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Abstract. Homomorphic Encryption (HE) is a cutting-edge cryptographic technique
that enables computations on encrypted data to be mirrored on the original data.
This has quickly attracted substantial interest from the research community due to its
extensive practical applications, such as in cloud computing and privacy-preserving
machine learning.

In addition to confidentiality, the importance of authenticity has emerged to
ensure data integrity during transmission and evaluation. To address authenticity,
various primitives have been developed including Homomorphic Authenticator (HA).
Corresponding security notions have also been introduced by extending the existing
notions to their homomorphic versions.

Despite these advancements, formalizing the security of HE and HA remains
challenging due to the novelty of these primitives and complexity of application
scenarios involving message evaluation. It is inclusive which definitions in this zoo
of notions are insufficient or overly complex. Moreover, HE and HA are designed
to be combined to construct a secure communication channel that ensures both
confidentiality and authenticity. However, the security of such compositions is not
always clear when game-based notions are used to formalize security.

To bridge this gap, we conduct a constructive analysis through the lens of com-
posable security. This method enables us to examine the security properties of each
primitive in isolation and to more effectively evaluate their security when integrated
into a larger system. We introduce the concepts of a confidential channel and an au-
thenticated channel to specify the security requirements for HE and HA, respectively.
We make a comparison with existing game-based notions to determine whether they
adequately capture the intended security objectives.

We then analyze whether the composition of HE and HA constructs a Homomorphic
Authenticated Encryption (HAE) that provides both confidentiality and authenticity
in presence of message evaluation. Specifically, we examine a serial composition of HE
and HA, corresponding to Encrypt-then-MAC (EtM) composition for constructing
classical AE.
Keywords: Homomorphic Encryption · Homomorphic Authenticator · Composable
Security · Constructive Cryptography · Provable Security
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1 Introduction

1.1 Background and Motivation
Homomorphic Encryption (HE), first introduced by Rivest and Adleman as “privacy
homomorphism” in [RAD+78], enables computations on encrypted data, producing results
that can be directly translated back to the original data. This capability opens up significant
opportunities for real-world applications, such as privacy-preserving machine learning
[BP23], cloud computing [ZLL14], and multiparty computation (MPC) [BDOZ11]. Over
the years, various HE schemes [C+09, BGV12, CGGI20] have been developed to improve
efficiency and support a broader range of operations, moving towards full homomorphism.

In addition to ensuring confidentiality, the cryptographic community has increasingly
focused on maintaining authenticity within a homomorphic framework. Since adversaries
may modify messages before or after evaluation to produce false results, it is crucial to
address this vulnerability. Agrawal and Boneh proposed homomorphic MACs in [AB09],
and Johnson introduced homomorphic signatures in [JMSW02], approaching the problem
from symmetric and public-key cryptography perspectives, respectively. Further research
has aimed to provide authenticity for HE through verifiable control of the evaluation
algorithm using techniques like SNARKs [Via23]. Various notions have also been proposed
to address different adversarial scenarios that may arise during message evaluation.

However, game-based proof framework by Bellare and Rogaway [BR06] may not be the
most effective tool for formalizing security in this context. The complication of defining a
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game or adversarial behavior increases with the presence of message evaluation. Moreover,
these primitives are intended for use in large, complex systems, yet the composition
property of these primitives in such systems remains unclear with game-based notions,
as noted by Maurer in [Mau11]. To bridge this gap, our goal is to present an analysis of
HE and Homomorphic Authenticator (HA) from a constructive perspective, capturing
the inherent security of HE and HA while facilitating future research on the security of
large-scale systems incorporating these primitives. This approach particularly allows us
to offer insights into the construction of Homomorphic Authenticated Encryption (HAE)
through the composition of HE and HA.

1.2 Related Work
Confidentiality. The primary security requirement of homomorphic encryption (HE)
is confidentiality, characterized by the IND-CPA notion, as described by Gentry in [C+09].
In addition to basic confidentiality, Gentry also explored circular security in [C+09], where
an adversary can access a “cycle of keys,” meaning a key is encrypted under itself or another
key, encapsulating security involving the bootstrapping operation. Further confidentiality
requirements include circuit privacy, which ensures that an adversary cannot distinguish
between the evaluated ciphertext and the encryption of the evaluated plaintext. Moreover,
Li et al. introduced the concept of IND-CPAD in [LM21], specifically for approximate HE
schemes like CKKS [CKKS17], demonstrating its equivalence to IND-CPA for HE schemes
with exact decryption.

Authenticity. For authenticity, Agrawal and Boneh proposed the concept of homo-
morphic MAC in [AB09], identifying two types of forgeries. Gennaro and Wichs further
formalized this security by introducing the concept of a labeled program in [GW13],
later termed HomoUF-CMA security in [CF13]. Based on this, in [JY14], Joo and Yun
further formalized the notions of plaintext integrity INT-PTXT and ciphertext integrity
INT-CTXT within the homomorphic setting by also taking the honest execution of the
evaluation algorithm into consideration.

Towards CCA Security. Additionally, there are studies focused on constructing
CCA-secure HE schemes that also consider authenticity. Prabhakaran and Mike Rosulek
introduced HCCA in [PR08], capturing the idea that a scheme may be homomorphic for
specific functions but must remain non-malleable with respect to all other operations. Joo
and Yun first introduced homomorphic authenticated encryption (HAE) in [JY14] and
defined IND-CCA security for HAE. They further demonstrated that the implication from
IND-CPA plus INT-CTXT to IND-CCA holds in the homomorphic context. Akavia et al.
introduced FuncCPA in [AGHV22], an intermediate notion between CPA and CCA2, to
capture security for FHE schemes against attacks in the context of client-aided outsourcing.
Manulis and Nguyen introduced the vCCA notion in [MN24], which is strictly stronger than
CCA1, to address schemes where modifying the challenge ciphertext using homomorphism
before querying it to its decryption oracle is detectable under certain conditions.

1.3 Contribution
In this work, we present a constructive analysis of homomorphic encryption (HE) and
homomorphic authenticators (HA). From a composable perspective, our study not only
elucidates the natural security objectives that HE and HA schemes should achieve but
also evaluates their security composability within larger systems.

We treat HE and HA as symmetric primitives in a classical setting where a client
outsources computation to a server, with an adversary positioned between them. We
demonstrate that a confidential channel can be constructed using HE, and an authenticated
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channel can be created using HA from an initially insecure communication channel where
an adversary can observe and inject messages into the channel.

Specifically, in the confidential channel, an adversary can only view the length of
transmitted messages but can inject its own messages into the channel at will. This ensures
that no message content is disclosed to the adversary during transmission or evaluation.
Conversely, in the authenticated channel, an adversary can see all transmitted content but
can only relay or delete messages between the client and server. This ensures that any
results from the server remain unmodified by the adversary. We compare our construction
of these channels to the existing game-based notions established for HE and HA, assessing
whether they meet the desired security requirements.

We proceed to examine the serial composition of these channels to construct a secure
channel that ensures both security and authentication, aligning with the Encrypt-then-
MAC (EtM) composition method used in constructing Authenticated Encryption (AE)
as outlined in [BN08]. This allows us to formally show that homomorphic authenticated
encryption (HAE) can also be constructed through the generic composition of Homomorphic
Encryption (HE) and Homomorphic Authentication (HA).

2 Preliminaries

2.1 Notation
We introduce the following notations for use throughout this paper. Let N = {1, 2, . . .}
denote the set of natural numbers. For each n ∈ N, we define the set [n] := {1, . . . , n}.
Given a set S, we denote the set of all non-empty sequences of length at least n over S by
S≥n :=

⋃
i≥n S

i, and we define S+ := S≥1. Let x = (x1, · · · , xℓ) ∈ S+ with ℓ ∈ N be a
sequence. The length of x is denoted by |x| := ℓ. For another sequence y = (y1, . . . , yℓ′) ∈
S+ with ℓ′ ∈ N, the concatenation of x and y is defined as x ∥ y = (x1, . . . , xℓ, y1, . . . , yℓ′).
When S = {0, 1}, such sequences are referred to as bit strings. Let i ∈ {0, 1, . . .}; we denote
the ℓ-bit string representation of i as [i]ℓ. The notation S[a..b] represents the substring of
S that includes indices from a to b. We use ε to denote the empty string, where |ε| = 0.
We use #»x = ⟨x1, . . . , xℓ⟩ to denote a vector. A subvector #»y of #»x is denoted as #»y ⊆ #»x . The
appendment of an element (or a vector) after #»x is denoted as #»x ⋊⋉ ⟨x′⟩ = ⟨x1, . . . , xℓ, x

′⟩.
Unless specified otherwise, we assume a vector #»x has length | #»x | = n and #»x = ⟨x1, . . . , xn⟩.

Let S be a finite set. We define the notation x ←$ S to represent the selection of a
value from the set S uniformly at random, which we then assign to the variable x. For
an algorithm A, we use the notation y ← AO1,O2,... to denote running A given access to
oracles O1,O2, . . ., and then assigning of the output of A to y. We use y ↞ A to indicate
that y is the output of a probabilistic algorithm A.

