
Mova: Nova folding without committing to error terms

Nikolaos Dimitriou1, Albert Garreta1, Ignacio Manzur1, and Ilia Vlasov1

1Nethermind Research, {nikolaos,albert,ignacio,ilia}@nethermind.io

Abstract

We present Mova, a folding scheme for R1CS instances that does not require com-
mitting to error or cross terms, nor makes use of the sumcheck protocol. We compute
concrete costs and provide benchmarks showing that, for reasonable parameter choices,
Mova’s Prover is about 5 to 10 times faster than Nova’s Prover, and between 1.05
to 1.3 times faster than Hypernova’s Prover (applied to R1CS instances) – assuming
the R1CS witness vector contains only small elements. Mova’s Verifier has a similar
cost as Hypernova’s Verifier, but Mova has the advantage of having only 3 rounds of
communication, while Hypernova has a logarithmic number of rounds.

Mova, which is based on the Nova folding scheme, manages to avoid committing
to Nova’s so-called error term E and cross term T by replacing said commitments
with evaluations of the Multilinear Extension (MLE) of E and T at a random point
sampled by the Verifier. A key observation used in Mova’s soundness proofs is that
E is implicitly committed by a commitment to the input-witness vector Z, since E =
(A · Z) ◦ (B · Z)− u(C · Z).

We also note that ProtoGalaxy [EG23] can be specialised to an R1CS folding scheme
with similar properties. Some of our further contributions are that 1) Mova is described
with a language that sheds new insights into the topic of “Nova-style folding”; 2) we
provide concrete costs, benchmarks, and optimisations for the Prover; 3) we describe
how to fold two accumulated instances (which is important for applications in Proof
Carrying Data); and 4) provide non-trivial knowledge soundness proofs in the context of
multilinear polynomials.

Contents

1 Introduction 2
1.1 Mova in a nutshell . 4
1.2 Mova compared to Nova and Hypernova . 5

2 Techniques 6
2.1 The Mova folding scheme . 6
2.2 Knowledge soundness proof of Protocol 2 11

3 Preliminaries 12
3.1 Multilinear polynomials . 13
3.2 Commitment schemes . 14
3.3 Reductions of knowledge . 15

1

4 The Mova folding scheme 16
4.1 From RR1CS to Racc . 17
4.2 Reduction to common evaluation point . 22
4.3 Folding two instances in Racc with the same evaluation point 23
4.4 Putting everything together . 26

5 Performance 27
5.1 Experimental evaluation . 29
5.2 Computing the concrete costs of Mova, Nova, and Hypernova 31

6 An efficient algorithm for composing a multilinear polynomial with a line 35

7 Deferred proofs 38
7.1 Proof of Lemma 4.4 . 38

8 Acknowledgements 42

9 References 42

1 Introduction

Folding schemes have been an active area of research in the last years [BGH19, BCMS20,
BCL+20, KST21, KS23b, BC23, EG23, BC24b]. Informally, these schemes can be described
as interactive proofs in which a Prover and Verifier create a new instance-witness pair in
a certain relation R2 from two instance-witness pairs in relations R1,R2. The validity of
the newly created instance-witness pair implies the validity of the original instance-witness
pair, except with negligible probability. The idea is that if this combination process is
less expensive than proving an individual instance-witness pair (in prover time, memory
requirements, or proof size), one can save costs by reducing the task of proving many
instance-witness pairs to proving a single pair. Initially, folding schemes were created
with the intention of improving the construction of primitives like Incrementally Verifiable
Computation (IVC) [Val08] and Proof-Carrying-Data (PCD) [CT10].

Nova [KST21] is a celebrated folding scheme due to Kothapalli, Setty, and Tzialla where
R1 is the R1CS relation, and R2 is the committed relaxed R1CS relation. Nova features
only one round of communication, a very lean Verifier with O(1) complexity, and a relatively
simple and efficient Prover. For the purposes of this paper, the main drawback of Nova
is the need for the Prover to compute a commitment to a vector T with arbitrarily large
entries, i.e. a vector whose entries have roughly log(|F|) bits, where F is the underlying
finite field used in R1 and R2. Nova requires using a homomorphic commitment scheme,
which in practical scenarios is typically chosen to be an elliptic curve-based scheme such as
Pedersen or KZG. Then, to compute the commitment to T, the Prover ultimately has to
perform a Multiscalar Multiplication (MSM) of a vector with large entries. This is a costly
operation that dominates by far the rest of the Prover’s costs (assuming the R1CS matrices
are reasonably sparse, and not counting the cost of committing to the R1CS witness – see
below for a discussion on this). For reference, over the Pallas curve, Table 1 in [Hab22]

2

estimates the cost to be, roughly, 349|T| field operations when |T| = 216, and 256|T| field
operations when |T| = 220.

Notice that, in all folding schemes discussed in this work, the witness in (x,w) ∈ R1

always needs to be committed. In many practical scenarios1, the witness is a vector that
contains small entries, i.e. much smaller than the size of the underlying field F. In that case,
as observed in [STW23b] and in our benchmarks in Table 7, an MSM for such a vector can
easily be an order of magnitude cheaper than an MSM with a vector containing arbitrarily
large entries. Hence, for such applications, removing or lowering the cost of committing to
T in Nova can lead to dramatic efficiency improvements of the system where Nova is being
used. Otherwise, in an application where witnesses have arbitrarily sized entries, removing
the commitment to T in Nova has less of an impact (still significant though, cf. Tables 2
and 8), as already the overall system is paying for expensive commitments (cf. Section 5).

Hypernova [KS23b] is a folding scheme due to Kothapalli and Setty where, unlike in
Nova, the Prover does not commit to any vectors (within the folding scheme). However,
Hypernova performs log(m) rounds of communication, as opposed to Nova, which performs
only 1. This difference is significant when using folding schemes to enable IVC or PCD. This
is because in that scenario, at each folding step, besides running the folding protocol, the
Prover also has to create a proof that the folding is done correctly. Then, each round of
communication of the folding scheme translates into the need to create a proof of correct
hashing (where the hash is used as a replacement of the Verifier’s randomness). Thus, having
a large number of communication rounds can introduce significant overheads when using
folding in IVC/PCD.

We remark that Hypernova has the benefit of being usable also for folding instance-
witness pairs from the CCS [STW23a] relation, which is a high degree generalisation of the
R1CS relation. Nova cannot efficiently handle this relation when the degree d is large, due
to certain costs scaling by a quadratic factor on d.

Since their publication, many subsequent works have built upon Nova and Hypernova
[BC24a, NDC+24, ZGGX23, BC23, EG23, KS23a, ZZD23, Sou24]. We refer to [Awe] for a
vaired colletion of resources on the topic of folding.

In this work we investigate the the following (loosely formulated) question:

Does there exist efficient folding schemes for the R1CS relation where the Prover does not
commit to any vector besides the commitment to the R1CS witness, and with O(1) rounds of

communication?

We describe and benchmark a scheme that answers this question affirmatively, and which
we call Mova2. We also identify ProtoGalaxy as a scheme that can be specialised so as to
solve the above question (see below).

ProtoGalaxy Upon completion of this work, the authors of [EG23] brought to our
attention that the ProtoGalaxy scheme can be specialised in a way that resolves the above

1For example, when proving statements involving non-native arithmetic, in which numbers are decomposed
into small chunks (or limbs),

2Mova stands for Nova, with an “M” stemming from the fact that the commitment to Nova’s error and
cross term vectors are replaced by evaluations of their Multilinear Extension (MLE) at a random point.

3

question affirmatively as well. In fact, our Mova scheme can be seen as a variation of this
specialisation, in which, among others, the multilinear Lagrange base is used, as opposed
to the monomial base. To obtain such specialisation, one should apply ProtoGalaxy on
the trivial special sound protocol for the R1CS relation where the Prover simply sends
the witness to the Verifier, and the Verifier checks whether the witness is valid. Then, the
powi(X) polynomials from [EG23] play the role of our ẽq(i;X) polynomials.

In [EG23], ProtoGalaxy is presented with a very different language and with different
goals than ours. Indeed, the scheme in [EG23] is described as being a Protostar-based
[BC23] folding scheme for special sound protocols, featuring an efficient Verifier, and with
capacity for folding multiple instances at once.

We believe that our description and benchmarking of Mova both provides new insights into
the topic of “Nova-style folding” (cf. Section 2), and highlights further attractive properties
and applications of ProtoGalaxy. These insights are essentially that the commitment to
the error term in Nova is redundant in many steps of the scheme, and that, whenever this
commitment is needed, one can use alternative, less expensive, methods.

We also: 1) provide specific Prover optimisations and cost counts for our use-case (cf.
Section 5.2), resulting in a especially lean protocol for folding R1CS instances (cf. Section 5);
2) allow for efficient R1CS-based Proof Carrying Data (PCD) by describing how to fold two
accumulated instances – this is necessary in PCD due to its inherent non-linear recursion
topology (we believe that similar methods can be used to extend [EG23]); and 3) provide
non-trivial knowledge soundness proofs in the context of the multilinear Lagrange basis,
whose principles may be applicable in other similar proofs (cf. Remark 4.3).

1.1 Mova in a nutshell

In Mova, R1 = RR1CS is the R1CS relation (cf. Eq. (1)) and R2 = Racc is, essentially, the
committed relaxed R1CS relation RrcR1CS of Nova (cf. Eq. (2)), except that the commitment
to the error term E is replaced by an evaluation v of the MLE mle[E](X) of E at a point r,
i.e. the constraint Com(E) = sE from Nova’s committed relaxed R1CS relation is replaced by
the constraint mle[E](r) = v. Here r, v are part of the public instance, see Eq. (3) for a full
description of Racc.

At a high level, the reason why Mova does not require commitments to the error term
E is because, intuitively speaking, E is implicitly committed by the commitment to the
instance-witness vector Z (or to the underlying witness). This is because E is uniquely
determined by such vector, indeed: E = A · Z ◦B · Z− uC · Z (see Eq. (2) for the details).
Hence, one can see that, when it comes to folding instance-witness pairs of the committed
relaxed R1CS relation, it is actually possible to remove the commitments to E altogether,
without any further modification. This is explained in more detail in the first part of
Section 2.1.

However, this is not enough when aiming to fold instance-witness pairs for the R1CS
relation RR1CS with instance-witness pairs for the relaxed R1CS relation RrcR1CS. This is
because the first instance-witness pair, say (x,w), needs to first be transformed into an
instance-witness pair from RrcR1CS. In Nova, this is achieved by simply adding an error term
E which equals zero, and adding the constraint that Com(E) is a commitment to the zero
vector. Since our goal is to not use commitments to E, we instead have the Verifier send a

4

random point r ∈ Flogm, and add the constraint that mle[E](r) = 0. This is the reason why
our accumulated relation Racc is precisely the committed relaxed R1CS relation RrcR1CS,
after removing all mentions of a commitment to E, and adding the constraint mle[E](r) = v
for some public values r, v. Precisely (we use blue to highlight the differences with the
standard committed relaxed R1CS relation),

Racc =

(x;w) = (x, ĎW, u, ℓE, r;W,E)

∣∣∣∣∣∣∣∣∣∣
(A · Z) ◦ (B · Z) = u · (C · Z) +E,

Z = (W,x, 1),

Com(W) = ĎW, mle[E](r) = ℓE,

x ∈ Fℓ,W ∈ Fm−ℓ−1, r ∈ Flogn

 .

This aspect of Mova is explained in more detail in our technical overview (cf. Protocol 3), or
in full formality in Section 4.1.

We are almost done now. It remains to design a way of folding two instance-witness
pairs from Racc, say (x1;w1) and (x2;w2). Say the MLE evaluation point in these instances
is r1 and r2, respectively. It is relatively simple to see that, if r1 = r2, then Nova’s scheme
works as is, replacing any operation with the commitments to errors or cross terms with
the evaluation of the MLE of these terms at r1 = r2. See Protocol 2 for further details, or
Section 4.3.

Finally, if r1 ̸= r2 (which, in general, will always be the case), we employ a reduction of
knowledge whereby the two claims mle[E1](r1) = v1 and mle[E2](r2) = v2 are transformed
into two claims of the form mle[E1](r) = v′1 and mle[E2](r) = v′2 for some new r′, v′1, v

′
2. At

this point, we have reached the case above, where r1 = r2, and we can proceed accordingly.
This reduction of knowledge is based on a technique used in GKR, in which the polynomials
mle[Ei] are composed with a line passing through the points r1 and r2. This is explained in
more detail in Protocol 4 from our technical overview, and in full formality in Section 4.2.

1.2 Mova compared to Nova and Hypernova

In Table 1 we provide the concrete dominating costs of Mova, Nova, and Hypernova when
used on the same R1CS structure (cf. Table 3 for more detailed costs). Later in the paper,
in Table 4, we see that, for reasonable concrete parameter choices, Mova’s Prover is roughly
5 to 10 times more efficient than Nova’s Prover, and roughly 1.2 to 1.4 times more efficient
than Hypernova’s, assuming the entries in the R1CS witness vector W are small, by which
we mean they all belong to the range {0, . . . , |W| − 1}. If the entries of W are arbitrarily
large, then the improvement is of a factor between 1.8 to 2.8 in Nova, and of about 1.02 to
1.1 in Hypernova (cf. Table 4 for some details).

On the other hand, Mova’s Verifier concrete cost is similar to Hypernova’s, but Mova
has only 3 rounds of communication, as opposed to Hypernova, which has log(m).

We implemented Mova and benchmarked its Prover against Nova and Hypernova’s
Prover, corroborating the above findings for the case where the R1CS matrices A,B,C

3For the Prover’s costs, we only display the number of field multiplications, as these can be up to an order
of magnitude more expensive than field additions. For the Verifier’s costs, we display the number of additions
and multiplications because, in many applications such as IVC or PCD, V’s algorithm will be arithmetised
and proved recursively.

5

P V Round(s)

3n+ 5mF
Nova [KST21] 2G ops., 2G exp. 2ℓF 1

Com. vector of m elements in F 2G ops., 2G exp.
Com. W

6n+ 14m F 2ℓ+O(log(m)) F
Hypernova [KS23b] 1G op., 1G exp. 1G op., 1G exp. log(m) +O(1)

Com. W

3n+ 12m F 2ℓ+ 7 log(m) + 5F
Mova (this work) 1G op., 1G exp. 1G op., 1G exp. 3

Com. W

Table 1: Dominating concrete costs of Mova, Nova, and Hypernova. Here m is the size of
the vectors used in the various R1CS relations. In particular, the R1CS matrices A,B,C are
m×m matrices. n denotes the number of nonzero entries in each of these matrices. ℓ is the
size of the public input vector. The F symbol indicates the number of field multiplications
in column 1, and the number of field additions and multiplications in column 23. The G
symbol indicates the number of group operations or exponentiations. We write “Com. a
elements in F” to mean that a commitment to a field elements of bit-size roughly log(|F|)
must be made. “Com. W” means that the witness vector W of the R1CS relation has to be
committed.

are the identity matrix. We remark that the performance improvement is expected to
be less steep when A,B,C are more complicated matrices (cf. Table 4 and Remark 5.1).
Running benchmarks for more general matrices is currently work-in-progress of ours. Further
work-in-progress is to implement the optimised method for computing the cross-term T,
described in Section 5.2.

A simplified report of the results is provided in Table 2. Further details can be found in
Section 5.1. We have made the code publicly available4.

2 Techniques

In this section we provide a technical overview of how and why Mova works.

