Automated Software Vulnerability Static Code Analysis Using
Generative Pre-Trained Transformer Models

Elijah Pelofske*!, Vincent Urias!, and Lorie M. Liebrock?!

!Sandia National Laboratories
2New Mexico Cybersecurity Center of Excellence, New Mexico Tech

Abstract

Generative Pre-Trained Transformer models have been shown to be surprisingly effective at a variety of
natural language processing tasks — including generating computer code. However, in general GPT models
have been shown to not be incredibly effective at handling specific computational tasks (such as evaluating
mathematical functions). In this study, we evaluate the effectiveness of open source GPT models, with no fine-
tuning, and with context introduced by the langchain and localGPT Large Language Model (LLM) framework,
for the task of automatic identification of the presence of vulnerable code syntax (specifically targeting C
and C++ source code). This task is evaluated on a selection of 36 source code examples from the NIST SARD
dataset, which are specifically curated to not contain natural English that indicates the presence, or lack thereof,
of a particular vulnerability (including the removal of all source code comments). The NIST SARD source code
dataset contains identified vulnerable lines of source code that are examples of one out of the 839 distinct
Common Weakness Enumerations (CWE), allowing for exact quantification of the GPT output classification
error rate. A total of 5 GPT models are evaluated, using 10 different inference temperatures and 100 repetitions
at each setting, resulting in 5,000 GPT queries per vulnerable source code analyzed. Ultimately, we find that
the open source GPT models that we evaluated are not suitable for fully automated vulnerability scanning
because the false positive and false negative rates are too high to likely be useful in practice. However, we do
find that the GPT models perform surprisingly well at automated vulnerability detection for some of the test
cases, in particular surpassing random sampling (for some GPT models and inference temperatures), and being
able to identify the exact lines of code that are vulnerable albeit at a low success rate. The best performing
GPT model result found was Llama-2-70b-chat-hf with inference temperature of 0.1 applied to NIST SARD
test case 149165 (which is an example of a buffer overflow vulnerability), which had a binary classification recall
score of 1.0 and a precision of 1.0 for correctly and uniquely identifying the vulnerable line of code and the
correct CWE number. Additionally, the GPT models are able to, with a rate quantifiably better than random
sampling, identify the specific line of source that contains the identified CWE for many of the NIST SARD test
cases.

1 Introduction

Generative Pre-Trained Transformer (GPT) models, built using the attention architecture [1], have been shown
to be surprisingly effective at a variety of information processing tasks including computer code generation and
natural language text summarization [2H5]. GPT models are intended to work very well with language, and are
typically referred to as a class of Large Language Model (LLM). Notably however, GPT models can, in certain
settings, also perform algorithmic tasks such as learning the greatest greatest common divisor algorithm [6]. The
surprising capability of GPT models to perform well at tasks involving computer code leads to the natural question
of whether GPT models could be used for determine security properties of static software samples. In this study,
we examine whether current open source GPT models can be used to correctly identify software vulnerabilities and
weaknesses in source code correctly.

The evaluation of our study is based on a set of 36 labeled examples from the highly credible NIST SARD dataset
[7]. Each source code example in this dataset is meticulously mapped to the Common Weakness Enumeration
(CWE) framework [8 9], providing a solid foundation for our research on software vulnerability detection. The
Common Weakness Enumeration (CWE) is a categorization of known types of software weaknesses, hardware
weaknesses, and software vulnerabilities.

*E-mail: elijah.pelofske@protonmail.com

Static code vulnerability scanners are an important field of study because they speed up the process of identifying
and thus patching software and even potentially hardware vulnerabilities and flaws that cause security problems
in computer systems. There are a wide variety of static code analysis scanners that have been developed, usually
focusing on specific domains or specific languages [L0H18|. A challenge with static vulnerability analysis is that the
outputs typically have high false positive rates because the tools usually use string pattern matching to identify
known syntax representing an instance of a specific code flaw. The main advantage of static code analysis is that
it is much faster and easier to apply than dynamic program analysis.

Ref. [19] studies the task of repairing CWE examples using GPT models. Ref. [20] examined source code
vulnerability detection using several code language models (namely BERT variants) on a large dataset of software
examples.

Our study introduces novel methods compared to existing research, particularly in the use of highly curated
datasets that include the exact vulnerable line of source code. The structured GPT prompt we employ with these
GPT models enables the automated extraction of vulnerability detection data from the output, facilitating large-
scale, repeatable, accuracy analysis. This dataset combined with structured JSON prompting and parsing allows
us to fully leverage the capabilities of GPT models for automated vulnerability detection, requiring no manual
processing of the GPT output. In total, we generate and process 100-10-36-5 = 180000 discrete GPT text outputs
(each of these being a separate, independent, and complete text inference computations. All of the GPT model
computations are performed locally, on a local GPU compute server, using open source GPT models.

] Model name \ Reference(s) H Context Length \ Architecture type \ Model Size ‘
Llama-2-70b-chat-hf [5] 4096 Tokens llama 70B params
zephyr-7b-alpha [21] 32768 Tokens mistral 7.24B params
zephyr-7b-beta [21} 22 32768 Tokens mistral 7.24B params
Mistral-7B-Instruct-vO0.1 123 32768 Tokens mistral 7.24B params
Turdus [24] 32768 Tokens mistral 7.24B params

Table 1: Summary of the 6 Generative Pre-trained Transformers models used in this study. Here B denotes the
order of magnitude billion.

2 Methods

The five open-source GPT models used in this study are summarized in Table [I} These GPT models were selected
for their general performance among available GPT models - and all of these models can generate and parse
computer code. Although a large number of different GPT models could be utilized for this study - due to the high
computation time required to perform these experiments, a small number of GPT models were selected. These
GPT models are from the huggingface GPT repository [25] and the GPT models are run using the Python3 modules
pytorch [26] and transformers, using a local compute server that has four Nvidia A100 GPU’s [27] (each with 82
Gigabytes of memory), and CUDA Version 12.4.

GPT models can be used to predict the most likely token, given the previous N tokens (where N is the context
window for current GPT models on the order of 4096 — 32768). When used in this manner, the text produced by
the GPT models is deterministic, given that the previous tokens are the same. However, GPT models can learn and
generate probability distributions of the most likely subsequent tokens - and we can add stochasticity in the text
generation process by sampling from that distribution, weighted by their respective probabilities. The parameter
that controls this sampling is known as temperature. This stochastic text generation is part of what makes generative
machine learning models able to produce a wide variety of outputs. In the context of investigating the usage of
these models as code-scanning tools, these models will only perform somewhat well at this task. Moreover, we need
outputs to vary somewhat to determine the possible range of characteristics of the output since the text generation
process of GPT models can be stochastic. Therefore, we vary the text generation inference temperature from 0.1
to 1.0 in increments of 0.1. The huggingface [25] python 3 module used to execute this GPT model inference allows
temperatures up to 100, where 0 denotes deterministic output (with no sampling), and 100 denotes closer to uniform
token sampling. We choose relatively low temperatures because we need the output to conform to parsable data
structures. Critically, because the outputs vary significantly, we view this task as a stochastic sampling problem,
where we characterize the proportion of samples with specific required properties (the most basic being whether
the data could be automatically parsed). 100 samples (GPT outputs) are generated for each inference temperature,
GPT model, and source code test case.

NIST Number
SARD CWE id | CWE name Language | of Lines of
Test Case Source Code
1792 CWE-79 Imprope'r Neutralization of Input During Web Page C 924
Generation
500843 CWE-476 | NULL Pointer Dereference CH++ 11
1779 CWE-463 | Deletion of Data Structure Sentinel C 10
1645 CWE-20 | Improper Input Validation C 21
149165 CWE-121 | Stack-based Buffer Overflow C 35
2015 CWE-329 | Generation of Predictable IV with CBC Mode C 12
500757 CWE-787 | Out-of-bounds Write C++ 7
149135 CWE-489 | Active Debug Code C 35
149203 CWE-416 | Use After Free C 30
149111 CWE-134 | Use of Externally-Controlled Format String C 18
149185 CWE-391 | Unchecked Error Condition C 11
1494 CWE-T4 Improper Neutralization of Special Elements in Output ot 19
Used by a Downstream Component
149179 CWE-401 | Missing Release of Memory after Effective Lifetime C 17
149107 CWE-415 | Double Free C 55
148871 CWE-188 | Reliance on Data/Memory Layout C 7
149143 CWE-120 | Buffer Copy without Checking Size of Input C 13
149103 CWE-367 | Time-of-check Time-of-use (TOCTOU) Race Condition C 86
1501 CWE-822 | Untrusted Pointer Dereference C++ 17
149199 CWE-412 | Unrestricted Externally Accessible Lock C 17
149183 CWE-468 | Incorrect Pointer Scaling C 10
149085 CWE-244 | Improper Clearing of Heap Memory Before Release C 37
2079 CWE-464 | Addition of Data Structure Sentinel C 14
72 CWE-248 | Uncaught Exception C++ 25
2046 CWE-259 | Use of Hard-coded Password C++ 48
2060 CWE-457 | Use of Uninitialized Variable C++ 20
1089 CWE-89 Improper Neutralization of Special Elements used in an it 34
SQL Command
114 CWE-532 | Insertion of Sensitive Information into Log File C 16
20 CWE-118 | Incorrect Access of Indexable Resource C 10
1887 CWE-22 Improper Limitation of a Pathname to a Restricted Di- C 48
rectory
313 CWE-119 Improper Restriction of Operations within the Bounds C 12
of a Memory Buffer
2016 CWE-378 | Creation of Temporary File With Insecure Permissions C 12
149125 CWE-122 | Heap-based Buffer Overflow C 53
501035 CWE-563 | Assignment to Variable without Use C++ 11
1852 CWE-170 | Improper Null Termination C 13
149163 CWE-99 | Improper Control of Resource Identifiers C 23
149241 CWE-TS Improper Neutralization of Special Elements used in an C Al
OS Command

Table 2: NIST SARD test cases that are used in this study. Each of these target test functions has exactly one line
of source code that has been identified as being an example of a CWE. The number of lines of source code field is
computed by the absolute number of lines of code syntax from the original dataset, not including lines containing
only whitespace, and with all comments having been removed, and with no manual formatting (for example, curly
brace placement).