2.2 Game-Based Proof
In this work, we discuss some security notions that follow the code-based game-playing
framework of Bellare and Rogaway [BR06]. This framework employs a game G composed
of an Initialization procedure (Init), a Finalization procedure (Finalize), and a set of
oracle procedures, whose number varies depending on the specific game. An adversary A
interacts with these oracles, receiving responses to its queries through return statements
specified in the oracle codes.

A game G begins with the Init procedure, followed by the adversary’s interaction with
the oracles. After making a series of oracle queries, the adversary halts and produces an
adversary output. Subsequently, the Finalize procedure is executed to generate a game
output. If no explicit finalization procedure is defined, the adversary output is considered
the game output. We denote Pr[AInit,O1,O2,··· ⇒ b] as the probability that the adversary



Ganyuan Cao 5

A outputs a value b after the Init procedure and queries to oracles O1,O2, · · · . We
denote Pr[G(A)⇒ b] as the probability that game G outputs b when adversary A plays
game G. For simplicity, we define Pr[G(A)] := Pr[G(A)⇒ 0]. To simplify notation, we
interchangeably use ∆A (OL; OR) and

∆A

(
OL

OR

)
:= Pr[AOL ⇒ 0]− Pr[AOR ⇒ 0]

to denote A’s advantage in distinguishing between the oracles OL and OR.
We let Advx

Π(Ax) denote adversary Ax’s advantage in breaking security notion X
of a scheme Π. We say security notion X implies security notion Y, denoted X → Y, if
Advy

Π(Ay) ≤ c ·Advx
Π(Ax) for some constant c > 0.

3 Homomorphic Encryption and Authenticator

3.1 Labeled Program
Following the definitions presented in [GW13] by Gennaro and Wichs, we introduce the
concept of a labeled program. This syntax helps in specifying which data is encrypt-
ed/authenticated and which data a program P should process, thereby simplifying our
discussion.

Definition 1 (Labeled Program). A labeled program is a tuple P = (f, λ1, . . . , λn) where
f :Mn →M is a circuit, and λi for i ∈ [n] are labels for the inputs to f . The program P
evaluates the circuit f on the inputs (m1, . . . ,mn) associated with the labels (λ1, . . . , λn),
outputting m⋆ = f(m1, . . . ,mn) ∈M.

Given labeled programs P1, . . . , Pt and a circuit g : Mt → M, a composed program
P⋆ = g(P1, . . . , Pt) evaluates the circuit g using the outputs of P1, . . . , Pt.

For an input label λ and a canonical identity function gid, the identity program with
label λ is denoted as Iλ = (gid, λ). Any program P = (f, λ1, . . . , λn) can be expressed as a
composed program of n identity programs i.e., P = f(Iλ1 , . . . , Iλn

).

Next, we define when a program is well-defined. Informally, a program P is well-defined
with respect to a set Q either if all its labels are in Q, or if there exists a label not in
Q, the inputs associated with these labels are ignored by f , and the evaluation remains
unaffected.

Definition 2 (Well-Definedness). Let Q ⊆ L×M be a set, and let P = (f, λ1, . . . , λn)
be a labeled program. Consider the following conditions:

1. For every λi ∈ P , there exists (λi,mi) ∈ Q for some message mi ∈M.

2. If there exists λj ∈ P such that (λj ,mj) /∈ Q for all mj ∈M, then

f({mi}(λi,mi)∈Q) = f({mi}(λi,mi)∈Q ∪ {mj}(λj ,mj)/∈Q)

for all mj ∈M.

We say that P is well-defined with respect to Q if either condition 1 or 2 is satisfied,
denoted by ωQ(P ) = 1.

3.2 Syntax
We first present the definition of a homomorphic encryption (HE) scheme in Definition 3.
Note that we define an HE scheme as a symmetric primitive.
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Definition 3 (Homomorphic Encryption). A homomorphic encryption scheme with secret
key space SK, evaluation key space EK, circuit space F , message space M and ciphertext
space C, is a tuple HE = (Enc, Dec, Eval) of the following probabilistic polynomial time
(PPT) algorithms:

- Enc : SK × M → C encrypt a message m with a secret key sk and outputs a
ciphertext c← HE.Encsk(m).

- Dec : SK × C →M decrypts a ciphertext c and outputs the corresponding plaintext
m← HE.Decsk(c).

- Eval : EK × F × Cn → C evaluates a vector of ciphertext ⟨c1, . . . , cn⟩ over a circuit
f and outputs the evaluated ciphertext c⋆ ← HE.Evalfek(⟨c1, . . . , cn⟩).

We define the following correctness for an HE scheme:

- Encryption Correctness: For all m ∈M, it has

Pr[HE.Decsk(c) = m | (sk, ek)←$ SK × EK,m = HE.Encsk(m)] = 1.

- Evaluation Correctness: Fix any pair of keys (sk, ek) ∈ SK × EK. Fix any circuit
f : Mt → M ∈ F and any tuple of message/ciphertext {(mi, ci)}ti=1 such that
ci = HE.Encsk(mi). If m⋆ = f(m1, . . . ,mt), and c⋆ = HE.Evalfek(⟨c1, . . . , cn⟩), then
it holds that HE.Decsk(c⋆) = m⋆.

Definition 4 (Homomorphic Authenticator). A homomorphic authenticator (HA) with
secret key space SK, evaluation key space EK, label space L, circuit space F , program
space P, message space M, and tag space T , is a tuple HA = (Tag, Vfy, Eval) of the
following PPT algorithms:

- Tag : SK × L ×M → T produces a tag τ ← HA.Tagλsk(m) that authenticates m
under the label λ.

- Vfy : SK × P ×M× T → {0, 1} checks if τ authenticates that m is the evaluation
on previously authenticated labeled data over the program P and returns b ←
HA.VfyPsk(m, τ) ∈ {0, 1}.

- Eval : EK ×F × T n → T evaluates a vector of tags ⟨τ1, . . . , τn⟩ over a circuit f and
produces a tag τ⋆ ← HA.Evalfek(⟨τ1, . . . , τn⟩).

We define the following correctness for an HA scheme:

- Authentication Correctness: For any message-label tuple (λ,m) ∈ L ×M, it has

Pr[HA.VfyIλ

sk(m, τ) = 1 | (sk, ek)←$ SK × EK, τ = HA.Tagλsk(m)] = 1

where Iλ is the identity program with respect to λ.
- Evaluation Correctness: Fix any pair of keys (sk, ek) ∈ SK × EK. Fix any circuit
f : Mt → M ∈ F and any tuple of message/program/tag {(mi, Pi, τi)}ni=1 such
that HA.VfyPi

sk(mi, τi) = 1. If m⋆ = f(m1, . . . ,mn), P⋆ = f(P1, . . . , Pn), and τ⋆ =
HA.Evalgek(⟨τ1, . . . , τn⟩), then it holds that HA.VfyP⋆

sk (m⋆, τ⋆) = 1.

4 Constructive Cryptography

4.1 Framework
In this work, we utilize the composable framework of constructive cryptography (CC)
introduced by Maurer in [Mau11]. CC allows us to make statements about the construction
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of one resource from another. A resource R is a system with interfaces through which
it interacts with its environment, typically assigned to specific parties. For our purposes,
we consider three interfaces for all resources: a client A, a server B, and an adversary E
positioned between them.

Security is modeled by the advantage of a distinguisher D in distinguishing between
two resources R and S, expressed as:

∆D(R,S) = Pr[DR ⇒ 1]− Pr[DS⇒ 1]

where Pr[DR ⇒ 1] represents the probability that D outputs 1 when connected to the
resource R. Specifically, DR is a random experiment where D repeatedly interacts with
one of the interfaces A,B, or E, observes the responses, and then decides on its output bit.
In this work, we model communication channels between the client and the server using
resources.

A converter cvt is a system connected to a resource’s interfaces, modifying inputs and
outputs at that interface and thus converting the resource into another resource. We denote
this as cvtAR when a converter is attached to the interface A of a resource R. A converter
has an inner interface in connected to a resource and an outer interface out which becomes
the new connection point of the converted resource towards the environment.

Definition 5 (Construction). Let R and S be resources, and let ⊥E be a converter
representing when the adversary E performs no attack. Let sim be a simulator converter.
A protocol, defined as a pair of converters (cvt1, cvt2), securely constructs a resource R
from a resource S if:

∆D(cvtA
1 cvtB

2⊥ER,⊥ES) ≤ ε(D) (Availability)

and
∆D(cvtA

1 cvtB
2 R, simES) ≤ ε(D) (Security)

where ε(D) ∈ [−1, 1] represents the distinguisher D’s advantage in distinguishing between
the two environments. We denote this construction as R (cvt1,cvt2,ε)−→ S.

Given several constructions, we can define composability with respect to these con-
structions, specifically serial and parallel composability.

