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A prominent countermeasure against side channel attacks, the hiding countermeasure, typically involves shuffling operations

using a permutation algorithm. Especially in the era of Post-Quantum Cryptography, the importance of the hiding coun-

termeasure is emphasized due to computational characteristics like those of lattice and code-based cryptography. In this

context, swiftly and securely generating permutations has a critical impact on an algorithm’s security and efficiency. The

widely adopted Fisher-Yates shuffle, because of its high security and ease of implementation, is prevalent. However, it has a

limitation of complexity O(𝑁 ) due to its sequential nature. In response, we propose a time-area trade-off swap algorithm,

FSS, based on the Butterfly Network with only log(𝑁 ) depth, log(𝑁 ) works and O(1) operation time in parallel. We will

calculate the maximum gain that an attacker can achieve through butterfly operations with only log(𝑁 ) depth from side

channel analysis perspective. In particular, we will show that it is possible to derive a generalized formula of the attack

complexity with higher-order side channel attacks for arbitrary input sizes through a fractal structure of the butterfly network.

Furthermore, our research highlights the possibility of generating efficient and secure permutations utilizing a minimal

amount of randomness.
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1 INTRODUCTION

1.1 Background and Motivation
Shor’s algorithm, a quantum computing breakthrough, presents a significant challenge to the security of traditional

encryption methods such as RSA [43] and Elliptic Curve Cryptography (ECC) [14]. These conventional algorithms

have long been the backbone of digital security, from online communications to financial transactions. However,

Shor’s algorithm can factor large integers and solve discrete logarithm problems in polynomial time with quantum

computers, undermining the mathematical foundations on which RSA and ECC rely [47].
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In response to this emerging threat, efforts have been made to develop and standardize Post-Quantum Cryp-

tography (PQC) algorithms, with the aim of establishing new cryptographic standards [1]. The National Institute

of Standards and Technology (NIST) has led this initiative, orchestrating a global, multi-phase competition to

identify and standardize quantum-resistant cryptographic algorithms.

Side channel attack is an attack that discovers secret values by exploiting physical phenomena, such as electro-

magnetic signals and power consumption, that occur while cryptographic devices are in operation. Typically,

based on the assumptions and methods of the attack, Differential Power Analysis (DPA) [20], Simple Power

Analysis (SPA) [23], Correlation Power Analysis (CPA) [7], Timing attacks [21], and Template attacks [8], are

known as the main techniques. Side channel analysis can be divided into two general categories of countermea-

sures: masking and hiding. Masking adds randomness to computations, making it impossible to model power

and electromagnetic emissions, which are fundamental assumptions of side-channel analysis [24]. Countering

higher-order side-channel attacks causes a significant increase in computational performance requirements and

code size of the algorithm with only masking countermeasures. To overcome these issues, hiding countermeasures

have been used as a low-cost supplementary method, making it more difficult to determine the temporal location

of computations, thus complicating power analysis [52]. The most widely known hiding countermeasure is

operation shuffling, which shuffles the presence of intermediate values that attackers seek to discover along the

time domain [24]. Additionally, in the case of using multiple execution units simultaneously in hardware, hiding

countermeasures can make it impossible for attackers to determine which execution unit is performing the target

operation at any given time. For example, in the case of Advanced Encryption Standard (AES) [50], the mutual

independence of the 16 S-box operations allows shuffling these 16 operations with a complexity of 16!.

A notable characteristic of PQC algorithms, such as lattice- and code-based algorithms [16, 32, 33], is their

reliance on large vector operations. These operations are unique in that their sequence does not affect the

outcome, paving the way for significant enhancements in countermeasures against side-channel attacks, going

beyond traditional masking methods. The inherent flexibility in the operation sequence within PQC algorithms

allows for the adoption of shuffling-based operation hiding as a primary countermeasure. This method involves

randomizing the order of operations in the time domain or in the location within the physical area, significantly

complicating the ability of an attacker to perform a successful side-channel analysis. In PQC algorithms, such

as ML-DSA [33], can shuffle up to 256 operations, drastically increasing protection against such attacks. The

advantage of applying hiding countermeasures in such PQC is that, from the perspective of an exhaustive search

of the entire recombination of operations, it has an attack complexity of the total index of shuffled targets (𝑁 !)

where 𝑁 is the number of operations (indices). In the case of higher-order attacks, it would theoretically have a

complexity of 𝑁 combination 𝑟 , assuming the shuffling is completely random where 𝑟 is the order. From this

perspective, there is a significant difference between having 𝑁 = 16 and 𝑁 = 32. When 𝑁 = 16, 16! ≈ 2
44
, whereas

32! ≈ 2
117

. Thus, in practical terms, the difference in complexity for an exhaustive search is immense.

1.2 Evaluating shuffling security in the context of side-channel analysis
When the object being shuffled achieves complete complexity, i.e., it is randomly shuffled with uniform probability

across all possible 𝑁 ! cases, it functions as an ideal countermeasure. However, if the shuffler is biased, its security

from the perspective of side-channel analysis must be evaluated in the following ways:

• Shuffling as a countermeasure against single trace attacks (profiling or nonprofiling) [40, 41, 49, 55]:
If an attacker can fully analyze the target using a single trace attack or similar methods, the extent to which

the permutation is shuffled needs to be evaluated. Ideally, if the index size is assumed to be 𝑁 , it would be

shuffled with a uniform probability distribution across 𝑁 ! possibilities. However, O(𝑁 !) represents an un-

necessarily high complexity, so a practical compromise might be ideal for actual environment of industries.

In this case, the time complexity required to recombine the output sequence should be measured, which
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can be quantified using Shannon Entropy with an statistical model. These measurements are necessary for

validating the effectiveness of countermeasures against revealing the key through recombination with all

shuffled key buffers.

• Shuffling as a countermeasure against DPA attacks [25, 52, 54]: When an attacker performs a DPA

analysis, the complexity of the attack when shuffling is implemented as a countermeasure should be

measured. For a primary DPA attack, the probability of a specific operation occurring at a specific time

(or location) must be calculated. Ideally, if the countermeasure involves mixing 𝑁 operations, the ideal

probability would be 1/𝑁 . If a secondary DPA analysis is necessary, the attack would target two points

with the same masking to determine any correlation between them after shuffling. This requires checking

the computational complexity for

(
𝑁
2

)
pairs of indices. Similarly, to determine the complexity of an attack

corresponding to an ℎ-th order attack, the distribution of states for

(
𝑁
ℎ

)
must be analyzed to calculate the

Shannon entropy. This measurements are necessary for validating the effectiveness of countermeasure

against higher order DPA attacks.

• Shuffling as a countermeasure against attacks using the relationship of each index [38, 39]: There

is an attack that is not in the traditional style of SPA attacks, nor simply a profiling attack to find specific

values. Instead, this attack solves equations to find the key using various additional statistical techniques

on top of conventional profiling attacks. In such cases, the relationships between each index are more

important than the overall mixing of entropy. In this attack as well, it is necessary to measure entropy

based on the same criteria as applying shuffling in higher-order DPA.

1.3 An implementation perspective for operation shuffling

Fig. 1. Sequence Generation and Shuffling Operation: Sequence and Shuffling (S-and-S)
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From an implementation perspective, shuffling can be broadly divided into three areas. The first is generating

a shuffling sequence and determining the order of operations based on the generated sequence, namely Sequence
and Shuffling (S-and-S); see Figure 1. This is the most commonly used method and is intuitively straightforward.

Since all cryptographic algorithms implemented in software cannot be executed in parallel, this strategy can be

considered the only viable method [13, 52]. This method can be used when you want to arbitrarily rearrange

the chronological order of all sequentially performed operations, regardless of whether the main operations are

implemented in hardware or software.

The second method involves shuffling the operations by randomly changing their positions. This approach

is generally used when the entire implementation is composed of hardware. An intuitive illustration of this
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Fig. 2. Merging Sequence Generation and Shuffling Operation in Parallel: Shuffling at Once (S-At-Once)
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can be seen in Figure 2, namely Shuffling at Once (S-at-Once). In this case, a separate sequence for performing

the permutation is not generated. Instead, the focus is on the allocation of positions where each operation is

performed. This is generally implemented using methods such as switching networks [9, 56].

Fig. 3. Sequence Generation and then Shuffling Operation in Parallel: Sequence and Allocation (S-and-A)
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However, even in situations where all operations are parallelized and the entire system is implemented in

hardware, a shuffling sequence can be generated in advance to redistribute the positions of the operations, namely

Sequence and Allocation (S-and-A). For this redistribution, Stage 2 in Figure 3 is necessary, and a step must be

taken to convert values to positions using a multiplexer or demultiplexer.

Despite various implementation methods, high-speed shuffling generation is fundamentally important for

both changing the positions of operations and rearranging their chronological order. In conclusion, the shuffling

generator is significant in its own right for hardware, software, parallel, and sequential shuffling. Bayrak et

al. [3] referred to this study as an architecture-independent instruction shuffler." In this paper, we expect that the

generated sequence will have sufficient complexity and that the shuffling generator will have a fully parallelized

hardware structure for high-speed performance. This would minimize operational delays wherever the shuffling

is applied. For example, in the case of an algorithm implemented entirely in software, if the shuffling generator

can be generated in hardware within one clock cycle [35], all intermediate shuffling can be applied with minimal

operation delay.
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1.4 Existing works and its Limitations
1.4.1 Fisher-Yates Shuffling. Shuffling techniques, which are methods typically used to generate sequences

through permutation generation algorithms and use the generated indices for shuffling operations, have various

applications. Among permutation generation algorithms, also known as shuffling sequence generation algorithms,

Fisher-Yates (FY) shuffling is the most widely used [13, 19]. The popularity of FY shuffling comes from its ease

of implementation and its ability to produce a complete permutation. However, this algorithm faces several

drawbacks [34]: first, it must be executed sequentially, which limits the potential for process acceleration;

second, it is susceptible to various misuses; and third, it demands an excessive number of random numbers.