To ground the GPT model output in the definitions of the Common Weakness Enumeration (CWE) framework,
we utilize a technique known as retrieval augmented generation [28]. Specifically, we use a codebase known as

localGPT [29] that uses langchain [30] to augment the capabilities of GPT models by using additional word
embeddings of reference documents (not as part of the model pre-training). Specifically, the source documents are
split into character maximum chunk sizes of 1000, with chunk overlap of 200 characters.

The local GPT prompt template is a combination of context and then the user prompt question. No chat history
was used, meaning that each text generation call is independent. The prompt construction uses a system prompt
[29] followed subsequently by the context of the generated word embeddings and then the user prompt. The system
prompt used in this study, which is from a version of the localGPT codebase [29)], is given below:

You are a helpful assistant, you will use the provided context to answer user questions. Read the given
context before answering questions and think step by step. If you can not answer a user question based
on the provided context, inform the user. Do not use any other information for answering user. Provide a
detailed answer to the question.

The reference documents that are used to provide context for the GPT model inference calls are the following:
one text file for each of the 839 CWEs that are currently defined, where the text file contains the CWE number,
the name of the software weakness, and the complete description of the CWE from Mitre E Next is a text file with
a brief definition of the CWE framework. And lastly, two books (PDF files of the books) on software, security, and
vulnerabilities (specifically for the C family languages) |31} [32].

Table [2] outlines the exact code test cases that are analyzed in this study. Note that NIST SARD test case
148871 is the vulnerable code that was tracked by CVE-2009-3549, and test case 149199 is an example of an
implementation of CVE-2002-1869. All of the selected NIST SARD test cases have a few specific properties that
we manually selected these for. First, each test case is an example of a different CWE, which makes the results
representative of a variety of different possible software weaknesses. Second, each test case contains exactly one
line of source code that is an example of a particular CWE; this simplifies the parsing and accuracy metrics. Third,
each test case contains no variable names, text, or function names that indicate whether the source code contains
a vulnerability or not. In cases where there is a string or function name that indicates what type of example the
source code is, we manually remove, or change, that string before parsing by the GPT models. Fourth, for no test
cases does the vulnerable line of code occur more than once in the entire source code; this eliminates ambiguity for
measuring the accuracy rate of the GPT models for identifying specific lines of source code. Any comments in the
source code examples are removed before parsing by the GPT models so as to not give the GPT models natural
language that describes the test cases.

Appendix [B] shows the exact source code for 10 of these NIST SARD test cases. The phrase vulnerable line
of source will be used throughout the text to refer to the exact syntax of the vulnerable line of code — not line
number. Line numbers can be somewhat ambiguous, especially for these C syntax test cases, and moreover having
the GPT model output the exact source code makes checking the validity of that output much clearer.

The exact prompt that is used for all of the GPT models is given in the text box below. Note the use of the
triple backticks to delineate where the source code is, and where the JSON datastructure is. The use of the triple
backticks in the prompt allows the GPT outputs to be automatically parsed by using the triple backticks, and
possibly the markdown code identifier, as the delimiter. Note that this triple backtick parsing does not always
work, in particular if the JSON is not correctly formatted or the triple backticks are not correctly used in the GPT
output. The prompt is intended to be very source code agnostic; there are no details given of the source code in the
prompt. The prompt is also intended to not bias the output towards specifying a specific number of vulnerabilities.
In the case of the 36 NIST SARD test cases used in this study, the number of CWEs is always exactly 1, however
the goal is for this method to more general than only identifying a single CWE and moreover we want the GPT
model to be able to fail in a variety of ways in order to rigorously evaluate its accuracy (in this case, identifying
more CWESs than are present would constitute a high false positive rate).

Thttps://cwe.mitre.org

https://cwe.mitre.org

I am seeking assistance to analyze provided source code for the purpose of detecting potential Common
Weakness Enumeration (CWE) vulnerabilities. The key requirement is for the analysis results to be exclu-
sively formatted in JSON enclosed by triple backticks, listing only the CWEs that are detected as 'Present’
in the code, thereby omitting any 'Not Present’ entries for a cleaner output. The exact line, or lines, of
code which have this CWE vulnerability needs to be specified in the returned JSON structure, along with
a succinct description of what the vulnerability category is for this source code. The JSON output should
enumerate each identified CWE with its identification number, the exact source code syntax that causes the
CWE, and a description of the vulnerability, as shown in the example structure below:

“Tjson

{"findings": [

{

"CWE_Number": "CWE-XX",

"Status": "Present",

"Source_Code": "Vulnerable source code syntax",

"Description:" "Summary of the category of software vulnerability,
and why this code is vulnerable"

3,

{

"CWE_Number": "CWE-YY",

"Status": "Present",

"Source_Code": "Vulnerable source code syntax",

"Description:" "Summary of the category of software vulnerability,
and why this code is vulnerable"

b

]

3

Source code:

—-Source Code—-

Re-check that your output contains the required JSON data-structure before emitting text.

The actual GPT prompt is generated by replacing the vulnerable source code in place of the text —-Source
Code--.

The usage of requesting the vulnerable code syntax and the description of the vulnerability has two uses:

1. Ground the GPT response to only respond based on the provided source code
2. To check whether the provided syntax is correct. Because of potential ambiguity with line numbers, only
exact syntax string matches are checked for, not integer line number responses.

The description field is not parsed for accuracy or correctness, but the text contained in that field is an interesting
indicator of how correct (or incorrect) the GPT output is. For this reason, when reporting results (in Section ,
we provide specific instances of GPT outputs, including the description fields.

Some of the raw GPT output includes characters that are not ascii and can cause issues with saving and
parsing the output. Therefore, the raw GPT output is encoded as utf-8 where character parsing errors are ignored
and decoded into a parsable string using utf-8. The field in the JSON output Source_Code has repeated excess
whitespace removed, as is done with the reference vulnerable line of source code from each of the NIST SARD
samples; this ensures that when the string equality check is performed, the only relevant characteristic with respect
to whitespace in the string that is being checked is that the whitespace is delineating characters (for example,
repeated spaces, tabs, newlines do not impact this accuracy check).

The GPT output is (attempted to be) parsed in several stages, as follows:

1. First, if there are triple backtick delimiters in the output, then the output is split at those characters and the
first enclosed set of strings is attempted to be parsed as a valid JSON structure. Interestingly, occasionally
the GPT model will add in markdown code identifiers immediately after the triple backticks - in these cases
we automatically check for these and remove them if they occur so that the structure can be parsed. These
markdown identifiers are given in Appendix [A]

2. If the previous step failed, then we attempt an unstructured JSON parsing approach, where output strings
are incrementally deleted from the beginning and from the end until a JSON structure can be parsed (or,
not).

Using this parsing, any valid JSON strings that are produced as part of the GPT output will be automatically
parsed. This allows this study to perform a systematic evaluation of the accuracy rates of the GPT inference output.
This type of data parsing is also highly scalable to a large number of static code samples - and importantly does
not require any manual input, tuning, or processing. In other words, this analysis pipeline is entirely automated.

2.1 CWE Identification Accuracy Measures

This section lists several measures for quantifying the success rate of the GPT models for identifying known
vulnerable source code.
The first four metrics that are checked are defined as follows:

1. Count of parsable GPT outputs (being able to extract a JSON structure and parse it into Python, with not
necessarily correct JSON fields. For example a JSON with an empty list is a valid parse. However, this step
does require that there is at least one JSON key, which is correctly named as findings. The subsequent
value is allowed to be empty or have any sort of incorrect structure (which could denote that the model is
returning no found CWEs) but we need at least this key to validate that a JSON datastructure was parsed.

2. The CWE field is labeled as Present is correct (meaning, the correct CW number is listed), but the identified
source code is not correct (meaning, it is not the labeled line of code that has the vulnerability) and does not
contain the vulnerable line of code either.

3. The CWE is correct and identified as Present and the vulnerable code is contained within the identified code
syntax but also includes other lines of code from the test case that are not themselves vulnerable as defined
by the NIST SARD dataset. These instances can be interpreted as being partially correct.

