
Dynamic Collusion Functional Encryption and
Multi-Authority Attribute-Based Encryption∗

Rachit Garg
UT Austin†

Rishab Goyal
UW-Madison‡

George Lu
UT Austin§

Abstract

Functional Encryption (FE) is a powerful notion of encryption which enables computations
and partial message recovery of encrypted data. In FE, each decryption key is associated with
a function f such that decryption recovers the function evaluation f(m) from an encryption of
m. Informally, security states that a user with access to function keys skf1 , skf2 , . . . (and so on)
can only learn f1(m), f2(m), . . . (and so on) but nothing more about the message. The system
is said to be q-bounded collusion resistant if the security holds as long as an adversary gets
access to at most q = q(λ) decryption keys.

However, until very recently, all these works studied bounded collusion resistance in a static
model, where the collusion bound q was a global system parameter. While the static model
has led to many great applications, it has major drawbacks. Recently, Agrawal et al. (Crypto
2021) and Garg et al. (Eurocrypt 2022) introduced the dynamic model for bounded collusion
resistance, where the collusion bound q was a fluid parameter, not globally set, but chosen by
each encryptor. The dynamic model enabled harnessing many virtues of the static model, while
avoiding its various drawbacks. In this work, we provide a generic compiler to upgrade any FE
scheme from the static model to the dynamic model.

We also extend our techniques to multi-authority attribute-based encryption (MA-ABE).
We show that bounded collusion MA-ABE supporting predicates that can be represented as an
efficient computational secret sharing (CSS) scheme can be built from minimal assumptions.
Efficient CSS schemes are known for access structures whose characteristic function can be com-
puted by a polynomial-size monotone circuit under the existence of one-way functions [Yao89
(unpublished)]. Thus, our MA-ABE construction is the first MA-ABE scheme from standard as-
sumptions for predicates beyond polynomial-size monotone boolean formula. Our construction
also satisfies full adaptive security in the Random Oracle Model.

∗This paper subsumes the results from an earlier unpublished work by the authors [GGL22]. This is the full version
of the paper that appeared at PKC 2024.

†Email: rachg96@cs.utexas.edu.
‡Email: rishab@cs.wisc.edu. Research supported by Wisconsin Alumni Research Foundation.
§Email: gclu@cs.utexas.edu.

1

1 Introduction

Functional Encryption (FE) [SW05, BSW11] is a powerful generalization of public-key encryp-
tion [DH76] which enables fine-grained access over encrypted data. In such systems, a setup algo-
rithm produces a master public-secret key pair (mpk,msk), where the master public key is made
public and the master secret key is retained by an authority. Using mpk, any user can encrypt data
m to produce a ciphertext ct. On the other hand, the authority can use the master secret key to
generate partial decryption keys for authorized users, where the decryption key skf for a function
f enables the key holder to compute the function output f(m) from the ciphertext encrypting data
m while learning nothing else about m.

The notion of “learning nothing else about m” is formalized in one of two ways – indistin-
guishability (IND) or simulation (SIM) based security. The intuition behind them can be jointly
understood as follows. The attacker receives a challenge ciphertext ct encrypting a message m along
with a polynomial number (say q) of decryption keys skf1 , . . . , skfq for functions f1, . . . , fq. In the
case of SIM-security, an attacker cannot distinguish this from a ‘simulated’ distribution of keys and
ciphertext where only the function evaluation f1(m), . . . , fq(m) are available to the simulator, and
not the entire message. While in IND-security, an attacker cannot distinguish it from when the
ciphertext ct encrypts another message m′ where fi(m) = fi(m

′) for all q functions.
Over the last several years, functional encryption has been extensively studied and shown to

remarkably useful (irrespective of the underlying security model, IND/SIM) for numerous appli-
cations across cryptography and beyond. Depending upon the message space and function space
supported, it defines a new encryption system with appropriate fine-grained access control. For
example, public-key encryption can be viewed as FE with only the identity function, identity-based
encryption (IBE) [Sha84, Coc01, BF01] can be viewed as FE with point functions, etc.

Bounded collusions. In this work, we study functional encryption in the widely popular bounded
collusion model [SS10, GVW12]. The bounded collusion model states that the FE system is
guaranteed to be secure so long as the attacker does not receive more than q decryption keys.
The parameter q is referred to as the collusion bound. The bounded collusion model has been
highly successful and very well-studied leading to numerous positive as well as negative results
(see [DKXY02, SS10, GLW12, GVW12, AR17, Agr17, ISV+17, AS17, GKW18, CVW+18, AV19,
WFL19] and references therein), and improving understanding of the complexity of designing FE
more generally. Moreover, it captures the essence of security needed for many applications, and
can be built from low tech assumptions such as public-key encryption in most cases. Thus,
FE in the bounded collusion model overcomes the extremely high cost needed for full collusion
resistance [GGH+13, JLS21, JLS22] (both in terms of cryptographic assumptions and concrete
practical efficiency), and bypasses known impossibilities [AGVW13]. Furthermore, it readily gives
solutions that are provably post-quantum secure, unlike fully collusion resistant FE where current
solutions are either known to be post-quantum insecure [JLS21, JLS22] or have only conjectured
security [WW21, GP21, BDGM20, DQV+21].

Until very recently, FE in the bounded collusion model was formalized as the collusion bound
q being declared at the time of system setup, restricting it to be fixed for the entire lifetime of
the FE system. This introduces an undesirable inflexibility as whenever more than q corruptions

2

occur, the system becomes useless since no security is guaranteed! Moreover, the sizes of all system
parameters grew polynomially with q, including all the public and secret keys.

In recent works by Agrawal et al. [AMVY21] and Garg et al. [GGLW22], this limitation in
the existing formalization of bounded collusion model was explored. They observed that this
inflexibility is simply an artefact of existing formalizations of the bounded collusion model, and not
a true barrier. They referred to the existing models as static bounded collusion model (henceforth
called the static model), and introduced a stronger yet more natural corruption model called the
dynamic bounded collusion model (henceforth dynamic model).

In the dynamic model, the setup algorithm no longer needs a maximum collusion bound q! It
removes this inflexibility by letting an encryptor dynamically decide the number of colluding users
against which it desires protection. That is, an encryptor selects the collusion bound q for each
ciphertext ct at encryption time. And, crucially, a secure FE system in the dynamic model provides
a fine-grained “per-ciphertext guarantee", which says a ciphertext ct generated for collusion level
q is guaranteed to be secure so long as the attacker does not receive more than q decryption keys.
In other words, an encryptor can select different collusion levels while a decryption key holder can
decrypt it all the same. As a consequence, in the dynamic model, only the size of the ciphertexts
grows with q, while everything else is independent of q.

This new formalization preserves all the desirable features (such as low tech assumptions, con-
crete efficiency, post-quantum security etc) while giving much better flexibility for applications.
[AMVY21, GGLW22] designed FE schemes for circuits in the dynamic model assuming the min-
imum and necessary1 assumption of identity-based encryption (IBE). And, [AMVY21] also ex-
tended them to succinct FE schemes for circuits, and FE schemes for Turing Machines (TMs)
and Nondeterministic Logspace (NL) by leveraging the hardness of learning with errors (LWE)
assumption [Reg05].

A recurring theme in their constructions is to perform careful surgery of existing FE schemes
secure in the static model to upgrade to the dynamic model. In a few words, the core idea in these
works is to open up existing (static) FE constructions and exploit the key space compression offered
by IBE to encode the collusion bound more efficiently in each ciphertext rather than the master
public key. On a technical level, the existing FE constructions and their proofs in the dynamic
model are not more challenging compared to the static model, but they definitely are far more
complicated to describe due to the instrinsic adaptivity offered by dynamic model.2

This leads to an interesting predicament – static model is well understood and weaker, but
constructions are comparatively easier to design; while dynamic model is newer and stronger, but
constructions are technically more cumbersome to design. Ideally, we want to design FE in the
dynamic model but as simply as have been designing them in the static model so far. Thus, it
likely suggests that we have two pathways:

A. Stick with static model for an initial feasibility result, and later circle back to the (static)
construction to make it dynamic à la the surgery approach [AMVY21, GGLW22].

1See [AMVY21, §7] for more details about minimality of IBE.
2Briefly, this is because existing constructions [AMVY21, GGLW22, AKM+22] have to redo all the work done for
proving security in the static model and then patch it to make it secure in the dynamic model. And, there is no
compiler that can generically upgrade static model to dynamic model.

3

B. Adopt the dynamic model as the primary corruption model, and develop a holistic approach.

While B would be a better choice scientifically, it might be too much to ask for. Even historically,
in similar situations, we have observed pathway A is more likely to be taken. E.g., CPA vs CCA
security, generic group vs standard model, composite vs prime order bilinear groups, random oracle
vs standard model etc. In all the aforementioned situations, the community more often adopted
the easier to design security model as a first step, and later strengthened it to the stronger model.

Static to dynamic generically. This leads to the first question we ask:

Q- Can we generically upgrade any FE in the static model to dynamic model without
changing the function/message class?

A bit more philosophically, the question we ask is whether the two aforementioned pathways
be unified? Somewhat surprisingly, we answer affirmatively! In this work, we show:

Informal Theorem 1. Assuming IBE, an FE scheme secure in the static model can be
transformed into a secure FE scheme in the dynamic model.

A bit formally, we show that a statically secure FE scheme, protecting against collusions of size
≤ λ, can be lifted to an FE scheme that protects from dynamic collusions. Given IBE is a necessary
assumption (see [AMVY21, §7]), thus the above theorem is the best one can hope for. We view
our result to follow along the lines of similar (pseudo-)generic transformations known for other
comparable models in the literature (such as for CPA-to-CCA [NY90, KW19], composite-to-prime-
order-pairings [Fre10, Lew12, OT10, Att14], etc). This reduces the task of building an FE scheme
in the general dynamic model to a comparatively easier target of building a λ-bounded collusion
FE scheme. In fact our procedure works for both uniform and non-uniform models of computation,
which in turn lends to new FE results in the dynamc model as mere corollaries [GSW21, Wee21]
(further discussed in the main body).

While in the future, there might be scenarios when a direct construction for a particular function
class might be more advantageous, our transformation would remain a good starting point. More
importantly, it serves as a good foundation and clear indication that FE in the dynamic model is
as easy/hard as in the static model for that function-message space.

1.1 Multi-Authority Attribute-Based Encryption

While FE has been a great abstraction to study encryption over the last few decades, it has its
own limitations. One well-known limitation is the need of a central trusted authority necessary for
generating and issuing decryption keys. There has been a long line of works focussed on mitigating
this centralization issue starting with the works of Chase, Chow, Lewko, and Waters [Cha07,
CC09, LW11]. They introduced the notion of decentralization for attribute-based encryption (ABE)
systems, commonly referred to as “multi-authority" attribute-based encryption (MA-ABE).

4

Recall in ABE, each ciphertext ct encrypts the payload m under an access policy ϕ, and a
decryption key skx is associated with an attribute x.3 The functionality ensures, given such a
ciphertext-key pair, one can learn payload m so long as ϕ(x) = 1. While security states that the
payload is hidden so long as an attacker receives decryption keys for only unsatisfying attributes.

In an MA-ABE system, anyone can become a key issuing authority. There is no longer one
master authority, but multiple individual authorities each controlling only a portion of the attribute
space. Without loss of generality, consider attributes to be n-bit strings with n key authorities
where the ith authority controls the ith bit of the attribute and gives a partial decryption key for
just that attribute bit (say sk

(i)
b denotes partial key from authority i for bit b).

During decryption, a user combines partial decryption keys sk
(1)
x1 , . . . , sk

(n)
xn associated with the

same global user identifier GID (necessary for avoiding a mix&match attack4) to decrypt the
ciphertext so long as ϕ(x = (x1, . . . , xn)) = 1. Security is still required to hold against users who
possess an arbitrary number of unauthorized secret keys, with an additional challenge that some
subset of the authorities could now be corrupted as well. What makes MA-ABE so desirable in
practice is this significantly stronger corruption model where key authorities can now be corrupted
too. Over the last decade, there have been numerous attempts with varying levels of success (see
[Cha07, CC09, LW11, WFL19, OT20, AGT21, DKW21, DKW23] to name a few and references
therein for complete history) in building MA-ABE schemes, with mostly investigating in the highly
popular (by now standardized) GID-model.

In this work, we design MA-ABE with bounded collusion resistance and, following the theme of
our work, we formally define it in the dynamic (as well as static) model. Very briefly, we say an MA-
ABE scheme is (statically) q-bounded collusion secure: if an attacker that can corrupt an arbitrary
set of key authorities in addition to receiving partial decryption keys from all honest key authorities
on at most q unique GIDs, cannot guess the message (so long as the partial decryption keys for
any particular GID does not satisfy the challenge predicate ϕ). In a few words, the restriction is
not on corrupting the key authorities, but only on the number of honest partial keys an attacker
can see. The dynamic model can be similarly defined by delaying the choice of collusion bound to
the encryptor instead.

We show that, in the bounded collusion setting, MA-ABE supporting any predicate that can
be represented as an efficient computational secret sharing (CSS) scheme can be built from general
low tech assumptions. A bit formally, we show:

Informal Theorem 2. Assuming public-key encryption, there exists an MA-ABE scheme
for efficient CSS predicates secure in the static model, in the Random Oracle Model (ROM).

In an unpublished work (mentioned in [Bei11], see also Vinod et al. [VNS+03]), Yao showed
an efficient computational secret-sharing scheme for access structures whose characteristic function
3Note that we are sticking with the ciphertext-policy variant of attribute-based encryption, as is the norm while
defining multi-authority ABE.

4It is well understood that since the key authorities are completely decentralized and work independently, multiple
partial decryption keys for the same attribute bit can be combined arbitrarily with partial keys from other key
authorities. Briefly, the issue is partial decryption keys for different users from two independent authorities can be
used together. To get around this, Chase [Cha07] introduced the concept of using unique public global identifiers
for each distinct user as a “linchpin” for tying partial keys together.

5

can be computed by a polynomial-size monotone circuit under the existence of one-way functions.
Thus, by combining with Yao’s secret sharing scheme, we obtain an MA-ABE scheme for monotone
circuits in the static model from plain public-key encryption.

Corollary 1. Assuming public-key encryption, there exists an MA-ABE scheme for polynomial-
depth monotone circuits secure in the static model, in the Random Oracle Model (ROM).

The most expressive state of the art MA-ABE scheme in the fully collusion resistant model [LW11]
only supports monotone formulae (i.e., log-depth circuits), thus we can support a much more gen-
eral class at the cost of relatively weaker security model. Moreover, our construction satisfies full
adaptive security where the attacker can corrupt authorities and keys adaptively in any arbitrary
order. Prior to our work, there were only two MA-ABE constructions [WFL19, DKW23] that
achieved full adaptive security. Both these schemes support encrypting access policies computable
using an NC1 circuit, where Datta et al. [DKW23] gave a fully collusion resistant scheme under
standard pairing-based assumptions, while Wang et al. [WFL19] gave a bounded collusion scheme
under DDH/LWE assumption. Our scheme supports encrypting polynomial-depth monotone cir-
cuits, while relying on a minimal assumption of public-key encryption. Somewhat interestingly
(though not surprisingly), we can prove security of our construction in the standard model (with-
out ROM) if we stick to a super selective model. Since we do not formally prove it in the current
version, we simply state it as an interesting observation.

Observation 1. Assuming public-key encryption, there exists an MA-ABE scheme for polynomial-
depth monotone circuits secure in the super-selective static model.

Finally, following the theme of our work, we also construct and prove an MA-ABE scheme in
the dynamic collusion model. Here, we show:

Informal Theorem 3. Assuming identity-based encryption, there exists an MA-ABE scheme
for polynomial-depth monotone circuits in the dynamic collusion model (in ROM).

We can make the same observation as above about proving security in the standard model
(without ROM). It is an interesting problem to remove the dependence on ROM for proving full
adaptive security. We quickly remind the reader that IBE is a necessary assumption (see [AMVY21,
§7] for more details).

Lastly, we remark that due to the minimal nature of assumptions needed for our MA-ABE
results, they can be instantiated from post-quantum assumptions such as LWE [Reg05, GPV08]
or even LPN [Ale03, DGHM18]. This gives us the first post-quantum MA-ABE scheme (though
in the bounded collusion model) for predicates beyond DNF, and the very first MA-ABE scheme
from the hardness of learning parity with noise (LPN) assumption.

2 Technical Overview

The overview is split into two parts. First, we discuss our design of a generic accumulator for
functional encryption systems. We show that such an accumulator is the main technical barrier

6

that separates static and dynamic collusion models. In the second part, we look at how to build a
multi-authority attribute-based encryption system for polynomial-sized monotone circuits.