Theorem 1 ([Mau11, Theorem 1]). The following composability properties hold for two
constructions:

1. (Serial Composability)

R (cvt1,cvt2,ε)7−→ S ∧ S (cvt′
1,cvt′

2,ε
′)7−→ T =⇒ R (cvt1◦cvt′

1,cvt2◦cvt′
2,ε+ε′)7−→ T

2. (Parallel Composability)

R (cvt1,cvt2,ε)7−→ S ∧ R′ (cvt′
1,cvt′

2,ε
′)7−→ S′ =⇒ R||R′ (cvt1||cvt′

1,cvt2||cvt′
2,ε+ε′)7−→ S||S′

3. ( Identity Composability)
R (id,id,0)7−→ R

4.2 Converters & Insecure Channel
Insecure Channel. We consider a classical setting where HE and HA are used. In this
setup, a client wishes to outsource computations to a server without revealing the data
to be processed and the evaluated result from the server (to a third party). We assume
the communication between the client and the server takes place over an insecure channel
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Resource INS

Initalize
1 : QA,QB ← empty FIFO queues

Interface A
1 : Input: (snd, MA)
2 : QA.enqueue(MA)
3 : Output MA at E

Interface B
1 : Input: (snd, MB)
2 : QB .enqueue(MB)
3 : Output MB at E

Interface E
1 : Input: dlv-vec

2 : MA ← QA.dequeue()
3 : Output MA at B
4 : Input: dlv-val

5 : MA ← QB .dequeue()
6 : Output MB at A
7 : Input: (inj-vec, ME)
8 : QA.replace(MA, ME)
9 : Output ME at B

10 : Input: (inj-val, ME)
11 : QB .replace(MB , ME)
12 : Output ME at B

Figure 1: An insecure channel (INS) resource. We use Q.replace(M,ME) to represent
M is first dequeued from a queue Q then ME is enqueued to Q.

INS, as shown in Figure 1. Here, A represents the client and B represents the server.
Within this insecure channel, an adversary E can intercept all messages between A and B.
Moreover, E can inject its own messages to “replace” those sent by A and B.

In this work, we assume that the channel interfaces are invoked in the sequence
“A ⇌ E ⇌ B”. Specifically, A first sends a message to E, then E sends a message to B,
followed by B sending a message back to E, and finally, E sends a message back to A. We
refer to this entire sequence as one round of communication. This simplifies our analysis,
thus we do not address stateful security issues related to out-of-sync ciphertext delivery. In
the following discussion, we will demonstrate how to construct a secure channel from this
insecure one, ensuring both confidentiality and authenticity by combining HE and HA.

Key Resource. In Figure 2, we introduce KEYSK×EK as a resource that distributes
the secret key sk to the client A and the (public) evaluation key ek to the server B and the
adversary E. We assume that KEYSK×EK is both confidential and authenticated, meaning
the secret key sk is not known by the adversary E, and the evaluation key ek cannot be
replaced by it. For notation simplicity, we use KEY to represent this key resource.

Resource KEYSK×EK

Initalization
1 : (sk, ek)←$ K

Interface E
1 : Input: getkey

2 : Output ek at E

Interface A
1 : Input: getkey

2 : Output sk at A

Interface B
1 : Input: getkey

2 : Output ek at B

Figure 2: A key resource KEY that distributes the secret key sk to the client A and the
evaluation (public) key ek to the server B and the adversary E.



Ganyuan Cao 9

Converters with HE and HA. We introduce client converters clihe and cliha, and
server converters srvhe and srvha using homomorphic encryption HE and homomorphic
authenticator HA respectively, as depicted in Figures 3 and 4.

- Converters clihe and srvhe: In the client converter clihe, the outer interface out accepts
a command snd to encrypt a vector of messages #»m to a vector of ciphertext #»c where
ci = HE.Encsk(mi) for i ∈ [n]. The converter then sends a circuit f and #»c to the
channel INS. The inner interface in receives the evaluated ciphertext c⋆ from INS,
decrypts it to obtain m⋆, and outputs m⋆ at interface A via its outer interface out.

In the server converter srvhe, a circuit f and a ciphertext vector #»c are received
from INS at its inner interface in. The converter evaluates c⋆ = HE.Evalfek( #»c ), and
outputs #»c to its interface out. The interface out then outputs a command snd to
the interface B to output c⋆ to channel INS.

- Converters cliha and srvha: In the client converter, cliha, the outer interface of accepts
a command snd to authenticate a vector of messages #»m with tags #»τ under the labels
#»

λ such that τi = HA.Tagλi

sk(mi) for i ∈ [n]. We assume that each λi does not repeat.
The inner interface in of cliha receives (f, #»

λ,m⋆, τ⋆) from INS, parses P = (f, #»

λ ) as
a labeled program and verifies if τ⋆ authenticates m⋆ as the output of P . If valid,
m⋆ is outputted at the interface A via outer interface out. Otherwise, ⊥ is outputted
to indicated invalidity.

In the server converter srvha, a circuit f , a message vector #»m, a tag vector #»τ , and a
label vector #»

λ are received from INS at the interface in. The converter evaluates
the message m⋆ = f( #»m), and the tag τ⋆ = HA.Evalfek( #»τ ), and outputs the result to
its outer interface out. The interface out then outputs a command snd to interface
B to output (f, #»

λ,m⋆, τ⋆) to channel INS.

Converter clihe

Initalize
1 : Output getkey→ KEY
2 : sk ← KEY

Interface out
1 : Input: (snd, (f, #»m))
2 : for i = 1 . . . n do
3 : ci ← HE.Encsk(mi)
4 : Output (snd, (f, #»c ))→ INS

Interface in
1 : Input: c⋆ ← INS
2 : m⋆ ← HE.Decsk(c⋆)
3 : Output m⋆ at out

Converter srvhe

Initalize
1 : Output getkey→ KEY
2 : ek ← KEY

Interface in
1 : Input: (f, #»c )← INS

2 : c⋆ ← HE.Evalfek( #»c )
3 : Output c⋆ at out

Interface out
1 : Input: c⋆ ← in
2 : Output (snd, c⋆)→ INS

Figure 3: Converters clihe and srvhe for a client and a server attached to the channel INS
using a homomorphic encryption scheme HE. For the first part of proof of Theorem 2 and
4, we assume the dot-boxed part of clihe is not executed.
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Converter cliha

Initalize
1 : Output getkey→ KEY
2 : sk ← KEY

Interface out
1 : Input: (snd, (f,

#»

λ, #»m))
2 : for i = 1 . . . n do

3 : τi ← HA.Tagλi
sk(mi)

4 : Output (snd, (f,
#»

λ, #»m, #»τ ))→ INS

Interface in
1 : Input: (f,

#»

λ, m⋆, τ⋆)← INS

2 : P ← (f,
#»

λ )

3 : b← HA.VfyPsk(m⋆, τ⋆)
4 : if b = 1 then
5 : Output m⋆ at out
6 : else
7 : Output ⊥ at out

Converter srvha

Initalize
1 : Output getkey→ KEY
2 : ek ← KEY

Interface out
1 : Input: (f,

#»

λ, m⋆, τ⋆)← in

2 : Output (snd, (f,
#»

λ, m⋆, τ⋆))→ INS

Interface in
1 : Input: (f,

#»

λ, #»m, #»τ )← INS
2 : m⋆ ← f( #»m)

3 : τ⋆ ← HA.Evalfek( #»τ )

4 : Output (f,
#»

λ, m⋆, τ⋆) at out

Figure 4: Converters cliha and srvha for a client and a server attached to the channel INS
using a homomorphic authenticator HA.

5 Confidentiality

5.1 Indistinguishability with IND-CPA
We define the IND-CPA security for HE as real-or-random security i.e., indistinguishability
between the encryption of queried plaintext, and a random bitstring, following the definition
in [Shr04]. Consider the IND-CPA game in Figure 5, we then define the advantage in
Definition 6.

Definition 6 (IND-CPA Advantage).

AdvIND-CPA
HE (A) := Pr[GIND-CPA-0

HE (A)]− Pr[GIND-CPA-1
HE (A)]

In [JY14], the notion of IND-CPA is defined by granting the adversary access to an
oracle that performs honest encryption and a challenge oracle that implements left-or-right
encryption. This method is syntactically complex and deviates from the standard security
definitions used in many other works. Therefore, we redefine the security notion as real-or-
random (RoR) security, which is stronger than left-or-right (LoR) security, as noted by
Rogaway in [Rog11]. In this framework, the adversary’s task is to distinguish between two
scenarios: one where real encryption is returned and another where a random bitstring
is returned, starting from the first query to Enc. This notion allows us to consider two
types of indistinguishability:

- Encryption Indistinguishability: This notion ensures that the encryption of each
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GIND-CPA-0
HE GIND-CPA-1

HE

procedure Init
1 : (sk, ek)←$ SK × EK

procedure Finalize
1 : b ↞ AEnc(ek)
2 : return b

Oracle Enc(m)
1 : c ↞ HE.Encsk(m)

2 : c←$ {0, 1}ψ(|m|)

3 : return c

Figure 5: IND-CPA game for a homomorphic encryption scheme HE. We assume the
randomness (or noise) ε←$ χ is sampled by the scheme following a distribution χ instead
of queried by the adversary. The dot-boxed part is exclusive to GIND-CPA-1

HE .

message is indistinguishable from a random bitstring, as determined by the behavior
of the oracle Enc.