4. Count of fully correct instances where the CWE is correct (and identified as Present) and the identified line
of code is correctly identified as the vulnerable code.

This last metric (metric number 4) is the most important accuracy measure because it counts out of the 1,000
GPT outputs how many correctly performed the computation that we are attempting to prompt the GPT model
to perform.

For none of these four metrics is the Description field, or any other additional field in the JSON, parsed for
correctness or even considered. All of these measures are integers, where the larger the integer is the better the
GPT model performed, but the absolute correct metric is measure 4. Note that the quantities measured in metrics
2, 3, and 4 (in the immediately preceding list of measures) are always disjoint; there are no instances that are
counted in two or more of these measures. An important, and informative, aspect of these metrics is finding cases
where the GPT output correctly identified the vulnerable line of code. However, since line numbers of the code
are not checked or requested in the prompt (since they are somewhat ambiguously defined especially for C-family
languages), a potential source of error in this quantification is if there exist multiple lines of code with the same
syntax, but only one is vulnerable. This does happen, but only in one of the test cases. This is NIST SARD
test case 149107, which is CWE-415 (Double Free) which by its definition contains two lines of memory free calls.
Therefore, for this one test instance the identification of the vulnerable line of code is ambiguous, but for all others
the unique identification is valid and correct.

Another set of metrics that are measured are binary classification error rates. This is computed by considering
the GPT output for identified CWEs as a vector of True or False entries, with length equal to the number of valid
CWEs (which is currently 839). This measure disregards both the requested Source_Code and Description fields
(and in particular does not consider whether these entries even exist in the JSON structure. For all CWE_Number
entries (that identifies a valid CWE number), and whose Status is exactly Present (allowing for different capi-
talizations), that is measured as a binary state of True. All other entries (including instances of identified CWE
numbers that are not valid) are measured as binary classifications of False. JSON dictionaries that are completely
empty are a valid GPT output that is identifying no CWEs (meaning a binary classification vector of length 839

that is all False entries). These measures are only computed on the outputs that can be parsed; all outputs that can
not be parsed are not counted towards any classification accuracyﬂ These binary classification measures allow rates
of false negatives, false positives, true negatives, and true positives to be measured, and then standard machine
learning classification measures such as recall and precision can thus be computed. Precision is intuitively defined
as the classifier (which in this case is a GPT language model) being able to not label as positive a sample that is
negative. Recall is intuitively defined as the classifier (which in this case is a GPT language model) being able to
find all of the positive samples. These metrics being 0 corresponds to the highest possible error rate, and 1 is the
best measure these metrics can be.

All parsing steps require the field names in the JSON datastructure to be correct (correct spelling, no ancillary
text), but differing capitalizations are always allowed.

3 Results

For each of the 36 NIST SARD test cases in Table [2] a total of 5,000 inference calls are performed using the
methods described in Section [2| for the 5 different open-sourced GPT models. The accuracy measures from these
outputs are then summarized using several high-level metrics. Tables|3|and 4] present two different accuracy measure
summaries. Table [3| counts how many of the GPT outputs were parsable and correctly identified the CWE number
and vulnerable line of code. Table [] shows the binary classification measures recall and precision. Table [f] reports
the absolute integer count of how many of the GPT outputs correctly identified the single line of vulnerable source
code; importantly, these counts are independent of correct identification of the relevant CWE. These counts, as
a proportion out of 1000 should be compared against uniform random sampling of the total lines of source code
(shown in Table . Table [5{shows that the correct identification of vulnerable lines of code is much higher than the
correct identification of the CWE number and the vulnerable line of source code, as measured in Table 3] Notably
in Table [5] only for a few of the NIST SARD test cases is the count of ever correctly identifying the syntax of
vulnerable line of source code zero across all GPT models and settings; namely test cases 149203, 148871, and 2046.
For some of the test cases, the proportion of correctly identified vulnerable line of source code is very high. The
test cases where the vulnerable line of source was not uniquely identified in Table [5| does not necessarily mean that
the correct CWE identification was always 0 (when analyzing strictly whether the identified CWE was correct) -
an example of this is test case 2046.

Table [] shows that for the code test cases where the accuracy is 0, the 5 different language models do not
perform uniformly bad — for some of the models the accuracy is always 0 for a given test case, but then when
analyzed with a different model the accuracy is non-zero (an example of this is NIST SARD test case 500757).
This means that some of the GPT models do perform better than other GPT models for specific test cases. And
moreover, there is not consistently a single model that always outperforms the other models.

Table [6] shows the best performing GPT model and inference temperature in terms of recall and precision
measures. Finally, Table [7] counts the most frequently identified false positives. The best performing GPT model
and inference temperature shows that there is no specific model, or temperature setting, that consistently performs
the best - and in in particular, every one of the tested GPT models was the best performer for at least one of the
CWE test cases. This shows that this task does require diversity of the model architecture, and very likely the
type of text on which the models were trained. Lastly, even with these best performing GPT models and inference
temperatures some of the CWE test cases were never correctly identified, meaning that the accuracy rates for all
GPT models and settings were always 0 - that happened for 11 out of 36 of the test cases as denoted by asterisks
in Table [6l

Section [3.1] then gives several examples of correct JSON output from the GPT models where the vulnerable line
of source code was identified, and where the description is correct in some cases and incorrect in other cases.

Table [7] quantifies the exact counts of false positive CWE id occurrences for the full matrix of the 5 GPT models
and NIST SARD test cases. Specifically, for each NIST SARD test case and GPT model, Table [7]reports the most
frequently mis-identified CWE number. Table [7| demonstrates two important trends. First, the proportion of false
positives is very high, and this is consistent across the different GPT models. Second, for most test cases and GPT
models the distribution of incorrect CWE ids is not uniformly distributed across the possible CWE numbers - it is
heavily biased towards a few specific CWE numbers. For example, Mistral-7B-Instruct-v0.1 shows a clear bias
towards predicting CWE-124 for multiple test cases. Similarly, Llama-2-70b-chat-hf shows a consistent bias for
(incorrectly) predicting CWE-123, and Turdus shows a consistent bias for (incorrectly) predicting CWE-476.

2In the case where a JSON entry contains multiple entries with the same CWE number, that case is treated as the GPT model
having identified that CWE number only once; in other words, repeated entries are ignored. This specifically works for this accuracy
metric of binary classification since all other fields (except Status are ignored.

NIST SARD Test _
Case Llama-2-70b-chat-hf | zephyr-7b-alpha zephyr-Tbh-beta Mistral-7B-Instruct-v0.1 Turdus
1792 (CWE-T79) 937, 1,0, 0 82,0,0,0 66, 0, 0, 1 430, 1,0, 0 540, 0, 0, 3
500843 (CWE-476) 953, 9, 0, 2 66, 4,0, 1 164, 1,0, 1 378,0,0,0 554, 24, 59, 14
1779 (CWE-463) 801, 0, 0, 0 62,0, 0,0 85,0, 0, 0 280, 0,0, 0 413,0,0,0
1645 (CWE-20) 668, 7, 0, 0 278, 4,0, 1 | 147, 15, 4, 4 704, 0, 0, 0 738, 8, 0, 1
149165 (CWE-121) || 927,3,0,325 | 183,9,1,4 | 155, 1, 4, 10 734, 0, 0, 1 597, 0, 0, 0
2015 (CWE-329) 973, 0, 0, 0 118,0,0,0 | 116,0,0,0 345,0,0,0 462, 0,0, 0
500757 (CWE-787) 993, 0, 0, 0 128,1,0,0 | 324,0,0,0 308, 0,0, 0 564, 1, 35, 12
149135 (CWE-489) 800, 0, 0, 0 82,0,0,0 | 74,0,0,0 575, 0, 0, 0 514, 0, 0, 0
149203 (CWE-416) 757, 0, 0, 0 174,1,0,0 | 222,0,0,0 572,0,0,0 532, 4, 0, 0
149111 (CWE-134) 718, 297, 3, 56 286, 1, 0,0 143,0, 0,0 672,7,0,2 531,0,0, 1
149185 (CWE-391) 774, 0,0, 0 286, 0, 0, 0 197,0,0,0 685, 0, 0, 0 531, 0,0, 0
1494 (CWE-74) 986, 0, 0, 0 208, 0, 0, 0 171,0,0,0 689, 1,0, 1 818,0,1,0
149179 (CWE-401) 981, 5,0, 0 207,1,0,0 152, 4,0, 2 599, 0,0, 0 501, 2, 0, 0
149107 (CWE-415) 556, 0, 0, 0 228,0,0,0 65, 0, 0, 0 664, 0, 0, 0 431,0,0,0
148871 (CWE-188) 693, 0, 0, 0 153,0,0,0 | 30,0,0,0 474,0,0,0 389, 0, 0, 0
149143 (CWE-120) || 987, 14, 1,27 | 213,3,4,7 | 157,0,0,0 740, 2, 0, 0 587, 4, 4, 52
149103 (CWE-367) 810, 0, 0, 0 71,0,0,0 | 11,0,0,0 387,0,0,0 647, 0, 0, 0
1501 (CWE-822) 714, 0, 0, 0 168,0,0,0 | 105,0,0,0 695, 0, 0, 0 499, 0,0, 0
149199 (CWE-412) 945, 0, 0, 0 285,0,0,0 | 191,0,0,0 701, 0, 0, 0 435, 1,0,0
149183 (CWE-468) 997, 0, 0, 0 275,0,0,0 280, 0,0, 0 737,0,0,0 638, 0,0, 0
149085 (CWE-244) 918, 0,0, 0 89,0,0,0 151, 0,0, 0 539, 0, 0, 0 677, 0,0, 0
2079 (CWE-464) 984, 0, 0, 0 245,0,0,0 213,0,0,0 568, 0, 0, 0 628,0,1,0
2 (CWE-248) 877,0,0, 0 47,0,0,0 193,0,0,0 286, 0, 0, 0 528, 0,0, 0
2046 (CWE-259) 885, 0, 0, 0 168, 1, 0,0 146, 0, 0, 0 561, 0,0, 0 700, 0, 0, 0
2060 (CWE-457) 545, 0, 0, 0 70,0,0,0 | 110,0,0,0 359, 0,0, 0 559, 0, 0, 0
1089 (CWE-89) 837, 56, 2, 358 | 80, 30,0, 12 | 78, 11, 6, 5 361,0,0,0 357, 125, 10, 3
114 (CWE-532) 987, 0, 0, 0 318,2,0,0 | 186,0,0,0 767, 0, 0, 0 625, 0, 0, 0
0 (CWE-118) 410,0,0,0 158,0,0,0 | 139,0,0,0 424,0,0,0 391, 0, 0, 0
1887 (CWE-22) 948, 1,0, 0 103, 0,0, 0 62,0,0,0 528,0,0,0 577,1,0,0
313 (CWE-119) 991, 0,0, 1 308,i2,0,1 138,0,0,0 616, 72, 0, 4 739, 0,0, 3
2016 (CWE-378) 428, 0,0, 0 95,0,0,0 178,0,0,0 387,0,0,0 487,0,0,0
149125 (CWE-122) 852,0,0,0 220,1,0, 7 87,0, 0, 0 667, 0,0, 0 477,0,1, 3
501035 (CWE-563) 851, 0,0, 0 238,0,0,0 123,0,0,0 502, 0,0, 0 290, 0, 0, 0
1852 (CWE-170) 986, 0, 0, 0 236, 0,0, 0 202, 0,0, 0 683, 0, 0, 0 670, 0, 0, 0
149163 (CWE-99) 803, 0, 0, 0 227,0,0,0 | 95,0,0,0 609, 0, 0, 0 574, 0, 0, 0
149241 (CWE-78) 956, 49, 0, 0 100,7,0,2 | 96,5,0,0 149, 0, 0, 0 323, 15, 1, 4