Part I: The FE Accumulator

Consider the problem of succinctly representing 2λ pairs of FE master keys (mpki,mski) for i ≤ 2λ

using only polynomial space, i.e. poly(λ) space to store all 2λ key pairs. That is, you are given
a functional encryption system FE = (Setup,Enc,KeyGen,Dec) for some message-function space
M,F . Without loss of generality, suppose the FE.Setup algorithm takes λ bits of randomness.
Thus, FE.Setup outputs 2λ possible master public-secret key pairs, one for each randomness value.
The problem is to come up with a compressed representation, say (MPK,MSK), of these 2λ key
pairs (mpki,mski) with the following properties:

Succinctness. |MPK|, |MSK| = poly(λ), i.e. they have fixed polynomial size.

Functionality. There exist efficient algorithms ENC,KEYGEN,DEC such that ENC(MPK, i, ·),
KEYGEN(MSK, i, ·), DEC(SKf , i, ·) gave similar functionality as Enc(mpki, ·), KeyGen(mski, ·),
Dec(skf,i, ·).

(Here SKf , skf,i corresponding to a function decryption key.)

Here the second property can be defined formally, but intuitively it just says that (MPK,MSK)

along with these algorithms simulate the same functionality/behavior of actually using the original
versions of the FE keys.

Interestingly, designing such an accumulatable version of FE is the main technical hurdle for
closing the gap between bounded collusion FE schemes in the static vs dynamic models. All prior
works in the dynamic model [AMVY21, GGLW22, AKM+22] essentially design their own versions
of such an accumulatable FE system and use it, either explicitly or implicitly, to build an FE
scheme in the dynamic model. Garg et al. [GGLW22] make it most explicit, and define a new
object called Tagged Functional Encryption (Tagged FE).

Formally, a tagged FE system contains the same four algorithms – Setup, Enc, KeyGen, Dec.
That is, as in regular static model FE scheme, Setup takes the collusion bound q as an input. The
main difference as as follows: each ciphertext ctm,tag1 and secret key skf,tag2 are now additionally
associated with a tag value, tag1 and tag2 (respectively), in addition to a message m and a function
f . The decryption correctness states that Dec(skf,tag2 , ctm,tag1) is equal to f(m) iff tag1 = tag2,
otherwise it outputs ⊥. For security, it should be the case that regular FE security holds for all
tag values where an attacker make less than q key queries. It is crucial that the attacker is allowed
to make an unrestricted number of key queries on as many tag values that it wants. Basically, for
tag values where the collusion bound is not exceeded, FE security should still hold even if collusion
bound is exceeded on other tag values.

It is straightforward to see that tagged FE is simply an accumulated version of an FE scheme
in the static model. The point is tagged FE enables a succinct representation of an exponential
number of static model FE key pairs, and we mentioned before, this captures the main technical
challenge to design FE in the dynamic model. Note that the setup of a tagged FE system still
takes the collusion bound as input. Later we discuss how tagged FE can be upgraded genericaly in

7

a black-box way to dynamic model FE. For now, we focus on building tagged FE from any static
model FE scheme.

Our Accumulation Compiler. The main technical component of our first result is a generic
compiler to succinctly represent an exponential number of FE keys in polynomial space. That is,
a generic compiler to go from static model FE to tagged FE.

Our first main observation is that a tagged FE is simply an identity-based static FE scheme.
That is, one could visualize tagged FE as a generalization of static model FE similar to how IBE is
a generalization of plain PKE. Recall in IBE, each ciphertext and function key is associated with an
identity (or simply a ‘tag’ value). Thus, it seems like all we need to do is find a generic mechanism
to embed identities/tags in both the secret keys and ciphertexts of a tagged FE scheme.

Coincidentally, a similar problem was solved in an unrelated context of building registration-
based encryption [GHMR18, GHM+19, GV20]. Although the motivation behind registration-based
encryption was to solve the key-escrow problem, one could very easily visualize it as a mechanism
to accumulate a large number of independently sampled PKE public keys into a short commitment
where each public key is associated with an identity (and, so is the corresponding secret key
as well). And, an encryptor only needs the short commitment to encrypt the message for any
particular identity. Internally, these encryption schemes rely on the beautiful line of works studying
non-black-box IBE constructions from simpler assumptions [DG17b, DG17a].

Our idea is to use these non-black-box techniques for compressing static model FE schemes.
Looking within all these existing constructions, we notice that the usage of PKE in these prior
works ([DG17b, DG17a, GHMR18, GHM+19] to name a few) is not essential. Rather we view this
overall line of work as providing a beautiful mechanism to embed identities in any type of FE, and
not just in plain PKE. While embedding identities in fully collusion resistant FE schemes does not
seem to be useful for any new applications, we find that embedding identities is very useful for
bounded collusion FE. For us, this gives a simple and generic approach to dynamic model FE. We
believe that our re-visualization of Döttling-Garg [DG17b, DG17a] garbling-based tree compression
techniques to beyond PKE will find more applications in the future.

Focussing on static model FE as the base encryption system and combining it with the garbling-
based compression techniques, we prove the following:

Informal Theorem 4. Assuming IBE5, there exists a generic compiler for building tagged
FE from static model FE.

From Static Model to Tagged FE via Garbling. The core technical idea behind the non-
black-box garbling techniques [DG17b, DG17a] was to delegate computation of actual ciphertext
computation to the decryption algorithm via a sequence of cascaded garbled circuits [Yao82]. Ab-
stractly, there is a sequence of λ garbled circuits where the ith garbled circuit gives as output the
wire labels for the (i + 1)th garbled circuit. The last garbled circuit is special as the it performs
the actual delegated computation of the real ciphertext. This basic abstract representation is not
enough on its own as the wire keys for the (i + 1)th garbled circuit (the ones that are part of
5Looking ahead, we actually use One-Time Signature with Encryption (OTSE) introduced in [DGHM18].

8

the ith circuit’s output) have to be encrypted such that only half of them are revealed during the
actual decryption. This last part is crucial for security as it ensures all the garbled circuits can be
simulated properly.

In this work, we use one-time signature with encryption (OTSE) for hiding wire labels in
the above approach. They were introduced for building IBE generically from plain PKE via gar-
bling [DGHM18]. In short, an OTSE scheme is a one-time signature scheme that is equipped with
an encryption and decryption algorithm. Encryption is performed w.r.t. a verification key vk and a
pair of message bit and index (i, b). The resulting ciphertext can be decrypted using any signature
σ for some string x so long as the bit b matches corresponding bit in x (i.e., m[i] = b). Formally,
a ciphertext ct is associated with an index-bit pair (i, b), and decryption works given a signature
σ for any x such that x[i] = b. Combining OTSE with garbled circuits is sufficient for designing a
generic accumulation compiler.

To give a quick overview, we start with a simpler goal. Suppose we only want compress and
embed N independent instantiations of a static model FE scheme (referred to as base FE scheme
for ease of exposition) into a tagged FE scheme. That is, all the parameter sizes should grow only
as poly(λ, logN), but now the running time of the setup and key generation algorithms can be
large (say poly(λ,N)). The core idea is as follows:

Setup: Sample N random key pairs (mpki,mski) for base FE (using a PRF key K for generating
randomness). Hash all N public keys to a short digest h using a Merkle tree. Set digest h as
the short master public key mpk and PRF key K as the short master secret key msk.

Encrypt: Use the garbling technique describe above. It defers the base FE encryption to the
decryption phase. It does this by generating a sequence of garbled circuits C1, . . . , Cλ. The
final circuit Cλ outputs the base FE encryption under the correct key mpktag, while the
intermediate circuits perform step-by-step verification of the root-to-leaf path where at each
step only one bit of the tag value tag is read and verified.

Now as discussed above, all the garbled wire keys have to be encrypted (using OTSE). This
enforces the decryptor to run the final garbled circuit only on mpktag. (Clearly, the setup has
to be modified to ensure the hash tree is compatible with OTSE, and msk needs to contain
OTSE signing keys.)

Key generation: It generates a decryption key for base FE w.r.t. master key msktag, and a
sequence of OTSE signatures σ1, . . . , σλ such that they enable evaluation of the intermediate
garbled circuits along the appropriate root-to-leaf path.

Decrypt: Use the root-to-leaf path (in the form of OTSE signatures) to iteratively run garbled
circuits from the ciphertext. It obtains the wire keys corresponding to the key mpktag, and
then computes the base FE ciphertext w.r.t. mpktag using the last garbled circuit. Decrypted
the base FE ciphertext by using the corresponding base FE decryption key.

The above overview omits a lot of details, but the main intuition is that the root value of the
Merkle tree serves as a short commitment to the sequence of N master public keys, and each leaf
node can be succinctly opened w.r.t. the root node. Now, to encrypt a message for the tagth base
FE system (i.e., under key mpktag), the encryptor needs to search the entire Merkle tree to obtain

9

the corresponding public key from the root node. But it cannot perform this search operation given
only the root value, thus it defers it to the decryption phase by generating a sequence of garbled
circuits. We suggest the reader to the main body for a formal description.

Note that this readily gives the following lemma:

Informal Lemma 1. Assuming OTSE and garbled circuits, for any N, q > 0, there exists
an explicit compiler from a static q-bounded collusion FE scheme to a q-bounded tagged FE
scheme with tag space [N].

The above approach relies on the setup algorithm being able to explicitly hash down all the
N master public keys, thus seems useful for compression of a polynomial sized sequence of master
public keys only. However, prior works in this space [GKW16, DG17b, DG17a, GHMR18] have
shown that a slightly more intricate design can be used to compress an exponential number of master
keys too. The core trick is to use a simple lazy sampling technique where the setup algorithm uses
a PRF key to deterministically generate the hash tree at the time of key generation instead. This
enables deferring the setup algorithm’s work to the key generator which only needs to open the tree
along a particular path at a time. The usage of PRFs is essential for consistency (in turn security).
More details are provided later in Section 5.

From Tagged FE to Dynamic Model via Combinatorics. It turns out that the main tech-
nical challenge in building FE in the dynamic model is captured in the tagged FE framework. And,
tagged FE is powerful enough to build dynamic model FE via black-box transformations that only
need simple combinatorial ideas used numerous times over the last decade in FE research. Briefly,
Garg et al. [GGLW22] showed that the load balancing trick by Ananth and Vaikuntanathan [AV19]
and powers-of-two technique by Goldwasser et al. [GKP+13] are sufficient to get dynamic model
FE from tagged FE. Due to the non-cryptographic (combinatorial) nature of the techniques, this
gives a simple black-box transformation that is oblivious to the underlying cryptography (and even
the model of computation). Let us look at them one-by-one.

STEP 1. Consider the static model FE scheme to satisfy a special property called ‘fast key
generation’. The property says the running times of the setup and key generation algorithms grow
as poly(λ, log q). The collusion bound q is still a global system parameter, but it does not affect
algorithms generating keys too much. It turns out the “powers-of-two trick” [GKP+13] can lift such
static model FE schemes to the dynamic model. The core idea is to set up λ parallel static model
FE systems with geometrically increasing collusion bounds from q = 2, 4, . . . , 2λ. The master keys
and decryption keys are generated for each of the λ parallel systems. The point is the encryptor
actually selects exactly one of these λ systems to encrypt. The choice depends on the desired level
of collusion security q (i.e., select the ⌈log q⌉th static FE system for encryption). The security and
correctness follow by design, while the ‘fast key generation’ property ensures efficiency.

STEP 2. The last missing piece is to translate a tagged FE scheme into a static FE scheme
with fast key generation. The intuition here is (inspired from [AV19]) to visualize the collusion
bound as a security “load” on the system. And, distribute the security “load” of q users into O(q)

buckets, each with a maximum security load of just λ users. The idea is to view each bucket as
a separate tag value with collusion bound λ, and each decryption key gets tossed in one of those

10

‘tag’ buckets at random. Since tagged FE succinctly represents all O(q) buckets within a single FE
system, thus tagged FE gives a static FE scheme with desired poly-log dependence property via
load balancing.

The above combinatorial ideas have appeared throughout the literature, especially in the
bounded collusion regime. Prior works in the dynamic model [AMVY21, GGLW22, AKM+22]
have made them even more explicit to separate the cryptographic part from the combinatorial
part. In this work, we show that the cryptographic component can be generically executed.

An Alternate and Simpler Approach for Accumulating FE.

In the above overview so far, we have explained our main technical idea for accumulating FE
schemes. The technical centerpiece of our accumulator is to use a sequence of λ garbled circuits to
generate a “tagged” ciphertext during decryption by using delegation of computation.

It turns out one can perform this “tagging” operation using just a single garbled circuit rather
than a sequence of λ garbled circuits. The idea is to simply use the deferred encryption tech-
nique developed by Goyal et al. [GKW16]. While in the main body we still stick to the above
OTSE approach for instantiating our accumulator, we describe the simpler alternate idea below
for completeness and improved future designs.

During setup, we sample an IBE key pair (mpk,msk) as well as a PRF seed s. The master
public key consists of mpk, and rest everything is kept secret. To encrypt a message m under a tag
tag, the encryptor constructs a circuit that takes as input an FE master public key X and outputs
BFE.Enc(X,m) – an encryption of m using X as the FE master public key.6 The encryptor garbles
this circuit and obtains a garbled circuit G and 2ℓ garbled circuit wires {wi,0, wi,1}i∈[ℓ] where ℓ

denotes the length of the FE public key. Finally, the encryptor outputs the garbled circuit G and
2ℓ IBE encryptions {cti,b = IBE.Enc(mpk, (tag, i, b), wi,b)}i∈[ℓ],b∈{0,1}.

To generate a secret key for function f corresponding to the tag tag, the key generator first
samples an FE key pair as (mpktag,msktag)← BFE.Setup(1λ;PRF(s, tag)). Next, it generates ℓ IBE
secret keys as

{IBE.sktag,i ← IBE.KeyGen(msk, (tag, i,mpktag[i]))}i∈[ℓ]

That is, it generates one IBE secret key for each identity in (tag, 1,mpktag[1]), . . . , (tag, ℓ,mpktag[ℓ]).
In other words, it encodes the FE master public key inside the IBE keys. Further, the key generator
samples an FE key as BFE.KeyGen(msktag, f), and include this along with the ℓ IBE keys as part
of the final tagged secret key. In order to decrypt the ciphertext, a user proceeds in two steps.
First, it recovers the wire labels as IBE.Dec(IBE.sktag,i, cti,mpktag[i]

), and runs the garbled circuit G

on these wire labels to recover the actual function output. The correctness follows directly from
correctness of garbling, untagged FE scheme, and IBE.

The proof of security also follows via a simple sequence of garbled circuits. First, one can use
PRF security to argue that the PRF output is indistinguishable from a truly random function.
Once we replace all PRF outputs with truly random values, then in the next hybrid we can use
IBE security to replace half of the IBE ciphertexts from encryptions of real wire keys to IBE
6We ignore the random coins used during encryption for simplicity, however they can be easily hardwired inside such
a circuit.

11

encryptions of zero strings. This can be done because for each unique tag string tag, only one
FE master key mpktag is sampled. Thus, at most half of the IBE ciphertexts in the challeneg
ciphertexts can be decrypted using available IBE secret keys. Next, we can use simulation security
of the garbling scheme to replace the garbled circuit G with a simulated circuit that is generated
using a randomly generated FE encryption of challenge message m. Finally, we can use bounded
collusion FE security of the underlying untagged FE scheme to finish the proof, since the adversary
only learns a single FE ciphertext (inside the simulated garbled circuit) and a bounded number of
FE secret keys for the corresponding tagged FE instance.

As mentioned earlier, in the main body, we present our FE accumulator using OTSE as a
starting point. The above direct scheme is a simpler alternate approach.

Part II: MA-ABE from simple assumptions.

In multi-authority ABE, there are n key authorities where the ith authority generates its local
keys pku, sku. An encryptor picks a subset U of authorities under whose public keys {pku}u∈U it
encrypts a message µ along with policy ϕ. For our MA-ABE construction, we consider the class of
all predicates that can be represented as an efficient computational secret sharing (CSS) scheme.

Secret sharing. Recall in an efficient CSS for n parties, there is a dealer algorithm that given
a secret s and a description of an access structures A, runs in polynomial time, outputs a set of n
shares sh1, . . . , shn.7 More importantly, there is a reconstruction algorithm that given a subset of
shares {shi}i∈T , for some set T ⊆ [n], outputs the reconstructed secret s so long as T ∈ A (i.e., T
is an authorized set). The secret sharing scheme is secure if the secret s is computationally hidden
from every group of unauthorized parties.

Getting back to MA-ABE, we view our encryptor to receive the policy ϕ as the description
of an access structure A (for which efficient CSS exists) along with a mapping ρ : [n] → U from
the party index to authority index (recall U is the set of authorities used by encryptor). That is,
ρ(i) tells the index of authority from the set U := {u1, . . . , uℓ}, for some ℓ > 0, that controls the
attribute for the ith party. For simplicity, consider that the number of authorities and parties (as
defined by A) is the same (say n), and ρ is simply the identity function.