2.1 The Mova folding scheme

Fix a finite field F and three m ×m matrices A,B,C with n = Ω(m) nonzero entries in
F. Let Com be an additively homomorphic vector commitment scheme. Define the R1CS
relation as

RcR1CS =

(x;w) = (x;W)

∣∣∣∣∣∣∣
(A · Z) ◦ (B · Z) = (C · Z),
Z = (W,x, 1),

x ∈ Fℓ, W ∈ Fm−ℓ−1

 , (1)

4https://github.com/NethermindEth/sonobe/tree/paper

6

https://github.com/NethermindEth/sonobe/tree/paper

m W entries Mova Nova Hypernova

216 ∅ 36.0216 ms 400.4406 ms 150.0280 ms

216 Small 64.5093 ms 428.9283 ms 178.5157 ms

216 Large 411.6056 ms 776.0246 ms 525.6120 ms

220 ∅ 761.5190 ms 5470.6681 ms 3195.2789 ms

220 Small 1316.0204 ms 6025.1695 ms 3749.7803 ms

220 Large 5675.1007 ms 10384.2498 ms 8108.8606 ms

Table 2: Benchmarks of Mova, Nova, and Hypernova’s Prover runtime on a single core, when
the R1CS matrices are the identity matrix, using an unoptimised way of computing the
cross term T (see Section 5.2 for the optimised method). As in Table 1, m denotes the size
of the R1CS vectors. The column W indicates whether the entries in the R1CS witness are
“small” (in the range {0, . . . , |W| − 1}) or “large” (sampled randomly in |F|). The ∅ symbol
indicates that the time to commit to W was not included. See Section 5.1 for further details.
Hypernova’s implementation does not use certain known optimizations and thus its runtime
does not correspond to the concrete costs from Table 1, cf. Remark 5.2.

where ℓ ≥ 0 is fixed, ◦ is the Hadamard product, and A·Z denotes matrix-vector multiplication
(and similarly for B ·Z, C ·Z). For the purposes of this overview, we omit several formalities;
for example we fix the public parameters F, A,B,C, n,m, ℓ and omit referring to them as
such. We also omit refering to the parameters and keys used in Com. We refer to the
beginning of Section 3 for an explanation of the basic notation used in this section and
throughout the paper.

In the Nova paper [KST21], Kothapalli, Setty and Tzialla introduce a new relation called
relaxed committed R1CS relation. This is defined as

RrcR1CS =

(x;w) = (x, ĎW, u, sE;W,E)

∣∣∣∣∣∣∣∣∣∣
(A · Z) ◦ (B · Z) = u · (C · Z) +E,

Z = (W,x, 1),

Com(W) = ĎW, Com(E) = sE,

x ∈ Fℓ,W ∈ Fm−ℓ−1

 , (2)

The Nova authors go on to describe a reduction of knowledge [KP23] (i.e. a folding scheme)
from RrcR1CS ×RrcR1CS to RrcR1CS. We reproduce the protocol in Protocol 1. Since it is
required to understand why our scheme Mova is sound, in Section 2.2 we provide a quick
overview of its knowledge soundness proof.

Suppose, for illustrative purposes, that in RrcR1CS we use two commitments schemes,
Com1 and Com2, so that W is committed with Com1 and E is committed with Com2. Then
suppose we modify Protocol 1 so that P uses Com2 to commit to T. It is clear that the
resulting scheme works in the same way as the original one.

Our first observation is that, perhaps surprisingly, one does not need Com2 to be binding
for Protocol 1 to be knowledge sound. This is readily apparent from our overview in
Section 2.2 of the knowledge soundness proof of Protocol 1. Indeed, the only property used
from Com2 is its additivity. With this observation in mind, it is not difficult to see that
one can replace Com2 in RrcR1CS and in Protocol 1 by any linear map L, and still obtain a
complete, publicly reducible, and knowledge sound folding scheme. Looking ahead, for us L

7

Protocol 1 Nova [KST21] folding scheme RrcR1CS ×RrcR1CS → RrcR1CS

Input: Let (xi;wi) = (xi, ĎWi, ui, sEi;Wi,Ei) ∈ RrcR1CS (i = 1, 2).
P receives (xi;wi) as input (i = 1, 2).
V receives xi as input (i = 1, 2).

1: First, P computes T = (A ·Z1) ◦ (B ·Z2)+ (A ·Z2) ◦ (B ·Z1)−u1 · (C ·Z2)−u2 · (C ·Z1),
and sends V a commitment sT to T.

2: V replies with a uniformly sampled challenge α← F.
3: P and V both output x = (x, ĎW, u, sE) where x = x1 + αx2, ĎW = ĎW1 + αĎW2,

u = u1 + αu2, and sE = sE1 + αsT+ α2
sE2.

4: Additionally, P outputs w = (W,E), where W = W1 +αW2 and E = E1 +αT+α2E2.

will be the map that assigns, to a vector E, the evaluation of its Multilinear Extension (MLE)
at a fixed point r (with r being the same each time L is applied), i.e. L(E) = mle[E](r).

More precisely, let L : Fn → G be an additive homomorphism from Fn to some group G.
Define:

RL
rcR1CS =

(x;w) = (x, ĎW, u, ℓE;W,E)

∣∣∣∣∣∣∣∣∣∣
(A · Z) ◦ (B · Z) = u · (C · Z) +E,

Z = (W,x, 1),

Com(W) = ĎW,L(E) = ℓE,

x ∈ Fℓ,W ∈ Fm−ℓ−1

 .

Then the same proof as in Section 2.2 (i.e. the knowledge soundness proof of Nova) can
be adapted to show that Protocol 2 is a reduction of knowledge from RL

rcR1CS ×RL
rcR1CS to

RrcR1CS. We use the color blue to highlight the differences between RrcR1CS and RL
rcR1CS,

and between Protocol 1 and Protocol 2.

Protocol 2 Mova folding scheme RL
rcR1CS ×RL

rcR1CS → RL
rcR1CS

Input: Let (xi;wi) = (xi, ĎWi, ui,L(Ei);Wi,Ei) ∈ RL
rcR1CS (i = 1, 2).

P receives (xi;wi) as input (i = 1, 2).
V receives xi as input (i = 1, 2).

1: First, P computes T = (A · Z1) ◦ (B · Z2) + (A · Z2) ◦ (B · Z1)− u1 · (C · Z2)− u2 · (C · Z1), and
sends L(T) to V.

2: V replies with a uniformly sampled challenge α← F.
3: P and V both output x = (x, ĎW, u,L(E)) where x = x1 +αx2, ĎW = ĎW1 +αĎW2, u = u1 +αu2,

and L(E) = L(E1) + αL(T) + α2L(E2).
4: Additionally, P outputs w = (W,E), where W = W1 + αW2 and E = E1 + αT + α2E2.

In fact, when looking only at folding schemes for RrcR1CS×RrcR1CS → RrcR1CS, it is even
possible to forget altogether about the commitments to E and the linear maps L. Another way
of seeing this is that, when Protocol 2 is instantiated with L : Fm → {0} being a degenerate
map that maps all vectors to 0, then Protocol 2 is still a reduction of knowledge from
RL

rcR1CS×RL
rcR1CS toRL

rcR1CS. We remark, however, that for such degenerate map, the relation
RL

rcR1CS is equally degenerate. Indeed, for any x, ĎW = Com(W), u,W, there exists E such
that (x;w) = (x, ĎW, u, 0;W,E) ∈ RL

rcR1CS. It suffices to take E = (A ·Z)◦ (B ·Z)−u(C ·Z),
where Z = (W,x, 1).

8

The situation is more involved if one wishes to fold an instance-witness pair from RR1CS

with an instance-witness pair from RrcR1CS, i.e. if one wants to build a reduction of knowledge
from RR1CS ×RrcR1CS to RrcR1CS. One can easily construct one as follows: first, design a
reduction of knowledge Π1 from RR1CS to RrcR1CS:

Π1 : RR1CS → RrcR1CS.

Then, build a reduction of knowledge Π2 from RrcR1CS ×RrcR1CS to RrcR1CS:

Π2 : RrcR1CS ×RrcR1CS → RrcR1CS.

Once this is done, use the parallel composition theorem from [KP23] (cf. Theorem 3.4)
to obtain a reduction of knowledge Π̂1 from RR1CS ×RrcR1CS to RrcR1CS ×RrcR1CS (here
we compose in parallel Π1 and the trivial reduction of knowledge from RrcR1CS to RrcR1CS

where the instance-witness pair from RrcR1CS remains unchanged). Then, use the sequential
composition theorem from [KP23] (cf. Theorem 3.3) to obtain the desired reduction of
knowledge (here we compose Π̂1 with Π2).

We next describe a simple way to obtain a reduction of knowledge Π1 from RR1CS to
RrcR1CS. This construction is implicit in the Nova paper [KST21]. Let (x;w) = (x;W) ∈
RcR1CS. Then P sends a commitment ĎW to W, and P and V output x′ = (x, ĎW, u, sE).
P additionally outputs w′ = (W,E), where u = 1 and E = 0. Here, we assume V has
precomputed Com2(0) (with a fixed commitment randomness that is reused every time this
reduction of knowledge is applied).

Thus, even though we concluded above that the commitments to E are not necessary for
the Nova folding scheme, one does in principle need to include them when reducing fromRR1CS

to RrcR1CS, and afterwards carry them over to the reduction RrcR1CS ×RrcR1CS → RrcR1CS

(Protocol 1).
Our second main observation is the following: assume one has designed a reduction of

knowledge from RR1CS to RL
rcR1CS, for some efficient linear function L, in particular, for L

not requiring committing to the error vector. Then, following the same strategy as above,
we obtain a reduction of knowledge from RR1CS ×RL

rcR1CS to RL
rcR1CS. In particular, the

resulting scheme does not require committing to the error vector E, instead, it requires
computing L(E). Again, looking ahead, and informally speaking, we will take L to be the
evaluation of mle[E] at a random point sampled by the Verifier.

As we will see next, our final Mova folding scheme almost follows the blueprint above.
The difference is that, instead of using a reduction from RR1CS to RL

rcR1CS for a suitable
map L, we describe a reduction from RR1CS to a union of relations of the form RL

rcR1CS, for
different maps L.

More precisely, define

Racc =

(x;w) = (x, ĎW, u, ℓE, r;W,E)

∣∣∣∣∣∣∣∣∣∣
(A · Z) ◦ (B · Z) = u · (C · Z) +E,

Z = (W,x, 1),

Com(W) = ĎW, mle[E](r) = ℓE,

x ∈ Fℓ,W ∈ Fm−ℓ−1, r ∈ Flogn

 . (3)

9

Notice that, for a fixed r ∈ Flogn, this relation becomes RLr
rcR1CS, where Lr maps vectors

E from Fn to the value mle[E](r), i.e. Lr(E) = mle[E](r). Indeed,

Racc =
⋃

r∈Flogn

RLr
rcR1CS.

In Protocol 3 we describe our reduction of knowledge from RR1CS to Racc. The main idea is
that the constraint Com2(E) = Com2(0) in Nova’s reduction of knowledge, is replaced by the
constraint mle[E](r) = 0 for a point r ∈ Flogn randomly sampled by V. Loosely speaking, as
we see later in the paper, by the Schwartz-Zippel lemma, this forces E to be the zero vector
with high probability, and allows the extractor to obtain a satisfying witness for the initial
instance from RR1CS. We remark that the knowledge soundness proof of this reduction of
knowledge is not trivial (cf. Lemma 4.1 and Remark 4.3). One of the main conceptual points
in the proof is that the vector E is implicitly committed by the commitment to the witness
W, because E = (A ·Z) ◦ (B ·Z)− u(C ·Z). This comes up in a few other spots throughout
our proofs.

Protocol 3 Mova’s reduction of knowledge RR1CS → Racc

Input: Let (x;w) = (x;W) ∈ RR1CS. P receives (x;w) as input. V receives
x.

1: P computes a commitment ĎW = Com(W) to W, and sends ĎW to V.
2: V samples r← Flogn.
3: P and V both output x′ = (x, ĎW, u, ℓE, r) where u = 1 and ℓE = 0.
4: Additionally, P outputs w′ = (W,E), where E = 0.

Are we done? Not yet, since we have not described a reduction from RcR1CS to RL
rcR1CS

for a suitable L, and thus we cannot use our reduction from RL
rcR1CS ×RL

rcR1CS to RL
rcR1CS

from Protocol 2. We need to build instead a reduction of knowledge from Racc ×Racc to
Racc. We do this in two steps:

• First, we describe a reduction of knowledge from Racc ×Racc to Requal, where Requal

consists of pairs (x1,w1), (x2,w2) from Racc with the same evaluation point r both in
x1 and x2 . Precisely,

Requal =
{
(x1,x2;w1,w2)

∣∣∣ Exists r ∈ Flogn such that (xi;wi) ∈ RLr
rcR1CS, i = 1, 2

}
• Observe that an instance-witness pair from Requal consists of two instance-witness
pairs each from RLr

rcR1CS for some r ∈ Flogn. Hence, here we can use our reduction
from RLr

acc ×RLr
acc to RLr

acc in Protocol 2.

Once this is done, it suffices to use the sequential and parallel composition theorems from
[KP23] (cf. Theorems 3.3 and 3.4) so as to obtain our desired reduction from RR1CS ×Racc

to Racc. Precisely, the proof workflow is as follows: First, use the parallel composition
theorem to obtain a reduction from RR1CS ×Racc to RR1CS ×Racc (composing Protocol 3
and the trivial reduction from Racc to Racc). Then, use the reduction from Racc ×Racc to
Requal from Protocol 4. Finally, Protocol 2 is naturally adapted to become a reduction of
knowledge from Requal to Racc.

10

In Protocol 4 we describe our reduction from Racc×Racc to Requal. The scheme is based
on what we call the “point-vs-line” argument (cf. Section 4.5.2 from Thaler’s book [Tha22]).

The point-vs-line argument allows to take two evaluation claims for multilinear poly-
nomials (at different points) and turn them into evaluation two evaluation claims at the
same point. The argument works as follows. Say we have two claims of the form f1(r1) = c1
and f2(r2) = c2 for some multilinear polynomials f1, f2 in n variables, some r1, r2 ∈ Fn, and
some c1, c2 ∈ F. Let ℓ : F→ Fn be the parameterised line such that ℓ(0) = r1 and ℓ(1) = r2,
and set hi := fi ◦ ℓ for i = 1, 2. Then, we have that the hi are univariate polynomials of
degree at most n, and h1(0) = c1, h2(1) = c2. Once this has been checked, we ask for
the Verifier to pick a random uniform β ∈ F, and the new claims are fi(r

′) = c′i, where
r′ := ℓ(β) and c′i := hi(β) for i = 1, 2. Importantly, the new claims are about the evaluations
of the fi at the same point r′. We will show that this is a knowledge sound reduction of
knowledge from the initial evaluation claims to the new evaluation claims at the same point
(see Section 7.1).

Protocol 4 Mova’s reduction of knowledge Racc ×Racc → Requal

Input: P receives (xi;wi) = (xi, ĎWi, ui, ℓEi , ri;Wi,Ei) ∈ Racc as input, for i = 1, 2. V
receives x1,x2 as input.

1: If r1 = r2, then P outputs (pp,x1,x2;w1,w2), and V outputs (pp,x1,x2).
Otherwise, let ℓ : F→ Flog(m) be the linear function satisfying ℓ(0) = r1, ℓ(1) = r2. P sends V
polynomials h1, h2 of degree at most log(m). Supposedly,

hi(X) := mle[Ei] ◦ ℓ(X), i = 1, 2.

2: V checks that h1(0) = v1 and h2(1) = v2, and aborts if this check fails. V samples a random
β ← F.

3: P and V set ℓ′Ei
:= hi(β) and r′ := ℓ(β).

4: P and V output x′
i = (xi, ĎWi, ui, ℓ

′
Ei
, r′) for i = 1, 2.

5: Additionally, P outputs w′
i = (Wi,Ei), for i = 1, 2.

2.2 Knowledge soundness proof of Protocol 2

For completeness, in this section we provide a brief overview of the knowledge soundness
proof of our reduction of knowledge from RL

rcR1CS×RL
rcR1CS to RL

rcR1CS cf. (Protocol 2). The
knowledge soundness proof of Nova [KST21] (i.e. Protocol 1) can be recovered by replacing
L with any homomorphic commitment Com2 (typically, Com2 = Com).

The proof uses the forking lemma for reductions of knowledge [KP23, KST21, BCS21].
This lemma states that, to prove that a reduction of knowledge is knowledge sound, it
suffices to describe a PPT extractor that outputs valid witnesses, given a tree of accepting
transcripts.

