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Abstract. In recent years, formal verification has emerged as a crucial method for
assessing security against Side-Channel attacks of masked implementations, owing
to its remarkable versatility and high degree of automation. However, formal verifi-
cation still faces technical bottlenecks in balancing accuracy and efficiency, thereby
limiting its scalability. Former efficient tools like maskVerif and CocoAlma are
often inaccurate when verifying schemes utilizing properties of Boolean functions.
Later, SILVER addressed the accuracy issue, albeit at the cost of significantly re-
duced speed and scalability compared to maskVerif. Consequently, there is a press-
ing need to develop formal verification tools that are both efficient and accurate
for designing secure schemes and evaluating implementations. This paper’s primary
contribution lies in proposing several approaches to develop a more efficient and
scalable formal verification tool called Prover, which is built upon SILVER. Firstly,
inspired by the auxiliary data structures proposed by Eldib et al. and optimistic
sampling rule of maskVerif, we introduce two reduction rules aimed at diminishing
the size of observable sets and secret sets in statistical independence checks. These
rules substantially decrease, or even eliminate, the need for repeated computation of
probability distributions using Reduced Ordered Binary Decision Diagrams (ROB-
DDs), a time-intensive procedure in verification. Subsequently, we integrate one of
these reduction rules into the uniformity check to mitigate its complexity. Secondly,
we identify that variable ordering significantly impacts efficiency and optimize it
for constructing ROBDDs, resulting in much smaller representations of investigated
functions. Lastly, we present the algorithm of Prover, which efficiently verifies the
security and uniformity of masked implementations in probing model with or with-
out the presence of glitches. Experimental results demonstrate that our proposed
tool Prover offers a superior balance between efficiency and accuracy compared to
other state-of-the-art tools (CocoAlma, maskVerif, and SILVER). It successfully
verifies a design that SILVER could not complete within the allocated time, whereas
CocoAlma and maskVerif encounter issues with false positives.
Keywords: Side-Channel Attacks · Masking · Formal Verification · Glitch-Extended
Probing Security · Reduced Ordered Binary Decision Diagrams

1 Introduction
Cryptographic algorithms play a crucial role in our daily lives, being implemented in cryp-
tographic devices widely deployed across various applications such as smart cards and IoT
(Internet of Things) systems. In recent years, Side-Channel Attacks (SCA), including tim-
ing attacks [Koc96] and power analysis [KJJ99], have emerged as potent threats against
cryptographic modules. To mitigate the risks posed by SCAs, numerous countermeasures
have been proposed, among which masking [ISW03, Tri03] stands out as one of the most
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effective techniques. Based on the concept of secret sharing, the security of masking
schemes can be proven theoretically under reasonable assumptions. Ishai et al. [ISW03]
demonstrated the security of their schemes within their proposed d-probing model (or stan-
dard probing model), which has since been widely adopted by subsequent works. However,
it has been shown that certain physical anomalies, such as glitches, transitions, and cou-
plings, can compromise the leakage assumptions in the d-probing model [FGP+18]. In the
realm of hardware masking, a significant challenge arises as these schemes are susceptible
to vulnerabilities in the presence of glitches [MPG05, MPO05]. To address this challenge,
threshold implementations (TI) [NRR06] have emerged, providing inherent resistance to
glitches through the fulfillment of three key properties: correctness, incompleteness, and
uniformity. Following TI, numerous masking techniques against glitches have been pro-
posed [RBN+15a, GMK16, SM21a].

To formally define (or verify) the security of masking in the presence of glitches, Bloem
et al. [BGI+18] and Faust et al. [FGP+18] independently extended the d-probing model,
incorporating glitches, and introduced a more robust model known as the glitch-extended
probing model.

However, the theoretical security of masking schemes in formal models does not di-
rectly ensure the practical security of corresponding implementations. Hence, it becomes
imperative to verify and assess the effectiveness of masking countermeasures. Consider-
able effort has been invested in verifying software implementations [MOPT12, BRNI13,
EWS14, BBD+15, ZGSW18, BGR18, GXSC21], yielding more sophisticated approaches.
In contrast, the range of existing frameworks encompassing verification under the glitch-
extended probing model is quite limited. Based on the adopted approaches, research on
such frameworks can be categorized into the following three types.

Bloem et al. [BGI+18] introduced the first formal verification tool, REBECCA, de-
signed to assess the security of hardware implementations. Their approach leverages the
spectral characteristics of Boolean functions. Specifically, if a nonzero spectral coefficient
exists between any Boolean function defined over the circuit outputs and a linear combi-
nation of sensitive variables, the implementation is deemed insecure. However, due to the
considerable time overhead required to compute spectral coefficients, REBECCA resorts
to certain approximations via SAT encoding, resulting in false positives. Additionally, the
inevitable use of SAT solvers leads to inefficiencies and limited scalability. Subsequent de-
velopments of REBECCA, CocoAlma [GHP+21, HB21], demonstrate improved usability
and performance.

In the realm of language-based verification methods (the second approach), Barthe et
al. [BBC+19] extended their techniques proposed in [BBD+15] to address hardware mask-
ing, creating a unified framework known as maskVerif. maskVerif accommodates various
security notions such as standard probing security, (Strong) Non-Interference (NI/SNI)
[BBD+16], as well as robust security notions under the d-probing model with glitches or
transitions. Compared to the REBECCA tool, maskVerif exhibits high efficiency. How-
ever, owing to the conservative nature of language-based methods, false positives are also
inevitably encountered.

The third approach is rooted in the concept of statistical independence. Building
upon the efforts to consolidate security notions [DBR19], Knichel et al. [KSM20] re-
formulated the concepts of probing security, (Strong/Probe Isolating) Non-Interference
(NI/SNI/PINI) from the perspective of probability distributions. Based on this approach,
the SILVER tool was developed, surpassing the capabilities of maskVerif by incorporating
verification of the PINI security notion [CS20]. During verification, SILVER constructs
Reduced Ordered Binary Decision Diagrams (ROBDDs) for every possible combination
of observations in the circuit to compute probability distributions. However, as ROBDDs
have finite capabilities in representing Boolean functions with numerous input variables,
SILVER faces limitations in terms of efficiency and scalability. Particularly when larger
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masked circuits are involved, SILVER exhibits significant inefficiencies.

In addition to leakage caused by glitches, several studies also address formal verification
for transitional leakage in the robust probing model, including CocoAlma [GHP+21,
HB21], SILVER [MKSM22], and fullverif [CGLS20, MCS22]. Since our focus is on leakage
caused by glitches, we will not delve deeply into this topic.

Another cutting-edge area concerns the design and verification of masked implementa-
tions based on composable gadgets. Composable gadgets. These gadgets, such as robust
SNI ISW multiplication [FGP+18], HPC1 and HPC2 [CGLS20], or HPC3 [KM22], of-
ten rely on security notions stronger than probing security, such as SNI [BBD+16] and
PINI [CS20]. Tools like fullverif [CGLS20] are capable of verifying the complete design
of masked implementations based on the framework of PINI. However, since this paper
primarily focus on verifying implementations that do not depend on composable gadgets,
we will provide limited detail details on this topic. We also omits the tools that only verify
standard gadgets, such as IronMask [BMRT22].

Indeed, formal verification of security in masked implementations has made notable
progress. However, existing research results still grapple with challenges in balancing ac-
curacy and efficiency. Specifically, current tools are either fast but inaccurate (such as
maskVerif) or accurate but slow (like SILVER). For instance, consider verification under
the glitch-extended probing model: maskVerif takes no more than one second to confirm
the security of the first-order DOM implementation of the AES S-box [BBC+19], yet it
inaccurately reports the secure implementation of Q4

12 in [BNN+15] as insecure [KSM20].
Moreover, several works, e.g., [SM21a], have asserted that maskVerif cannot verify the
security of their constructions without fresh randomness. Meanwhile, SILVER correctly
verifies the security of Q4

12 but takes 20 minutes to confirm the security of the DOM imple-
mentation on a significantly more powerful machine [KSM20]. This situation underscores
the need for an approach that integrates efficient heuristic rules with accurate probability
enumeration to achieve a better balance between accuracy and efficiency.

Our Contributions. In this paper, we tackle the low efficiency issue of SILVER and
propose several methods to significantly enhance efficiency while maintaining accuracy,
resulting in the formal verification tool, Prover. Firstly, inspired by the auxiliary data
structures introduced in [EWS14], we are able to adopt the similar idea of optimistic
sampling rule from maskVerif [BBD+15, BBC+19] in our work. This led us to introduce
two reduction rules aimed at significantly minimizing the size of observation and secret
sets. These rules are applicable in statistical independence checks under both standard and
glitch-extended probing models, as well as in the verification of uniformity. By reducing
the size of observation sets (and secret sets), which are exponentially related to complexity,
the actual computational complexity is substantially reduced. In some cases, these rules
even lead to the elimination of the observation set, rendering the expensive operation
of constructing ROBDDs unnecessary. Secondly, we observe that the variable ordering
of ROBDDs profoundly impacts SILVER’s performance. Through analysis, we identify
two potentially more efficient orderings and validate our findings through experiments.
The optimized orderings prove to be much more efficient, particularly in larger masked
circuits. Finally, we implement our approaches into Prover, a tool built upon SILVER.
We also conducted extensive experiments to compare Prover to other state-of-the-art tools:
CocoAlma, maskVerif, and SILVER. Experimental results illustrate that Prover achieves
a superior balance between efficiency and accuracy compared to the other tools. Moreover,
Prover successfully verifies a design that SILVER failed to complete within the allotted
time, while CocoAlma and maskVerif encountered false positive issues.



