
Efficient Differentially Private Set Intersection
Xinyu Peng∗†, Yufei Wang‡(B), Weiran Liu†, Liqiang Peng†, Feng Han†, Zhen Gu‡, Jianling Sun∗, Yuan Hong§

∗Zhejiang University, †Alibaba Group,
‡DAMO Academy, Alibaba Group, Hupan Lab, §University of Connecticut

∗sunjl@zju.edu.cn, †{steven.pengxy, weiran.lwr, plq270998, fengdi.hf}@alibaba-inc.com,
‡{wangyufei.wyf, guzhen.gz}@alibaba-inc.com, §yuan.hong@uconn.edu

Abstract—Private Set Intersection (PSI) enables a sender and
a receiver to jointly compute the intersection of their sets without
disclosing other information about items not in the intersection.
However, in many cases of joint data analysis, it is not just
the items outside the intersection that are sensitive but the
items within it. To protect such sensitive information, prior work
presents a Differentially Private version of PSI (DPSI) based on
a circuit-PSI using Fully Homomorphic Encryption. However,
their concrete protocol is somewhat inefficient compared with
the state-of-the-art (SOTA) circuit-PSI.

In this paper, we revisit the DPSI definition and formalize its
ideal functionality. We identify the key desiderata required by
PSI-related tools to construct DPSI and propose two frameworks
to construct efficient DPSI protocols. The first one generalizes the
idea of existing DPSI, showing that any circuit-PSI can be used
to construct DPSI. We obtain a more efficient DPSI protocol by
plugging the SOTA circuit-PSI protocol in the framework. The
second one helps to obtain a more efficient DPSI protocol based
on the multi-query Reverse Private Membership Test (mqRPMT)
that was previously used to construct Private Set Operation
(PSO). However, mqRPMT additionally leaks the intersection
size to the sender. We bound such leakage using differential
privacy by padding random dummy items in input sets. We
implement numerous constructions based on our frameworks.
Experiments show that our protocols significantly outperform
the existing DPSI construction, 2.5-22.6× more communication
efficient and up to 110.5-151.8× faster. Our work also shows a
new use case for mqRPMT besides obtaining PSO.

Index Terms—private set intersection, differential privacy

I. INTRODUCTION

Private Set Intersection (PSI) allows two parties, a sender
P1 and a receiver P2, holding sets X and Y , respectively,
to identify the intersection X ∩ Y without revealing any
information about items not in the intersection. PSI can help
to achieve data minimization as no data is shared beyond
what each party has in common [1]. As one of the best-
studied applications of secure computation, PSI has been
widely recognized as a highly valuable tool with numerous
important applications in practice.

Although PSI preserves privacy for items outside the inter-
section, in many cases of joint data analysis, the intersection
itself is also sensitive. Consider the following Example. A
card-payment company P1 wants to present advertisements to
some individuals on an ads platform P2. To this end, P1 and
P2 run PSI to ensure that P2 can only identify individuals
who are common targets for ads between both entities. In this
way, individuals outside the intersection are kept secret for
P2, preventing unnecessary information leakage. However, all

PSI Protocol

Perturbed
Intersection

DP Mechanism

0 1 1 0 1 ... 0

1 1 1 0 0 … 0

Membership Information

Post-processing

Perturbation PhasePSI Phase

𝑿

𝒀

Sender 𝑷𝟏

Receiver 𝑷𝟐

𝑿 ∪ 𝒀

Fig. 1: The key desiderata of PSI to obtain DPSI

users in the intersection have an implicit feature that they are
P1’s users. Therefore, P2 can directly identify that each user
in the intersection must also be registered with P1. This can
be seen as a data privacy problem when some users might be
reluctant to disclose such information to the ads company. It
can also be seen as a data secrecy problem because it allows
the ads platform to help another rival card-payment company,
e.g., P ′

1, present ads for customers in this intersection, winning
customers and gaining advantage for P ′

1 directly from P1.
Unfortunately, since the PSI functionality requires outputting
the correct intersection, this privacy problem inherently cannot
be handled by PSI.

From the privacy perspective, one can think of PSI as the
sender P1 (holding the input set X) telling the receiver P2

(holding the input set Y) a Boolean vector with size |Y |, where
each bit indicates whether the corresponding item in Y is in
the intersection, leaking one-bit information for each item in
Y . In this way, the problem can be formalized as a privacy
leakage in which Differential Privacy (DP) comes in. DP has
been increasingly regarded as a de facto standard for protecting
individual privacy that has been studied extensively in both
academia [2]–[9] and industry [10]–[14]. DP guarantees that
the presence or absence of any particular individual’s record
has a negligible impact on the likelihood that a particular
result is returned to a query. Thus, an adversary cannot make
meaningful inferences about any individual’s record value or
even whether the record is present.

The natural idea is to combine DP with PSI to further
protect the Boolean information corresponding to each item.
Targeting this problem, Kacsmar et al. [15] defined the notion
of Differentially Private Set Intersection (DPSI) and proposed
a DPSI protocol based on a variant of PSI, namely circuit-PSI
[16]–[18], that uses Fully Homomorphic Encryption (FHE)
[19], [20].

The solution from Kacsmar et al. [15] offers a promising

1

approach to this problem, while there is a critical limitation:
although their protocol has linear computation complexity,
the use of FHE results in poor performance in practice. The
performance report in [15] shows that even for small item
size n = 216, the running time reaches about 8 minutes,
which is inefficient compared to typical PSI-based applications
that require several minutes for database size about n = 220

[21], [22]. Circuit-PSI and related tools have been extensively
studied and concretely more efficient, i.e., several minutes for
item size n = 220 [17], [18], [23], the natural question is to
close the gap between DPSI and PSI-related tools and utilize
these tools to construct more efficient DPSI protocols. Since
PSI is a very active research area, and more PSI-related tools
have been proposed, a deeper understanding of the relationship
between DPSI and PSI-related tools helps us construct DPSI
using a broader range of (future) tools.

Our Contributions. In this paper, we revisit the existing
definition of DPSI [15] and formalize its ideal functionality.
By considering the privacy and security concerns in the ideal
functionality, we figure out the key desiderata of PSI for
obtaining its corresponding DPSI protocol. The details are
illustrated in Fig. 1. Briefly speaking, for a sender who holds
X and a receiver who holds Y , any PSI-related tool that
enables the sender to perturb the membership information
about Y without knowing the correct intersection can be
used to construct DPSI. We identify two such PSI-related
tools: circuit-PSI [16]–[18] and multi-query Reverse Private
Membership Test (mqRPMT) [24], [25].

Following the key desiderata, we propose two general
frameworks for constructing DPSI. The first one is circuit-
DPSI, which is based on circuit-PSI. In this framework, the
parties first get a shared Boolean vector of the intersection
by employing any circuit-PSI. Then, the sender obliviously
perturbs his shared Boolean vector via a DP mechanism.
Finally, the receiver can get the DP intersection by XORing the
sender’s perturbed Boolean vector with its own one. We note
that existing FHE-based DPSI [15] follows this framework.
By plugging in more efficient circuit-PSI instances, we obtain
more efficient DPSI compared with the protocol by Kacsmar
et al. [15].

The second framework, which we call mqRPMT-DPSI,
helps obtain even more efficient DPSI. As the name suggests, it
leverages a recently proposed tool named multi-query Reverse
Private Membership Test (mqRPMT). In mqRPMT, a sender
holding a vector X = (x1, ..., xn) interacts with a receiver
holding a set Y , and eventually, the sender learns only a bit
vector (e1, ..., en) indicating whether xi ∈ Y without learning
the value of Y , while the receiver learns nothing. This tool is
previously used to construct the Private Set Operation (PSO)
[24], [25]. In our second framework, two parties first invoke
mqRPMT with their input sets X and Y , and the sender
gets the indication bit vector, which contains the membership
information of Y . Then, the sender perturbs the indication bit
vector via a DP mechanism and sends it to the receiver, who
gets the final DPSI output. Thanks to the efficiency of the

SOTA mqRPMT protocol [25], the second framework would
be a plausible choice to obtain a more efficient DPSI.

However, there is a remaining challenge when leveraging
mqRPMT to construct DPSI. According to the functionality
of mqRPMT, the indication bit vector will unavoidably leak
the cardinality of the intersection set to the sender, which may
lead to the attacks [26], [27] that de-anonymize specific items
in the input sets. We propose a solution to alleviate this privacy
leakage. Briefly speaking, we ask both parties to insert dummy
items into their sets via a Random Dummy Item Padding
mechanism ahead of time and take the padded X ′ and Y ′ as
mqRPMT inputs. Random Dummy Item Padding guarantees
that the leaked cardinality satisfies (ϵ, δ)-DP. By plugging in
the SOTA mqRMPT protocol [25], we finally obtain an even
more efficient DPSI where the additional cardinality leakage is
bounded by differential privacy. Interestingly, our work shows
a new use case for mqRPMT besides obtaining PSO.

The main contributions are summarized as follows:

• We revisit the current DPSI definition and formalize its
ideal functionality. We then figure out the key desiderata
of PSI for obtaining its corresponding DPSI protocols.

• We propose a general DPSI framework satisfying ϵ-DPSI
based on circuit-PSI. We then present an mqRMPT-based
DPSI framework to further improve efficiency, which
additionally reveals the cardinality of the intersection set
with (ϵ, δ)-DP guarantee as a trade-off.

• We implement numerous constructions based on the
proposed DPSI frameworks. Experiments show that they
are arguably the most computation- and communication-
efficient DPSI protocols available to date, and their ef-
ficiency is comparable to that of the most efficient PSI
protocols.

Organizations. The remainder of this paper is organized as
follows. Section II reviews the related works. Section III
provides the preliminaries. Section IV revisits the definition
of DPSI. Section V and Section VI give the details of the
circuit-DPSI framework and the mqRPMT-DPSI framework,
respectively. Section VII demonstrates our experimental re-
sults. Finally, Section VIII concludes our work.

