of the BFT consensus protocols used in
the wild work on a simple chain of blocks, which
gets committed chunk by chunk every time a
leading block gets committed. That being said,
there exist other types of BFT protocols that
work on building a large directed acyclic graph
(DAG) from different points of view and peri-
odically commit to entire subsets of the DAG
at once. For example, Narwhal and Tusk: A
DAG-based Mempool and Efficient BFT Consen-
sus, and Bullshark: DAG BFT Protocols Made
Practical, which both work in the asynchronous
model.

These “narwhal-based” protocols separate the
dissemination and ordering of transactions from
the agreement/consensus in order to speed up
the protocol. The consensus protocol merely has
to point to a vertex in the DAG formed in paral-
lel, and peers agree on committing the subDAG
under that vertex by doing a deterministic walk.

While this allows the consensus protocol to pro-
cess a larger amount of transactions, this comes
at the cost of potentially redundant transactions.
Due to this, it is the responsibility of the ap-
plication layer to ensure that redundant data
does not lead to double spending and is only
processed once. In addition, spam attacks could
happen where redundant data is sent to mul-
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tiple validators to fill the DAG in non-optimal
ways, leading to commits that commit much less
than what they could have. The techniques that
such protocols can use to defend against these
spam attacks are often vague and understudied.
As such, different implementations might use
different techniques with more or less efficacy.

3.5 Retrying Messages, A Necessity?

Paper protocols always assume that messages
from honest nodes will eventually reach their
destination. The time for these messages to
reach their destinations is either

• unknown, in the asynchronous model

• or bounded, in the synchronous model

• or eventually the network will get better (for
some unknown point in the future) and they
will be bounded in the partial synchronous
mode

Failing to deliver a message in any of these mod-
els could mean that either the sender or receiver
is Byzantine, or that there’s a (temporary) net-
work connectivity problem. This means that
to act as an honest node, one needs to ensure
that the messages they’ve sent are retried and
retransmitted until they are acknowledged at
the protocol level (as the recipient might have
received it but crashed before being able to fully
process it). Furthermore, even after recovering
from a crash, it might be implied by the protocol
that nodes have to understand what messages
they need to retry.

The reason for these subtleties in practice is that
consensus protocols, as written in whitepapers,
often have hidden assumptions about their ide-
alized networking models and the way peers are

connected to one another.

3.6 Consecutive Bad Leaders And
The View Synchronization Prob-
lem

In a consensus protocol, the participant nodes
move through a succession of configurations
called views (or sometimes rounds). Views are
numbered consecutively, and in each view, one
replica is seen as the leader. A view is essentially
a period during which the leader decides on the
next value to agree on and orchestrates the con-
sensus process. The latter is mostly to reduce
communication complexity and avoid having ev-
eryone broadcast to everyone.

If, during a view, the leader manages to get
agreement on a value, it moves to a new view.
However, if it fails to help the protocol make
progress, the system considers the leader faulty
and transitions everyone to a new view as well,
but this time with a new leader. This is known
as a view change. The goal of the view change
mechanism is to ensure that the system can con-
tinue to operate correctly even if a leader node
is faulty6.

The leader’s role is to ensure that the protocol
advances as swiftly as possible during the view
they’ve been elected for. As such, a bad leader
can completely stall the protocol and prevent it
from making progress, at least for the duration
of their view. The view change mechanism is
therefore crucial for maintaining the system’s
liveness and ensuring that it can recover from
leader failures or misbehavior, allowing the con-
sensus process to continue smoothly.

Practically, (partially) synchronous protocols im-

6where “being too slow” can also count as faulty
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plement two liveness mechanisms: leaders are
rotated when they fail, and nodes start a time-
out when they enter a view. Note that in prac-
tice, the rotation of leaders is implemented to
automatically happen in every new view (for ex-
ample, via a round-robin election) as it is good
for fairness as well (e.g., to avoid censorship of
transactions). If the protocol doesn’t advance
(from a node’s perspective) and this timeout ex-
pires, nodes attempt to preemptively enter the
next view together. This allows the protocol to
move in spite of a bad leader, albeit bounded by
a clock. Nodes do this, for example, by sending
a warning to the next leader, who can then ag-
gregate them and use a quorum as justification
to start a new view.

However, bad leaders can follow one another,
and protocols must take that into account (for
example, by chaining timeouts and trying leaders
from different views). This issue inconveniently
faces another issue known as “view synchroniza-
tion”, which must ensure that periods of network
instability still end up with enough participants
reaching the same view. As we need a quorum of
participants in the same view, at the same time,
to make progress. This means that timeouts can-
not be too quick and that nodes have to wait for
each other (at least for the partial-synchronous
model).

As such, if timeouts keep on happening, this
could either be because of bad leaders (in which
case we want to timeout as quickly as we can
to “move on”) or because of a bad network (in
which case we want to increase the timeouts to
ensure that people wait for each other within a
view).

Successive bad leaders have, non-intuitively,
much more impact than f potential successive

timeouts. This is because nodes don’t necessar-
ily enter a view at the same time, and thus can
timeout in staggered ways.

Solutions to this problem are often underspeci-
fied and ad-hoc based on non-ideal testing. They
generally employ two fixes: nodes will keep on
increasing timeouts if views successively time-
out (so as to wait for longer and longer periods
of time), while timing out preemptively if they
see the slightest sign that a single honest node
has already timed out in that view. The latter
means that at least one honest node had the
time to timeout in that view, and can be seen
by observing f + 1 timeouts.

Note that consecutive Byzantine leaders can have
much more impact in chained BFT protocols, as
these often require consecutive views to succeed
in order to trigger commits. This was discussed,
for example, in BeeGees: stayin’ alive in chained
BFT (Brief Announcement: It’s not easy to re-
lax: liveness in chained BFT protocols, BeeGees:
stayin’ alive in chained BFT).

On the other hand, the techniques discussed pre-
viously mostly applied to partially-synchronous
consensus protocols and not necessarily to asyn-
chronous ones, which tend to randomly elect
their leader in unpredictable ways, and after a
set of messages have been collected.

3.7 Leader Election, A Lottery That
Should Not Be Gamed

The way the leader gets elected is usually not
discussed in papers (or is the subject of entire
papers) and, as a consequence, is different in
every implementation. Some implementations
simply elect leaders in a round-robin fashion,
while others attempt to elect the protocol in a
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more random way, for example, using verifiable
random functions (VRFs). Notably, BA⋆ is
known to perform a random election that is not
public (and only revealed once a leader publishes
their winning ticket).

While round-robin elections can’t be gamed eas-
ily, they have downsides as they clearly reveal
the next sequence of leaders, making targeted
DDoS attacks potentially more damaging. Even
without an attack, it naturally lets slower nodes
have the same probability of being elected as
leaders as the more performant ones, which can-
not be so desirable either. On the other hand,
dynamically choosing a leader can have unin-
tended consequences as it might allow validators
to game the system in order to continuously
reelect themselves. These kinds of bugs can hap-
pen in different ways, as the application layer
implemented on top of the consensus often af-
fects the election of the leader. For example, a
leader election that uses previous block hashes
as randomness to choose the next leader can be
gamed by block proposers, or one that orders
winners by public keys can be gamed in open sys-
tems that let participants register as many new
accounts (with arbitrary keys) as they want7.

A reputation-based leader-election mechanism
introduced in DiemBFT v4: State Machine Repli-
cation in the Diem Blockchain and then devel-
oped in Shoal: Improving DAG-BFT Latency
And Robustness and HammerHead: Leader Rep-
utation for Dynamic Scheduling can be used to
mitigate the threat of slow leaders. This mecha-
nism involves validators maintaining a record of

7These attacks are sometimes known as “adaptive key
selection attacks” and “randomness-biasing attacks” (or
“grinding attack”), see Snow White: Robustly Reconfig-
urable Consensus and Applications to Provably Secure
Proof of Stake.

on-chain scores for each validator and employs a
deterministic rule to update the mapping from
rounds to leaders based on these scores, priori-
tizing leaders with higher scores. For validators
to agree on the new mapping, they must agree
on the scores and the on-chain metrics used to
derive these scores. This can be seen as a form
of slashing but targeting the liveness of the pro-
tocol.

It should be obvious that a leader election that
can be gamed can seriously affect not only the
liveness of the network, but also the fairness of
the network: as a continuously elected leader
could decide to censor transactions, or only pick
some validators in their quorum messages (po-
tentially affecting the networking score, if there
is such a thing implemented, of the ignored val-
idators). Although this is not the case in the
Narwhal-base consensus protocols we have talked
about for the same reason, consecutive bad lead-
ers were not an issue.