4 Prover - Toward More Efficient Formal Verification of Masking in Probing Model

2 Preliminaries

2.1 Symbols and Notations
The symbols and notations used in this paper are shown in Table 1.

Table 1: The symbols and notations used in this paper
Symbols /
Notations Meaning

GF2, GFn
2 binary field, vectorial space over binary field

x, x a variable, a set of variables
α a boolean value
α a set of boolean values, also denoted by an integer

∑|α|
i=0 αi · 2i

⊎,∩,∪, \ disjoint set union, set intersection, set union, set difference
|S|, ∅ size of a set S, empty set
⊕, + exclusive-or, addition in binary field
∧, · and operation, multiplication in binary field

¬,∨,∨,∧,⊕ negation, or, nor, nand, xnor operation in binary field⊕
i xi,

∧
i xi summation and production in binary field

x = α |x| = |α|, and for 1 ≤ i ≤ |x|, xi = αi

xλ(λx) a product(linear) combination
∧

i xλi
i (

⊕
i xλi

i ) of variables in x
x′, xi subset of x, x \ xi

Pr[A] probability of a event A
Sh(x), Sh(x) the shares of variable x, the shares of variables in x

Od d-th order observation set, i.e., the union of observation set of d gates
(ni)supp(n) the set of variables that appear in the expression of fn

perf(n) the set of perfect mask of observation function fn

2.2 Probability Distributions of Boolean Variables
A Boolean random variable x ∈ GF2 can take on the values 0 or 1. A set of Boolean
random variables x consists of Boolean variables.

First, we define the probability mass function of a Boolean random variable set.

Definition 1 (Probability Mass Function). The probability mass function of a Boolean
variable set x is defined as px(α) = Pr[x = α].

Given any two Boolean random variable sets, we can define their joint probability mass
function.

Definition 2 (Joint Probability Mass Function). The joint probability mass function
of Boolean variable sets x and y is defined as px,y(α, β) = Pr[x = α, y = β].

The relationship between the probability mass function and the joint probability mass
function is px(α) =

∑
β px,y(α, β).

Based on the definition of the joint probability mass function of Boolean variable sets,
we can define the statistical independence of two Boolean variable sets.

Definition 3 (Statistical Independence). Two Boolean variable sets x and y are
statistically independent if and only if for any possible combinations of α and β, the
equation px,y(α, β) = px(α)py(β) holds.
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2.3 Masked Circuits
The hardware implementation of a masking scheme, a physical circuit, consists of combina-
tional gates, registers, and wires. For convenience, both combinational gates and registers
are referred to as gates in the rest of this paper. Each gate performs an operation on
its input and outputs a value carried by the corresponding output wire. The operations
considered for gates in this paper include in, ref, out, reg,∧,∨,¬,∧,∨,⊕,⊕. Detailed
explanations of these operations will be covered later in this section.

The physical circuits can be modeled as a masked circuit C [KSM20]. It is defined as a
binary tuple (x, G), where x ∈ GFt

2 is the set of secret variables and G is a labeled directed
acyclic graph. However, the physical circuit typically does not take x as inputs. Instead,
each secret variable xi ∈ x is split into d + 1 shares by secret sharing, i.e., xi =

⊕d+1
j=1 xij

and fed to the circuit C. The set of shares is denoted by Sh(x) = {xij |xi =
⊕d+1

j=1 xij ,
i ∈ [1, t], j ∈ [1, d + 1]}.

The elements and internal connections in physical circuits are modeled by the second
element of the tuple, G = (N , E , z, op, f). N is the set of vertices, where a vertex n is in
N if and only if there exists a gate in the physical circuit mapped to n (we use vertex n
and gate n interchangeably in this paper). The set E is the set of directed edges, where
an edge e = (nj , ni) is in E if and only if there is a wire connecting the input of gate nj

to the output of gate ni in the physical circuit. In this case, ni is considered a child of
nj . A unary gate n has only one child, denoted by n.lft, while a binary gate n has two
children, n.lft and n.rgt.

The set of input variables of the circuit, denoted by z, includes the set of shares
Sh(x), which is a uniform sharing of x, and the set of fresh masks r. These fresh masks
are independently, identically, and uniformly distributed random Boolean variables.

The function op maps the vertex n ∈ N to its operation. Each in gate stores a certain
share of a secret variable, and each ref gate stores a fresh mask in r. The operations of
intermediate and output registers, which store the middle and final results of the masked
circuit, are denoted by reg and out, respectively. Other gates perform regular Boolean
operations, and their functionality is self-explanatory from their names. As a side note,
unary gates are reg, out, and ¬, while binary gates include ∧, ∨, ∧, ∨, ⊕, and⊕. The in and
ref gates do not necessarily have inputs because the values they output are modeled to have
the previously described uniform distributions (or uniform sharing) in the characterization
of circuit inputs z.

The function f : N → (z → GF2) maps the vertex n ∈ N in the graph to the Boolean
function fn : z → GF2 computed by the corresponding gate. This function is also referred
to as the observation function. The specific definition of the observation function fn of
gate n is as follows:

fn =



xij op(n) = in, gate n stores xij ∈ Sh(x)
r op(n) = ref, gate n stores r ∈ r

fn.lft op(n) ∈ {reg, out}
¬fn.lft op(n) = ¬
fn.lft ◦ fn.rgt, ◦ = op(n) ∈ {∧,∨,∧,∨,⊕,⊕}

. (1)

Example 1. The algebraic expressions are shown in Figure 1b for the first order DOM
scheme of multiplication over GF2, i.e., c = g(a, b) = ab. In order not to leak the actual
value of a, b and c in a first-order probing attack, secret inputs a and b are both split
into two shares a1, a2, b1b2 and a bit fresh mask r is introduced. To prevent glitches
from propagating back to inputs, four register x1, x2, x3, x4 are used to store the results
of combinational logic g1, g2, g3, g4. A possible hardware implementation (an abstracted
version ignoring the control or clock signals) for this scheme is shown in Figure 1a. The
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annotation i_j of an in gate indicates it stores the j-th share of secret variable xi. The
corresponding labeled directed acyclic graph of this implementation is shown in Figure 1c.

Input: a1, a2, b1, b2, r
Output: c1 = fn17 , c2 = fn18

1: fn0 = in 0_0 a1
2: fn1 = in 0_1 a2
3: fn2 = in 1_0 b1
4: fn3 = in 1_1 b2
5: fn4 = ref r
6: fn5 = fn0 ∧ fn3

7: fn6 = fn1 ∧ fn2

8: fn7 = fn0 ∧ fn2

9: fn8 = fn1 ∧ fn3

10: fn9 = fn5 ⊕ fn4

11: fn10 = fn6 ⊕ fn4

12: fn11 = reg fn7

13: fn12 = reg fn8

14: fn13 = reg fn9

15: fn14 = reg fn10

16: fn15 = fn13 ⊕ fn11

17: fn16 = fn14 ⊕ fn12

18: fn17 = out fn15

19: fn18 = out fn16

(a) First order DOM implementa-
tion of multipilication

g1(a1, b1) = a1b1 → x1
g2(a1, b2, r) = a1b2 + r → x2 x1 + x2 = c1
g3(a2, b1, r) = a2b1 + r → x3 x3 + x4 = c2
g4(a2, b2) = a2b2 → x4

(b) First order DOM scheme of multipilication

a1

n0 : in

b1

n2 : in

b2

n3 : in

a2

n1 : in

n7 : ∧

a1b1

n5 : ∧

a1b2 r
n4 : ref

n6 : ∧

a2b1

n8 : ∧

a2b2

n9 : ⊕

a1b2 ⊕ r

n10 : ⊕

a2b1 ⊕ r

n11 : reg

x1 = a1b1

n13 : reg

x2 = a1b2 ⊕ r

n14 : reg

x3 = a2b1 ⊕ r

n12 : reg

x4 = a2b2

n15 : ⊕

c1 = x1 ⊕ x2

n16 : ⊕

c2 = x3 ⊕ x4

n17 : out

c1

n18 : out

c2

(c) Graph representation of 1st order DOM implementa-
tion of multipilication

Figure 1: Example of masked hardware implementation

2.4 Security Model
The standard probing model [ISW03] and the glitch-extended probing model [FGP+18]
are commonly used models for security analysis in software and hardware scenarios, re-
spectively. In the standard probing model, an attacker can place a standard probe on a
wire e to observe the value it carries. In contrast, in the glitch-extended probing model,
a glitch-extended probe on a wire e enables the attacker to recover all the stable signals
contributing to the value carried by e. For example, a standard probe on the output wire
of gate n15 allows the attacker to recover the value of fn15 , while a glitch-extended probe
recovers the outputs of gates n11 and n13, i.e., {fn11 , fn13}.

We define an observation set On as the set of gates whose outputs are recovered by
the attacker when placing a standard or glitch-extended probe on the output wire of gate
n. The attacker can obtain the joint probability distribution of the observation function
of the gates in the observation set. The calculation of observation sets under the standard
probing model (standard observation sets) is straightforward, i.e., On = {n}, while On

in the glitch-extended probing model (glitch-extended observation sets) is calculated as
follows:
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On =


{n}, if op(n) ∈ {in, ref, reg, out}
On.lft, if op(n) ∈ {¬}
On.lft ∪On.rgt, otherwise

In the standard (or glitch-extended) probing model with order d, an attacker can
employ d standard (or glitch-extended) probes to interrogate the output wires of d gates
in the masked circuit. Consequently, they can ascertain the joint probability distribution
of observation functions in the union set of these d observation sets. Denoting a set of
gates N where |N | = d, we represent Od as the d-th order observation set, defined as
Od =

∪
ni∈N Oni

.
The collection of observation functions corresponding to the gates in the observation set

O is symbolized by f , where f = {fn|n ∈ O}. Each element in f is a single-output boolean
function, collectively forming multi-output boolean functions defined over variables in z.