During key generation, each authority receives a global identifier GID and it outputs a partial
predicate key skGID,u. One should read this as if a user receives a predicate key from authority u,
then it is authorized to receive the uth share from the shares generated by the CSS. Lastly, during
decryption, a user combines all the partial predicate keys it obtained {skGID,u}u∈T , for some set
T ⊆ [n], to decrypt the ciphertext, and outputs the message µ as long as T corresponds to an
authorized set w.r.t. A.

MA-ABE for CSS. Our starting point is the Sahai-Seyalioglu [SS10] construction for 1-bounded
collusion FE. Clearly, the same construction can be directly extended to a 1-bounded collusion ABE
scheme. Briefly, the idea is:
7In some formalisms, the dealer outputs a public share sh0 as well which is said to be available to all parties. For
simplicity, we consider it to be a part of each party’s share since it does not affect the asymptotic efficiency too
much.

12

Setup: Sample 2n PKE public-secret key pairs pki,b, ski,b. Keep all public and all secret PKE keys
as the master public and secret key, respectively.

Encrypt: To encrypt a message µ for predicate C, garble the circuit TestC,µ which on input an
attribute x outputs µ iff C(x) = 1. Encrypt each wire key wi,b under key pki,b, and release
garbled circuit with encrypted wire keys as the ciphertext.

Key generation: For attribute x, the predicate key simply contains n PKE secret keys ski,xi .

Decrypt: Decrypt the encrypt wire keys, and use it to evaluate the garbled circuit.

It might seem that Sahai-Seyalioglu scheme readily gives a multi-authority ABE scheme. The
idea might be to have the ith authority generate two PKE key pairs pki,b, ski,b for b ∈ {0, 1}. Note
that this way the predicate key generation can also be distributed very easily. Unfortunately, this
is not the case! The problem is the garbled circuit security crucially relies on only half of the wire
labels to ever be revealed, but in MA-ABE setting, an attacker can corrupt key authorities. This
completes breaks down extending this to the multi-authority setting.

Our idea is to make this basic approach compliant with the multi-authority model. The problem
was if an attacker can corrupt key authorities, then garbled circuits does not provide the right
protection. However, there is a simple fix – efficient CSS. In a few words, our idea is to replace
garbled circuits with CSS, and rely on secrecy of CSS instead of garbling security. Formally, we do
as follows:

Authority setup: Sample a single PKE public-secret key pair pku, sku.

Encrypt: To encrypt a message µ for access structureA, compute a CSS of µ for A as sh1, . . . , shn.
Simply encrypt share shu under key pku.

Key generation: The predicate key is simply sku.

Decrypt: Decrypt the encrypted shares and use them to reconstruct the message.

Amazingly, this simple construction gives us a 1-bounded MA-ABE for efficient CSS from just
public key encryption. The idea is simply to use semantic security to hide all unauthorized shares,
and then use secrecy of CSS to hide the message. The remaining goal is to upgrade to q-bounded
security (i.e., static model), and dynamic model eventually.

To that end, we revisit the simple strategy to go from 1-bounded collusion to q-bounded collu-
sion for plain ABE. The idea there is to use repetition and add enough redundancy in the system.
Concretely, one runs a large polynomial number of 1-bounded ABE systems in parallel, and a
predicate key contains 1-bounded ABE predicate keys for a ‘small’ subset of them. The encryptor
then threshold secret shares the message µ where each share is independently encrypted under each
1-bounded ABE system. By setting up the parameters carefully, this gives us security in the static
model for ABE.

The question is whether we can replay a similar strategy in the multi-authority setting to mirror
a similar collusion bound amplification. While this might seem natural, it is not immediately clear.
The concern is two-fold:

13

1. In multi-authority setting, each authority works fully independently and asynchronously.
Forget security, just for correctness it is essential that each authority selects the same subset
of 1-bounded MA-ABE for a particular user. How can such a subset be computed?

2. Moreover, a core idea in the collusion bound amplification is to use a standard probabilistic
argument [GVW12] that says randomly chosen subsets of small size will not have a large
combined pairwise intersection. How can we use a probabilistic argument when some of the
key authorities can get corrupted? (That is, their choices of subsets might not be truly
random.)

Both these issues have simple solutions, but they are conflicting. The problem is to solve the
first issue, we need to make the subset selection process deterministic. But, having the subsets be
deterministically selected seems problematic for using a standard probabilistic argument such as
cover-freeness.

We notice that if the adversary commits to all its corruptions at the beginning, then we could
use an (almost) perfect hash function to deterministically select these subsets. Simply set the
subset to be the hash of GID. (Recall an almost perfect hash function from {0, 1}∗ → [poly(n)]

maps n inputs to poly(n) numbers such that there are no collisions.) The construction now is very
simple – each authority selects the subset of 1-bounded systems to use depending upon H(GID).
This solves both the above issues since H(GID) is deterministic (and out of adversary’s hand) as
well as it has nice pairwise intersection property due to our assumption of it being a perfect hash
function. It turns out a careful analysis of above approach could be used to prove super-selective
security of our MA-ABE scheme in the static model. This is due to the fact that PRFs can be
mostly used to design such near-perfect hash functions in the super-selective setting.

However, perfect hashes do not exist if the attacker gets to see the hash key! Moreover, even
collision resistant hash functions are not good enough as the digest size needs to be very small
so that the encryptor can enumerate over all possible digest values. This is due to the fact that
the encryptor in the above strategy has to encrypt a secret share for each possible digest value.
While this might seem like a tricky problem to bypass, it turns out modeling the hash function as
a random oracle gives us the desired property. A (non-programmable) ROM is sufficient to show
that an attacker cannot find q distinct GIDs where a special combinatorial property does not hold.
We discuss this further in Section 6.

The above ideas can be formalized to design an MA-ABE for CSS in the static model, and it can
be very easily extended to the dynamic model. We discuss this in Section 6.4, but briefly remark
here. Our approach is to first extend the above construction to a tagged version of MA-ABE. This
can be done quite simply by relying on IBE as the only change would be that an encryptor uses
IBE encryption to encrypt the secret shares where the identity is set to be the corresponding tag
value. Next, by relying on the combinatorial ideas, discussed previously for the FE accumulator,
we can upgrade its security to hold in the dynamic collusion model too.

3 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let
Zq denote the ring of integers modulo q. We denote the set of all positive integers upto n as

14

[n] := {1, . . . , n}. For any finite set S, x ← S denotes a uniformly random element x from the
set S. Similarly, for any distribution D, x ← D denotes an element x drawn from distribution D.
The distribution Dn is used to represent a distribution over vectors of n components, where each
component is drawn independently from the distribution D. Two distributions D1 and D2, param-
eterized by security parameter λ, are said to be computationally indistinguishable, represented by
D1 ≈c D2, if for all PPT adversaries A, Pr[A(x) = 1 : x← D1]− Pr[A(x) = 1 : x← D2] ≤ negl(λ).

3.1 Pseudorandom Functions

A pseudorandom function (PRF) is a function that takes inputs in domain Dλ, samples a PRF seed
of λ bits and computes an output in the range, Rλ. The evaluation function runs polynomially in
λ and satisfies the following pseudorandomness property.

Definition 3.1 (Pseudorandomness). A PRF scheme is said to be secure if for every stateful PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, Dλ,Rλ the following
holds:

Pr

APRF(s,·)(rb) = b :

s← {0, 1}λ, b← {0, 1}
x∗ ∈ Dλ ← APRF(s,·)(1λ)

r0 ← Rλ, r1 = PRF(s, x∗)

 ≤ 1

2
+ negl(λ),

where A must not query the challenge input x∗ to the evaluation oracle PRF(s, ·).

3.2 Garbled Circuits

Our definition of garbled circuits [Yao86] is based upon the work of Bellare et al. [BHR12]. Let
{Cn}n be a family of circuits where each circuit in Cn takes n bit inputs. A garbling scheme GC

for circuit family {Cn}n consists of polynomial-time algorithms Garble and Eval with the following
syntax.

Garble(1λ, C ∈ Cn) : The garbling algorithm takes as input the security parameter λ and a circuit
C ∈ Cn. It outputs a garbled circuit C̃, together with 2n wire keys {wi,b}i≤n,b∈{0,1}.

Eval(C̃, {wi}i≤n) : The evaluation algorithm takes as input a garbled circuit C̃ and n wire keys
{wi}i≤n and outputs y ∈ {0, 1}.

Correctness. A garbling scheme GC for circuit family {Cn}n is said to be correct if for all λ, n,
x ∈ {0, 1}n and C ∈ Cn, Eval(C̃, {wi,xi}i≤n) = C(x), where (C̃, {wi,b}i≤n,b∈{0,1})← Garble(1λ, C).

Security. Informally, a garbling scheme is said to be secure if for every circuit C and input x,
the garbled circuit C̃ together with input wires {wi,xi}i≤n corresponding to some input x reveals
only the output of the circuit C(x), and nothing else about the circuit C or input x.

15

Definition 3.2. A garbling scheme GC = (Garble,Eval) for a class of circuits C = {Cn}n is said
to be a secure garbling scheme if there exists a polynomial-time simulator Sim such that for all n,
C ∈ Cn and x ∈ {0, 1}n, the following distributions are computationally indistinguishable:{

Sim
(
1λ, 1n, 1|C|, C(x)

)}
λ
≈c

{(
C̃, {wi,xi}i≤n

)
:
(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

The following corollary follows from the definition.

Corollary 3.3. If GC is a secure garbling scheme for a class of circuits C = {Cn}n, then for all n,
C ∈ Cn and x ∈ {0, 1}n, the following distributions are computationally indistinguishable:{

Sim
(
1λ, 1n, 1|C|

)}
λ
≈c

{
C̃ :

(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

While this definition is not as general as the definition in [BHR12], it suffices for our construction.

3.3 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I = {In}n∈N and message
spacesM consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec) with the following
syntax:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and iden-
tity space index n. It outputs the public parameters mpk and the master secret key msk.

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master secret key msk

and an identity id ∈ In. It outputs a secret key skid.

Enc(mpk, id,m)→ ct. The encryption algorithm takes as input the public parameters mpk, a mes-
sage m ∈M, and an identity id ∈ In. It outputs a ciphertext ct.

Dec(skid, ct)→ m/⊥. The decryption algorithm takes as input a secret key skid and a ciphertext
ct. It outputs either m ∈M or a special symbol ⊥.

Correctness. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) satisfies correctness if for
all λ, n ∈ N, (mpk,msk) ← Setup(1λ, 1n), id ∈ In, m ∈ M, skid ← KeyGen(msk, id), and ct ←
Enc(mpk, id,m), we have that Dec(skid, ct) = m.

Definition 3.4. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is secure if for any stateful
PPT adversary A there exists a negligible function negl(·), such that for all λ, n ∈ N, the following
holds

Pr

AKeyGen(msk,·)(st, ct) = b :

(mpk,msk)← Setup(1λ, 1n); b← {0, 1}
(m0,m1, id

∗)← AKeyGen(msk,·)(1λ, 1n,mpk)

ct← Enc(mpk, id∗,mb)

 ≤ 1

2
+ negl(λ),

where all identities id queried by A satisfy id ̸= id∗.

16

3.4 One-Time Signature with Encryption

A One-Time Signature with Encryption (OTSE) scheme, defined by [DG17a], is a one-time signature
scheme with an additional encryption and decryption functionality. An OTSE scheme, consists of
the following five algorithms, (SSetup, SGen, SSign, SEnc, SDec)8.

SSetup(1λ, ℓ)→ pp. The setup algorithm takes as input the security parameter λ and a message
length parameter ℓ. It outputs a public parameter pp.

SGen(pp)→ (vk, sk). Given parameters pp as input, this outputs a verification and signing key.

SSign(pp, sk, x)→ σ. On input the public parameters, a signing key and a message x ∈ {0, 1}ℓ, it
outputs a signature σ.

SEnc(pp, (vk, i, b),m)→ ct. On input the public parameters, and a verification key vk, a position
i ∈ [ℓ], a bit b ∈ {0, 1} and a plaintext m, it outputs a ciphertext ct.

SDec(pp, (vk, σ, x), ct)→ m′. On input the public parameters, a verification key vk, a signature σ,
a message x and ciphertext ct, it outputs a plaintext m′.

Correctness. For all λ ∈ N, ℓ ∈ N, x ∈ {0, 1}ℓ, i ∈ [ℓ] and plaintext m, if pp ← SSetup(1λ, ℓ),
(vk, sk)← SGen(pp), σ ← SSign(pp, sk, x), and ct← SEnc(pp, (vk, i, xi),m), the following holds

SDec(pp, (vk, σ, x), ct) = m.

Succinctness. For pp ← SSetup(1λ, ℓ), (vk, sk) ← SGen(pp), it holds that vk is a polynomial
function in λ and independent of ℓ.

Selective Security. For every PPT Adversary A, there exists a negligible function negl such that
for all λ ∈ N, ℓ ∈ N, the following holds.

Pr

A(pp, vk, σ, ct∗) = b :

pp← SSetup(1λ, ℓ), x← A(pp)
(vk, sk)← SGen(pp), σ ← SSign(pp, sk, x)

(i,m∗
0,m

∗
1)← A(pp, vk, σ), b← {0, 1}

ct∗ ← SEnc(pp, (vk, i, 1− xi),m
∗
b)

 ≤ 1

2
+ negl(λ),

where the probability depends on the randomness of all OTSE algorithms as well as the attacker.
In our proof we use the multi-message security, wich is implied by a single message security via a
standard hybrid argument.
8There is no need for a verification algorithm for the signature as one can run the encryption and decryption algorithm
to check validity of the signature.

17

4 Functional Encryption: Definitions

In this section, we revisit the notion of functional encryption (FE) in the bounded setting [SS10,
GVW12]. Recent works of [AMVY21, GGLW22] proposed a collusion bound in the dynamic setting
where the scheme’s setup and key generation algorithms are independent of the collusion bound
and instead, we can specify the collusion bound during encryption. We follow the formal security
definitions from [GGLW22] almost verbatim and describe them below.

4.1 Static Collusion Model

Syntax. Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and F = {Fn} a family of
functions, where for all n ∈ N and f ∈ Fn, f :Mn → Rn. We will also assume that for all n ∈ N,
the set Fn contains an empty function ϵn :Mn → Rn. As in [BSW11], the empty function is used
to capture information that intentionally leaks from the ciphertext.

A bounded functional encryption scheme FE for a family of function classes {Fn}n∈N, message
spaces {Mn}n∈N and collusion bound q(λ) consists of four polynomial-time algorithms (Setup,Enc,
KeyGen,Dec) with following semantics:

Setup(1λ, 1n, 1q)→ (mpk,msk). The setup algorithm takes as input the security parameter λ, the
functionality index n9 and the collusion bound 1q. It outputs the master public-secret key
pair (mpk,msk).

Enc(mpk,m ∈Mn)→ ct. The encryption algorithm takes as input the master public key mpk and
a message m ∈Mn and outputs a ciphertext ct.

KeyGen(msk, f ∈ Fn)→ skf . The key generation algorithm takes as input the master secret key
msk and a function f ∈ Fn and outputs skf .

Dec(skf , ct)→ y ∈ Rn. The decryption algorithm takes as input a ciphertext ct and a secret key
skf and outputs a value y ∈ Rn.

Correctness and Efficiency. A functional encryption scheme FE is said to be correct if for all
λ, n, q ∈ N, functions f ∈ Fn, messages m ∈Mn and (mpk,msk)← Setup(1λ, 1n, 1q), we have that

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1.

And, it is said to be efficient if the running time of the algorithms is a fixed polynomial in the
parameters λ, n and q.

Static bounded collusion security. This is formally captured via the following ‘simulation based’
security definition as follows.
9One could additionally consider the setup algorithm to take as input a sequence of functionality indices where the
function class and message space are characterized by all such indices (e.g., having input length and circuit depth
as functionality indices). For ease of notation, we keep a single functionality index in the above definition.

18

Definition 4.1 (static-bounded-collusion simulation-security). A functional encryption scheme FE

is said to be statically-bounded-collusion simulation-secure if there exists a stateful PPT simulator
Sim = (S0, S1, S2,S3) such that for every stateful PPT adversary A, the following distributions are
computationally indistinguishable:
AO(·)(ct) :

(1n, 1q)← A(1λ)
(mpk,msk)← Setup(1λ, 1n, 1q)

m← AKeyGen(msk,·)(mpk)

ct← Enc(mpk,m)

O(·) = KeyGen(msk, ·)


λ∈N

≈c


AO(·)(ct) :

(1n, 1q)← A(1λ)
(mpk, st0)← S0(1

λ, 1n, 1q)

m← AS1(st0,·)(mpk)

(ct, st2)← S2(st1,Π
m)

O(·) = S
Um(·)
3 (st2, ·)


λ∈N

whenever the following admissibility constraints and properties are satisfied:

– S1 and S3 are stateful in that after each invocation, they updates their states st1 and st3
(respectively) which is carried over to its next invocation.