Table 3: Summary of the four accuracy metrics that take into account the identification, or failure to identify, the
vulnerable source code, for each of the 5 GPT models. The four metrics are given as list of integers in each entry
in the table. These measures, for each entry in the table, are taken from the 10 different inference temperature
settings used for each model, meaning all four quantities reported in each cell are out of distinct 1,000 GPT
outputs. The accuracy metrics are described in Section but briefly the first integer is a count of how many of
the GPT outputs could be parsed into a datastructure, the second integer is that the identified CWE number was
correct (and uniquely identified) but the identified line of code was not correct, the third integer is that the CWE
number was correct (and uniquely identified) but the identified lines of code included the vulnerable line of code
plus additional syntax from the source code, and the fourth integer is a count of how many of the GPT outputs
correctly and uniquely identified both the CWE number and the vulnerable line of code.

3.1 Example Correctly Identified Vulnerable Lines of Code

This section enumerates several parsed JSON outputs from the various GPT models and code test cases. These
outputs were hand selected to be representative of cases that are correct (in the sense that the CWE number is
correctly identified, as is the vulnerable line of source code), but whose description fields are in some cases correct
and in other cases incorrect. Showing explicit examples of the output is intended to primarily show the variability
of the generated Description field, and also to show concretely what successful static code analysis identification

NIST SARD Test ,
Llama-2-70b-chat-hf | zephyr-7b-alpha zephyr-7b-beta Mistral-7B-Instruct-v0.1 Turdus

Case
1792 (CWE-79) 0.022, 0.019 0,0 0.015, 0.01 0.005, 0.01 0.026, 0.021
500843 (CWE-476) 0.012, 0.011 0.119, 0.101 | 0.055, 0.034 0,0 0.224, 0.393
1779 (CWE-463) 0,0 0,0 0,0 0,0 0,0
1645 (CWE-20) 0.225, 0.159 0.062, 0.047 | 0.435, 0.299 0,0 0.008, 0.008
149165 (CWE-121) 0.386, 0.283 0.084, 0.072 0.221, 0.16 0.001, 0.002 0,0
2015 (CWE-329) 0,0 0,0 0.008, 0.006 0,0 0,0
500757 (CWE-787) 0,0 0.023, 0.022 | 0.012, 0.009 0,0 0.091, 0.096
149135 (CWE-489) 0,0 0,0 0,0 0,0 0,0
149203 (CWE-416) 0.0520, 0.016 0.139, 0.07 0.108, 0.046 0.006, 0.007 0.017, 0.012
149111 (CWE-134) 0.545, 0.454 0.011, 0.01 0.007, 0.006 0.041, 0.069 0.002, 0.002
149185 (CWE-391) 0,0 0, 0 0,0 0,0 0,0
1494 (CWE-74) 0,0 0,0 0,0 0.003, 0.005 0.001, 0.001
149179 (CWE-401) 0.005, 0.005 0.024, 0.022 | 0.171, 0.117 0,0 0.011, 0.011
149107 (CWE-415) 0,0 0.018, 0.007 0,0 0.002, 0.001 0,0
148871 (CWE-188) 0,0 0,0 0,0 0,0 0,0
149143 (CWE-120) 0.048, 0.041 0.094, 0.094 0,0 0.009, 0.012 0.123, 0.125
149103 (CWE-367) 0.001, 0 0.014, 0.01 0,0 0,0 0,0
1501 (CWE-822) 0,0 0,0 0,0 0.001, 0.002 0,0
149199 (CWE-412) 0,0 0,0 0,0 0.003, 0.003 0.002, 0.002
149183 (CWE-468) 0,0 0,0 0,0 0,0 0,0
149085 (CWE-244) 0,0 0,0 0,0 0,0 0,0
2079 (CWE-464) 0,0 0,0 0,0 0,0 0.003, 0.003

2 (CWE-248) 0,0 0, 0 0,0 0,0 0,0
2046 (CWE-259) 0.148, 0.039 0.024, 0.016 | 0.027, 0.015 0.005, 0.004 0.001, 0.001
2060 (CWE-457) 0.002, 0.001 0,0 0.009, 0.006 0,0 0.002, 0.002
1989 (CWE-89) 0.602, 0.586 0.725, 0.617 | 0.654, 0.415 0.008, 0.011 0.762, 0.665
114 (CWE-532) 0,0 0.006, 0.006 0,0 0,0 0,0

0 (CWE-118) 0,0 0,0 0,0 0,0 0,0
1887 (CWE-22) 0.657, 0.186 0.01, 0.006 0,0 0,0 0.003, 0.002
313 (CWE-119) 0.001, 0.001 0.019, 0.019 0,0 0.136, 0.16 0.015, 0.015
2016 (CWE-378) 0,0 0,0 0,0 0,0 0,0
149125 (CWE-122) 0.015, 0.005 0.086, 0.053 | 0.149, 0.082 0.004, 0.005 0.038, 0.028
501035 (CWE-563) 0,0 0,0 0,0 0,0 0,0
1852 (CWE-170) 0,0 0,0 0,0 0,0 0,0
149163 (CWE-99) 0,0 0,0 0,0 0.002, 0.002 0,0
149241 (CWE-78) 0.801, 0.439 0.12, 0.074 0.073, 0.04 0,0 0.087, 0.104

Table 4: Recall and Precision binary classification metrics for each of the 5 GPT models, taken as the complete
vector of 100 inference calls for each of the 10 temperature settings. Of these 1,000 GPT outputs, only those that
were able to be parsed contribute to the recall and precision accuracy measures. All quantities are rounded to 3
decimal places.

looks like from the GPT models.

No text changes were made to these GPT outputs except for formatting to fit within the text boxes. Note that
these outputs are specifically examples of text from the enclosed triple backtick fields - any additional prose or
output from the model is not shown.