It is important to note that Od constitutes a set of gates, while f represents a set
of functions, and statistical independence exists between sets of variables rather than
between functions and variables. Thus, it is emphasized that the statistical independence
in the above definition pertains to the outputs of f (which can be regarded as a set
of variables) and x. However, for brevity, less stringent terminology such as statistical
independence between f and x or between Od and x will be employed.

Given a masked circuit C = (x, G) with x as its secret inputs, this paper defines the
notion of standard (or glitch-extended) probing security [DBR19] as follows.

Definition 4 (d-th Order Standard Probing Security). C is d-th order standard
probing secure if for any set N ⊆ N with |N | ≤ d, the observation function set f
corresponding to the standard observation set O =

∪
n∈N On is statistically independent

of x.

Definition 5 (d-th Order Glitch-Extended Probing Security). C is d-th order
glitch-extended probing secure if for any set N ⊆ N with |N | ≤ d, the observation
function set f corresponding to the glitch-extended observation set O =

∪
n∈N On is

statistically independent of x.

2.5 Statistical Independence Check Based on ROBDDs
SILVER1, developed by the authors of [KSM20], stands as a prominent tool in the formal
verification of masked implementations.

In practice, it is not necessary to verify the security of every d′-th (d′ ≤ d) order
observation set Od′ to establish the security of a masked circuit. SILVER, depending on
the selected model (standard or glitch-extended probing model), initially computes the set
of probing positions P. The security verification then focuses on all the d′-tuples (d′ ≤ d)
from P. The rationale for this simplification is as follows.

Since registers output the same value and have the same observation set as their
left children, they are seen as redundant elements under the standard probing model.
Therefore they are excluded from P. In other words, under the standard probing model,
the set of probing positions is defined as P := {n|op(n) ∈ {in, ref,¬,∧,∨,∧,∨,⊕,⊕}}.

In the glitch-extended probing model, placing a glitch-extended probe at the input of
a register (which is also the output of the left child of this register) provides the attacker
with more information about the circuit compared to placing the probe at the output of
a combinational logic gate. Thus, for P, it suffices to include only the left children of
register nodes, since the observation sets of the other gates are a subset of the observation
sets of the registers’ left children. In other words, P := {n.lft|op(n) ∈ {reg, out}}.

1https://github.com/Chair-for-Security-Engineering/SILVER

https://github.com/Chair-for-Security-Engineering/SILVER
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Given a masked implementation C = (x, G), SILVER initiates verification with d = 1.
It examines the statistical independence between the outputs of the observation function
set f and the set of secret variables x for each d-th order observation set Od =

∪
n∈R On,

where R ⊆ P and |R| = d. If all Od sets maintain security for the current d, SILVER
increments d by 1 and continue to verify the security of all Od sets with the incremented
d. If any observation set Od lacks statistical independence from x, SILVER returns the
actual security order d− 1 and the set of probed insecure registers R.

The most critical and time-consuming step in the verification process involves confirm-
ing the statistical independence between f and x. Since f and x are considered as two
sets of boolean variables, Theorem 1 is introduced in [KSM20] to verify the independence
between f and x. Specifically, this theorem requires verifying the mutual independence
of the event f ′ = α and the event x′ = β for each subset f ′ of f and each subset x′ of x.

Theorem 1. [KSM20] Two sets of random boolean variables x, y are statistically inde-
pendent if and only if for all x′ ⊆ x, y′ ⊆ y, where x′ ̸= ∅ and y′ ̸= ∅, there exist α, β
such that px′,y′(α, β) = px′(α)py′(β), where α, β can be any two sets of boolean values.

The verification of mutual independence relies on the equation Pr[f ′ = α, x′ = β] =
Pr[f ′ = α] Pr[x′ = β]. Note that each secret variable xi in x is also perceived as
boolean functions (defined over variables in Sh(x)). Consequently, this equation involves
computing the joint probability of outputs of three multi-output boolean functions f ′ ∪
x′, f ′, x′ respectively, which is non-trivial. However, if α is fixed to 2|f ′|−1 (recall that an
integer could be interpreted as a set of boolean values, mentioned in the Table 1), i.e., all
elements in f ′ are assigned the value 1, the joint probability of f ′ = 2|f ′|−1 equals Pr[f =
1], where f :=

∧
fi∈f ′ fi is a single-output boolean function. Similar computations apply

for the probabilities Pr[x′ = 2|x′|−1] and Pr[f ′ = 2|f ′|−1, x′ = 2|x′|−1]. Fortunately, the
output probability of a single-output boolean function can be efficiently computed using
Reduced Ordered Binary Decision Diagrams (ROBDDs) [TN95, Mil98]. Hence, Theorem
1 can be utilized to prove statistical independence between f ′ and x through ROBDDs,
with reductions from multi-output boolean functions to single-output boolean functions.
Notably, according to [Mil98], the joint output probability of f ′ ∪ x′ could be computed
without constructing new ROBDDs.

To streamline representation, this paper introduces the product combination coefficient
λ ∈ GF|f |

2 for each subset f ′ of f . Specifically, ∀fi ∈ f , if fi ∈ f ′, then λi = 1, otherwise
λi = 0. The event f ′ = 2|f ′| − 1 can be denoted as

∧|f |
i=1 fλi

i = 1, abbreviated as
fλ = 1. Thus, the probability equation Pr[f ′ = α, x′ = β] = Pr[f ′ = α] Pr[x′ = β] with
α = 2|f ′| − 1 and β = 2|x′| − 1 can be expressed as

Pr[fλ = 1, xγ = 1] = Pr[fλ = 1] Pr[xγ = 1] (2)

Using this notation, f and x are statistically independent if and only if for all 0 ̸=
λ ∈ GF|f |

2 , 0 ̸= γ ∈ GF|x|
2 , Equation 2 holds.

3 Reduction Rules
SILVER encounters efficiency challenges, particularly when verifying larger implementa-
tions such as the masked S-box of AES. A significant contributing factor to this inefficiency
is its exponential complexity. When verifying the statistical independence between the
observation function set f and the secret variable set x, SILVER needs to verify Equation
2 for (2|x| − 1)(2|f | − 1) combinations. This complexity scales exponentially with the size
of f ∪ x.

To address this issue, we propose two Reduction Rules in this section to diminish the
size of f and x. Instead of constructing ROBDDs to precisely characterize the observation
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function fn of a gate n, we utilize several data structures to store necessary information.
This information is sufficient to infer that fn has been masked by a fresh mask that is
not used elsewhere (such a mask is referred to as a perfect mask). Consequently, the
observation function fn is independently uniformly distributed. Thus, it can be safely
removed from the observation functions f without altering the result of the statistical
independence check.

3.1 Auxiliary Data Structures
Inspired by prior work in formal verification of software masking [EWS14, OMHE17,
ZGSW18], we introduce auxiliary data structures in this section to infer the independent
uniform distribution of a single observation function.

Consider the example in Figure 1, where gate n9 masks the results of n5 (a1b2) by
adding a fresh mask r to it. Consequently, r ensures that the observation function fn9 =
a1b2 ⊕ r follows a uniform distribution. We observe that if the expression of fn can be
rewritten as r⊕f ′

n, where r does not appear in the expression of f ′
n (i.e., r is not a variable

of f ′
n), then fn follows a uniform distribution and r is a perfect mask for fn.
Note that r also satisfies the aforementioned property required to be a perfect mask

of gates n4, n13, n15, n17 and n10, n14, n16, n18. Essentially, the perfect masks of a non-
leaf gate originate from its child gates, while a leaf gate uses, as a perfect mask, the
independently uniformly distributed random variable it stores. In other words, r is
transmitted as a perfect mask through two paths: n4 → n9 → n13 → n15 → n17 and
n4 → n10 → n14 → n16 → n18. This transmission requires two conditions. First, the
parent gate n must be one of the gates that operates a function that is bijective to its
inputs, i.e., binary gates {⊕,⊕} and unary gates {¬, reg, in, out}. Second, if one child
gate have perfect masks that do not occur in the expression of the other child gate (if
the other child exists), then these perfect masks are transmitted to the parent gate. Note
that the second condition implies that the transmitted perfect masks only occur once in
the expression of the parent gate. Thus, fn can be rewritten as f ′

n ⊕
⊕

r∈perf(n) r where
perf(n) denotes the set of perfect masks of gate n.

Now we introduce the method to compute perf(n) for every gate in C. We start with
the leaf gates. Since each secret variable xi ∈ x has d + 1 shares and any selection of d
shares of xi are independent of each other and follows a uniform distribution [Bil15], the
first d shares of xi can function as perfect masks and the last share is seen as a function
defined over variables in {xi, xi1, · · · , xid}, i.e., xi,d+1 = xi ⊕

⊕d
j=1 xij . Following this

observation, we have that for 1 ≤ i ≤ |x|, 1 ≤ j ≤ d, an in gate that store xij have
perfect masks xij and for 1 ≤ i ≤ |x|, an in gate that store xi,d+1 have perfect masks
{xi1, · · · , xid}. The perfect mask of ref gates is the fresh mask it stores.