3.8 Byzantine Peers Will Mess With
You

Papers often don’t specify how peers are sup-
posed to catch up if they’re lagging behind. As
such, implementations must always ensure that
they can receive messages that appear to be
“from the future”, and that they have a way to
retrieve missing information to get to the latest
view (and configuration).

There are a number of gotchas in implementing
catch-up logic. First, messages from the future
are not always legitimate. A node should always
expect byzantine behavior from its peers. For
example, malicious peers might try to fool you
into thinking that you are X views or rounds
behind and force you to catch up, only to realize
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after quite some time that there was nothing to
catch up to.

Simply put, a node should not catch up if there’s
no reason to catch up. It might be obvious that
quorum certificates are a good way to prove to
a node that they’re lagging behind, but halting
whatever a node is doing to go into “catch-up
mode” before even verifying the certificate’s sig-
natures could be a problem. A certificate is also
not necessarily a bulletproof proof (no pun in-
tended) as it might be from a future preceding
one or multiple reconfiguration events, in which
case the node would not have the latest validator
set and their public keys required to verify the
certificate itself.

Another example is if you ask a peer for missing
information (like a previous committed block),
you should make sure that you can handle fail-
ure if the peer decides not to respond or respond
with bad information. Implementations typically
ask other peers, and optionally penalize and/or
disconnect from the peer that provided bad in-
formation, or was unresponsive.

Finally, “catch-up flows” should try not to dis-
rupt the liveness of the protocol or slow down
the protocol in general. There exist trade-offs
between delaying catching up and delaying con-
sensus to catch up. For example, If a received
message is from the future, but contains an obvi-
ous quorum of honest nodes, and the only thing
a node has to do is forward it to help drive the
protocol to a good outcome, then it might want
to forward it first and then enter catch up mode.

4 Beyond Ideation: Navigating
the Pitfalls of Instantiation

Now that we’ve looked at what BFT consensus
protocols found in the literature tend to omit
(for the misfortune of implementers), let’s dive
into how they are actually implemented and de-
ployed in practice, and what happens when one
takes a paper protocol and instantiates it into a
real-world system. We have found that in most
implementations we reviewed or worked with,
the protocol implemented was actually quite dif-
ferent from the original paper protocols that
they originated from. This was due to different
reasons.

First, paper protocols are far from being spec-
ifications that can be implemented. A lot of
aspects are either abstracted, underspecified, or
even missing, as we’ve seen in the previous sec-
tion. In general, the gap between a paper and a
protocol is made smaller through a more detailed
specification. Examples of good specifications
are RFC 8446: The Transport Layer Security
(TLS) Protocol Version 1.3, or The Noise Proto-
col Framework. The goal of these specifications
is to be at a level of detail where independent
parties could implement the specification in iso-
lation, and their implementations would still be
interoperable. Unfortunately, specifications are
often less of a priority, and we found that many
bugs could have been avoided if a specification
had been written. In addition, the writing of a
specification often helps simplify the code, its
organization, and even the protocol itself.

Second, developers tend to accumulate changes
and optimizations, taking paper protocols as
unfinished constructions that can be iterated
on. This sometimes leads to difficulties in un-

14

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html


derstanding how the implementation works, es-
pecially as the paper (or specifications, if they
exist) becomes outdated.

4.1 (Distributed) Denial of Service At-
tacks

Networking issues can lead to catastrophic con-
sequences in Nakamoto consensus-type of pro-
tocols because they can fork if enough comput-
ing resources exist in the different partitions.
For this reason, benign networking issues and
more targeted attacks aiming at isolating nodes
(called “eclipse attacks”) can be very effective
both during normal operations and during the
bootstrapping of a new node (which we discussed
in section 3.2 (Reconfiguration and Long-Range
Attacks)).

On the other hand, in partially synchronous and
asynchronous BFT consensus protocols, such at-
tacks only tend to lead to liveness issues as the
protocols are designed not to fork even in peri-
ods of asynchrony (as we discussed above), which
implicitly include network partitions. Network-
ing attacks are consequently often studied under
“Denial of Service” types of attacks, which we
expand on below.

Denial of Service (DoS) attacks are a criti-
cal concern in consensus protocols deployed in
the real world. These attacks can use bugs in
the implementation or inherent protocol flaws.
Implementation issues typically involve bugs or
vulnerabilities in the code, leading to crashes,
loss of connections, or resource exhaustion. On
the other hand, protocol issues are fundamental
flaws in the algorithm or a misimplementation
of a correct algorithm, which can lead to similar
liveness issues.

The problem of software bugs is that they are
intentionally ignored by paper protocols, which
consider them out of scope and implementation
detail. Software bugs, at their worst, can al-
low an attacker to continuously crash the whole
network by sending malicious payloads to par-
ticipants. While this paper discusses a number
of such bugs (that can lead to a whole network
being attacked), we only discuss how networks
can prevent these from going out of control. Al-
though we do mention later in the paper how
drastic defense-in-depth solutions could help (see
section 6.4 (0days, Faulty Validators and Multi-
ple Implementations)).

Distributed Denial of Service (DDoS) at-
tacks utilize multiple malicious servers (infa-
mously called a botnet) to overwhelm the infras-
tructure of a node. These attacks are prevalent
and pose significant challenges, as in other com-
puter systems. In “An Empirical Study of Con-
sensus Protocols’ DoS Resilience” (An Empirical
Study of Consensus Protocols’ DoS Resilience)
different attacks are used to overwhelm valida-
tors. Most of the attacks target cryptographic
code like signature verification in votes or cer-
tificate messages (the latter of which contain
many signatures). This is because cryptographic
logic tends to be more computationally demand-
ing and can become a target for a botnet to
overwhelm validators. In the study, they no-
tice that pipelined protocols are severely affected
(as we also mentioned in section 3.6 (Consecu-
tive Bad Leaders And The View Synchronization
Problem)), and generally, partial synchronous
protocols are somewhat easy to significantly slow
down (even without targeting more than f of the
participants). They note that, surprisingly, pro-
tocols that implement an unpredictable leader
do not gain a significant advantage against these
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attacks (as they can still target the leader once it
shows its face). On the other hand, asynchronous
and DAG-based BFT consensus protocols like
Tusk are much more resistant to these kinds of
attacks, as targeting a leader does not stop the
protocol from making progress.

Note that these network attacks are often mod-
eled implicitly by asynchronous or partially-
synchronous protocols. Asynchronous protocols
simply give up on the idea that the network has
periods of stability, while partially-synchronous
protocols dictate that there can be periods of
complete instability as long as they are followed
by stable periods of synchrony. These partially-
synchronous systems model the time it takes
for the transition from unstable to stable as the
Global Stabilization Time (GST) but do not
explicitly set it to be bounded. However, real-
world instantiations do care about minimizing
this GST, and as such, DDoS, especially lengthy
ones, are undesirable.

There exist several techniques to prevent DDoS
attacks, which we will briefly review next.

Protocol defenses. Unpredictable leader elec-
tions can help mitigate targeted DDoS attacks
as an attacker might not have the time, once
they know who the leader is, to perform their
attack. There are several methods (Leader Elec-
tion from Randomness Beacons and Other Strate-
gies) allowing to do that with different levels of
safety: Single Secret Leader Election, Ethereum
Consensus RANDAO, Algorand’s Cryptographic
Sortition.

At the same time, those advanced leader ran-
domization mechanisms can be difficult to im-
plement correctly and may require additional
cryptographic primitives, which can introduce
additional complexity and opportunities for mis-

takes. In that sense, round-robin leader election
is much easier and does not extend the attack
surface (and, as said previously, is not gameable).
In addition, as “An Empirical Study of Consensus
Protocols’ DoS Resilience” found out empirically,
the efficacy of the unpredictable leader defense
seems limited in partially-synchronous consen-
sus protocols, and adopting a DAG-based BFT
consensus protocol seems like an interesting ap-
proach as it requires disrupting at least f + 1
nodes to meaningfully impact the quality of the
system (which is the threshold that’s taken into
account by design in the BFT model).

Protocol setting defenses. BFT protocols are
sometimes constructed in a permissioned (also
called proof of authority) or semi-permissioned
setting, in which validators participating in con-
sensus remain part of the committee for long
periods of time. In such systems, IP addresses of
the validators don’t necessarily have to be made
public, and access control is easier to enforce
(for example, using a common MAC key shared
between the validators).

Topology defenses. Finding a good topology
for the network can also help. We discuss this in
more detail in section 4.4 (How Network Topol-
ogy Can Help Validators Defend Themselves).