II. RELATED WORKS

PSI. PSI dates back to the 1980s, and the first PSI protocol
was initially based on the Diffie-Hellman (DH) key agreement
[28]. Since then, constructions employing DH key agreement
[29]–[31], Oblivious Transfers (OT), FHE [32] and Garbled
Circuits (GC) [33] have been proposed. These proposals offer
different trade-offs in terms of their computation costs and
communication overheads. Among them, OT-based protocols
are typically faster than other variants. Specifically, the first
OT-based PSI protocol was proposed by Pinkas et al. [34],
which employs OT extension [35]–[37] as the technical core of
their protocol. Kolesnikov et al. [38] proposed the fastest OT-
based PSI protocol by coming up with an efficient primitive
called batched Oblivious Pseudo-Random Functions (batched

OPRF). However, all these OT-based PSI protocols offer im-
proved efficiency at the expense of increased communication.
To reduce the communication overheads, Pinkas et al. [23]
proposed a PSI protocol based on sparse OT extension. Their
scheme achieves a better balance between computation costs
and communication overheads. Furthermore, Pinkas et al.
[39] extended their work by introducing a new data structure
called Oblivious Key-Value Stores (OKVS) and obtained more
efficient PSI protocols under different security models. Shortly
after, Rindal et al. [17] proposed an even more computationally
efficient PSI protocol by combining the OKVS data structure
with Vector Oblivious Linear Evaluation (VOLE) [40], [41].
Garimella et al. [42] introduced a way of compressing OKVS,
improving the communication overhead of [39]. By employing
the improved OKVS into [17], Raghuraman et al. [43] further
reduced the communication complexity of PSI. Chen et al.
[25] presented a unified framework by taking mqRPMT [24]
as the primitive and using the framework to obtain PSI and
more general PSO.

Circuit-PSI. PSI protocols mentioned above are specific so-
lutions that only output the intersection itself. For supporting
arbitrary secure computations over the intersection of private
sets, Huang et al. [44] introduced the notion of circuit-PSI,
where both parties receive shares of the set intersection instead
of the intersection in the clear. The work introduced several
Boolean circuits for PSI and evaluated these circuits using
Yao’s GC [33]. This type of PSI is then referred to as circuit-
PSI. Targeting the same problem, Chen et al. [45], [46] con-
structed circuit-PSI protocols that achieve low communication
overheads by employing FHE [32]. However, since FHE intro-
duces a significant computational overhead, these circuit-PSI
protocols are inefficient in practice. By invoking the Oblivious
Programmable Pseudo-Random Function (OPPRF), Pinkas et
al. [16] proposed the first circuit-PSI protocol that achieves
linear communication complexity without FHE. Chandran et
al. [18] constructed a new circuit-PSI protocol with linear
communication and computation costs by invoking Relaxed
Batch Oblivious Programmable Pseudo-Random Functions
(RB-OPPRF).

Composing DP and PSO. There are a series of works that
protect sensitive data in private sets by composing DP and
PSO. Numerous works employ DP as a complementary tech-
nology for preventing information leakage during the use of
secure computation protocols. In order to prevent side-channel
attacks while answering federated queries, Narayan et al. [47]
proposed a primitive for obtaining PSI cardinality (PSI-CA) in
a differentially private manner. Addressing the same problem,
Bater et al. [48] introduced a private data federation called
Shrinkwrap, which utilizes computational DP to minimize
padding in intermediate query results. DP can also be adopted
as an orthogonal technology to protect the query results,
which cannot be protected by secure computation. Along those
lines, He et al. [49] formulated the problem of Differentially
Private Record Linkage (DPRL) and developed corresponding
protocols by employing a specific privacy definition called

Output Constrained DP. In 2020, for the first time, Kacsmar et
al. [15] attempted to construct DPSI by combining FHE-based
PSI with DP. However, the use of FHE results in somewhat
inefficient protocol in practice. Besides these work, Groce et
al. [50] consider the problem of improving the performance of
secure 2-party computation protocols by leveraging DP. They
show that if differentially private leakage is allowed, the cost
of Rindal et al.s’ [51] PSI protocol can be reduced by up to
63%.

III. PRELIMINARIES

A. Notations and Security Model

The computational security parameter and the statistical
security parameter are denoted by κ and σ, respectively. We
denote [a, b] with a, b ∈ N and a ≤ b to the set {a, a+1, . . . , b}
and [b] as a shorthand for [1, b]. We denote the upper letter
A = (a1, . . . , an) as a vector with length |A| = n.

Two parties in DPSI are P1 (the sender) and P2 (the
receiver). They have input sets X = {xi}i∈[n] ∈ Vn and
Y = {yj}j∈[m] ∈ Vm, respectively. All items in X and Y
are from the same item domain V . Based on the context, we
sometimes use the notation X[i] or xi to denote the i-th item
in the set X . We assume that both parties wish to securely
compute a differentially private version of X ∩ Y without
disclosing data outside the intersection to each other.

In this work, we consider the semi-honest model, where an
adversary tries to learn as much information as possible from
a given protocol execution but is not able to deviate from the
protocol procedures. We remark that all cryptographic tools
used in this work have been proven secure in the semi-honest
model under the standard real-ideal paradigm [52].

B. Standard Differential Privacy Definition

DP is an appealing choice to allow multiple releases of
statistics while bounding the information leakage of the in-
dividual records in the output. DP requires the outputs of
algorithms to be approximately the same if any individual’s
record in the input is added or removed. Formally, DP is
defined as follows [53].

Definition 1 ((ϵ, δ)-Differential Privacy): A randomization
mechanism M : D → F is (ϵ, δ)-differential privacy if for all
neighboring inputs D,D′ ∈ D such that D and D′ differ by
adding or removing a record, and all subsets F ∈ F ,

Pr[M(D) ∈ F] ≤ eϵ Pr[M(D′) ∈ F] + δ

where the probability is taken over the randomness of M.
In Definition 1, ϵ is the privacy budget, and δ can be

treated as the failure probability of DP protection. We say
that M satisfies ϵ-DP if δ = 0. When obtaining multiple DP
outputs, the sequential composition (Theorem 1) and parallel
composition (Theorem 2) are used to measure the total privacy
budget.

Theorem 1 (Sequential Composition): Given k number of
(ϵi, δi)-DP mechanismsMi that access the same input D with
1 ≤ i ≤ k, the combination of their outputs satisfies (ϵ, δ)-DP,
where ϵ =

∑k
i=1 ϵi and δ =

∑k
i=1 δi.

Theorem 2 (Parallel Composition): Given k number of
(ϵi, δi)-DP mechanismsMi that access disjoint inputs Di with
1 ≤ i ≤ k, the combination of their outputs satisfies (ϵ, δ)-DP,
where ϵ = max (ϵ1, . . . , ϵk) and δ = max (δ1, . . . , δk).

In this work, we follow the standard DP definition to
consider DPSI by defining neighboring datasets and measuring
the ratio of output distribution by taking all possible pairs of
the neighboring datasets as inputs. The details are shown in
Section IV.

C. Cryptographic Primitives

Cuckoo Hashing. Cuckoo hashing [54] uses d > 1 universal
hash function h1, . . . , hd : {0, 1}∗ → [β] to map n items to
β > n bins in the hash table HT , where each bin is restricted
to accommodate at most one item. It iteratively inserts a
sequence of items (e1, . . . , en) into HT as follows. Given the
item ei, if one of HT [h1(ei)], ...,HT [hd(ei)] bins is empty,
then insert ei in the first empty bin. Otherwise, sample i ∈ [d]
uniformly at random, evict the item e′i present in HT [hi(ei)],
place ei in bin HT [hi(ei)], and recursively try to insert the
evicted item e′i until the number of attempts reaches a certain
threshold and then fails. In this way, the item ei could be
placed into one bin among h1(ei), . . . , hd(ei).

Oblivious Programmable Pseudo-Random Function. Let
F : {0, 1}κ×{0, 1}∗ → {0, 1}ℓ be a Pseudo-Random Function
(PRF) that maps an input to a pseudo-random output under a
PRF key. Programmable PRF (PPRF) is a variant of PRF that
further allows to “program” some PRF outputs, i.e., produce
assigned PRF outputs for some specific given inputs.

PPRF is usually defined for handling multiple PRF keys
K = (k1, . . . kβ) in a batch. An (ℓ, β)-PPRF consists of a
pair of algorithms F̂ = (Hint, F). Given a set of uniformly
random and independent PRF keys K = (k1, . . . , kβ), the
disjoint input sets (X1, . . . , Xβ), and the target multi-sets
(T1, . . . , Tβ) satisfying |Tj | = |Xj | for all j ∈ [β] and
Tj [i] ∈ {0, 1}ℓ for all i ∈ [|Tj |], Hint(K,X, T) outputs
hint. Later, given the key kj ∈ {0, 1}κ, hint, and an input
x ∈ {0, 1}∗, F (kj , hint, x) outputs a PRF value y ∈ {0, 1}ℓ.
It holds that if x = Xj [i] for some i ∈ [|Xi|], then y = Tj [i].
Otherwise, y looks random.

Oblivious PPRF (OPPRF) is a two-party protocol that
allows the sender and the receiver to obliviously run PPRF.
In OPPRF, the sender takes inputs as the programmed in-
put sets X = (X1, . . . , Xβ) and the target sets T =
(T1, . . . , Tβ), while the receiver takes inputs as the batch
queries (q1, . . . , qβ). OPPRF samples PPRF keys K =
(k1, . . . , kβ) for an (ℓ, β)-PPRF to the sender, and gives hint
and the PPRF outputs {F (kj , hint, qj)}j∈[β] to the receiver.

Private Set Membership. Private Set Membership (PSM)
[18] is a two-party protocol that takes input as a set X =
{xi}i∈[n] ∈ Vn from the sender and an item y ∈ V from the
receiver. Define the Boolean value a such that a = 1 if y ∈ X
and a = 0 otherwise. The PSM functionality outputs Boolean
shares of a to the sender and the receiver, i.e., random bits ⟨a⟩1
and ⟨a⟩2 to both parties, respectively such that ⟨a⟩1⊕⟨a⟩2 = a.