– Πm contains a list of functions fi queried by A in the pre-challenge phase along with the
their output on the challenge message m. That is, if fi is the i-th function queried by A
to oracle S1 and qpre be the number of queries A makes before outputting m, then Πm =(
(f1, f1(m)), . . . , (fqpre , fqpre(m))

)
.

– A makes at most q total key generation queries.

– S3, for each queried function fi, makes a single query to its message oracle Um on the same
fi, and gets output as fi(m).

4.2 Dynamic Collusion Model

In the “dynamic" bounded collusion model [AMVY21, GGLW22], the scheme is no longer tied
to a single collusion bound q fixed a-priori at the system setup, but instead the encryptor could
choose the amount of collusion resilience it wants. Thus, this changes the syntax of the setup and
encryption algorithm when compared to the static setting from above:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and the
functionality index n (in unary). It outputs the master public-secret key pair (mpk,msk).

Enc(mpk,m ∈Mn, 1
q)→ ct. The encryption algorithm takes as input the master public key mpk,

a message m ∈ Mn, and it takes the desired collusion bound q as an input. It outputs a
ciphertext ct.

Efficiency. The runtime of Setup,KeyGen is polynomial in λ, n. While rest of the algorithms can
run in time polynomial in λ, n, q.

Dynamic bounded collusion security. We define a ‘simulation based’ security notion similar to
the static security definition (Definition 4.1).

19

Definition 4.2 (dynamic-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-bounded-collusion simulation-secure
if there exists a stateful PPT simulator Sim such that for every stateful PPT adversary A, the
following distributions are computationally indistinguishable:
AO(·)(ct) :

1n ← A(1λ)
(mpk,msk)← Setup(1λ, 1n)

(m, 1q)← AKeyGen(msk,·)(mpk)

ct← Enc(mpk,m, 1q)

O(·) = KeyGen(msk, ·)


λ∈N

≈c


AO(·)(ct) :

1n ← A(1λ)
mpk← Sim(1λ, 1n)

(m, 1q)← ASim(·)(mpk)

ct← Sim(Πm, 1q)

O(·) = SimUm(·)(·)


λ∈N

whenever the admissibility constraints and properties, as defined in Definition 4.1, are satisfied.

4.3 Tagged Functional Encryption

Next, we recall the notion of tagged FE from [GGLW22]. Tagged FE intuitively represents a
succinct collection of an exponential number of instances of a FE scheme, where each instance is
denoted by a tag tag ∈ Iz (|Iz| is the total number of FE instances bundled together). A tagged
bounded functional encryption scheme FE for a family of function classes {Fn}n∈N, message spaces
{Mn}n∈N and tag spaces I = {Iz}z∈N consists of four polynomial-time algorithms (Setup,Enc,

KeyGen,Dec) with the following semantics.

Setup(1λ, 1n, 1z, 1q)→ (mpk,msk). In addition to the normal inputs taken by a static-bounded FE
scheme, the setup also takes in a tag space index z, which fixes a tag space Iz.

Enc(mpk, tag ∈ Iz,m ∈Mn)→ ct. The encryption also takes in a tag tag ∈ Iz to bind to the
ciphertext.

KeyGen(msk, tag ∈ Iz, f ∈ Fn)→ sktag,f . The key generation also binds the secret keys to a fixed
tag tag ∈ Iz.

Dec(sktag,f , ct)→ Rn. The decryption algorithm has syntax identical to a non-tagged scheme.

Definition 4.3 (Correctness). We say the scheme is correct if for all λ, n ∈ N, z, q ∈ poly(λ), func-
tions f ∈ Fn, messages m ∈Mn and tag ∈ Iz, we have that for (mpk,msk)← Setup(1λ, 1n, 1z, 1q),
the following holds true,

Pr [Dec(KeyGen(msk, tag, f),Enc(mpk, tag,m)) = f(m)] = 1.

where the probability is taken over the coins of setup, key generation and encryption algorithms.

Definition 4.4 (tagged-static-bounded-collusion simulation-security). For any choice of param-
eters λ, n, q, z ∈ N, consider the following list of stateful oracles S0,S1, S2 where these oracles
simulate the FE setup, key generation, and encryption algorithms respectively, and all three al-
gorithms share and update the same global state of the simulator. Here the attacker interacts
with the execution environment E , and the environment makes queries to the simulator oracles.
Formally, the simulator oracles and the environment are defined below:

20

S0(1
λ, 1n, 1z, 1q) generates the simulated master public key mpk of the system, and initializes the
global state st of the simulator which is used by the next two oracles.

S1(·, ·, ·), upon a call to generate secret key on a function-tag-value tuple (fi, tagi, µi), where the
function value is either µi = ⊥ (signalling that the adversary has not yet made any encryption
query on tag tagi), or (mtagi , tagi) has already been queried for encryption (for some message
mtagi), and µi = fi(m

tagi), the oracle outputs a simulated key skfi,tagi .

S2(·, ·), upon a call to generate ciphertext on a tag-list tuple (tagi,Π
mtagi), where the list Πmtagi is

a possibly empty list of the form Πmtagi = (f
tagi
1 , f

tagi
1 (mtagi)),

. . . , (f
tagi
qpre , f

tagi
qpre (m

tagi)) (that is, contains the list of function-value pairs for which the adver-
sary has already received a secret key for), the oracle outputs a simulated ciphertext cttagi .

ES1,S2(·, ·), receives two types of queries – secret key query and encryption query. Upon a secret key
query on a function-tag pair (fi, tagi), if (mtagi , tagi) has already been queried for encryption
(for some message mtagi) then E queries key oracle S1 on tuple (fi, tagi, µi = fi(m

tagi)),
otherwise it adds (fi, tagi) to the its local state, and queries S1 on tuple (fi, tagi, µi = ⊥).
And, it simply forwards oracle’s simulated key skfi,tagi to the adversary.

Upon a ciphertext query on a message-tag pair (mi, tagi), if the adversary made an encryption
query on the same tag tagi previously, then the query is disallowed (that is, at most one
message query per every unique tag is permitted). Otherwise, it computes a (possibly empty)
list of function-value pairs of the form Πmi =

(
(f

tagi
1 , f

tagi
1 (mtagi)), . . . , (f

tagi
qpre , f

tagi
qpre (m

tagi))
)

where (f
tagi
j , tagi) are stored in E ’s local state, and removes all such pairs (f

tagi
j , tagi) from

its local state. E then queries ciphertext oracle S2 on tuple (tagi,Π
mi), and simply forwards

oracle’s simulated ciphertext cttagi to the adversary.

A tagged functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be tagged-
statically-bounded-collusion simulation-secure if there exists a stateful PPT simulator Sim = (S0,S1, S2)

such that for every stateful admissible PPT adversary A, the following distributions are compu-
tationally indistinguishable:{

AKeyGen(msk,·,·),Enc(mpk,·,·)(mpk) :
(1n, 1q, 1z)← A(1λ)

(mpk,msk)← Setup(1λ, 1n, 1z, 1q)

}
λ∈N

≈c{
AES1,S2 (·,·)(mpk) :

(1n, 1q, 1z)← A(1λ)
mpk← S0(1

λ, 1n, 1z, 1q)

}
λ∈N

where A is an admissible adversary if:

– A makes at most one encryption query per unique tag (that is, if the adversary made an
encryption query on some tag tagi previously, then making another encryption query for the
same tag is disallowed)

– A makes at most q queries combined to the key generation oracles in the above experiments
for all tags tagi such that it also submitted an encryption query for tag tagi.

21

Tagged FE to Dynamic Collusion Resistance. Garg et al. [GGLW22] proved that the notion
of tagged FE captures the essence behind dynamic collusion resistance. Below we restate one of
their main results.

Theorem 4.5 ([GGLW22, Paraphrased, Theorems 3.1 and 5.1]). If tgfe is a tagged statically λ-
bounded collusion simulation-secure FE scheme (as per Definition 4.4), then it can be upgraded into
a dynamic bounded collusion simulation-secure FE scheme (as per Definition 4.2) via a black-box
transformation.

It turns out the same black-box transformation also works for multi-authority attribute-based
encryption. We get the following theorem as a simple extension.

Theorem 4.6. If tgMAABE is a tagged statically λ-bounded collusion-secure multi-authority
attribute-based encryption scheme, then it can be upgraded into a dynamic bounded collusion-
secure multi-authority attribute-based encryption scheme via the GGLW black-box transformation.

5 From Static to Dynamic Collusion Model Generically

In this section, we show how to upgrade any statically bounded collusion FE scheme for function
class F to dynamically bounded collusion FE scheme for the same function class F . Our transfor-
mation is fully generic, but it is not black-box since we rely on the use of garbled circuits where
we garble the encryption circuit for the underlying statically secure FE scheme.

High level sketch. We start with the simple observation from the previous section that to design
a dynamically bounded collusion FE scheme for function class F, it is sufficient to design a tagged
FE scheme for function class F . This is due to the black-box GGLW compiler that upgrades
a tagged FE scheme to be dynamically secure. So, we design a generic compiler that builds a
tagged FE scheme for function class F from any statically secure FE scheme for function class
F. Combining the generic compiler with the GGLW black-box compiler, we obtain a dynamically
secure FE scheme for function class F .

A bit more concretely, we design a tagged FE accumulator which accumulates 2z many instances
of a statically secure FE scheme to a tagged FE scheme for tag space Iz = {0, 1}z. Our compiler
preserves the bound on the number of key generation queries that can be made on a particular
tag. That is, if we start with a q-bounded static FE scheme, we obtain a q-bounded tagged FE
scheme. Our accumulator is insipred from the recent success in usage of garbling techniques [DG17a]
for designing identity-based encryption, registration-based encryption and more [DG17b, DG17a,
BLSV18, GHMR18, GHM+19, GV20].

In the aforementioned list of works, a central component of the design was to combine garbled
circuits with a nearly equivalent set of core primitive such as chameleon hash functions, one time
signatures with encryption (OTSE), batch encryption, etc. A key idea was to use this combination
to conceptually enable delegation of encryption keys to the leaves of a Merkle tree. Our starting
point for the tagged FE accumulator is to use a similar delegation trick to delegate an exponential
number of FE keys to a unique leaf of the Merkle tree. We build our tagged FE by relying on

22

compact one-time signature with encryption (OTSE), which were initially introduced in [DG17a]
to build IBE.

Below we provide our construction for tagged FE accumulator. We remark that our accumulator
supports accumulating static FE for uniform models of computation as well.

5.1 Tagged FE Accumulator

Ingredients. Let BFE = (BFE.Setup,BFE.Enc,BFE.KeyGen,BFE.Dec) be a q-bounded FE scheme
for function space F and message space M, and let OTSE = (SSetup,SGen,SSign, SEnc,SDec) be
an OTSE scheme. Let PRF be a pseudorandom function with key size λ, inputs to be any bit
string of length ≤ z bits, and outputs 2λ bits of output. We use PRF1 and PRF2 to denote the
first λ and last λ bits of the output, respectively.10 That is, PRF(s ∈ {0, 1}λ, v ∈ {0, 1}≤z) =

PRF1(s, v)||PRF2(s, v).
Below we provide our tagged FE scheme for function space F and message space M with tag

space Iz = {0, 1}z. We remark that F could be specifying any uniform/non-uniform model of
computation.

Setup(1λ, 1n, 1z, 1q)→ (mpk,msk). It samples a PRF seed s ← {0, 1}λ. Let ℓ be the length of
BFE.mpk corresponding to parameters λ, n, q. It samples parameters pp ← SSetup(1λ, ℓ).11

Compute the root parameters as (vkϵ, σϵ, xϵ)← NodeGen(pp, ϵ, s) (routine NodeGen described
in Fig. 1).

It outputs the master key pair as mpk = (pp, vkϵ),msk = s.

NodeGen(pp, v, s)

Input: OTSE parameter pp, node index v ∈ {0, 1}z′≤z, seed s ∈ {0, 1}λ
Output: OTSE verification key vkv, signature σv, auxiliary value xv

1. Let (vkw, skw)← SGen(pp;PRF1(s, w)) for w ∈ {v, v||0, v||1}.

2. Set xv = vkv||0||vkv||1 and σv = SSign(pp, skv, xv).

3. Output (vkv, σv, xv).

Figure 1: Routine NodeGen

KeyGen(msk = s, tag ∈ {0, 1}z, f ∈ Fn)→ skf,tag. Let vj denote the j-bit prefix of tag, i.e. vj =

tag[1 : j] for j ∈ [0, z]. Note that v0 = ϵ and vz = tag.

The key generator first computes (vkvj , σvj , xvj) ← NodeGen(pp, vj , s) for j ∈ [0, z − 1].
It computes (vktag, σtag,BFE.mpktag,BFE.sktag,f) ← LeafGen(pp, tag, s, f) (routine LeafGen

described in Fig. 2).

It outputs skf,tag =
(
{(σvj , xvj)}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

10We assume, w.l.o.g., that the setup algorithms for BFE and OTSE take λ-bits as input.
11Recall from the succinctness property of OTSE, the length of the verification key |vk| is some polynomial in λ and

independent of ℓ.

23

LeafGen(pp, v, s, f)

Input: OTSE parameters pp, leaf index v ∈ {0, 1}z, seed s ∈ {0, 1}λ, function f ∈ Fn

Output: OTSE verification key vkv, signature σv, public key of vth instance BFE.mpkv, secret key
BFE.skv,f

1. Let (vkv, skv)← SGen(pp;PRF1(s, v)).

2. Compute (BFE.mpkv,BFE.mskv) ← BFE.Setup(1λ;PRF2(s, v)) (i.e., vth instance of base FE
scheme with fixed randomness PRF2(s, v)).

3. Sample BFE.skv,f ← BFE.KeyGen(BFE.mskv, f), and compute σv = SSign(pp, skv,BFE.mpkv).

4. Output (vkv, σv,BFE.mpkv,BFE.skv,f).

Figure 2: Routine LeafGen

Enc(mpk, tag,m)→ ct. It parses mpk as above. Let vj denote the j-bit prefix of tag for j ∈ [z],
and ℓ = |BFE.mpk|. Let T[m, r] be a circuit as described in Fig. 3.

The encryptor first garbles T[m, r] as (T̃, eT) ← GC.Garble(1λ,T[m, r]) for uniform random-
ness r, and next it garbles Q[pp, 0, ℓ, eT, rT] for uniform randomness rT as follows (see Fig. 4
for details) – (Q̃(z), e

(z)
Q)← GC.Garble(1λ,Q[pp, 0, ℓ, eT, rT]).

Next, for j = z − 1, . . . , 0, it garbles a sequence of circuits as

(Q̃(j), e
(j)
Q)← GC.Garble(1λ,Q[pp, tagj+1, ℓ

′, e
(j+1)
Q , r

(j+1)
Q]),

where ℓ′ be |vkϵ|, r(j+1)
Q is uniform randomness. Finally, it parses e

(0)
Q = {Yι,0, Yι,1}ι∈[ℓ′], and

outputs ct =
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
, where ỹ(0) = {Yι,yι}ι∈[ℓ′] and yι denote the ιth bit of vkϵ.

Leaf Encryption Circuit T[m, r](BFE.mpk)

Input: Leaf public key BFE.mpk, Output: Ciphertext ct.
Constant: message m, randomness r.

1. Compute and output ct = BFE.Enc(BFE.mpk,m; r).

Figure 3: Circuit T

Internal Encryption Circuit Q[pp, β, ℓ′, e, r](vk)

Input: OTSE verification key vk, Output: Encrypted labels êβ .
Constants: OTSE parameters pp, bit β, no of labels ℓ′, wire labels e = {(Yι,0, Yι,1)}ι∈[ℓ′], random-
ness r = {(rι,0, rι,1)}ι∈[ℓ′].

1. Output {SEnc(pp, (vk, β · ℓ′ + ι, b), Yι,b; rι,b)}ι∈[ℓ′],b∈{0,1}.

Figure 4: Circuit Q

Dec(sktag,f , ct). It parses the key and ciphertext as above. Recall that we use vj to denote the
j-bit prefix of tag, ℓ = |BFE.mpk| and ℓ′ as length of OTSE verification key. It simply runs the

24

following iterative procedure for decryption where it first runs the garbled circuit to recover
encrypted wire labels, and then decrypt half of the wire labels, and then continue this until
it recovers an FE ciphertext under the public key associated for the leaf node corresponding
to tag. Concretely, it does as follows:

1. For j = 0 to z − 1:

(a) {ê(j)ι,b }ι∈[ℓ′],b∈{0,1} ← GC.Eval(Q̃(j), ỹ(j)).

(b) ỹ(j+1) ←
{
SDec(pp, (vkvj , σvj , xvj), ê

(j)
ι,(xvj)ι

)
}
ι∈[ℓ′]

.

2. Evaluate {ê(z)ι,b }ι∈[ℓ],b∈{0,1} ← GC.Eval(Q̃(z), ỹ(z)), and let pkι denote the ιth bit of BFE.mpktag.

3. Decrypt yT =
{
SDec

(
pp,

(
vktag, σtag,BFE.mpktag

)
, ê

(z)
ι,pkι

)}
ι∈[ℓ]

.