Software defenses. Many software defenses ex-
ist and it is unfeasible to enumerate all of them.
One should make sure that the consensus layer
(and the application on top) are not doing un-
necessary computations, that the protocols used
to provide access control are not doing that ei-
ther, and so on. One could summarize that as
reducing the attack surface, reducing the oppor-
tunities for slowing down a node and reducing
the number of reachable bugs (which is what
most of this paper discusses).
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Network and infrastructure defenses. Fi-
nally, cloud providers are often where nodes are
hosted and run, and these usually provide base-
line defenses (like IP-based filtering, traffic scrub-
bing, rate limiting, and web application firewall
(WAF) protection) as well as specialized tool-
ing to defend against DDoS attacks (like AWS
Shield, Azure DDoS Network Protection, and
Google Cloud Armor). However, as these cloud
providers are limited in numbers and their fea-
tures are expensive, this approach can become a
source of centralization.

We also generally refer to An empirical study of
consensus protocols’ DoS resilience (sections 7
and 8) that goes more in-depth on these topics.

4.2 Secure transport: Leader Authen-
tication and Encryption of Ses-
sions

Consensus protocols operate over different types
of networking layers that, as usual, provide rich
functionalities: node identification and discov-
ery, connection establishment, message broad-
cast, and node health checking. In theory, con-
sensus protocols just need to be able to have au-
thenticated channels (not necessarily encrypted)
and know the public keys of other nodes, which
assumes some sort of public-key infrastructure
(PKI) designed in the protocol. The most an-
ticipated flaws and vulnerabilities here concern
secure handshake protocols or their integration
with the consensus PKI model.

Authentication of nodes is often achieved by us-
ing signatures, which can be costly to verify (see
section 4.1 ((Distributed) Denial of Service At-
tacks)). Not only that, but processing of other
validator messages can also be costly in general.
The best practice is to authenticate validators

at the peer-to-peer communication level. This
is often done by using a secure transport pro-
tocol like TLS or the Noise protocol framework.
This also has the benefit of encrypting commu-
nications (almost for free), which could prevent
attacks based on observation of the traffic data.

We have noticed that many protocols chose to
use the Noise protocol framework (The Noise
Protocol Framework) in place of TLS (mostly
due to its simplicity and its numerous security
analyses), which can lead to further issues if
not used correctly. First, the Noise handshake
pattern that is often used is the Noise NK hand-
shake pattern (Noise Explorer), which is subject
to two issues: replayability of the first message
(facilitating DDoS attacks) and lack of “key con-
firmation”. Lack of key confirmation means that
a successful handshake doesn’t imply that the
handshake was successful for both parties, and
this can be addressed by waiting to see at least
one message encrypted using the new session
key before canceling a previous session. The
replayability issue can be addressed by using a
counter to each connection attempt (see Noise
Layer specification of the Diem blockchain, for
example).

4.3 Storage Attacks and Garbage Col-
lection

The short-term/in-memory storage (e.g., some
of the messages received from other nodes) and
long-term/persistent storage (e.g., safety-critical
values like the view number) of a node are often
overlooked in papers. In this section we review
a few catches that we noticed in real-world im-
plementations.

First, the memory of a node should never grow
unbounded. Paper protocols sometimes talk

17

https://netsec.ethz.ch/publications/papers/Consensus_DDoS_AsiaCCS_24.pdf
https://netsec.ethz.ch/publications/papers/Consensus_DDoS_AsiaCCS_24.pdf
https://www.noiseprotocol.org/
https://www.noiseprotocol.org/
https://noiseexplorer.com/patterns/NK/
https://github.com/diem/diem/blob/latest/specifications/network/noise.md#replay-attacks
https://github.com/diem/diem/blob/latest/specifications/network/noise.md#replay-attacks


about garbage collection (see Bullshark: DAG
BFT Protocols Made Practical) to ensure that
the protocol itself doesn’t contribute to un-
bounded growth. However, implementations
have many more opportunities to grow their
memory to the point of crashing. For example,
nodes keep track of many messages and state vari-
ables in extendable data structures like arrays or
hashmaps in order not to equivocate (i.e., pro-
duce conflicting and unsafe protocol values) as
well as to prevent other nodes from lying to them
(for example, by keeping track of other nodes’
last proposals and votes). Ineffective designs and
data structures might thus facilitate attacks that
aim at slowing down a node by feeding them
data that they’ll store for too long. Another
related implementation detail worth mentioning
is that certain languages (like Erlang) do not,
by default, randomize the hash function used
in their hashmaps. This can, in some scenarios,
allow attackers to produce well-crafted messages
that collide with other messages stored in the
hashmap of a node, effectively introducing inef-
ficiencies in the node’s storage and potentially
provoking heavy slowdowns.

Second, the storage of a node should never be
updated before it knows for sure that this is the
right thing to do. For example, it should verify
the validity of a peer’s message (e.g., its prove-
nance, its signature, its well-formedness, etc.)
before updating its storage. In one implementa-
tion we looked at, an attacker could spam nodes
to increase their memory usage ad infinitum due
to the nodes’ logic failing to check the validity of
messages before updating their storage. This not
only gradually slowed down the targeted node
in an attack, but it also created an easy way
for an attacker to completely halt the network.
The attack worked this way: an attacker could

produce a malicious payload for a view far in the
future and impersonate some validator A using a
garbage signature; the invalid message can then
be sent to all the other nodes, which will save it
in their storage before aborting the processing of
the message (due to the invalid signature); but
at this point, as they remember seeing a message
from validator A in some far away view they
would discard any valid message from A up until
the future view is reached, effectively banning A
from the validator set for an arbitrary period of
time. Doing this to enough validators effectively
trimmed down the number of active validators
under the required threshold for liveness. We
show a snippet of the code in listing 1.

Finally, it is important not to prune data when
that data is required to be available. For exam-
ple, in many BFT protocols, signing a proposal
means that the node should then be able to
serve the data if requested until the data gets
committed or garbage collected (if the protocol
has garbage collection). If the node loses the
data (because of a crash, for example), it might
lead to liveness issues as a block gets committed,
but everyone has lost access to the block. As
such, persisting data and signing/broadcasting
the same data often have to be done in that or-
der in order to avoid potential liveness issues. In
addition, we have found implementations that
wrongly implemented the garbage collection of
blocks due mostly to the paper protocol being
confusing, specifically the implementation was
garbage collecting any block past a certain view
whenever a new view was reached, instead of
garbage collecting only when a commit happened.
The misimplementation could have led to live-
ness issues in some scenarios for the reason stated
previously.
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impl StateMachine {
pub(crate) fn process_replica_commit(

&mut self,
ctx: &ctx::Ctx,
signed_message: validator::Signed<validator::ReplicaCommit>,

) -> Result<(), Error> {
// TRUNCATED number of checks that will pass...

// Get current incrementally-constructed QC to work on it
let commit_qc = self

.commit_qcs

.entry(message.view.number)

.or_default()

.entry(message.clone())

.or_insert_with(|| CommitQC::new(message.clone(), self.config.genesis()));

// If we already have a message from the same validator and for the same view, we discard it.
let validator_view = self.validator_views.get(author);
if validator_view.is_some_and(|view_number| *view_number >= message.view.number) {

return Err(Error::DuplicateSignature {
message: commit_qc.message.clone(),

});
}
self.validator_views

.insert(author.clone(), message.view.number);

// TRUNCATED...

// Check the signature on the message.
signed_message.verify().map_err(Error::InvalidSignature)?;

// TRUNCATED...
}

Listing 1: Vulnerable snippet of code that verifies the signature over a message received from another validator
after storing the message.
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4.4 How Network Topology Can Help
Validators Defend Themselves

Validators are connected to other validators and
need to eventually serve the data they have
reached a consensus on to other peers. These
other peers, often called clients or users, can’t
do anything useful if they can’t access the data.
This sort of represents a departure from the clas-
sical BFT literature that mostly focused on dis-
tributed databases in private networks, whereas
all the more recent research and application has
seen its place in the blockchain world.

Of course, users being able to directly query
validators represents a liveness risk (as we talk
about in section 5.4 (Panicking Or Not?)). To
our knowledge, we’ve observed a few network
topologies. They can be categorized in the fol-
lowing ways:

• No protection. Clients can directly query
validators. This is dangerous for obvious
reasons.

• Infrastructure protection. A similar
topology, except that a validator runs in
the cloud and is “shielded” by anti-DDoS
services. This is safer, but still subject to
DoS attack through protocol and software
bugs.