Parameters: The size of sender’s set n. The size of the
receiver’s set m. Hs : Vm → HT2, which on input a size-
m set outputs a hash table with size β = O(m) and each
element is assigned to a distinct bin of HT2.
Input: The sender P1’s set of items X = {xi}i∈[n], and
the receiver P2’s set of items Y = {yi}i∈[m].
Output: The sender P1 gets a shared Boolean vector
{⟨aj⟩1}j∈[β]. The receiver P2 gets a hash table HT2 =
Hs(Y) with size β = O(m) storing items in Y , and a
shared Boolean vector {⟨aj⟩2}j∈[β], where aj = ⟨aj⟩1 ⊕
⟨aj⟩2 indicates if the item in HT2[j] is in the intersection.

Fig. 2: Ideal functionality FCPSI for circuit-PSI

Circuit-PSI. Circuit-PSI is a two-party protocol that allows
the sender and receiver to securely compute arbitrary sym-
metric functions over the intersection of their private sets by
utilizing the secure circuit evaluation. In circuit-PSI, both the
sender and the receiver take their sets X = {x1, ..., xn} and
Y = {y1, ..., ym} as inputs and receive the Boolean shares of
the set intersection Z = X ∩ Y . The functionality of circuit-
PSI is formally defined in Fig. 2.

The first circuit-PSI protocol that achieves linear communi-
cation complexity is presented by Pinkas et al. [16] by utilizing
OPPRF. In their protocol, the receiver P2 runs Cuckoo hashing
with d hash functions that map Y into the hash table HT2,
while the sender P1 simply hashes items in X using all d
hash functions into the hash table HT1. Then, both parties
invoke FOPPRF functionality to map their items to PPRF
values, where all items in HT1 are mapped to values in
the target set T = {T1, . . . , Tβ} for Tj = {tj} randomly
sampled by P1. After running FOPPRF , P2 receives the
PPRF outputs (y∗1 , . . . , y

∗
β). Finally, P1 and P2 invoke the

FPSM functionality to check whether y∗j lies in Tj = {tj}
and learn Boolean shares of membership, respectively. Since
there is only one tj in each Tj , FPSM can be done very
efficiently with only linear communication complexity, so does
the resulting circuit-PSI. The protocol proposed by Pinkas et
al. [16] can be viewed as a prototype for constructing linear
circuit-PSI, and all other efficient circuit-PSI protocols are
developed by replacing the OPPRF with alternative primitives,
e.g., the OKVS data structure [17], [39] and RB-OPPRF [18].

Multi-query Reverse Private Membership Test. Multi-query
Reverse Private Membership Test (mqRPMT) [24], [25] is
a two-party protocol that is initially used as a primitive
for constructing PSO. In mqRPMT, a sender with a set X
interacts with a receiver holding a set Y = (y1, . . . , ym), and
eventually the sender learns only a bit vector (e1, . . . , em)
indicating whether yi ∈ X without learning the value of
yi, while the receiver learns nothing1 The functionality of
mqRPMT is formally defined in Fig. 3. Among the proto-
cols that instantiate mqRPMT, the cwPRF-based mqRPMT
protocol is the most efficient one that achieves strict lin-

1For ease of description, we define mqRPMT in the reversed roles.

Parameters: The size of sender’s set n. The size of
receiver’s set m.
Input: The sender P1’s set of items X = {xi}i∈[n], and
the receiver P2’s set of items Y = {yi}i∈[m].
Output: The sender P1 gets a vector (e1, . . . , em), where
ei = 1 if yi ∈ X and ei = 0 otherwise. The receiver P2

gets nothing.

Fig. 3: Ideal functionality FmqRPMT for mqRPMT

ear computation and communication complexity. Specifically,
cwPRF is a family of keyed functions K × D → D that
satisfy weak pseudom-randomness and commutative property
simultaneously. Specifically, commutative property means that
for all k1, k2 ∈ K and x ∈ D, a family of keyed functions
satisfy Fk1

(Fk2
(x)) = Fk2

(Fk1
(x)).

One can easily obtain cwPRF using a finite group G with
order p where the Decisional Diffie-Hellman (DDH) assump-
tion holds, by setting k1, k2 ∈ Zp, selecting a hash function
H : {0, 1}∗ → G, and defining Fk1(x) = H(x)k1 , Fk2(x) =
H(x)k2 . The finite group under the Elliptic Curve (EC) is a
good candidate choice for G.

IV. DIFFERENTIALLY PRIVATE SET INTERSECTION

In this section, we first revisit the DPSI definition and
formulate the ideal functionality of DPSI. Based on the privacy
and security concerns in the ideal functionality, we identify
the key desiderata for PSI-related tools that can be used to
construct DPSI protocol.

Before going into the DPSI definition, we first consider the
difference between DPSI and classical DP. Classical DP is in
the centralized setting where the data owner has the data in the
clear and answers queries from the aggregated data with DP
guarantee by adding noise on their own. Therefore, classical
DP usually considers the mechanism outputs an aggregation
result. However, PSI computes the intersection of two sets,
which is not an aggregation procedure. Therefore, in PSI
setting, we may need to consider DPSI mechanisms as a way
of randomizing the presence or absence of any possible items
in the input sets. Such randomization procedure lies more
similar to the Local DP (LDP) setting [55] by treating each
item in the inputs as an individual’s data and adding noise
(randomization) on items by individuals themselves. However,
we still consider DPSI in the DP setting because the data
owner (i.e., the sender and the receiver) have the data in the
clear and add noise in the centralized setting.

A. Security Gap in the Existing DPSI

We first revisit the DPSI definition proposed by Kacsmar
et al. [15] by following the classical DP definition (shown in
Definition 1).

The key point to define DPSI is to precisely define the
neighboring datasets and the output range. There are two
inputs in PSI: the set X from the sender and the set Y
from the receiver. As the DP definition suggests, one needs

to consider the output distribution for all neighboring datasets
D′ and D that differ in any single item. Kacsmar et al. [15]
consider a one-sided PSI where the sender learns nothing
about the receiver’s input set Y , and only the receiver learns a
differentially private version of the intersection. For defining
the neighboring datasets corresponding to one-sided DPSI, we
can consider the one-sided PSI functionality from a different
perspective. Think of the sender’s input X being the database
to be queried, and the receiver asking a query with the input
data Y . That is, the query is of the form:

Which items in your database are also in Y ?

On one hand, this can be analogous to the standard counting
query “How many people in the database with age greater
than 20?” with the input data 20. Note that DP contemplates
a static query structure, wherein altering the input from 20 to
a different value constitutes a modification of the query itself,
thereby contravening the foundational prerequisites of DP.
Similarly, by treating the input data Y as a query description
rather than the data, it is reasonable to consider DPSI with the
fixed query that contains Y as parts of the query description.
On the other hand, since the PSI functionality only allows the
receiver to get the intersection X ∩ Y , this means that PSI
only reveals X’s information to the receiver. Therefore, we
only need to consider privacy from the sender’s input X by
defining the neighboring dataset D′ = (X ′, Y) for a fixed
Y , where X ′ = X ∪ {vt} for vt /∈ X or X ′ = X/{vr} for
vr ∈ X .

Although the neighboring dataset can be any dataset by
adding or removing one item in X , the output intersection
Z must be a subset of the fixed Y . Therefore, the output
range can be defined as a set description with the capability of
including all items in Y . Kacsmar et al. [15] chooses the output
range in the most compressed form, that is, a Boolean vector
F = {0, 1}m in which the Boolean value fi indicates whether
yi ∈ Z. Combining it with the definition of the neighboring
dataset leads to the DPSI definition described as follows.

Definition 2 (ϵ-Differentially Private Set Intersection [15]):
The randomized two-party mechanism M : Vn × Vm →
{0, 1}m that takes sender’s set X and receiver’s set Y as inputs
and returns a Boolean vector F ∈ {0, 1}m to the receiver
achieves ϵ-DPSI if and only if for all F ∈ {0, 1}m and all
neighboring datasets D = (X,Y) and D′ = (X ′, Y) where
X ′ = X ∪ {vt} or X ′ = X/{vr}, vt, vr ∈ V ,

Pr[M(D) = F] ≤ eϵ Pr[M(D′) = F]

where the probability is taken over the randomness of M.
The above definition clarifies the privacy concerns of DPSI

formally. However, since a DPSI protocol inherently relates
to both data security and data privacy, a definition from
the security aspect is also required. We formulate the ideal
functionality FDPSI in Fig. 4, which takes X from P1 and Y
from P2 as inputs and only outputs a perturbed Boolean vector
to P2. It is parameterized by a differential private mechanism
Mdp constraint with the hamming distance HM(F, F ′) = 1
between neighboring dataset F and F ′. The output of FDPSI

Parameters: The size of the sender’s set n. The size of
the receiver’s set m. The privacy budget ϵ. Differential
private mechanism Mdp satisfying Pr[Mdp(F) = O] ≤
eϵ Pr[Mdp(F

′) = O] for all F, F ′, O ∈ {0, 1}m with
HM(F, F ′) = 1.
Input: The sender P1’s set of items X = {xi}i∈[n] ∈ Vn,
and the receiver P2’s set of items Y = {yi}i∈[m] ∈ Vm.
Functionality: Upon receiving X from P1, Y from P2.
Compute F ′ ∈ {0, 1}m, where f ′

i indicates if yi ∈ X .
Apply Mdp to F ′ and send the result F to P2.

Fig. 4: Ideal functionality FDPSI .

clearly achieves ϵ-DPSI. Further, a protocol provides ϵ-SIM-
CDPSI (simulation-based computational differentially private
PSI) if it securely realizes FDPSI parameterized by a certain
DP mechanismMdp against a semi-honest non-uniform prob-
abilistic polynomial time adversary under the simulation-base
security paradigm. We refer to [15] for the definition of ϵ-
SIM-CDPSI and omit it here. Note that this form of ideal
functionality is not the only one that satisfies ϵ-DPSI. For
example, a function that randomly samples F ∈ {0, 1}m and
outputs F to the receiver is also ϵ-DPSI. However, the above
function is meaningless since the output F ′ is independent of
the intersection. Therefore, we present FDPSI by elucidating
the relation between the result vector and the intersection.