- Strong Homomorphism: This notion extends security to indistinguishability between
encryption of evaluated plaintexts and the evaluation of ciphertexts. Specifically,
ci ↞ Enc(mi) for i ∈ [n] can be either real encryption or a random bitstring, and
the adversary A can freely evaluate c⋆ = HE.Evalfek(⟨c1, . . . , cn⟩). With this notion,
we require that c⋆ is indistinguishable from c′

⋆ ↞ Enc(m⋆) made in another query
where m⋆ = f(m1, . . . ,mn). This ensures the adversary cannot distinguish between
these two worlds by querying Enc with m⋆, thus ensuring the indistinguishability
between c⋆ = HE.Evalfek( #»c ) and c′

⋆ = HE.Encsk(m⋆).

Remark 1 (Comments on RoR Security). In the current literature, IND-CPA security is
primarily defined using LoR security. However, we argue that RoR security is attainable
by some HE schemes and should be preferred over LoR security since it is stronger and
it is also easier to adapt this notion to simulation-based proof. For instance, Halevi
demonstrated in [Hal17, Lemma 7] that a GSW-like leveled HE scheme achieves this
security. Additionally, other schemes such as FHEW [DM15], TFHE [CGGI20], and
FINAL [BIP+22] are also capable of achieving this, provided they do have not certain
structures (e.g., ciphertext modulus) that could inadvertently reveal the computation’s
progress through the ciphertext’s format.

5.2 Construction for Confidential Channel
To clarify our objective in terms of confidentiality, we illustrate a confidential channel,
denoted as CONF, in Figure 6. In the CONF channel, the client A inputs a vector of
messages ⟨m1, . . . ,mn⟩ and a circuit f into the channel. The server B sends an evaluated
message m⋆ = f(m1, . . . ,mn) back to A. During this process, the adversary E can observe
only the lengths of the messages |m1|, . . . , |mn|, the length |m⋆|, and the circuit f . The
adversary E might choose to relay (f, ⟨m1, . . . ,mn⟩) from A to B, or inject its own messages
(f ′, ⟨m′

1, . . . ,m
′
n⟩) into the channel and send them to B. The adversary may also relay the

message m⋆ from B to A, or inject its message m′
⋆ and send it to A.

Remark 2 (Comment on channel CONF). In channel CONF, we assume that the server
B can view and evaluate the messages ⟨m1, . . . ,mn⟩ using the circuit f . However, since
we consider homomorphic encryption (HE) as a symmetric-key primitive in this context, B
should not actually be able to see these messages to prevent the server from accessing the
information. Therefore, in Lines 1 to 4 of Figure 6, we only describe the behavior of B
evaluating the circuit. In CONF, any adversarial actions are attributed to the adversary
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Resource CONF

Initalize
1 : QA,QB ← empty FIFO queues

Interface A
1 : Input: (snd, f, #»m)
2 : QA.enqueue((f, #»m))
3 : Output (f, |m1|, . . . , |mn|) at E

Interface B
1 : Input: (f, #»m)
2 : m⋆ ← f( #»m)
3 : QB .enqueue(m⋆)
4 : Output |m⋆| at E

Interface E
1 : Input: dlv-vec

2 : (f, #»m)← QA.dequeue()
3 : Output (f, #»m) at B
4 : Input: dlv-val

5 : m⋆ ← QB .dequeue()
6 : Output m⋆ at A
7 : Input: (inj-vec, f ′, #»m′)
8 : QA.replace((f, #»m), (f ′, #»m′))
9 : Output (f ′, #»m′) at B

10 : Input: (inj-val, m′
⋆)

11 : QB .replace(m⋆, m′
⋆)

12 : Output m′
⋆ at B

Figure 6: A confidential channel (CONF) resource. We useQ.replace(m,m′) to represent
m is first dequeued from a queue Q then m′ is enqueued to Q.

E. Indeed, if we can construct this channel with a protocol such that the adversary E can
only observe the message length, then we can categorize any party from whom we conceal
information as being such an adversary.

Theorem 2. The protocol (clihe, srvhe) constructs resource CONF from INS||KEY with
respect to (dlv, dlv) and simulator sim as defined in Figure 7. More specifically, for any
distinguisher D and for any adversary A,

∆D
(

cliAhesrvB
hedlvEINS||KEY, dlvECONF||KEY

)
= 0 (1)

and
∆D

(
cliAhesrvB

heINS||KEY, simECONF||KEY
)
≤ AdvIND-CPA

HE (A) (2)

Proof. We start by proving the security condition (2) by analyzing the input-output
behaviors of both systems involved. For this part, we temporarily assume that the
interface in of the converter clihe is disabled, i.e., no decryption is executed upon receiving
the evaluated ciphertext c⋆ from the channel INS, since we focus only on encryption
confidentiality with respect to the channel CONF.

- On input (snd, (f, #»m)) at interface A:

– In the system cliAhesrvB
heINS||KEY, the converter clihe encrypts each message

mi to obtain ci = HE.Encsk(mi) for i ∈ [n]. It then outputs (snd, (f, #»c )) where
#»c = ⟨c1, . . . , cn⟩ at A, sending (f, #»c ) to the channel INS. Consequently, (f, #»c )
is delivered to E.

– In the system simECONF||KEY, the message lengths ℓ1, . . . , ℓn are delivered
to E. The simulator sim then samples a vector of bitstrings #»c = ⟨c1, . . . , cn⟩
such that |ci| = ψ(ℓi) for i ∈ [n], where ψ : N→ N maps plaintext lengths to
ciphertext lengths. The simulator outputs (f, #»c ) at E via its interface out.

- On input (snd,m⋆) or (f, #»m) at interface B:
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Converter sim

Initalize
1 : Qcli,Qsrv ← empty FIFO queues
2 : Output getkey→ KEY
3 : ek ← KEY

Interface out
1 : Input: dlv-vec

2 : (g, #»c )← Qcli.dequeue()
3 : Output (inj-vec, g, #»c )→ CONF
4 : Input: dlv-val

5 : c⋆ ← Qsrv.dequeue()
6 : Output (inj-val, c⋆)→ CONF
7 : Input: (inj-vec, f, #»c )

8 : g ← parse(HE.Evalfek(·))
9 : Output (inj-vec, g, c⋆)→ CONF

Interface in
1 : Input: (f, ℓ1, . . . , ℓn)
2 : for i = 1, . . . , n do

3 : ci ←$ {0, 1}ψ(ℓi)

4 : g ← parse(HE.Evalfek(·))
5 : Qcli.enqueue((g, #»c ))
6 : Output(f, #»c ) at out
7 : Input: ℓ⋆

8 : (g, #»c )← Qcli.dequeue()
9 : c⋆ ← g( #»c )

10 : Qsrv.enqueue(c⋆)
11 : Output c⋆ at out

Figure 7: A simulator converter sim attached to the interface E of the resource CONF.

– In the system cliAhesrvB
heINS||KEY, when (f, #»c ) is received from INS, the

converter srvhe evaluates c⋆ = HE.Evalfek( #»c ), and outputs (snd, c⋆) at B, sending
c⋆ to INS. Therefore, c⋆ is delivered to E.

– In the system simECONF||KEY, upon receiving the length of the evaluated
message ℓ⋆, the simulator sim extracts (g, #»c ) from the simulated client queue
Qcli, where #»c is a vector of random bitstrings, and g : EK × Cn → C is parsed
from HE.Evalfek(·) at the interface in of sim upon receiving ℓ1, . . . , ℓn. The
simulator then evaluates c⋆ = g( #»c ), adds c⋆ to a simulated server queue Qsrv,
and outputs c⋆ at E.

- On input dlv-vec at interface E:

– In the system cliAhesrvB
heINS||KEY, the tuple (f, #»c ) is extracted from the client

queue QA and delivered at interface B. The converter srvhe attached to B then
evaluates HE.Evalfek( #»c ).

– In the system simECONF||KEY, this process is simulated by extracting (g, #»c )
from the simulated client queue Qcli, where #»c is a vector of random bitstrings
sampled at the simulator sim’s interface in, and g is the parsed circuit from
HE.Evalfek(·). The simulator then outputs (inj-vec, g, #»c ) at E to deliver (g, #»c )
at interface B. Interface B then evaluates g( #»c ) = HE.Evalfek( #»c ) as defined by
CONF.

- On input dlv-val at interface E:

– In the system cliAhesrvB
heINS||KEY, the element c⋆ is extracted from the server

queue QB and delivered at interface A. This c⋆ is the evaluated result outputted
by the converter srvhe, i.e., c⋆ = HE.Evalfek( #»c ), where (f, #»c ) was obtained from
the queue QA.

– In the system simECONF||KEY, this process is simulated by extracting c⋆ from
the simulated server queue Qsrv, where c⋆ = g( #»c ) = HE.Evalfek( #»c ) for (g, #»c )
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from the simulated client queue Qcli. The simulator then outputs (inj-val, c⋆)
at E to deliver c⋆ at interface A.