• Protocol protection. “Pre-validators”
stand in front of a validator’s node, ter-
minating connections and either forwarding
messages to a validator or serving responses
themselves if they can (usually, consensus
messages are routed to the validator, ev-
erything else can be served as if the pre-
validators were replicas). Typically the pre-
validators would sit in the same private net-
work as the validator (perhaps using VPC

peering) so as not to expose the validator di-
rectly to the Internet. These pre-validators
can be set up to be much lighter nodes that
reuse some of the same validator logic to
perform some amount of validation. This
approach can limit attacks that target flaws
in the software as they would only affect the
pre-validators but not validators themselves
(and would thus allow validators to continue
contributing to the consensus protocol). As
these nodes run logic, they are more costly
to run. This concept is called “sentry nodes”
in Cosmos (Validator Security in the Cos-
mos Hub) and validator full nodes in Aptos
(Node Networks and Synchronization in Ap-
tos)

• Private network protection. This is sim-
ilar to the previous protocol protection, ex-
cept that validators talk directly to one an-
other via a virtual private network. This
is, for example, what Aptos does (Valida-
tor Nodes Overview in Aptos). In addition,
permissioned networks usually have the lux-
ury of being able to use over-the-shelf VPN
solutions like Wireguard.

We recapitulate these different topology configu-
rations in figure 6.
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Figure 6: The different network topologies in which
BFT validators are deployed.

4.5 Imperfect Quorums In Practice

The first instantiation that an implementation
of a BFT protocol is faced with, is to figure out
the number of participants, which in turn will
dictate the number of Byzantine participants
that the implementation will be able to defend
against.

Let’s take the example of n = 3f + 1, which
is quite common. As said previously, an im-
plementation will typically choose a number of
participants first (the n in the equation). But
depending on the value n, the equation might
not have a solution for f in the natural numbers.

For example, imagine that n = 100. Then if
n = 3f + 1 we have that f = (100− 1)/3 = 33,
this works perfectly. But what if n = 105? Then
f = (105− 1)/3 = 34.66. . . , what do we do with
that? The response is nuanced: one has to make
sure that all assumptions used in the safety and
liveness proofs are preserved, especially consider-
ing how the thresholds are computed in practice.

Figure 7: A visualization of an absurd situation where
the quorum intersection property is violated, as two
conflicting proposals A and B received a quorum of
(2f + 1) votes

For example, the quorum intersection prop-
erty, which is used in all BFT consensus proto-
cols, says that two quorums of 2f +1 votes can’t
be obtained on two conflicting proposals A and
B, which we picture in figure 7.

The property can be proved by showing that the
intersections of the honest nodes that voted for
both conflicting proposals is not empty (which
is absurd as honest nodes are not supposed to
vote for two conflicting proposals):

|A/F |+ |B/F |+ |F | = (f + 1) + (f + 1) + f

= 3f + 2 > n

However, this assertion doesn’t necessarily hold
anymore when the number of Byzantine partici-
pants or the number of participants is obtained
by rounding up or down. Keeping our example
above, imagine that with 105 participants, we
decide to set f = 34 faulty nodes. Then, there
are two ways to compute the threshold required
for a quorum, with one which could potentially
lead to a safety violation:

• either we calculate a quorum as n − f =
105− 34 = 71 votes

• Or we calculate it as 2f + 1 = 69 votes

While n− f = 2f + 1 when we have n = 3f + 1,
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Figure 8: The impact of the threshold computation
on the quorum intersection property.

when we don’t have that, then we must ensure
that the quorum intersection property is true, as
pictured in figure 8

In our example, we would have that:

• if we picked a threshold at 71 votes, then
(71−34)·2+34 = 108 > 105 and the quorum
intersection is still proven correct

• If we picked a threshold at 69 votes, then
(69−34)·2+34 = 104 < 105 and the quorum
intersection is not valid anymore

In the last case, the careless selection of thresh-
old could lead to safety violations. As such,
implementations have to ensure that they com-
pute thresholds in a manner that preserves the
correctness of the safety proof.

4.6 Implicit State Transitions Are
Hard To Trace

While most cryptographic protocols implemented
today are quite linear and sequential in nature,
BFT protocols admit many possible state transi-
tions. As such, they are often implemented via
an “actor pattern”, where a supervisor launches
different actors in (potentially green) threads,
and where each actor is in charge of processing
specific types of messages and events. The su-

pervisor is also in charge of making sure that
proper channels of communication are set up
between actors. For example, implementations
typically have a network actor, a consensus actor,
a block syncing actor (for catch-up), etc. The
consensus actor itself is often further subdivided
into multiple actors, at the very least one for the
non-leader part and one for the leader part (that
gets busy when the validator enters a view in
which they are the leader).

This kind of architecture and design makes state
transitions less explicit, and thus it is harder to
prevent incorrect state transitions. It would be
interesting to see implementations that clearly
and exhaustively state all legal state transitions
and prevent any state transition from happening
if it is not from a whitelist of state transitions.8

The complexity of the state transitions of a node
impacts, in turn, the analysis of the entire proto-
col. This makes finding issues in the instantiated
protocol’s possible state transitions quite diffi-
cult as one needs to think about all the different
possible states in which the network might find
itself. A computational approach to testing dif-
ferent scenarios in which nodes misbehave was
attempted in Twins: BFT Systems Made Robust.
The research simply iterated through scenarios9

in which Byzantine nodes were instantiated by
running two nodes (unaware of each other) for
the same validator identity. This allowed them
to easily provoke Byzantine behavior like equiv-
ocation (e.g. voting on conflicting proposals)
while being able to test the actual up-to-date

8This approach can sometimes be seen in more se-
quential protocols like TLS. For example, Meta’s TLS
1.3.

9executing 44M scenarios daily, in a fuzzing-like ap-
proach (as described in section 6.1 (Static and Dynamic
Testing To Find More Bugs)).
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node implementations. By testing many different
configurations in all kind of network partitions
they manage to rapidly find known, as well as
new, safety attacks.

Liveness checking of Streamlined Blockchain Con-
sensus extends the Twins framework to detect
liveness issues with interesting results. To do
that, they extend a node’s implementation in or-
der to allow for detection of “hot states” (states
that have high chances of representing a live-
ness issue) as well as live locks (which they call
“lassos”).

4.7 Detection and Forensic of Byzan-
tine Behavior

When slashing is not implemented, real-world
systems often do not do much to detect equivo-
cation and, more generally, Byzantine behavior.
The reasoning is perhaps that individual and
isolated Byzantine behavior doesn’t do much by
design, at least up until the tolerated threshold
of faulty nodes, at which point it is too late to
do anything anyway.

But in practice, there isn’t much cost to storing
enough information to be able to log Byzantine
behavior and investigate why it happened in the
first place. It should be obvious that Byzan-
tine behavior in isolation is highly likely to be
a legitimate bug that needs fixing rather than
an attack. Thus, investigating these could help
prevent accidental forks or liveness issues.

Of interest, “BFT Protocol Forensics” (BFT
Protocol Forensics) studies the question of
“what BFT protocols facilitate the detection
of such byzantine behavior?” See also Player-
Replaceability and Forensic Support are Two
Sides of the Same (Crypto) Coin.

4.8 Instantiating Cryptography: BLS
Signatures and Forgery of Certifi-
cates

Instantiation of the cryptographic blocks can
lead to bugs too. The two main cryptographic
primitives that BFT consensus protocols tend
to use are signature schemes and (consequently)
hash functions. Authenticated encryption can
also be used to create secure channels between
participants (as discussed in section 4.2 (Se-
cure transport: Leader Authentication and En-
cryption of Sessions)). In the non-canonical
representation section later in this paper (sec-
tion 5.7 (Non-Canonical Representations)) we
discuss how a misuse of hashing led to a bug. In
this section, we focus on how we uncovered a
misuse of the BLS signature scheme.

The BLS signature scheme is often used in BFT
consensus protocols to minimize communication
complexity. This is because it supports “signa-
ture aggregation,” which allows anyone to com-
press many signatures (often over the same mes-
sage) to a single signature. This allows valida-
tors to save on bandwidth and accelerate the
exchange of quorum certificates.

Nonetheless, BLS has its own subtleties and
gotchas, it is well-known to be vulnerable to
rogue key attacks (BLS Multi-Signatures With
Public-Key Aggregation) if not used correctly.
A rogue key attack allows a malicious actor to
forge an aggregated signature that looks like
other (victim) signers were involved when they
were not.

The first line of defense against such attacks is
to ensure that each participant truly knows their
keypairs. As discussed in The Power of Proofs-
of-Possession: Securing Multiparty Signatures
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against Rogue-Key Attacks, not any “public key
validation” scheme is secure, and either knowl-
edge of the secret key (KOSK) or a Proof of
Possession (PoP) scheme (with a separate hash
function) must be used. Several of these solutions
are standardized in IETF’s BLS draft standard
(section 3.3).