To overcome these problems, several algorithms have been studied that modify FY shuffling to enable parallel

computation. However, this research has structural limitations in performing the computations completely in

parallel [2, 10, 17, 22, 48].

To address these challenges, more research is necessary. Firstly, a high-speed shuffling generation algorithm

capable of parallel processing is needed. Secondly, it is essential to generate random numbers of a manageable

size to maintain the required complexity and to control the size of the needed random numbers.

1.4.2 Side-Channel Attacks and Countermeasures on PQC. Number Theoretic Transform (NTT) operations,

notable for their shuffleability, serve as an efficient mechanism for operating lattice-based cryptographic com-

putations. Polynomial operations, unlike integer operations, do not carry over, inherently allowing parallel

processing in addition, subtraction, and multiplication. NTT operations can maximize this attribute of parallel

processing, enabling operation and recombination in a format that requires only log(𝑁 ) depth and 𝑁 /2 butterfly
units, regardless of the order.

Ravi et al. [41] categorize these operations as Coarse-Full-Shuffled NTT, Coarse-In-Group-Shuffled NTT, and

Fine-Shuffled NTT, demonstrating the results using FY shuffling in ML-DSA [33] and ML-KEM [32]. The division

of shuffling methods is based on efficiency considerations: whether all butterfly units are shuffled or only a part

is grouped and shuffled, leading to a trade-off between performance and security. Fine-Shuffled NTT involves

conditionally swapping two operations within a single Butterfly unit, proposed as an additional method to

counteract attacks like those identified by Pessl et al. [37].

Chen et al. [9] proposed an efficient method for implementing a shuffling index in NTT implementations based

on FPGAs. Their approach does not use full permutation generation methods, such as FY shuffling, but employs

a one-time rotation of the NTT index through the modular addition of 𝑁 /2. This achieves maximal shuffling

complexity against first-order DPA attacks. Integrating only fine shuffling using Ravi’s conditional swap, this

method maintains high efficiency, with an overall shuffling complexity of 𝑁 /2 × 2
𝑁 /2

. For the ML-DSA and

ML-KEM standards with 𝑁 = 128, this approach makes attacks virtually impossible in simple forms of single trace

template attacks. Although this method marks a significant achievement in the application of highly efficient

shuffling to NTT operations with about a 10% performance delay, its structural simplicity in shuffling could

potentially make it more susceptible to attacks [38, 39].

Zijlstra et al. [56] also proposed an FPGA implementation of shuffled NTT, with the distinctive feature of

utilizing the Benes network to optimize both the complexity and performance of shuffling. They enhanced the

performance of extracting random bits by connecting an Linear Feedback Shift Register (LFSR) to the Network.

However, their research does not verify the complexity of this network.

1.4.3 Small Domain Encryption and Format-Preserving Encryption. Encryption for small domains fundamentally

involves permutations. The main focus in this area is Format-Preserving Encryption (FPE), where research has

primarily focused on encryption schemes that manage input sizes flexibly. Before FFX standardization [12],

various approaches were explored, including encryption methods similar to card shuffling, the use of block
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ciphers [18, 42], fixed ciphers based on table lookups [6], and techniques that adaptively manage input and output

sizes through the operational modes of block ciphers [12].

Furthermore, for particularly small permutations used in shuffling, specifically those where the total number

of indices is at most 2
12
; existing FPE algorithms, to our knowledge, require an excessive number of operations.

This observation identifies a small-scale permutation efficiency gap, indicating a need for more streamlined

solutions in the FPE domain. In the case of standard FFX mode, a secure encryption algorithm is used as the base,

and AES is generally employed. However, the performance overhead of the FFX mode with AES is substantially

higher than that of direct encryption and decryption on small domains, making it impractically slow for such

applications. Furthermore, in other methods, when the total index size (plaintext space) 𝑁 is very small, the

number of rounds required is quite large. In the minimal case, the Swap-or-not method requires at least 10 log(𝑁 )
rounds [18]. Other methods typically require 𝑝𝑜𝑙𝑦 (log(𝑁 )) rounds [6, 42].
The reason for this inefficiency is that the purpose of Format-Preserving Encryption (FPE) itself is based on

achieving Chosen Ciphertext Attack (CCA) security. This involves an oracle model where the attacker can monitor

both intermediate inputs and outputs. This scenario is fundamentally different from the entropy considerations in

side-channel analysis. However, the provable security in FPE has been narrowly focused on the distinguishability

from a random permutation within a certain query size. This focus ensures encryption and decryption security

but does not consider the overall entropy or complexity of permutations. Our study aims to delve into the full

scope of permutation entropy and complexity, diverging from the current security paradigms in FPE.

1.4.4 Low Performance Partially Parallel Permutations. Investigating the generation of random permutations

in parallel presents a unique line of inquiry and has been tackled using various methods [2, 10, 17, 22, 36, 48].

This research area has two common characteristics. First, it seeks to blend parallelism with sequential elements,

thus not fully leveraging the potential for hardware efficiency through complete parallel processing. Second,

these methods aim to produce entirely uniform permutations, equating to the complexity of 𝑁 !. This implies

that stopping the algorithm partway results in some indices remaining unshuffled or their complexity unproven,

thereby revealing a trade-off between complexity and efficiency. As such, these methods are not ideal for security

applications due to their inefficiency and the excessive demand for random numbers.

Approaches also exist that utilize block ciphers, which are permutation-based parallel algorithms operated

on graphics processing units (GPUs) with bijection through Feistel networks [26, 44]. These algorithms share

similarities with our fully parallel random shuffling approach. This research indicates that block bijection can

generate uniform random permutations that meet their own statistical test criteria; however, it does not accurately

reflect complexity. Moreover, because their research does not calculate the actual complexity of permutations,

passing their tests does not equate to having the attack complexity of a factorial.

1.4.5 Block and Network-based Fully Parallel Permutations. The research that is most closely related to ours,

with a similar objective, is identified as ARR [35]. This study utilizes the concept of block ciphers, employing

only addition and rotation to iteratively execute round functions, thereby generating permutation sequences

with sufficient complexity within a single clock cycle. In addition, it showcases the complexity of second-order

analysis that can be directly applied to proving security against side-channel attacks. However, this research has

two limitations. Firstly, it utilized the innovative idea of identity verification to calculate the overall complexity

of the permutation, but suggested that statistical experiments are mandatory to predict the total complexity.

Secondly, the second-order analysis, which evaluated the mixing of two positions, was not theoretically proven

but demonstrated through experimental evidence.

Shuffling can alternatively be implemented using Routing Networks such as the Benes network [4, 45] (a

2-depth symmetric butterfly network), with minor variations. The advantages of the network-based approach

include the ability to perform parallel operations at high speeds and generate complete permutations.
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One key feature is the equivalence of the butterfly network with Thorp shuffling, which is known to randomly

cross two card decks. This characteristic has inspired various studies. Ben Morris conducted extensive research

on the efficacy of Thorp shuffling (butterfly network permutation) in generating all permutations, indicating

roughly the total variation distance (TVD) for 𝑞 inputs in 𝑝𝑜𝑙𝑦 (log(𝑁 )) [27–29].
Meanwhile, Czumaj [11] calculated the complexity of the network at a depth log

2 (𝑁 ) through coupling methods

in non-Markovian settings for the performance of the butterfly network. In contrast, Gelman et al. [15] calculated

the upper bound of the attacker’s gain that can be achieved through queries 𝑞 in the Benes network. Although

the main purpose of this research differs from ours, the problems addressed are very similar, speculating on the

attacker’s gain obtainable through the Benes network using the total variation distance as a measure.

Fig. 4. Research Fields by Computational Performance and Complexity with Parallel Machine; Fisher-Yates Shuffling [13, 19],
Fisher-Yates Shuffling in Parallel [2, 10, 17, 22, 48], Format Preserving Encryption [12], Network-Based Fully Parallel
structure [15], Block-Based Fully Parallel Structure [26, 44], Fully Parallel in Dedicated Operation [9], and Random Start
Point [53]
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1.5 Challenging Issues
Therefore, when we synthesize the forms of these studies, we need a study that can show high performance while

having the complexity of permutations that are useful as hiding countermeasures. The 𝑥-axis of Figure 4 represents

performance. Performance varies greatly depending on implementation methods and practical conditions, but we

show performance in terms of computational complexity. The y-axis is the level of security. The most complete

form has a computational complexity of 𝑁 ! such as FY shuffling. Since a sufficiently secure permutation for side

channel analysis does not need to have full complexity of 𝑁 !, there is a need for discussion about this, and we

marked reasonable security levels with a green line. This line includes the guessing entropy of recombining the

entire shuffling and the higher-order analysis.

To develop an algorithm capable of generating permutations fully in parallel and at extremely high speeds, our

aim is to apply the butterfly network with just log(𝑁 )-depth and log(𝑁 )-works, analyzing its corresponding

attack complexity from the perspective of countermeasures against side-channel attacks. This objective aligns

closely with the research conducted by Park et al. [35], which mentions network-based methods but lacks a

theoretical proof of security or high-order index shuffling in fully permutation scenarios.

Research on the complexity of fully parallel permutations using the butterfly network has progressed in one of

the following categories:

(1) Cryptographically determining a specific number of queries and calculating the limit of gain an attacker

could achieve, or Calculating the number of rounds required to meet the statistical boundary for a certain

probability of attack [11, 27, 30].

(2) Only the full-depth Benes network has been studied [15], without research on the log(𝑁 )-depth butterfly

method.

(3) The research only implemented shuffling using the Benes network and conducted Differential Power

Analysis (DPA) experiments on side-channel analysis, but did not analyze the actual complexity of the

implementation [3].

(4) The feasibility of side-channel attacks has not been analyzed, or it was not even a key research topic, but

only partially and solely in the second order, in an experimental context [35].