It is not straightforward to obtain the perfect masks of a non-leaf gate n. First, we
should obtain supp(n), the set of variables appearing in the expression of fn, which is a
subset of z. It is computed as follows:

supp(n) =


{fn}, if op(n) ∈ {in, ref}, fn ̸= xi,d+1

{xi, xi1, . . . , xid}, if op(n) = in, fn = xi,d+1

supp(n.lft), if op(n) ∈ {¬, reg, out}
supp(n.lft) ∪ supp(n.rgt), otherwise

(3)

With supp(n), perf(n) can be computed using Equation 4. Note that in the second
line of Equation 4, the left child n.lft transmits the subset of its perfect masks perf(n.lft)\
supp(n.rgt) to its parent. The elements in perf(n.lft)\supp(n.rgt) are the perfect masks of
n.lft that do not appear in the expression of n.rgt, indicating that these masks will appear
in the expression of n exactly once. The same analysis holds for perf(n.rgt) \ supp(n.lft).
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Equation 4 also ensures that the transmission of perfect masks only occurs between the
aforementioned bijective gates (rather than non-bijective gates) and their children.

perf(n) =



supp(n) \ x, if op(n) ∈ {in, ref}
(perf(n.lft) \ supp(n.rgt))

∪
(perf(n.rgt) \ supp(n.lft))

, if op(n) ∈ {⊕,⊕}

perf(n.lft), if op(n) ∈ {¬, reg, out}
∅, otherwise

(4)

In addition to supp(n) and perf(n), we also define nisupp(n) to count the number of
shares that appear in the expression of a gate. It can be computed using Equation 5. The
difference between supp(n) and nisupp(n) is that the former considers z ∪x \ {xi,d+1|1 ≤
i ≤ |x|} as the set of input variables to the observation functions, while the latter considers
only z as the set of input variables.

nisupp(n) =


{fn}, if op(n) ∈ {in, ref}
nisupp(n.lft), if op(n) ∈ {¬, reg, out}
nisupp(n.lft) ∪ nisupp(n.rgt), otherwise

(5)

The auxiliary data structures are also defined over a set of gates N , namely supp(N)
:=

∪
n∈N supp(n), perf(N) :=

∪
n∈N perf(n) and nisupp(N) :=

∪
n∈N nisupp(n).

3.2 Reduction Rules

From the last subsection, we understand that if the perfect mask set of a gate n is not
empty, then the single observation function fn has a uniform distribution. However, the
observation set Od usually contains more than one observation function. Even if each gate
in Od has a non-empty perfect mask set, it is not sufficient to ensure that the observation
functions f are jointly uniform. Consider three observation functions fn1 = a1 + r1,
fn2 = a2 + r2, fn3 = r1 + r2, where the secret variable a is split into two shares a1 and a2,
and r1 and r2 are two fresh masks. Although n1, n2, and n3 all have at least one perfect
mask and each follows a uniform distribution, combining them will leak information about
a. This is because the three functions share some identical perfect masks.

Given this observation, to establish that Od follows a joint uniform distribution, a
straightforward approach would involve ensuring that each gate n ∈ Od possesses at
least one perfect mask not utilized by other gates as support variables. In essence, for
1 ≤ i ≤ |Od|, it is necessary that ni ∈ Od and perf(ni) \

∪
j ̸=i supp(nj) ̸= ∅.

However, we demonstrate that proving the joint uniform distribution of Od can be
achieved through a less stringent condition by leveraging the following Reduction Rule.

Reduction Rule 1 (Uniqueness Rule). Given a d-th order observation set Od, if ∃ni ∈
Od (where i is the index of ni in Od) such that r ∈ perf(ni) and r /∈ supp(Od \{ni}), then
Od is statistically independent of x if and only if Od \ {ni} is statistically independent of
x.

Proof. Let f ′
ni

= r + fni be the de-masked observation function (then r /∈ supp(f ′
ni

)) and
fī = f \ {fni

} be the observation functions in Od \ {ni}.

=⇒ We have pfī,x(αī, β) =
∑

αi
pfī,x,fi

(αī, β, αi) = px(β)
∑

αi
pfī,fi

(αī, αi) = pfī
(αī)·

px(β). Hence, fī, i.e., Od \ {ni} is statistically independent of x.
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⇐= First, we show that fni
is statistically independent of fī ∪ x.

Pr[f = α, x = β]
= Pr[r + f ′

ni
= αi, fī = αī, x = β]

= Pr[r = 0, f ′
ni

= αi, fī = αī, x = β] + Pr[r = 1, f ′
ni

= ¬αi, fī = αī, x = β]

= 1
2

Pr[f ′
ni

= αi, fī = αī, x = β] + 1
2

Pr[f ′
ni

= ¬αi, fī = αī, x = β]

= 1
2

Pr[fī = αī, x = β]

= Pr[fni
= αi] Pr[fī = αī, x = β]

The fourth line of the equation holds because r does not appear in the support
variable set of {f ′

ni
}∪fī ∪x. The fifth line holds due to the law of total probability.

Similarly, we can prove that fni
is also statistically independent of fī.

Therefore Pr[f = α, x = β] = Pr[fni = αi] Pr[fī = αī, x = β] = Pr[fni
=

αi] Pr[fī = αī] Pr[x = β] = Pr[f = α] Pr[x = β].

We complete the proof.

If for 1 ≤ i ≤ |Od|, it holds that ni ∈ Od and perf(ni) \
∪

j>i supp(nj) ̸= ∅, we can
apply Reduction Rule 1 for |Od| times to conclude the security (or uniformity) of Od. This
is a weaker condition than the straightforward method. Below is an example.

Example 2. Let the set of secret variables be {a}, the set of shares be {a1, a2}, the set of
fresh masks be {r1, r2}, and the set of observation functions be f = {fn1 = r1+a1r2, fn2 =
a1 + r2, fn3 = a2}. It is easy to obtain that perf(n1) = {r1}, perf(n2) = {a1, r2}, and
perf(n3) = {a1}. First, since r1 ∈ perf(n1) and r1 /∈ supp(n2, n3), n1 can be removed
from f , i.e., f is reduced to {fn2 , fn3}. Next, with r2 ∈ perf(n2) and r2 /∈ supp(n3), n2
is removed. And in one more step, n3 is also removed.

Note that Reduction Rule 1 aligns with the concept of OPT rule (or so-called optimistic
sampling rule) of maskVerif [BBD+15, BBC+19]. maskVerif utilizes expression substitute
to eliminate occurrences of secret variables. Consider two secret inputs a, b and their
corresponding shares a1, b1, a2, b2 and a computation a2b2. maskVerif will regard a, b, a1, b1
as variables while a2, b2 are expressions defined over (a, b, a1, b1), i.e., a2 := a + a1, b2 :=
b+b1. So the computation a2b2 is expressed as (a+a1)(b+b1). We can see that a2 = a+a1
utilizes a fresh mask a1 (not used by b1), ensuring that a2 has the same distribution as
a1. Therefore, it is safe to substitute a + a1 with a1 in expression (a + a1)(b + b1). After
substitution, the distribution of a1(b+b1) remains unchanged from the original expression.
The same applies to substituting b+b1 with b1. Ultimately, the computation (a+a1)(b+b1),
which initially includes secret inputs a, b, is reduced to an expression a1b1 that contains
no secret inputs. While maskVerif achieves this substitution using imperative graphs, we
employ similar techniques through the data structures outlined in subsection 3.1. However,
we could not conclude that a2b2 is secure through Reduction Rule 1 since it has no perfect
masks. This also motivates the introduction of Reduction Rule 2.

A more apt example illustrating the difference between rule OPT and Reduction Rule
1 would involve verifying a2 + b2. maskVerif would simplify this expression to a1 + b1,
which contains no secret inputs, whereas Reduction Rule 1 identifies a1 and b1 as the
perfect masks of a2 + b2, thereby concluding its security.

While Reduction Rule 1 reduces the size of Od, we now introduce a Reduction Rule
which reduces the size of x.

Let xI be the set of secret variables all shares of which have been used by f , i.e.,
xI = {xi|Sh(xi) ⊆ nisupp(Od), 1 ≤ i ≤ |x|} and xĪ = x \ xI . We call xI interference
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variables, while variables in xĪ are non-interference variables. Then Reduction Rule 2
holds.

Reduction Rule 2 (NI Rule). Given a d-th order observation set Od, Od is statistically
independent of x if and only if Od is statistically independent of xI .

Intuitively, Od does not use all shares of xĪ , so it is statistically independent of xĪ .
However it is not sufficient to prove the independence between Od and x with Od statis-
tically independent of xI and xĪ respectively.

Proof. Let I be the set of index of variables in xI and Ī be {1, · · · , |x|} \ I.

=⇒ We have pf ,xI
(α, βI) =

∑
βĪ

pf ,xI ,xĪ
(α, βI , βĪ) = pf (α)(

∑
βĪ

pxI ,xĪ
(βI , βĪ)) =

pf (α) pxI
(βI). Hence, Od is statistically independent of xI .

⇐= Let sI be the set {xij |xi ∈ xI , 1 ≤ j ≤ d}, and sĪ be the set Sh(xĪ) ∩ nisupp(Od).
Since for all xi ∈ xI , the last share xi,d+1 could be viewed as a function defined over
{xi, xi1, · · · , xid}, i.e., xi,d+1 = xi⊕

⊕d
i=1 xij , then f can be seen as a multi-output

boolean function defined over variables xI ⊎ sI ⊎ sĪ ⊎ r, i.e., f(xI , sI , sĪ , r).
Note that all variables in sI ⊎sĪ ⊎r are independently distributed random variables,
then the following holds.

f is statistically independent of xI .