NIST SARD Test ,
Llama-2-70b-chat-hf | zephyr-7b-alpha | zephyr-7b-beta | Mistral-7B-Instruct-v0.1 Turdus

Case

1792 (CWE-79) 0 9 3 48 120
500843 (CWE-476) 181 8 10 9 60
1779 (CWE-463) 284 3 0 13 13
1645 (CWE-20) 1 23 6 156 157
149165 (CWE-121) 627 101 33 399 274
2015 (CWE-329) 328 12 5 94 46
500757 (CWE-787) 268 89 47 169 98
149135 (CWE-489) 19 6 1 0 17
149203 (CWE-416) 0 0 0 0 0
149111 (CWE-134) 59 224 48 36 281
149185 (CWE-391) 543 94 15) 7
1494 (CWE-74) 950 188 47 155 368
149179 (CWE-401) 0 24 10 0 18
149107 (CWE-415) 0 6 2 2 0
148871 (CWE-188) 0 0 0 0 0
149143 (CWE-120) 686 144 42 26 621
149103 (CWE-367) 0 1 0 0 1
1501 (CWE-822) 3 5 0 0 3
149199 (CWE-412) 0 2 0 0
149183 (CWE-468) 158 162 90 19 151
149085 (CWE-244) 12 21 8 14 6
2079 (CWE-464) 3) 2 0 0
2 (CWE-248) 86 3 6 2 16
2046 (CWE-259) 0 0 0 0 0
2060 (CWE-457) 0 3 1 0 1
1989 (CWE-89) 403 13 6 0 3
114 (CWE-532) 0 2 0 0 0
0 (CWE-118) 3 7 3 1 5
1887 (CWE-22) 0 0 0 0 0
313 (CWE-119) 941 258 59 54 416
2016 (CWE-378) 0 1 0 0 0
149125 (CWE-122) 2 59 3 7 67
501035 (CWE-563) 20 16 2 16 6
1852 (CWE-170) 3 24 8 1 42
149163 (CWE-99) 0 0 0 0 46
149241 (CWE-78) 0 4 0 0 11

Table 5: Count of unique and correct identification of the vulnerable line of source code, but not necessarily
correctly identified CWE number (or being qualified as being present, or not present). The maximum possible
quantity reported in each cell is 1000.

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 500843. Produced from the Turdus GPT model with temperature 0.8. Note that the

generated description is partially correct - CWE-476 is NULL pointer dereference but the description also
mentions Divison-by-Zero which is not correct.

{'findings': [{'CWE_Number': 'CWE-476"',

'Status': 'Present',
'Source_Code': 'first->str();'
'Description': "Summary of the category of software vulnerability (Division By Zero)

due to potential NULL pointer dereference when calling str() on 'first'"}]}

10

NIST SARD Test Case Best perforr.n%ng GPT In?del and infer.epce temperature
(recall, precision, proportion of parseability)
1792 (CWE-79) zephyr-Tb-beta 0.4: (0.125, 0.0667, 0.08)
500843 (CWE-476) Turdus 0.1: (0.319, 0.6, 0.47)
1779 (CWE-463) *

1645 (CWE-20) zephyr-7b-beta 0.4: (0.611, 0.297, 0.18)
149165 (CWE-121) Llama-2-70b-chat-hf 0.1: (1.0, 1.0, 1.0)

2015 (CWE-329) zephyr-7b-beta 0.7: (0.077, 0.048, 0.13)
500757 (CWE-787) Turdus 0.9: (0.183, 0.177, 0.6)

149135 (CWE-489) || *

149203 (CWE-416) zephyr-7b-alpha 0.8: (0.24, 0.12, 0.25)
149111 (CWE-134) Llama-2-70b-chat-hf 0.5: (0.727, 0.675, 0.77)
149185 (CWE-391) || *

1494 (CWE-74) Mistral-7B-Instruct-v0.1 0.9: (0.029, 0.033, 0.67)
149179 (CWE-401) zephyr-7b-beta 0.3: (0.25, 0.167, 0.16)
149107 (CWE-415) zephyr-7b-alpha 0.2: (0.064, 0.029, 0.31)
148871 (CWE-188) *

149143 (CWE-120) Turdus 1.0: (0.237, 0.229, 0.8)
149103 (CWE-367) zephyr-7b-alpha 0.6: (0.111, 0.083, 0.09)

1501 (CWE-822) Mistral-7B-Instruct-v0.1 0.7: (0.014, 0.015, 0.73)
149199 (CWE-412) || Mistral-7B-Instruct-v0.1 0.8: (0.019, 0.02, 0.53)
149183 (CWE-468) || *

149085 (CWE-244) || *

2079 (CWE-464) Turdus 0.9: (0.0159, 0.0175, 0.63)
72 (CWE-248) ®
2046 (CWE-259) Llama-2-70b-chat-hf 0.1: (0.24, 0.0559, 1.0)
2060 (CWE-457) zephyr-7b-beta 0.5: (0.1, 0.0556, 0.1)
1989 (CWE-89) Llama-2-70b-chat-hf 0.1: (1.0, 1.0, 1.0)
114 (CWE-532) zephyr-7b-alpha 0.9: (0.0645, 0.0689, 0.31)
20 (CWE-118) ®
1887 (CWE-22) Llama-2-70b-chat-hf 0.1: (1.0, 0.304, 1.0)
313 (CWE-119) Mistral-7B-Instruct-v0.1 0.1: (0.48, 0.48, 0.77)
2016 (CWE-378) 7

149125 (CWE-122) zephyr-7b-beta 0.5: (0.46, 0.15, 0.13)

501035 (CWE-563) || *
1852 (CWE-170) ®

149163 (CWE-99) Mistral-7B-Instruct-v0.1 0.8: (0.0196, 0.026, 0.51)
149241 (CWE-78) Llama-2-70b-chat-hf 0.1: (1.0, 0.5, 1.0)

Table 6: Best Recall and Precision binary classification metrics (specifically the best mean of the recall and
precision measures), in terms of GPT model and inference temperature, for each CWE NIST SARD test case.
Data presentation is GPT model name: inference temperature (recall, precision, parsing rate). These metrics are
taken from the dataset of 100 inference calls (for the best performing GPT model and inference temperature).
The proportion of the 100 GPT outputs that were able to be parsed and to have a binary vector extracted is also
reported as the third real number. The closer these three metrics are to 1.0, the better the GPT model performed.
The proportion of the outputs that could be parsed are not used for computing the best performing model and
inference temperature, but it is useful to show the parse-ability success rate. These recall and precision metrics are
quantifying the GPT models ability to correctly identify both the CWE number and the vulnerable line of source
code. * denotes that all recall and precision metrics were 0 for all GPT models and settings. Note that there is
occasionally a complication that for all 100 GPT output strings there are no parse-able outputs, but in these cases
there are just no metrics that can be computed. If any of the settings resulted in the same F1 score, the GPT
configuration with higher parsability rates is reported.

11

gifeT SARD. Test {_;}ama—2—70b—chat— zephyr-Tb-alpha zephyr-7b-beta i\ﬁl:ttrrl?cl:\?;)_l Turdus

1792 (CWE-79) CWE-134 452x | CWE-89 29x CWE-20 32x CWE-134 35x CWE-476 164x
500843 (CWE-476) CWE-123 333x | CWE-120 6x CWE-20 77x CWE-124 31x CWE-126 46x

1779 (CWE-463) CWE-123 373x | CWE-121 24x CWE-121 28x CWE-124 64x CWE-126 135x
1645 (CWE-20) CWE-T78 395x CWE-78 221x | CWE-78 51x CWE-124 112x | CWE-78 437x

149165 (CWE-121) CWE-123 274x | CWE-362 66x CWE-125 57x CWE-116 143x | CWE-126 197x
2015 (CWE-329) CWE-327 357x | CWE-382 45x CWE-327 50x CWE-125 47x CWE-404 52x

500757 (CWE-787) CWE-121 474x | CWE-476 39x CWE-20 147x CWE-124 106x | CWE-126 109x
149135 (CWE-489) CWE-123 281x | CWE-20 20x CWE-20 49x CWE-434 76x CWE-89 198x

149203 (CWE-416) CWE-125 327x | CWE-125 85x CWE-125 111x | CWE-129 130x | CWE-476 228x
149111 (CWE-134) CWE-123 253x | CWE-125 76x CWE-125 42x CWE-124 77x CWE-787 88x

149185 (CWE-391) CWE-20 255x CWE-369 34x CWE-20 66x CWE-116 53x CWE-369 201x
1494 (CWE-74) CWE-123 860x | CWE-121 100x | CWE-20 66x CWE-124 137x | CWE-126 320x
149179 (CWE-401) CWE-121 403x | CWE-476 111x | CWE-121 41x CWE-129 134x | CWE-476 153x
149107 (CWE—415) CWE-123 245x | CWE-416 121x | CWE-416 24x CWE-116 130x | CWE-405 149x
148871 (CWE-188) CWE-123 503x | CWE-434 27x CWE-20 10x CWE-134 84x CWE-400 53x

149143 (CWE-120) CWE-123 696x | CWE-121 127x | CWE-121 74x CWE-124 195x | CWE-126 372x
149103 (CWE-367) CWE-123 391x | CWE-125 21x CWE-125 4x CWE-134 69x CWE-476 257x
1501 (CWE—822) CWE-134 328x | CWE-125 22x CWE-20 38x CWE-129 119x | CWE-476 165x
149199 (CWE-412) CWE-23 677x CWE-476 72x CWE-20 54x CWE-124 165x | CWE-476 100x
149183 (CWE-468) CWE-123 835x | CWE-125 74x | CWE-121 79x | CWE-116 137x | CWE-126 145x
149085 (CWE-244) CWE-123 647x | CWE-121 36x CWE-121 93x CWE-129 157x | CWE-120 209x
2079 (CWE-464) CWE-123 501x | CWE-125 79x CWE-121 99x CWE-124 156x | CWE-126 251x
72 (CWE-248) CWE-123 357x gnggi I;ix CWE-125 95x CWE-124 42x CWE-126 123x
2046 (CWE-259) CWE-284 753x | CWE-20 36x CWE-20 102x CWE-125 179x | CWE-89 255x