1.6 Our Contributions
Our research focuses on the butterfly network at depth log(𝑁 ), which we will refer to as Fixed-Swap Shuffling

(FSS). This paper contributes the following:
(1) It proves the attack complexity of fully permutations, serving as a countermeasure against Single Trace

side-channel attacks.

(2) It demonstrates the attack complexity for higher-order permutations, showing the complexity of how

indices originating from positions 𝑞 are determined after permutation.

(3) Finally, we compare the 𝑞-th order complexity between the result of the computation of the log(𝑁 )-depth
butterfly network derived by our computation and the computation result of worst-case probability of E.

Gelman et al. [15] with 𝑞 queries.

Furthermore, this paper will not cover the methodologies for generating random numbers, which is a very

crucial factor in creating permutations. There are various methods for generating random numbers, each with its

own performance, complexity, and impact on the final shuffling sequence, making it a topic extensive enough to

require separate research. Therefore, we assume that random numbers are provided in a completely uniform. We

will only proceed with the basic premise that using fewer random numbers can benefit overall computational

performance.

The paper is organized as follows. Section 2 explains the preliminary knowledge required to understand

the paper. Section 3 details how the FSS algorithm operates. Section 4 discusses the security of FSS from the
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perspective of using side channel attack countermeasures. Section 5 discusses several useful remarks obtainable

under the Benes network to compare between our result and the full-depth Benes network with the computed

entropy from 𝑞-set-wise independence. Finally, Section 6 will discuss the limitation and future work and concludes

the paper with discussions related to cryptographic applications.

2 PREREQUISITES

2.1 Notations and Definitions
The S𝑁 represents the symmetric group on the set [𝑁 ] = {0, 1, 2, 3, . . . , (𝑁 − 1)}. A permutation is a one-to-

one correspondence function. Moreover, we limit the domain to the set [𝑁 ]. Therefore, by the definition of a

permutation, the output range is also [𝑁 ].

Perm : 𝐾 × [𝑁 ] → [𝑁 ]

Refers to a family of permutations that transform integers. Hence, Perm has the property that, for each 𝑘 ∈ 𝐾 ,
the projection Perm(𝑘, ·) is a permutation on [𝑁 ]. The realizations of Perm are represented as 𝜙 , 𝛿 , or FSS.
The set 𝐾 denotes a key set that determines the diversity of the permutation with the given method Perm.

Therefore, Perm(𝐾, 𝑥) = 𝑦 represents a set of pseudo-random permutations determined by a key set 𝐾 , including

random numbers {𝑘𝑖 }. Mentioning Perm(𝑥) without specifying 𝐾 implies that 𝑘 is randomly chosen in uniformly

distributed 𝐾 . In this context, the term random permutation refers to a pseudo-random permutation. ‘𝐼 ’ is the

identity permutation, where 𝐼 (𝑥) = 𝑥 for all 𝑥 ∈ [𝑁 ], making Perm(𝑘, ·) possibly the identity permutation chosen

𝑘 .

For the set [𝑁 ],
([𝑁 ]

𝑞

)
denotes the set of all subsets 𝑞 of [𝑁 ], that is, {𝐴 ⊆ [𝑁 ] | |𝐴| = 𝑞}. In this context, 𝑁 is

a power of 2, which signifies | [𝑁 ] | = 𝑁 = 2
𝑛
with 𝑛 = log

2
(𝑁 ). Assuming 𝑋 represents a subset in the power

set (sets of subsets) of the ordered set [𝑁 ], Φ𝑋 refers to a |𝑋 | × |𝑋 | transition matrix of a Markov chain, where

0 ≤ (Φ𝑋 )𝑖, 𝑗 ≤ 1 indicates the probability that the 𝑖-th element changes to the 𝑗-th after a stochastic process. [𝜋𝑋 ]
signifies the set of all elements ((Φ𝑋 )𝑖, 𝑗 ) within the matrix. For example, with 𝑋 = {{0}, {1}, {2}, . . . , {𝑁 − 1}},
which is a set of single elements, 𝜋𝑋 is a transition matrix 𝑁 × 𝑁 . In such a scenario, the set is termed a

1st-order set, 𝑋 =
([𝑁 ]

1

)
. Similarly, a second-order set is defined with the set of all pairs of elements, e.g. 𝑋 =

{{0, 1}, {1, 2}, {2, 3}, . . . , {𝑁 − 1, 0}} =
([𝑁 ]

2

)
, with |𝑋 | =

(
𝑁
2

)
. When 𝑋 equals S𝑁 , then 𝜋𝑋 is 𝑁 ! × 𝑁 ! matrix.

Definition 2.1. The 𝑞-th order (attack) complexity on 𝑋 =
([𝑁 ]

𝑞

)
refers to the worst-case security for 𝑞 inputs

and outputs in

([𝑁 ]
𝑞

)
, calculated as

1

𝑚𝑎𝑥 ( [𝜋𝑋 ] ) . The term max( [𝜋𝑋 ]) is defined as the 𝑞-th order (attack) probability,

which is the highest probability value for the inputs of

([𝑁 ]
𝑞

)
to the outputs.

Definition 2.1 outlines the worst-case security considerations for a 𝑞-th order attack. For example, in the

second-order attack scenario for a masked implementation, an attacker would choose two points with identical

masking and use the power values at these points for the attack. Success in this context depends on whether

there are precisely two operations at the chosen points or they are exactly on opposite points. Therefore, the

maximum probability max( [𝜋𝑋 ]) emerges as the highest value among the probabilities that an attacker selects

two points, and operations occur at those selected points for the attacker. The 𝑞-th order attack complexity and

the 𝑞-th order attack probability share an inverse relationship, offering a logarithmic perspective of opposition.

While these concepts are used interchangeably depending on the context, they are effectively reflections of the

same principle since one’s value directly influences the other’s.
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Definition 2.2. The 𝑞-th Order Probability of input 𝑥𝑞 for a permutation Perm is defined as probability of a

random variable 𝑋 which is an output of a shuffled index Perm(𝑥𝑞) with input 𝑥𝑞 ∈ [𝑁 ] and 𝑞 ≤ 𝑁 under values

Perm(𝑥1), Perm(𝑥2), Perm(𝑥3), . . . , Perm(𝑥𝑞−1) have already determined, denoted as Γ
𝑥𝑞
𝑞 = Γ

𝑥𝑞 |𝑥1,𝑥2,...,𝑥𝑞−1
𝑞 .

Definition 2.2 introduces a novel metric for assessing the randomness under a 𝑞-th order attack for a specific

permutation. For example, considering a uniformly random permutation across all indices 𝑛, the first-order

probability at any 𝑥1, 𝑦 ∈ [𝑁 ] would be Γ𝑥1
1

= 1

𝑛
for all 𝑥1, and the second-order probability at any input 𝑥2 (and 𝑥1

is fixed input) would be Γ𝑥2
2

= 1

𝑛−1 for all 𝑥2. This methodology, Γ
𝑥𝑞
𝑞 , will be employed to determine the 𝑞-th order

attack complexity of the proposed permutation for a side channel attack aspect. It is important to note that the

definition of Γ
𝑥𝑞
𝑞 itself is influenced by results of the inputs from 𝑥1 to 𝑥𝑞−1. If the random permutation is biased,

it will be affected by the previous results according to the prior input values such as 𝑥1, 𝑥2, 𝑥3, etc. Therefore,

even for the same permutation, this value will not be identical and it will also form a probability distribution.

The maximum values of the product of all probability values, is intuitively the same as the 𝑞-th order attack

probability. This will be discussed in Section 4.3.

A transposition (𝐴, 𝐵) implies that 𝐴 transforms to 𝐵, and 𝐵 to 𝐴. If two transpositions are disjoint, for example,

(𝐴, 𝐵) and (𝐶, 𝐷), where 𝐴, 𝐵,𝐶, and 𝐷 are distinct elements, then their composition is commutative, which

implies that (𝐴, 𝐵) ◦ (𝐶, 𝐷) = (𝐶, 𝐷) ◦ (𝐴, 𝐵). This is succinctly represented as (𝐴, 𝐵) (𝐶, 𝐷).
The probability of an event 𝐸 occurring is denoted as Pr(𝐸). Furthermore, all references to ‘log’ in this paper

signify the base-2 logarithm, used to calculate the entropy as 𝐻 (𝑋 ) with a random variable 𝑋 [46]. The entropy

is calculated as follows:

𝐻 (𝑋 ) = −
∑︁
𝑥∈𝑋

Pr(𝑥) log(Pr(𝑥)) (1)

Shannon entropy, 𝐻 (𝑋 ), represents the computational time complexity to guess secret information on a scale

of log, such as 2
𝐻 (𝑋 )

. Additionally, 𝐻𝑚𝑖𝑛 (𝑋 ) (minimum entropy) refers to the inverse of the highest probability of

a random function; 𝑝−1, where 𝑝 is the maximum probability. Ideal entropy denotes the maximum theoretical

entropy for a given random variable. In a uniform distribution, the following fact is naturally accepted.

Fact 2.3. If the random variable X has the uniform distribution, then the Shannon entropy and the minimum

entropy are identical.

By definition, the value of Shannon entropy is always greater than the value of minimum entropy, and by

definition, the value of minimum entropy aligns with the worst-case attack complexity in Definition 2.1.

The total variation distance (TVD) is ametric to quantify the difference between two probability distributions [5].

TVD between two probability distributions 𝑃 and 𝑄 in a probability space Ω is defined as:

∥𝑃 −𝑄 ∥ = sup

𝐴⊆Ω
|𝑃 (𝐴) −𝑄 (𝐴) | (2)

Alternatively, it can be expressed as half of the 𝐿1-norm of the difference between the two distributions:

∥𝑃 −𝑄 ∥ = 1

2

∑︁
𝑥∈Ω
|𝑃 (𝑥) −𝑄 (𝑥) | (3)

TVD ranges from 0 to 1, where 0 indicates identical distributions and 1 denotes maximally different distributions.