B. PSI-related Tools for Constructing DPSI

After revisiting the definition of DPSI and formally pro-
viding the ideal functionality, we explore the scope of PSI-
related tools that can be modified to the DPSI protocol.
According to FDPSI , we can easily draw the conclusion
that any PSI primitives that can be combined with Mdp to
perturb the output before sending it to the receiver can be used
for construction DPSI protocols. Although the conclusion is
intuitive, finding suitable PSI tools is not easy. Since FDPSI

indicates that, in the absence of a trusted third party, the
perturbation can only occur on the sender’s side, yet the sender,
paradoxically, cannot directly obtain the output.

Recall that the output range in DPSI definition (Definition
2) is F = {0, 1}m. The output range indicates that any item
in Y has the possibility of appearing in the output intersection
Z regardless of whether the same item is contained in X or
not. To this end, the randomization mechanism M for DPSI
must be able to perturb (its unknown) items in Y/X to items
in the output intersection Z.

Consequently, we identify the key desiderata required by
PSI-related tools to construct a DPSI protocol: the sender
must get the membership information of Y and can map
the items in his/her set to items in Y via a randomized
algorithm. To our best knowledge, two PSI-related tools satisfy
this requirement: circuit-PSI [16]–[18] and mqRPMT [24].
In circuit-PSI, both parties get a shared Boolean vector of
length β = O(|Y |) obliviously indicating whether or not an
item is in the intersection. Note that Kacsmar et al.’s DPSI

ReceiverSender

Circuit-PSI

Randomized
Response XOR

𝑋! !∈# 𝑌$ $∈%

𝑠!& !∈%
𝑠!' !∈%

�̃�!& !∈% 𝐹 !∈%

Fig. 5: The framework of circuit-DPSI.

protocol also takes a circuit-PSI as primitive which supports
arbitrary subsequent circuits. In their protocol, the sender
acquires the membership information of Y in the form of
FHE’s ciphertext. In mqRPMT, the sender gets a bit vector
(e1, . . . , en) indicating whether xi ∈ Y or not without learning
the value of xi. These two PSI-related tools create a potential
for the sender to randomly perturb the final binary output using
a DP mechanism. The remaining procedure is straightforward.
We can leverage MRR [56], which is a basic DP mechanism
for binary data, to do the perturbation. Take a binary input
v ∈ {0, 1}, MRR outputs ṽ = v with probability p and
ṽ = 1− v with probability q. Then, MRR is formally defined
as below.

Pr [ṽ = 1] =

{
p = eϵ

eϵ+1 if v = 1

q = 1
eϵ+1 if v = 0

. (1)

Based on these eligible tools, we present two generic
frameworks for constructing DPSI. As indicated by their
respective designations, the first framework operates on the
circuit-PSI, while the second framework is founded on the
mqRPMT. Although both can achieve linear computation and
communication complexity, they differ in terms of efficiency
and security. The circuit-DPSI framework can be viewed as a
generalization of Kacsmar et al.’s FHE-based protocol. In this
framework, the sender learns nothing from the additive shares,
but can perturb the output indirectly by flipping the bits in
these shares, which rigorously satisfies FDPSI . In contrast,
the mqRPMT-DPSI framework offers improved efficiency at
the price of additionally leaking the intersection cardinality. To
make the leakage acceptable without completely undermining
the idea of computation, we further introduce a method to
bound such leakage with (ϵ, δ)-DP.

C. The Practical Significance and Limitations

As a combination of DP and PSI, our DPSI framework
ensures that inferences about the presence or absence of any
specific item in the output intersection are limited, while
the intersection as a whole remains sufficiently accurate for
substantive usage. The utility-privacy trade-off for employing
our frameworks manifests in the form of false positives and
negatives within the intersection. Nonetheless, such a trade-off
can be tailored to suit the specific requirements of the relevant
application, as illustrated in the subsequent case.

Recall that the case of a card-payment company and an
ads platform identify the set of customers that they have in
common. By using the constructions of our DPSI frameworks,
these two parties can agree on a differentially private set

Parameters: The size of parties’ set n. A randomized
response mechanism MRR.
Input: The sender P1’s set of items X = {xi}i∈[n], and
the receiver P2’s set of items Y = {yi}i∈[n].
Protocol:

1. (Circuit-PSI preprocessing) The sender P1 and the
receiver P2 invoke a circuit-PSI protocol with inputs
X and Y and get the secret sharing ⟨aj⟩1, ⟨aj⟩2 ∈
{0, 1} as output, respectively.

2. (Secret Sharing Perturbation) P1 invokes MRR

with input ⟨a1⟩1, ..., ⟨aβ⟩1 and gets the perturbed
secret sharing ⟨ã1⟩1, ..., ⟨ãβ⟩1 as output.

3. (Intersection Computation) P2 receives the per-
turbed secret sharing ⟨ã1⟩1, ..., ⟨ãβ⟩1 from P1 and
computes O = {⟨ãj⟩1 ⊕ ⟨aj⟩2}j∈[β].

4. P2 gets the intersection vector F ∈ {0, 1}m by delet-
ing the bits that correspond to the random dummy
value from O.

Fig. 6: Efficient circuit-DPSI protocol.

intersection that protects any item in the set from the card-
payment company while preserving the effectiveness of the
ads. Depending on their privacy preference, the card-payment
company may choose a different utility-privacy trade-off. If
the card payment company is privacy-sensitive, it may choose
to minimize potential inferences about individual items by
accepting a higher rate of false negatives and false positives in
the intersection. If the card-payment company prioritizes the
effectiveness of the ads, they may ask for a lower rate of false
negatives and false positives in the intersection.

Meanwhile, it is important to note that if the same DPSI
protocol is used repeatedly to compute the intersection of
the same two sets, the probability of item leakage in the
intersection will increase. Such leakage is actually the DPSI
functionality: each time the DPSI protocol is used to compute
an intersection, it will consume a portion of the privacy budget,
denoted as ϵ. According to the parallel composition described
in Theorem 2, the combination of all computed intersections
satisfies

∑n
i=1 ϵ-DPSI, where n represents the number of times

the protocol is reused.

V. CIRCUIT-DPSI FRAMEWORK

A. Circuit-DPSI

We first show the flow of the circuit-DPSI in Fig. 5 and
give the details in Fig. 6. In the circuit-DPSI, the sender
P1 and receiver P2 first invoke a construction of circuit-PSI
with inputs X and Y . Then, each of P1 and P2 gets a piece
of Boolean shares {⟨aj⟩i}j∈[β] ∈ {0, 1}, i ∈ {1, 2}, as the
output. The Boolean shares have β = (1 + α)m bits, which
contain not only part of information about the membership of
the items in Y but also that of some random dummy values
added during the Cuckoo Hashing of circuit-PSI protocol.
After getting {⟨aj⟩1}j∈[β], P1 perturbs it bit by bit via
the RR mechanism and sends the perturbed Boolean shares

{⟨ãj⟩1}j∈[β] to P2. Finally, P2 receives {⟨ãj⟩1}j∈[β] and
computes a Boolean vector O = {⟨ãj⟩1 ⊕ ⟨aj⟩2}j∈[β], which
indicates the membership of the items in Y and the random
dummy values. By deleting the bits that correspond to the
random dummy value from O, P2 obtains F = {0, 1}m, a set
where each position i contains a one if the item corresponding
to Yi is part of the differentially private intersection, and zeros
in all other positions.

It is worth noting that within the circuit-DPSI framework,
the integration of the circuit-PSI protocol is designed to
be modular. By selecting and incorporating an appropriate
circuit-PSI protocol, it is possible to achieve a more efficient
circuit-based DPSI protocol, adaptable to varying network and
computational environments.

We observed that the FHE-based DPSI protocol proposed by
Kacsmar et al. [15] can be regarded as a variant of the circuit-
DPSI construction. In this protocol, the receiver encrypts their
items using the BGV [32] scheme and sends the ciphertext to
the sender. After receiving the ciphertext from the receiver, the
sender also encrypts their items and computes encryption of
a vector containing ones in positions where the corresponding
items are found in the intersection. Moreover, the sender
perturbs the encrypted vector using the RR mechanism and
sends the results to the receiver. Finally, the receiver decrypts
the vector and obtains the perturbed intersection. It is evident
that the workflow of this FHE-based DPSI protocol is similar
to our circuit-DPSI framework, as both involve obtaining a
vector containing membership information and perturbing it
using the RR mechanism.

B. Security & Privacy Analysis of Circuit-DPSI

Theorem 3: PCDPSI in Fig. 6 satisfies ϵ-SIM-DPSI.
We prove the above theorem in two steps. First, we present
the ideal functionality of our Circuit-DPSI protocol and prove
it correctly realizes ϵ-DPSI. Then, we prove our protocol
securely realizes the functionality. By combining them, the
theorem is proved.

Lemma 1: FDPSI in Fig. 4 with MRR parameterized by ϵ
satisfies ϵ-DPSI.

Proof: Given the inputs X from the sender and Y from
the receiver, a neighboring input X ′ = X ∪ {vt} or X ′ =
X/{vr}, for any output F ∈ {0, 1}m and the privacy budget
ϵ, we need to prove that

∣∣∣ Pr[FCDPSI(X,Y)=F]
Pr[FCDPSI(X′,Y)=F]

∣∣∣ ≤ eϵ.

We prove it by considering four different cases: (1) X ′ =
X ∪ {vt}, vt /∈ Y ; (2) X ′ = X ∪ {vt}, vt ∈ Y ; (3) X ′ =
X/{vr}, vr /∈ Y ; (4) X ′ = X/{vr}, vr ∈ Y .