4. Finally, output BFE.Dec(BFE.sktag,f , ctBFE) where ctBFE = Eval(T̃, yT).

Correctness and efficiency. We say the scheme is correct if it satisfies Definition 4.3. By
correctness of the garbling scheme, we have that Q̃(0), when run on garbled input ỹ(0) computes
Q[pp, 0, ℓ, ·](vkϵ) and outputs encrypted labels to Q̃(1). By correctness of the OTSE encryption
scheme, we can decrypt the labels corresponding to tag1 to compute ỹ(1). Similarly, iteratively
calling the correctness of garbling and the signature scheme, we compute the garbled inputs to
circuit T̃ corresponding to BFE.mpktag. Thus, eventually it computes ctBFE ← T[m](BFE.mpktag)

by correctness of garbling, and by the correctness of the tagth instance of BFE scheme, we get
BFE.Dec(BFE.sktag,f ,BFE.Enc(BFE.mpktag,m)) = f(m).

The different algorithms Setup,KeyGen run polynomial in λ, z, n, q and this can be seen easily
from the construction. Encryption algorihm runs polynomial in λ, z, n, q and the message m that
is chosen during encryption time. Crucially, we observe here that our tagged FE accumulator is
agnostic to the model of computation of the base BFE scheme. Thus if the base scheme BFE can
support uniform models of computation, so can our transformation.

5.2 Security

Theorem 5.1. If PRF is a secure pseudorandom function, GC is a secure garbling scheme, OTSE
is a secure one-time signature with encryption scheme, BFE = (BFE.Setup,BFE.Enc,BFE.KeyGen,

BFE.Dec) is a bounded-collusion simulation-secure FE scheme (as per Definition 4.1), then the
above scheme is a tagged-statically-bounded-collusion simulation-secure FE scheme (as per Defini-
tion 4.4).

Proof. The proof strategy is inspired from the proof of adaptive security of identity-based en-
cryption from [DG17a]. Let us start by discussing the similarities that we can use in our proof
of security. The initial idea used in the IBE setting was to successively simulate garbled circuits
one-by-one inside the challenge ciphertext using a sequence of hybrid proof steps, where first they
switch the use of an actual PRF with a truly random function by making the challenger store state.
And, next they simulate the garbled circuits since once half of the wire keys are ever decryptable
for any garbled circuit in the sequence, and this is guaranteed by the security of the one-time

25

signature with encryption scheme since the signatures created binds to the entire sequence of tree
nodes which can be opened on any path. This strategy enables simulation of every garbled circuit
until the challenger wants to simulate the last garbled circuit T [m, r] which contains the actual
message. Using the same strategy as above, this garbled circuit can also be simulated using just
the encryption of message m under randomness r.

At this point, our proof and the [DG17a] proof diverge since in the case of IBE, the attacker
never receives the secret key correspoding to the final ciphertext, thus security follows from security
of public-key encryption. However, in our case an attacker can get a bounded number of function
keys that enable decryption for the corresponding FE ciphertext. But this is only a minor technical
issue and we can get around this using simulation security of the base FE scheme. Thus, by using
simulation security of base (untagged) FE, we can simulate this ciphertext and simulate the garbled
circuit using the simulated FE ciphertext instead. Below we provide the full proof.

Let BFE.Sim = (BFE.S0,BFE.S1,BFE.S2) be the simulators satisfying Definition 4.1. We will
construct simulators Sim = (S0,S1, S2, S3) that share a global state st and use the simulated routines
Figure 5 and Figure 6 that satisfy Definition 4.4 as follows. We point out that for ease of exposition,
we drop the uniform randomness from the garbled circuits whenever it is clear from context.

Sim.LeafGen(pp, v, st, f, µ)

Inputs: OTSE public parameters pp; Leaf Index v ∈ {0, 1}z; Simulator State

st ∈ {0, 1}∗; Function f ∈ Fn; Function Values µ

Output: OTSE verification key vkv; OTSE signature σv; Public Key of vth instance

BFE.mpkv; Secret Key BFE.skv,f

1. If (v, vkv, skv) does not exist in st, then (vkv, skv)← SGen(pp). Add (v, vkv, skv) to st.

2. Let (BFE.mpkv,BFE
v.st0)← BFE.S0(1

λ, 1n, q).

3. If µ = ⊥, run BFE.skv,f ← BFE.S1(BFE
v.st0, f) and update state BFEv.st1 in st. Else, get

BFE.stv2 from st and run BFE.skv,f ← BFE.Sµ3 (BFE
v.st2, f) where µ contains the list of all

previous function evaluations.

4. σv = SSign(pp, skv,BFE.mpkv).

5. Output (vkv, σv,BFE.mpkv,BFE.skv,f).

Figure 5: Routine Simulated LeafGen

S0(1
λ, 1n, 1z, 1q)

Sample pp ← SSetup(1λ, ℓ). Run (vkϵ, skϵ, xϵ) ← Sim.NodeGen(pp, ϵ, st). Output mpk =

(pp, vkϵ).

S1(tag, f, µ)

26

Sim.NodeGen(pp, v, st)

Inputs: OTSE public parameters pp; Node Index v ∈ {0, 1}z
′
where z′ < z;

Simulator state st ∈ {0, 1}∗

Output: OTSE verification key vkv; OTSE signature σv; Auxiliary value xv

1. If (v, vkv, skv) does not exist in st, then (vkv, skv) ← SGen(pp). Add (v, vkv, skv) to st. Simi-
larly, set/check the parameters in st for v||0 and v||1.

2. Let xv = vkv||0||vkv||1.

3. σv = SSign(pp, skv, xv).

4. Output (vkv, σv, xv).

Figure 6: Routine Simulated NodeGen

Simulated Garbled Label Encryption Circuit Sim.Q[pp, β, ℓ′, y](vk)

Inputs: OTSE verification key vk

Constants: OTSE public parameters pp; Bit β ∈ {0, 1}; Number of circuit labels

ℓ′ ∈ N; Labels of a garbled circuit y = {(Yι)}ι∈[ℓ′]

Output: Encrypted Labels, êβ

1. Compute and output {SEnc(pp, (vk, β · ℓ′ + ι, b), Yι)}ι∈[ℓ′],b∈{0,1}.

Figure 7: Simulation Circuit Sim.Q

1. For j ∈ [0, z], let vj denote the prefix of tag, i.e. first j bits of tag. Note that v0 is ϵ and
vz = tag.

2. For j ∈ [0, z − 1], compute (vkvj , σvj , xvj)← Sim.NodeGen(pp, vj , st).

3. Let (vktag, σtag,BFE.mpktag,BFE.sktag,f)← Sim.LeafGen(pp, tag, st, f, µ).

4. Output
(
{(σvj , xvj)}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

S2(tag
∗,Πmtag∗

)

1. For j ∈ [z], let vj denote the prefix of tag and ℓ be the length of BFE.mpk.

2. If BFEtag∗ .st1 is not in st, setup (BFE.mpktag∗ ,BFE
tag∗ .st0) ← BFE.S0(1

λ, 1n, q). Let

BFEtag∗ .st1 = BFEtag∗ .st0. Run ct∗BFE ← BFE.S2(BFE
tag∗ .st1,Π

mtag∗
). Store BFEtag∗ .st2

in st. (Πmtag∗
contains the functions and their evaluations at mtag∗ for the tag tag∗).

3. (T̃, ỹT)← GC.Sim(1λ, 1ℓ, 1|T[0]|, ct∗BFE) (Figure 3)12.

12Any hardcoded public message ∈ Mn will work as input to T. Here we set it to 0 for simplicity. In future simulation
algorithms, for notational simplicity we omit the hardcoded values and just mention the size as 1|T| or 1|Q|. Assume
that the size can be set appropriately as a polynomial in λ, ℓ, ℓ′.

27

4. For j ∈ [0, z], let vj denote the prefix, i.e. first j bits of tag. If (vj , vkvj , skvj) does not
exist in st, then (vkvj , skvj)← SGen(pp). Add (vj , vkvj , skvj) to st.

5. Compute ŷT ← Sim.Q[pp, 0, ℓ, ỹT](vktag∗).

6. Let (Q̃(z), ỹ
(z)
Q)← GC.Sim(1λ, 1ℓ, 1|Q|, ŷT) (Figure 4).

7. For j = z − 1, . . . , 0, let ℓ′ be |vkϵ|,

(a) Compute ŷ
(j)
Q ← Sim.Q[pp, tagj+1, ℓ

′, ỹ
(j+1)
Q](vkvj).

(b) Let (Q̃(j), ỹ
(j)
Q)← GC.Sim(1λ, 1ℓ

′
, 1|Q|, ŷ

(j)
Q) (Figure 4).

8. Output
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
.

We will show through a sequence of experiments that the real and simulated games of The-
orem 5.1 are computationally indistinguishable. We only note down the steps that are different
from the previous experiment in red, rest of the operations and notations remain the same.

Experiment 0. This is the experiment with adversary A and tagged-statically-bounded-collusion
FE scheme. The experiment is parameterized by λ ∈ N.

{
AKeyGen(msk,·,·),Enc(mpk,·,·)(mpk) :

(1n, 1q, 1z)← A(1λ)
(mpk,msk)← Setup(1λ, 1n, 1z, 1q)

}
λ∈N

• Setup: (1n, 1q, 1z)← A(1λ).

1. Let pp ← SSetup(1λ, ℓ) (ℓ is length of BFE.mpk called on securtiy parameter λ, func-
tionality index n and collusion bound q).

2. Sample s← {0, 1}λ as PRF seed.

3. Compute (vkϵ, σϵ, xϵ)← NodeGen(pp, ϵ, s).

4. Set mpk = (pp, vkϵ), msk = s.

Send mpk to A. A is given access to two oracles, KeyGen and Enc.

• Key Queries: Let A query KeyGen on tag tag ∈ {0, 1}z and function f .

1. For j ∈ [0, z], let vj denote the prefix of tag, i.e. first j bits of tag. Note that v0 is ϵ and
vz = tag.

2. For j ∈ [0, z − 1], compute (vkvj , σvj , xvj)← NodeGen(pp, vj , s).

3. Let (vktag, σtag,BFE.mpktag,BFE.sktag,f)← LeafGen(pp, tag, s).

4. Output
(
{(σvj , xvj)}j∈[0,z−1], σtag,BFE.mpktag,BFE.sktag,f

)
.

• Ciphertext Queries: Let A query Enc on tag tag∗ ∈ Iz and message mtag∗ ∈Mn.

1. (T̃, eT)← GC.Garble(1λ,T[m]) (Figure 3).

2. Let (Q̃(z), e
(z)
Q)← GC.Garble(1λ,Q[pp, 0, ℓ, eT]) (Figure 4).

28

3. For j = z − 1, . . . , 0, let ℓ′ be |vkϵ|,

(a) (Q̃(j), e
(j)
Q) ← GC.Garble(1λ,Q[pp, tag∗j+1, ℓ

′, e
(j+1)
Q]) (note that Q(j+1) consists of la-

bels corresponding to the verification key).

4. Parse e
(0)
Q = {Yι,0, Yι,1}ι∈[ℓ′].

5. Let yι denote the ιth bit of vkϵ. Let ỹ(0) ← {Yι,yι}ι∈[ℓ′].

6. Output
(
ỹ(0), Q̃(0), . . . , Q̃(z), T̃

)
.

• A outputs a bit b.

We’ve included additional notational indexing to help with our hybrids.

Experiment 1. In this experiment, we replace the PRF function with a truly random function.
We additionally describe a routine that partially simulates LeafGen.

PartSim.LeafGen(pp, v, st, f)

Inputs: OTSE public parameters pp; Leaf Index v ∈ {0, 1}z; Simulator State st ∈ {0, 1}∗;
Function f ∈ Fn

Output: OTSE verification key vkv; OTSE signature σv; Public Key of vth instance

BFE.mpkv; Secret Key BFE.skf

1. If (v, vkv, skv) does not exist in st, then (vkv, skv)← SGen(pp). Add (v, vkv, skv) to st.

2. Let (BFE.mpkv,BFE.mskv) ← BFE.Setup(1λ, 1n, q). Store (v,BFE.mpkv,BFE.mskv) in the
state st.

3. BFE.skf ← BFE.KeyGen(BFE.mskv, f)

4. σv = SSign(pp, skv,BFE.mpkv)

5. Output (vkv, σv,BFE.mpkv,BFE.skf)

Figure 8: Routine Partially Simulated LeafGen

• Setup: (1n, 1q, 1z)← A(1λ).
Sample s← {0, 1}λ as PRF seed.
Let st be the global state. Compute (vkϵ, σϵ, xϵ)← Sim.NodeGen(pp, ϵ, st).

• Key Queries: Let A query KeyGen on tag tag ∈ {0, 1}z and function f .
For j ∈ [0, z − 1], compute (vkvj , σvj , xvj)← Sim.NodeGen(pp, vj , st).
Let (vktag, σtag,BFE.mpktag,BFE.sktag,f)← PartSim.LeafGen(pp, tag, st).

29

Experiment 2k. Here k varies from 1 to z. In this experiment, we change how Q̃(k−1) and the
garbled labels ỹ(k−1) are computed by calling the garbled circuit simulator.
Ciphertext Queries: Let A query Enc on tag tag∗ ∈ Iz and message mtag∗ ∈Mn.

• For j = z − 1, . . . , k, let ℓ′ be |vkϵ|,

1. (Q̃(j), e
(j)
Q) ← GC.Garble(1λ,Q[pp, tag∗j+1, ℓ

′, e
(j+1)
Q]) (note that Q(j+1) consists of labels

corresponding to the verification key).

• For j = (k − 1),

1. Compute ê
(j)
Q ← Q[pp, tagj+1, ℓ

′, e
(j+1)
Q](vkvj).

2. Let (Q̃(j), ỹ
(j)
Q)← GC.Sim(1λ, 1ℓ

′
, 1|Q|, ê

(j)
Q).

• For j = (k − 2), . . . , 0,

1. Compute ŷ
(j)
Q ← Sim.Q[pp, tagj+1, ℓ

′, ỹ
(j+1)
Q](vkvj).

2. Let (Q̃(j), ỹ
(j)
Q)← GC.Sim(1λ, 1ℓ

′
, 1|Q|, ŷ

(j)
Q).

Experiment 2k + 1. Here k varies from 1 to z. In this experiment, instead of using Q for
encrypting the labels e

(k)
Q , instead we use Sim.Q to compute ŷ(k−1) and use that inside GC.Sim. In

the Ciphertext Queries phase, we make the following change,
For j = (k − 1),

1. Let e
(j+1)
Q be denoted by the set of labels {(Yι,0, Yι,1)}ι∈[ℓ′]. Let yι be the ιth bit of vkvj+1 .

Use y
(j+1)
Q = {Yι,yι}ι∈[ℓ′] as the labels.

2. Compute ŷ
(j)
Q ← Sim.Q[pp, tagj+1, ℓ

′, y
(j+1)
Q](vkvj).

3. Let (Q̃(j),
˜
y
(j)
Q)← GC.Sim(1λ, 1ℓ

′
, 1|Q|, ŷ

(j)
Q).

Experiment 2z + 2. In this experiment, we change how Q̃(z) and the garbled labels ỹ(z) are
computed by calling the garbled circuit simulator. In the Ciphertext Queries phase, we make
the following change -
Let (Q̃(z), ỹ

(z)
Q)← GC.Sim(1λ, 1ℓ

′
, 1|Q|, eT) and use ỹ

(z)
Q instead of e(z)Q inside Sim.Q.

Experiment 2z + 3. In this experiment, instead of using Q for encrypting the labels yT, instead
we use Sim.Q to compute ŷT. In the Ciphertext Queries phase, we make the following change -
Let eT be denoted by the set of labels {(Yι,0, Yι,1)}ι∈ℓ. Let yι be the ιth bit of BFE.mpktag∗ . Use
yT = {Yι,yι}ι∈ℓ as the labels. Compute ŷT ← Sim.Q[pp, 0, ℓ, yT](vktag∗). Additionally, use ŷT

instead of eT as the input to the garble simulator algorithm.

Experiment 2z+4. In this experiment, we simulate T using the garbled circuit simulator hard-
coded with the BFE.ct. In the Ciphertext Queries phase, we make the following change -
Let ct∗BFE ← BFE.Enc(BFE.mpktag∗ ,m). Compute (T̃, ỹT) ← GC.Sim(1λ, 1ℓ, 1|T[m]|, ct∗BFE).

30

Experiment 2z + 5. In this experiment, we simulate BFE.Enc and BFE.KeyGen to remove all
information about the message m.
In the Key Queries phase, use routine Sim.LeafGen instead of PartSim.LeafGen.
In the Ciphertext Queries phase, change how we sample ct∗BFE and set it as
ct∗BFE ← BFE.S2(BFE

tag∗ .st1,Π
mtag∗

). (Πmtag∗
contains the functions and their evaluations at mtag∗

for the tag tag∗).
Let P i

A(λ) be the probability that adversary A outputs 1 on Experiment i run on security
parameter λ.