It provides a clear and interpretable measure of the discrepancy between two probability distributions.
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Fig. 5. 8 × 8 Benes Network 5-depth (3-depth butterfly network up to 3-depth) - Switch Description

Fig. 6. (2 × 2) Switch

Fig. 7. 8 × 8 Benes Network 5-depth (3-depth butterfly network up to 3-depth) - Location Swap Description

2.2 Routing Network and Thorp Shuffling
Routing networks are specialized networks designed to route data through a series of nodes and pathways. They

are fundamental in Telecommunications, Parallel Computing, Data Center Networks, etc. Routing networks play

a crucial role in the field of computer science and telecommunications, where they are used to efficiently manage

the flow of data between various points [51].
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One prominent example of a routing network is the Benes Network [4]. This routing structure can be described

as two methods: a switching system that uses 2 × 2 switches (Figures 5 and 6), and a method that employs

value-swap operations; see Figure 7. These two methods ultimately represent the same system. We are interested

in the location swap description since it can be presented in general algorithm form and expanded the same

small unit to full size. Only the log(𝑁 )-depth Benes network is called a butterfly network. On the other hand, the

2 × log(𝑁 ) − 1 butterfly network is considered the Benes network.

Thorp shuffling is another view for the butterfly network, which is only log(𝑁 )-depth butterfly network[27–29].
Thorp shuffling is a simple model for random riffle shuffle in card games. One first cuts a deck of cards in half

and then starts dropping the cards from either the left or right hand as with an ordinary shuffle. In each step, the

left or right card with a probability of
1

2
is chosen. After the log(𝑁 )-depth butterfly network, it is exactly the

same result for Thorp shuffling as a card deck and its locations.

3 FIXED-SWAP SHUFFLE (FSS): REARTICULATED ALGORITHM OF BUTTERFLY NETWORK

3.1 Basic Structure: Algorithmic Description of Butterfly Network
Algorithms 1 and 2 represent the Fixed Swap Shuffling (FSS) algorithm which is the same but clear to describes

log(𝑁 )-depth butterfly network and Thorp Shuffling , with the only difference between the two algorithms being

that Algorithm 1 generalized the Deterministic Pseudo random function (DPRF) which is determined by inputs

only, while Algorithm 2 specifies DPRF by generating random bits first and then selecting the positions of the

random bits (𝑅 = 𝑟0𝑟1𝑟2 . . . 𝑟 ( (𝑁 /2)×𝑛)−1).

DPRF : Z→ {0, 1}

Each approach has its advantages and disadvantages. The first approach can be seen as a generalization of the

second approach, which is advantageous in that it can be used as a general encryption scheme for only certain

inputs to be encrypted if DPRF is assumed to be random for an input of arbitrary size, for example, a 128-bit

input. It has the different purpose from permuted sequence generator. If we design a 128-bit permutation using

the second method, the length of the random number to be generated becomes infinitely long. Only a bit stream

of length 2
128/2 is required for the first depth. However, if the algorithm is proven to be secure for a given attack

size, there is no need to use a method such as Algorithm 2. In addition, since output values are not required for

all input sizes, it is better to compute the PRF algorithm than to produce specific bits in advance.

However, if it is assumed that output values are needed for all inputs, applyingDPRF to all switches determined

by one bit would be quite inefficient, and it would be more advantageous to generate each bit (each switch) in

advance. Each random bit generated can serve as DPRF. Especially, for our aim of shuffle indices for side channel

attack with small domain permutation, Algorithm 2 may be a better choice. This method can work as a generator

for shuffled sequences.

Therefore, Algorithm 3 shows a routine that generates output values by performing permutation algorithms

using FSS on all indices. The generalized form is to use Algorithm 1 (DPRF), but this part can generally be

considered advantageous to use Algorithm 2’s random bit when the input size is small. The time complexity of

this operations is (𝑂) (𝑁 ). As a sequence generator implemented in hardware, this operation can be parallelized

with a complexity of 𝑐 × O(1), where 𝑐 is the execution time of Algorithm 1 or 2.

3.2 Transposition Representation for FSS
In order to compute the guessing entropy of FSS, we show that FSS can be represented through compositions of

disjoint transpositions. For example, consider the 8 × 8 network illustrated in Figure 7. The initial layer generates

swap operations through transpositions (0, 4), (1, 5), (2, 6), (3, 7). Thus, FSS consists of log(𝑁 ) rounds (depth) of

, Vol. 1, No. 1, Article . Publication date: July 2024.



A Compact and Parallel Swap-Based Shuffler based on butterfly Network and its complexity against Side Channel Analysis • 13

Algorithm 1 Fixed-Swap Shuffle (FSS) - Permutation FSS(DPRF, 𝑥) with Deterministic Pseudo Random Function

(DPRF) for General Input/Output Model, O(log(𝑁 ))
Input: An integer 𝑥 ∈ [𝑁 ] such that 𝑁 = 2

𝑛
and DPRF

Output: FSS(DPRF, 𝑥) ∈ [𝑁 ]
1: for 𝑗 = 0 to 𝑛 − 1 do
2: 𝑠 ← left rotation 𝑗 bits of 𝑥

3: 𝑡 ← right (𝑛 − 1) bits of 𝑠 /*LSB (n-1) bits (without MSB)*/
4: 𝑡 ← DPRF(𝑡 ∥ 𝑗) /*t is 1 bit output of PRF */
5: if 𝑡 equals 0 then
6: 𝑥 ← 𝑥 /*No operation*/
7: else
8: 𝑥 ← 𝑥 ⊕ 2

(𝑛−1)− 𝑗 /*1 bit Exclusive-OR*/
9: end if
10: end for
11: return 𝑥

Algorithm 2 Fixed-Swap Shuffle (FSS) - Permutation FSS(𝑅, 𝑥) with deterministic random bits with length

(𝑁 /2) × log(𝑁 ) for Small Domain Permutation Model, O(log(𝑁 ))-Time

Input: An integer 𝑥 ∈ [𝑁 ] such that 𝑁 = 2
𝑛
and random bit stream 𝑅 = 𝑟0𝑟1𝑟2 . . . 𝑟 ( (𝑁 /2)×𝑛)−1

Output: FSS(𝑅, 𝑥) ∈ [𝑁 ]
1: for 𝑗 = 0 to 𝑛 − 1 do
2: 𝑠 ← left rotation 𝑗 bits of 𝑥

3: 𝑡 ← right (𝑛 − 1) bits of 𝑥 /*LSB (n-1) bits (without MSB)*/
4: 𝑡 ← 𝑅𝑡+(𝑁 /2)× 𝑗 /*On the fly PRF with Random Bits*/
5: if 𝑡 equals 0 then
6: 𝑥 ← 𝑥 /*No operation*/
7: else
8: 𝑥 ← 𝑥 ⊕ 2

(𝑛−1)− 𝑗 /*1 bit Exclusive-OR*/
9: end if
10: end for
11: return 𝑥

Algorithm 3 Shuffling Sequence Generator with Fixed-Swap Shuffle - FSS(DPRF, ·), O(𝑁 )-Time

Input: DPRF
Output: A random sequence 𝑌 = {𝑦0, 𝑦1, 𝑦2, . . . , 𝑦 (𝑁−1) }, 𝑦𝑖 ≠ 𝑦 𝑗 where 𝑖 ≠ 𝑗 , denote FSS(DPRF, ·)
1: for 𝑖 = 0 to 𝑁 − 1 do
2: 𝑦𝑖 ← FSS(DPRF, 𝑖) /*Can be operated in parallel for each 𝑦𝑖*/
3: end for
4: return 𝑌

such disjoint transpositions. We introduce the concept as a given and proceed without further elaboration. This

concept will be foundational for the later proved significance of Proposition 4.1.

Define 𝑇𝐿 as a set of disjoint transpositions for layer 𝐿, that is, 𝑇𝐿 = {𝑡𝐿,0, 𝑡𝐿,1, . . . , 𝑡𝐿,𝑚−1}. For example, 𝑇0 =

{(0, 4), (1, 5), (2, 6), (3, 7)}, in the 8 × 8 network. Consequently, a selected random composition of transpositions
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from𝑇𝐿 (Layer 𝐿), denoted by 𝜎𝐿 = 𝑡𝐿,𝑘0𝑡𝐿,𝑘1 . . ., does not depend on the order due to their disjointness. FSS selects
a random permutation through these disjoint transpositions, constructing sequences such as 𝜎log(𝑁 )−1◦ . . .◦𝜎1◦𝜎0,
where 𝜎 𝑗 encompasses all elements of 𝑇𝑗 . Thus, we can formally describe this fact as Fact 3.1.

Fact 3.1. The algorithm FSS(𝑘𝑖 , ·) operates through the function composition 𝜎log(𝑁 )−1 ◦ . . .◦𝜎1 ◦𝜎0, with each

𝜎𝑖 representing a layer composed of disjoint transpositions. Notably, the transpositions within each individual 𝜎 𝑗
are not disjoint.

Fact 3.2. Within the FSS, for any distinct layers 𝑧 and 𝑦 𝑗 , where 𝑧,𝑦 𝑗 ≤ log(𝑁 ) − 1 and 𝜎𝑧 ≠ 𝐼 , it holds that
𝜎𝑧 is always distinct from any composition 𝜎𝑦1 ◦ 𝜎𝑦2 ◦ . . . ◦ 𝜎𝑦𝜏 , where each 𝑦𝑖 may not be distinct, utilizing the

unique transposition notation for each layer.

Fact 3.2 is intuitively true, so we omit the proof of this statement. Each step is a bit flip of the internal values

of FSS. Given that no matter how you change the bits in different positions, you cannot change the value of a

specific bit. Thus, Fact 3.2 can be understood as correct.

3.3 Reduced Random Source FSS (R-FSS)
Algorithm 2 is described based on usage with full-length random bits. If we consider the reduced length of

random bits, there is a trade-off between security, performance of generating random bits, and size of buffer

storing random bits. For example, one may generate random bits for only the first layer, and use these random

bits for the other layers of all depth.