For the first case, when vt /∈ Y , vt must not be in
either X ∩ Y or X ′ ∩ Y . As a result, all other items
in the input are the same, we have Pr[FCDPSI(X,Y) =
F]/Pr[FCDPSI(X

′, Y) = F] = 1 ≤ eϵ.
For the third case, when vr /∈ Y , vr must not be in

either X ∩ Y or X ′ ∩ Y . As a result, all other items
in the input are the same, we have Pr[FCDPSI(X,Y) =
F]/Pr[FCDPSI(X

′, Y) = F] = 1 ≤ eϵ.
For the second and fourth cases, since vt ∈ Y , W.L.O.G.,

we assume that the t-th bit bt in F indicates vt is in the

ReceiverSender
mqRPMT

Randomized
Response Post Processing

𝑋! !∈[$] 𝑌& &∈[']

𝑣! !∈['()!()"]
𝑣!$!∈['()!()"]

𝐹 !∈['()"]

Random Dummy
Item Padding

𝑋′! !∈[*] 𝑌′! !∈['()"()!]

Fig. 7: The framework of mqRPMT-DPSI

intersection if bt = 1, and vt is not in the intersection if bt = 0.
By representing the t-th bit in sender’s Boolean share for input
X and X ′ as ⟨ãt⟩X1 and ⟨ãt⟩X

′

1 , respectively, we have∣∣∣∣ Pr[FCDPSI(X,Y) = F]

Pr[FCDPSI(X ′, Y) = F]

∣∣∣∣
=

∏
i∈[m]

∣∣∣∣ Pr[F i
CDPSI(X,Y) = bi]

Pr[F i
CDPSI(X

′, Y) = bi]

∣∣∣∣
=

∣∣∣∣ Pr[F t
CDPSI(X,Y) = bt]

Pr[F t
CDPSI(X

′, Y) = bt]

∣∣∣∣
=

∣∣∣∣ Pr[MRR(⟨ãt⟩X1) = bt]

Pr[MRR(⟨ãt⟩X
′

1) = bt]

∣∣∣∣ ≤ p

q
= eϵ.

(2)

Therefore, FCDPSI with MRR parametered by ϵ satisfies ϵ-
DPSI.

Lemma 2: The protocol PCDPSI in Fig. 6 securely realizes
the functionality in Fig. 4 using MRR against a semi-honest
adversary in the FCPSI -hybrid model.

Proof: The correctness of our protocol is obvious, which
follows the correctness of the underlying protocol realizing
FCPSI . Then we prove the security by constructing simu-
lators. For the corrupt semi-honest receiver, we exhibit the
simulator SimR as follows.

1) SimR receives P2’s input Y , invokes FDPSI to obtain
the output F ′, and appends them to the view.

2) SimR uses Hs and Y to honestly compute HT2 with size
β, and selects random bits ⟨a′j⟩2 ← {0, 1} for j ∈ [β].
Then, SimR invokes the simulator of FCPSI with input
(Y, {⟨a′j⟩2}j∈[β]) and appends the outputs to the view.

3) SimR computes a length-β bit vector b. For i ∈ [β]: If
there is an element in the i-th bin in HT2, say yj , then
bi = ⟨a′i⟩2⊕F ′

j . Otherwise, bi equals the output ofMRR

with input ⟨a′i⟩2.

The real view of P2 in an execution can be written
as: viewπ2 = {Y,HT2, {⟨ai⟩2}i∈[β], {⟨ãi⟩1}i∈[β], F},
and the output view of SimR is: S2 =
{Y,HT2, {⟨a′i⟩2}i∈[β], {bi}i∈[β], F

′}. Two views are statically
indistinguishable, which directly follows the security of
underlying protocol realizing FCPSI .

Also, the simulator of the corrupt receiver can be easily
constructed by simulating β random bits and invoking the
simulator of FCPSI . Thus, we conclude the proof.

VI. MQRPMT-BASED DPSI FRAMEWORK

By removing the dependency on FHE, the circuit-DPSI
framework is much more efficient compared to the existing
construction of DPSI. However, the constructions of this
framework still utilize Garbled Circuit as a fundamental com-
ponent, which accounts for 96% of the overall computational
overhead of the circuit-PSI primitive. Therefore, we intuitively
consider whether we can improve the efficiency of DPSI by
performing the membership test without relying on GC. To
this end, we propose the mqRPMT-DPSI framework. Different
from the circuit-PSI where both parties learn the secret sharing
of the membership vector based on GC, mqRPMT allows the
sender to learn the complete membership vector efficiently.

A. mqRPMT-DPSI

The mqRPMT-DPSI framework offers improved efficiency
at the price of relaxing security by allowing the protocol to
leak some ”extra” information. The functionality of mqRPMT
allows the sender to obtain the membership vector v in
plaintext. Although a permutation operator performed by
the receiver can make sure the membership bits are of the
permuted order unknown to the sender, the sender can still
learn the cardinality of intersection (PSI-CA) by counting the
number of “1” in v, or the size of Y −X

⋂
Y (PSD-CA) by

counting the number of “0” in v. Recent studies [26], [27]
have found that adversaries can leverage an efficient attack on
the size-revealing PSIs, using a binary-search-like strategy, to
de-anonymize specific data records in the input sets, thereby
leaking membership information about the input sets. To take
advantage of mqRPMT without completely undermining the
idea of secure computation, a natural candidate is to leak only
DP information about the PSI-CA and PSD-CA.

A straightforward strategy to ensure that the leakage learned
by the sender satisfies DP is to generate a random integer
from a truncated discrete Laplace distribution and then add the
corresponding number of dummy items to both the intersection
and difference sets before the mqRPMT process.

However, in our two-party scenario without a trusted third
party, the dummy items cannot be added to the intersec-
tion directly and the alternative strategy is that both parties
generate a random integer from a truncated discrete Laplace
distribution, respectively, and add the corresponding number
of dummy items to their own private set. Unfortunately, this
alternative strategy fails to satisfy DP. Note that a dummy
item can be found in the intersection if and only if both the
sender and receiver possess this dummy item. Consequently,
the maximum number of dummy items in the intersection is
inherently limited by the number of dummy items added by
the sender locally. Consider a worst-case scenario in which
the sender draws a random integer 0 from a truncated discrete
Laplace distribution and adds 0 dummy items into his/her local
set, the sender can learn the true PSI-CA regardless of the
number of dummy items added by the receiver.

Definition 3 (Truncated Discrete Laplace Mechanism):
Given a query c : D → N, the truncated discrete Laplace
mechanism TLap(D) outputs a integer max(c(D)+η, c(D)),

where η ∈ Z follows a distribution, denoted by L(ϵ, δ,∆c)
that has a probability density function Pr[η = x] = p ·
e−(ϵ/∆c)|x−η0|, where p = eϵ/∆c−1

eϵ/∆c+1
, η0 = ∆c − 1 +

ln [(eϵ+1)(1−δ)]
ϵ , ∆c is the sensitivity parameter for the query

c, ϵ is the privacy budget and δ is the error probability.
Lemma 3 (Discrete Laplace Mechanism Utility [57]): For

η ∈ Z that follows L(ϵ, δ,∆c) and any m ∈ N, we have
Pr[η ≥ m] = e−ϵ(m−η0−1)

eϵ+1 .

Algorithm 1: Random Dummy Item Padding Mrd

Parameters: Statistically security parameter σ. DP
parameter ϵI , ϵD.

Input: Sender’s input X = {x1, x2, ...xn}. Receiver’s
input Y = {y1, y2, ...ym}.

/* Sender side */
1 Compute R: the minimum number satisfying

Pr(TLap(1
ϵi
) > R) < 2−σ;

2 Initialize an empty set X ′;
3 Add padded real item {0|x}x∈X into X ′;
4 Add dummy items {0|i|0}i∈R into X ′;
5 Return X ′;
/* Receiver side */

6 rI = L(ϵI , δ, 1), rD = TLap(ϵD, δ, 1);
7 Initialize an empty set Y ′;
8 Add padded real item {0|y}y∈X into Y ′;
9 Add items {0|i|0}i∈rI into Y ′ ; // Dummy items

should be in X ′

10 Add items {0|i|1}i∈rD into Y ′ ; // Dummy items
should not be in X ′

11 Return Y ′.

To this end, we modify the above strategy as follows,
which is shown in Algorithm 1. In our strategy, the sender
and receiver first independently pad the items in their own
sets to bit strings with “0” at the highest position. Next, to
ensure that the number of dummy items in the intersection
remains oblivious to the sender, the sender adds R dummy
items {1|i|0}i∈[R] into X ′, where R is typically a large integer
leading to enough redundant dummy items in Y ′. As a result,
the number of dummy items added to the intersection is only
determined by the dummy items generated by the receiver,
which is oblivious to the sender. Simultaneously, the receiver
draws two random integer rI , rD from two truncated discrete
Laplace distributions, which is described in Definition 3, and
adds rI dummy items {1|i|0}i∈[r] and rD dummy items
{1|i|1}i∈[r] into X ′. Finally, the sender and receiver exchange
|Y ′| = n + R and |X ′| = m + rI + rD with each other.
Consequently, the overall strategy bounds the leakage to P1

with (ϵI + ϵD, 2δ)-DP if and only if the truncated discrete
Laplace mechanism satisfies (ϵ′, δ)-DP, where ϵ′ ∈ {ϵI , ϵD}.

In the Random Dummy Item Padding Mechanism, deter-
mining the size of R is an important issue, as the magnitude
of R simultaneously affects the computation complexity of the
entire framework and the inherent error rate of the padding
mechanism. In our implementation, we set R as the minimum

Parameters: The size of sender’s set n. The DP parame-
ters ϵ, ϵi, ϵd. A random dummy item padding mechanism
Mrd. A randomized response mechanism MRR.
Input: The sender P1’s set X = {xi}i∈[n], and the receiver
P2’s set Y = {yi}i∈[m].
Protocol:

1. (Dummy Item Padding) P1 invokes Mrd with X
as input and output a padded set X ′ = {x′

i}i∈[n+R],
which means there are R items padded.