⇐⇒ ∀(α(1), α(2)) ∈ (GF|f |
2 )2, ∄(β(1), β(2)) ∈ (GF|xI |

2 )2 satisfying β(1) ̸= β(2),

such that Pr[f(β(1), sI , sĪ , r) = α(1)] ̸= Pr[f(β(2), sI , sĪ , r) = α(2)]

=⇒ ∀(α(1), α(2)) ∈ (GF|f |
2 )2, ∄(β(1), β(2)) ∈ (GF|x|

2 )2, satisfying β(1) ̸= β(2),

such that Pr[f(β(1)
I , sI , sĪ , r) = α(1)] ̸= Pr[f(β(2)

I , sI , sĪ , r) = α(2)]
⇐⇒ f is statistically independent of x.

The implies can be easily verified by proof of contradiction.

Below is an example of applications of Reduction Rule 2. It should be noted this
observation function set cannot be reduced by Reduction Rule 1.

Example 3. Let the secret variable set be {a, b, c}, the shares be {a1, a2, b1, b2, c1, c2}, and
the observation function set be {fn1 = a2b1, fn2 = a2c2, fn3 = b1c2}. Then nisupp(f) =
{a2, b1, c2}. Only one share of a, b, c appears in f . Since xI is empty, this observation
function set is secure according to the rule 2.

Reduction Rule 2 shares similarities with checking the non-interference property (NI)
of an observation set, or verifying the non-completeness property in Threshold Imple-
mentations. However, NI mandates at most d shares of all secret variables occur in the
expression, whereas Reduction Rule 2 allows the presence of secret variables whose every
share appears in the observation set.

Algorithm 1 presents the reduction algorithm based on the above Reduction Rules.
The function ReduceF(Od) implements Reduction Rule 1. It attempts to find a gate

n that uses a fresh mask not used by other gates (line 3). Such gate n is then removed
from Od. The resulting set Od \ {n} is further reduced by rule 1 in line 4.

The function ReduceX(Od, x) implements the reduction of the secret variable set. It
adds the secret variable, all shares of which have been used by Od, to xI and returns the
interference variables set xI .
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Algorithm 1 Reduction Algorithm
1: function ReduceF(Od) ▷ Reduction Rule 1
2: for all ni ∈ Od do
3: if perf(ni) \ supp(Od \ {ni}) ̸= ∅ then
4: return ReduceF(Od \ {ni})
5: end if
6: end for
7: return Od

8: end function
9: function ReduceX(Od, x) ▷ Reduction Rule 2

10: xI ← ∅
11: for all x ∈ x do
12: if Sh(x) \ nisupp(Od) = ∅ then
13: xI .add(x)
14: end if
15: end for
16: return xI

17: end function

4 The Verification Tool - Prover
In this section, we introduce the formal verification tool, Prover, which is a modification
of SILVER designed to efficiently verify the security of masked implementations.

4.1 Variable Ordering
The complexity of computing Pr[fλ = 1, xγ = 1] is O(N(fλ) · N(xγ)) [Mil98], where
N(f) denotes the number of nodes in the ROBDD representing the boolean function f .
Therefore the complexity of checking statistical independence between f and x will be
O((

∑
λ ̸=0 N(fλ)) · (

∑
γ ̸=0 N(xγ))). SILVER does not impose any restrictions on variable

ordering when constructing ROBDDs. However, optimizing the variable ordering can
significantly reduce

∑
γ ̸=0 N(xγ), thereby improving performance.

Specifically, SILVER determines variable ordering based on annotations in the inter-
nal netlist file (or internal representation of the circuit graph), which are provided by its
Verilog parser. The beginning lines of the internal netlist file declares the input variables
of the circuit. Each line declares a input variable, and SILVER assigns i-th BDD variables
for the input variable listed on the i-th line. For instance, in a 2-shared Verilog imple-
mentation of the AES S-box with secret inputs {a, b, · · · , h}. The variables are typically
declared in the following order in the internal representation file produced by the Verilog
parser: a1 ≺ b1 ≺ · · · ≺ h1 ≺ a2 ≺ · · · ≺ h2. SILVER assigns these input variables as
BDD variables in exactly the same sequential order.

As discussed in [HSSW10], this ordering is worst for computing a boolean function of
the form (a1 ⊕ a2) ∧ · · · ∧ (h1 ⊕ h2) (the same form as xγ). When the hamming weight
HW (γ) of γ is h, the ROBDD representing xγ would contain 3 · 2h − 1 nodes. Suppose
there are n input variables, then

∑
γ ̸=0 N(xγ) =

∑n
h=1

(
n
h

)
(3 · 2h − 1) = 3n+1 − 2n − 2.

It is established in [HSSW10] that an optimal ordering would be a1 ≺ a2 ≺ b1 ≺ b2 ≺
· · · ≺ h1 ≺ h2. With this optimal ordering, when HW (γ) = h, the number of nodes in the
corresponding ROBDD will be linear in h, i.e., 3h+2. Using the optimal ordering reduces
the size of xγ from exponential complexity to linear complexity in the hamming weight of
γ. And the term

∑
γ ̸=0 N(xγ) simplifies to

∑n
h=1

(
n
h

)
(3h + 2) = (3n + 4)2n−1 − 2, where

n is the number of input variables.
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Algorithm 2 Improved d-th order Standard and Glitch-Extended Probing Security Ver-
ification Algorithm based on Reduction Rules and ROBDDs
Input: x, Sh(x), r,N , E , op, f, b
Output: observation set R which leaks information about x

1: function VerifyInc(x, Sh(x), r,N , E , op, f, b)
2: for all n ∈ N do fn ← ComputeBDDFunction(n) ▷ According to Equation 1
3: end for
4: P ← {n.lft|op(n) ∈ {reg, out}} ▷ Positions in glitch-extended probing model
5: if b then P ← {n|op(n) ∈ {in, ref,¬,∧,∨,∧,∨,⊕,⊕}} ▷ Positions in standard

probing model
6: end if
7: d′ ← 1
8: V ← {∅}
9: while true do

10: for all R ⊆ P with |R| = d′ and the size of Od′ =
∪

n∈R On in a descending
order do

11: Od′ ← ReduceF(Od′) ▷ Reducing Od′ using Reduction Rule 1
12: if b and |Od′ | ̸= d′ or Od′ = ∅ then continue
13: end if
14: xI ← ReduceX(Od′ , x), t← |xI | ▷ Reducing x using Reduction Rule 2
15: if t = 0 then continue
16: end if
17: for all O ∈ V do
18: if Od′ ⊆ O then continue
19: end if
20: end for
21: f ←

∪
n∈Od′ fn, p← |f |

22: for all γ ∈ [1, 2t − 1] do
23: xγ ← 1
24: for all 1 ≤ i ≤ t do
25: xγ ← xγ ∧ xγi

i ▷ xi is the i-th element of xI

26: end for
27: end for
28: for λ = 2p − 1 down to 1 do
29: fλ ← 1
30: for all 1 ≤ i ≤ p do
31: fλ ← fλ ∧ f

λp−i

i

32: end for
33: for all γ ∈ [1, 2t − 1] do
34: if Pr[fλ = 1, xγ = 1] ̸= Pr[fλ = 1] Pr[xγ = 1] then
35: return R
36: end if
37: end for
38: if b then break▷ Optimization for verifying standard probing security
39: end if
40: end for
41: V.add(Od′)
42: end for
43: d′ ← d′ + 1
44: end while
45: end function



Feng Zhou , Hua Chen , Limin Fan 15

However, there is another method to further reduce the size of the ROBDD representa-
tion of xγ . The concept behind this approach is quite similar to how variables are treated
as support variables in the computation of supp(n) and nisupp(n). Instead of declaring
a1 and a2 as ROBDD variables and computing the secret variable a as a1 + a2, we could
declare a and a1 as ROBDD variables and compute a2 as a + a1. The same approach
is applied to b, · · · , h and their respective shares. In this scenario, the variable ordering
would be a ≺ b ≺ · · · ≺ h ≺ a1 ≺ b1 ≺ · · · ≺ h1. When HW (γ) = h, the number
of nodes in the corresponding ROBDD will be h. The term

∑
γ ̸=0 N(xγ) simplifies to∑n

h=1
(

n
h

)
h = n2n−1, which is represents approximately one-third of the optimal case.

When n is eight, the term
∑

γ ̸=0 N(xγ) under the first two variable ordering strategies
will be 19425 and 3582, respectively, which is approximately 19.0 times and 3.50 times
larger the third case, which is 1024.

However, we cannot determine whether N(fλ) grows larger or smaller compared to the
original ordering of SILVER because fλ is not as straightforward as a boolean function
like xγ(which is also more complex to analyze when x ∈ x has more than two shares).
In fact, improving the variable ordering of ROBDDs is NP-complete [BW96]. Therefore,
our objective is not to find a universally optimal ordering that suits every implementation.
Instead, we aim to identify variable orderings that prove efficient in practical scenarios.
To this end, we conducted experiments to compare SILVER’s performance under different
variable orderings, with detailed results presented in Section 5. The choice of variable
ordering is configurable as a user option in Prover. It is worth noting that the variable
ordering of random inputs follows after the secrets and their shares. However, we did not
specifically optimize the ordering of these variables.

4.2 Verification of Standard and Glitch-Extended Probing Security
Now, let us delve into the verification algorithm for standard and glitch-extended probing
security. The overall algorithm is outlined in Algorithm 2. The fundamental idea be-
hind verifying both security notions is to initially reduce the size of Od and then employ
ROBDDs to check the statistical independence between the reduced Od and x.

This algorithm takes the circuit C and a boolean value b as inputs and outputs a set
of gates R with leakage about the secret variables x. As explained in section 2.3, the
inputs of the circuit are Sh(x) and r, and the information about the gates is stored in
(N , E , op, f). If b is True, then the algorithm verifies standard probing security. Otherwise,
it verifies glitch-extended probing security.