4 SECURITY

4.1 Entropy of Full Permutation
If we assume that an attacker can find all sensitive values through methods like template attacks, shuffling can be

considered as a countermeasure. To calculate the time required to recombine all values, it would be appropriate to

measure the guessing entropy of the recombination by considering the permutation as a probability distribution.

Instead of calculating the Shannon entropy of our FSS, we will calculate its upper bound in Proposition 4.1, the

minimum entropy, to estimate the bounds of Shannon entropy. This aims to provide developers with a calculable

safe bound as a countermeasure against single trace attacks. Additionally, the effect of reducing the used random

values on the total number of recombination cases will be provided in Corollary 4.2.

Proposition 4.1. For FSS with 𝑁 = 2
𝑛
inputs, the entropy equals the entropy of a uniformly distributed

random bit stream of length ((𝑛 − 1) × 𝑁 /2).

Proof. To demonstrate that two identical permutations generated by FSS, given the random bit streams

𝑅1 and 𝑅2 of ((𝑛 − 1) × 𝑁 /2) bits, result in the same sequence of transpositions, consider the following. Let

FSS(𝑅1, ·) = 𝜎𝑦0 ◦ 𝜎𝑦1 ◦ . . . and FSS(𝑅2, ·) = 𝜎𝑧0 ◦ 𝜎𝑧1 ◦ . . ., where 𝜎𝑦𝑖 and 𝜎𝑧𝑖 represent the composition of the

disjoint transpositions of 𝑖-th layer, and FSS(𝑅1, ·) = FSS(𝑅2, ·). Thus, we can write:

𝜎𝑦0 ◦ 𝜎𝑦1 ◦ . . . = 𝜎𝑧0 ◦ 𝜎𝑧1 ◦ . . . (4)

Rearranging terms gives:

(𝜎𝑧0 ◦ 𝜎𝑦0 ) ◦ 𝜎𝑦1 ◦ . . . = 𝜎𝑧1 ◦ 𝜎𝑧2 ◦ . . . (5)

Further simplification leads to
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(𝜎𝑧0 ◦ 𝜎𝑦0 ) = 𝜎𝑧1 ◦ 𝜎𝑧2 ◦ . . . ◦ (𝜎𝑦1 ◦ 𝜎𝑦2 ◦ . . .)−1 (6)

Given that 𝜎𝑧0 ◦ 𝜎𝑦0 represents the transpositions of the first layer and (𝜎𝑦1 ◦ 𝜎𝑦2 ◦ . . .)−1 is the inverse of
(𝜎𝑦1 ◦ 𝜎𝑦2 ◦ . . .) (as the inverse of a transposition is itself), we find the following.

𝜎𝑧′0 = 𝜎𝑧1 ◦ 𝜎𝑧2 ◦ . . . ◦ (𝜎𝑦1 ◦ 𝜎𝑦2 ◦ . . .)−1 = 𝜎𝑧1 ◦ 𝜎𝑧2 ◦ . . . ◦ 𝜎𝑦2 ◦ 𝜎𝑦1 (7)

Hence, 𝜎𝑧′0 = 𝜎𝑧1 ◦ 𝜎𝑧2 ◦ . . . 𝜎𝑦2 ◦ 𝜎𝑦1 . This equation has exactly the same situation as that described in Fact 3.2,

𝜎𝑧′0 has to be the identity permutation, indicating 𝜎𝑧0 = 𝜎𝑦0 . This allows us to eliminate 𝜎𝑧0 and 𝜎𝑦0 from both

sides of the equation. Repeating this process for every layer shows that all layer transpositions are identical.

Therefore, 𝜎𝑧𝑖 = 𝜎𝑦𝑖 for each layer, confirming that each includes the exact same set of disjoint transpositions.

Therefore, if the two permutations generated through FSS are ultimately the same, we can determine that

all the transpositions included in between are identical. According to Fact 5.3, the minimum entropy and the

Shannon entropy are identical in this case, and the maximum probability value for the existence of a single

permutation is
1

( (𝑛−1)×𝑁 /2) , with all being equal. As FSS generates uniformly distributed permutations with

possible configurations ((𝑛 − 1) × 𝑁 /2), the minimum entropy of FSS is precisely ((𝑛 − 1) × 𝑁 /2). □

Corollary 4.2. The total entropy of R-FSS is the number of random bits used.

Proof. By the Proposition 4.1, all permutation is distinguished up to using the same random bits. Thus, R-FSS,
which is generated by uniformly distributed reduced random numbers, has the same entropy to the entropy of

random bits. □

4.2 First order complexity of FSS
Theorem 4.3. If a random variable𝑋 follows the output distribution of FSS(𝑅, 𝑥𝑖 ), where𝑅 consists of uniformly

distributed random bits, then Γ𝑥𝑖
1

of any input 𝑥𝑖 within the domain [𝑁 ], where | [𝑁 ] | = 𝑁 = 2
𝑛
, is

1

𝑁
. Simply, 1st

order attack probability of FSS(𝑅, ·) is 1

𝑁
.

Proof. Consider an arbitrary input 𝑥 ∈ [𝑁 ] and denote 𝑦 as the output produced by 𝑦 = FSS(𝑅, 𝑥), where 𝑅
is a sequence of uniformly distributed random bits. To determine the probability that 𝑦 equals FSS(𝑅, 𝑥) for a
randomly chosen 𝑥 and 𝑦, we analyze the process layer by layer. In the initial layer, the input 𝑥 is allocated to

one of two possible groups with a probability of
1

2
. This binary selection process is repeated identically for each

subsequent layer, up to the log(𝑁 )-th layer. Therefore, the overall probability of obtaining a particular output 𝑦

from input 𝑥 under FSS is the cumulative product of the probabilities at each layer, calculated as ( 1
2
)log(𝑁 ) = 1

𝑁
.

This calculation confirms that the likelihood of any specific outcome given any input is uniform
1

𝑁
across all

possible outcomes. □

Based on Figure 7, the theorem states that there is only one unique way to connect a specific input node to

a specific output node, which relies on the fact that the change in values (propagation direction) in each layer

occurs with an equal probability of 1/2. Furthermore, according to Algorithm 2, the bit flip at each step can be

randomly determined, and regardless of the initial input value, the output can be any value, with the probabilities

intuitively being equal. Theorem 4.3 leads to the first-order attack is 𝑁 . It can be used for the perfect security

countermeasure against the 1st-order differential power analysis assumption. The 1st-order attack assumption is

the most widely considered against side-channel attack.
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4.3 𝑞-th order analysis of FSS
As the next step, we aim to verify the security from the second order up to the 𝑞-th order. To carry out these

complex calculations, we first want to address Fact 4.4.

Fact 4.4. The 𝑞-th order attack probability for 𝑋 =
([𝑁 ]

𝑞

)
is bounded below

max( [𝜋𝑋 ]) ≤ 𝑞! ×max

(
Γ𝑥1
1
× Γ𝑥2

2
× Γ𝑥3

3
× . . . × Γ𝑥𝑞𝑞

)
(8)

for all subsets with 𝑞 possible distinguished elements 𝑥1, 𝑥2, . . . , 𝑥𝑞 ∈
([𝑁 ]

𝑞

)
.

Fact 4.4 is intuitively true, since Γ𝑥1
1
× Γ𝑥2

2
× Γ𝑥3

3
× . . .× Γ𝑥𝑞𝑞 typically shows a maximum probability of a shuffled

result with 𝑞 inputs and 𝑞 outputs. There are 𝑞! cases for all combinations of 𝑞 inputs. Thus, max( [𝜋𝑋 ]) is bounded
by the product of the number of all combinations 𝑞! and the maximum value of the multiplication result of each

probability.

Definition 4.5. A Half-Recursive Sequence is defined by the recursive formula below:

𝑆𝑁 =

(
1

2

𝑆𝑁−1

)
, 𝑆𝑁−1 (9)

For example, if 𝑆0 = {1, 2}, then 𝑆1 =
{
1

2
, 1, 1, 2

}
and 𝑆2 =

{
1

4
, 1
2
, 1
2
, 1, 1

2
, 1, 1, 2

}
. In this paper, the important

sequence that we use is initialized with 𝑆0 = {1}. Consider its general form:

𝑆0 = {1},

𝑆1 =

{
1

2

, 1

}
,

𝑆2 =

{
1

4

,
1

2

,
1

2

, 1

}
,

𝑆3 =

{
1

8

,
1

4

,
1

4

,
1

2

,
1

4

,
1

2

,
1

2

, 1

}
,

. . .

𝑆𝛾 =

{
1

2
𝛾
,

1

2
𝛾−1 ,

1

2
𝛾−1 ,

1

2
𝛾−2 , . . .

}
.

We observe that this sequence exhibits a fractal structure where |𝑆𝛾 | = 2
𝛾
. The overview of the sequence

reflects the exact same structure as a small portion of the sequences. Assuming 𝑆𝛾 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠2𝛾 −1},
we find 𝑠1 = 𝑠2 = 𝑠4 = 𝑠8 = . . . = 𝑠

2
𝛾−1 = 1

2
𝛾−1 . Looking at the subset of 𝑆3 with all even-number indices,

{𝑠0, 𝑠2, 𝑠4, 𝑠6} =
{
1

8
, 1
4
, 1
4
, 1
2

}
, which exactly matches the first four sequences of 𝑆3. The main theorem addresses the

worst-case probability 𝜋 (𝑁 ).