- On input inj-vec:

– In the system cliAhesrvB
heINS||KEY, the interface E outputs (f, #»c ) at interface

B. Subsequently, the converter srvhe performs the evaluation HE.Evalfek( #»c ).

– In the system simECONF||KEY, the simulator translates HE.Evalfek(·) into a
circuit g. Then, (g, #»c ) is delivered to B, where B computes g( #»c ) = HE.Evalfek( #»c ).

Note that in this case, sim provides a perfect simulation.

- On input inj-val: In both systems, any message injected by the adversary E is
directly forwarded to the interfaces A. In this case, sim provides a perfect simulation.

Observe that the input-output behaviors of the two system differs on the inputs
(snd, f, #»m), (snd,m⋆), dlv-vec, and dlv-val. Specifically, on inputs (snd, f, #»m) and
dlv-vec, the two systems differ on ci ↞ HE.Encsk(mi) and c′

i ←$ {0, 1}ψ(|mi| for i ∈ [n].
On inputs (snd,m⋆) and dlv-val, the two systems differ on c⋆ ← HE.Evalfek( #»c ) and
c′
⋆ ← HE.Evalfek( #»c ′). This exactly describes our definition of IND-CPA game in Figure 5.

Then if there is a distinguisher D that distinguishes between these two systems, then we can
use it to construct an IND-CPA adversary A by forwarding queries to get ci ↞ Enc(mi)
for i ∈ [n] and running the evaluation on circuit f . Thus, Condition (2) holds.

We now establish the availability condition (1) assuming the interface in of the con-
verter clihe is now enabled. In system cliAhesrvB

hedlvEINS||KEY, when the converter dlv is
connected to interface E, any output from the channel INS triggers the inputs dlv-vec
and dlv-val. Notably, any (f, #»c ) input into INS from clihe is promptly delivered to srvhe.
Likewise, any c⋆ input into INS from srvhe is immediately conveyed to clihe. Consequently,
if the i-th input at interface A is (snd, f, #»m), then the i-th output back at interface A
is m⋆ = f(m1,m2, . . . ,mn), as ensured by the correctness of the HE scheme defined in
Definition 3. It is also evident that the same input-output behavior applies to the system
dlvECONF||KEY.

6 Authenticity

6.1 Unforgeability and Circuit Integrity
Unforgeability. We follow [GW13, CF13] to formalize the unforgeability of an HA
scheme with EUF-CMA notion. We illustrate the EUF-CMA game in a homomorphic
context in Figure 8 and define the EUF-CMA advantage in Definition 7. Compared with
the game for classical MAC scheme, we introduce an additional requirement (or rather
an assumption) in Line 1 such that no label is used for authenticating more than one
message. Notably, as indicated in [CF13], such assumption is implicitly present in the HA
construction by Gennaro Wichs in [GW13], as well as in all previous works on homomorphic
signatures.

We allow the adversary to adaptively make query to a tag oracle Tag and a verification
oracle Vfy. In Line 2 – 3 of oracle Vfy, we specify the winning condition for the game.
In addition to a valid tag, we require that either the program is not well-defined with
respect to Q, that is, there is a label that has not been used for authentication, or m is
not the correct evaluation of the messages that have been authenticated via oracle Tag.
Otherwise, the adversary trivially wins the game.
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GEUF-CMA
HA

procedure Init
1 : (sk, ek)←$ SK × EK
2 : Q ← ∅
3 : win← 0

Oracle Tag(λ,m)
1 : if (λ, ·) ∈ Q then
2 : return  

3 : τ ↞ HA.Tagλsk(m)
4 : Q ← Q∪ {(λ, m)}
5 : return τ

procedure Vfy(P,m, τ)
1 : b← HA.VfyPsk(m, τ)
2 : if b = 1 ∧ (ωQ(P ) = 0
3 : ∨m ̸= f({mi}(λi,mi)∈Q)) then
4 : win← 1
5 : return b

procedure Finalize
1 : ATag,Vfy

2 : return win

Figure 8: EUF-CMA game for a homomorphic authenticator scheme HA. We use ωQ(P )
to represent whether the labeled program P is well-defined with respect to Q. We let
(λ, ·) ∈ Q denote if λ has been used in a previous query.

Definition 7 (EUF-CMA Advantage).

AdvEUF-CMA
HA (A) := Pr[GEUF-CMA

HA (A)⇒ 1]

GINT-CIRC
HA

procedure Init
1 : (sk, ek)←$ SK × EK
2 : f ←$ F

Oracle Tag( #»

λ, #»m)
1 : #»τ ← ⟨ ⟩
2 : for i = 1, . . . , n do

3 : τi ↞ HA.Tagλi
sk(mi)

4 : #»τ ← #»τ ⋊⋉ ⟨τ⟩
5 : return #»τ

procedure Finalize
1 : (f ′,

#»

λ ′, #»m′, #»τ ′) ↞ ATag(f)
2 : // #»

λ
′ ⊆ #»

λ, #»m
′ ⊆ #»m, #»τ

′ ⊆ #»τ

3 : τ ′
⋆ ← HE.Evalf

′

ek( #»τ ′)
4 : P ′ ← (f ′,

#»

λ ′)

5 : b← HE.VfyP
′

sk (f ′( #»m′), τ ′
⋆)

6 : if f ′( #»m′) ̸= f( #»m) then
7 : return b

8 : else
9 : return 0

Figure 9: INT-CIRC game for a homomorphic authenticator scheme HA.

Circuit Integrity. Current integrity notions, such as EUF-CMA depicted in Figure
8, INT-PTXT (which is the same as EUF-CMA), and INT-CTXT as detailed in [JY14],
primarily concentrate on whether an adversary can forge a valid tag or ciphertext concerning
an adversary-chosen circuit. However, the fundamental goal of integrity is to ensure the
correct evaluation of the message. Given a tuple ( #»

λ, #»m, #»τ ) and a circuit f , an adversary
may not need to forge anything at all; instead, they could simply select a different circuit f ′

and perform an honest evaluation to produce misleading results. Indeed, to counteract such
trivial attacks, the client can retain a copy of the circuit f for verification. Nonetheless,
there are scenarios where f is part of the message, particularly when f is a temporary or
ephemeral circuit created for a specific or one-time computational task. In these cases,
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ensuring the integrity of f is vital since the client relies on the circuit f being returned to
validate the results.

To address this, we propose a stronger security notion where a tag τ is associated
with a circuit f that is to be evaluated. We introduce a new notion, INT-CIRC, which
assesses whether an adversary can construct a circuit f ′ that produces a different output
compared to a predefined random circuit f from the circuit space, as illustrated in Figure
9. Specifically, the adversary is allowed to non-adaptively query a tag oracle Tag with
a vector of non-repeating labels #»

λ and a vector of messages #»m. The oracle Tag then
returns the corresponding vector of tags #»τ . To distinguish this notion from unforgeability,
the adversary selects subvectors #»

λ ′ ⊆ #»

λ , #»m′ ⊆ #»m, and #»τ ′ ⊆ #»τ . The adversary wins if
f ′( #»m′) ̸= f( #»m) and τ ′

⋆ = HE.Evalf
′

ek( #»τ ′) authenticates f ′( #»m′) as the output of the program
P ′ = (f ′,

#»

λ ′). The INT-CIRC advantage is then defined in Definition 8.

Definition 8 (INT-CIRC Advantage).

AdvINT-CIRC
HA (A) := Pr[GINT-CIRC

HA (A)⇒ 1]

6.2 Construction for Authenticated Channel
We then define a authenticated channel AUTH as illustrated in Figure 10. In the channel
AUTH, the client A inputs into the channel a vector of messages ⟨m1, . . . ,mn⟩ and a
circuit f . The server B computes m⋆ = f(m1, . . . ,mn) and sends m⋆ back to A. The
adversary E sees the message content m1, . . .mn and m⋆, and the circuit f . The adversary
E can only deliver (f, ⟨m1, . . . ,mn⟩) from A to B, and deliver m⋆ from B to A.

Similarly as in Remark 2, we use interface B to describe the behavior that the circuit
is evaluated on the server side. We assume the server honestly evaluate the circuit, and
any adversarial behavior is attributed to E. In AUTH, we only allow the adversary to
deliver the honestly evaluated message, which express the security goal with AUTH.

Resource AUTH

Initalize
1 : QA,QB ← empty FIFO queues

Interface E
1 : Input: dlv-vec

2 : (f, #»m)← QA.dequeue()
3 : Output (f, #»m) at B
4 : Input: dlv-val

5 : m⋆ ← QB .dequeue()
6 : Output m⋆ at A

Interface A
1 : Input: (snd, f, #»m)
2 : QA.enqueue((f, #»m))
3 : Output (f, #»m) at E

Interface B
1 : Input: (f, #»m)
2 : m⋆ ← f( #»m)
3 : QB .enqueue(m⋆)
4 : Output m⋆ at E

Figure 10: An authenticated channel (AUTH) resource.