If the public keys of the validators of a BFT
consensus protocol are not vetted in some way
that would prevent such rogue key attacks (for
example, they rarely are at genesis), it is possible
that two malicious validators could collude to
forge arbitrary quorum certificates in the con-
sensus protocol. The reason for the collision is
that one malicious replica would need to create
a malicious keypair that would cancel a quorum
of public keys when used to sign. The ill-formed
keypair would not allow them to sign on their
own, and thus would not be able to participate
directly in the consensus protocol without the
help of the other malicious replica.

To understand the attack, we briefly recap how
BLS works. BLS works by checking that a signa-
ture S is equal to r · x, where r is an “unknown
and hidden value” derived from the message and
x is the private key of the signer. The check
works because of the combination of:

1. r being unknown and hidden: given a mes-
sage and a base point P , anybody can com-
pute Q = r · P , but not r itself

2. only the signer can produce (r · x) · P : they
can do so by scaling Q with their secret key

Anyone can then verify the equality without
knowing the values themselves by using a pairing
over public values (the hidden value Q = [r], the
public key X = [x], and the signature S):

e([r], [x]) = e(S, [1])

An aggregated signature over the same message is
simply the addition of multiple signatures

∑
i Si,

which can be checked with a similarly aggre-
gated public key

∑
iXi =

∑
i[xi]. This follows

from the generalization of the previous pairing
equation:

e([r],
∑
i

[xi]) = e(
∑
i

Si, [1])

The attack works by creating a keypair (x̃, X̃)
such that its public key cancels a set S of “victim”
public keys involved in the aggregated signature:

X̃ = (x̃ · P )− (
∑
i∈S

Xi)

and to simply sign as if we were alone:

S̃ = x̃ ·Q

so that the pairing check passes:

e([r], X̃ +
∑
i∈S

Xi) = e(S̃, [1])

⇔ e([r], [x̃]) = e([x̃ · r], [1])

4.9 Upgradability of the Protocol

Upgrading a protocol is a difficult topic as there’s
no size-fits-all protocol or pattern that’s com-
monly used. Most protocols do go through up-
grades, either to patch vulnerabilities, to improve
the protocol, or to change the rules of the system
over time. As such, different designs are often
observed in the wild.

We have found that most protocols are poorly
prepared for flexible protocol upgrades, perhaps
due to the fact that, most often, BFT consen-
sus protocols require everyone to update anyway,
which allows for clean updates of the protocol,
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message types, and data structures. Indeed, un-
like protocols like TLS that must constantly sup-
port older systems that cannot easily update
to newer versions, BFT consensus protocols are
most often used in scenarios where everyone can
agree to update at the same time10.

Although this is not always the case, the
blockchain world has coined the term “soft fork”
for an update that will work even if not accepted
by everyone. Although, these updates tend to
be application-layer updates, which would not
work for a BFT consensus protocol that requires
as many nodes as possible (and at least a quo-
rum) to be on the same page in order to ensure
liveness.

5 General Implementation Con-
cerns

So far, we have only covered protocol-related
issues. In this section, we review a number of
pure implementation-related issues that we have
found to be quite common in BFT implementa-
tions, as well as insights that we have learned
from working and auditing real-world BFT con-
sensus implementations.

5.1 Graceful Recovery and Persisting
Data

BFT protocols often assume that honest nodes
will follow specific rules to the letter, which will
allow the protocol to remain safe. That assump-
tion is easy to write on paper, but trickier to

10Notably, due to the nature of these “abrupt updates”
that do not need to be backward compatible, the up-
date process of Cosmos was known to be vulnerable to
forced malicious update that would result in remote code
execution (Not Your Stdout Bug - RCE in Cosmos SDK)

implement in practice as nodes can, for example,
crash at random times.

As such, if a rule says “you shall not vote more
than once in the same round” or “you shall not
vote for a previous round” or “you shall not pro-
pose different blocks during the same round”, a
node needs to keep track of the rounds it partic-
ipated in even if it crashes at the wrong time.

In practice, this means two things:

1. That important safety-related data must be
persisted, so that if a node crashes, it can re-
cover its latest state and avoid equivocating
or doing something not-by-the-book.

2. That this important data must be persisted
at the right time, as crashes could happen
at any inconvenient place in a node’s logic.

The second one is a good source of bugs. For ex-
ample, a node might produce a proposal, broad-
cast it, and then persist it. But what would
happen if it crashes right after broadcasting it?
It would recover from a bad state and equivocate
(i.e., broadcast a different proposal).

In addition, a validator should also ensure that
they do not end up in a state where the data
they have persisted is not enough or inconsistent
in order to fully recover from a crash. Inconsis-
tency usually arises when different parts of the
system that act concurrently end up persisting
conflicting data.

This kind of bug can be found by employing error-
injection frameworks during testing11. Note also
that “graceful recovery” is a field of research that

11for example, the fail Rust package
(crates.io/crates/fail) was used by DiemBFT to
randomly inject errors in different parts of the system
during testing
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led to the creation of Erlang and the “let it crash”
philosophy (Making reliable distributed systems
in the presence of software errors), but to our
knowledge no consensus implementation follows
the Erlang philosophy of running different agents
that can crash in isolation and easily be restarted
by their supervisor.

5.2 The Hidden Cost of Processing
Redundant or Unnecessary Data

Serialization (and deserialization) of data struc-
tures must be performed for every different type
that needs to be exchanged through the wires
as part of the consensus protocol. That is, as
objects defined in code leave the boundaries of
a validator to meet another one, they are en-
coded in a binary format and then sent over the
wire and then decoded or deserialized at arrival
by another validator to interpret that as an ob-
ject in their (potentially different) programming
language.

Structures that are being serialized often contain
fields that represent cached values that can be
derived from the structure itself (for example,
the hash of the object). While these fields do not
necessarily need to be serialized, as they can be
recomputed, they are often found to be serialized
anyway. This means that deserialization must be
done carefully to ensure that any of these cached
values actually contain the correct value.

In general, we have seen these types of bugs
leading to unexpected behavior and sometimes
devastating issues as it is common to forget to
validate these values. In a different context, the
developer might think that since these values
are redundant or computable from the structure
itself, they must be correct.

Some languages like Rust provide macro-based
libraries like Serde to generate large amounts
of blueprint serialization code, avoiding human
errors in manual repetitive code12. In addition,
this kind of library allows developers to mark
fields that should be ignored when deserialization,
forcing the correct local recomputation of those.
We give an example in listing 2.

#[derive(serde::Deserialize)]
struct Block {

author: PublicKey,
// block_hash will not be deserialized
#[serde(skip)]
block_hash: Option<Digest>,
payload: Payload,

}
Listing 2: Deserialization of a Block that ignores
the cached computation of the block hash and forces
local recomputation.

As a general rule, if some data doesn’t need to be
sent over the wire, the application should make
sure not to send it (and not to deserialize it if it
is present). On top of the savings in bandwidth
it avoids this class of bugs “by design”. Avoiding
serialization of redundant fields forces the deseri-
alization to always recompute these fields, which
in turn reduces the risk of deserialization bugs
where someone forgets to check that these fields
contain the correct values.

5.3 Validating Untrusted Inputs

A BFT protocol on paper often dictates the hon-
est way of following the protocol, but not neces-
sarily the exact steps to take to be honest and

12This is not an isolated instance of a programming
language helping developers to avoid entire classes of
bugs by being well designed.
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to enforce that others are honest as well. When
instantiating a protocol in a real-world imple-
mentation, such logic has to be implemented and
enforced on both sides of a communication chan-
nel and for every consensus message defined in
the protocol.

For example, a leader must ensure that they
correctly construct their messages according to
the rules, but the other validators that receive
and parse that message must ensure that it is
correctly formed as well (as a malicious leader
can do whatever they want). This is true in the
reverse scenario as well or between non-leader
validators. This duplication of logic can some-
times lead to bugs as implementers can forget
to implement both sides. For example, do cer-
tificates really contain a quorum of votes? Are
messages signed? Are the signers part of the
current validator set, and are they only appear-
ing at most once per quorum certificate? Is the
author of a proposal the leader of the current
round? etc.

This validation needs to happen every time a
message is received, but depending on implemen-
tations, we have found that they are not always
implemented and executed at the same place.
This can make it hard to audit such code as we
must chase where validation happens. In addi-
tion, refactors might remove validation or add
important logic that happens prior to the vali-
dation (as was discussed in section 4.3 (Storage
Attacks and Garbage Collection)).

The type state pattern (The Typestate Pattern
in Rust) can help by enforcing validation via
the type system, preventing bad code from even
compiling. The type state pattern essentially
defines objects in different states (validated or
not) and gates some operations behind one or

the other state. For example, in Rust, this is
possible using type parameters, and we illustrate
this in listing 3 with signed messages that can
be read and processed only after the signature
has been validated.