2060 (CWE-457) CWE-416 243x | CWE-416 29x CWE-121 31x CWE-124 86x CWE-416 105x
1989 (CWE-89) CWE-T78 73x CWE-352 8x CWE-20 31x CWE-434 31x CWE-476 46x

114 (CWE-532) CWE-20 486x CWE-200 99x CWE-20 107x CWE-125 150x | CWE-20 119x

CWE-134 34x

20 (CWE-118) CWE-190 200x | CWE-190 26x CWE-190 39x CWE-116 34x CWE-190 85x

1887 (CWE-22) CWE-20 758x CWE-125 44x CWE-125 28x CWE-129 57x CWE-476 344x
313 (CWE-119) CWE-123 733x | CWE-121 130x | CWE-121 66x CWE-124 147x | CWE-126 400x
2016 (CWE-378) CWE-22 140x CWE-121 11x CWE-20 73x CWE-124 56x CWE-404 119x
149125 (CWE-122) CWE-123 615x | CWE-125 57x CWE-121 40x CWE-124 106x | CWE-476 124x
501035 (CWE-563) CWE-20 593x CWE-125 55x CWE-20 47x CWE-129 61x CWE-476 73x

1852 (CWE-170) CWE-123 802x | CWE-125 48x CWE-125 68x CWE-124 69x CWE-476 203x
149163 (CWE-99) CWE-123 244x | CWE-434 71x CWE-20 45x CWE-124 67x CWE-434 99x

149241 (CWE-78) CWE-20 715x CWE-120 25x CWE-121 37x CWE-124 11x CWE-476 68x

Table 7: Distribution of False Positives; the most frequent incorrectly identified CWE’s (labeled as being Present
in the returned JSON datastructure) for each of the GPT models and each of the NIST SARD test cases. The
frequency counts are from the totals out of the 10 temperature settings, meaning that the maximum possible count
in each cell is 1000x. The proportion of the GPT output that gave that incorrect CWE is reported to the right of
the CWE number. The counts are obtained from all parse-able CWE entries, not just those that identify only a
single CWE. If there are multiple CWEs with most frequency counts, all of the CWEs with the same most frequent
counts are shown.

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 500843. Produced from the zephyr-7b-alpha GPT model with temperature 0.7. Note that

the generated description is entirely incorrect.

{'findings': [{'CWE_Number': 'CWE-476',

'Status': 'Present',
'Source_Code': 'first->str();',
'Description': "The function 'f' takes a linked list of Tokens as an argument.

If the last token in the list is a string, that string will be printed to stdout.
This code is vulnerable to a format string attack because the 'f' function is using
the'str' method of the last token in the list, which could contain a format string.
An attacker can pass a format string as an argument to this function and potentially
execute arbitrary code or cause a Denial of Service."}]}

12

Example of correct E number and code line identification in a JSON datastructure format from NIST
SARD Test Case 500843. Produced from the Turdus GPT model with temperature 1.0. Note that the

generated description is entirely incorrect.

{'findings': [{'CWE_Number': 'CWE-476',

'Status': 'Present',

'Source_Code': 'first->str();',

'Description': "This code is vulnerable as it executes an untrusted input without proper
validation before calling'str()'. This may result in memory corruption issues

such as buffer overflow."}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 500843. Produced from the Llama-2-70b-chat-hf GPT model with temperature 0.8. Note
that the provided description is mostly correct in that the correct vulnerability name was identified but
there is not a function named f in the source code.

{'findings': [{'CWE_Number': 'CWE-476',

'Status': 'Present',

'Source_Code': 'first->str();',

'Description': 'Potential null pointer dereference vulnerability in function f'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 1792. Produced from the Turdus GPT model with temperature 0.3. Note that the

generated description is correct.

{'findings':

[{'CWE_Number': 'CWE-79',

'Status': 'Present',

'Source_Code': 'fprintf(cgiOut, "Value number %d = %s
", i, ql[il);"',
'Description': 'This code is vulnerable to Cross-site Scripting (XSS) attacks due to
insufficient input validation and sanitization.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 1792. Produced from the Turdus GPT model with temperature 0.4. Note that the

generated description is correct.

{'findings': [{'CWE_Number': 'CWE-79',

'Status': 'Present',

'Source_Code': 'fprintf(cgilut, "Value number %d = %s
", i, qlil);',
'Description': 'The code is vulnerable to Improper Neutralization of

Input During Web Page Generation (CWE-79), as it uses sprintf() without
validating or neutralizing user input in the web page generation process.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 1792. Produced from the Turdus GPT model with temperature 0.4. Note that the

generated description is correct except that the identified print statement in the description text is incorrect.

{'findings': [{'CWE_Number': 'CWE-79',

'Status': 'Present',

'Source_Code': 'fprintf(cgiOut, "Value number %d = %s
", i, ql[il);',
'Description': 'This code is vulnerable as it uses sprintf() on user-supplied
input without proper validation or sanitization, which can lead to

security risks such as Cross-Site Scripting (XSS)'}}

13

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 1645. Produced from the Turdus GPT model with temperature 0.5. The generated

Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-20',

'Status': 'Present',
'Source_Code': 'system(buf);',
'Description': "This code falls victim to Improper Input Validation where user input isn't

validated before being used in a system() call, potentially allowing malicious
commands to be executed."}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 1645. Produced from the zephyr-7b-alpha GPT model with temperature 0.9. The generated

Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-20',

'Status': 'Present',

'Source_Code': 'system(buf);',

'Description': 'The application uses system() to execute a user-supplied string without
sanitizing the input, which is a potential injection vulnerability (CWE-20).'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149165. Produced from the Llama-2-70b-chat-hf GPT model with temperature 0.9. The

generated Description field in this example is entirely incorrect.

{'findings': [{'CWE_Number': 'CWE-121',

'Status': 'Present',

'Source_Code': "buffer[plop()] = '!';", !

Description': 'The use of a weak random number generator can lead to predictable output,
which can be exploited by an attacker to execute arbitrary code.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149165. Produced from the Llama-2-70b-chat-hf GPT model with temperature 0.1. The

generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-121',

'Status': 'Present',

'Source_Code': "buffer[plop()] = '!';",

'Description': "Buffer overflow vulnerability in the plop() function.
The buffer 'buffer' is not large enough to hold the resulting value,
which can cause a buffer overflow."}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149165. Produced from the Mistral-7B-Instruct-v0.1 GPT model with temperature 0.6.

The generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-121',

'Status': 'Present',

'Source_Code': "buffer[plop()] = '!';",
'Description': 'Buffer overflow vulnerability'}]}

14

Example of correct /E number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149165. Produced from the zephyr-7b-beta GPT model with temperature 0.2. The

generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-121',

'Status': 'Present',

'Source_Code': "buffer[plop()] = '!';",

'Description': 'Buffer overflow vulnerability due to writing beyond the bounds
of the buffer.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149165. Produced from the zephyr-7b-beta GPT model with temperature 0.4. The

generated Description field in this example is not correct.

{'findings': [{'CWE_Number': 'CWE-121',

'Status': 'Present',

'Source_Code': "buffer[plop()] = '!';",

'Description': 'Use of hard-coded values in security-sensitive contexts'l}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 500757. Produced from the Turdus GPT model with temperature 0.8. The generated

Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-787',

'Status': 'Present',

'Source_Code': 'p[10] = 7;"',

'Description': "This code falls under Out-of-Bounds Write category (CWE-787),
as it attempts to write a value to an index (10) beyond the allocated

memory space of 'p', potentially causing undefined behavior."}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 1989. Produced from the Turdus GPT model with temperature 0.9. The generated

Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-89',

'Status': 'Present',

'Source_Code': 'queryStr += (" OR Value = \'" + *iter + "\'");',

'Description': 'This code suffers from the SQL injection vulnerability since user inputs
are being concatenated directly into an SQL query without any sanitation or
parameterized queries, making it vulnerable to malicious input manipulation.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149111. Produced from the Llama-2-70b-chat-hf GPT model with temperature 0.3. The

generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-134',

'Status': 'Present',

'Source_Code': 'printf(container.fmt);',

'Description': 'The use of user-supplied data in a format string
vulnerable to exploitation.'}]}

15

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149111. Produced from the Mistral-7B-Instruct-v0.1 GPT model with temperature 0.7.

The generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-134',

'Status': 'Present',
'Source_Code': 'printf(container.fmt);',
'Description': 'Format string vulnerability can lead to buffer overflow

or other security vulnerabilities.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 149241. Produced from the zephyr-7b-alpha GPT model with temperature 0.2. The

generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-78',

'Status': 'Present',
'Source_Code': 'if (system(command) < 0)',
'Description': 'Command Injection vulnerability, where an attacker can inject malicious

commands into the command parameter, which can be executed by the system() function.'}]}

Example of correct CWE number and code line identification in a JSON datastructure format from NIST
SARD Test Case 313. Produced from the Llama-2-70b-chat-hf GPT model with temperature 0.6. The

generated Description field in this example is correct.