2. P2 invokesMrd with Y as input and output a padded
set Y ′ = {y′i}i∈[M], where M = m + rI + rD and
rI , rD are random integers drawn from a discrete
Laplace distribution. Then, P2 permute the Y ′ with
the randomly generated permutation ϕ and obtain Y ∗,
where y∗i = y′ϕ(i).

3. (mqRPMT Processing) P1 and P2 invoke a
mqRMPT protocol with inputs X ′ and Y ∗. As the
result of mqRPMT, P1 gets an indication bit vector
{vi}i∈[M] such that vi = 1 if and only if y∗i ∈ X ′

but without knowing y∗i .
4. (Membership vector Perturbation) P1 invokes
MRR with input v and gets the perturbed member-
ship vector ṽ as output.

5. (Intersection Computation) P2 receives the per-
turbed membership vector ṽ from P1, permutes ṽ
with ϕ−1 to obtain ṽ′, and get the intersection vector
F ∈ {0, 1}m by deleting the bits that corresponding
with the dummy item from ṽ′.

Fig. 8: Efficient mqRPMT-based DPSI protocol.

number satisfying Pr[rI > R] ≤ 2−σ , where σ = 40 is the
statistical security parameter in MPC. It means the number of
dummy items added into the intersection satisfying (ϵI , δ)-DP
with a high enough probability. The result of our experiment
shows that: with fixed δ = 10−5, ϵI = 0.01, R = 2774;
ϵI = 0.1, R = 279; ϵI = 1.0, R = 29; ϵI = 10.0, R = 4.

We show the flow of the mqRPMT-DPSI protocol in Fig.
7 and give the details in Fig. 8. In the mqRPMT-DPSI, the
sender P1 and receiver P2 first insert some dummy items into
their private sets X and Y via a randomization mechanism
called Random Dummy Item Padding Mechanism and get the
padded sets X ′ and Y ′, respectively. Next, P1 and P2 invoke
a construction of mqRPMT with inputs X ′ and Y ′. As the
functionality of mqRPMT, P1 gets an indication bit vector
{vi}i∈[M] such that vi = 1 if and only if y′i ∈ X ′ but without
knowing y′i. After getting {⟨vi⟩}i∈[M], P1 perturbs it bit by bit
via the RR mechanism and sends the perturbed boolean shares
{⟨ṽi⟩}i∈[M] to P2. Finally, P2 receives {⟨ṽi⟩}i∈[M] and learns
F = {0, 1}m by deleting the bits corresponding to the dummy
items from {⟨ṽi⟩}i∈[M].

Similar to the circuit-DPSI framework, the mqRPMT pro-
tocols invoked in mqRPMT-DPSI are pluggable and can be
compatible with any future mqRPMT protocols.

Parameters: The size of the P1’s set n. The privacy budget
ϵI , ϵD, ϵ.
Input: The sender P1’s set X = {xi}i∈[n] ∈ Vn. The
receiver P2’s set Y = {yi}i∈[m] ∈ Vm.
Functionality: Upon receiving X from P1, Y from P2.

1) Compute F ′ ∈ {0, 1}m, where f ′
i indicates if yi ∈ X .

Apply MRR with parameter ϵ to F ′ and send the
result F to P2.

2) DP Leakage: Sample rI , rD with L(ϵI , δ, 1) and
L(ϵD, δ, 1). Compute and send nI = |X

⋂
Y | + rI ,

nD = Y − |X
⋂
Y |+ rD to P1.

Fig. 9: Ideal functionality FrDPSI with privacy leakage.

B. Security & Privacy Analysis of mqRPMT-DPSI

Theorem 4: The protocol in Fig. 8 satisfies ϵ-SIM-DPSI with
the information leakage to P1 bounded by (ϵI + ϵD, 2δ)-DP.

Since both circuit-DPSI and mqRPMT-DPSI perturb the
intersection in the same way usingMRR, we omit the analysis
of the DP property of the receiver’s output and prove that
the information leaked to the sender in Fig. 9 is bounded by
(ϵI+ϵD, 2δ)-DP. Also, according to the sequential composition
theorem of DP, we only need to prove lemma 4.

Lemma 4: The truncated discrete Laplace mechanism satis-
fies (ϵ, δ)-differential privacy.

Proof: For any neighboring database D1, D2, let c1 =
c(D1) ≥ 0 and c2 = c(D2) ≥ 0. W.L.O.G. we consider
c2 ≥ c1. It is easy to see that Pr[TLap(D1) ∈ (−∞, c1)] = 0
and Pr[TLap(D2) ∈ (−∞, c2)] = 0. For any o ≥ c2 ≥ c1, it
is true that
Pr[TLap(D2) = o]

Pr[TLap(D1) = o]
=

p · exp (−(ϵ/∆c)|o− c1 − η0|)
p · exp (−(ϵ/∆c)|o− c2 − η0|)

= exp (
ϵ(|o− c2 − η0| − |o− c1 − η0|)

∆c
)

≤ exp (
ϵ|c1 − c2|

∆c
) ≤ exp (

ϵ ·∆c

∆c
) = exp (ϵ).

(3)

However, when the output o ∈ [c1, c2), Pr[TLap(D2) =
o] = 0, Pr[TLap(D1) = o] > 0, making the ratio of probabil-
ities unbounded. Nevertheless, we can bound Pr[TLap(D1) ∈
[c1, c2)] by δ as shown below.

Let O∗ = (−∞, c2). Then, we can show that for any output
set O of query c(), we have

Pr[TLap(D1) ∈ O]

= Pr[TLap(D1) ∈ (O ∩O∗)] + Pr[TLap(D1) ∈ (O −O∗)]

≤ Pr[TLap(D1) ∈ [c1, c2)] + eϵ Pr[TLap(D1) ∈ (O −O∗)]

= Pr[η1 < ∆c] + eϵ Pr[TLap(D1) ∈ O]

= 1− Pr[η1 ≥ ∆c] + eϵ Pr[TLap(D1) ∈ O]

= 1− e−ϵ(∆c−η0−1)

eϵ + 1
+ eϵ Pr[TLap(D1) ∈ O]

= δ + eϵ Pr[TLap(D1) ∈ O].
(4)

Therefore, this mechanism satisfies (ϵ, δ)-DP.

Lemma 5: The protocol in Fig. 8 securely realizes the
functionality in Fig. 9 against a semi-honest adversary in the
FmqRPMT -hybrid model.

We can prove the above theorem by constructing the sim-
ulators similar to the proof of Lemma 2 and omit the details
here due to space limitation.

VII. EXPERIMENTS

In this section, we describe the details of our implemen-
tation and evaluate the performance of the proposed DPSI
constructions.

A. Implementation Details

We implement three circuit-DPSI protocols and an
mqRPMT-DPSI protocol by plugging the SOTA circuit-PSI
protocols [16]–[18] and mqRPMT protocol [25] into the
proposed DPSI frameworks, respectively. Moreover, we also
implement all circuit-PSI protocols and mqRPMT-based PSI
protocol above for comparison. Specifically, all these protocols
mentioned above are written in JAVA and the source code is
available at the module mpc4j-work-dpsi of the root project
mpc4j (https://github.com/alibaba-edu/mpc4j).

We denote the circuit-PSI protocols and mqRPMT-based
PSI protocol, which are serving as primitives, as PSTY’19,
RS’21, CGS’22, and CZZ’22. The DPSI protocols that are
built upon them are denoted as PSTY’19⋆, RS’21⋆, CGS’22⋆,
and CZZ’22⋆. Moreover, we also list the running time and
communication cost of the FHE-based circuit-DPSI protocol
mentioned in [15] and denote it as KKL+’20. Note that the
experimental results of KKL+’20 are copied from [15] since
this protocol is obviously inefficient even though it is written
in C/C++, and the further detailed comparison between this
protocol with our protocols is unnecessary.

B. Datasets

We conduct different experiments on both synthetic and real
datasets. For evaluating the runtime and communication cost
of implemented protocols, which are only affected by the size
of dataset, we construct synthetic datasets separately for both
parties, each containing distinct keywords with some overlap.
For evaluating the utility of PSI-CA and PSI-SUM, we use
the widely applied real-world dataset TPC-H. We take the
ORDERKEY and LINEKEY attributes from the LINEITEM
table of TPC-H as keywords, the DISCOUNT attribute as the
value, and split this table for both parties.

C. Experimental Setup

For all implemented protocols, we set the computational
security parameter κ = 128 and the statistical security pa-
rameter σ = 40. To evaluate the performance of implemented
protocols, we conduct a series of experiments with different
sizes of items: n = m = 214, 216, 218, 220, as well as
different network environments, including LAN and WAN. In
addition, we set the corresponding maximum size of items
N = M = 215, 217, 219, 221. For the DP mechanism used in
the implemented DPSI protocols, we use the following default
values unless specifically stated: ϵ = 1.0, δ = 1

n .

https://github.com/alibaba-edu/mpc4j

TABLE I: Runtime of DPSI protocols on n = 214, 216, 218, 220

set sizes under LAN and WAN network settings. The results
for KKL+’20 are copied from [15]. The best results are marked
as green. The best results under the circuit-PSI framework are
marked as blue.

Primitive Protocol
Runtime(s)

LAN WAN
214 216 218 220 214 216 218 220

Circuit-PSI
PSTY’19 4.26 19.57 96.97 457.74 8.52 23.95 107.06 474.90

RS’21 5.35 20.98 99.96 474.68 8.67 27.36 111.93 488.63
CGS’22 5.29 21.81 102.67 485.09 8.47 26.25 110.51 501.74

Circuit-DPSI

PSTY’19⋆ 4.14 19.15 94.93 451.62 5.11 19.90 99.92 488.06
RS’21⋆ 4.95 19.67 97.21 465.22 5.46 21.19 99.11 479.51

CGS’22⋆ 4.48 20.75 102.25 476.95 9.44 26.03 111.79 503.86
KKL+’20 - 531.62 - 11719.4 - - - -

mqRPMT-PSI CZZ’22 1.34 5.40 21.40 85.33 1.67 6.01 22.51 88.33
mqRPMT-DPSI CZZ’22⋆ 1.19 4.81 19.14 77.22 1.61 5.76 21.55 85.37

TABLE II: Communication cost of DPSI protocols on n =
214, 216, 218, 220 set sizes. The results for KKL+’20 are copied
from [15]. The best results are marked as green.