Not every language can support the construction
of such abstractions at compile time, but writ-
ing runtime abstractions to enforce these same
rules can be an interesting pattern to implement,
nevertheless.

5.4 Panicking Or Not?

Using panic-like functions inside the core logic
of a consensus protocol can halt a validator and
cause liveness issues (for example, through tar-
geted DoS attacks, as discussed in section 4.1
((Distributed) Denial of Service Attacks)). This
is particularly critical at entry points where ex-
ternal input controlled by malicious attackers is
processed (e.g., public APIs)13.

As consensus protocols are often implemented as
part of larger systems that need to be exposed
to users in order to be useful (see section 4.4
(How Network Topology Can Help Validators
Defend Themselves)), it is important to remove
unnecessary panics that could be reached from
the outside and replace them with proper errors
being returned to the users (and potentially log
them) instead. Panics should be reserved to
important assertions in places where a violation
could lead to undefined behavior (i.e., better
crash than not understand what would happen
if we let the logic continue).

Using fuzzing techniques (which we discuss in
section 6.1 (Static and Dynamic Testing To Find
More Bugs)) on the Libra/Diem codebase, we

13See ABCI methods panic.
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pub struct Signed<V: Variant<Msg>> {
/// The message that was signed.
msg: V,
/// The public key of the signer.
pub key: validator::PublicKey,
/// The signature.
pub sig: validator::Signature,

}

impl<V: Variant<Msg> + Clone> Signed<V> {
/// Verify the signature on the message.
pub fn verify(self) -> anyhow::Result<V> {

self.sig.verify_msg(&self.msg.clone().insert(), &self.key)?;
Ok(self.msg)

}
}

Listing 3: Using a typestate pattern in Rust to prevent code handling unsigned messages.

found many issues of the unreachable!() macro
in Rust, a seemingly benign function meant to
indicate parts of the code that cannot be reached
and panics to indicate that the assumptions were
false. For every actually-reachable instance we
found, the panic was unnecessary and could have
simply been replaced with an error to the user
or a log to indicate weird node behavior needing
investigation. In addition, we used linters to
detect code that could panic when it didn’t need
to panic (for example, TryFrom implementations
in Rust are already expected to potentially return
errors, and thus should not contain panics).

Note that it is not always straightforward to
understand what code can panic. For example,
functions of the standard library (or other de-
pendencies) might not properly document if they
can panic. (For example, we found panics with
usages of the Rust copy_from_slice() function,
which at a glance could seem infallible.)

5.5 Integer Overflows

Integer overflows are another potential oppor-
tunity for errors when implementing consensus
protocols, as paper protocols never talk about
the serialization and encoding of their messages
and types.

One common notable issue is to choose data
types that are too small for a long-term run of
the protocol. Depending on the speed of the
network, a 16-bit data type to count the number
of blocks, views, etc., might not be enough, while
a 32-bit data type could be enough. (Imagine
that a BFT consensus protocol could achieve one
view per second, then it would require 136 years
to overflow a 32-bit data type.) That being said,
we usually recommend using 64-bit data types
just to be sure.

Another issue is to gracefully handle underflows,
especially when the protocol starts (or restarts).
For example, reaching out for previous rounds
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when the round number is 0 will not work. In
these edge-cases, it is important to not produce
negative values or underflow14.

One might wonder if crashing on under/overflow
is a good idea. This can be a bit too extreme
as operations overflowing can happen in all sorts
of benign places (including logs), which would
transform a number of non-issues into liveness
issues. In addition, this adds quite an overhead
to all operations that happen in a node imple-
mentation. This is most likely why most popular
languages do not panic on overflows15.

Note that in our experience, most integer over-
flows found in consensus protocol implementa-
tions were non-impactful.

5.6 Non-Determinism and Concur-
rency Issues

Non-determinism in validator’s logic can lead to
validators failing to come to a consensus due to
failing to take the same actions or failing to come
up with the same values (for example, a value to
agree on).

One way non-determinism is exhibited by con-
sensus protocols is in the implementation of a
node which often involves multiple threads and
concurrent tasks (as mentioned in section 4.6
(Implicit State Transitions Are Hard To Trace)).
As concurrent code provides no guarantee on the
ordering of its concurrent tasks (which is often
affected by the network and protocol timeouts),

14some languages support augmented arithmetic func-
tions like saturating_sub() in Rust, which will return
0 instead of negative or large values when an underflow
occurs.

15Although some languages like Solidity have decided
to do so due to the number of devastating bugs that were
happening due to overflows.

concurrent code can lead to concurrency issues in
which nodes exhibit unsafe behavior (e.g., equiv-
ocation) or dangerous liveness behavior (e.g.,
deadlocks).

The paper “Concurrency Testing of the HotStuff
Distributed Consensus Algorithm” investigated
using different techniques to produce different
program traces, exercising different ordering of
concurrent tasks to potentially find such concur-
rency bugs. They obtained good results, but as
far as we’re aware, this requires specialized tools
(e.g., Concurrency Unit Testing with Coyote)
that might not work with every stack.

In other situations, the implementation itself
directly makes use of non-deterministic data
structures. For example, hash tables (also
called hash maps, dictionaries, or associated ar-
rays) are often implemented in programming
languages in such a way that iterating over them
returns their entries in a different order. This
is usually because of the randomization of their
internal hash function (for security purposes).
Thus, if a consensus protocol requires validators
to all pick the same entry out of several entries
of a hash table, they might fail to agree on the
one that they picked.

Another bug we found was a bug in a sidechain
that used Tendermint Core in a service-based
model instead of the traditional ABCI-based
model for ordering input transactions. In this de-
sign, each sidechain node interacts with a trusted
Tendermint node using its RPC. A sidechain
node sends input messages to the correspond-
ing Tendermint node. Tendermint validates
these messages and ensures they are recorded on
all Tendermint nodes in the same order within
blocks. The sidechain node then retrieves Tender-
mint blocks via Tendermint RPC, performs static
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and semantic validation, removes corrupted mes-
sages, generates a block with the verified mes-
sages, and applies them directly. Since Tender-
mint nodes did not perform semantic message
validation within ABCI, Tendermint blocks may
contain corrupted (malicious or invalid) messages.
Meanwhile, the sidechain mempool performed
all necessary input validation checks. To address
this, message filtering for all Tendermint blocks
was implemented: if a Tendermint block con-
tained corrupted messages, they were filtered out
before the block was sent to the sidechain node
for execution. The bug occurred because of filter-
ing, not all valid messages were included in the
corresponding sidechain block due to Golang’s
range iteration. As a result, this led to a safety
violation.

5.7 Non-Canonical Representations

A lack of canonical representation for a proto-
col object can also lead to non-determinism or
confusion bugs where a value is interpreted as
a different one by different nodes. Such a flaw
could lead different validators to interpret the
same object in different ways or different objects
in the same way.

A good example of that is in malleable DAG
representations bugs. A DAG can be seen in
two ways:

• Either, with vertices made out of blocks,
and edges implying the existence of “quorum
certificates”, allowing them to extend other
blocks

• Or, with vertices made out of certified
blocks, explicitly encoding the quorum cer-
tificates in the vertices themselves (or in the
graph)

Figure 9: The different ways of encoding or interpret-
ing a DAG, visually.

The problem with one of these representations is
that certificates are malleable: any combina-
tion of signatures works as long as they reach a
quorum. As such, different validators trying to
come to a consensus on a DAG might not agree
on the DAG if they look at the second way of
representing the DAG (see figure 9).

Due to this, some implementations can “lock”
themselves in an irreparable state because they
can’t retrieve an updated DAG from another
peer that is compatible with their local DAG.

But at worst, non-canonical representations can
lead to safety issues as well. For example, if a
hash function does not uniquely identify a block,
due to a non-injective encoding, it might lead
to the logic being applied to incorrect or mali-
cious data. We found such a bug in a cryptocur-
rency application in which the implementation
did not encode blocks in a bijective way. This
led to validators being able to lie to others about
the content of a block that they were agreeing on.
To understand how this can happen, imagine the
following example that uses a naive encoding to
hash a transaction of 100 tokens from Alice to
Bob, with 15 tokens of fee.

As this transaction is non-injective, one can eas-
ily shift values around to produce a different
transaction (here with a transfer value of 1001
tokens and 5 tokens of fee) that hashes to the
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same digest. We illustrate this in listing 4.