Lemma 5.2. If PRF is a secure pseudorandom functions, then for every adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, |P0

A(λ)− P1
A(λ)| = negl(λ).

Proof. Suppose there existed an adversary A that distinguishes with some non-negligible probabil-
ity, then we can construct an adversary B that distinguishes between the a truly random function
and a PRF with non-negligible probability. Experiment 0 consists of computation corresponding
to the PRF and Experiment 1 consists of computation corresponding to the truly random function.
Thus we can argue the lemma from PRF security.

Lemma 5.3. If GC is a secure garbling scheme, then for k from 1 to z, for every adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, |P2k−1

A (λ)− P2k
A (λ)| = negl(λ).

Proof. Suppose there existed an adversary A that distinguishes with some non-negligible prob-
ability, then we can construct an adversary B that distinguishes between the garbling security
game with non-negligible probability. Consider the circuit Q̃(k−1). In experiment 2k − 1, we
compute the circuit using the algorithm (Q̃(k−1), e

(k−1)
Q) ← GC.Garble(1λ,Q[pp, vk, ℓ

′, e
(k)
Q]). In

experiment 2k, we compute the same circuit from a garbled circuit simulator, where we compute
(Q̃(k−1), ỹ

(k−1)
Q)← GC.Sim(1λ, 1ℓ

′
, 1|Q|, ê

(k−1)
Q where the labels ỹ(k−1)

Q correspond to the labels vkvk−1
.

Observe that in both games, we only proceed with computation on ỹ
(k−1)
Q , specifically in exper-

iment 2k − 1, we compute e
(k−1)
Q and only compute on labels corresponding to vkvk−1

. Thus by

garbled security on Q[pp, vk, ℓ
′, e

(k)
Q] and input vkvk−1

, the advantage of B is the same as advantage
of A.

Lemma 5.4. If OTSE is a secure one time encryption scheme, then for k from 1 to z, for every
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, |P2k

A (λ)−P2k+1
A (λ)| =

negl(λ).

Proof. We can assume that our proof proceeds through a sequence of sub-experiments where we
switch one challenge ciphertext at a time. The loss in the security experiment will be bounded
by the number of queries we can make and thus will be q times the loss between one of the
sub-experiments. Assume that we switch the ciphertext on challenge tag tag∗.

Suppose there existed an adversary A that distinguishes with some non-negligible probability,
then we can construct an adversary B that distinguishes between the OTSE security game with
non-negligible probability. Consider the routines Q[pp, tagk, ℓ

′, e
(k)
Q](vkvk−1

) and Sim.Q[pp, tagk, ℓ
′,

31

y
(k)
Q](vkvk−1

) used to compute ŷ
(k)
Q . Let e(k)Q be denoted by the set of labels {(Yι,0, Yι,1)}ι∈[ℓ′]. Let yι

be the ιth bit of vkvk . Let y
(j+1)
Q = {Yι,yι}ι∈[ℓ′] as the labels.

The adversary B functions as follows, it gets the public parameter pp. It then outputs x∗ as
the challenge message as vkvk−1||0||vkvk−1||1. Challenger samples (vkvk−1

, skvk−1
) and sends (vkvk−1

)

to B. B obtains the signature σ ← SSign(pp, skvk−1
, x∗). It uses σ in keygen procedure as it

does not know skvk−1
. Finally, it outputs i∗ = {tagkℓ′ + ι}ι∈[ℓ′] as the challenge locations and

sets the multi-message challenge ciphertexts as M∗
0 = {Yι,1−yι}ι∈[ℓ′] and M∗

1 = {Yι,yι}ι∈[ℓ′]. The
ciphertext set C∗

0 = {SEnc(pp, (vkvk−1
, tagkℓ

′ + ι, 1 − yι), Yι,1−yι)}ι∈[ℓ′]. Consider the ciphertexts
C∗
1 = {SEnc(pp, (vkvk−1

, tagkℓ
′ + ι, 1 − yι), Yι,yι)}ι∈[ℓ′]. Note that when we switch from using Q to

Sim.Q, this is precisely the change, and thus we can rely on selective OTSE security to make our
claim.

Lemma 5.5. If GC is a secure garbling scheme, for every adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |P2z+1

A (λ)− P2z+2
A (λ)| = negl(λ).

Proof. This is very similar to the proof of Lemma 5.3.

Lemma 5.6. If OTSE is a secure one time encryption scheme, for every adversary A, there exists
a negligible function negl(·) such that for all λ ∈ N, |P2z+2

A (λ)− P2z+3
A (λ)| = negl(λ).

Proof. This is very similar to the proof of Lemma 5.4.

Lemma 5.7. If GC is a secure garbling scheme, for every adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, |P2z+3

A (λ)− P2z+4
A (λ)| = negl(λ).

Proof. This is very similar to the proof of Lemma 5.3.

Lemma 5.8. If BFE is a secure bounded-collusion simulation-secure FE scheme scheme, for ev-
ery adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, |P2z+4

A (λ) −
P2z+5
A (λ)| = negl(λ).

Proof. We rely on the security for each instance of the BFE scheme where a keygen or ciphertext
query is made to the tagged scheme. Let q′ be the total number of BFE instances on which we
make any kind of query. We can go through a sequence of q′ sub-experiments where we change
each scheme to it’s simulated counterpart. The formal details are routine, and if the advantage in
breaking the BFE scheme is negl′(λ), then the advantage between the two experiments is atmost
q′negl′(λ). Since q = poly(λ), the winning probability is bounded by a negligible function negl(λ).

32

5.3 Central Theorem

Finally, by combining the above theorem (Theorem 5.1) with Theorem 4.5, we get our central
theorem as follows.

Theorem 5.9. If IBE is a secure IBE scheme and BFE is a λ-bounded collusion simulation-secure
FE scheme (as per Definition 4.1), then there exists a dynamic bounded collusion simulation-
secure FE scheme (as per Definition 4.2). And, the dynamic FE scheme can be obtained via a
non-black-box transformation from the static FE scheme.

As discussed in [AMVY21], dynamic bounded collusion FE schemes imply IBE for most basic
function classes, thus the above theorem is unconditional, and we could simplify it as follows.

Corollary 5.10. If BFE is a λ-bounded collusion simulation-secure FE scheme (as per Defini-
tion 4.1), then there exists a dynamic bounded collusion simulation-secure FE scheme (as per Def-
inition 4.2) obtained via a non-black-box transformation.

This immediately leads to new results by combining with [GSW21, Wee21].

Corollary 5.11. If IBE is a secure IBE scheme, then there exists a dynamic-bounded collusion
simulation-secure ABE scheme for Turing Machines.

Corollary 5.12. If Learning with Errors assumption is hard, then there exists a dynamic-bounded
collusion simulation-secure ABE scheme for DFAs in the secret-key-selective setting.

6 Multi-Authority ABE: Tagged and Dynamic Collusion

The second result in our paper is a multi-authority attribute-based encryption scheme (MA-ABE)
in the bounded collusion model for efficient computational secret sharing schemes (CSS). We show
that our construction achieves the desired dynamic collusion property. We obtain our result via
the tagged FE framework that we discussed in Section 4.3. We start by recalling the notion of
access structures and MA-ABE.

6.1 Definition and Preliminaries

Access structures and computational secret-sharing. We recall the concepts of access
structures and computational secret-sharing schemes (CSSS). We follow the notation from prior
works [GPSW06, LW11].

Definition 6.1 (Access Structures). Let {Pi}i∈[n] be a set of parties. A collection A ⊆ 2{P1,...,Pn} is
monotone if ∀B,C : if B ∈ A and B ⊆ C, then C ∈ A. An access structure (respectively, monotone
access structure) is a collection (respectively, monotone collection) A of non-empty subsets of
{Pi}i∈[n]. The sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

33

As in prior works, attributes will play the role of parties and we will only consider monotone
access structures. We observe that more general access structures can be (inefficiently) realized
with our techniques by letting the negation of an attribute be a separate attribute (this doubles
the total number of attributes).

Definition 6.2 (Computational Secret-Sharing Schemes (CSSS)). A computational secret sharing
scheme Π over a set of parties P contains two polynomial time algorithms:

Share(1λ, 1ℓ,A, ρ, s)→ {shi}i≤n. The dealer algorithm takes as input the access structure A and
share mapping function ρ : [n]→ [ℓ] along with the secret s ∈ {0, 1}λ and number of parties
ℓ. It outputs n shares.

Recon({shi}i∈T)→ s. The reconstruction algorithm takes as input a subset of shares {shi}i∈T for
some subset T ⊆ [n], and outputs a reconstructed share s if the set of corresponding parties
make up an authorized set.

Correctness. A CSS scheme is said to be correct if for every λ ∈ N, every supported access
structure (A, ρ) and number of corresponding parties ℓ, every authorized set of users U ∈ A, every
secret s ∈ {0, 1}λ, the following holds:

Pr
[
Recon({shi}i:ρ(i)∈U) = s : {shi}i ← Share(1λ, 1ℓ,A, ρ, s)

]
= 1.

Security. In terms of security, we say CSS satisfy secrecy if the any set of unauthorized shares
hide the secret.

Definition 6.3 (CSS secrecy). A CSS scheme for access structure (A, ρ) satisfies secrecy if there
exists a polynomial-time simulator Sim such that for every supported access structure (A, ρ) and
number of corresponding parties ℓ, every unauthorized subset U /∈ A, every secret s ∈ {0, 1}λ, the
following distributions are computationally indistinguishable:{

Sim
(
1λ, 1ℓ,A, U

)}
λ
≈c

{
{shi}i:ρ(i)∈U : {shi}i∈[n] ← Share(1λ, 1ℓ,A, ρ, s)

}
λ
.

Syntax of MA-ABE. A MA-ABE scheme for a CSS schemes consists of the following PPT
algorithms.

GSetup(1λ)→ crs. The setup algorithm takes as input the security parameter λ, and outputs com-
mon reference string crs. (We assume that crs includes the space of attribute authorities
AU and the space of global identifiers of users GID, and every algorithm receives crs as an
implicit input.)

ASetup(crs, u)→ (pku, sku). The authority setup algorithm takes as input crs and authority u ∈
AU , and outputs an authority key pair.

KeyGen(GID, sku)→ skGID,u. The key generation algorithm takes as input a global identifier GID ∈
GID and sku for an authority u ∈ AU . It outputs the corresponding secret key.

34

Enc((A, ρ), {pku}, µ)→ ct. The encryption algorithm takes in a message µ, a CSSS access structure
(A, ρ). Here, the set {pku} denotes all public keys corresponding to the authorities which
are specified by the access structure A. It outputs a ciphertext ct. (We assume that the
ciphertext implicitly contains (A, ρ). We consider any access structure that is imposed by
some polynomial-sized monotone circuit and ρ is its share-labeling function.)

Dec(ct, {skGID,u})→ µ ∪ ⊥. The decryption algorithm takes as input a ciphertext ct and secret
keys issued for different attributes by the respective authorities. It outputs a message µ, or
⊥ if decryption fails.

Correctness. A MA-ABE scheme is said to be correct if for every λ ∈ N, any set U of attribute
authorities, any CSSS access structure (A, ρ) defined over set U , GID ∈ GID, message µ, and a set
of authorized parties S ⊂ U which satisfy A, the following holds:

Pr

Dec(ct, {skGID,u}u∈S) = µ :

crs← GSetup(1λ)

(pku, sku)← ASetup(crs, u) ∀u ∈ U

skGID,u ← KeyGen(GID, sku) ∀u ∈ U

ct← Enc((A, ρ), {pku}u, µ))

 = 1.

Security. In terms of security, we say MA-ABE is fully secure if the IND-CPA security holds
even if the attacker corrupts some of the authorities as well as corrupts secret keys generated by
honest authorities as long as there is no combination of secret keys and corrupt authorities that
are authorized to decrypt the challenge ciphertext.

Definition 6.4 (MA-ABE full security). A MA-ABE scheme is fully secure if for every stateful
admissible PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds

Pr

AO(·,·)(ct) = b :

crs← GSetup(1λ), C = ∅,N = ∅, b← {0, 1}
(U, (A, ρ), (µ0, µ1))← AO(·,·)(1λ, crs)

ct← Enc((A, ρ), {pku}u∈U , µb))

 ≤ 1

2
+ negl(λ),

where O(·, ·) is a stateful oracle that receives four types of queries and responds as follows:

(AuthGen, u). A submits an authority u /∈ C ∪ N . O samples (pku, sku) ← ASetup(crs, u), sets
N := N ∪ {u}, stores (u, pku, sku) in its state, and outputs pku to A.

(Corrupt, u). A submits an authority u ∈ N . O sets N := N \ {u}, C := C ∪ {u}, and sends sku
from its state to A.

(Register, (u, pku)). A submits an authority u /∈ C ∪ N with key pku. O sets C := C ∪ {u}, stores
(u, pku,⊥) in its state.

(KeyGen, (u,GID)). A submits an authority u ∈ N with identifier GID. O samples skGID,u ←
KeyGen(GID, sku) where (u, pku, sku) is in its state, stores (u,GID) as well in its internal state,
and sends skGID,u to A.

35

And, the adversary A is admissible as long as for each unique identifier GID queried by A, the set
of authorities C ∪ {u : (u,GID) was queried} is not an authorized set.

Definition 6.5 (MA-ABE static collusion security). An MA-ABE scheme is static collusion-bounded
secure if the GSetup algorithm takes in an additional parameter q (the collusion bound) and in the
security game, A specifies 1q at the beginning, and is admissible if it correctly guesses b and the
number of unique identifiers GID for which A submits KeyGen queries is ≤ q.

Definition 6.6 (MA-ABE dynamic collusion security). An MA-ABE scheme is dynamic collusion-
bounded secure if the Enc algorithm takes in an additional parameter q (the collusion bound) and
in the security game, A specifies 1q during the “challenge" phase, and is admissible if it correctly
guesses b and the number of unique identifiers GID for which A submits KeyGen queries is ≤ q.

6.2 Statically Secure MA-ABE for CSS schemes

Ingredients. Let IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be an identity based encryp-
tion scheme and Π = (Share,Recon) be a secure CSS scheme, and H be a hash function modelled
as a random oracle. Below we provide our construction for a statically secure MA-ABE scheme.

We want to point out that our construction can be instantiated from the minimal assump-
tion of public key encryption. The reason we use IBE in our construction instead is for an
easier exposition and, as we discuss later, because it results in a tagged MA-ABE scheme
quite easily.

GSetup(1λ, 1q)→ crs. Our global parameters simply specify the domain and range of a random
oracle, which grows with collusion bound q.

• Let H be a hash function from GID × [qλ]→ [q2].

• Output global parameters crs = (λ, q,H).

ASetup(crs, u)→ (pku, sku). Each authority independently generates an IBE key pair, which en-
cryptors later use to generate ciphertext components.

• (ibe.mpku, ibe.msku)← IBE.Setup(1λ, ID = ([qλ]× [q2])).

• Output pku = ibe.mpku, sku = ibe.msku.

KeyGen(GID, sku)→ skGID,u. A secret key consists of q ·λ IBE keys, where each IBE key is randomly
drawn from disjoint space of size q2. Effectively, our keyspace is partitioned into qλ intervals
of size [q2]. For each interval, it deterministically samples a random identity from [q2] for
each i ∈ [qλ] according to the random oracle on the GID.

• For i ∈ [qλ], compute ibe.sku,GID,i ← IBE.KeyGen(sku, IDGID,i) where IDGID,i = (i,H(GID, i)).
• Output skGID,u = {ibe.sku,GID,i}i∈[qλ].

Enc((A, ρ), {pku}u∈U , µ)→ ct. To encrypt, we simply additively secret share our message into qλ

shares µ1, µ2, . . . µqλ (as the keyspace is partitioned). Then each secret share is itself secret
shared via the CSS access structure (A, ρ) q2 times, and encrypted resulting share under the
identity corresponding to the authority and slot.

36

• Let µ1, µ2, . . . µqλ be an additive N -of-N secret sharing of µ. (That is, µ = ⊕iµi.)

• For all i ∈ [qλ] and id ∈ [q2],

– Compute shares {shi,id,j}j ← Share(1λ, 1|U |,A, ρ, µi)

– For all u ∈ U , compute ctu,i,id ← IBE.Enc(pku, (i, id), {shi,id,j}j:ρ(j)=u).13

• Output ct = ((A, ρ), {ctu,i,id}u,i,id).

Dec(ct, {skGID,u}u∈S)→ µ. To decrypt, for each of the qλ intervals, we simply recover the corre-
sponding secret share µi for exactly one of the q2 CSS schemes as determined by the random
oracle on the GID. To recover the final message, we simply add our message shares together.