Theorem 3. The protocol (cliha, srvha) constructs resource AUTH from INS||KEY with
respect to (dlv, dlv) and a simulator sim as defined in Figure 11. More specifically, for any
distinguisher D and any adversary A,

∆D
(

cliAhasrvB
hadlvEINS||KEY, dlvEAUTH

)
= 0 (3)
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and
∆D

(
cliAhasrvB

haINS||KEY, simEAUTH
)
≤ AdvINT-CIRC

HA (A1)

+ AdvEUF-CMA
HA (A2)

(4)

Converter sim

Initalize
1 : Qcli ← empty FIFO queues

Interface in
1 : Input: (f ′, #»m′)
2 : (f, #»m)← QA.dequeue()
3 : Qcli.enqueue((f, #»m))
4 : QA.enqueue((f ′, #»m′))
5 : Output (f ′, #»m′) at out

1 : Input: m′
⋆

2 : QB .dequeue()
3 : (f, #»m)← Qcli.dequeue()
4 : if m′

⋆ ̸= f( #»m) then
5 : QB .enqueue(⊥)
6 : else
7 : QB .enqueue(m′

⋆)
8 : Output m′

⋆ at out

Figure 11: A simulator converter sim attached to interface E of AUTH.

Remark 3. We first explain the intuition of the simulator in Figure 11. At the in interface
of sim, we consider the tuple (f ′, #»m′) and m′

⋆ as either originating from A and B, or being
injected by the adversary E in INS. If (f ′, #»m′) comes from A, it holds that (f, #»m) = (f ′, #»m′),
where (f, #»m) is the input provided by A to the channel. Similarly, m⋆ = m′

⋆ if m′
⋆ is from

B. Otherwise, (f ′, #»m′) and m′
⋆ are messages injected by E.

Proof. We begin by proving the security condition (4) by analyzing the input-output be-
haviors of both systems involved. Note that in the system cliAhasrvB

haINS||KEY, the tuples
( #»

λ, #»m, #»τ ) and (f, #»

λ,m⋆, τ⋆) are transmitted as messages since the protocol (cliha, srvha) is
attached. However, in the system simEAUTH, we can only focus on the messages #»m and
m⋆. We analyze the indistinguishability of the two systems from the perspective of m⋆

since the goal of AUTH is to ensure the honest evaluated of the circuit f .

- On input (snd, (f, #»m)) at interface A:

– In the system cliAhasrvB
haINS||KEY, the converter cliha generates tags τi =

HA.Tagλi

sk(mi) for i ∈ [n] with unique labels λi. The converter then outputs
(snd, (f, #»

λ, #»m, #»τ )) at A, sending (f, #»

λ, #»m, #»τ ) to the channel INS, which delivers
(f, #»

λ, #»m, #»τ ) to E.
– In the system simEAUTH, it is trivial to see that the simulator sim also outputs

the same circuit-message tuple (f, #»m) at interface E.

- On input (snd,m⋆) or (f, #»m) at interface B:

– In the system srvA
hasrvB

haINS||KEY, the converter srvha evaluates m⋆ = f( #»m)
and τ⋆ = HA.Evalfek( #»τ ) upon receiving (f, #»

λ, #»m, #»τ ) at in. It then outputs
(snd, (f, #»

λ,m⋆, τ⋆)) at B to send (f, #»

λ,m⋆, τ⋆) to INS, which delivers them to
interface E.



18 CC View of HE and HA

– In the system simEAUTH, the interface B computes m⋆ = f( #»m) upon receiving
(f, #»m). The simulator sim then directly outputs m⋆ at E.

- On input (inj-vec, f ′, #»m′) at interface E (of INS):

– In the system cliAhasrvB
haINS||KEY, the tuple (f, #»

λ, #»m, #»τ ) from A is replaced
with (f ′,

#»

λ ′, #»m′, #»τ ′) from E in the client queue QA, and delivered to B.
– In the system simEAUTH, the simulator receives the tuple (f ′, #»m′) injected by

E at its interface in. The simulator dequeues (f, #»m), which is the tuple sent by
A, from QA. It then enqueues (f ′, #»m′) from E into QA, and outputs dlv-vec at
E to deliver (f ′, #»m′) to B.

- On input (inj-val,m′
⋆) at interface E (of INS):

– In the system cliAhasrvB
haINS||KEY, the tuple (f, #»

λ,m⋆, τ⋆) from B is replaced
with (f ′,

#»

λ ′,m′
⋆, τ

′
⋆) from E in the server queue QB , and delivered to A. Depend-

ing on whether τ⋆ authenticates m⋆ as the output of the program P = (f ′,
#»

λ ′),
the converter cliha outputs m′

⋆ or ⊥ at A.
– In the system simEAUTH, the simulator receives m′

⋆ injected by in at its
interface E. The simulator dequeues (f, #»m), which is the original tuple sent
by A, from Qcli, and checks if m′

⋆ = f( #»m). If true, it enqueues m′
⋆ into QB,

otherwise, it enqueues ⊥. The simulator then outputs dlv-val at E to deliver
m′
⋆ or ⊥ to A.

- On input dlv-vec at interface E:

– In the system cliAhasrvB
haINS||KEY, the tuple (f, #»

λ, #»m, #»τ ) is extracted from the
client queue QA and delivered to B.

– In the system simEAUTH, the content of QA remains unchanged since the
same tuple is first dequeued then enqueued to QA. Thus when then simulator
outputs dlv-val at E, the same tuple (f, #»m) enqueued into QA at interface A
is extracted and delivered at interface B.

- On input dlv-val at interface E:

– In the system cliAhasrvB
haINS||KEY, the tuple (f, #»

λ,m⋆, τ⋆) is extracted from
the server queue QB and delivered to A. Depending whether τ⋆ authenticates
m⋆ with respect to the program P = (f, #»

λ ), the converter cliha outputs m⋆ or
⊥ at interface A.

– In the system simEAUTH, the tuple (f, #»m) that is sent by A is first extracted
from the queue Qcli. Then depending on whether m⋆ = f( #»m) or not, the
message m⋆ or ⊥ is outputted at interface A.

First, we analyze the output at interface A of the system simEAUTH. Let (f, #»m) be
the message input by A, and let m⋆ = f( #»m). In simEAUTH, any injected tuple (f ′, #»m′)
where m⋆ ̸= f ′( #»m′), or any injected message m′

⋆ ̸= f( #»m), results in ⊥ at interface A.
In the system cliAhasrvB

haINS||KEY, the output is either m⋆ or ⊥, depending on whether
τ⋆ authenticates m⋆ as the output of a labeled program P = (f, #»

λ ). Let (f, #»

λ, #»m, #»τ ) be
the message input by A, and let m⋆ = f( #»m). We observe that this system differs from
simEAUTH when an evaluated message m′

⋆ ̸= m⋆ is output at interface A instead of ⊥.
We assume the adversary E does not attempt to inject m′

⋆ = f( #»m) with an invalid τ ′
⋆, as

this is trivial to accomplish. Now we can list the behaviors at interface E of INS as the
following cases:
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(1) Case 1 (inj-vec, (f ′,
#»

λ, #»m, #»τ )) then dlv-val: The adversary E injects a different
circuit f ′ ̸= f such that m′

⋆ = f ′( #»m) ̸= m⋆. The converter srvha evaluates m′
⋆ = f ′( #»m)

and τ ′
⋆ = HA.Evalf

′

ek( #»τ ), which produces a valid tag τ ′
⋆. Consequently, the converter

cliha outputs m′
⋆ at A instead of ⊥.

(2) Case 2 (inj-vec, (f, #»

λ ′, #»m′, #»τ ′)) then dlv-val: The adversary’s injection is not
well-defined with respect to {(λi,mi)}λi∈ #»

λ ,mi∈ #»m, which corresponds to the condition
in Line 2 of oracle Vfy in Figure 8. Specifically, the adversary must inject #»m′ ≠ #»m
such that f( #»m′) ̸= f( #»m) = m⋆, resulting in a message m′ ∈ #»m′ but m′ /∈ #»m. The
adversary must forge a tag τ ′ for m′ under a new label λ′ /∈ #»

λ . The converter srvha
honestly evaluates m′

⋆ = f( #»m′) and τ ′
⋆ = HA.Evalfek( #»τ ′), which produces a valid tag

τ ′
⋆. Consequently, a message m′

⋆ ̸= m⋆ is outputted at interface A.

(3) Case 3 (inj-vec, (f ′,
#»

λ ′, #»m′, #»τ ′)) then dlv-val: This behavior can be viewed as a
combination of Case 1 and Case 2. Thus, if the adversary makes a successful injection
in either Case 1 or Case 2 (resulting in m′

⋆ ≠ m⋆ being outputted at interface A),
then it can make a successful injection in this case as well.