{'findings': [{'CWE_Number': 'CWE-119',

'Status': 'Present',
'Source_Code': 'strncpy(buf, src, 11 % i);',
'Description': 'Buffer overflow vulnerability in strncpy() function'}]}

4 Discussion and Conclusion

This study has examined the task of correctly identifying software weaknesses and vulnerabilities in software using
open source Generative Pre-Trained Transformer (GPT) models. This was able to be examined because of two
specific reasons - the first is the existence of the NIST SARD dataset, which is a very well labelled dataset that
includes the vulnerable line of code and the relevant CWE. The second is the specific prompting template usage
that allows fully automated extraction of JSON output for the vulnerability detection - and therefore error rates
can be quantified for a large range of NIST SARD test cases, GPT models, and GPT model settings. Thus, this
study reports a systematic analysis of automated vulnerability detection using GPT models.

In general, our findings are that the correct CWE identification rate varies significantly depending on the
specific code test case that is analyzed. For some test cases the correct CWE identification (and relevant line
code of syntax) is surprisingly high, but for other test cases the identification accuracy rate is always 0 for all
GPT models and temperature settings. In general, the error rates of this vulnerability detection is too high —
in particular, the false positive rate is very high. However, it is notable that for some cases, seemingly the more
popular classes of CWEs that are mentioned in the type of internet text on which these GPT models were trained,
the identification rates are quite good. As specific examples of the lowest error rate results (from Table @, we list
several specific examples of CWE identification binary classification accuracy rates (without considering rates for
correctly identifying the vulnerable line of source code). Test case 1989 had a best recall of 0.928, a best precision
of 0.709 (with a parsability rate of 0.42) when analyzed with Llama-2-70b-chat-hf GPT model and temperature
0.1. Test case 149165 had a best recall of 1.0, a best precision of 1.0 (with a parsability rate of 1.0) when analyzed
with Llama-2-70b-chat-hf GPT model and temperature 0.1. Test case 149111 had a best recall of 0.727, a best
precision of 0.675 (with a parsability rate of 0.77) when analyzed with Llama-2-70b-chat-hf GPT model and
temperature 0.5. Test case 149241 had a best recall of 1.0, a best precision of 0.5 (with a parsability rate of 1.0)
when analyzed with Llama-2-70b-chat-hf GPT model and temperature 0.1. Given the high accuracy rates of at
least some of these test cases, it seems plausible that some of the current open source GPT models, if thorough

16

verification is used, could correctly identify certain classes of vulnerabilities, such as buffer overflows, with very low
error rates.

It should be emphasized that this particular software security analysis task requires a number of semantic
connections to be made in the GPT model inference process (and of course, the correct specification of the JSON
syntax) in order for the (automated) vulnerability identification to be correct. It is not clear to what extent a
pre-trained language model can learn these semantic connections - but it is possible least for some of the CWEs,
these connections were learned in the standard open source GPT models that we tested. This is is a non-trivial
finding, and suggests that GPT models do have some capability to identify security vulnerabilities. However, it also
needs to be emphasized that such usage of current GPT models should not be used in cases where the accuracy can
not be tested. In other words, these GPT models and vulnerability identification prompting should not be used in
software engineering tasks — they should be used in cases where careful and precise testing of the GPT output can
be performed for the purpose of examining specific characteristics of source code of interest. The primary reason
for this is that the false positive rate is high - and not only is it high but the false positives are biased towards
incorrectly identifying specific CWEs. In other words, simply measuring which CWE is predicted most frequently
in a GPT output distribution (for a non-zero inference temperature) will typically not be correct.

The primary limitation with increasing the scope of more code test cases to more thoroughly test the capabilities
of GPT models for software security analysis is the total amount of compute time that is required for performing
these inference calls, especially in a systematic study of varying inference parameters. Future studies that increase
the number of labeled source code examples (e.g., from the extensive amount of data available in the NIST SARD
dataset) that are used for testing the accuracy GPT automated vulnerability identification would be very relevant.

An aspect of this study that is unclear is what details of the source code are the GPT models using to infer
relevant CWE’s in the source code. In particular, what semantic details are used to parse whether a CWE is more
likely or less likely. In some cases, it could be that context, such as what types of libraries are used or what types
of strings are being constructed (such as SQL query strings), is sufficient to reduce the total number of possibly
applicable CWEs so that random guessing among those feasible candidates accounts for some of the GPT model’s
performance. The metrics in this study do not determine what components of the source code are important; this
would require quantifying the explainability of GPT models [33-37] for this task. We leave this study open to
future research, and emphasize that this type of detailed explainability analysis is absolutely a critical component
of study before these GPT models are incorporated into any type of vulnerability detection in production software
development and testing.

5 Acknowledgments

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-
NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right,
title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions
that might be expressed in the written work do not necessarily represent the views of the U.S. Government. The
publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this written work or allow others to do so, for U.S. Government
purposes. The DOE will provide public access to results of federally sponsored research in accordance with the
DOE Public Access Plan.

17

References

]
]
]
]
]

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: [1706.03762 [cs.CL].

Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv: 2107.03374 [cs.LG].
Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165 [cs.CL].

OpenAl et al. GPT-/ Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

Hugo Touvron et al. Liama 2: Open Foundation and Fine-Tuned Chat Models. 2023. arXiv: 2307 . 09288
[cs.CL].

Frangois Charton. Learning the greatest common divisor: explaining transformer predictions. 2024. arXiv:
2308.15594 [cs.LG].

Paul Black. “SARD: Thousands of Reference Programs for Software Assurance”. en. In: 5 (2017). URL:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923127.

Steve Christey et al. “Common weakness enumeration”. In: Mitre Corporation (2013).

Robert A. Martin and Sean Barnum. “Common weakness enumeration (CWE) status update”. In: Ada Lett.
XXVIII.1 (2008), 88-91. 1SsN: 1094-3641. DOI: |10.1145/1387830. 1387835, URL: https://doi.org/10.
1145/1387830.1387835.

P. Louridas. “Static code analysis”. In: IEEFE Software 23.4 (2006), pp. 58-61. DOI: 110.1109/MS.2006.114.
Katerina Goseva-Popstojanova and Andrei Perhinschi. “On the capability of static code analysis to detect
security vulnerabilities”. In: Information and Software Technology 68 (2015), pp. 18-33.

J. Viega et al. “ITS4: a static vulnerability scanner for C and C++ code”. In: Proceedings 16th Annual
Computer Security Applications Conference (ACSAC’00). 2000, pp. 257-267. DOI: 10.1109/ACSAC. 2000 .
898880.

Arvinder Kaur and Ruchikaa Nayyar. “A comparative study of static code analysis tools for vulnerability
detection in ¢/c++ and java source code”. In: Procedia Computer Science 171 (2020), pp. 2023-2029.

N. Jovanovic, C. Kruegel, and E. Kirda. “Pixy: a static analysis tool for detecting Web application vulnera-
bilities”. In: 2006 IEEE Symposium on Security and Privacy (S€&P’06). 2006, 6 pp.—263. DOI: [10.1109/SP.
2006 . 29.

Shobha Tyagi and Krishan Kumar. “Evaluation of Static Web Vulnerability Analysis Tools”. In: 2018 Fifth
International Conference on Parallel, Distributed and Grid Computing (PDGC). 2018, pp. 1-6. DOI: |10 .
1109/PDGC.2018.8745996.

V Benjamin Livshits and Monica S Lam. “Finding Security Vulnerabilities in Java Applications with Static
Analysis.” In: USENIX security symposium. Vol. 14. 2005, pp. 18-18.

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. “An empirical study on the effectiveness of
static C code analyzers for vulnerability detection”. In: Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2022. Virtual, South Korea: Association for Computing
Machinery, 2022, 544-555. 1SBN: 9781450393799. DOTI: |10.1145/3533767 . 35634380. URL: https://doi.org/
10.1145/3533767 .3534380.

Foteini Cheirdari and George Karabatis. “Analyzing False Positive Source Code Vulnerabilities Using Static
Analysis Tools”. In: 2018 IEEE International Conference on Big Data (Big Data). 2018, pp. 4782-4788. DOI:
10.1109/BigData.2018.8622456.

Hammond Pearce et al. “Examining Zero-Shot Vulnerability Repair with Large Language Models”. In: 2023
IEEE Symposium on Security and Privacy (SP). 2023, pp. 2339-2356. DOI: |10 . 1109 / SP46215 . 2023 .
10179324.

Ruitong Liu et al. Source Code Vulnerability Detection: Combining Code Language Models and Code Property
Graphs. 2024. arXiv: [2404.14719 [cs.CR]L

Rafael Rafailov et al. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. 2023.
arXiv: 2305.18290 [cs.LG]k

Lewis Tunstall et al. Zephyr: Direct Distillation of LM Alignment. 2023. arXiv: [2310.16944 [cs.LG]L
Albert Q. Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL].

UDK dot AI, Daniel Devatman Hromada. Turdus (Revision 923¢305). 2024. DOI: [10.57967/hf /1611, URL:
https://huggingface.co/udkai/Turdus.

Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. 2020. arXiv:
1910.03771 [cs.CL].