When applied to Protocol 1, the forking lemma can be applied in the following way. Let
x1,x2 be a pair of instances for the relation RL

rcR1CS, let

tr(i) = (ℓ
(i)
T , α(i)), i = 1, 2, 3

11

be three accepting transcripts for Protocol 1, and let (x(i),w(i)) be instance-witness pairs in
RL

rcR1CS output after each of the transcripts tr(i), i = 1, 2, 3. Assume the challenges α(i) are

pairwise different, and that ℓ
(1)
T = ℓ

(2)
T = ℓ

(3)
T , thus we can omit the superscript and write

ℓT. Now the forking lemma states that knowledge soundness of Protocol 1 is guaranteed
by the existence of a PPT extractor Ext that outputs valid witnesses w1,w2, when given
x1,x2, τ

(i) (i = 1, 2, 3) as input.
Let (x(i);w(i)) = (x(i), ĎW(i), u(i), sE(i);W(i),E(i)). By correctness of transcripts, it holds

that
ĎW(i) = ĎW1 + α(i)

ĎW2, i = 1, 2, 3. (4)

Using interpolation for i = 1, 2, Ext constructs vectors W∗
1,W

∗
2 such that W(i) = W∗

1 +
α(i)W∗

2 for i = 1, 2. Using the linear properties of Com together with Eq. (4), one deduces
that

Com(W∗
1) + α(i)Com(W∗

2) = Com(W(i)) = ĎW(i) = ĎW1 + α(i)
ĎW2, i = 1, 2.

Then, again by interpolation, Com(W∗
1) =

ĎW1 and Com(W∗
2) =

ĎW2. Now

Com(W(3)) = ĎW(3) = ĎW1 + α(3)
ĎW2 = Com(W∗

1 + α(3)W∗
2),

and hence, by the binding property of Com, we have W(3) = W∗
1 + α(3)W∗

2, e.w.n.p.
Next, by correctness of transcripts,

ℓE(i) = ℓE1 + α(i)ℓT + (α(i))2ℓE2 , i = 1, 2, 3. (5)

Using interpolation, Ext constructs vectors E∗
1,E

∗
2,T

∗ such that E(i) = E∗
1+α(i)T∗+(α(i))2E∗

2

for i = 1, 2, 3. Now, similarly, as above, using the linearity of L, together with Eq. (5), one
obtains

L(E∗
1) + α(i)L(T∗) + (α(i))2L(E∗

2) = ℓE1 + α(i)ℓT + (α(i))2ℓE2 .

Again by interpolation, L(E∗
1) = ℓE1 ,L(E∗

2) = ℓE2 ,L(T∗) = ℓT.
Now Ext outputs w1 = (W∗

1,E
∗
1) and w2 = (W∗

2,E
∗
2). We are left to show that

(A ·Zj) ◦ (B ·Zj) = uj · (C ·Zj) +Ej for Zj = (Wj ,xj , 1), j = 1, 2. This follows in the same
exact way as in the Nova paper [KST21], and does not require using any properties of Com
or L.

3 Preliminaries

Throughout the article we fix a finite field F. Given an integer k ≥ 1 we denote [k] := {1, . . . , n}.
We let B := {0, 1}. Similarly

Bk = {0, 1}k := {(b1, . . . , bk) | bi ∈ B, for all i ∈ [k]}

is the hypercube of dimension k, or, in other words, the set of all sequences of k bits.
For n ≥ 1 and d ≥ 0, we let F≤d[X] be the set of multivariate polynomials in the variables

X = (X1, . . . , Xn) with degree in each variable at most d.
Given an m1 ×m2 matrix A and a vector Z of size m2, we write A · Z to denote the

multiplication of the matrix A with Z in column form.

12

Given two interactive algorithms A1,A2, we let

⟨A1(inp1),A2(inp2)⟩(inp3)

be the random variable whose outcome is the output of the interaction of A1 and A2 on
inputs (inp1, inp3) and (inp2, inp3), respectively.

Negligible functions We use λ to denote the security parameter. A function f(λ) is said
to be negligible if for all c ∈ N and k ∈ R with k > 0, there exists λ0 such that f(λ) < kλ−c

for all λ ≥ λ0. In that case we write f(λ) = negl(λ). Whenever an event occurs with
probability 1 − negl(λ) we will say that it holds except with negligible probability, and we
abbreviate this as e.w.n.p.

Remark 3.1. Let f(λ), g(λ) be two negligible functions and g(λ) ̸= 1 for all λ. Define
h(λ) = f(λ)/(1− g(λ)). Then h(λ) is also negligible. Indeed, let λ0 be such that g(λ) < 1

2 · 1
for all λ ≥ λ0. Thus for such λ we have 1− g(λ) > 1

2 . Thus

h(λ) =
f(λ)

1− g(λ)
< 2 · f(λ), for all λ ≥ λ0.

It is clear that the function 2 · f(λ) is negligible and a function dominated by a negligible
function is again negligible.

Indexed relations An indexed relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗. Given
(pp,x;w) ∈ R, the string pp are the public parameters (sometimes referred to as index in
the literature); x is called an instance, and w a witness. In this work we often interpret
instances and witnesses as vectors of field elements, natural numbers, and field descriptions.

All relations considered in this work are indexed relations. We always use the syntax
(pp,x;w) to denote a triple in R. The usage of ; denotes a separation between public and
private data.

3.1 Multilinear polynomials

Let n ≥ 1 and let X = (X1, . . . , Xn) be a tuple of variables. It is well-known that a
multilinear polynomial f(X) ∈ F≤1[X] is uniquely determined by the values it takes on Bn,
i.e. its restriction to Bn. In other words, for any two polynomials f, g ∈ F≤1[X] the following
holds

f(x) = g(x) for all x ∈ Bn =⇒ f = g.

Further, given a map f : Bn → F, there always exists a unique multilinear polynomial in
n variables, denoted mle[f](X), such that mle[f](x) = f(x) for all x ∈ Bn. It is given by the
expression

mle[f](X) :=
∑
x∈Bn

f(x)ẽq(x;X) (6)

where ẽq(x;X) is the unique multilinear polynomial in n variables that takes the value 0 on
all points of the hypercube Bn, except at x where it takes the value 1. Precisely,

ẽq(x;X) :=
∏
i∈[n]

(xiXi − (1− xi)(1−Xi)) .

13

This unique multilinear polynomial mle[f](X) is called the multilinear extension (MLE) of
f . Given a vector v = (v1, . . . , vN) ∈ FN , where N = 2n, we define the MLE of v as the
MLE of the map v : Bn → F assigning to each element x ∈ Bn the element vx, where here
we interpret x as the natural number whose binary representation is x. We denote the MLE
of v by mle[v](X).

Throughout the paper we use the following observation without further reference:

Lemma 3.2. Let v,u ∈ FN be two vectors, and let r ∈ Fn. Then

mle[v + u](r) = mle[v](r) +mle[u](r)

Proof. This follows immediately from Eq. (6).

3.2 Commitment schemes

Throughout this section we follow [KST21].

Definition 3.1. A commitment scheme for vectors in Fk is a tuple of three protocols

• Gen(1λ, k)→ ppCom: Takes a security parameter 1λ and a length parameter k. Outputs
public parameters ppCom.

• Com(ppCom,W, s)→ C: Takes as input ppCom, a vector W ∈ Fk and s ∈ F. Outputs
a commitment C.

• Open(ppCom, C,W, s)→ {0, 1}: Checks whether C = Com(ppCom,W, s).

The scheme is required to be binding. This means that for any PPT adversary A, the
following probability is negl(λ):

Pr


ppCom ← Gen(1λ, k),

b0 = b1 = 1, (C,W0 ∈ Fk,W1 ∈ Fk, s0 ∈ F, s1 ∈ F)← A(ppCom),
W0 ̸= W1 b0 ← Open(ppCom, C,W0, s0),

b1 ← Open(ppCom, C,W1, s1)


Throughout the paper we fix a commitment scheme that is succinct and additively

homomorphic, as defined below.

Definition 3.2 (Succinctness). A commitment scheme for vectors in Fk, (Gen,Com,Open),
is succinct if for all ppCom ← Gen(1λ, k), and for any W ∈ Fk, s ∈ F, |Com(ppCom,W, s)| =
Oλ(polylog(|W|)).

Definition 3.3 (Additively Homomorphic). A commitment scheme for vectors in Fk,
(Gen,Com,Open), is additively homomorphic if for all ppCom ← Gen(1λ, k), and for any
W1,W2 ∈ Fk, s1, s2 ∈ F, it holds that Com(ppCom,W1, s1) + Com(ppCom,W2, s2) =
Com(ppCom,W1 +W2, s1 + s2).

14

3.3 Reductions of knowledge

Reductions of knowledge were formally defined in [KP23]. We reproduce the main concepts
from [KP23] that will be used in this paper.

Definition 3.4 (Reduction of Knowledge). Consider indexed relations R1 and R2 consisting
of public parameters, input, witness tuples. A reduction of knowledge from R1 to R2 is
defined by PPT algorithms (Gen,P,V) denoting the generator, the Prover, and the Verifier,
respectively, with the following interface.

• Gen(1λ)→ pp: Takes security parameter λ. Outputs public parameters pp.

• P(pp,x1,w1)→ (x2;w2): Takes as input public parameters pp, and input-witness pair
(x1;w1). Interactively reduces the input (pp,x1;w1) ∈ R1 to a new input (pp,x2;w2) ∈
R2.

• V (pp,x1) → x2: Takes as input public parameters pp, and input x1 associated with
R1. Interactively reduces the task of checking x1 to the task of checking a new input
x2 associated with R2.

Let ⟨P,V⟩ denote the interaction between P and V. We treat ⟨P,V⟩ as a function that takes
as input (pp,x1,w1) and runs the interaction on Prover’s input (pp,x1,w1) and Verifier’s
input (pp,x1). At the end of the interaction, ⟨P,V⟩ outputs the Verifier’s input x2 and the
Prover’s witness w2. A reduction of knowledge (Gen,P,V) satisfies the following conditions.

1. Perfect Completeness: For any PPT adversary A, given pp ← Gen(1λ) and
(x1;w1)← A(pp) such that (pp,x1;w1) ∈ R1, we have that the Verifier accepts at the
end of the protocol, the Prover’s output is equal to the Verifier’s output, and

(pp, ⟨P,V⟩(pp,x1,w1)) ∈ R2.

2. Knowledge Soundness: For any expected polynomial-time adversaries A and P∗,
there exists an expected polynomial-time extractor Ext such that given pp← Gen(1λ)
and (x1, st)← A(pp), we have that

Pr[(pp,x1,Ext(pp,x1, st)) ∈ R1] ≈ Pr[(pp, ⟨P∗,V⟩(pp,x1, st)) ∈ R2].

3. Public Reducibility: There exists a deterministic polynomial-time function φ such
that for any PPT adversary A and expected polynomial-time adversary P∗, given
pp ← Gen(1λ), (x1, st) ← A(pp), and (x2;w2) ← ⟨P∗,V⟩(pp,x1, st) with interaction
transcript τ , we have that φ(pp,x1, τ) = x2.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge from relation
R1 to relation R2.

Theorem 3.3 (Sequential Composition, Theorem 5 of [KP23]). Consider ternary relations
R1, R2, and R3. For reductions of knowledge Π1 = (Gen,P1, V1) : R1 → R2 and Π2 =
(Gen,P2,V2) : R2 → R3, we have that Π2 ◦ Π1 = (Gen,P,V) is a reduction of knowledge
from R1 to R3 where

P(pp,x1,w1) = P2(pp,P1(pp,x1,w1))

V(pp,x1) = V2(pp,V1(pp,x1,w1)).

15

Theorem 3.4 (Parallel Composition, Theorem 6 of [KP23]). Consider ternary relations
R1, R2, R3, and R4. For reductions of knowledge Π1 = (Gen,P1,V1) : R1 → R2 and
Π2 = (Gen,P2,V2) : R3 → R4, we have that Π1 × Π2 = (Gen,P,V) is a reduction of
knowledge from R1 ×R3 to R2 ×R4 where

P(pp, (x1,x3), (w1,w3)) = (P1(pp,x1,w1),P2(pp,x3,w3))

V(pp, (x1,x3)) = (V1(pp,x1),V2(pp,x3)).

Definition 3.5 (Tree of transcripts). Consider an m-round public coin interactive protocol
(Gen,P,V) satisfying Definition 3.4. A (n1, . . . , nm)-tree of accepting transcripts, for an
input x, is a rooted tree of depth m, with each node of depth i having ni descendants, such
that:

• each vertex of layer i is a Prover’s message of round i;

• each edge connecting a node of layer i to a node of layer i+ 1 is labeled by a different
Verifier’s challenge from round i;

• each leaf of layer m is labeled with an accepting instance-witness pair output, that
corresponds to the interaction along the path.

Lemma 3.5 (Tree Extraction Lemma). Consider an m-round public-coin interactive pro-
tocol (Gen,P,V) that satisfies the interface described in Definition 3.4 and satisfies perfect
completeness. Then (Gen,P,V) is a reduction of knowledge if there exists a PPT extractor
χ such that for all instances x, outputs a satisfying witness w with probability 1− negl(λ),
given a (n1, . . . , nm)-tree of accepting transcripts for x where the Verifier’s challenges are
sampled from a space Q such that |Q| = O(2λ), and

∏
i ni = poly(λ).

4 The Mova folding scheme

Throughout the rest of the paper we fix a security parameter λ and a finite field F with
|F|−1 = negl(λ). Further, we let pp denote public parameters ppR1CS = (F,m, n, ℓ, A,B,C),
where m,n, ℓ ≥ 0 are nonnegative integers with m ≤ |F|; A,B,C are m×m matrices each
with at most Ω(n) nonzero entries in F. The parameter ℓ denotes the size of public input
vectors. We fix a vector commitment scheme (Gencom,Com,Open) for vectors in Fm, and
public parameters ppCom ← Gencom(1

λ,m). Then, we let pp = (ppR1CS, ppcom).
In this section we describe a reduction of knowledge from RR1CS ×Racc to Racc. Along

the way, we also construct a reduction of knowledge from Racc ×Racc to Racc. Here RR1CS

denotes the R1CS relation:

RR1CS :=

(ppR1CS,x = x;w = W)

∣∣∣∣∣∣∣
x ∈ Fℓ, W ∈ Fm−ℓ−1

(A · Z) ◦ (B · Z) = C · Z
Z = (W,x, 1)

 . (7)

16

The relation Racc is defined as

Racc :=



pp,

x = (x, v, u, ĎW, r);

w = (W,E, s)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ Fℓ, E ∈ Fm, r ∈ Flogm,

v, s ∈ F, W ∈ Fm−ℓ−1

(A · Z) ◦ (B · Z) = u · (C · Z) +E

Z = (W,x, u)

Com(ppCom,W, s) = ĎW,

mle[E](r) = v


. (8)

To construct our reduction of knowledge from RR1CS ×Racc to Racc we describe three
separate reductions of knowledge, and then we apply the sequential and parallel composition
theorems from [KP23] (cf. Theorems 3.3 and 3.4) to obtain our desired protocol. Precisely,
we describe reductions of knowledge for:

• RR1CS to Racc. This reduction transforms an instance-witness pair from RR1CS into
an instance-witness pair from Racc.

• Racc ×Racc to Requal. Here we define Requal as follows:

Requal =

{
(pp, (x1,x2); (w1;w2))

∣∣∣∣∣ (pp,xi;wi) ∈ Racc, i = 1, 2,

x1.r = x2.r

}
.

In words, Requal is the set of pairs of instance-witness tuples from Racc that have the
same evaluation point.

• Requal to Racc. Intuitively, this reduction transforms two instance-witness pairs
(pp,x1;w1), (pp,x2;w2) from Racc with x1.r = x2.r, into an instance-witness pair
from Racc.

In Section 4.4 we put together these reductions of knowledge and describe the full Mova
folding scheme.

4.1 From RR1CS to Racc

In Protocol 5 we describe Mova’s reduction of knowledge from RR1CS to Racc. In Lemma 4.1
we prove that the protocol is, indeed, a reduction of knowledge. In Remark 4.3 we explain
why the proof of Lemma 4.1 is more involved than one would expect at first.

Protocol 5 Mova’s reduction of knowledge RR1CS → Racc

Input: P receives (pp,x;W) ∈ RR1CS. V receives (pp,x).

1: P samples s← F, computes the commitment ĎW := Com(ppCom,W, s) and sends it to V.
2: V samples a random vector r← Flogm and sends r to P.
3: P and V set v = 0, u = 1, and output xacc where xacc = (x, v, u, ĎW, r). Additionally, P outputs
wacc = (W,E = 0, s).