First, Prover computes the ROBDD representation of all the observation functions
{fn|n ∈ N} (line 2). Based on the value of b, i.e., the selected security model, it chooses
the set of positions P to be verified in the circuit.

Then, the verification starts with d = 1 (line 7). First, Prover utilizes Reduction Rule
1 to reduce the size of Od (line 11). If Reduction Rule 1 fails to prove the security of
Od, Prover reduces the secret variable set (line 14). If there is no interference variable,
then it is secure, and no further verification is needed (line 15). Note that it is better to
apply Reduction Rule 2 after applying Reduction Rule 1 because after Reduction Rule 1
is applied, the size of the reduced Od is much smaller and depends on fewer variables.

Notably, we employ a strategy that could reduce the number of times to check statis-
tical independence by ROBDDs. During the verification, Prover stores the Od that has
been verified to be secure by ROBDD into a list V. Whenever Reduction Rule 1 and 2
fails to verify Od is secure, Prover compares it to the elements in V. If the Od under
verification happens to be a subset of a verified secure observation set, then it is secure
and needs no further verification. This avoids the time-consuming process by ROBDDs.
To employ the subset strategy, we sort the observation set by size in descending order and
start the verification with the larger sets. This strategy is implemented in lines 8, 10, 18,
and 41 of Algorithm 2.
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One might assume that storing verified secure observation sets requires substantial
RAM usage. However, we store only the corresponding gate number n of verified functions
instead of their BDD representations. Each observation function’s gate number n is
a unique 4-byte integer, and the observation set Od exclusively comprises these gate
numbers.

Finally, if Rule 2 fails to return an empty set, it is necessary to invoke ROBDDs
to verify the probability equations (lines 21 to 40). If Equation 2 does not hold, then
leakage is detected. In this case, Prover returns the set of registers whose input wires leak
information about x.

However, there is a key difference in the observation sets between the standard and
glitch-extended probing model, which could lead to some optimizations (lines 12 and 38) in
the verification of the standard probing security. Note that a d-th order observation set Od

under glitch-extended probing may have an arbitrary size greater than or equal to d, while
Od in the standard probing model is always of size d. Normally, Od needs to be reduced
to an empty set to avoid the statistical independence check via ROBDDs. However, since
d′ increases from 1 in Algorithm 2, all sets of size smaller than the current d′ have been
verified in the previous iteration when verifying standard probing security. As a result,
when the size of Od′ is reduced to a size less than d′, the remaining set has already been
checked in the previous iteration and needs no further verification (line 12 in Algorithm
2). If after reduction, the size of Od′ is still d′, then ROBDDs are expected to be used
to check whether Equation 2 holds for all λ ∈ [1, 2d − 1]. Again, for λ s.t. HW (λ) < d,
the independence checking has already been performed or implied by Reduction Rules
in previous iterations. Thus, Prover only needs to check whether Equation 2 holds when
HW (λ) = d′ (line 38).

4.3 Verification of Uniformity
Uniformity (or uniform sharing) is an important property to maintain during Threshold
Implementation.

Definition 6 (Uniform Sharing[KSM20]). Let y be a set of binary random variable
and Sh(y) its corresponding Boolean sharing. Each variable yi ∈ y is split into d + 1
variables yij (1 ≤ j ≤ d + 1). Then Sh(y) is a uniform sharing of y iff

Pr[Sh(y) = α|y = β] =


1

2|y|d if α is a valid sharing for y

0 else
. (6)

In the definition of uniformity, valid sharing means that for 1 ≤ i ≤ |y|, βi =
⊕d+1

j=1 yij

with 1 ≤ j ≤ d + 1. We assume the correctness of the sharing and that each output
yi is not constant. Therefore we would not consider cases like y1 = 0; for example, a
two-shared sharing y11 = r, y12 = r would not meet the criterion in our assumption.

In [KSM20, Lemma 4], Lemma 1 was employed to verify the uniformity of the output
sharing Sh(y) = {yij |yi =

⊕d+1
j=1 yij , 1 ≤ i ≤ |y|, 1 ≤ j ≤ d + 1} for a Boolean function f

with multiple outputs y.

Lemma 1. The output sharing Sh(y) of a circuit C is uniform. ⇐⇒ Any selection of
up to |y| · d output shares is balanced excluding the cases where all d + 1 shares of the
same output are involved in the selection. ⇐⇒ Pr[

⊕|y|
i=1 λ(i)y

(i)
s = 1] = 1

2 holds for all
λ(i) ∈ GFd+1

2 (1 ≤ i ≤ |y|) with 0 ≤ HW (λ(i)) ≤ d where y
(i)
s denotes for Sh(yi) and

λ(i)s are not all zeros.

However, the second iff is not explicitly demonstrated in [KSM20]. Nevertheless, this
equivalence can be readily inferred from the following XOR Lemma in [Fri92], thus we
omit its proof here.
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Lemma 2 (XOR Lemma). A set of random variables f = {f0, f1, · · · , fn−1} follows an
independent uniform distribution if and only if the following equation holds.

∀λ ∈ [1, 2n − 1], Pr[λf = 1] = 1
2

(7)

Nevertheless, the second iff in Lemma 1 constitutes the actual verification approach
adopted by SILVER. λ(i) selects at most d shares of yi, and all shares selected by these λ(i)

are XORed to form a single-output function f =
⊕|y|

i=1 λ(i)y
(i)
s . To verify the uniformity

of a d + 1-shared boolean function with an n-bit output, SILVER needs to construct
(2d+1−1)n−1 ROBDDs for such single-output function f and check whether f is balanced.
For example, in the case of a 3-shared boolean function with 8-bit outputs, the number
of times ROBDDs need to be constructed becomes 78 − 1 ≈ 222.5. Since the ROBDDs
of the output functions of circuit C contain more nodes than the internal functions in C,
the XOR operations on these ROBDDs become less efficient. Consequently, SILVER may
not be able to verify the uniformity of several paired second-order masked S-boxes within
a 24-hour time frame.

To improve efficiency, we could introduce Reduction Rule 1.
As analyzed in Section 3.2, Reduction Rule 1 can be utilized to verify the uniformity of

an observation set or reduce the uniformity (or security) to a smaller observation set. We
can regard the selection of |y|·d output shares, excluding cases where all d+1 shares of the
same output are involved in the selection, as an observation set Od and apply Reduction
Rule 1 to it. If all such Od can be reduced to an empty set, then the output sharing is
uniform. If any Od cannot be reduced to an empty set, then the XOR Lemma can be
used to verify the uniformity of the remaining observation functions in Od.

Algorithm 3 Algorithm for Uniformity Check
Input: Sh(y)
Output: True(False): the output sharing is (not) uniform

1: function CheckUniformity(Sh(y))
2: for i from 1 to |y| do
3: Yi ← ∅
4: for j from 1 to d + 1 do
5: Yi ← Yi ∪ (Sh(yi) \ {yij})
6: end for
7: end for
8: for f ∈ Y1 × Y2 × · · · × Y|y| do
9: O ← the set of nodes corresponding to f

10: O′ ← ReduceF(O)
11: f ′ ←

∪
n∈O fn ▷ The set of functions to compute output probability

12: for λ from 1 to 2|f ′| − 1 do
13: if Pr[λf ′ = 1] ̸= 1

2 then return False
14: end if
15: end for
16: end for
17: return True
18: end function

The improved algorithm to check uniformity is shown in Algorithm 3. It first generates
all possible combinations of |y| · d output shares, excluding cases where all d + 1 shares
of the same output are involved in the combination. This corresponds to the Cartesian
product of Yi where 1 ≤ i ≤ |y|. Then, ReduceF is called to reduce the size of each
element f in Y1×Y2× · · ·×Y|y|. If the corresponding observation set O is reduced to an
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empty set, then f is uniformly distributed. Otherwise, Prover verifies whether Equation
7 holds to determine if f is uniformly distributed.

The efficiency of this algorithm depends on how much smaller could O be reduced. In
the best case, all O are reduced to an empty set. In this scenario, the function ReduceF
is called (d + 1)|y| times, and no new ROBDD constructions are required. In the worst
case, Reduction Rule is not applied at all, resulting in the construction of ROBDDs for
(d + 1)|y|(2|y|·d − 1) times, which is comparable to (2d+1 − 1)|y| − 1. However, the worst
case is unlikely to happen because many schemes use fresh randomness to maintain the
uniformity property.

Nevertheless, we discovered that the uniformity check of SILVER is extremely efficient
when the outputs are 2-shared or the implementation did not utilize fresh randomness, as
SILVER has optimized the order of constructing ROBDDs to hit the cache more often.
In Prover, we leverage this optimization from SILVER and apply Algorithm 3 only when
this optimization does not apply, This occurs when the number of output shares exceeds
2 and at least one of the outputs have perfect masks.

5 Experiments and Evaluations
In this section, we gathered various open-sourced masked S-box implementations2 and
conducted experiments to assess the impact of enhancements proposed in Sections 3 and
4 on these implementations. We also compared Prover to numerous state-of-the-art tools,
including CocoAlma, maskVerif, and SILVER. The evaluation benchmarks, scripts, and
tool source code are public available under an open-source license3.

Table 2 provides information about these implementations, including the reference,
abbreviations for the scheme, the number of secret variables |x|, the number of shares
|Sh(x)|, the expected security order d, the number of clock cycles to finish the computation,
the count of fresh masks, the total number of gates |N |, and the number of registers |R|.
For Prover and SILVER, the verification complexity under standard probing model is∑d

i=1
(|N |−|R|

i

)
for a d-th order secure implementation while the complexity under glitch-

extended probing model is
∑d

i=1
(|R|

i

)
.