• Parse ct = ((A, ρ), {ctu,i,id}u,i,id), and skGID,u = {ibe.sku,GID,i}i.
• For each i ∈ [qλ],

– For each u ∈ S, recover {shi,H(GID,i),j}j:ρ(j)=u = IBE.Dec((sku,GID,i, ctu,i,H(GID,i)).
– Recover µi = Recon({shi,H(GID,i),j}j:ρ(j)∈S).

• Output µ = ⊕i∈[qλ]µi.

Correctness and Efficiency. The correctness of the scheme follows from the correctness of IBE
scheme and the reconstruction property of CSS. Note that by reconstruction property of CSS, we
have that in every honestly computed ciphertext, for each additive share µi and its corresponding
CSS shares {shi,id,j}j , we have that Recon({shi,H(GID,i),j}ρ(j)∈S) for every set S that is authorized
for CSS access structure (A, ρ). Combining this with the fact that the IBE decryption part of the
above decryption procedure recovers {shi,H(GID,i),j}ρ(j)=u whenever id = H(GID, i) using the IBE
secret key ibe.sku,GID,i. Since a set of authorized secret keys for a particular GID contains all such
IBE keys for i ∈ [qλ] and u ∈ S where S is the set of authorized attributes, thus the decryption
correctness follows by combining above facts.

Next, the efficiency of the scheme follows directly from the efficiency of the IBE system. Each
user’s attribute key contains a fixed number (qλ) of IBE secret keys, while the ciphertext contains
q3 · λ · |U | IBE ciphertexts. Thus, the secret keys and ciphertexts are fixed polynomial in the
collusion bound q. Since the goal is to design a statically secure MA-ABE scheme, thus it satisfies
the required efficiency condition.

Security. The main intuition behind the security proof can be explained in two steps.

1. First, observe that H is modelled as a random oracle and an admissible adversary does not
make key generation queries for honest authorities on more than q distinct global identifiers.
Thus, for each index i ∈ [qλ], the number of IBE identities for which a secret key will get
generated is at most q. Note that there are q2 possible identities for index i. Now, information-
theoretically, we can show that there will exist at least one index i∗ such that for all q queried
GID1, . . . ,GIDq identifiers, their corresponding hash values H(GID1, i

∗), . . . ,H(GIDq, i
∗) are all

pairwise distinct (i.e., their are no collisions). This no-collision property for queried identifiers
is crucial in the next step of the proof.

13Recall that IBE supports encryptions of unbounded length messages via hybrid encryption.

37

2. Second, note that we secret share the message µ using a N -of-N secret sharing scheme into
qλ shares {µi}i. Thus, to prove IND-CPA security, it is sufficient to show that one of these
shares is computationally hidden. Once we prove this, then the security follows directly from
the secrecy of secret sharing.

At this point, we can use the no-collision property of the queried identifiers. That is, we know
that there exists an i∗ where all q queried GID1, . . . ,GIDq identifiers are uniquely hashed. Now
recall that for each i, we do a second level of secret sharing for each share µi where we use
the CSS to secret share each µi independently q2 times. That is, for each possible hash value
id ∈ [q2], we do a fresh secret sharing of µi for each i. By the admissibility constraint on the
attacker, we have that for every queried GID the attacker does not have a set of authorized
keys. This, combined with the no-collision property, gives us that there cannot be a hash
value id ∈ [q2] where the attacker has enough CSS shares to reconstruct µi. Thus, by using
CSS secrecy property for each sharing (for id ∈ [q2]) and security of IBE scheme (which is
applied for hiding all unauthorized CSS shares), we get that µi∗ is computationally hidden.
This gives us our result.

Below we formalize the above intuition in a full security proof. Although, we only prove security
when the attacker makes all corruption queries in the pre-challenge phase. It can be easily extended
to handle post-challenge corruption queries by making a small modification to the construction.
We will use a non-committing encryption scheme to encrypt the inner share and the corresponding
secret key will be available to the appropriate key holder. This can be easily executed in the random
oracle model by simply using random oracle programmability. However, for ease of exposition, we
stick to the proof in the simpler case of zero post-challenge queries. Formally, we show the following.

Theorem 6.7. If IBE is a secure IBE scheme and Π is a secure CSS scheme, then the above scheme
is a statically secure bounded-collusion MA-ABE scheme as per Definition 6.5 in the random oracle
model where the adversary makes all queries in the pre-challenge phase.

Proof. To begin, we prove a simple useful information-theoretic lemma.

Lemma 6.8. Let p = p(λ), q = q(λ) be any polynomials in λ, and R ∈ [q2]p×(qλ) be a random
matrix with entries uniformly random in [q2]. With all but negligible probability, for all subset of
rows R∗ ∈ [q2]q×(qλ) there exists a column of R∗ with unique entries.

Proof. First, we can examine the probability that for a uniformly random matrix R′ ∈ [q2]q×(qλ)

has no columns with unique entries. Observe that the probability any fixed column has unique
entries can be computed by consider elements sequentially as

q2

q2
· q

2 − 1

q2
· · · q

2 − q + 1

q2
≥

(
q2 − q

q2

)q

≥
(
1− 1

q

)q

≥ 1

e2

The last inequality follows from the fact that for x ≤ 1/2 we have that 1− x ≥ e−2x. Since q ≥ 2,
thus 1− 1/q ≥ e−2/q which implies the above.

Now, since all qλ columns are independently sampled, thus the probability that no column (out
of the qλ columns) has unique entries can be upper bounded by

(
1− 1

e2

)qλ ≤ 2−qλ/2. In words, this

38

is a very significantly negligible function. To complete the proof, we simply need to show that for
a randomly sampled R, of dimensions as mentioned above, there does not exists any submatrix R∗

containing q distinct rows of R such that no column of R∗ has unique entries. This follows via a
simple union bound over all possible submatrices of R. Note that the total number of such unique
submatrices is at most pq (since all size q subsets of [p] define a unique submatrix). Thus, using
union bound, we get that the probability any such submatrix has no column of unique entries is
at most

pq · 2−qλ/2 = 2q(log p−λ/2) ≤ 2−q·ω(log λ) = negl(λ).

Thus, the lemma follows.

Next, we will show through a sequence of experiments that our construction is a secure static-
bounded MA-ABE scheme. Without loss of generality, we assume A always submits secret key
queries to exactly q unique GID’s (if an adversary queries any less, we can produce another adversary
A′ which simply runs A and queries arbitrary GID’s until q unique GID’s are queried).

Experiment 0: This is the original security game.

1. The challenger initializes sets C,N = ∅ and empty dictionary D.

2. Setup Phase:

• A sends 1q to challenger and receives H : GID × [qλ]→ [q2].

3. Pre-Challenge Phase: The adversary can make the following queries as many times as
desired–

• Generate honest public key:

– Adversary submits an authority u /∈ C ∪ N .
– Challenger computes (ibe.mpku, ibe.msku) ← IBE.Setup(1λ, ([q2] × [qλ])), adding u

to the N and u 7→ ibe.mpku to D, and sends ibe.mpku to the adversary.

• Corrupt honest public key:

– Adversary submits an authority u ∈ N .
– Challenger sets N := N − {u}, C := C ∪ {u}, and returns sku to the adversary.

• Generate corrupt public key:

– Adversary submits an authority u /∈ C ∪ N and public key ibe.mpku.
– Challenger adds u to C and u 7→ ibe.mpku to D.

• Secret key query:

– Adversary submits a (u,GID) where authority u ∈ N and GID ∈ GID.
– For i ∈ [qλ], challenger computes ibe.sku,GID,i ← IBE.KeyGen(ibe.msku, IDGID,i).
– Challenger returns {ibe.sku,GID,i}i∈[qλ] to the adversary.

4. Challenge Phase:

39

• Adversary sends a pair of messages m0,m1, an access policy (A, ρ), and a list of author-
ities U = {u1, . . . , uℓ}, where the U ⊆ C ∪N and ℓ denotes the number of authorities in
U .

• Challenger samples a random bit b← {0, 1} and generates µ1, µ2, . . . µqλ as an additive
secret sharing of mb.

• For all i ∈ [qλ] and id ∈ [q2]:

– Compute shares {shi,id,j}j ← Share(1λ, 1ℓ,A, ρ, µi).
– For all u ∈ U , set ctu,i,id ← IBE.Enc(ibe.mpku, (i, id), {shi,id,k}k:ρ(k)=u).

• Challenger returns {ctu,i,id}u,i,id to the adversary.

5. Post-Challenge Phase: The adversary can make the same types of queries as it did before
as long it does not violate the admissibility requirements.

6. Adversary outputs a bit b′.

Experiment 1: Since A is efficient, there exists some polynomial p = pA(λ) which upper bounds
the number of unique random oracle queries A makes. In this experiment, we simply substitute
outputs of the explicit hash function with random values. That is, we rely on the random oracle
heuristic.

1. The challenger initializes sets C,N = ∅, empty dictionaries D, H and counter j′ = 1.

2. Setup Phase:

• A sends 1q to challenger, and gets oracle access to the hash function H modeled as a
random oracle.

• Challenger uniformly samples R ∈ [q2]p×(qλ), where p denotes the maximum number of
queries A makes. (We point out it is not essential for proving security that the reduction
knows such an upper bound, but it enables a cleaner exposition, thus we stick with the
above formalization.)

• When A queries H on (GID, i), if H[GID] = ⊥ (i.e., GID is queried for the first time), it
sets H[GID] = j′ and increments j′ := j′ + 1. It returns RH[GID],i.

. . . (rest of the game is as before.)

Experiment 2: This is same as previous game, except the challenger aborts in case the matrix
R is such that its i∗-th column vector does not have unique entries for every unique GID queried
by the adversary. Here i∗ is randomly sampled at the beginning of the game.

In further detail, let R∗ denote the subset of R such that R∗ contains all those rows of R where
the adversary makes at least one secret key query for the corresponding GID. Next, let r∗ ∈ [q2]q

denote the i∗th column vector of R∗. Note that since the adversary can make at most q unique
GID queries, thus the length of r∗ is at most q (and we assume it to be exactly q without loss of
generality). Now, in this game, we say the challenger aborts if r∗ does not have unique entries.
This can be checked as soon as the adversary makes q GID queries.

40

Experiment 3.j for j ∈ [q2]: In this game, the challenger secret shares a random value vi∗,id,1
instead of µi∗ for all indices id ≤ j.

4. Challenge Phase:
. . .

• For i ∈ [qλ] and id ∈ [q2]:
For every id ∈ [q2], let Sid denote the subset of the challenge authority set U such
that, for each authority u ∈ Sid, either u ∈ C (i.e., u has been corrupted), or the
adversary made a secret key query to honest authority u for an identifier GID such that
H(GID, i∗) = R[H[GID], i∗] = id (i.e., the adversary has an IBE secret key for identity
(i∗, id) corresponding to authority u).
In this hybrid, we are assuming a non-adaptive adversary for simplicity. That is,
the adversary does not make any corruptions or key queries after challenge phase.
However, by using non-committing encryption techniques, this can be easily solved,
thus we avoid discussing it for simplicity.

– If i = i∗ and id ≤ j:
∗ It runs the CSS simulator on (1λ, 1ℓ,A, Sid) to obtain secret shares {shi∗,id,j}j:ρ(j)∈Sid

.
That is, for each id, it generates fresh simulated CSS shares for all corrupted
key slots.

∗ Next, for all u ∈ U , it encrypts the shares as ctu,i∗,id ← IBE.Enc(ibe.mpku, (i
∗, id),

sh′i∗,id,j) where

sh′i∗,id,j =

{
{shi∗,id,j}j:ρ(j)=u if u ∈ Sid,

0 otherwise.

– Otherwise, compute IBE ciphertexts as before.

• Challenger returns {ctu,i,id}u∈U,i∈[qλ],id∈[q2] to the adversary.
. . . (rest of the game is as before.)

Experiment 4: In this game, the challenger no longer shares the challenger message, but encrypts
a random message instead.

4. Challenge Phase:
. . .

• Challenger samples µ1, µ2, . . . µqλ as uniformly random elements
. . . (rest of the game is as before.)

Analysis. Let Expi(A) denote the advantage of A in experiment i. That is, Pr[A wins Expt i]− 1
2 .

Lemma 6.9. For all PPT adversaries A, Exp0(A) = Exp1(A) in the random oracle model.

Proof. Since R has independent uniformly random entries in [q2], the output of H will be inde-
pendent and uniformly random on distinct inputs as well, so these experiments are identical. This
relies on the random oracle heuristic.

41

Lemma 6.10. For all PPT adversaries A, there exists a negligible function negl(·) such that for
all λ ∈ N, Exp2(A) ≥ 1

qλ · (Exp1(A)− negl(λ)).

Proof. From Lemma 6.8, R∗ contains a column with unique entries with all but negligible proba-
bility. Since there are qλ total columns, the probability a random i∗ is such a column occurs with
probability at least 1

qλ .

Lemma 6.11. For all PPT adversaries A, Exp2(A) = Exp3.0(A).

Proof. Since id ∈ [q2] is always > 0, the added conditional is never checked and these experiments
proceed identically.

Lemma 6.12. Assuming IBE is a secure identity-based encryption scheme and Π is a secure CSS
scheme, for all PPT adversaries A and j ∈ [q2], there exists a negligible function negl(·) such that
for all λ ∈ N, Exp3.j−1(A)− Exp3.j(A) = negl(λ).

Proof. The proof follows from a sequence of subhybrids. However, before diving into the full proof,
we would like to remind the reader that for simplicity we are assuming a non-adaptive adversary.
That is, all corruptions happen in the pre-challenge phase. To handle adaptive corruptions, we
can use random oracle based non-committing encryption trick to use each post-challenge secret
key/authority corruption query as a mechanism to program appropriate secret share in the corre-
sponding IBE ciphertext. Below we sketch the proof for a non-adaptive attacker.

To define these subhybrids, recall Sj as defined in the experiments 3.j. Recall that whenever our
challenger does not abort (starting from experiment 2), we know that if only exists a unique GID

for each index j such that H(GID, i∗) = R[H[GID], i∗] = j. However, from the MA-ABE security
game for A to win, we know the set of attributes from corresponding to users in Sj cannot satisfy
the challenge access policy A for any GID. First, by using IBE security, we can switch each IBE
ciphertext that cannot be decrypted by the adversary. Next, by CSS security, we can simulate the
secret shares instead of computing them honestly.

Experiment 3.j-1.k for k ∈ [0, ℓ]: In this game, the challenger replaces the secret shares for any
IBE ciphertext it hasn’t given a key for with an encryption of 0.

4. Challenge Phase:
. . .

• For i ∈ [qλ] and id ∈ [q2]:

– Run as Experiment 3.j-1, except if i = i∗ and id = j:
∗ Compute shares {shi∗,id,j}j ← Share(1λ, 1ℓ,A, ρ, µi∗)

∗ Next, for all u ∈ U , it encrypts the shares as ctu,i∗,id ← IBE.Enc(ibe.mpku, (i
∗, id),

sh′i∗,id,j) where

sh′i∗,id,j =

{
{shi∗,id,j}j:ρ(j)=u if u ∈ Sid ∪ {uk+1, . . . uℓ},
0 otherwise.

42

– Otherwise, compute IBE ciphertexts as before.

• Challenger returns {ctu,i,id}u∈U,i∈[qλ],id∈[q2] to the adversary.
. . . (rest of the game is as before.)

Claim 6.13. For all adversaries A, Exp3.j−1(A) = Exp3.j−1.0(A).

Proof. Since u ∈ {u1, . . . uℓ} = U , on index j the challenger will always encrypt CSS shares in
Exp3.j−1.0(A), just as in the real game.

Claim 6.14. Assuming IBE is a secure identity-based encryption scheme for all PPT adver-
saries A and j ∈ [q2], k ∈ [ℓ], there exists a negligible function negl(·) such that for all λ ∈ N,
Exp3.j−1.k−1(A)− Exp3.j−1.k(A) = negl(λ).

Proof. Observe that these hybrids are identical except when uk /∈ Sid, where ciphertext ctu,i∗,id is
switched to an encryption of 0 instead of an encryption of {shi∗,id,j}j:ρ(j)=uk

. Suppose there exists
an adversary A that can distinguish these games with some non-negligible probability. We can
define adversary B against the security of IBE as follows. Reduction B receives an IBE master
public key IBE.mpk∗, and acts as the role of the challenger for A in Exp3.j−1.k(A). On a random
Generate honest public key query, B will instead forward the challenge key IBE.mpk∗ (which will
be uk with inverse polynomial probability). Now, B will answer any Secret key queries by simply
using their KeyGen oracle. Finally, in the challenge phase B will forward m0 = {shi∗,id,j}j:ρ(j)=uk

,
m1 = 0, and id∗ = (i∗, j), and receive ct∗. It will then set ctu,i∗,id = ct∗ and continue simulating A,
forwarding the bit it returns. We can see that if ct∗ is an encryption of m0 this is Exp3.j−1.k−1(A),
and similarly for m1, Exp3.j−1.k. Recall that since uk /∈ Sid, A does not request a Secret key query
on (i∗, j), and hence this is an admissible IBE adversary.