Primitive Protocol Total Comm.(MB)
214 216 218 220

PSI

PSTY’19 2.63 8.82 32.08 125.93
RS’21 3.27 9.56 33.03 127.08

CGS’22 4.73 17.15 65.97 261.39
CZZ’22 1.88 7.5 31 124

Circuit-DPSI

PSTY’19⋆ 2.64 9.04 32.16 126.25
RS’21⋆ 3.27 9.58 33.11 127.4

CGS’22⋆ 5.74 17.17 66.05 261.76
KKL+’22 - 133 - 232

mqRPMT-DPSI CZZ’22⋆ 1.41 5.88 23.5 94

We run all our protocols and related protocols on a single
Intel Core i9-9900K with 3.6GHz and 128GB RAM. We
simulate the network connection using Linux tc command.
For the WAN setting, we set the average RTT to be 80 ms
and bandwidth to be 100 Mbps. We use iptables command to
calculate the communication cost, and use the running time to
compute the computation complexity, which is the maximum
time from the protocol beginning to the end, including the
messages transmission time.

D. Running time of Implemented Protocols

Table I shows the running time of all the implemented
protocols, and we can draw some interesting conclusions.
First, we can find that the running time of all DPSI protocols
increases linearly with the growth of the data size. Secondly,
it is obvious that, among the PSI and DPSI protocols we
evaluated, the mqRPMT-DPSI protocol CZZ’22⋆ consistently
outperformed the others in all network environments. Specif-
ically, the CZZ’22⋆ is approximately 3.2-5.8× faster than
the other circuit-DPSI protocols. This is consistent with our
analyses that mqRPMT-DPSI protocols will be faster than
the circuit-DSPI protocols since the latter uses GC as a
fundamental technology. Third, we observe that the PSTY’19⋆

is the fastest among all circuit-DPSI protocols over different
sizes of data in the WAN setting and when n = 214, 216

in the LAN setting. The reason is that we implement the
PSTY’19⋆ by combining the circuit-PSI protocol in [16] with
the PSM protocol in [18]. Finally, surprisingly, by comparing
the running time of DPSI protocols with their corresponding

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

U
til

ity

FPR
FNR

Fig. 10: The FPR and FNR of mqRPMT-DPSI protocol

PSI protocols which are used as primitives, we find that
the running time of all circuit-DPSI protocols is roughly the
same as their corresponding circuit-PSI protocols. However,
the running time of the mqRPMT-DPSI protocol is even
shorter than the mqRPMT-based PSI protocol. The reason
is that, compared to the original circuit-PSI protocols, the
corresponding circuit-DPSI protocols only add a secret sharing
perturbation phase, which utilizes an efficient RR mechanism.
Therefore, the computational overhead is almost negligible. On
the other hand, compared to the mqRPMT-based PSI protocols,
although the mqRPMT-DPSI protocol needs to add a few
dummy items into both parties’ sets in advance, it eliminates
the step of sending the receiver the mapping of perturbed
membership vector with the items in sender’s set via OT. As
a result, CZZ’22⋆ is slightly faster than CZZ’22.

E. Communication Cost of Implemented Protocols

Table II shows the total communication cost of all im-
plemented protocols. According to the results, we can find
that all DPSI protocols achieve strict linear communication
complexity. Specifically, except for the CGS’22⋆, the com-
munication overhead of the other DPSI protocols is relatively
consistent. Among them, the mqRPMT-DPSI protocol has the
lowest communication overhead. Moreover, compared with the
constructions of the corresponding PSI primitives, all circuit-
DPSI protocols have similar communication overheads. This
is because the perturbation operations involved in the DPSI
protocols are performed locally and do not incur additional
communication overhead. Furthermore, CZZ’22⋆ achieves a
reduction in communication costs by eliminating the OT step.

F. Utility of Implemented DPSI Protocols

1) FPR and FNR: The output of the DPSI protocols is a
differentially private set, which contains both false negatives
and false positives. According to the Equation 1, both the
false negative rate (FNR) and false positive rate (FPR) are
theoretically q = 1

1+eϵ , which indicates that the FNR and FPR
are determined by the privacy budget ϵ: a larger ϵ will lead
to smaller FNR and FPR at the expense of weaker privacy
guarantee, while a smaller ϵ will result in lower utility. In
practice, the parties need to negotiate and define a consensus
ϵ in advance to strike a balance between privacy and utility
that aligns with their specific needs.

To verify our theoretical analysis ofw the utility of DPSI
protocols, we additionally design a series of experiments,
where we measure the FPR and FNR of the chosen imple-
mented DPSI protocol while varying the private budget ϵ
from 0.5 to 5.0. Specifically, since the utility of all DPSI
protocols is the same, we chose the mqRPMT-DPSI protocol
as a representative protocol and conducted experiments to
evaluate its FPR and FNR under different privacy budgets.
The results in Fig. 10 support and validate our analyses: as
privacy budget ϵ increases, the FPR and FNR will decrease
gradually. It indicates that the parties can strike a balance
between privacy and utility by choosing a proper ϵ.

2) PSI-CA and PSI-SUM: Besides the FPR and FNR, the
utility of DPSI protocols can also be evaluated by measuring
the accuracy of PSI-CA and PSI-SUM, where former counts
the cardinality of the intersection and the latter sums the
measures associated with the items in the intersection. Theo-
retically speaking, the results of PSI-CA and PSI-SUM over
the output of our DPSI protocols are unbiased estimations of
the true PSI-CA and PSI-SUM, the accuracy of which is de-
termined by the RR mechanism used in the perturbation phase
of the DPSI protocols, whose variance is V ar[c̃] = eϵ

n·(eϵ−1)2 .
For evaluating the accuracy of the DPSI protocols’ outputs,
we conduct a series of experiments and measure the Relative
Error RE = |c−c′|

c of the outputs, where c and c′ are the
cardinality of the intersection and the cardinality of the output
of DPSI protocol, respectively. Specifically, we measure the
REs of CZZ’22⋆ while varying the size of sets n,m and the
privacy budget ϵ in the LAN setting.

The results are shown in Fig. 11, where the bars represent
the RE and the vertical lines over the bars represents the
variance. By observing Fig. 11(a) or Fig. 11(b), we can find
that the results are consistent with the theoretical analyses
above. On the one hand, as the privacy budget ϵ increases, the
REs and the variance of the results exhibit a gradual reduction.
On the other hand, the variance of REs also decreases as the
size of each party’s sets increase. Additionally, by comparing
Fig. 11(a) with Fig. 11(b), we can find that the variance of
PSI-CA is less than that of PSI-SUM in most cases. It can be
explained as follows. In PSI-SUM, the items have different
measures, which means that even if the cardinality of the
intersection remains unchanged, perturbing different items will
also affect the final results, leading to greater variance.

Notice that, besides the DPSI protocols, there are also
a series of works are designed for computing differentially
private PSI-CA or PSI-SUM with high utility. However, we do
not compare these works with out DPSI protocols here since
these works are designed for different scenarios: the results
of DPSI can be directly released to the client before being
aggregated whereas the existing works cannot. This means that
the DPSI protocols can provide stronger privacy protection,
which inevitably comes at the cost of utility degrade.

G. Effectiveness of Random Dummy Item Padding Mechanism

Finally, we evaluate the effectiveness of the Random
Dummy Item Padding Mechanism, which is the key building

1 2 3 4 50.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
el

at
iv

e
E

rr
or

(*1
0

2)

28

210

212

214

(a) PSI-CA

1 2 3 4 50.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e
E

rr
or

(*1
0

2)

28

210

212

214

(b) PSI-SUM

Fig. 11: The utility of PSI-CA in mqRPMT-DPSI protocol

0 1 2 3 4 5 6 7 8 9
Dummy Item Size

0

2

4

6

8

10

C
ou

nt
(x

10
4)

=1.0
=2.0
=3.0
=4.0
=5.0

(a) δ = 0.1

0 1 2 3 4 5 6 7 8 9
Dummy Item Size

0

2

4

6

8

10

C
ou

nt
(x

10
4)

=1.0
=2.0
=3.0
=4.0
=5.0

(b) δ = 0.0001

Fig. 12: The distribution of dummy items’ size

block in the mqRPMT-DPSI framework. We count the distribu-
tion of Random Dummy Item Padding Mechanism’s outputs in
a different setting. Specifically, we run Random Dummy Item
Padding Mechanism for 105 times while varying the privacy
budget ϵ from 1.0 to 5.0 under the setting of δ = 0.1 and
δ = 0.0001. In all experiments, we use the default values
n = m = 29, and show the results in Fig. 12. It demonstrates
that when δ = 0.0001, which is a much more practical setting
in the above experiments, as the privacy budget ϵ increases,
the distribution of the outputs becomes centralized gradually.
It means that a smaller ϵ can lead to a stronger privacy-
preserving capability. In contrast, when δ = 0.1, the output
is not adequately randomized, implying a higher probability
of accidental information leakage.

VIII. CONCLUSION

In this paper, we revisit the definitions of DPSI and propose
two DPSI frameworks. The first one is a generalized circuit-
DPSI framework which is secure and satisfies ϵ-DP. The other
one is an mqRPMT-DPSI framework which offers improved
efficiency at the expense of privacy compromise. Specifically,
in the mqRPMT-DPSI framework, we come up with a Random
Dummy Item Padding Mechanism to prevent the exact PSI-
CA from being leaked. We prove that the released PSI-CA
satisfies (ϵ, δ)-DP and the output of mqRPMT-DPSI frame-
work is secure and satisfies ϵ-DP. We implement numerous
of constructions based on proposed DPSI frameworks and
compare them with the state-of-the-art PSI. Experiments show
that our constructions are arguably the most computation and
communication efficient DPSI protocol to date, and they are
even comparable to the most efficient PSI protocols.