In the abbreviation of a scheme, the subscript stands for the expected security or-
der d. The abbreviation for implementations using the techniques from [RBN+15a] and
[GMK16] are CMS and DOM. Implementations from [SM21a] and [SM21b] that utilize no
(or almost no) fresh randomness are denoted as NF1 and NF2, while 1F indicates the use
of one bit of fresh randomness. The INF1 implementation of PRINCE refers specifically
to the inverse of the PRINCE S-box. The 4F1 implementation of AES S-box, detailed
in [YCW+24], incorporates 4 bit fresh masks and 8-bit guards from neighboring S-boxes.
Threshold implementations are marked as TI. The symbol Ld (with only a subscript)
stands for the low-latency Keccak implementations in [ZSS+21], while the Lc

d implementa-
tions (with subscript and superscript) come from [BDMS22] where d denotes the expected
security order and c+1 indicates the number of clock cycles to complete the computation.
LL denotes low-latency and low-randomness implementations as proposed in [SDM23].
Implementations marked with a star in their abbreviation are paired-version masked S-
boxes. LL2 and LL∗

2 implementations of SKINNY were excluded from our benchmarks
since these implementations failed to encrypt correctly in our simulation.

In this section, we conducted two experiments. One shows the influence of differ-
ent variable orderings on SILVER. The other compares the performance of CocoAlma,
maskVerif, SILVER, and Prover. Both experiments were performed on an Ubuntu 22.04

2Public available at https://github.com/Lucien98/coco-alma_evaluation/tree/main/examples
3Evaluation benchmarks and scripts for CocoAlma are public available at coco-alma_evaluation.

Evaluation benchmarks and scripts for maskVerif are public available at maskVerif_evaluation. Evaluation
benchmarks and scripts for SILVER and Prover are public available at prover.

https://github.com/Lucien98/coco-alma_evaluation/tree/main/examples
https://github.com/Lucien98/coco-alma_evaluation
https://github.com/Lucien98/maskVerif_evaluation
https://github.com/Lucien98/prover
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TLS virtual machine running on an Intel Core i7-6700 processor clocked at 3.40 GHz. The
virtual machine is equipped with 16 GB of memory and 8 logical processor cores. SILVER
and Prover utilized all 8 cores, whereas CocoAlma and maskVerif only used 1 core.

Table 2: Information about masked S-box implementations
Reference Impl. |x| Sh(x) d Cycl. #ref |N | |R|

AES

[SM21a] 1F1 8 2 1 6 1 967 176
[YCW+24] 4F1 8 2 1 6 12 1004 188
[DRB+16] CMS1 8 2 1 8 54 938 192
[GMK17] DOM1 8 2 1 8 18 884 240
[SM21a] NF1 8 2 1 6 0 1188 240
[UHA17] TI1 8 2 1 3 64 776 112

Keccak

[GSM17] DOM1 5 2 1 2 5 121 30
[GSM17] DOM′

1 5 2 1 2 0 111 30
[GSM17] DOM2 5 3 2 2 15 249 60
[GSM17] DOM3 5 4 3 2 30 462 100
[ZSS+21] L1 5 2 1 1 5 85 20
[ZSS+21] L2 5 3 2 1 15 180 45
[ZSS+21] L3 5 4 3 1 30 310 80
[SM21b] NF1 5 2 1 2 0 96 30
[SM21b] NF2 5 3 2 2 0 188 60

Midori

[BDMS22] L3
2 4 3 2 4 51 444 91

[BDMS22] L4
2 4 3 2 5 24 277 84

[BDMS22] L3
2∗ 8 3 2 4 90 864 170

[SDM23] LL2 4 3 2 2 104 1189 108
[SDM23] LL∗

2 8 3 2 2 192 1918 216
[SM21a] NF1 4 2 1 2 0 204 36
[SM21b] NF2 4 3 2 5 8 328 102

PRESENT

[BDMS22] L3
2 4 3 2 4 53 428 92

[BDMS22] L5
2 4 3 2 6 24 299 96

[BDMS22] L3
2∗ 8 3 2 4 90 824 168

[SM21a] NF1 4 2 1 2 0 178 36
[SM21b] NF2 4 3 2 5 8 326 102
[EGMP17] TINU1 4 3 1 2 0 161 24
[EGMP17] TIU1 4 3 1 2 0 177 24
[PMK+11] TIU′

1 4 3 1 2 0 377 24

PRINCE

[SM21a] INF1 4 2 1 2 0 250 40
[BDMS22] L4

2 4 3 2 5 52 497 109
[BDMS22] L4

2′ 4 3 2 5 53 498 109

[BDMS22] L6
2 4 3 2 7 38 378 120

[SDM23] LL2 4 3 2 2 116 1249 120
[SDM23] LL∗

2 8 3 2 2 216 2140 240
[SM21a] NF1 4 2 1 2 0 211 40
[SM21b] NF2 4 3 2 8 16 378 138
[MS16] TI1 4 3 1 3 0 150 36

SKINNY

[BJK+20] CMS1 8 2 1 5 0 192 96
[BDMS22] L3

2 4 3 2 4 36 292 76
[BDMS22] L4

2 4 3 2 5 32 272 84
[BDMS22] L3

2∗ 8 3 2 4 64 568 144
[SM21b] NF2 4 3 2 4 8 202 72
[BJK+16] TI1 8 3 1 4 0 240 96

5.1 Evaluations for Different Variable Orderings
In the first experiment, we configured SILVER with different variable orderings to verify
the standard probing security of the benchmarks. We opted not to extend this comparison
to verifying glitch-extended probing security and uniformity, as their verification would
have taken more than 24 hours on several benchmarks.

Note that in this experiment we only modified the variable orderings of SILVER,
i.e., the reduction rules are not employed, to show the influence of different variable
orderings. The results are shown in Table 3. There are 6 different columns in Table 3. The
first column represents the names of the verified implementations. Columns 2-4 are the
verification result and time of SILVER using its original ordering strategy, ordering-1, and
ordering-2 strategies under standard probing model, respectively. The symbol ✓d indicates
this implementation is secure at order d. The symbol d indicates this implementation is
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not secure at order d. Ordering 1 refers to the optimal variable ordering mentioned in
[HSSW10], while ordering 2 declares secret variables in x as ROBDD variables. Columns
5-6 shows the speedup comparing Prover with SILVER, namely the quotient of columns
2/2 and columns 3/4.

In the 45 benchmarks, the optimal ordering outperforms the original ordering in 37
cases, while the second ordering outperforms in 44 cases (marked with bold font in the
speedup columns). There are only six cases where the optimal ordering is less efficient
than the original one (the speedup is less than 1.0), but it only takes less than one second
to verify them. There is only one case where the second ordering did not outperform the
original one, and the performance of the second ordering is comparable to the original one
in this benchmark.

Table 3: Comparison between different variables ordering in SILVER over verification of
standard probing security

Impl. Original Ordering 1 Ordering 2
Speedup

Impl. Original Ordering 1 Ordering 2
Speedup

ord. 1 ord. 2 ord. 1 ord. 2

AES SKINNY

1F1 ✓1 [ 5.3 s] ✓1 [ 2.8 s] ✓1 [ 1.0 s] 1.89 5.3 CMS1 ✓1 [ 1.3 s] ✓1 [ 94 ms] ✓1 [ 74 ms] 13 17
4F1 ✓1 [ 13 s] ✓1 [ 4.6 s] ✓1 [ 1.1 s] 2.83 11 L3

2 ✓2 [ 5.0 s] ✓2 [ 3.4 s] ✓2 [ 3.5 s] 1.47 1.43
CMS1 ✓1 [ 14 s] ✓1 [ 5.8 s] ✓1 [ 1.00 s] 2.41 14 L4

2 ✓2 [ 4.3 s] ✓2 [ 2.8 s] ✓2 [ 3.0 s] 1.54 1.43
DOM1 ✓1 [ 12 s] ✓1 [ 4.2 s] ✓1 [ 0.67 s] 2.86 17 L3

2∗ ✓2 [ 27 min] ✓2 [1.3 min] ✓2 [1.9 min] 20 14
NF1 ✓1 [ 5.7 s] ✓1 [ 2.2 s] ✓1 [ 0.77 s] 2.59 7.4 NF2 ✓2 [ 1.5 s] ✓2 [ 0.86 s] ✓2 [ 0.73 s] 1.74 2.05
TI1 ✓1 [ 10 s] ✓1 [ 4.1 s] ✓1 [ 0.81 s] 2.44 12 TI1 ✓1 [1.5 min] ✓1 [ 0.44 s] ✓1 [ 1.5 s] 204 60

Keccak PRINCE

DOM1 ✓1 [ 52 ms] ✓1 [ 66 ms] ✓1 [ 45 ms] 0.79 1.16 INF1 ✓1 [ 58 ms] ✓1 [ 1.0 s] ✓1 [ 55 ms] 0.06 1.05
DOM′

1 ✓1 [ 54 ms] ✓1 [ 0.23 s] ✓1 [ 42 ms] 0.23 1.29 L4
2 ✓1 [ 50 s] ✓1 [ 49 s] ✓1 [ 44 s] 1.02 1.14

DOM2 ✓2 [ 4.7 s] ✓2 [ 1.6 s] ✓2 [ 1.3 s] 2.94 3.62 L4
2′ ✓2 [8.1 min] ✓2 [6.3 min] ✓2 [6.0 min] 1.29 1.35

DOM3 ✓3 [ 1.1 h] ✓3 [ 19 min] ✓3 [ 16 min] 3.47 4.13 L6
2 ✓2 [7.2 min] ✓2 [6.9 min] ✓2 [6.3 min] 1.04 1.14