Lemma 4.1. Protocol 5 is a reduction of knowledge from RR1CS to Racc.

17

Proof. Public reducibility. We construct a deterministic function φ, with input (pp,x, τ),
that outputs x′. Suppose x = (x) and τ = (ĎW, r), otherwise the function φ aborts. The
function φ takes the values ĎW and r from the transcript τ , then outputs (x, v = 0, u =
0, ĎW, r).

Let A,P∗ be PPT adversaries and let (x, st) ← A(pp). Let τ be a transcript of the
interaction between P∗ and V, with input (pp,x, st), following Protocol 5. Let (x′;w′) be the
output of this interaction. It is not hard to see that φ(pp,x, τ) is the output that V obtains
from the interaction with P∗, following Protocol 5, after having received ĎW and sampled r.

Perfect completeness. Let A be a PPT adversary and let (x,w) ← A(pp) be such that
(pp,x;w) ∈ RR1CS. Write x = (x) and w = (W). Let x′ = (x, v = 0, u = 0, ĎW, r)
and w

′ = (W,E = 0, s) be the outputs of V and P after honestly executing Proto-
col 5 with inputs (pp,x;w). We have that (pp,x′;w′) is in Racc. Indeed, the relation
(A · Z) ◦ (B · Z) = u · (C · Z) +E is satisfied by the choice of E = 0, u = 1, and by the fact
that (pp,x;w) ∈ RR1CS. Moreover, since E = 0, also mle[E](r) = v = 0.

Knowledge soundness. Let A and P∗ be expected polynomial-time adversaries. Let (x, st)←
A(pp), with x = (x).

Fix the notation ⟨P∗,V⟩ = ⟨P∗,V⟩(pp,x, st), i.e. ⟨P∗,V⟩ is interactive protocol in which P∗

and V interact following Protocol 3, with inputs pp,x and st. We also look at ⟨P∗,V⟩ as a ran-
dom variable modelling the output of such interaction. Let εtotal = Pr[(pp, ⟨P∗,V⟩(pp,x, st)) ∈
Racc].

The extractor Ext proceeds as follows. Ext receives (pp,x, st) as inputs. Then:

• Step 1. Ext runs the protocol ⟨P∗,V⟩ once. Let (pp,x(1);w(1)) be the output of this
interaction. If (pp,x(1);w(1)) ̸∈ Racc, then Ext aborts. Otherwise, (pp,x(1);w(1)) ∈
Racc. Say we have

x
(1) = (x, v(1) = 0, u(1) = 1, ĎW, r(1)), w

(1) = (W(1),E(1), s(1)).

If E(1) = 0, then Ext terminates and outputs W(1).

• Step 2. Next, Ext repeatedly runs ⟨P∗,V⟩, keeping always the same first message sent
by P∗ to be ĎW. To do so, Ext rewinds P∗ only to the point where P∗ has already sent
ĎW.

As soon as Ext obtains an output (pp,x(2);w(2)) ∈ Racc, Ext terminates and outputs
W(1).

Let E
ĎW be the event that P∗’s first message in Step 1 of Ext is ĎW. Fix one such first message

ĎW, and let ε be the probability that (pp, ⟨P∗,V⟩(pp,x, st)) ∈ Racc. We next prove that,
conditioned on E

ĎW, Ext runs in expected polynomial time and outputs a valid witness for
(x) with probability ε− negl(λ). For readability purposes, we avoid for now referring to ĎW
in our notation. In what follows, unless stated otherwise, we consider all probabilities and
events referring to Ext as conditioned on E

ĎW.
First of all, we prove that Ext terminates in expected polynomial time. Notice that

Ext always runs ⟨P∗,V⟩ once in Step 1. Let E be the event that Ext does not abort in

18

Step 1, which happens with probability ε. Denote by Z the random variable (over Ext’s
random coins) representing the number of times Ext runs the interaction ⟨P∗,V⟩ in Step 2
(if E(1) = 0 and, thus, Ext terminated, then Z = 0). Let Ztotal be the random variable (over
Ext’s random coins) representing the total number of times ⟨P∗,V⟩ is run when executing
Ext. We have

E[Ztotal] = 1 + Pr[E] · E[Z | E] ≤ 1 + ε · 1
ε
= 2. (9)

Hence, Ext runs in expected polynomial time, and it does not abort with probability at least
ε.

Let Ebinding be the event that Ext, on inputs (ppCom,x, st) is not able to break the
binding property of the commitment scheme Com, i.e. Ebinding is the event that at no point
Ext has computed two vectors U1,U2 and elements s1, s2 such that Com(ppCom,U1, s1) =
Com(ppCom,U2, s2). We have Pr[Ebinding] = 1 − negl(λ). Let Ezero be the event that both
E occurs and the vector E(1) output at the end of Step 1 satisfies E(1) = 0. Similarly,
let Enonzero be the event that E occurs and E(1) ̸= 0. Now, conditioning on E occurring,
these two events are complementary and mutually exclusive. Hence, by the law of total
expectation,

E[Z | E] = E[Z | Enonzero or Ezero]
=E[Z | Enonzero]Pr[Enonzero] + E[Z | Ezero]Pr[Ezero]
=E[Z | Enonzero]ε1 + E[Z | Ezero](1− ε1),

(10)

where ε1 = Pr[Enonzero]. Note that E[Z | Ezero] = 0, because if, at the end of Step 1, E(1) = 0,
then the extractor terminates. We now make the following claim:

Claim 4.2. E[Z | Enonzero, Ebinding]−1 = negl(λ).

Assume Claim 4.2 is true for now. We next argue that ε1 = negl(λ). Note that this
will complete the proof (barring the proof of Claim 4.2)that Ext runs in PPT time and
outputs a valid witness with probability ε− negl(λ), conditioned on P∗’s first message being
ĎW, i.e. conditioned on the event EW. Indeed, if Ext does not abort and E(1) = 0, then
clearly (pp,x(1);w(1)) ∈ RR1CS. Further, we have already argued that Ext runs in expected
polynomial time, and that it does not abort with probability at least ε. If, additionally, the
probability that Ext does not abort and E(1) ̸= 0 is negligible, i.e. ε1 = negl(λ), then we
conclude that Ext is a PPT algorithm that outputs a valid witness for x with probability
ε− negl(λ).

We now prove that ε1 = negl(λ), assuming that Claim 4.2 is true. Indeed, plugging (10)
into (9), and using E[Z | Ezero] = 0, we obtain

2 ≥ E[Ztotal] = 1 + εE[Z | E] = 1 + εε1E[Z | Enonzero] (11)

Using again the law of total expectation,

E[Z | Enonzero]
=E[Z | Enonzero, Ebinding]Pr[Ebinding] + E[Z | Enonzero,¬Ebinding]Pr[¬Ebinding]
≥E[Z | Enonzero, Ebinding]Pr[Ebinding].

(12)

19

Note that ε1 ≤ ε, since ε1 is the probability that Ext does not abort at Step 1, which occurs
with probability ε, and, additionally, E(1) ̸= 0. Hence from (11), (12), and Claim 4.2 we
obtain

ε21 ≤ ε1ε ≤ E[Z | Enonzero, Ebinding]−1Pr[Ebinding]−1 = negl(λ),

where the last equality follows from Remark 3.1 and the fact that E[Z | Enonzero, Ebinding]−1 =
negl(λ) and Pr[Ebinding] = 1 − negl(λ). This implies that ε1 = negl(λ), as needed. It only
remains to prove Claim 4.2.

Proof of Claim 4.2. Assume Ebinding holds, i.e. Ext does not break the binding property of
the commitment scheme Com. Assume further we run Ext up to Step 1 and Enonzero holds.
Then Ext does not abort. Let x(1) = (x, v(1) = 0, u(1) = 1, ĎW, r(1)), w(1) = (W(1),E(1), s(1))
be the output of ⟨P∗,V⟩ at the end of Step 1. By assumption E(1) ̸= 0.

By construction of Ext, during Step 2, Ext successively repeats an experiment Ξ, until Ξ
is successful. The experiment Ξ consists in running ⟨P∗,V⟩, and Ξ is successful if the output
(x(2),w(2)) of ⟨P∗,V⟩ is in Racc. Importantly, note that the random challenge r(2) sent by V
during this experiment is uniformly random and independent of E(1).

Let x(2) = (x, v(2) = 0, u(2) = 1, ĎW, r(2)), w(2) = (W(2),E(2), s(2)) be an output of
⟨P∗,V⟩ obtained after running the experiment Ξ, not necessarily successfully. We argue that
if (pp,x(2),w(2)) ∈ Racc, then mle[E(1)](r(2)) = 0.

Indeed, assume (pp,x(2),w(2)) ∈ Racc, and set Z(i) = (W(i),x, 1) for i = 1, 2. Let
E(i) = (A ·Z(i)) ◦ (B ·Z(i))− (C ·Z(i)). Since (pp,x(1);w(1)) and (pp,x(2);w(2)) are in Racc,
we have

Com(ppCom,W
(1), s(1)) = ĎW = Com(ppCom,W

(2), s(2)).

Since we assumed Ebinding holds, it must hold that W(1) = W(2), and hence also Z(1) = Z(2).
Using again that (pp,x(1);w(1)) and (pp,x(2);w(2)) are in Racc, we have that, for i = 1, 2,

E(i) = (A · Z(i)) ◦ (B · Z(i))− (C · Z(i)). (13)

Using twice Eq. (13), the fact that Z(1) = Z(2), and that mle[E(2)](r(2)) = 0, we obtain

mle[E(1)](r(2)) = mle[(A · Z(1)) ◦ (B · Z(1))− (C · Z(1))](r(2))

= mle[(A · Z(2)) ◦ (B · Z(2))− (C · Z(2))](r(2)) = mle[E(2)](r(2)) = 0,
(14)

as required.
Hence, for Ξ to be successful, it is necessary that r(2) is a root of mle[E(1)](X). Since

E(1) ̸= 0, we have mle[E(1)](X) ̸= 0. Then, by Schwartz-Zippel lemma, and because r(2) is
sampled uniformly at random after E(1) is determined, the probability that Ξ is successful
is at most |F|−1 = negl(λ). Since E[Z | Enonzero] = Pr[Ξ is successful]−1, we conclude that
E[Z | Enonzero]−1 = negl(λ). This completes the proof of Claim 4.2.

Recall that E
ĎW denotes the event that P∗’s first message at Step 1 of Ext is ĎW. We

have so far proved that, conditioned on E
ĎW, Ext runs in expected polynomial time and

outputs a valid witness for x with probability ε− negl(λ), where ε is the probability that
(pp, ⟨P∗,V⟩) ∈ RR1CS, conditioned on P∗’s first message being ĎW. Let us denote now ε by
ε

ĎW. Since the aforementioned negligible function negl(λ) also depends on ĎW, we denote it
by ν

ĎW(λ).

20

Clearly, it follows that Ext runs in expected polynomial time, regardless of what is P∗’s
first message in Step 1. We prove that, also, Ext outputs a valid witness with probability
εtotal − negl(λ), no matter what is P∗’s first message.

Consider the function
ν(λ) = max

ĎW
{ν

ĎW(λ)},

where the maximum is taken over the (finite) set of all possible commitments ĎW. Note that
ν(λ) = negl(λ). Now, by the law of total expectation and what we have proved so far,

εtotal ≥Pr[(pp;x,Ext(pp,x, st) ∈ RR1CS]

=
∑
ĎW

Pr[(pp;x,Ext(pp,x, st)) ∈ RR1CS | EĎW] · Pr[E
ĎW]

=
∑
ĎW

(ε
ĎW − ν

ĎW(λ)) · Pr[E
ĎW] ≥

∑
ĎW

(ε
ĎW − ν(λ)) · Pr[E

ĎW]

=

∑
ĎW

ε
ĎW · Pr[EĎW]

−
ν(λ)

∑
ĎW

Pr[E
ĎW]


=εtotal − ν(λ) · 1 = εtotal − negl(λ),

where the summations run over all possible commitments ĎW. This completes the proof of
the lemma.

Remark 4.3 (On the knowledge soundness proof of Lemma 4.5). The proof of knowledge
soundness in Lemma 4.1 may look at first glance as being more complex than it needs to be.
Here we informally discuss some difficulties in it. First, it is intuitively convincing that the
knowledge soundness of Protocol 5 follows from the Schwartz-Zippel lemma. As such, at first
glance, it seems like the tree extraction lemma (Lemma 3.5) is a perfect tool for proving that
Protocol 5 is knowledge sound: one would simpy need to take a tree of accepting transcripts
of arity large enough that would force the output error vector E5 to be 0. However, it is not
possible to make this argument work if we restrict (as we must) to polynomially sized trees.

The next natural approach is to directly describe an extractor Ext that executes a single
run of ⟨P∗,V⟩. If the output of this interaction is a valid instance-witness (x, v, u, ĎW.r;W,E)
for Racc, then Ext simply outputs W. One hopes that Schwartz-Zippel lemma yields then
that E = 0 e.w.n.p. However, this argument does not work because E is output at the end
of ⟨P∗,V⟩, once the random evaluation point r is already known. Hence, a priori, r is not
independent of E. It does not seem feasible to use the commitment to W in order to argue
that P∗ chose E before knowing r, at least if we only rely on the binding property of the
commitment scheme (and we do not want to add extra assumptions).

The next natural approach is to have the extractor execute ⟨P∗,V⟩ twice, and only
produce an output if both interaction outputs belong to Racc: the binding property of
the commitment scheme forces P∗ to use the same W and E in both outputs, so now the
challenge in the second run of ⟨P∗,V⟩ is indeed independent of E, e.w.n.p. This is mostly
correct, but the issue is that now Ext has a success probability of ε2, which is too low.

5E is the same, e.w.n.p. for all transcripts, due to the binding property of the commitment to W, and
due to E = (A · Z) ◦ (B · Z)− uC · Z being uniquely determined by Z = (W,x, 1).

21

We thus naturally arrive at the extractor as described in our proof (or a similar one).
One may be tempted to use a simpler argument to the one in our proof, and say that the
challenge rlast in the output of the last run of ⟨P∗,V⟩ is independent of E, and then use
Schwartz-Zippel lemma to conclude that E = 0. The problem with this argument is that it
is not clear whether the random variable counting the number of times that ⟨P∗,V⟩ is run is
independent of E (here by E we mean the error term output in Step 1 of our extractor).
Since rlast depends on this random variable, it is unclear then whether rlast is independent
of E. Our proof avoids making this assumption.

4.2 Reduction to common evaluation point

In this section we describe Mova’s reductions of knowledge from Racc×Racc to Requal. Recall
that Requal was defined as the set of pairs of instance-witness tuples from Racc with the
same evaluation point. More precisely,

Requal =

{
(pp, (x1,x2); (w1;w2))

∣∣∣∣∣ (pp,xi;wi) ∈ Racc, i = 1, 2,

x1.r = x2.r

}
.

Our reduction of knowledge (see Protocol 6) is based on a classic technique based on
first computing a line ℓ : F→ Flogn passing through the points x1.r,x2.r, and then using
the composition univariate polynomials mle[E1] ◦ ℓ and mle[E2] ◦ ℓ in a clever way. The
technique, which we call point-vs-line, can be found in Section 4.5.2 of [Tha22].

Protocol 6 Mova’s reduction of knowledge Racc ×Racc → Requal

Input: P receives (pp, (x1,x2); (w1,w2)) ∈ Racc as input, for i = 1, 2. V re-
ceives (pp, (x1,x2)) as input. Let xi = (xi, vi, ui, ĎWi, ri), wi = (Wi,Ei, si), i =
1, 2.

1: P and V define the linear function ℓ : F → Flogm satisfying ℓ(0) = r1 and ℓ(1) = r2. Then P
sends V the polynomials h1(X), h2(X), of degree at most logm, of the form

hi(X) := mle[Ei] ◦ ℓ(X), i = 1, 2.

2: V checks that h1(0) = v1 and h2(1) = v2, and aborts if this check fails. Then V samples a
random challenge β ← F and sends β to P.

3: P and V set v′1 = h1(β), v
′
2 = h2(β) and r′ = ℓ(β).

4: P and V output
x
′
i = (xi, v

′
i, ui, ĎWi, r

′), i = 1, 2.