Theorem 4.6. Given a Half-Recursive Sequence 𝑆log(𝑁 ) = {𝑠0, 𝑠1, . . . , 𝑠𝑁−1} initialized with 𝑆0 = {1}, the 𝑞-th
order attack probability for FSS on a set 𝑋 chosen from [𝑁 ] with 𝑞 elements, denoted by 𝑋 =

([𝑁 ]
𝑞

)
, is bounded

below

max( [𝜋𝑋 ]) ≤ 𝑞! × 𝑠0 × 𝑠1 × . . . × 𝑠𝑞−1, (10)

for any 𝑞 ≤ 𝑁 .
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Proof. By induction, we start the butterfly structure 2 indices (𝛾 = 1). By Fact 4.4, it is trivial when 𝑞 = 1, if

𝑞 = 2, 𝑆1 = { 1
2
, 1} then,

max

(
Γ𝑥1
1
× Γ𝑥2

2
× 2!

)
= 𝑠0 × 𝑠1 × 2! =

1

2

× 1 × 2! = 1. (11)

There are only two indices; it follows the equation due to max( [𝜋𝑋 ]) =
(
2

2

)
= 1 (see Figure 8).

Assume that it is true on 𝑘-depth (𝛾 = 𝑘). Consider (𝑘 + 1) depth (𝛾 = 𝑘 + 1). The butterfly network with (𝑘 + 1)
depth is arranged in parallel by two 𝑘 depth networks (see Figure 9), and each input index selects one of the two

clusters. By assumption, the 𝑟 -th order attack probability on 𝑋 =
([𝑁 ]

𝑟

)
(𝑟 ≤ 2

𝑘
) of each of two 𝑘-depth clusters

which has 2
𝑘
indices is

𝑟 ! × (Γ𝑥1 (𝑘 )
1

× Γ𝑥2 (𝑘 )
2

× . . . × Γ𝑥𝑟 (𝑘 )𝑟 ) ≤ 𝑟 ! × (𝑠 (𝑘 )
0
× 𝑠 (𝑘 )

1
× 𝑠 (𝑘 )

2
× . . . × 𝑠 (𝑘 )

𝑟−1) (12)

where, 𝑠𝑘𝑗 ∈ 𝑆𝑘 .
In other words, Equation 12 implies that it represents the maximum probability of the random variable 𝑋 =

([𝑁 ]
𝑟

)
.

Now, assume that the 𝑞-th order attack probability on the (𝑘 + 1)-depth butterfly network (𝑞 ≤ 2
𝑘+1

) is 𝛿 , and

Equation 10 is incorrect. Then, there exists a set of inputs {𝑥1, 𝑥2, . . . , 𝑥𝑞} ⊆ [𝑁 ],

𝑞! × (Γ𝑥1 (𝑘+1)
1

× Γ𝑥2 (𝑘+1)
2

× . . . × Γ𝑥𝑞 (𝑘+1)𝑞 ) > 𝑞! × (𝑠 (𝑘+1)
0

× 𝑠 (𝑘+1)
1

× 𝑠 (𝑘+1)
2

× . . . × 𝑠 (𝑘+1)
𝑞−1 ) (13)

Because the factorial of the size of the index 𝑞! has the same multiplication on both sides of the inequalities, we

omit the number from now on. (𝑘 + 1) depth network is connected with two 𝑘 depth networks with probability

selection 1/2 in the first layer (see Figure 9). We can separate two parts of the depth network (𝑘 + 1), 𝑡 and
(𝑞−𝑡) < 𝑡 , so let 𝑡 be the number of inputs connected to the upper cluster𝑘 depth network, (𝑞−𝑡) inputs connected
to the other network (𝑡 ≤ 𝑁 /2). Thus, equation 13, can be described by 𝑘 depth partially then

1

2
Γ𝑥𝑖 (𝑘 )
𝑖

= Γ𝑥𝑖 (𝑘+1)
𝑖

where 𝑖 ≤ 𝑡 . Equation 13 is rewritten by,(
1

2

Γ𝑥1 (𝑘 )
1

× 1

2

Γ𝑥2 (𝑘 )
2

× . . . × Γ𝑥𝑞 (𝑘+1)𝑞

)
>

(
1

2

𝑠
(𝑘 )
0
× 1

2

𝑠
(𝑘 )
1
× . . . × 𝑠 (𝑘+1)

𝑞−1

)
(14)

By assumption (Equation 12), left 𝑡 elements can be removed then,

𝑠
(𝑘+1)
𝑡 × 𝑠 (𝑘+1)

𝑡+1 × . . . × 𝑠 (𝑘+1)
𝑞−1 < Γ𝑥𝑡+1 (𝑘+1)

𝑡+1 × Γ𝑥𝑡+2 (𝑘+1)
𝑡+2 × . . . × Γ𝑥𝑞 (𝑘+1)𝑞 (15)

On the other hand, the inputs form 𝑥𝑡+1 to 𝑥𝑞 goes to the second group of depth 𝑘 , so 𝑁 /2 − 𝑡 of elements of

the left side of inequality (in Equation 15) is determined by a probability multiple with 1/2 or 1, so we know that

below,

Γ𝑥𝑡+1 (𝑘+1)
𝑡+1 × Γ𝑥𝑡+2 (𝑘+1)

𝑡+2 × . . . × Γ𝑥𝑞 (𝑘+1)𝑞 < Γ𝑥𝑡+1 (𝑘 )
1

× Γ𝑥𝑡+2 (𝑘 )
2

× . . . × Γ𝑥𝑞 (𝑘 )
𝑞−𝑡−1 (16)

and by the basic assumption (Equation 12),

Γ𝑥𝑡+1 (𝑘 )
1

× Γ𝑥𝑡+2 (𝑘 )
2

× . . . × Γ𝑥𝑞 (𝑘 )𝑞−𝑡 < (𝑠 (𝑘 )
0
× 𝑠 (𝑘 )

1
× 𝑠 (𝑘 )

2
× . . . × 𝑠 (𝑘 )

𝑞−𝑡−1) (17)

By equation 15, 16, 17, we get

𝑠
(𝑘+1)
𝑡 × 𝑠 (𝑘+1)

𝑡+1 × . . . × 𝑠 (𝑘+1)
𝑞−1 < (𝑠 (𝑘 )

0
× 𝑠 (𝑘 )

1
× 𝑠 (𝑘 )

2
× . . . × 𝑠 (𝑘 )

𝑞−𝑡−1) (18)

By the definition of a half-recursive sequence,
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(𝑠 (𝑘 )
0
× 𝑠 (𝑘 )

1
× 𝑠 (𝑘 )

2
× . . . × 𝑠 (𝑘 )

𝑞−𝑡−1) = (2𝑠
(𝑘+1)
0

× 2𝑠 (𝑘+1)
1

× 2𝑠 (𝑘+1)
2

× . . . × 2𝑠 (𝑘+1)
𝑞−𝑡−1) (19)

Thus, we get the equation below.

𝑠
(𝑘+1)
𝑡 × 𝑠 (𝑘+1)

𝑡+1 × . . . × 𝑠 (𝑘+1)
𝑞−1 < (2𝑠 (𝑘+1)

0
× 2𝑠 (𝑘+1)

1
× 2𝑠 (𝑘+1)

2
× . . . × 2𝑠 (𝑘+1)

𝑞−𝑡−1) (20)

Since 𝑞 − 𝑡 < 𝑡 , it is in contradiction to Lemma B.4. Therefore, the assumption, (Equation 13), is rejected. Thus,

(𝑘 + 1) depth butterfly network (FSS) holds Equation 10.

□

Fig. 8. Second order probability of 1-depth network (initially, two indices are opened to be two outputs, once one of input
selected to be output by the probability 1/2, then the other thing is just determined)

1/2 1/2

1

Fig. 9. 3-depth butterfly network connected to 1 and 2 depth networks) - Induction step

2-th depth

2-th depth

1-th depth

1-th depth

1-th depth

1-th depth

For example, if a 3rd-order attack is performed on 16 indices, by Theorem 4.6, the specific steps for calculating

the attack complexity are as follows:

• A half recursive sequence with 16 elements is generated:

{
1

16
, 1
8
, 1
8
, 1
4
, 1
8
, 1
4
, 1
4
, 1
2
, 1
8
, 1
4
, 1
4
, 1
2
, 1
4
, 1
2
, 1
2
, 1
1

}
.

• Compute the bound below as 3! × 𝑠0 × 𝑠1 × 𝑠2 = 3! × 1

16
× 1

8
× 1

8
≈ 1

171
. Therefore, the 3-rd order attack

probability is approximately
1

171
.

• The 3-rd order attack complexity is approximately 171 > 2
7
.
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In the uniform random permutation having 𝑁 ! cases, the 3rd-order attack complexity will be

(
16

3

)
= 560 > 2

9
.

Therefore, we can directly compare the complexity between the uniform random permutation and FSS. We will

discuss comparisons of various applications with permutations in Section 5.

5 COMPARISON BETWEEN FSS AND 𝑞-WISE INDEPENDENT OF FULL DEPTH BUTTERFLY
NETWORK (BENES NETWORK)

Algorithm 4 2× Fixed-Swap Shuffle; Benes Network - Permutation BEN(𝑅, ·) = FSS−1 (𝑅, ·) ◦ FSS(𝑅, ·) with
deterministic random bits with length (𝑁 ) × (log(𝑁 ) − 1)
Input: An integer 𝑥 ∈ [𝑁 ] such that 𝑁 = 2

𝑛
and random bit stream 𝑅 = 𝑟0𝑟1𝑟2 . . . 𝑟 (𝑁 )×(log(𝑁 )−1)

Output: BEN(𝑅, 𝑥) ∈ [𝑁 ]
1: for 𝑗 = 0 to 𝑛 − 1 do
2: 𝑠 ← left rotation 𝑗 bits of 𝑥

3: 𝑡 ← right (𝑛 − 1) bits of 𝑥
4: 𝑡 ← 𝑅𝑡+(𝑁 /2)× 𝑗 /*On the fly PRF with Random Bits*/
5: if 𝑡 equals 0 then
6: 𝑥 ← 𝑥 /*No operation*/
7: else
8: 𝑥 ← 𝑥 ⊕ 2

(𝑛−1)− 𝑗 /*1 bit Exclusive-OR*/
9: end if
10: end for
11: for 𝑗 = (𝑛 − 2) to 0 do
12: 𝑠 ← left rotation 𝑗 bits of 𝑥

13: 𝑡 ← right (𝑛 − 1) bits of 𝑥
14: 𝑡 ← 𝑅𝑡+(𝑁 /2)×( 𝑗+𝑛) /*On the fly PRF with Random Bits*/
15: if 𝑡 equals 0 then
16: 𝑥 ← 𝑥 /*No operation*/
17: else
18: 𝑥 ← 𝑥 ⊕ 2

(𝑛−1)− 𝑗 /*1 bit Exclusive-OR*/
19: end if
20: end for
21: return 𝑥

5.1 𝑞-set-wise independent and 𝑞-th order attack complexity
To determine the attack complexity of a full depth Benes Network, we decide to utilize an existing study [15].