Claim 6.15. Assuming Π is a secure CSS scheme, for all PPT adversaries A and j ∈ [q2], there
exists a negligible function negl(·) such that for all λ ∈ N, Exp3.j−1.ℓ(A)− Exp3.j(A) = negl(λ).

Proof. Observe that since |U | = ℓ, Exp3.j−1.ℓ and Exp3.j generate IBE encryptions of 0 at the
exact same values. Thus, the only difference is for the shares {shi∗,id,j}j:ρ(j)∈U , which are generated
as Share(1λ, 1ℓ,A, ρ, µi∗) in Exp3.j−1.ℓ and as Sim(1λ, 1ℓ,A, Sid) in Exp3.j Since Sid /∈ A, these are
exactly indistinguishable by CSS secrecy.

Taking together Claim 6.13, Claim 6.14 and Claim 6.15 gives us our lemma.

Lemma 6.16. For all adversaries A, Exp3.q2(A) = Exp4(A).

Proof. Observe that by Experiment 3.q2, all shares for i = i∗ are simulated, thus the distribution
received by the adversary is independent of µi∗ . By the fact that {µi}i∈[qλ] is an additive n-of-n
secret sharing scheme, the distribution of {µi}i∈[qλ]\i∗ is uniformly random.

Lemma 6.17. For all adversaries A, Exp4(A) = 0.

Proof. The final distribution of encrypted messages are independent of the bit b.

43

Taking together Lemmas 6.9 to 6.12, 6.16 and 6.17, we conclude that the adversary’s advantage
in Experiment 0 is negligible, and so our construction is a secure bounded collusion MA-ABE
scheme.

6.3 Achieving adaptive security

As disccused before, to handle adaptive corruptions, we can use standard non-committing encryp-
tion tricks in the bounded collusion setting [GVW12, GSW21, GGL22] to program each post-
challenge key generation query appropriately. This allows the security proof to program simulated
secret shares into keys (even after fixing the challenge ciphertext). In addition, unlike in the non-
adaptive setting, the CSS simulator does not have complete knowledge of the challenge set Sid, as
we receive adaptive queries one-by-one. Thus we modify our definition our CSS security to allow
for adaptive specification of the challenge set Sid so long as it does satisfy the challenge policy. For-
tunately, the construction by Yao (mentioned in [Bei11], see also Vinod et al. [VNS+03]) satisfies
the adaptive security.

Definition 6.18 (CSS adaptive secrecy). A CSS scheme for access structure (A, ρ) satisfies adap-
tive secrecy if there exists a polynomial-time simulator Sim such that for every supported access
structure (A, ρ) and number of corresponding parties ℓ, every secret s ∈ {0, 1}λ, there exists a
negligible function negl(·), such that the advantage of an admissable adversary in the game below
is negl(λ).

• The challenger samples a bit b ∈ {0, 1}. It computes the real shares {shi}i ← Share(1λ, 1ℓ,A, ρ, s)
and samples an empty state st for the simulator. It initializes the simulator state by running
Sim(st, 1λ, 1ℓ,A, ρ).

• Adversary can make multiple requests for shares for different parties as desired. It requests
a share for party u ∈ [ℓ]. If b = 0, the challenger returns {shi}i:ρ(i)=u. If b = 1, the adversary
runs the simulator on its current state and current share and returns Sim(st, u). It updates
the simualtor state st.

• Adversary outputs a bit b′ ∈ {0, 1}.

Adversary’s advantage is defined by, |Pr[b = b′] − 1/2|. An adversary is considered admissable if
the collection of the shares requested do not satisfy the access policy (A, ρ).

The construction by Yao (and [Bei11, VNS+03]) actually satisfies a stronger adaptive security
notion because the simulator can initialize it’s state by running the real algorithm on secret 0, i.e.
{shi}i ← Share(1λ, 1ℓ,A, ρ, 0), where the simulator’s state is ρ, {shi}i∈[n]. When querying u ∈ [ℓ],
the simulator can respond by giving out {shi}i:ρ(i)=u. The adaptive notion is enough to showcase
our result, hence we don’t define the stronger notion. We do not present the fully formal proof in
our writeup.

We follow the syntax of weak committing encryption (wNCE) from [GSW21] on message space
{0, 1} and algorithms (wNCE.Setup,wNCE.Enc,wNCE.Dec,wNCE.SimSetup,wNCE.SimOpen), which
can be constructed from any public key encryption scheme. For considering bigger message space,

44

[GSW21] show an extension of their construction in the Random Oracle Model [BR93]. The
algorithms wNCE.Setup,wNCE.Enc,wNCE.Dec operate similar to any public key encryption scheme,
while wNCE.SimSetup,wNCE.SimOpen present an indistinguishable setup mode which produces
ciphertexts which can be equivocated to any value determined at simulation-time. We use them
to sketch our construction below. For ease of exposition, we use multiple copies of wNCE, but in
practice, the same IBE scheme can be used to instantiate the multiple copies of wNCE.

GSetup(1λ, 1q)→ crs.

. . . .

ASetup(crs, u)→ (pku, sku).

• . . .

• Let ℓ′ be the length of the share when the CSS is initialized on security parameter λ,
attribute universe of size ℓ14.
For each i ∈ [qλ], id ∈ [q2], u ∈ U , k ∈ [ℓ′], sample a wNCE public and secret key, i.e.
(wNCE.pki,id,u,k,wNCE.ski,id,u,k)← wNCE.Setup(1λ).

• Add the wNCE keys to the authorities public and secret keys respectively.

KeyGen(GID, sku)→ skGID,u.

• For i ∈ [qλ], compute ibe.sku,GID,i ← IBE.KeyGen(sku, IDGID,i) where IDGID,i = (i,H(GID, i)).
For each k ∈ [ℓ′], output wNCE.ski,H(GID,i),u,k.

• Output skGID,u = {ibe.sku,GID,i}i∈[qλ], {wNCE.ski,H(GID,i),u,k}i∈[qλ],k∈[ℓ′].

Enc((A, ρ), {pku}u∈U , µ)→ ct.

• Let µ1, µ2, . . . µqλ be an additive N -of-N secret sharing of µ. (That is, µ = ⊕iµi.)

• For all i ∈ [qλ] and id ∈ [q2],

– Compute shares {shi,id,j}j ← Share(1λ, 1|U |,A, ρ, µi)

– Compute encrypted shares, for each k ∈ [ℓ′], for each j ∈ [n], compute shEnci,id,j,k ←
wNCE.Enc(pki,id,uρ(j),k

, shi,id,j,k) where shi,id,j,k denotes the kth bit of share shi,id,j .
– For all u ∈ U , compute ctu,i,id ← IBE.Enc(pku, (i, id), {shEnci,id,j,k}j:ρ(j)=u,k∈[ℓ′]).

• Output ct = ((A, ρ), {ctu,i,id}u,i,id).

Dec(ct, {skGID,u}u∈S)→ µ.

• Parse ct = ((A, ρ), {ctu,i,id}u,i,id), and skGID,u = {ibe.sku,GID,i}i.
• For each i ∈ [qλ],

– For each u ∈ S, recover {shEnci,H(GID,i),j,k}j:ρ(j)=u,k∈[ℓ′] = IBE.Dec((sku,GID,i, ctu,i,H(GID,i)).

14We are assuming that all shares are of the same length for ease of exposition.

45

– For each u ∈ S, k ∈ [ℓ′], for all j such that ρ(j) = u, recover

shi,H(GID,i),j,k ← wNCE.Dec(wNCE.ski,H(GID,i),u,k, shEnci,H(GID,i),j,k),

where shi,H(GID,i),j,k denotes the kth bit of share shi,H(GID,i),j .
– Recover µi = Recon({shi,H(GID,i),j}j:ρ(j)∈S).

• Output µ = ⊕i∈[qλ]µi.

At a high level, this construction achieves adaptive security by allowing the simulator to not out-
put real shares during the challenge phase, rather only open the shares when adaptively querying.
Informally, in the Pre-Challenge Phase, real wNCE secret keys are revealed. In the Challenge
Phase, for each of the non-adaptively queried encryption shares, it outputs the IBE encryptions of
wNCE encryptions of the simulated CSS shares. For all the other non-queried shares it outputs IBE
encryptions of a ciphertext which have been setup using the SimSetup mode. During the Post-
Challenge Phase, the simulator programs the wNCE secret keys to output the the simulated CSS
shares using the SimOpen algorithm. By mode indistinguishability of wNCE, the simulated and
real wNCE keys as well as ciphertexts are indistinguishable. Since this follows the same trick as
[GVW12, GSW21, GGL22], we do not go into the details of the security proof. See [GSW21] on
how to do this when using wNCE, and [GGL22] to see how to use IBE instead of PKE to bootstrap
a non-adaptive construction to an adaptive one.

6.4 Making it Tagged and Handling Dynamic Collusion

Tagged MA-ABE. While the above MA-ABE construction is a statically secure scheme, it can
be be made a tagged MA-ABE scheme quite easily. The central idea is to simply use the tag
as an additional component of the identity space. Concretely, the encryption and key generation
algorithms can be updated as follows.

KeyGen(tag,GID, sku)→ skGID,u. A secret key consists of q · λ IBE keys computed as follows:

• For i ∈ [qλ], compute ibe.sku,tag,GID,i ← IBE.KeyGen(sku, IDtag,GID,i) where IDtag,GID,i =

(tag,i,H(GID, i)).
• Output sktag,GID,u = {ibe.sku,tag,GID,i}i∈[qλ].

Enc(tag, (A, ρ), {pku}u∈U , µ)→ ct. It is identical to the encryption algorithm as before, except the
IBE encryption algorithm specifies tag as an additional part of the identity. Below we high-
light the main change.

• For all i ∈ [qλ] and id ∈ [q2],

– For all u ∈ U , compute ctu,i,id ← IBE.Enc(ibe.mpku, (tag, i, id), {shi,id,j}ρ(j)=u).

The correctness, efficiency, and proof of security are similar to that of the untagged scheme.

46

Fully Dynamically Bounded Collusion Secure. Finally, combining it with Theorem 4.6, we
get our final result.

Theorem 6.19. If IBE is a secure IBE scheme and Π is a secure CSS scheme, then there exists a
dynamically secure bounded-collusion MA-ABE scheme in the random oracle model.

References

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions and
attacks. In CRYPTO, 2017.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryp-
tion. In Theory of Cryptography: 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part II, pages 224–255.
Springer, 2021.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In CRYPTO, 2013.

[AKM+22] Shweta Agrawal, Fuyuki Kitagawa, Anuja Modi, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Bounded functional encryption for turing machines: Adaptive
security from general assumptions. In Theory of Cryptography: 20th International
Conference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings,
Part I, pages 618–647. Springer, 2022.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In Foun-
dations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium
on, 2003.

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Func-
tional encryption for turing machines with dynamic bounded collusion from lwe. In
CRYPTO, 2021.

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revis-
ited. In Theory of Cryptography Conference, 2017.

[AS17] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite au-
tomata from learning with errors. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, ICALP, 2017.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceed-
ings, volume 8441 of Lecture Notes in Computer Science, pages 557–577. Springer,
2014.

47

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Dennis Hofheinz and Alon Rosen, editors, TCC, 2019.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure lwe suffices. Cryptology ePrint
Archive, 2020.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In IWCC, pages 11–46, 2011.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, 2001.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In CCS ’12, 2012.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
ibe, leakage resilience and circular security from new assumptions. In EUROCRYPT,
2018.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and
challenges. In TCC, 2011.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-
authority attribute-based encryption. In ACM Conference on Computer and Com-
munications Security, pages 121–130, 2009.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515–534,
2007.

[Coc01] Clifford Cocks. An identity based encryption scheme based on Quadratic Residues. In
Cryptography and Coding, IMA International Conference, volume 2260 of LNCS,
pages 360–363, 2001.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs.
Traitor-tracing from lwe made simple and attribute-based. In TCC, 2018.

[DG17a] Nico Döttling and Sanjam Garg. From selective ibe to full ibe and selective hibe. TCC,
2017.

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman
assumption. In CRYPTO, 2017.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes. In

48

IACR International Workshop on Public Key Cryptography, pages 3–31. Springer,
2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography, 1976.

[DKW21] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority abe
for dnfs from lwe. In Advances in Cryptology–EUROCRYPT 2021: 40th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I, pages 177–209.
Springer, 2021.

[DKW23] Pratish Datta, Ilan Komargodski, and Brent Waters. Fully adaptive decentralized
multi-authority abe. In Advances in Cryptology–EUROCRYPT 2023: 42nd An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III, pages 447–
478. Springer, 2023.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In International Conference on the Theory and Applications
of Cryptographic Techniques, 2002.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs.
Succinct lwe sampling, random polynomials, and obfuscation. In Theory of Cryptog-
raphy: 19th International Conference, TCC 2021, Raleigh, NC, USA, November
8–11, 2021, Proceedings, Part II 19, pages 256–287. Springer, 2021.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In Advances in Cryptology–EUROCRYPT
2010: 29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings
29, pages 44–61. Springer, 2010.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGL22] Rachit Garg, Rishab Goyal, and George Lu. A simple and generic approach to dynamic
collusion model. Cryptology ePrint Archive, Paper 2022/330, 2022. https://eprint.
iacr.org/2022/330.

[GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded
functional encryption from identity-based encryption. In EUROCRYPT, 2022.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi,
and Sruthi Sekar. Registration-based encryption from standard assumptions. In IACR
international workshop on public key cryptography, pages 63–93. Springer, 2019.

49

https://eprint.iacr.org/2022/330
https://eprint.iacr.org/2022/330

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: Removing private-key generator from IBE.
In TCC, 2018.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Annual Cryp-
tology Conference, pages 536–553. Springer, 2013.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part II, 2016.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In STOC, 2018.

[GLW12] Shafi Goldwasser, Allison Lewko, and David A Wilson. Bounded-collusion ibe from
key homomorphism. In Theory of Cryptography Conference, 2012.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 736–749, 2021.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, Ioctober 30 - November 3, 2006, pages 89–98. ACM, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GSW21] Rishab Goyal, Ridwan Syed, and Brent Waters. Bounded collusion abe for tms from
ibe. In ASIACRYPT, 2021.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption.
In CRYPTO, 2020.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

[ISV+17] Gene Itkis, Emily Shen, Mayank Varia, David Wilson, and Arkady Yerukhimovich.
Bounded-collusion attribute-based encryption from minimal assumptions. In PKC,
2017.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC, 2021.

50

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn
over f p, dlin, and prgs in nc 0. In Advances in Cryptology–EUROCRYPT 2022:
41st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Trondheim, Norway, May 30–June 3, 2022, Proceedings,
Part I, pages 670–699. Springer, 2022.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. In CRYPTO 2019, 2019.

[Lew12] Allison Lewko. Tools for simulating features of composite order bilinear groups in the
prime order setting. In Advances in Cryptology–EUROCRYPT 2012: 31st An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pages 318–335.
Springer, 2012.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In
EUROCRYPT, pages 568–588, 2011.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, pages 427–437, 1990.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, pages 191–208,
2010.

[OT20] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based encryp-
tion and signatures. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, 103(1):41–73, 2020.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, 1984.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In CCS, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[VNS+03] V Vinod, Arvind Narayanan, K Srinathan, C Pandu Rangan, and Kwangjo Kim. On
the power of computational secret sharing. In Progress in Cryptology-INDOCRYPT
2003: 4th International Conference on Cryptology in India, New Delhi, India,
December 8-10, 2003. Proceedings 4, pages 162–176. Springer, 2003.

[Wee21] Hoeteck Wee. Abe for dfa from lwe against bounded collusions, revisited. In TCC,
2021.

51

[WFL19] Zhedong Wang, Xiong Fan, and Feng-Hao Liu. Fe for inner products and its application
to decentralized abe. In IACR international workshop on public key cryptography,
pages 97–127. Springer, 2019.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling. In
Advances in Cryptology–EUROCRYPT 2021: 40th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17–21, 2021, Proceedings, Part III, pages 127–156. Springer, 2021.

[Yao82] Andrew C Yao. Protocols for secure computations. In FOCS, 1982.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS, 1986.

52

	Introduction
	Multi-Authority Attribute-Based Encryption

	Technical Overview
	Preliminaries
	Pseudorandom Functions
	Garbled Circuits
	Identity-Based Encryption
	One-Time Signature with Encryption

	Functional Encryption: Definitions
	Static Collusion Model
	Dynamic Collusion Model
	Tagged Functional Encryption

	From Static to Dynamic Collusion Model Generically
	Tagged FE Accumulator
	Security
	Central Theorem

	Multi-Authority ABE: Tagged and Dynamic Collusion
	Definition and Preliminaries
	Statically Secure MA-ABE for CSS schemes
	Achieving adaptive security
	Making it Tagged and Handling Dynamic Collusion

	References