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Ad-
vances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,

18

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2308.15594
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923127
https://doi.org/10.1145/1387830.1387835
https://doi.org/10.1145/1387830.1387835
https://doi.org/10.1145/1387830.1387835
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1109/ACSAC.2000.898880
https://doi.org/10.1109/ACSAC.2000.898880
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/PDGC.2018.8745996
https://doi.org/10.1109/PDGC.2018.8745996
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1109/BigData.2018.8622456
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://arxiv.org/abs/2404.14719
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2310.16944
https://arxiv.org/abs/2310.06825
https://doi.org/10.57967/hf/1611
https://huggingface.co/udkai/Turdus
https://arxiv.org/abs/1910.03771

pp- 8024-8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[27] Jack Choquette et al. “NVIDIA A100 Tensor Core GPU: Performance and Innovation”. In: IEEE Micro 41.2
(2021), pp. 29-35. DOL: |10.1109/MM. 2021 . 3061394

[28] Patrick Lewis et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 2021. arXiv:|2005.
11401 [cs.CL].

[29] LocalGPT. https://github.com/PromtEngineer/localGPT.

[30] Harrison Chase. LangChain. Oct. 2022. URL: https://github.com/langchain-ai/langchain.

[31] Brian W Kernighan and Dennis M Ritchie. “The C programming language”. In: (2002).

[32] Mark Dowd, John McDonald, and Justin Schuh. The art of software security assessment: Identifying and
preventing software vulnerabilities. Pearson Education, 2006.

[33] Haiyan Zhao et al. “Explainability for Large Language Models: A Survey”. In: ACM Trans. Intell. Syst.
Technol. 15.2 (2024). 1SSN: 2157-6904. DOI: [10.1145/3639372. URL: https://doi.org/10.1145/3639372.

[34] Julia El Zini and Mariette Awad. “On the Explainability of Natural Language Processing Deep Models”. In:
ACM Comput. Surv. 55.5 (2022). 18SN: 0360-0300. DOI: 10.1145/3529755, URL: https://doi.org/10.1145/
3529755,

[35] Miles Turpin et al. Language Models Don’t Always Say What They Think: Unfaithful Explanations in Chain-
of-Thought Prompting. 2023. arXiv: 2305.04388 [cs.CL].

[36] Xuansheng Wu et al. Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era. 2024.
arXiv: 2403.08946 [cs.LG]l

[37] Chandan Singh et al. Rethinking Interpretability in the Era of Large Language Models. 2024. arXiv: 2402.

01761 [cs.CL].

A Markdown Computer Code Language Identifiers

sql, c++, javascript, cpp, python, csharp, c, json, less, bash, sh, java, text, json... , json...,
diff, css, assembly, xml, perl, yaml, css, scss, html, makefile, js, csv, lua, kotlin, arduino,
javascript, csharp, rust, shellscript, erb, vbnet, ‘json, go, plaintext, php, instructions:, ocl,
shell, json 7, ‘json‘...

B NIST SARD Test Cases

This section shows the exact source code for 10 of the NIST SARD test cases that are used in this study. The
single vulnerable line of source code is highlighted as red text for each test case.

<stdio.h>
<cgic.h>
<string.h>
<stdlib.h>

#include
#include
#include
#include

int cgiMain ()
cgiHeaderContentType ("text/html");
fprintf (cgilut,

fprintf (cgilut,
fprintf (cgilut,

"<html><head>\n");
"<title>Text: 1</title></head>\n");

struct Token { "<body><h1>Text </h1>\n");

const Token* nextArgument () const;
const Token* next() const; char q[4][1024];
int varId() const; unsigned int i = 0
void str() const;}; for (; i < 4; ++i){
void f(const Token xfirst) { char name [2]
first = first->nextArgument (); sprintf (name,"q%d",i);

if (first)
first = first->next();
first->str();

}

Listing 1: NIST SARD Test case 500843, instance of
CWE-476

19

cgiFormString (name, q[il, sizeof(q[il));
if (strlen(qlil))
{

fprintf (cgiOut, "Value number %d = %s
", i, qli
1)

}
}

fprintf (cgilut,
return 0;

"</body></html>\n");

¥

Listing 2: NIST SARD Test case 1792, instance of CWE-
79. Note that some of the strings in this test case have
been modified so that terms related to cross site scripting
are removed.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/MM.2021.3061394
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://github.com/PromtEngineer/localGPT
https://github.com/langchain-ai/langchain
https://doi.org/10.1145/3639372
https://doi.org/10.1145/3639372
https://doi.org/10.1145/3529755
https://doi.org/10.1145/3529755
https://doi.org/10.1145/3529755
https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2403.08946
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2402.01761

main ()
{

char *fo
int coun
foo=mall

o3
ter;
oc(sizeof (char)*10);

for (counter=0;counter!=14; counter++){

foo[coun
printf ("
}

ter]='a’
%s\n",foo);

Listing 3: NIST SARD Test case 1779, instance of CWE-

463.

#include
#include

#define

void tes

}

int main

¥

<stdio.h>
<stdlib.h>

MAXSIZE 40

t(char *str){

char buf [MAXSIZE];

snprintf (buf, sizeof buf, "/bin/echo %s", str)
buf [MAXSIZE-1] = 0;

system (buf);

(int argc, char *xargv){
char *userstr;
if (arge > 1) {
userstr = argv[i];
test (userstr);
}

return 0;

Listing 4: NIST SARD Test case 1645, instance of CWE-

20.

#include
#include
#include
#include

unsigned

b3
unsigned
}

int main

}

<stdlib.h>
<stdio.h>
<time.h>
<string.h>

int getRand ()

unsigned int r;

FILE *f;

f = fopen("/dev/urandom", "rb");

if (f == NULL)

{
fprintf (stderr, "Error opening file\n");
exit(-1);

}

if (fread (&r, sizeof r, 1, f£) != 1)

fprintf (stderr, "Error reading file\n");

fclose (f);
exit (-1);
}
if (fclose(f) != 0)
fprintf (stderr, "Error closing file\n");

return r;

plop () {
return getRand () % 256 + 127;

(int argc, char *argv([])

char buffer [256];

memset (buffer, 0, sizeof (buffer));
butfer [plop()] = '!';

printf ("%s\n", buffer);

return 0;

Listing 5: NIST SARD Test case 149165, instance
CWE-121.

#include

main () {

EVP_CIPH
char key
char iv[
int b=8;
RAND_byt

<openssl/evp.h>

ER_CTX ctx;
[EVP_MAX_KEY_LENGTH];
EVP_MAX_IV_LENGTH];

es(key, b);

memset (iv,0, EVP_MAX_IV_LENGTH) ;

EVP_Encr
return;

yptInit (&ctx,EVP_bf_cbc(), key,iv);

of

Listing 6: NIST SARD Test case 2015, instance of CWE-

329.

20

#include <stdio.h>

#include <stdlib.h>
#include <stdbool.h>
#include <string.h>

static bool debug = false;

void promote_root () {
if (debug) {

printf ("# You are root mnow...\n");
b3

int main(int argc, char *argv[])
{
if (arge > 1)

#include <cstdlib> : 5
unsigned ij;

‘{’°1d £0 const unsigned nbArgs = argc;
char #*p; = (char *)malloc(10); for (i = 1; i < nbArgs; ++i)
pl10] = 7; {
free(p);

if (!strancmp(argv[il,"-debug",6)

{
debug = true;

Listing 7: NIST SARD Test case 500757, instance of printf("Move to debugging mode\n");
CWE'787 if (strlen(argv[il]) >= 11 && !strncmp(argv[i

1+6,":root",5))

{
promote_root ();
}
}
}
¥
else
{
printf ("No args...\n");
}

return 0;

}

Listing 8: NIST SARD Test case 149135, instance of
CWE-489.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef struct str_t str;
struct str_t {
union {
int a;
char *b;
} foo;
};

int main()

str container;
char *stri;

container.foo.a = 0;
if ((container.foo.b = (char *)malloc (256*sizeof (char))) != NULL)
strcpy(container.foo.b, "Falut!");
container.foo.b[0] = 'S';

printf ("%s\n", container.foo.b);
free(container.foo.b);
stri = malloc (65536);
if (strl == NULL)
{printf ("Memory allocation problem"); return 1;}

free(strl);
if (container.foo.b)
{container.foo.b[0] = 'S'; printf("%s\n", container.
foo.b);}
}

return 0;

¥

Listing 9: NIST SARD Test case 149203, instance of
CWE-416.

21

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define MAX_SIZE 255
typedef struct cont_t cont;

struct cont_t {
char fmt[MAX_SIZE];

3
int main(int argc, char *argv[])
{
if (arge > 1) {
cont container = {.fmt=""};
strocpy (container.fmt, argv[1],MAX_SIZE-1);
container.fmt [MAX_SIZE - 1] = '\0';
printf (container.fmt);
}
return 0;
}

Listing 10: NIST SARD Test case 149111, instance
CWE-134.

of

22

	Introduction
	Methods
	CWE Identification Accuracy Measures

	Results
	Example Correctly Identified Vulnerable Lines of Code

	Discussion and Conclusion
	Acknowledgments
	Markdown Computer Code Language Identifiers
	NIST SARD Test Cases