Another example of a non-canonical representa-
tion bug is due to malleable signatures. Most sig-
nature schemes are malleable (On the Malleabil-
ity of ECDSA Signatures , Taming the many
EdDSAs) in the sense that either the signer can
produce a different valid signature for the same
message, or an observer without control of the
signing key can alter the signature so that it is
still valid for the same message. Any protocol
relying on the uniqueness of a signature would
thus have issues. While, in general, it is bad
practice to rely on a signature being unique, pro-
tocols that insist on relying on the uniqueness
of signatures still have the option to use signa-
ture schemes that offer this property! The BLS
signature scheme is a good example of such a
scheme.

6 Defense in Depth

Nobody writes bug-free code. If someone were
to do a study on what causes the most code
per line of code, it would probably be a mix of
what language is being used (some languages like
C are much harder to write correct code with),
how complex the logic being implemented is, and
how self-contained and simple the code is. BFT
consensus protocols tend not to fare well for the
last two metrics and can, therefore, hide a lot
of bugs. On top of that, implementations are
often not just code written by core developers,
but an entire tree of dependencies (e.g., libraries,
frameworks, etc.) used by the project. The
question then becomes, how should one find the
bugs? And what can one do to limit the impact
of such bugs when they inevitably happen?

6.1 Static and Dynamic Testing To
Find More Bugs

We’ve talked about the benefits of writing spec-
ifications and of manually reviewing code, but
a lot of automated tools exist to find different
classes of bugs.

Static analysis, which comprises tools that ana-
lyze code semantics without executing it (some-
times having access to the compiled AST), is
often easily accessible to developers through the
form of code linters (depending on the program-
ming language). In our experience, these tools
are rarely helpful to find meaningful bugs.

Dynamic analysis, on the other hand, includes
tools that execute code in order to find bugs.
One of the most notable dynamic analysis tools
is fuzzing, which has shown to be great at find-
ing tons of memory corruption bugs in C-like
programming languages. Unfortunately, most
BFT implementations are written using modern
languages (like Rust or Golang) that do not offer
great opportunities for memory corruption bugs.
This does not mean that fuzzing is completely
useless, and in our experience, it was useful in
finding logic that led to crashes (as we mentioned
in section 5.4 (Panicking Or Not?)).

Fuzzing works by instrumenting the program
binary and detecting when new inputs lead to
taking new paths in the program execution. A
fuzzing test usually targets a single function that
expects a byte string as input and then uses
different heuristics to generate an infinite number
of random-looking byte strings to feed to the
program. When an input leads to a new path,
it then attempts to create more similar-looking
inputs to fuzz that path further.

As noted, fuzzing has a pretty simple interface
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$ echo -n "Alice""Bob""100""15" | openssl dgst -sha3-256
34d6b397c7f2e8a303fc8e39d283771c0397dad74cef08376e27483efc29bb02
$ echo -n "Alice""Bob""1001""5" | openssl dgst -sha3-256
34d6b397c7f2e8a303fc8e39d283771c0397dad74cef08376e27483efc29bb02

Listing 4: An example of hash collisions due to ambiguous hashing of the underlying data.

at its core that targets functions that take a
single-byte string as input. This makes it a bit
of a challenge to understand how to fuzz a BFT
consensus protocol, as these protocols offer many
different state transitions and entry points that
can be fuzzed. Hanno Böck is well-known for hav-
ing demonstrated that complex cryptographic
protocols are still great candidates for fuzzing,
showing that the infamous heartbleed bug could
have been found on OpenSSL using fuzzing16.
Since then, we have also used this strategy to
fuzz other TLS implementations17.

We have replicated the same strategy to fuzz
consensus protocols by creating different scenar-
ios, in which we set up a validator to receive a
specific message and fuzz that message. For ex-
ample, fuzz a proposal and send it to a validator
who expects a proposal18.

There are a number of things to consider when
fuzzing. All determinism has to be removed,
as it can trip fuzzers into thinking that they
found new inputs leading to new paths, when
they have not. This means that async code
and threaded code should be avoided, random
numbers should be made deterministic, and so
on. (Even the fact alone of initializing some
state can trip fuzzers, as they think that the
next run after the initialization run just found

16See How Heartbleed could’ve been found (2015).
17See Fuzzing picotls.
18See how fuzzing consensus messages for Libra was

implemented

a new path.) Cryptographic checks often can’t
be faked, and so signature checks have to be
removed as well. Fuzzers also need to be as
fast as they can be in order to find bugs (as
it can sometimes take months to find one bug),
which means, for example, that any kind of timer
should be removed as they will slow down fuzzers.

Overall, the problem with fuzzing is that setting
up and implementing these scenarios is costly,
optimizing a fuzzing test takes time, and run-
ning them continuously requires infrastructure
resources. The scenarios to fuzz BFT consensus
protocols are also limited, as a lot of the state
transitions are implicit and numerous, and it
is difficult to cover all of them. The amount
of setup necessary for a node to be fuzzed is
also sometimes a blocker (modules need to get
mocked, threads need to be avoided, etc.), which
can force us to limit ourselves at fuzzing internal
functions instead of more general entry points,
which potentially misses on covering important
logic.

In addition, fuzzers are quite dumb in nature,
and their heuristics often fail to efficiently find
new interesting inputs. Note that there exists
a promising new branch of fuzzing, whitebox
fuzzing that attempts to be more clever at find-
ing new paths by using SMT solvers (Billions and
Billions of Constraints: Whitebox Fuzz Testing
in Production), and even LLMs (White-box Com-
piler Fuzzing Empowered by Large Language
Models).
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Another option is to use property tests, which
were introduced and popularized with the
QuickCheck library in Haskell. Property test-
ing libraries share a lot of the same logic with
fuzzing libraries, except that they are usually
much better integrated and can more easily cre-
ate random-looking custom structures (and not
just byte strings). In addition, property testing
doesn’t require a (sometimes costly) infrastruc-
ture to run, it just runs when tests are run, and
any bad input found is saved to run as a regres-
sion test in the future. Property tests are often
much dumber than fuzzing, though, as they just
generate random objects without real strategy.
But as we said earlier, fuzzers are still dumb (at
least without the whitebox fuzzing approach),
and as such the question is: is dumb better than
dumber? And do we find most fuzzing bugs after
a long continuous fuzzing period? In our expe-
rience, it is not clear. As such, we recommend
using property testing and augmenting it with
fuzzing if one can. And if one really can, then,
of course, consider looking into white fuzzing.

6.2 How Formal Methods Help, And
How They Don’t

Formal verification tools allow a developer to
write a formal specification (in some formal spec-
ification language, like Dafny, TLA+, Quint) and
use a model checker to produce absolute proofs
of statements or proofs of why a statement is
false. More evolved formal verification tools can
also verify the correctness of an implementation
(compared to its formal specification) and even
generate formally verified code in some cases.

Several efforts on formalization have been
recorded using different formal verification tools.
DiemBFT had Coq and Boogie formalization,

HotStuff with Ivy and TLA (see Formal Verifi-
cation of HotStuf), ZooKeeper used TLA+, Cos-
mos/Tendermint used TLA+ and Quint, QBFT
used dafny/Boogie, Stellar used Isabelle/HOL
(see On the Formal Verification of the Stellar
Consensus Protocol), Matter Labs used Quint
for their consensus protocol (see Specification
and model checking of BFT consensus by Matter
Labs).

That being said, there are several problems with
using formal methods on BFT protocols.

Safety only. One problem is that formal ver-
ification efforts usually tend to target proving
the safety of the protocols since it is easier for
verification tools19. This is because the liveness
property is much harder to define, model, and
verify (especially for state-of-the-art consensus
protocols). As the safety proofs are often easy to
prove and verify on paper, this limits the impact
of these formal tools.

Divergence from the implementation. An-
other problem is that a BFT consensus protocol
often gets modified quite heavily as it gets imple-
mented. Due to that, the formal specifications
tend to get outdated quite rapidly. Note that
this is also a problem with non-formal specifi-
cations. One partial solution to this issue is to
perform conformance checking, by taking traces
of the actual protocol implementation and check-
ing that they are legitimate according to the
latest formal specification. This approach has
also led to finding bugs in real-world systems;
see Validating Traces of Distributed Programs

19Although there is some line of work in trying to
formally prove liveness in some scenarios, see A short
counterexample property for safety and liveness verifica-
tion of fault-tolerant distributed algorithms and On the
Formal Verification of the Stellar Consensus Protocol
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Against TLA+ Specifications.