(4) Case 4 dlv-vec then (inj-val, (f ′,
#»

λ ′,m′
⋆, τ

′
⋆)): In the previous step, the tuple

(f, #»

λ, #»m, #»τ ) is outputted at interface E. The adversary can then change to a different
circuit, evaluating m′

⋆ = f ′( #»m′) and τ ′
⋆ = HA.Evalf

′

ek( #»τ ′), where #»

λ ′ ⊆ #»

λ, #»m′ ⊆ #»m,
and #»τ ′ ⊆ #»τ . Since τ ′

⋆ is a valid tag, the converter cliha outputs m′
⋆ ̸= m⋆ at A

instead of ⊥.

(5) Case 5 dlv-vec then (inj-val, (f, #»

λ ′,m′
⋆, τ

′
⋆)): In this case, E does not inject a

new circuit. Instead, E injects a different m′
⋆ ̸= f( #»m) = m⋆. This corresponds to

the condition in Line 3 of oracle Vfy in Figure 8. Note that the adversary may or
may not choose to inject #»

λ ′ = #»

λ , as the winning condition is defined with an OR
statement. Thus it is sufficient for the adversary to inject an m′

⋆ ̸= m⋆ and forge a
valid tag τ ′

⋆.

(6) Case 6 inj-vec then inj-val: Similarly, this behavior can be viewed as a combi-
nation of Cases 1 or 2. Thus, if the adversary makes a successful injection in Cases 1
and 2, then it can make a successful injection in this case as well.

We can then observe that if the adversary E injects a different circuit that yields a
different result, yet the evaluated tag remains correct (Cases 1 and 4), this corresponds to
an INT-CIRC adversary A1. Conversely, if the adversary provides a (vector of) message
with a (vector of) valid tag (Cases 2 and 5), this corresponds to an EUF-CMA adversary
A2. Also, the adversary might perform both actions. Thus, by Union Bound, we can
bound the security by AdvINT-CIRC

HA (A1) plus AdvEUF-CMA
HA (A2), thereby concluding the

Condition (4).
We now establish the availability condition (3). In system cliAhasrvB

hadlvEINS||KEY,
when the converter dlv is connected to interface E, any output from the channel INS triggers
the inputs dlv-vec and dlv-val. Notably, any (f, #»m, #»τ ) input into INS from cliha is
promptly delivered to srvha. Likewise, any (m⋆, τ⋆) input into INS from srvha is immediately
conveyed to cliha with τ⋆ = HA.Evalfek( #»τ ). Consequently, if the i-th input at interface A
is (snd, f, #»m), then the i-th output back at interface A is m⋆ = f(m1,m2, . . . ,mn) since
τ⋆ authenticates m⋆ thus m⋆ is outputted at the interface A instead of ⊥, as ensured by
the correctness of the HE scheme defined in Definition 4. It is also evident that the same
input-output behavior applies to the system dlvEAUTH.
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Resource SEC

Initalize
1 : QA,QB ← empty FIFO queues

Interface A
1 : Input: (snd, f, #»m)
2 : ⟨m1, . . . , mn⟩ ← #»m

3 : QA.enqueue((f, #»m))
4 : Output (f, |m1|, . . . , |mn|) at E

Interface B
1 : Input: (f, #»m)
2 : ⟨m1, . . . , mn⟩ ← #»m

3 : m⋆ ← f(m1, . . . , mn)
4 : QB .enqueue(m⋆)
5 : Output |m⋆| at E

Interface E
1 : Input: dlv-vec

2 : (f, #»m)← QA.dequeue()
3 : Output (f, #»m) at B

1 : Input: dlv-val

2 : m⋆ ← QB .dequeue()
3 : Output m⋆ at A

Figure 12: A secure channel resource SEC.

7 Security Composition

Given a confidential channel and an authenticated channel, in accordance with serial
composability as per Theorem 1, we should be able to construct a secure channel ensuring
both confidentiality and authenticity, as depicted in Figure 12. In the channel SEC, the
client A inputs a vector of messages ⟨m1, . . . ,mn⟩ and a circuit f into the channel. The
server B computes m⋆ = f(m1, . . . ,mn) and returns m⋆ to A. The adversary E observes
the lengths of messages |m1|, . . . , |mn|, |m⋆|, and the circuit f . E can only intercept
(f, ⟨m1, . . . ,mn⟩) from A to B, and intercept m⋆ from B to A.

Security of EtM. We revisit the Encrypt-then-MAC (EtM) composition as discussed
in [BN00]. We make a slight modification to the server converter srvhe, as illustrated
in Figure 13. Specifically, the converter parses the evaluation algorithm HE.Evalfek(·)
into a circuit g : EK × Cn → C. This adjustment is necessary because the interface B of
AUTH requires a circuit and a vector of messages as inputs. Consequently, when (f, #»c )
is outputted at interface B, the converter makes B execute the evaluation algorithm as
g( #»c ) = HE.Evalfek( #»c ).

Converter srvhe

Initalize
1 : Output getkey→ KEY
2 : ek ← KEY

Interface in
1 : Input: (f, #»c )← AUTH

2 : g ← parse(HE.Evalfek(·))
3 : Output (g, #»c )→ AUTH

Figure 13: Converter srvhe attached to the interface B of channel AUTH.
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Theorem 4. The protocol (clihe, srvhe) with clihe defined in Figure 3 and srvhe defined in
Figure 13 constructs resource SEC||KEY from AUTH||KEY with respect to (dlv, dlv)
and a simulator sim as defined in Figure 14. More specifically, for any distinguisher D
and any adversary A,

∆D
(

cliAhesrvB
hedlvEAUTH||KEY, dlvESEC||KEY

)
= 0 (5)

and
∆D

(
cliAhesrvB

heAUTH||KEY, simESEC||KEY
)
≤ AdvIND-CPA

HE (A) (6)

Converter sim

Initalize
1 : Qcli,Qsrv ← empty FIFO queues
2 : Output getkey→ KEY
3 : ek ← KEY

Interface out
1 : Input: dlv-vec

2 : QA ← Qcli
3 : Output dlv-vec→ SEC
4 : Input: dlv-val

5 : QB ← Qsrv
6 : Output dlv-val→ SEC

Interface in
1 : Input: (f, ℓ1, . . . , ℓn)
2 : for i = 1, . . . , n do

3 : ci ←$ {0, 1}ψ(ℓi)

4 : g ← parse(HE.Evalfek(·))
5 : Qcli.enqueue((g, #»c ))
6 : Output (f, #»c ) at out
7 : Input: ℓ⋆

8 : (g, #»c )← Qcli.dequeue()
9 : c⋆ ← g( #»c )

10 : Qsrv.enqueue(c⋆)
11 : Output c⋆ at out

Figure 14: A simulator converter sim attached to interface E of channel SEC.

Proof. We will demonstrate the security condition (6) by analyzing the input-output
behaviors of both systems involved. For this analysis, similar to the proof of Theorem 2,
we will temporarily disable the interface in of the converter clihe.

- On input (snd, f, #»m) at interface A:

– In the system cliAhesrvB
heAUTH||KEY, the converter clihe encrypts the message

components to obtain ciphertexts ci = HE.Encsk(mi) for i ∈ [n]. The converter
then outputs (snd, f, #»c ) at A, which sends (f, #»c ) to the channel AUTH.
Consequently, (f, #»c ) is delivered at E.

– In the system simESEC||KEY, the lengths of the messages ℓ1, . . . , ℓn are
provided at E. The simulator converter sim samples a vector of bitstrings #»c
such that |ci| = ψ(ℓi) for i ∈ [n], where ψ : N → N maps plaintext length to
ciphertext length. Then (f, #»c ) is output to E via the out interface of sim.

- On input (f, #»m) at interface B:

– In the system cliAhesrvB
heAUTH||KEY, when (f, #»c ) is received from AUTH,

the converter srvhe parses the evaluation algorithm HE.Evalfek( #»c ) as a circuit
g. Then B evaluates c⋆ = g( #»c ) = HE.Evalfek( #»c ) and outputs c⋆ at E.
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– In the system simESEC||KEY, upon receiving the length of the evaluated
message ℓ⋆, the simulator sim extracts (g, #»c ) from the simulated client queue
Qcli, where #»c is a vector of random bitstrings sampled and g is the parsed
circuit from HE.Evalfek(·). The simulator then evaluates c⋆ = g( #»c ) and adds c⋆
to the simulated server queue Qsrv. Finally, c⋆ is output at E.

- On input dlv-vec at interface E:

– In the system cliAhesrvB
heAUTH||KEY, the tuple (f, #»c ) is extracted from the

client queue QA and delivered at interface B. Since srvhe is connected to B, the
interface B parses and evaluates g( #»c ) = HE.Evalfek( #»c ).

– In the system simESEC||KEY, the simulated client queue Qcli contains (g, #»c ),
where #»c is a vector of random bitstrings sampled at the simulator sim’s interface
in and g is the circuit parsed from HE.Eval. The simulator copies the contents
of Qcli to the actual client queue QA. It then outputs dlv-vec at interface E to
deliver the tuple (g, #»c ) at interface B. Subsequently, the interface B evaluates
g( #»c ) = HE.Evalfek( #»c ).