The reasons for employing this method are as follows:

• This approach is convertible into our 𝑞-th order complexity. We show the exact way to compute the

minimum entropy and Shannon entropy from TVD in this section.

• To our knowledge, this method has calculated the highest complexity for the cryptographic application of

the Benes network.

Definition 5.1. (Almost 𝑞-set-wise Independence [15]). Let D be a distribution over S𝑛 , and 𝑞 an integer. We

say D is 𝜖-almost 𝑞-set-wise independent in 𝐿1-norm, if for any initial distribution 𝑣0 over 𝑋 =
([𝑛]
𝑞

)
,
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∥𝐷𝑋 𝑣0 −U𝑋 ∥ ≤ 𝜖
where 𝐷𝑋 is the |𝑋 | × |𝑋 | Transition matrix andU𝑋 is uniform distribution over 𝑋 .

As we can see, intuitively, it has the exactly the same probabilities of matching of inputs and outputs in 𝑞-th

order attack complexities. Based on E.Gelman et al. [15], Fact 5.2 is assumed to be true. This theorem directly

tells us the TVD whit 𝑞-quarries.

Fact 5.2. For every 𝑞 and 𝑛 such that

(
𝑞
2

)
≤ 𝑛, the Benes network is

𝑞 (𝑞−1)
2𝑛

-almost-𝑞-set-wise independent.

To demonstrate the value of our 𝑞-th-order complexity evaluation, we will transform Fact 5.2 using entropy

and worst-case probability, converting it into minimum entropy and Shannon entropy.

5.2 Deriving Lower-Bound Entropy Formula from TVD
Fact 5.3. Let D be a distribution on set 𝑋 , the maximum entropy for distribution D is uniform. Also, the

distribution of the minimum entropy is characterized by the conditions,

• One extremely biased case with high probability.

• Uniform distributed low probabilities for the others.

Proposition 5.4. (General formula for TVD to Entropy) Let D be a distribution over a random variable 𝑋 on

sample space 𝑆 where |𝑆 | = 𝜔 , andU is the uniform distribution on 𝑆 is the set of all event of The total variation

distance between D andU is 𝜖 , then the lower-bound Shannon entropy of 𝐷 is

𝐻 (𝑋 ) ≥
(
1

𝜔
+ 𝜖

)
log

(
1

𝜔
+ 𝜖

)
+ (𝜔 − 1)

1

𝜔
(𝜔 − 2) − 2𝜖 + 1

2(𝜔 − 1) log

(
1

𝜔
(𝜔 − 2) − 2𝜖 + 1

2(𝜔 − 1)

)
The lower-bound minimum entropy of 𝐷 is

𝐻𝑚𝑖𝑛 (𝑋 ) =
1

1

𝜔
+ 𝜖

Proof. Let total variation distance between D andU be 𝜖 denote,

1

2

∑︁
𝑥∈𝑋
|D −U| = 𝜖 (21)

Let |𝑋 | = n then this equation is described as,

|𝑝1 − (1/𝜔) | + |𝑝2 − (1/𝜔) | + . . . + |𝑝𝜔 − (1/𝜔) | = 2𝜖 (22)

The distribution with Total Variation Distance for lowest entropy is under conditions Fact 5.3. Therefore, |𝑃1 | >
( |𝑃𝑖 |) and |𝑃𝑖 | = |𝑃 𝑗 | where 𝑖, 𝑗 ≥ 2. Also, we can use the sum of probability is 1 and Equation 22 is simplified by,

(𝑝1 − (1/𝜔)) + (𝜔 − 1) ((1/𝜔) − 𝑝2) = 2𝜖 (23)

and,

𝑝1 + (𝜔 − 1)𝑝2 = 1 (24)

𝑝1, 𝑝2 are the computed as below, (detail calculation process is described in Appendix A)

𝑝1 =
1

𝜔
+ 𝜖 (25)
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Fig. 10. x-axis : 𝑞 with respect to each line, y-axis : Guessing Complexity (Entropy) with log scale. Complexity comparison
among, ideal entropy with

(𝑁
𝑞

)
cases (Blue), minimum entropy (Red) and Shannon entropy (Green) derived from 𝑞-set-wise

independent with Benes Network, and the minimum entropy of FSS computed by our method (Purple)

𝑝2 =

1

𝜔
(𝜔 − 2) − 2𝜖 + 1

2(𝜔 − 1) (26)

Finally, we can calculate the lower bound guessing entropy by 𝐻 (𝑋 ) = −𝑝1 log(𝑝1) + (𝑛 − 1)𝑝2 log(𝑝2),

𝐻 (𝑋 ) ≥
(
1

𝜔
+ 𝜖

)
log

(
1

𝜔
+ 𝜖

)
+ (𝜔 − 1)

1

𝜔
(𝜔 − 2) − 2𝜖 + 1

2(𝜔 − 1) log

(
1

𝜔
(𝜔 − 2) − 2𝜖 + 1

2(𝜔 − 1)

)
□

Since the minimum entropy is the same to 𝑞-th order complexity, we can directly use this value to the

comparison to 𝑞-th order complexity of FSS.
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5.3 Comparison with 𝑞-th order probability for FSS and 𝑞-wise independent for Benes Network
Since we only are interested in the aspect of higher-order side channel attack, we would like to know the 𝑞-th

order attack complexity which is the worst-case entropy of 𝑞-quarries. Because Total Variation Distance (TVD)

can be converted into Shannon entropy (Equation 25) and Min entropy (Equation 26), we were also able to

directly compare with other papers that calculated TVD in butterfly networks or Thorp shuffling. In evaluating

the security level of our 𝑞-th order according to our calculation method, we also made additional comparisons

with Thorp shuffling by B.Morris et al. [30] and swap-or-not shuffling [18]. However, we were unable to obtain

significant figures in scenarios with small numbers of rounds such as log(𝑁 ) or 2 log(𝑁 ), small domains (𝑁 = 2
4

to 𝑁 = 2
7
), and a small number of queries (essentially because the complexity was close to zero, making the

comparison largely meaningless). Furthermore, we did not conduct a direct experimental comparison with Park et

al. [35]. This is because that paper only details the complexity for the second order, and the results presented are

purely experimental, with no theoretical formulation of the complexity for the 𝑞-th order described. Therefore,

we would like to remind you that in this section we have only conducted comparisons with E.Gelman et al. [15]

where

(
𝑞
2

)
≥ 𝑁 .

Figure 10 shows comparisons among the worst case entropy of FSS that is computed by Equation 10 in

Theorem 4.6, the worst case entropy (computed by Equation 25) and Shannon entropy (computed by Equation 26)

in Benes Network with (2 log(𝑁 ) − 1)-depth in

(
𝑞
2

)
≥ 𝑁 , and the Ideal entropy assumed by perfect permutation

which has log

(
𝑁
𝑞

)
entropy in 𝑁 = 16, 𝑁 = 32, 𝑁 = 64, and 𝑁 = 128 indices. Each index means certain

applications; such as AES (16 sboxes [50]), ML-KEM (32 bytes of message [32]), and ML-DSA (128 vectors

operated independently in NTT [33]).

We have shown that the results for the first-order complexity (1-set-wise independent) are all equal to Ideal

Entropy. This fact has already been addressed in Theorem 4.3, and this part is omitted from the figure. The overall

trend that can be seen from the figure is as follows. First, the worst-case entropy (Min-Entropy) calculated by

𝑞-set-wise independent is actually too small to provide a satisfactory result for the figures we want to compare.

Second, the Shannon entropy calculated by 𝑞-wise independence shows a similar trend to the 𝑞-th order attack

complexity of FSS, but it reverses FSS as 𝑞 increases. It should be noted that there may be an illusion due to

the different calculation methods between the two, but, of course, the Benes Network actually has a higher

complexity. Therefore, our method of calculating attack complexity can much more effectively capture high

attack complexity. Third, up to the third-order attack, the complexity between FSS and Ideal Permutation does

not show a significant difference. For this part, it needs to be checked whether the difference with the ideal

permutation is meaningful depending on the specific noise and attack situation.

6 LIMITATIONS, FUTURE WORKS AND CONCLUSION
Through this paper, we have shown the following results:

• We showed the butterfly network as an actual implementation algorithm.

• We showed the attack complexity from the perspective of countermeasures against side-channel analysis

when only log(𝑁 ) depth of butterfly network was applied.

• To prove the attack complexity, we defined a recursive structure and mathematically proved the actual

attack complexity.

• We compared the attack complexity with the Benes Network, which was calculated in the existing method,

and this does not mean that the actual attack complexity is higher, but rather that our calculation method

is more suitable for showing the worse case probability.

Through this study, we have shown the potential of the butterfly network as an actual side channel attack

countermeasure and expect to maximize performance in generating permutation sequences when parallel

implementation is performed on actual hardware ASIC or FPGA. In particular, when implementing cryptographic
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algorithms with large vector sizes, such as PQC algorithms, through software/hardware co-design, significant

benefits can be obtained.