Formal specifications don’t match reality.
Formal specifications, due to their high-level na-
ture, must forgo and ignore a number of imple-
mentation details. For example, cryptographic
primitives must be modeled as black boxes, net-
work quality can be slightly altered using tricks,
state transitions have to be modeled in specific
ways, etc. At the end of the day, a formal speci-
fication often targets a protocol that looks very
different from the actual implementation being
analyzed. In addition, as formal specification lan-
guages can be quite strict, formal specifications
of BFT protocols often accumulate a pile of hacks
to make things work. So much so that human
mistake can lead to unrelated statements being
proven,20 and the formally verified protocols are
often too different from their real-world counter-
parts to truly provide value, we note that this
is not necessarily true if lower-level formal tools
are used that are closely tied to the code running
in production. For example, this is what AWS
has been doing to continuously prove that their
TLS protocol is correct in Continuous Formal
Verification of Amazon s2n.

That being said, formalization is still an interest-
ing tool to reach for in order to increase guaran-
tees in the analyzed protocols, and formal verifi-
cation has still shown to be of use to help devel-
opers get a better sense of the protocol they’re
implementing, sometimes allowing them to find
bugs without having to run a model checker.
This exercise often has the additional side effect
of heavily simplifying the protocol (see Applying
Formal Verification to Microkernel IPC at Meta,
for example), as a developer is forced to find

20In 2017 the KRACK attack on WPA2 took advantage
of a wrong assumption made by the formal proof.

simpler ways to model their protocol in order to
write them in the strict specification languages.
In that sense, the exercise is sometimes more
fruitful than the actual result. In addition, in
larger teams, it allows non-developers to get a
chance to analyze the protocol at a higher and
more rigorous level, without having to spend
time in the codebase.

6.3 A Trusted Computing Base To
Minimize Compromises

The idea of the Trusted Computing Base (TCB)
is to draw the boundaries of the critical compo-
nents of a system and to “air gap” that part of the
logic and infrastructure as much as possible from
the rest of the system. This conceptual approach
can allow developers to take a more “intense” se-
curity approach with the TCB, while allowing
the rest of the system to be less strict with its
development. The deployment of the project can
also physically separate the TCB from the rest
of the system, for example, by using a different
server or a trusted execution environment (TEE)
to run the TCB logic, or by writing the TCB
logic in a formally verifiable language.

For a BFT consensus protocol, a natural way to
implement a TCB is to take the state and the
logic that preserves the safety of the protocol
(from a node’s point of view) and segregate it
from the rest of the node’s logic. As we previ-
ously mentioned, the rules that a node has to
follow and those involved in the safety proof are
often limited, which fits nicely with the limited
environments offered by TEEs.

This TCB concept can help limit the impact of
an exploitable bug in the rest of the codebase
(which should have more opportunities for such
bugs as it should be much larger than the TCB).
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Indeed, an exploit in the rest of the codebase
would not allow the node to behave in a way
that would facilitate an attack on the system’s
safety (for example, by equivocating).

An example of this approach is how Diem pro-
posed different designs for a TCB that would
minimize trust on other non-TCB components
(see A Minimal Trusted Computing Base (TCB)
for Diem).

6.4 0days, Faulty Validators and Mul-
tiple Implementations

While we know that all BFT consensus protocols
can tolerate up to f faulty validators, who these
f faulty validators are might dynamically change
over time depending on the adversary model used
to design a specific BFT protocol. Some models
might be secure only when the f faulty validators
are fixed in advance, while others might allow
for an attacker to decide and update who these
f faulty nodes are over time (as long as there
are never more than f faulty nodes).

But how do these models really reflect reality?
Or even, how easy is it to break the f faulty node
assumption? Paper protocols completely ignore
the high potential of software bugs, and for a
good cause: it would not be a very interesting
discussion to theorize a model in which all nodes
can be made faulty at the same time. But in the
real world, so-called 0days happen every week.
0days (or zero-days) represent the concept of
an exploitable bug that has no patch available,
making a program vulnerable for some period
of time (up until the bug is fixed and the fix is
deployed on enough nodes).

If all validators run the same implementation of
the consensus protocol, then such a 0day can

completely destroy all BFT assumptions we have
had so far. For example, the 0day could be a
remote code execution attack allowing an adver-
sary to take control of any nodes they want.

The most effective preventive technique to pro-
tect against this scenario is to have a diver-
sity of validator implementations. For example,
Ethereum encourages developers to implement
new implementations of the Ethereum node and
encourages users to use different implementations
to improve the resilience of the network. Today,
clientdiversity.org lists six different Ethereum
consensus client implementations, written in dif-
ferent programming languages (Rust, Golang,
Java, Typescript, Nim) with different security
guarantees, as we show in figure 10.
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Figure 10: Diversity of Ethereum consensus clients
and their current usage, taken from clientdiversity.org
on July, 2024.

As such, a 0day found in one of the implemen-
tations would only allow an adversary to con-
trol a threshold of nodes equal to the number
of nodes that were using the vulnerable imple-
mentation only. It is thus important that no
implementation is used by more than a third of
the validators.

In addition, many validators are run in cloud
environments (like AWS, GCP, and Azure). It is
important that the compromise of a Cloud does
not affect the tolerated threshold of Byzantine
validators, this is why validators should make
sure to not all use the same Cloud provider. More

generally, 0days are not just bothersome when
found in the node implementation, but really
anywhere in the environment running the node
(e.g. the Operating System, the file system, etc.).
Lazarus: Automatic Management of Diversity
in BFT Systems proposes a way to manage the
deployment and environment of the different val-
idators in order to maximize the diversity of
environments and decrease the chance of a 0day
impacting too many validators.

6.5 Key Management for Validators

Different blockchain implementations and differ-
ent validator operators address the question of
where to store keys differently. Naive implemen-
tations tend to store private keys in plaintext
files, which easily turns a compromise of the host
running the node into a leak of the private keys,
but can also lead to accidentally pushing the key
to a remote GitHub repository (for example).
More advanced methods include using special-
ized hardware to store the key, such as hardware
security modules (HSM), so that keys cannot be
extracted following a compromise of the node.
In general, many ways exist to increase the se-
curity of a node’s keys, and key management is
generally out of the scope of this paper.

More in-scope are software solutions integrated
into the protocol that attempts to improve the
security of nodes. In general, the protocol solu-
tion to decrease the impact of key compromises
is to enforce key rotation of the participants
often. Key rotation adds a property called for-
ward secrecy (or forward security), which can
be found in other cryptosystems like random-
number generators (see SoK: Security Models
for Pseudo-Random Number Generators ) and
secure sessions (see Formal Analysis of Session-
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Handling in Secure Messaging: Lifting Security
from Sessions to Conversations ). Forward se-
crecy means that a compromise at some point in
time only compromises the security of the proto-
col at that point, but not in the past, which is
useful against long-range attacks, as we explained
in section 3.2 (Reconfiguration and Long-Range
Attacks).

In Pixel: Multi-signatures for Consensus, an
aggregatable (like BLS signatures) and forward-
secure signature scheme is introduced to allow
for more fine-grained forward security: key rota-
tion can be enforced at each new message signed.
To integrate this efficiently in the protocol, the
scheme uses hierarchical ID-Based Cryptography
(HIBE) (see, for example, Hierarchical Identity
Based Encryption with Constant Size Cipher-
text) which relies on pairings (like BLS signa-
tures) to allow identifying validators via a single
main public key, from which specific per-message
public keys can be publicly derived. Validators
then generate all of the associated private keys
they will need and can delete each of them after
use. A compromise would thus only affect the
section of keys that haven’t been used yet. Note
that the scheme still relies on the honesty of the
nodes running it, as they still need to delete keys
after use.

7 Conclusion

We surveyed the different challenges developers
encounter in the real-world instantiation and de-
ployment of BFT consensus protocols. Many
of these challenges were due to paper protocols
often missing important key protocols to make
them practical (e.g., safe automation of validator
set updates), a lack of detail needed to correctly
implement these protocols (as opposed to de-

tailed specification and Internet standards avail-
able for other types of cryptographic algorithms),
or the pragmatic, real-world challenges that one
must face when productionizing, distributing,
and deploying high-risk software.

While papers often consider the macro, answer-
ing questions like “How many Byzantine nodes
can we tolerate if they decide to collude?” Real-
world protocols must consider the micro: how
to avoid software, infrastructure, and protocol
vulnerabilities that could let an attacker compro-
mise all or any of the nodes instantly.

As we showed, there is no single silver bullet.
Developers must be careful when deploying BFT
consensus protocols in production, and remain
aware of past bugs and pitfalls in the different
BFT consensus protocols and implementations.
Detailed specifications should always be written,
code should be thoroughly tested using different
techniques, and many eyes should review the
code.

BFT consensus protocols have shown to be great
ways to securely distribute databases in the face
of malicious nodes, but more research and devel-
opment work is needed in order for more users
to benefit from secure BFT consensus protocols
and their implementations.
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