- On input dlv-val at interface E:

– In the system cliAhesrvB
heAUTH||KEY, the element c⋆ is extracted from the

server queue QB and delivered at interface A. This c⋆ is the evaluated result
output by the converter srvhe, i.e., c⋆ = g( #»c ) = HE.Evalfek( #»c ), where (f, #»c )
was from the queue QA.

– In the system simESEC||KEY, the simulated server queue Qsrv contains c⋆,
where c⋆ = g( #»c ) = HE.Evalfek( #»c ) for (g, #»c ) from the simulated client queue
Qcli. The simulator outputs dlv-val at interface E to deliver c⋆ at interface A.

We observe that the input-output behaviors of the two systems differ only in the values
of #»c and c⋆. As in the proof of Theorem 2, if there exists a distinguisher D that can
distinguish between the two systems, we can construct an IND-CPA adversary from D.

We now establish the availability condition (5) assuming the interface in of clihe is
enabled. In system cliAhesrvB

hedlvEAUTH||KEY, when the converter dlv is connected to
interface E, any output from the channel INS triggers the inputs dlv-vec and dlv-val.
Notably, any (f, #»c ) input into AUTH from clihe is promptly delivered to B. Likewise,
any c⋆ input into AUTH from B is immediately conveyed to clihe. Consequently, if
the i-th input at interface A is (snd, f, #»m), then the i-th output back at interface A is
m⋆ = f(m1,m2, . . . ,mn), as ensured by the correctness of the HE scheme defined in
Definition 3. It is also evident that the same input-output behavior applies to the system
dlvESEC||KEY.

Remark 4 (Ciphertext Integrity). Note that in Line 2 of the converter srvhe in Figure 13, the
converter parses the evaluation algorithm HE.Eval as another circuit g : EK×Cn → C. We
know that the channel AUTH guarantees the the honest evaluation of g. This mean this
composition gurantees c⋆ = HE.Evalfek( #»c ) where (f, #»c ) is sent from the client, capturing
the homomorphic INT-CTXT security as discussed in [JY14].

8 Future Works

8.1 Analysis in Public-Key Setting:
In this work, we study Homomorphic Encryption (HE) and Homomorphic Authentication
(HA) as symmetric primitives, which are more often used in real-world applications like
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cloud computing. Initially in [C+09], HE is defined as a public-key primitive where
encryption is performed using a public key. However, it is essential to also examine these
primitives within a public-key framework to gain insights into constructing Homomorphic
Secure Communication (HSC) in both symmetric and public-key settings. This research
specifically investigates the integration of HE and HA. In a public-key context, this should
involve examining the combination of HE and Homomorphic Signature (HS) instead.

Specifically, in Section 6.2, we define the interface B, representing the server, to
consistently compute f( #»m) regardless of whether the input originates from the client A or
an adversary E, since the server B cannot verify the authenticity of #»m. Conversely, with
HS, the authenticity of messages #»m can be publicly verified. Thus, when a converter clihs
is attached, the interface B should be capable of rejecting evaluations of messages that do
not originate from A.

Furthermore, several studies, including [Via23, MN24], have explored the integration
of HE with succinct non-interactive argument of knowledge (SNARK) to verifiably control
the evaluation algorithm. The construction presented in [MN24] follows the Naor-Yung
double encryption paradigm, aiming to build a CCA2-secure [BDJR97] FHE. It is worth
investigating whether this construction has achieved, or can be extended to achieve,
IND-CCA3 security [Shr04], which is equivalent to AE security. At a high level, the
channel AUTH should be constructible with a SNARK from INS, and attaching the
protocol (clihe, srvhe) should similarly enable the construction of a secure channel.

8.2 Distribution of Circuit and Labels
In channel INS, the circuit f is part of the communication between the client A and
the server B. Alternatively, f may be pre-shared between the client and the server,
thus not included in the message transmission. Consequently, we should consider the
channels ĈONF, ÂUTH, and ŜEC, where only #»m and m⋆ are transmitted. To address
this, we introduce an additional resource CIRC, which ensures both confidentiality and
authenticity, to distribute the circuit f at interfaces A and B, similar to the resource KEY
depicted in Figure 2. For confidentiality, if we have

INS||KEY||CIRC (clihe,srvhe)−→ ĈONF||KEY

then the scheme HE should achieve circuit privacy as introduced in [C+09].
For authenticity, note that the channel ÂUTH is equivalent to the channel AUTH

defined in Figure 10, as the adversary can only deliver the circuit f to the server. In this
scenario, we need to consider a different protocol, (clihe, srvhe), and a simulator, sim, since
the adversary E can no longer inject a different circuit f ′ into the channel INS. Then the
channel AUTH′ should capture the equivalent security as EUF-CMA.

Additionally, observe that in the protocol (cliha, srvha), we transmit #»

λ as part of the
message. The purpose of this setting is to align with the EUF-CMA game. However, in
practice, the labels #»

λ do not need to be transmitted, similar to the circuit. This is because
the server does not require #»

λ for evaluation, and the client can verify by retrieving the
labels locally. Such a protocol attached to AUTH captures a slightly weaker notion than
EUF-CMA but is still practical in real-world applications.

8.3 More on Circuit Integrity
In Section 6, we discuss circuit integrity by focusing on the correctness of the evaluated
result. We refer to this form of security as Type-I Circuit Security. However, there is a
special case where a different circuit f ′( #»m′) = f( #»m). For example, if #»m′ = ( #»m,

#»0 ) and f ′ is
obtained from f by adding extra add gates, or if #»m′ = ( #»m,

#»1 ) and f ′ is derived from f by
adding extra mult gates. According to [CF13, JY14], such a forgery with adversary-chosen
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circuit f is not considered a win since a tag τ⋆ = HE.Evalfek( #»τ ) that authenticates m⋆ as
output of P = (f, #»

λ ) may also authenticate #»m′ as the output of P = (f, #»

λ ′).
In this case, an adversary might inject an alternative circuit (f ′, #»m′) to produce a

correctly evaluated result m⋆ for the server. Although the result remains correct, the
computation could be more complex and time-consuming, potentially increasing the client’s
costs if computation time is correlated with cost. Therefore, ensuring that the exact same
circuit is evaluated, particularly when the circuit has not been pre-shared, is also important.
We refer to this security property as Type-II Circuit Security.

In [GW13], Gennaro and Wichs discussed the construction of a hash tree gH for a
circuit g, which is a Merkle Tree mirroring the circuit’s structure, but replaces internal
gates with a collision-resistant hash function H. Specifically, to authenticate a message m
under a label λ, an input ν to gH is computed as ν = FK(λ), where FK(·) is a keyed PRF,
and ν is included as part of the tag τ . This approach intuitively supports Type-II circuit
integrity because adding the inputs or gates to the circuit would necessitate access to the
key K to generate valid inputs for gH .

Nonetheless, an adversary could still alter the gates within the circuit (e.g., changing
an add gate to a mult gate), thereby compromising Type-I circuit integrity, as illustrated
in Case 1 of the proof of Theorem 3. Loftus et al., in [LMSV12], represent the message
space as a ring (M,+,×) and the ciphertext space as a ring (C,⊕,⊗). By incorporating
gate information into the labels when computing the inputs, such as ν = FK(+, λ) or
ν = FK(×, λ), this issue might be mitigated.

Furthermore, partial evaluation of g′ and selection of a subvector of #»

λ may still allow
the violation of Type-I circuit integrity, akin to Case 4 in the proof of Theorem 3. An
enhancement could involve incorporating circuit information when computing each input
ν, such as ν = FK(g, λ). If an adversary injects a different circuit g′, each input hash
ν′ = FK(g′, λ) will differ. Consequently, the root hash g′H(ν1, . . . , νn) injected by the
adversary will differ from the reconstructed root hash g′H(ν′

1, . . . , ν
′
n), allowing for the

detection of such circuit injections. We propose to investigate and design a designated-
circuit HA scheme to address this issue in future work.

9 Conclusion
In this study, we revisited homomorphic encryption (HE) and homomorphic authenticators
(HA) from a constructive perspective. This approach enabled us to identify the fundamental
security goals that HE and HA should achieve without relying on complex game-based
notions. By comparing these notions with our security channels, we demonstrated whether
the game-based notions achieved the desired security or not.

Additionally, we analyzed the serial composition of HE and HA, corresponding to
the Encrypt-then-MAC (EtM) composition. This analysis allowed us to formally demon-
strate that EtM, as a generic composition, can also be used to construct homomorphic
authenticated encryption (HAE) in the presence of message evaluation.

Our work highlights the importance of composable security in the design of crypto-
graphic primitives. By treating HE and HA as building blocks, we illustrated how secure
communication channels can be constructed, a process that is less clear with game-based
notions. We also provide insights into future work, including analysis in the public-key
setting with the composition of homomorphic encryption and homomorphic signatures
(HS), aiming to construct homomorphic secure communication (HSC) in both symmetric
and public-key settings.

In conclusion, this research bridges the gap between existing formalism on the composi-
tion property of homomorphic cryptographic primitives, offering insights into future work
on constructing homomorphic secure communication through the composition of these
primitives.
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