In addition, P outputs the witnesses w′
1,w

′
2, that are defined as

w
′
i = (Wi,Ei, si), i = 1, 2.

Lemma 4.4. Protocol 6 is a reduction of knowledge.

Proof. The proof is a combination of the ideas used in the proof of Lemma 4.1, together
with the proof of the classic point-vs-line argument we have alluded to before. Due to its
length, we defer it to Section 7.1.

22

4.3 Folding two instances in Racc with the same evaluation point

As the last piece of Mova, in Protocol 7 we describe a reduction of knowledge from Requal to
Racc.

Protocol 7 Mova’s reduction of knowledge Requal → Racc

Input: P receives (pp,xi;wi) = (pp,xi, vi, ui, ĎWi, r;Wi,Ei, si) ∈ Racc as input, for i = 1, 2.
V receives (pp,xi) as input, for i = 1, 2.

1: P computes t := mle[T](r), where

T := (A · Z1) ◦ (B · Z2) + (A · Z2) ◦ (B · Z1)− u1 · (C · Z2)− u2 · (C · Z1),

and Zi := (Wi,xi, ui) for i = 1, 2, and sends it to V.
2: V samples a random challenge α← F and sends α to P.
3: Both P and V output xacc = (x, v, u, ĎW, r) where

x = x1 + αx2,

v = v1 + αt+ α2v2,

u = u1 + αu2,

ĎW = ĎW1 + αĎW2.

(15)

Additionally, P outputs wacc = (W,E, s), where

W = W1 + αW2,

E = E1 + αT+ α2E2,

s = s1 + αs2.

(16)

Lemma 4.5. Protocol 7 is a reduction of knowledge from Requal to Racc.

Proof. Public reducibility. We construct a deterministic function φ, with input (pp,x1,x2, τ),
that outputs x′. Let xi = (xi, vi, ui, ĎWi, r), i = 1, 2, and let τ = (t, α) (if the input has
another form the function aborts). The function φ simply outputs (x, v, u, ĎW, r), where
x, v, u, ĎW are computed as in Eq. (15).

Let A∗,P∗ be PPT adversaries and let (x1,x2, st)← A(pp). Let τ be a transcript of the
interaction between P∗ and V, with input (pp,x1,x2, st), following Protocol 7. Let (x′;w′)
be the output of this interaction. It is not hard to see that the output of φ(pp,x1,x2, τ)
coincides with (x′;w′).

Perfect completeness. Let A be a PPT adversary A and let (x1,x2;w1,w2),← A(pp) such
that (pp,x1,x2;w1,w2) ∈ Requal. Write xi = (xi, vi, ui, ĎWi, r), wi = (Wi,Ei, si), for
i = 1, 2. Set Zi = (Wi,xi, ui) for i = 1, 2.

Let x = (x, v, u, ĎW, r) and w = (W,E, s) be the outputs of P and V after honestly
following Protocol 7 with inputs (pp,x1,x2;w1,w2). To prove that (pp,x;w) ∈ Racc it
suffices to check three properties. First of all that Com(ppCom,W, s) = ĎW, then that
mle[E](r) = v and finally that

(A · Z) ◦ (B · Z) = u · (C · Z) +E. (17)

23

The first property is immediate by the definition of ĎW and W in Eqs. (15) and (16)
respectively, and using that the commitment scheme Com is additively homomorphic.
Similarly, using that mle[Ei](r) = vi for i = 1, 2, that t = mle[T](r) and the definition of E
in Eq. (16), we directly obtain that mle[E](r) = v.

We now want to prove Eq. (17). The proof of this equality is analogous to the proof of
Lemma 6 of [KST21]. Expanding the terms of Eq. (17), we obtain

(A · (Z1 + αZ2)) ◦ (B · (Z1 + αZ2)) = (u1 + αu2) · (C · (Z1 + αZ2)) +E

and by distributing and reordering we obtain

E =(A · Z1) ◦ (B · Z1) + α[(A · Z1) ◦ (B · Z2) + (A · Z2) ◦ (B · Z1)]

+ α2(A · Z2) ◦ (B · Z2)− u1 · (C · Z1)− α(u1 · (C · Z2) + u2 · (C · Z1))

− α2u2 · (C · Z2).

(18)

By construction, we have the equality

T = (A · Z1) ◦ (B · Z2) + (A · Z2) ◦ (B · Z1)− u1 · (C · Z2)− u2 · (C · Z1).

Now by hypothesis ((pp,x1;w1), (pp,x2;w2)) ∈ Requal, and in particular

(A · Z1) ◦ (B · Z1)− u1 · (C · Z1) = E1,

(A · Z2) ◦ (B · Z2)− u2 · (C · Z2) = E2.

Using these equalities, via direct substitution in Eq. (18) we have that Eq. (17) is true if
and only if

E = E1 + αT+ α2E2,

which is satisfied by the definition of E in Eq. (16).

Knowledge soundness. The proof is similar to the knowledge soundness proof of Nova
[KST21]. We prove knowledge soundness by means of Lemma 3.5.

Precisely, let (x1,x2) be an instance, where x1 = (x1, v1, u1, ĎW1, r) and x2 = (x2, v2, u2, ĎW2, r).
Suppose we are given three transcripts τ (1), τ (2), τ (3) and corresponding outputs

(x(1),w(1)), (x(2),w(2)), (x(3),w(3))

of the interaction between P and V for the input (pp,x1,x2). Assume the three transcripts
all share the same first message t, so that, for i = 1, 2, 3, τ (i) = (t, α(i)). For each i = 1, 2, 3,
assume (pp,x(i);w(i)) ∈ Racc, and let

(x(i),w(i)) = (x(i), v(i), u(i), ĎW(i), r;W(i),E(i), s(i))

be the output of the interaction between P and V at the end of
Assume further that the three challenges α(1), α(2), α(3) are pairwise different. These

three trancripts and outputs form a tree of depth 2 and arity 3 (in the sense of Definition 3.5).
We describe a PPT extractor Ext that, for any such tree, outputs a valid witness w1,w2 for
x1,x2, e.w.n.p.

24

Before we proceed, we introduce the following terminology: given k, r ≥ 0, vectors
U(1), . . . ,U(k) ∈ Fr, and pairwise field elements β1, . . . , βk, by interpolation of the tuples
(β(1),U(1)), . . . , (β(k),U(k)) we mean the process of finding vectors V1, . . . ,Vk ∈ Fr such
that V1+βiV2+ . . .+βk−1

i Vk = U(i) for all i ∈ [k]. This is achieved by, for each coordinate
j ∈ [r], using standard interpolation on the points (β(1),U(1)[j]), . . . , (β(k),U(k)[j]), and
then taking V1[j], . . .Vk[j] be the coefficients of the resulting interpolating polynomial.

We are ready to describe the extractor. First, by interpolating (α(1),W(1)), (α(2),W(2)),
Ext finds two vectors W∗

1,W
∗
2 such that

W∗
1 + α(i)W∗

2 = W(i) for i = 1, 2. (19)

(note that here we use α(1) ≠ α(2)). Similarly, by interpolating the points (α(1), s(1)), (α(2), s(2)),
Ext constructs s∗1, s

∗
2 satisfying

s∗1 + α(i)s∗2 = s(i) (20)

for i = 1, 2. Again via interpolation, but this time using

(α(1),E(1)), (α(2),E(2)), (α(3),E(3)),

Ext obtains vectors E∗
1,T

∗ and E∗
2 satisfying

E∗
1 + α(i)T∗ + (α(i))2E∗

2 = E(i) for i = 1, 2, 3. (21)

(Similarly as before, here we have used that the challenges α(i) are pairwise different). The
extractor algorithm outputs w∗

1 = (W∗
1,E

∗
1, s

∗
1) and w

∗
2 = (W∗

2,E
∗
2, s

∗
2). To complete the

proof, it suffices to check that (pp,x1,x2;w
∗
1,w

∗
2) ∈ Requal.

We claim that Com(ppCom,W
∗
i , s

∗
i) =

ĎWi for i = 1, 2. Indeed, by Eqs. (19) and (20) and
the fact that the final output of the transcripts τ (1), τ (2) is in Requal, we have for i = 1, 2
that

Com(ppCom,W
∗
1, s

∗
1) + α(i)Com(ppCom,W

∗
2, s

∗
2)

= Com(ppCom,W
∗
1 + α(i)W∗

2, s
∗
1 + α(i)s∗2)

= Com(ppCom,W
(i), s(i)) = ĎW(i)

= ĎW1 + α(i)
ĎW2.

The linear polynomials Com(ppCom,W
∗
1, s

∗
1) +XCom(ppCom,W

∗
2, s

∗
2) and

ĎW1 +XĎW2 take
the same value on the two distinct points α(1) and α(2). Therefore they must be the same
polynomial, and so

Com(ppCom,W
∗
1, s

∗
1) =

ĎW1,

Com(ppCom,W
∗
2, s

∗
2) =

ĎW2.
(22)

Using Eq. (22) we prove that Eq. (19) is valid also for i = 3. Indeed

Com(ppCom,W
∗
1 + α(3)W∗

2, s
∗
1 + α(3)s∗2)

= Com(ppCom,W
∗
1, s

∗
1) + α(3)Com(ppCom,W

∗
2, s

∗
2)

25

= ĎW1 + α(3)
ĎW2

= ĎW(3)

= Com(ppCom,W
(3), s(3)).

By the binding property of Com, e.w.n.p., we have

W∗
1 + α(3)W∗

2 = W(3). (23)

We now prove that mle[E∗
1](r) = v1 and mle[E∗

2](r) = v2. Indeed, using Eq. (21) and the
fact that the outputs in (pp;x(i),w(i)) ∈ Racc for i = 1, 2, 3, we have that

mle[E∗
1](r) + α(i)mle[T∗](r) + (α(i))2mle[E∗

2](r)

= mle[E∗
1 + α(i)T∗ + (α(i))2E∗

2](r)

= mle[E(i)](r) = v(i) = v1 + α(i)t+ (α(i))2v2

for i = 1, 2, 3. Again, we look at both the left and right-hand side above as two polynomials
of degree 2 evaluated at α(i). Since these polynomials take the same values evaluated at the
three distinct values α(1), α(2), α(3), we obtain that they are the same polynomial, and in
particular mle[E∗

1](r) = v1 and mle[E∗
2](r) = v2.

It remains to prove that (A · Z∗
i) ◦ (B · Z∗

i)− u · (C · Z∗
i) = E∗

i , where Z∗
i := (W∗

i ,xi, ui)
for i = 1, 2. Set Z(i) := (W(i),x(i), u(i)) for i = 1, 2, 3. Since (pp,x(i);w(i)) ∈ Racc, we have
that for i = 1, 2, 3,

(A · Z(i)) ◦ (B · Z(i))− u · (C · Z(i)) = E(i). (24)

By definition, x(i) = x1+α(i)x2 and u(i) = u1+α(i)u2 for i = 1, 2, 3. Together with Eqs. (19)
and (23) we obtain that Z(i) = Z∗

1 + α(i)Z∗
2 for i = 1, 2, 3, e.w.n.p. Expanding Eq. (24), and

using Eq. (21), we obtain for i = 1, 2, 3, e.w.n.p.,

(A · Z∗
1) ◦ (B · Z∗

1) + α(i)[(A · Z∗
1) ◦ (B · Z∗

2) + (A · Z∗
2) ◦ (B · Z∗

1)]

+(α(i))2(A · Z∗
2) ◦ (B · Z∗

2)− u1 · (C · Z∗
1)− α(i)[u1 · (C · Z∗

2) + u2 · (C · Z∗
1)]

−(α(i))2u2 · (C · Z∗
2) = E∗

1 + α(i)T∗ + (α(i))2E∗
2.

Again, we see both the left hand side and the right hand side of the equality as two
polynomials of degree evaluated at α(i). Since α(1), α(2), α(3) are pairwise different, the two
polynomials must coincide coefficient-wise. Hence, e.w.n.p.,

(A · Z∗
1) ◦ (B · Z∗

1)− u · (C · Z∗
1) = E∗

1

(A · Z∗
2) ◦ (B · Z∗

2)− u · (C · Z∗
2) = E∗

2

This concludes the proof that (pp,x1,w
∗
1), (pp,x2,w

∗
2) ∈ Racc, e.w.n.p.

4.4 Putting everything together

Protocol 8 describes the Mova folding scheme in its entirety. It is a simple composition of
the previous schemes Protocols 5 to 7.

26

Protocol 8 Complete Mova’s reduction of knowledge RR1CS ×Racc → Racc

Input: P receives (pp,x1;w1) ∈ RR1CS and (pp,x2;w2) ∈ Racc as input. V receives
(pp,x1,x2) as input.

1: P and V follow Protocol 5 with input (pp,x1;w1) and (pp,x1), respectively. Let (x
′
1;w

′
1) be the

output of this interaction.

2: P and V follow Protocol 6 with input (pp,x′
1,x2;w

′
1,w2). Let (x

(2)
1 ;w

(2)
1), (x

(2)
2 ;w

(2)
2) be the

output of this interaction.

3: P and V follow Protocol 7, with input (pp,x
(2)
1 ;w

(2)
1), (pp,x

(2)
2 ;w

(2)
2). Let (x(3);w(3)) be the

output of this interaction.
Finally, P and V output x(3), and P additionally outputs w(3).

Lemma 4.6. Protocol 8 is a reduction of knowledge from RR1CS ×Racc to Racc.

Proof. Consider the trivial reduction of knowledge Πtrivial from Racc to Racc in which P and
V perform no rounds of interaction and simply output their inputs.

By Lemma 4.1, Step 1 is a reduction of knowledge Π1 from RR1CS to Racc. Step 1
followed by Step 2 is equivalent to the protocol one obtains by composing Π1 and Πtrivial in
parallel, yielding a reduction of knowledge RR1CS ×Racc → Racc ×Racc, and then running
Step 2, which is a reduction of knowledge from Racc ×Racc to Requal. By the Parallel and
Sequential Composition Theorems 3.3 and 3.4, and by Lemmas 4.1 and 4.4, we obtain that
Step 1 followed by Step 2 is a reduction of knowledge from RR1CS ×Racc to Requal.

Finally, using again the Sequential Composition Theorem 3.3 and Lemma 4.6, we obtain
that sequentially performing the above reduction of knowledge, and then running Step 3
results in a reduction of knowledge from RR1CS ×Racc to Racc.

5 Performance

In this section we present and compare the concrete costs of Mova, Nova [KST21], and
Hypernova [KS23b] when applied to the same R1CS structure. The costs are displayed in
Table 3. We defer the explanation of how these costs were derived to Section 5.2.

We evaluate the scenario in which the Prover and Verifier are folding an instance-witness
pair from RR1CS and an instance-witness pair from Racc.

We consider different scenarios depending on whether the R1CS witness vector W has
“small” or “large” entries. Here, by “small” we mean that entries in W all belong to the
range {0, . . . , |W| − 1}. By “large” we mean that W has entries sampled randomly in F.
In many practical applications, W does contain small entries, and in this case the cost of
committing to it is much lower than if W contains large entries. Namely, if W contains small
entries, then the cost of committing to W is roughly equivalent to the cost of computing
|W| group operations [STW23b], which in turn is roughly equivalent to the cost of 15|W|
field multiplications [zka]. In Table 7 we provide benchmarks that show that this is, roughly,
indeed the case. We refer to [STW23b] for further discussion on this topic.

6For the Prover’s costs, we only display the number of field multiplications, as these can be up to an order
of magnitude more expensive than field additions. For the Verifier’s costs, we display the number of additions
and multiplications because, in many applications such as IVC or PCD, V’s algorithm will be arithmetised
and proved recursively.