REFERENCES

[1] Information Commissioner’s Office, “Chapter 5: Privacy-enhancing tech-
nologies,” 2022.

[2] A. Edmonds, A. Nikolov, and J. R. Ullman, “The power of factorization
mechanisms in local and central differential privacy,” in STOC 2020.
ACM, 2020, pp. 425–438.

[3] M. Hardt, K. Ligett, and F. McSherry, “A simple and practical algorithm
for differentially private data release,” in NeurIPS 2012. NeurIPS
Foundation, 2012, pp. 2348–2356.

[4] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the accuracy
of differentially private histograms through consistency,” Proc. VLDB
Endow., vol. 3, no. 1, pp. 1021–1032, 2010.

[5] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor, “Optimizing
linear counting queries under differential privacy,” in PODS 2010.
ACM, 2010, pp. 123–134.

[6] C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi, “The ma-
trix mechanism: optimizing linear counting queries under differential
privacy,” Proc. VLDB Endow., vol. 24, no. 6, pp. 757–781, 2015.

[7] V. Rastogi and S. Nath, “Differentially private aggregation of distributed
time-series with transformation and encryption,” in SIGMOD 2010.
ACM, 2010, pp. 735–746.

[8] G. Yuan, Y. Yang, Z. Zhang, and Z. Hao, “Convex optimization for linear
query processing under approximate differential privacy,” in SIGKDD
2016. ACM, 2016, pp. 2005–2014.

[9] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao, “Op-
timizing batch linear queries under exact and approximate differential
privacy,” ACM Trans. Database Syst., vol. 40, no. 2, pp. 11:1–11:47,
2015.

[10] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld, “Prochlo:
Strong privacy for analytics in the crowd,” in SOSP 2017. ACM, 2017,
pp. 441–459.

[11] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized
aggregatable privacy-preserving ordinal response,” in CCS 2014. ACM,
2014, pp. 1054–1067.

[12] J. C. Duchi, M. I. Jordan, and M. J. Wainwrigh, “Local privacy and
statistical minimax rates,” in FOCS 2013, 2013.

[13] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and L. Vilhuber,
“Privacy: Theory meets practice on the map,” in ICDE 2008. IEEE
Computer Society, 2008, pp. 277–286.

[14] S. Haney, A. Machanavajjhala, J. M. Abowd, M. Graham, M. Kutzbach,
and L. Vilhuber, “Utility cost of formal privacy for releasing national
employer-employee statistics,” in SIGMOD 2017. ACM, 2017, pp.
1339–1354.

[15] B. Kacsmar, B. Khurram, N. Lukas, A. Norton, M. Shafieinejad,
Z. Shang, Y. Baseri, M. Sepehri, S. Oya, and F. Kerschbaum, “Dif-
ferentially private two-party set operations,” in EuroS&P 2020. IEEE,
2020, pp. 390–404.

[16] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-
based psi with linear communication,” in Eurocrypto 2019. Springer,
2019, pp. 122–153.

[17] P. Rindal and P. Schoppmann, “Vole-psi: fast oprf and circuit-psi from
vector-ole,” in Eurocrypto 2021. Springer, 2021, pp. 901–930.

[18] N. Chandran, D. Gupta, and A. Shah, “Circuit-psi with linear complexity
via relaxed batch opprf,” Proceedings on Privacy Enhancing Technolo-
gies Symposium, vol. 2022, no. 1, pp. 353–372, 2022.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in STOC
2009. ACM, 2009, pp. 169–178.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory, vol. 6, no. 3, pp. 1–36, 2014.

[21] J. Bater, Y. Park, X. He, X. Wang, and J. Rogers, “SAQE: practical
privacy-preserving approximate query processing for data federations,”
Proc. VLDB Endow., vol. 13, no. 11, pp. 2691–2705, 2020.

[22] Y. Wang and K. Yi, “Secure yannakakis: Join-aggregate queries over
private data,” in SIGMOD 2021. ACM, 2021, pp. 1969–1981.

[23] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: lightweight
private set intersection from sparse ot extension,” in CRYPTO 2019.
Springer, 2019, pp. 401–431.

[24] C. Zhang, Y. Chen, W. Liu, M. Zhang, and D. Lin, “Linear private set
union from {Multi-Query} reverse private membership test,” in USENIX
Security 2023. USENIX, 2023, pp. 337–354.

[25] Y. Chen, M. Zhang, C. Zhang, M. Dong, and W. Liu, “Private set
operations from multi-query reverse private membership test,” in PKC
2024. Springer Nature Switzerland, 2024, pp. 387–416.

[26] X. Guo, Y. Han, Z. Liu, D. Wang, Y. Jia, and J. Li, “Birds of a feather
flock together: How set bias helps to deanonymize you via revealed
intersection sizes,” in USENIX Security 2022. USENIX, 2022, pp.
1487–1504.

[27] B. Jiang, J. Du, and Q. Yan, “Anonpsi: An anonymity assessment
framework for PSI,” Cryptology ePrint Archive, 2024.

[28] C. Meadows, “A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party,” in S&P 1986.
IEEE, 1986, pp. 134–134.

[29] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear complexity,” in FC 2010. Springer, 2010, pp.
143–159.

[30] P. Buddhavarapu, A. Knox, P. Mohassel, S. Sengupta, E. Taubeneck,
and V. Vlaskin, “Private matching for compute,” Cryptology ePrint
Archive, 2020. [Online]. Available: https://eprint.iacr.org/2020/599

[31] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth,
M. Raykova, D. Shanahan, and M. Yung, “On deploying secure com-
puting: Private intersection-sum-with-cardinality,” in EuroS&P 2020.
IEEE, 2020, pp. 370–389.

[32] M. Yagisawa, “Fully homomorphic encryption without bootstrapping,”
Cryptology ePrint Archive, 2015. [Online]. Available: https://eprint.iacr.
org/2011/277

[33] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS 1986.
IEEE, 1986, pp. 162–167.

[34] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
set intersection using permutation-based hashing,” in USENIX Security
2015. USENIX, 2015, pp. 515–530.

[35] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Crypto 2003. Springer, 2003, pp. 145–161.

[36] V. Kolesnikov and R. Kumaresan, “Improved ot extension for transfer-
ring short secrets,” in Crypto 2013. Springer, 2013, pp. 54–70.

[37] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer extensions with security for malicious adversaries,” in
Eurocrypto 2015. Springer, 2015, pp. 673–701.

[38] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious prf with applications to private set intersection,” in
CCS 2016. ACM, 2016, pp. 818–829.

[39] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Psi from paxos: fast,
malicious private set intersection,” in EUROCRYPT 2020. Springer,
2020, pp. 739–767.

[40] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and
P. Scholl, “Efficient two-round ot extension and silent non-interactive
secure computation,” in CCS 2019. ACM, 2019, pp. 291–308.

[41] G. Couteau, P. Rindal, and S. Raghuraman, “Silver: silent vole and
oblivious transfer from hardness of decoding structured ldpc codes,”
in Crypto 2021. Springer, 2021, pp. 502–534.

[42] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Oblivious
key-value stores and amplification for private set intersection,” in Crypto
2021. Springer, 2021, pp. 395–425.

[43] S. Raghuraman and P. Rindal, “Blazing fast psi from improved okvs
and subfield vole,” in CCS 2022. ACM, 2022, pp. 2505–2517.

[44] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS 2012, 2012.

[45] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in CCS 2017. ACM, 2017, pp. 1243–1255.

[46] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled psi from fully
homomorphic encryption with malicious security,” in CCS 2018. ACM,
2018, pp. 1223–1237.

[47] A. Narayan and A. Haeberlen, “Djoin: Differentially private join queries
over distributed databases,” in OSDI 2012. USENIX, 2012, pp. 149–
162.

[48] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers,
“Shrinkwrap: efficient sql query processing in differentially private data
federations,” Proceedings of the VLDB Endowment, vol. 12, no. 3, 2018.

[49] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava, “Composing
differential privacy and secure computation: A case study on scaling
private record linkage,” in CCS 2017. ACM, 2017, pp. 1389–1406.

[50] A. Groce, P. Rindal, and M. Rosulek, “Cheaper private set intersection
via differentially private leakage,” Proc. Priv. Enhancing Technol., vol.
2019, no. 3, pp. 6–25, 2019.

https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277

[51] P. Rindal and M. Rosulek, “Malicious-secure private set intersection via
dual execution,” in CCS 2017. ACM, 2017, pp. 1229–1242.

[52] O. Goldreich, Foundations of cryptography: volume 2, Basic Applica-
tions. Cambridge University Press, 2009.

[53] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[54] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in ESA 2001. Springer,
2001, pp. 121–133.

[55] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS 2023. IEEE, 2013, pp. 429–438.

[56] S. L. Warner, “Randomized response: A survey technique for eliminating
evasive answer bias,” Journal of the American Statistical Association,
vol. 60, no. 309, pp. 63–69, 1965.

[57] C. L. Canonne, G. Kamath, and T. Steinke, “The discrete gaussian for
differential privacy,” in NeurIPS 2020. NeurIPS Foundation, 2020.

	Introduction
	Related Works
	Preliminaries
	Notations and Security Model
	Standard Differential Privacy Definition
	Cryptographic Primitives

	Differentially Private Set Intersection
	Security Gap in the Existing DPSI
	PSI-related Tools for Constructing DPSI
	The Practical Significance and Limitations

	Circuit-DPSI Framework
	Circuit-DPSI
	Security & Privacy Analysis of Circuit-DPSI

	mqRPMT-based DPSI Framework
	mqRPMT-DPSI
	Security & Privacy Analysis of mqRPMT-DPSI

	Experiments
	Implementation Details
	Datasets
	Experimental Setup
	Running time of Implemented Protocols
	Communication Cost of Implemented Protocols
	Utility of Implemented DPSI Protocols
	FPR and FNR
	PSI-CA and PSI-SUM

	Effectiveness of Random Dummy Item Padding Mechanism

	Conclusion
	References