6.1 Limitations
Our results have the following limitations. First, our structure does not have a significant advantage over Fisher-

Yates shuffling because it can only be computed sequentially when implemented in software. Depending on the

implementation method, to our knowledge, we cannot implement FSS more efficiently with the most optimized

FY shuffling using only multiplication and shift [34]. To get the most out of our structure, we need to parallelize

it using hardware. When parallelized using hardware, FSS which is log(𝑁 )-depth bit swaps are required, so it is

possible to perform the operation in just one clock cycle, creating an extremely efficient algorithm. However,

even in this case, there is a disadvantage that more random bits are required compared to the existing results [35],

and it can be seen that this point has been emphasized in the existing results. Of course, a structure can be

integrated with a pseudo-random function that takes limited seed input, such as SHAKE256 [31]. However, even

in this case, various external conditions, such as the timing of performing SHAKE operations, must be considered

additionally.

6.2 future works
In addition, if we assume that encryption operations are performed using FSS, our result (Theorems 4.3 and 4.6)

does not provide enough evidence to determine whether this encryption method is secure. The 𝑞-th order

complexity is the worst case, so when computing the boundary needed to calculate the actual Total Variation

Distance, a value that is excessively large compared to the actual TVD result is calculated. However, we believe

that log(𝑁 ) depth or two or three connections of FSS will be sufficient to use as a secure block cipher, and more

research is needed. In this case, it is much more advantageous in terms of efficiency in terms of computational

methods than the existing swap-or-not approach [18].

Therefore, we will conduct the following research in the future:

• Research on ways to reduce random bits while ensuring 𝑞-th order security

• Research on ways to prove security as a general block cipher.
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A COMPUTATION OF EQUATION
This section show the calculation process for Equation 25 and 26. We start the equations below,

(𝑝1 −
1

𝜔
) + (𝜔 − 1) ( 1

𝜔
− 𝑝2) = 2𝜖

and,

𝑝1 + (𝜔 − 1)𝑝2 = 1

Let 𝑞 = 1/𝜔 then,

(𝑝1 − 𝑞) + (𝜔 − 1) (𝑞 − 𝑝2) = 2𝜖
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We can remove 𝑝1 in the equation with 𝑝1 = 1 − (𝜔 − 1)𝑝2. as below,
(1 − (𝜔 − 1)𝑝2 − 𝑞) + (𝜔 − 1) (𝑞 − 𝑝2) =
−2(𝜔 − 1)𝑝2 + 1 − 𝑞 + (𝜔 − 1)𝑞 = 2𝜖

Therefore,

−2(𝜔 − 1)𝑝2 = 2𝜖 − 1 − 𝜔𝑞 + 2𝑞
Thus,

𝑝2 =
𝑞(𝜔 − 2) − 2𝜖 + 1

2(𝜔 − 1)
We can also simply get,

𝑝1 = 1 − 𝑞(𝜔 − 2) − 2𝜖 + 1
2

=
1

𝜔
+ 𝜖

B PROOF OF LEMMAS
Definition B.1. A set 𝑆 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝜏 } is ordered set. Let Ω ⊆ 𝑆 , Ω = {𝑠𝜂, . . . , 𝑠𝜅 } is left-most-subset of 𝑆 if

𝜂 = 0, right-most-subset of 𝑆 if 𝜅 = 𝜏 .

Definition B.2. [𝛼, 𝛽]-subset of ordered set 𝑆 is a ordered subset {𝑠𝛼 , 𝑠𝛼+1, . . . , 𝑠𝛽−1} such that 𝛽 − 𝛼 = 2
𝑘
for a

𝑘 ∈ N and 𝛼 is multiple of 2
𝑘
.

Fig. 11. An example for [𝛼, 𝛽]-Subset; [16,24]-Subset, [20,24]-Subset, and [20,22]-Subset

s16 s17 s18 s19 s20 s21 s22 s23

[16,24]-Subset

[20,24]-Subset

[20,22]-Subset

Figure 11 shows examples of [𝛼, 𝛽]-subset, such as [16, 24]-subset, [20, 24]-subset, and [20, 22]-subset. All of
them have the properties as 𝛽 − 𝛼 = 2

𝑘
and 𝛼 is a multiple of 2

𝑘
, 16 = 2

3 × 2, 20 = 2
2 × 5 and 20 = 2

1 × 10.

Lemma B.3. Let 𝑆 be a half recursive sequence and Ω 𝑗 ,Δ 𝑗 be subset of 𝑆 . Ω 𝑗 ,Δ 𝑗 ⊆ [𝛼, 𝛽]-subset with 𝛾 =
(𝛽−𝛼 )

2

,|Ω 𝑗 | = |Δ 𝑗 |, Ω 𝑗 = {𝑠𝜔 𝑗
, 𝑠𝜔 𝑗+1, . . . 𝑠𝜎 }, Δ 𝑗 = {𝑠𝜏 . . . 𝑠𝛿 𝑗−1, 𝑠𝛿 𝑗

}, and at least one of each set is left-most-subset of

[𝛼, 𝛽]-subset or right-most-subset of [𝛼, 𝛽]-subset, such that 𝑠𝜔 𝑗
= 𝑠𝛼 or 𝑠𝛿 𝑗

= 𝑠𝛽−1. Let Δ 𝑗+1 and Ω 𝑗+1 be defined
as below,

Ω 𝑗+1 = {𝑠𝑖 ∈ Ω 𝑗 |𝑠𝛾+𝑖 ∉ Δ 𝑗 }
Δ 𝑗+1 = {𝑠𝑖 ∈ Δ 𝑗 |𝑠𝑖−𝛾 ∉ Ω 𝑗 }

(We call this procedure Folding), Then, there exist 𝜄 ≥ 𝛼, 𝜅 ≤ 𝛽 , one of Ω 𝑗+1 or Δ 𝑗+1 is left-most-subset or

right-most-subset of [𝜄, 𝜅]-subset.
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Proof. Consider Ω′𝑗 = {𝑠𝛾+𝜔 𝑗
, 𝑠𝛾+𝜔 𝑗+1, . . . 𝑠𝛾+𝜎 }. If Ω′𝑗 ∩ Δ 𝑗 = 𝜙 , then Ω 𝑗 = Ω 𝑗+1 and Δ 𝑗 = Δ 𝑗+1. Thus, we only

need to consider Ω′𝑗 ∩ Δ 𝑗 ≠ 𝜙 . There are two cases according to the definition of Ω 𝑗 and Δ 𝑗 .

1) Ω 𝑗 is left-most-subset of [𝛼, 𝛽]-subset.
2) Δ 𝑗 is right-most-subset of [𝛼, 𝛽]-subset.

The first case and second case have the symmetric structure, we need to show just the first case, and the other

case is naturally concluded by the symmetric method. If 𝑠𝛾+𝜔 𝑗
is not included in Δ 𝑗 , then Ω 𝑗+1 has the element 𝑠𝛼 .

Thus, Ω 𝑗+1 is right-most-subset of [𝛼, 𝛽]-subset, see the lower case of Figure 12. If 𝑠𝛾+𝜔 𝑗
is included in Δ 𝑗 , then

the elements of high indices in Ω 𝑗 and Δ 𝑗 are not in Ω 𝑗+1 and Δ 𝑗+1, which have the indices 𝑠𝜔 𝑗+𝛾 to 𝑠𝛿 𝑗−1. Thus,
the highest index element of Δ 𝑗+1 = 𝑠𝛾+𝜔 𝑗−1. 𝛾 is a power of 2. Δ 𝑗+1 is right-most-subset of [𝛼, 𝛼 + 𝛾]-subset, see
the upper case of Figure 12. The second case is also true symmetrically.

□

Fig. 12. Tow case for the location of 𝜉 = 𝛼 + 𝛾 . Upper case shows 𝜉 cuts 𝑆𝛿 , lower case does not cut 𝑆𝛿 . (Where 𝑆Ω is the
left-most-subset of [𝛼, 𝛽]-Subset (𝛽 = 𝛼 + 16, 𝛾 = 8 = 16

2
), and the relation between 𝑆Ω and 𝑆𝛿 where |𝑆Ω | = |𝑆𝛿 | = 5).

[α,β]-Subset

[α,β]-Subset

α+γ

α+γ

Lemma B.4. Let 𝑆 be a half-recursive sequence, 𝑆 = {𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑁−1} and two subsets composed by consecu-

tive 𝜂 ≤ 𝑁 , Ω1 = {𝑠0, 𝑠1, . . . , 𝑠𝜂−1}, Δ1 = {𝑠𝜔 , 𝑠𝜔+1, . . . , 𝑠𝜔+𝜂−1} where 𝜔 ≥ 𝜂. Then,∏
𝑠𝑖 ∈Ω1

(2 × (𝑠𝑖 )) ≤
∏
𝑠𝑖 ∈Δ1

𝑠𝑖
(27)

Proof. In Lemma B.3, the addition or subtraction 𝛾 =
𝛽−𝛼
2

in [𝛼, 𝛽]-subset means that adding 𝛾 doubles

the element’s value, while subtracting 𝛾 halves its value. There exists a smallest 𝑘 ∈ N such that Ω1 is the

most-left-subset of [0, 2𝑘 ]-subset of 𝑆 . We can produce Ω 𝑗 and Δ 𝑗 , and this step reduces the number of elements

of subsets by Lemma B.3. Considering that as each step progresses, some elements are removed, and the removed

elements have a difference of twice, if all elements disappear at a certain stage, the proof is complete.

Assume that there are some elements in Ω𝑖 and Δ𝑖 in the smallest [𝛼𝑖 , 𝛽𝑖 ]-subset when there is no further

progress possible. Since adding 𝛾𝑖 =
𝛽𝑖−𝛼𝑖

2
to all elements of Ω𝑖 does not meet any elements of the Δ𝑖 , create a
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new set by subtracting 𝛾 from all elements of Δ𝑖 . This means that all elements of Ω𝑖 are doubled in this step. The

proof is complete.

□
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