27

P V Round(s)

3n+ 5mF
Nova [KST21] 2G ops., 2G exp. 2ℓF 1

Com. vector of m F-elements 2G ops., 2G exp.
Com. W

6n+ 14m+O(
√
m) F 2ℓ+O(log(m)) F

Hypernova [KS23b] 1G op., 1G exp. 1G op., 1G exp. log(m) +O(1)
Com. W

3n+ 12m+ 3 log(m) F 2ℓ+ 7 log(m) + 5F
Mova (this work) 1G op., 1G exp. 1G op., 1G exp. 3

Com. W

Table 3: Comparison of the concrete costs of Mova, Nova, and Hypernova. In all cases,
we consider the same size bounds m,n, ℓ, meaning that R1CS matrices are in Fm×m with
n = Ω(m) nonzero entries, and witnesses are in Fm−ℓ−1.
The symbol F in the Prover P column indicates the number of field multiplications. In the
Verifier V column, F indicates the number of field multiplications and additions6. We write
n group operations (resp. exponentiations) as nG ops. (resp. nG exp.). “Com. vector m
elements in F” indicates that a vector of size m with arbitrarily sized entries in F must be
committed. “Com. W” means that the R1CS witness vector W must be committed.
In Mova and Nova, the cost of computing T is of 3n+ 2m field multiplications plus some
field additions (see Eq. (25)). If A,B,C are binary matrices, this cost can be replaced by
2m (cf. Section 5.2). In Hypernova, computing all the necessary matrix-vector products
costs 6n+m field multiplications plus some field additions (cf. Section 5.2). If A,B,C are
binary, then this cost is only m.

In Table 4 we display the relative speed-up of Mova’s Prover with respect to Nova’s
and Hypernova’s Prover. We make this comparison by taking Table 3 and setting different
specific choices of parameters.

We assume the commitment scheme is the Pedersen or the KZG scheme over the Pallas
curve. We estimate the costs of computing a vector with arbitraily large entries (such as
Nova’s cross term T) using Table 1 in [Hab22]. For example, the cost of committing to
a vector of size m = 216 is estimated to be 349m field multiplications in [Hab22]. When
m = 220, the same source estimates the cost to be roughly 28m field multiplications. When
W has small entries, we estimate the cost of committing to W as explained above.

As we see in Section 5.2, each major step in Mova’s Prover has a cost of no more than,
roughly, 23m field multiplications (assuming the matrices A,B,C are not very complex),
not counting the cost of committing to the R1CS witness W. The dominating costs of Mova
are no longer the commitment to T as in Nova, but either the execution of the point-vs-line
reduction of knowledge (Protocol 6), which costs ≈ 4m multiplications (Section 5.2), or the
computation of T itself, which costs ≈ 3n multiplications, where n = Ω(m) is a bound on
the number of nonzero entries in each matrix A,B,C (cf. Eq. (25)).

In Section 5.1 we present our benchmarks for the Prover’s runtime in the three schemes.
Then, in Section 5.2 we describe how the costs in Table 3 were computed.

28

m n Binary R1CS W entries Nova Prover
Mova Prover

Hypernova Prover
Mova Prover

matrices?

216 m Yes Small 13.667 1.074

216 m No Small 12.400 1.167

216 3m Yes Small 13.667 1.074

216 3m No Small 10.500 1.306

220 m Yes Small 10.222 1.074

220 m No Small 9.300 1.167

220 3m Yes Small 10.222 1.074

220 3m No Small 7.917 1.306

216 m Yes Large 1.864 1.005

216 m No Large 1.857 1.013

216 3m Yes Large 1.864 1.005

216 3m No Large 1.844 1.027

220 m Yes Large 2.779 1.014

220 m No Large 2.741 1.035

220 3m Yes Large 2.779 1.014

220 3m No Large 2.671 1.074

Table 4: Concrete comparison of Mova’s Prover with Nova and Hypernova’s Prover. The two
last columns compare the approximate equivalent field multiplication work of the Provers of
both protocols. Larger numbers are better. The third column indicates whether the R1CS
m ×m matrices A,B,C are binary or not, i.e. whether all their entries belong to {0, 1}.
The 4th column indicates whether W contains small or large entries. By small and large we
mean that all entries are sampled randomly in the sets {0, . . . , |W| − 1} or F, respectively.
As commitment scheme we use the KZG commitment scheme over the Pallas curve. As
per Table 1 in [Hab22], the cost of committing to a witness W with large entries, or to
the cross-term T, is estimated as approximately 349m and 28m field multiplications, for
m = 216 and m = 220, respectively. When W contains small entries, we estimate the cost of
committing to W as 15|W| field multiplications. This is equivalent to the cost of 1 group
multiplication per entry in W [zka, STW23b].

5.1 Experimental evaluation

In this section we evaluate the performance of our Mova implementation against the Nova
and Hypernova implementations in the Sonobe [St] framework. For cryptographic operations,
we used Pedersen commitments [Ped91] over the Pallas curve [Hop], and Poseidon [Arka]
for cryptographic hashing.

We set the R1CS matrices A,B,C as the identity matrices7. We populated the vector Z1

with random numbers of size from 1 to 384 bits, and Z2 with random numbers of size from
1 to 20 bits. For Nova and Mova, we chose u to be a random field element. We computed
T naively through the formula T = A · Z2 ◦B · Z1 +A · Z1 ◦B · Z2 − u1CZ2 − u2CZ1. In

7We leave running benchmarks with more complex matrices as future work. See Remark 5.1 for a discussion
on how using more complex A,B,C would affect the benchmarks

29

Section 5.2 we describe a more efficient approach which is roughly twice faster than the
naive method. In the previous Tables 3 and 4 we used the optimised method.

The concluding numbers are the results of the average time of 100 runs measured on
a 16 GB memory, 16-core Intel i7-11800H laptop CPU restricted to a single core. Table 5
presents the benchmarking results, not including the cost of committing to the R1CS witness
vector W. Within parentheses we indicate the costs of the main steps that are unique to
each folding scheme. In Table 6 we display the costs of the main common operations in the
three schemes.

Table 7 shows the costs of committing to a vector V of different sizes and with either
small entries, or large entries. Finally, Table 8 displays the benchmark results for Mova,
Nova, and Hypernova, including the costs of committing to the R1CS witness W. We
consider two cases, depending on whether W contains small or large entries.

The code used for the experiments is publicly available on GitHub8.

m Mova (pt-vs-line + MLE eval.) Nova (Commit to T) Hypernova (Sumcheck)

216 36.0216 ms 400.4406 ms 150.0280 ms
(10.4999 ms) (375.5840 ms) (106.7538 ms)

220 761.5190 ms 5470.6681 ms 3195.2789 ms
(223.4527 ms) (4913.5817 ms) (1975.6348 ms)

Table 5: Comparison of Prover runtimes for a single fold across Nova, Mova, and Hypernova,
not including the cost of commiting to the witness vector (cf. Table 8 for those costs). In
all cells, the time without parentheses indicates the total Proving runtime. In Mova, the
time within parentheses indicates the duration of the point-vs-line step (Protocol 6) plus
the evaluation time of mle[T] at a point r. For Nova, it shows the time taken to commit to
T, and in Hypernova, it reflects the duration of the sumcheck. We remark that Hypernova’s
implementation does not leverage certain optimizations and thus its runtime does not reflect
the concrete costs from Table 3 (cf. Remark 5.2)

m Computing T Miscellaneous

216 20.7591 ms 4.0797 ms

220 416.5537 ms 84.1495 ms

Table 6: The two main operations that Nova and Mova Provers have in common (besides
committing to W), namely computing the cross-term T, and performing miscellaneous
operations such as computing the resulting folded witness and error vectors, and computing
their commitments by using the homomorphicity of the commitment scheme.

Remark 5.1 (On the complexity of the R1CS matrices A,B,C). The benchmarks were
run taking the R1CS matrices A,B,C to be the identity matrix. The complexity of these
matrices affects the cost of computing the cross-term T, which is a common cost to Mova
and Nova, and also affects Hypernova’s costs (see Section 5.2). However, unlike in Nova and
Hypernova, this computation represents the dominating cost of Mova’s Prover work, and so

8https://github.com/NethermindEth/sonobe/tree/paper

30

https://github.com/NethermindEth/sonobe/tree/paper

m Entries in {0, . . . ,m− 1} Entries in F
216 28.4877 ms 375.5840 ms

220 554.5014 ms 4913.5817 ms

Table 7: Time taken to commit a vector V with size |V| = m where m = 216 or m = 220,
and so that either V contains random entries within the range {0, . . . , |V| − 1}, or random
entries in F. Here we used the Pedersen commitment over the Pallas curve. The Hypernova
library we used [St] does not make use of known optimisations such as [DT24].

m W entries Mova Nova Hypernova

216 Small 64.5093 ms 428.9283 ms 178.5157 ms

216 Large 411.6056 ms 776.0246 ms 525.6120 ms

220 Small 1316.0204 ms 6025.1695 ms 3749.7803 ms

220 Large 5675.1007 ms 10384.2498 ms 8108.8606 ms

Table 8: Benchmark of Mova, Nova and Hypernova’s Prover runtimes including the cost of
committing to the R1CS witness W. We consider two scenarios, one where the entries in W
are “small”, and one where the entries are “large”. As usual, by “small” we mean that the
entries are randomly sampled in the range {0, . . . , |W| − 1}, and by “large” that the entries
are sampled in F. The benchmarks follow the same configuration as those in Table 5.

using more complex matrices A,B,C will result in a less favorable comparison for Mova.
Table 4 presents cost comparisons for matrices A,B,C of varying sparseness.

Remark 5.2 (On Hypernova’s benchmark results). As we discuss later in Section 5.2, when
estimating the concrete costs of Hypernova’s Prover in Table 3, we use [DT24] to bound
the cost of the sumcheck protocol as 10m. However, for our benchmarks, we used the
less optimised framework [St]. This explains that the benchmarked Hypernova Prover is
significantly more expensive than what Table 3 suggest.

5.2 Computing the concrete costs of Mova, Nova, and Hypernova

In this section we detail how the concrete costs in Table 3 were derived. We first look at the
concrete field operation cost in Nova and Mova, then we analyse the concrete field operation
cost of the point-vs-line reduction (Protocol 6), and finally we explain how we obtained the
concrete field operation cost of the Hypernova protocol applied to R1CS.

Concrete costs of Mova and Nova In both Nova and Mova, the Prover has to compute
the cross term

T = AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1CZ2 − u2CZ1

However, note the equality:

A(Z1 + Z2) ◦B(Z1 + Z2)− (u1 + u2)C(Z1 + Z2) = E1 +T+E2

This means that the Prover can compute the expression on the left hand side of this equality,
and then subtract the error terms. In general, for an m×m matrix M with non-zero rows,

31

the multiplication of M with a vector in Fm costs
∑m

i=1(k
M
i − 1) = n−m field additions and∑m

i=1 k
M
i = n field multiplications, where for all i ∈ [m], kMi > 0 is the number of non-zero

entries of row i, and n = Ω(m) is the number of non-zero entries of M . This is because each
entry in the matrix-vector product is the result of kMi multiplications, and kMi − 1 additions.
To compute the cross-term T, apart from the matrix-vector products, the Prover needs
to perform the following operations: compute the vector Z1 + Z2; perform a Hadamard
product between vectors of length m; perform a multiplication of a vector of length m by
the constant u1 + u2; and perform three subtractions of a vector of length m. Therefore, the
computation of the cross-term can be done in:

4m+
m∑
i=1

((kAi − 1) + (kBi − 1) + (kCi − 1)) = 3n+m, field additions, and

2m+
m∑
i=1

(kAi + kBi + kCi) = 3n+ 2m, field multiplications,

(25)

where kAi is the number of non-zero entries in the i-th row of A (similarly for kBi , k
C
i). If all

entries in A,B,C are either 0 or 1, then the cost of the matrix-vector products is reduced
(there is no need for multiplications), and the total cost is reduced to

3n+m additions, 2m multiplications. (26)

Additionally, both Mova and Nova’s Prover has to update the witness and error vectors
in the last step of the protocol. This costs 3m field multiplications (required to compute
αW2, αT, α2E2) and 3m field additions. We do not count other negligible costs.

This suffices to count the cost of Nova’s Prover and Verifier. The additional field operation
work for Mova’s Prover and Verifier consists of:

• The field operation work in the reductionRacc×Racc → Requal. This is the point-vs-line
reduction of Section 4.2. The costs are computed below.

• The evaluation of the MLE of the cross-term at a random vector of field elements. This
can be done in at most 2m field additions and 3m field multiplications (see Lemma
3.8 in [Tha22]).

Concrete costs of the point-vs-line reduction of knowledge (Protocol 6) In the
point-vs-line reduction (Section 4.2), the field operation costs are as follows:

• The Prover needs to compute the polynomials h1(X), h2(X). In Section 6 we describe
an algorithm that, in general, allows to compute each hi with 4m− 2 logm− 4 field
multiplications and 5m− 2 logm− 5 field additions.

In the application where the Prover and Verifier fold an instance-witness pair from
RR1CS with an instance-witness pair from Racc, the Prover’s costs for computing h1(X)
are 0. This is because, if P is honest, then h1(X) = mle[E1] ◦ ℓ(X) = 0 because E1 = 0
is the zero vector. Hence, the total field multiplication cost of computing h1(X), h2(X)
in Mova (Protocol 8) is 4m− 2 logm− 4.

We note that if the Prover and Verifier were folding two instance-witness pairs fromRacc,
then this cost would double, since then both h1(X), h2(X) are nonzero polynomials.

32

• The Verifier needs to compute h1(0), h2(1), the first of which can be read off as the
constant coefficient of h1, and the second of which is the sum of the coefficients of h2.
In total, this costs log(m) + 1 field additions and no field multiplications.

• The Prover and Verifier need to compute the evaluations of h1, h2, ℓ at β. By using
Horner’s method, computing h1(β), h2(β) costs at most 4(log(m) + 1) field multi-
plications. Computing ℓ(β) takes at most log(m) field additions and log(m) field
multiplications.

All in all, we obtain the concrete cost in Table 9 for the point-vs-line reduction.

P V Rounds

Point-versus-line (Protocol 6) 4m+ 3 log(m) F 7 log(m) + 5 F 1

Table 9: Concrete cost of the point-versus-line method, in field multiplications for P, and
field additions and multiplications for V. Rounds indicates the number of communication
rounds in Protocol 6.

Concrete costs of Hypernova We next discuss the costs of Hypernova. We adopt the
notation from [KS23b], and we refer to this reference for a full description of the Hypernova
protocol.

Hypernova has the Prover perform a sumcheck on the function:

g(X) :=

∑
j∈[3]

γj · Lj(X)

+ γ4 ·Q(X)

where γ ∈ F is random, and the Lj , Q are defined as:

L1(X) := ẽq(rx,X) ·

 ∑
y∈Blog(m)

Ã(X,y) · z̃1(y)


L2(X) := ẽq(rx,X) ·

 ∑
y∈Blog(m)

B̃(X,y) · z̃1(y)


L3(X) := ẽq(rx,X) ·

 ∑
y∈Blog(m)

C̃(X,y) · z̃1(y)


Q(X) := ẽq(β,X) ·

 ∑
y∈Blog(m)

Ã(X,y) · z̃2(y)

 ·
 ∑

y∈Blog(m)

B̃(X,y) · z̃2(y)


−

 ∑
y∈Blog(m)

C̃(X,y) · z̃2(y)



33

Here z̃1 = (w1, u,x1), z̃2 = (w2, 1,x2) are concatenatations of the witnesses for the linearised
R1CS instance and the R1CS instance (respectively) with a field element (either u or 1),
and the public inputs.

In [DT24], Dao and Thaler bound the Prover’s number of field multiplications when
performing the sumcheck on a polynomial of the form Q(X). They bound this cost as 5m.
By applying their optimisations to the remaining term γ · L1(X) + γ2 · L2(X) + γ3 · L3(X),
the Prover can perform the sumcheck on this term in 4m + O(

√
m) field multiplications,

with the constant being such that the O(
√
m) term is well below m. All in all, we estimate

that the Prover performs no more than 10m field multiplications in total for the sumcheck
involving g.

The costs above assume the Prover knows all the evaluations of the sums in the definition
of L1, L2, L3, Q.We next explain how Prover can compute these.

Note that for any x ∈ Blog(m), the sum
∑

y∈Blog(m) Ã(x,y) · z̃1(y) is equal to the x-th
coordinate (the coordinate whose index has binary representation x) of the product A · z1,
and similarly for B,C and z2. Therefore, the Prover needs to compute A · z1, B · z1, C ·
z1, A · z2, B · z2, C · z2. We estimate the cost of these as follows: to compute A · z1, one needs

m∑
i=1

(kAi − 1) = n−m

field additions, where kAi is the number of nonzero entries in the i-th row of A, and

m∑
i=1

kAi = n

field multiplications. Recall n = Ω(m) is the number of nonzero entries in the R1CS matrices.
The rest of matrix-vector multiplications can be computed similarly. Overall, the total field
operations to compute the necessary matrix vector quantities is 6(n−m) field additions, and
6n field multiplications. If A,B,C are binary matrices, then there are no multiplications.

The Prover also needs the quantities:

σ1 :=
∑

y∈Blog(m)

Ã(rx′ ,y) · z̃1(y)

σ2 :=
∑

y∈Blog(m)

B̃(rx′ ,y) · z̃1(y)

σ3 :=
∑

y∈Blog(m)

C̃(rx′ ,y) · z̃1(y)

θ1 :=
∑

y∈Blog(m)

Ã(rx′ ,y) · z̃2(y)

θ2 :=
∑

y∈Blog(m)

B̃(rx′ ,y) · z̃2(y)

θ3 :=
∑

y∈Blog(m)

C̃(rx′ ,y) · z̃2(y)

34

where rx′ is determined during the course of the sumcheck protocol. The Prover already
has all σi’s at the end of sumcheck. It also knows the quantity θ1 · θ2 − θ3, so it may
only compute two out of the three θi. Because at this point, the Prover already has the
products A · z2 and so on, each of the two θi can be obtained by computing the evaluation
of the MLE of the corresponding matrix vector product at the random point rx′ . This
can be separated into computing the evaluations of ẽq(rx′ ,x) for all x ∈ Blog(m), and then
performing two inner products with the dense representations of the corresponding matrix-
vector products. The former costs no more than m field multiplications, and the latter costs
2m field multiplications in total. Finally there is the added cost of updating the witness,
public inputs, and commitments among other things. Barring negligible costs, this amounts
to m field multiplications and m field additions.

The Verifier needs to perform the sumcheck, which costs c log(m) field operations
(counting both additions and multiplications) for some very small c. The Verifier also
computes the quantity: ∑

j∈[3]

γj · e1 · σj + γ4 · e2 · (θ1 · θ2 − θ3)

where e1 := ẽq(rx, rx′) and e2 := ẽq(β, rx′). Computing e1, e2 costs at most 5 log(m) field
operations, so this costs at most 5 log(m) + 13 field operations. Then, there is also the cost
to update the commitment, and the public inputs among other things. We do not make the
constant hidden in the asymptotics explicit in Table 3, since we believe the Verifier cost is
comparable to Mova.

6 An efficient algorithm for composing a multilinear polyno-
mial with a line

In Section 4.2, we described a reduction of knowledge that uses the point-vs-line method as a
subroutine. In the point-vs-line method, the Prover needs to compute univariate polynomials
of the form mle[E] ◦ ℓ, where E ∈ Fm and ℓ : F→ Fm is a line in Fm (a polynomial of the
form r0 +X(r1− r0) for r0, r1 ∈ Fm). If done naively, this could easily cost O(mpolylog(m))
field multiplications. In this section we provide a cost analysis of an algorithm that allows to
compose a line and a logm-variate MLE over a field F in O(m) time and O(m) space. We
will be using the MLE point evaluation algorithm first proposed by Vu et al. in [VSBW13] (cf.
[Tha22] for a detailed exposition) and implemented in the arkworks algebra library [Arkb].
Our observation is that the algorithm can be used for point values from any commutative
ring F ⊆ R. This is because using the addition, subtraction and multiplication in R leaves
the algorithm unchanged, while division is not used at all. Therefore, we can evaluate the
MLE on the “point” r0 + (r1 − r0)X ∈ F[X]logm using the O(m) evaluation algorithm. The
algorithm is described in full in Algorithm 1. The result is similar to Claim 4.4 in [EG23].

We identify the boolean hypercube points b ∈ Bn with the binary integers they represent
in little endian form, i.e. (1, 1, 0, 1) is equivalent to 0b1011 (cf. [Arkb]).

35

Algorithm 1 MLE-after-line composition

Input: MLE evaluations [Eb]b∈Bm and line points r0, r1 ∈ Flogm.
Output: The coefficients of the univariate polynomial mle[E](r0 + (r1 − r0)X).
1: poly[0..(m− 1)]← [Eb]b∈Bm ; // Treat each Eb ∈ F as a constant polynomial ∈ F[X]
2: for i = 1 to logm do
3: ℓi ← r0[i− 1] + (r1[i− 1]− r0[i− 1])X; // compute the line coordinate polynomial
4: for b = 0 to 2logm−i − 1 do
5: left← poly[2 · b];
6: right← poly[2 · b+ 1];
7: poly[b]← left+ ℓi · (right− left);
8: end for
9: end for

10: return poly[0];

A natural question is whether this algorithm is still linear in space and time. Now
addition can cost up to O(logm) field operations and multiplication up to O(log2m) field
operations, assuming univariate polynomial multiplication is done naively. Will it bring
a (poly)logarithmic factor to the time complexity? In addition, one atomic storage now
can contain up to logm field elements, will it also lead to increase in space complexity?
Fortunately, the answer is no to both questions!

Lemma 6.1. Algorithm 1 can be executed in at most 5m − 2 logm − 5 field additions,
4m − 2 logm − 4 field multiplications, and with a total memory consumption of at most
2m+2 logm− 2 field elements, given that the univariate polynomial multiplication algorithm
is the naive quadratic one.

Proof. Let us analyse the time complexity first. We will count field operations required to
perform the algorithm.

Let us count how many multiplications µ each iteration of the loop 2-9 does and compute
the degree d of the auxiliary polynomials stored in the array poly.

i = 1: At the beginning, all the auxiliary polynomials are field elements. We do 2logm−1 =
m/2 (the loop 4-8) multiplications of field elements by a linear polynomial r0[0] + (r1[0]−
r0[0])X (line 7). That is 2 ·m/2 = 2 · 1 ·m/2 multiplications. The degrees of m/2 resulting
auxiliary polynomials is 1 now. So

µ1 = 2 · 1 ·m/2 and d1 = 1.

i = 2: At the beginning, all the auxiliary polynomials are degree d1 = 1. We do 2logm−2 =
m/4 multiplications of linear polynomial by a linear polynomial r0[1] + (r1[1] − r0[1])X.
That is 2 · 2 ·m/4 multiplications. The degrees of m/4 resulting auxiliary polynomials is 2
now (linear by linear). So

µ2 = 2 · 2 ·m/4 and d2 = 2.

i = i: At the beginning, all the auxiliary polynomials are degree di−1 = i− 1. We do m/2i

multiplications of degree-(i− 1) polynomials by a linear polynomial r0[i− 1] + (r1[i− 1]−

36

r0[i− 1])X. That is 2 · i ·m/2i multiplications. The degrees of m/2i+1 resulting auxiliary
polynomials is i now (i− 1 by linear). So

µi = 2 · i ·m/2i and di = i.

Summing up µ1, . . . , µlogm we get the expression for the number of multiplications

logm∑
i=1

µi =

logm∑
i=1

i ·m
2i−1

= m

logm∑
i=1

i

2i−1
.

Using the method of differentiation of geometric progression we compute the sum

m

logm∑
i=1

i

2i−1
= m ·

(
4− 2 logm+ 4

m

)
= 4m− 2 logm− 4.

The number of additions on the ith iteration can be derived similarly. let us focus on the
line 7 of the algorithm. We do di−1+1 additions in right− left. Then we need di−1 additions
for the multiplication by the linear polynomial ℓi. And finally to add to left we do di−1 + 1
additions as well. That sums up to 3di−1 + 2. Knowing that di−1 = i − 1 we get 3i − 1
additions. And that happens m/2i times in the loop 4-8. This finally gives m(3i− 1)/2i. In
addition to that, at each of the logm iterations of the loop 2-9 we compute the polynomial ℓi
at line 3. The only field operation we do for that is r1[i− 1]− r0[i− 1], which is an addition
(we do not distinguish addition and subtraction). Thus we arrive to the following sum for
the number of additions

logm∑
i=1

(
m · (3i− 1)

2i
+ 1

)
.

Using the same summation techniques we obtain the number of additions:

5m− 2 logm− 5.

Summing the two formulas together the number of field operations is

9m− 4 logm− 9.

Regarding the memory, we have variables ℓi, left and right that are always there and that
occupy in total 3 logm. The array poly occupies by the end of the algorithm

m

2

logm∑
i=1

i

2i−1
= 2m− logm− 2

field memory cells. Hence the total memory consumption is

2m+ 2 logm− 2.

37

7 Deferred proofs

We end the paper with a proof that Protocol 6 is a reduction of knowledge.

7.1 Proof of Lemma 4.4

Public reducibility. We construct a deterministic function φ that, with input (pp,x1,x2, τ),
outputs (x′1,x

′
2). Let τ = ((h1(X), h2(X)), β) (otherwise abort). Define v′1 := h1(β), v

′
2 :=

h2(β) and r′ = (x2.r− x1.r)β + x1.r and notice that these values are polynomial-time com-
putable from x1,x2 and τ . We have φ output (x′1,x

′
2), where x

′
1 = (x1.x, v

′
1,x1.u,x1.

ĎW, r′)
and x′2 = (x2.x, v

′
2,x2.u,x2.

ĎW, r′).
Let A,P∗ be PPT adversaries and let (x1,x2, st) ← A(pp). Let τ be the transcript

of the interaction between P∗ and V, with input (pp,x1,x2, st) following Protocol 6. Let
(x′1,x

′
2;w

′
1,w

′
2), be the output of the interaction. The output of φ(pp,x1,x2) is by construc-

tion equal to (x′1,x
′
2), as required.

Perfect completeness. Let A be a PPT adversary and let (x1;w1), (x1;w2) ← A(pp) be
such that (pp,xi;wi) ∈ Racc for both i = 1, 2.

Write (pp,xi;wi) = (pp,xi, vi, ui, ĎWi, ri;Wi,Ei, si) ∈ Racc, for i = 1, 2. Assume P and
V honestly follow Protocol 6 with inputs (pp,xi;wi) and (pp,xi), i = 1, 2. We argue that
the output of the interaction ⟨P,V⟩ is in Requal and V accepts. The case when r1 = r2 is
immediate. Assume r1 ̸= r2. By definition of h1(X), h2(X) (the first message sent by P)
and ℓ, we have

h1(0) = mle[E1] ◦ ℓ(0) = mle[E1](r1) = v1.

In exactly the same way, we obtain h2(1) = v2. Hence, V does not abort at the end
of Protocol 6. Let (x′1,x

′
2;w1,w2) be the output of the interaction between P and

V. Write x′i = (xi, v
′
i, u

′
i,

ĎWi, r
′
i) and w′

i = (Wi,Ei, si), i = 1, 2. We now argue that
(pp,x′1,x

′
2;w

′
1,w

′
2) ∈ Requal. Indeed, by construction, r′1 = r′2 = r′ for some point r′.

Hence, it suffices to check that (pp,x′i;w
′
i) ∈ Racc for both i = 1, 2. We show this for

(pp,x′1;w
′
1), the reasoning for (pp,x′2;w

′
2) being analogous. Since (pp,x1;w1) ∈ Racc, we

have (A · Z1) ◦ (B · Z1) = u1 · (C · Z1) +E1, and Com(ppCom,W1, s1) = ĎW1. Hence, it only
remains to check that mle[E1](r

′) = v′1. However, it is clear that this is the case after inspect-
ing Step 3 in Protocol 6. More precisely, we have v′1 = h1(β) = mle[E1] ◦ ℓ(β) = mle[E1](r

′).

Knowledge soundness. The proof follows the same structure as the knowledge soundness
proof in Lemma 4.1. Some of its arguments are a word-by-word repetiton of reasonings used
in said proof.

Let A and P∗ be expected polynomial-time adversaries. Let (x1,x2, st)← A(pp). Write
(xi,wi) = (xi, ĎWi, vi, ui, ri;Wi,Ei, si) for i = 1, 2,. Assume r1 ̸= r2. Let ℓ be the linear
function ℓ : F→ Flogm satisfying ℓ(0) = r1 and ℓ(1) = r2.

Fix the notation ⟨P∗,V⟩ = ⟨P∗,V⟩(pp,x1,x2, st), i.e. ⟨P∗,V⟩ is interactive protocol in
which P∗ and V interact following Protocol 3, with inputs pp,x1,x2 and st. We also look at
⟨P∗,V⟩ as a random variable modelling the output of such interaction.

Let εtotal be the probability that P∗, with inputs (pp,x1,x2, st), succeeds in obtaining
an output in Requal, i.e. εtotal = Pr[(pp,x, ⟨P∗,V⟩(pp,x1,x2, st)) ∈ Requal].

38

We define the extractor Ext as follows. Ext receives (pp,x1,x2, st) as inputs. Then:

1. Ext runs the protocol ⟨P∗,V⟩ once. Let (pp,x(1)1 ,x
(1)
2 ;w

(1)
1 ,w

(1)
2) be the output of this

interaction. If V rejects the interaction, or if (pp,x
(1)
1 ,x

(1)
2 ;w

(1)
1 ,w

(1)
2) ̸∈ Requal, then

Ext aborts.

Otherwise, say we have

(pp,x
(1)
i ;w

(1)
i) = (pp,xi, v

(1)
i , ui, ĎWi, r

(1);W
(1)
i ,E

(1)
i , s

(1)
i)

for i = 1, 2, where r(1) = ℓ(β(1)) and β(1) is the Verifier’s challenge. Let h1(X), h2(X)
be the Prover’s first message of the interaction.

Let Elines be the event that Ext does not abort in Step 1 and both h1(X) = mle[E
(1)
1] ◦

ℓ(X) and h2(X) = mle[E
(1)
2] ◦ ℓ(X). Let Ebad−lines be the event that Ext does not abort

in Step 1 but either h1(X) ̸= mle[E
(1)
1] ◦ ℓ(X) or h2(X) ̸= mle[E

(1)
2] ◦ ℓ(X).

If Elines holds, then Ext terminates and outputs w
(1)
i = (W

(1)
i ,E

(1)
i , s

(1)
i) for i = 1, 2.

2. Next, Ext repeatedly runs ⟨P∗,V⟩, keeping always the same first message sent by P∗ to
be (h1(X), h2(X)). To do so, Ext rewinds P∗ only to the point where P∗ has already
sent (h1(X), h2(X)).

As soon as Ext obtains an output

(pp,x
(2)
1 ,x

(2)
2 ;w

(2)
1 ,w

(2)
2) ∈ Requal

and V does not reject, Ext terminates and outputs w
(1)
i = (W

(1)
i ,E

(1)
i , s

(1)
i) for i = 1, 2.

Let Eh1,h2 be the event that P∗’s first message in Step 1 of Ext is (h1(X), h2(X)). Fix one
such first message (h1(X), h2(X)), and let ε be the probability that (pp, ⟨P∗,V⟩(pp,x1,x2, st)) ∈
Racc. We next prove that, conditioned on Eh1,h2 , Ext runs in expected polynomial time and
outputs a valid witness for (x1,x2) with probability ε− negl(λ). For readability purposes,
we avoid referring to (h1, h2) in our notation. In what follows, unless stated otherwise, we
consider all probabilities and events referring to Ext as conditioned on Eh1,h2 .

First of all we prove that Ext terminates in expected polynomial time. The argument is
analogous to that in the proof of Lemma 4.1. Let E be the event that Ext does not abort in
Step 1. We have Pr[Ext] = ε. Denote by Z the random variable (over Ext’s random coins)
representing the number of times Ext runs the interaction ⟨P∗,V⟩ in Step 2 (if Ext terminated
or aborts in Step 1, then Z = 0). Let Ztotal be the random variable (over Ext’s random
coins) representing the total number of times ⟨P∗,V⟩ is run when executing Ext. We have

E[Ztotal] = 1 + Pr[E] · E[Z | E] ≤ 1 + ε · 1
ε
= 2. (27)

Hence, Ext runs in expected polynomial time, and it does not abort with probability at least
ε.

Let Ebinding be the event that Ext, on inputs (ppCom,x1,x2, st) is not able to break the
binding property of the commitment scheme Com, i.e. Ebinding is the event that at no point

39

Ext has computed two vectors U1,U2 and elements s1, s2 such that Com(ppCom,U1, s1) =
Com(ppCom,U2, s2). We have Pr[Ebinding] = 1− negl(λ).

Now, conditioning on E occurring, since the events Elines and Ebad−lines are complementary
and mutually exclusive, by the law of total expectation,

E[Z | E] = E[Z | Elines or Ebad−lines]

=E[Z | Elines]Pr[Elines] + E[Z | Ebad−lines]Pr[Ebad−lines]

=E[Z | Ebad−lines]ε1 + E[Z | Elines](1− ε1),

(28)

where ε1 = Pr[Ebad−lines] is the probability that Ext does not abort in Step 1 and Elines does
not hold. Note that E[Z | Elines] = 0, because if, at the end of Step 1, Elines holds, then the
extractor terminates. We now make the following claim:

Claim 7.1. E[Z | Ebad−lines, Ebinding]−1 = negl(λ).

Assume Claim 7.1 is true for now. We now claim that if Ext does not abort in Step 1

and Elines holds, then both (pp,x1;w
(1)
1) and (pp,x2;w

(1)
2) belong to Racc. Indeed, since Ext

does not abort, we know that (pp,x
(1)
1 ,x

(1)
2 ;w

(1)
1 ,w

(1)
2) ∈ Requal. Further, h1(0) = v1 and

h2(1) = v2, because V did not reject. Since Elines holds, this implies that

mle[E
(1)
1](r1) = mle[E

(1)
1] ◦ ℓ(0) = h1(0) = v1

mle[E
(1)
2](r2) = mle[E

(1)
2] ◦ ℓ(1) = h2(1) = v2.

(29)

Finally, since (pp,x
(1)
i ;w

(1)
i) ∈ Racc for both i = 1, 2, we conclude that (pp,xi;w

(1)
i) ∈ Racc

as well, due to Eq. (29) and xi,x
(1)
i only differing in the evaluation points ri, r

(1), and

evaluation values vi, v
(1)
i .

We next argue that ε1 = negl(λ). Note that this will complete the proof (barring the
proof of Claim 7.1) that Ext runs in PPT time and outputs a valid witness with probability
ε− negl(λ), conditioned on P∗’s first message being (h1(X), h2(X)), i.e. conditioned on the
event Eh1,h2 . .

Further, we have already argued that Ext runs in expected polynomial time, and that it
does not abort with probability at least ε. If, additionally, the probability that Ext does not
abort and ¬Elines is negligible, then we conclude that Ext is a PPT algorithm that outputs a
valid witness for x1,x2 with probability ε− negl(λ).

We now prove that ε1 = negl(λ), assuming that Claim 7.1 is true. Indeed, plugging (28)
into (27), and using both Claim 7.1 and E[Z | Elines] = 0, we obtain

2 ≥ E[Ztotal] = 1 + εE[Z | E] = 1 + εε1E[Z | Ebad−lines] (30)

Using again the law of total expectation,

E[Z | Ebad−lines]

=E[Z | Ebad−lines, Ebinding]Pr[Ebinding] + E[Z | Ebad−lines,¬Ebinding]Pr[¬Ebinding]
≥E[Z | Ebad−lines, Ebinding]Pr[Ebinding].

(31)

40

Note that ε1 ≤ ε, since ε1 is the probability that Ext does not abort at Step 1, which occurs
with probability ε, and, additionally, Ebad−lines holds. Hence from (30), (31), and Claim 7.1
we obtain

ε21 ≤ ε1ε ≤ E[Z | Ebad−lines, Ebinding]−1Pr[Ebinding]−1 = negl(λ),

where the last equality follows from Remark 3.1 and the fact that E[Z | Enonzero, Ebinding]−1 =
negl(λ) and Pr[Ebinding] = 1− negl(λ). This implies that ε1 = negl(λ), as needed.

Now it only remains to prove Claim 7.1.

Proof of Claim 7.1. Assume Ebinding holds, i.e. Ext does not break the binding property of
the commitment scheme Com. Assume we run Ext up to Step 1 and Ebad−lines holds, so

in particular Ext does not abort. Let (pp,x
(1)
1 ,x

(1)
2 ;w

(1)
1 ,w

(1)
2) be the output of ⟨P∗,V⟩

obtained at the end of Step 1. By definition, this output belongs to Requal.
By construction of Ext, during Step 2, Ext successively repeats an experiment Ξ, until

Ξ is successful. The experiment Ξ consists in running ⟨P∗,V⟩, and Ξ is successful if the

output (pp,x
(2)
1 ,x

(2)
2 ;w

(2)
1 ,w

(2)
2) of ⟨P∗,V⟩ is in Requal. Importantly, note that the random

challenge β(2) sent by V during this experiment is uniformly random and independent

of (pp,x
(1)
1 ,x

(1)
2 ;w

(1)
1 ,w

(1)
2). Suppose one such output (pp,x

(2)
1 ,x

(2)
2 ;w

(2)
1 ,w

(2)
2) is in Racc.

Write
(pp,x

(2)
i ;w

(2)
i) = (pp,xi, v

(2)
i , ui, ĎWi, r

(2);W
(2)
i ,E

(2)
i , s

(2)
i), i = 1, 2.

We next prove that W
(1)
i = W

(2)
i and that E

(1)
i = E

(2)
i for both i = 1, 2. Indeed, since in

particular (pp,x
(1)
i ;w

(1)
i) and (pp,x

(2)
i ;w

(2)
i) are in Racc, we have

Com(ppCom,W
(1)
i , s

(1)
i) = ĎWi = Com(ppCom,W

(2)
i , s

(2)
i) for i = 1, 2. (32)

Since we assume Ebinding holds, we obtain W
(1)
1 = W

(2)
1 and W

(1)
2 = W

(2)
2 . Setting

Z
(1)
i = (W

(1)
i ,xi, 1) and Z

(2)
i = (W

(2)
i ,xi, 1), it also follows that Z

(1)
i = Z

(2)
i for both i = 1, 2.

To show that E
(1)
i = E

(2)
i for both i = 1, 2, we use that (pp,x

(1)
1 ;w

(1)
1) and (pp,x

(2)
1 ;w

(2)
1)

are in Racc, and that Z
(1)
1 = Z

(2)
1 :

E
(1)
1 = (A · Z(1)

1) ◦ (B · Z(1)
1)− u1 · (C · Z(1)

1)

= (A · Z(2)
1) ◦ (B · Z(2)

1)− u1 · (C · Z(2)
1) = E

(2)
1 .

(33)

An analogous argument shows that E
(1)
2 = E

(2)
2 .

We now prove that β(2) is a root of h1(X)−mle[E
(1)
1]◦ℓ(X) and of h2(X)−mle[E

(1)
2]◦ℓ(X).

Recall that the univariate polynomials h1(X), h2(X) constitute P∗’s first message in all runs
of ⟨P∗,V⟩. Since we assumed that

(pp,x
(2)
1 ,x

(2)
2 ;w

(2)
1 ,w

(2)
2) ∈ Requal (34)

and V did not abort, we have h1(0) = v1 and h2(1) = v2, and v
(2)
1 = h1(β

(2)), v
(2)
2 = h2(β

(2)).

Further, due to (34), v
(2)
i = mle[E

(2)
i](r(2)) for i = 1, 2. Hence, using that E

(1)
1 = E

(2)
1 , and

E
(1)
2 = E

(2)
2 we have that that

hi(β
(2)) = v

(2)
i = mle[E

(2)
i](r(2)) = mle[E

(1)
i](r(2))

= mle[E
(1)
i](ℓ(β(2))) = (mle[E

(1)
i] ◦ ℓ)(β(2))

(35)

41

for i = 1, 2, as claimed. Hence, for Ξ to be successful, it is necessary that β(2) is a root of both

degree ≤ log(m) univariate polynomials h1(X)−mle[E
(1)
1]◦ℓ(X) and h2(X)−mle[E

(1)
2]◦ℓ(X).

Since we assume Ebad−lines holds, we have that at least one of these polynomials is not the
zero polynomial. Then, by Schwartz-Zippel lemma, and because β(2) is sampled uniformly
at random after E(1), ℓ(X), and h1(X), h2(X) are determined, the probability that Ξ is
successful is at most logm/|F| = negl(λ).

Recall we have only proved so far that, conditioned on P∗’s first message in Step 1
of Ext being (h1(X), h2(X)), we have that Ext runs in expected polynomial time and
outputs a valid witness for x with probability ε− negl(λ), where ε is the probability that
(pp, ⟨P∗,V⟩) ∈ RR1CS, conditioned on P∗’s first message being (h1(X), h2(X)).

We have to prove that, without conditioning on any P∗’s first message, Ext is a PPT
algorithm that outputs a valid witness with probability εtotal − negl(λ). At this point, this
follows word by word as the last part of the proof of Lemma 4.1.

Finally, recall we assumed that the evaluation points r1, r2 were different. If r1 = r2,
then it is trivial to build a PPT extractor that outputs a valid witness with probability εtotal.
□

8 Acknowledgements

We thank Ariel Gabizon, Matteo Pintonello, Srinath Setty, Lev Soukhanov, and Justin Thaler
for very helpful discussions, and Togzhan Barakbayeva and Matthew Klein for invaluable
help in preparing the experimental evaluations of Mova.

This work was supported by the Ethereum Foundation ZK grant FY24-1491.

9 References

[Arka] Arkworks contributors. Ark-crypto-primitives. URL: https://github.com/
arkworks-rs/crypto-primitives.

[Arkb] Arkworks contributors. Arkworks zkSNARK ecosystem/algebra.
URL: https://github.com/arkworks-rs/algebra/tree/

dcf73a5f9610ba9d16a3c8e0de0b3835e5e5d5e4.

[Awe] Awesome folding contributors. Awesome-folding. URL: https:

//github.com/lurk-lab/awesome-folding?tab=readme-ov-file#

other-resources-podcasts-etc.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding
for special sound protocols. Cryptology ePrint Archive, Paper 2023/620,
2023. https://eprint.iacr.org/2023/620. URL: https://eprint.iacr.

org/2023/620.

[BC24a] Dan Boneh and Binyi Chen. Latticefold: A lattice-based folding scheme and
its applications to succinct proof systems. Cryptology ePrint Archive, Paper

42

https://github.com/arkworks-rs/crypto-primitives
https://github.com/arkworks-rs/crypto-primitives
https://github.com/arkworks-rs/algebra/tree/dcf73a5f9610ba9d16a3c8e0de0b3835e5e5d5e4
https://github.com/arkworks-rs/algebra/tree/dcf73a5f9610ba9d16a3c8e0de0b3835e5e5d5e4
https://github.com/lurk-lab/awesome-folding?tab=readme-ov-file#other-resources-podcasts-etc
https://github.com/lurk-lab/awesome-folding?tab=readme-ov-file#other-resources-podcasts-etc
https://github.com/lurk-lab/awesome-folding?tab=readme-ov-file#other-resources-podcasts-etc
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620

2024/257, 2024. https://eprint.iacr.org/2024/257. URL: https://eprint.
iacr.org/2024/257.

[BC24b] Benedikt Bünz and Jessica Chen. Proofs for deep thought: Accumulation for
large memories and deterministic computations. Cryptology ePrint Archive,
Paper 2024/325, 2024. URL: https://eprint.iacr.org/2024/325.

[BCL+20] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. Cryptology ePrint
Archive, Paper 2020/1618, 2020. URL: https://eprint.iacr.org/2020/1618.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
Proof-carrying data from accumulation schemes. Cryptology ePrint Archive,
Paper 2020/499, 2020. URL: https://eprint.iacr.org/2020/499.

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments
and their applications. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16–20, 2021, Proceedings, Part I 41, pages 742–773. Springer, 2021.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition
without a trusted setup. Cryptology ePrint Archive, Paper 2019/1021, 2019.
URL: https://eprint.iacr.org/2019/1021.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments
from signature cards. In ICS, pages 310–331. Tsinghua University Press, 2010.

[DT24] Quang Dao and Justin Thaler. More optimizations to sum-check proving.
Cryptology ePrint Archive, Paper 2024/1210, 2024. https://eprint.iacr.

org/2024/1210. URL: https://eprint.iacr.org/2024/1210.

[EG23] Liam Eagen and Ariel Gabizon. Protogalaxy: Efficient protostar-style folding of
multiple instances. Cryptology ePrint Archive, Paper 2023/1106, 2023. https://
eprint.iacr.org/2023/1106. URL: https://eprint.iacr.org/2023/1106.

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives. Cryptology
ePrint Archive, Paper 2022/1530, 2022. https://eprint.iacr.org/2022/1530.
URL: https://eprint.iacr.org/2022/1530.

[Hop] Daira Hopwood. Crate ark pallas. URL: https://docs.rs/ark-pallas/

latest/ark_pallas/.

[KP23] Abhiram Kothapalli and Bryan Parno. Algebraic reductions of knowledge. In
Annual International Cryptology Conference, pages 669–701. Springer, 2023.

[KS23a] Abhiram Kothapalli and Srinath Setty. Cyclefold: Folding-scheme-based recursive
arguments over a cycle of elliptic curves. Cryptology ePrint Archive, 2023.

43

https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/257
https://eprint.iacr.org/2024/325
https://eprint.iacr.org/2020/1618
https://eprint.iacr.org/2020/499
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2024/1210
https://eprint.iacr.org/2024/1210
https://eprint.iacr.org/2024/1210
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2023/1106
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://docs.rs/ark-pallas/latest/ark_pallas/
https://docs.rs/ark-pallas/latest/ark_pallas/

[KS23b] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for cus-
tomizable constraint systems. Cryptology ePrint Archive, Paper 2023/573,
2023. https://eprint.iacr.org/2023/573. URL: https://eprint.iacr.

org/2023/573.

[KST21] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. Cryptology ePrint Archive, Paper
2021/370, 2021. https://eprint.iacr.org/2021/370. URL: https://eprint.
iacr.org/2021/370.

[NDC+24] Wilson Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh.
Mangrove: A scalable framework for folding-based snarks. Cryptology ePrint
Archive, 2024.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Annual international cryptology conference, pages 129–140.
Springer, 1991.

[Sou24] Lev Soukhanov. Warpfold: Wrongfield arithmetic for protostar folding. Cryptol-
ogy ePrint Archive, 2024.

[St] Sonobe-team. Sonobe. URL: https://github.com/

privacy-scaling-explorations/sonobe.

[STW23a] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems
for succinct arguments. Cryptology ePrint Archive, 2023.

[STW23b] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity
with lasso. Cryptology ePrint Archive, Paper 2023/1216, 2023. https://eprint.
iacr.org/2023/1216. URL: https://eprint.iacr.org/2023/1216.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Foundations and Trends®
in Privacy and Security, 4(2–4):117–660, 2022.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. pages 1–18, 03 2008. doi:10.1007/978-3-540-78524-8_
1.

[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, pages 223–237, 2013. doi:10.1109/SP.2013.48.

[ZGGX23] Tianyu Zheng, Shang Gao, Yu Guo, and Bin Xiao. Kilonova: Non-uniform pcd
with zero-knowledge property from generic folding schemes. Cryptology ePrint
Archive, 2023.

[zka] zkalc. zkalc is a cryptographic calculator! URL: https://zka.lc/.

[ZZD23] Zibo Zhou, Zongyang Zhang, and Jin Dong. Proof-carrying data from multi-
folding schemes. Cryptology ePrint Archive, 2023.

44

https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://github.com/privacy-scaling-explorations/sonobe
https://github.com/privacy-scaling-explorations/sonobe
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2023/1216
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1109/SP.2013.48
https://zka.lc/

	Introduction
	Mova in a nutshell
	Mova compared to Nova and Hypernova

	Techniques
	The Mova folding scheme
	Knowledge soundness proof of Nova linear

	Preliminaries
	Multilinear polynomials
	Commitment schemes
	Reductions of knowledge

	The Mova folding scheme
	From Rcs to Rcrcs
	Reduction to common evaluation point
	Folding two instances in Rcrcs with the same evaluation point
	Putting everything together

	Performance
	Experimental evaluation
	Computing the concrete costs of Mova, Nova, and Hypernova

	An efficient algorithm for composing a multilinear polynomial with a line
	Deferred proofs
	Proof of l: protscandprotplareredsofknowledge

	Acknowledgements
	References