L1 ✓1 [ 46 ms] ✓1 [ 40 ms] ✓1 [ 38 ms] 1.15 1.21 LL2 ✓2 [2.5 min] ✓2 [2.1 min] ✓2 [2.5 min] 1.19 1.0
L2 ✓2 [ 0.66 s] ✓2 [ 0.72 s] ✓2 [ 0.46 s] 0.92 1.43 LL∗

2 ✓2 [ 8.5 h] ✓2 [ 30 min] ✓2 [ 56 min] 17 9.11
L3 ✓3 [3.2 min] ✓3 [3.2 min] ✓3 [2.4 min] 1.0 1.33 NF1 ✓1 [ 55 ms] ✓1 [ 0.83 s] ✓1 [ 54 ms] 0.07 1.02
NF1 ✓1 [ 51 ms] ✓1 [ 41 ms] ✓1 [ 43 ms] 1.24 1.19 NF2 ✓2 [ 41 s] ✓2 [ 32 s] ✓2 [ 26 s] 1.28 1.58
NF2 ✓2 [ 1.1 s] ✓2 [ 0.91 s] ✓2 [ 0.68 s] 1.21 1.62 TI1 ✓1 [ 66 ms] ✓1 [ 52 ms] ✓1 [ 49 ms] 1.27 1.35

PRESENT Midori

L3
2 ✓2 [ 21 s] ✓2 [ 14 s] ✓2 [ 15 s] 1.5 1.4 L3

2 ✓2 [ 16 s] ✓2 [ 9.3 s] ✓2 [ 9.7 s] 1.72 1.65
L5

2 ✓2 [ 7.6 s] ✓2 [ 4.5 s] ✓2 [ 4.5 s] 1.69 1.69 L4
2 ✓2 [ 6.1 s] ✓2 [ 3.4 s] ✓2 [ 3.6 s] 1.79 1.69

L3
2∗ ✓2 [ 2.6 h] ✓2 [5.0 min] ✓2 [9.0 min] 31 17 L4

2∗ ✓2 [ 2.5 h] ✓2 [4.2 min] ✓2 [5.5 min] 35 27
NF1 ✓1 [ 75 ms] ✓1 [ 0.16 s] ✓1 [ 66 ms] 0.47 1.14 LL2 ✓2 [2.1 min] ✓2 [1.8 min] ✓2 [2.0 min] 1.17 1.05
NF2 ✓2 [ 4.4 s] ✓2 [ 2.6 s] ✓2 [ 1.7 s] 1.69 2.59 LL∗

2 ✓2 [ 7.2 h] ✓2 [ 23 min] ✓2 [ 39 min] 18 11
TINU1

1 [ 1.3 s] 1 [ 55 ms] 1 [ 51 ms] 23 25 NF1 ✓1 [ 58 ms] ✓1 [ 55 ms] ✓1 [ 55 ms] 1.05 1.05
TIU1 ✓1 [ 0.21 s] ✓1 [ 0.21 s] ✓1 [ 61 ms] 1.0 3.44 NF2 ✓2 [ 4.2 s] ✓2 [ 2.7 s] ✓2 [ 1.6 s] 1.56 2.62
TIU′

1 ✓1 [ 0.14 s] ✓1 [ 0.12 s] ✓1 [ 91 ms] 1.17 1.54

Due to these findings, we equipped Prover with the ordering-2 strategy in the second
experiment.

5.2 Comparison with State-Of-The-Art Tools
In our second experiment, we compared Prover to three state-of-the-art tools: CocoAlma
[HB21], maskVerif [BBC+19] and SILVER [KSM20]. While some other state-of-the-art
tools, such as IronMask [BMRT22], also claim completeness and efficiency even in the
robust probing model, they are limited to standard gadgets used for composable masking.
Because these tools cannot handle Threshold Implementations, we excluded them from
our comparison.

Table 4 presents the verification results and time of the four tools applied to these
masked implementations. The first column lists the abbreviation of the implementation.
Columns 2-5 (6-9) show the verification results and time of CocoAlma, maskVerif, SIL-
VER, and Prover under standard (glitch-extended) probing model. All tools terminate
upon encountering the first leakage if they detected leakage, otherwise they verify all
possible observations according to the expected security order d. Columns 10-11 are the
uniformity check results and required time of SILVER and Prover. It is noteworthy to
mention that we identified a bug in SILVER’s uniformity check: when implementing the
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method from Lemma 1, SILVER failed to include cases where at least one, but not all, of
λ(i)s are zeros. The bug decreases the complexity of uniformity check from (2d+1−1)n−1
to (2d+1 − 2)n, falsely suggesting greater efficiency. Moreover, this bug caused SILVER
to erroneously report that the output sharing of the NF2 implementation of PRESENT
S-box is uniform (the authors of this implementation also claimed uniformity [SM21b]),
whereas it is not. We have corrected this bug in SILVER and the results in Table 4 reflect
the corrected version.

Table 4: Verification results and required time by COCO-ALMA, maskVerif, SILVER, and
Prover

Standard Probing Security Glitch-extended Probing Security Uniformity

coco-alma maskVerif SILVER Prover coco-alma maskVerif SILVER Prover SILVER Prover
[HB21] [BBC+19] [KSM20] this work [HB21] [BBC+19] [KSM20] this work [KSM20] this work

AES

1F1
1 [ 0.57 s] 1 [ 0.88 s] ✓1 [ 6.1 s] ✓1 [ 1.1 s] 1 [ 1.5 s] 1 [ 26 ms] ✓1 [ 26 s] ✓1 [ 3.9 s] [ 35 s] [ 4.6 s]

4F1
1 [ 1.1 s] 1 [ 0.21 s] ✓1 [ 14 s] ✓1 [ 1.5 s] 1 [ 1.9 s] 1 [ 56 s] ✓1 [ 1.3 h] ✓1 [9.1 min] ✓[ 5.9 min] ✓[ 9.0 s]

CMS1 ✓1 [ 5.3 s] ✓1 [ 1.6 s] ✓1 [ 16 s] ✓1 [ 0.91 s] ✓1 [ 7.5 s] ✓1 [ 0.41 s] ✓1 [ 4.7 h] ✓1 [ 1.7 s] ✓[ 11 min] ✓[ 22 s]
DOM1 ✓1 [ 1.8 s] ✓1 [ 0.54 s] ✓1 [ 12 s] ✓1 [ 0.68 s] ✓1 [ 12 s] ✓1 [ 63 ms] ✓1 [ 1.9 h] ✓1 [ 6.0 s] ✓[ 10 min] ✓[ 27 s]
NF1

1 [ 0.26 s] 1 [ 0.26 s] ✓1 [ 4.5 s] ✓1 [ 1.0 s] 1 [ 0.54 s] 1 [ 22 ms] ✓1 [ 18 s] ✓1 [ 2.5 s] [ 42 s] [ 15 s]
TI1 ✓1 [ 0.54 s] ✓1 [ 0.13 s] ✓1 [ 12 s] ✓1 [ 0.76 s] ✓1 [ 0.56 s] ✓1 [ 35 ms] ?1 [ > 24 h] ✓1 [ 1.6 s] ? [ > 24 h] ✓[ 14 min]

Keccak

DOM1 ✓1 [ 4.7 ms] ✓1 [ 2.0 ms] ✓1 [ 55 ms] ✓1 [ 72 ms] ✓1 [ 10 ms] ✓1 [2.0 ms] ✓1 [ 41 ms] ✓1 [ 0.16 s] ✓[ 0.13 s] ✓[ 0.59 s]
DOM′

1 ✓1 [ 4.2 ms] ✓1 [ 3.0 ms] ✓1 [ 56 ms] ✓1 [ 80 ms] ✓1 [ 8.8 ms] ✓1 [2.0 ms] ✓1 [ 34 ms] ✓1 [ 0.11 s] [ 62 ms] [ 0.85 s]
DOM2 ✓2 [ 3.0 s] ✓2 [ 22 ms] ✓2 [ 3.7 s] ✓2 [ 0.61 s] ✓2 [ 0.62 s] ✓2 [ 27 ms] ✓2 [ 7.4 s] ✓2 [ 0.44 s] ✓[ 53 s] ✓[ 1.7 s]
DOM3 ?3 [ OoM] ✓3 [ 1.0 s] ✓3 [ 1.1 h] ✓3 [ 14 min] ✓3 [ 32 min] ✓3 [ 0.65 s] ✓3 [ 7.1 h] ✓3 [ 1.6 min] ✓[ 2.7 h] ✓[ 3.3 s]
L1 ✓1 [ 3.7 ms] ✓1 [ 2.0 ms] ✓1 [ 42 ms] ✓1 [ 54 ms] ✓1 [ 4.1 ms] ✓1 [1.0 ms] ✓1 [ 29 ms] ✓1 [ 0.15 s] [ 0.39 s] [ 1.6 s]
L2 ✓2 [ 0.70 s] ✓2 [ 5.0 ms] ✓2 [ 0.67 s] ✓2 [ 0.26 s] ✓2 [ 0.15 s] ✓2 [4.0 ms] ✓2 [ 1.6 s] ✓2 [ 0.32 s] [ 0.44 s] [ 0.49 s]
L3 ?3 [ OoM] ✓3 [ 88 ms] ✓3 [3.3 min] ✓3 [1.6 min] ✓3 [2.5 min] ✓3 [ 36 ms] ✓3 [ 16 min] ✓3 [ 14 s] [ 0.38 s] [ 0.79 s]
NF1 ✓1 [ 5.5 ms] ✓1 [ 2.0 ms] ✓1 [ 49 ms] ✓1 [ 64 ms] ✓1 [ 8.5 ms] ✓1 [2.0 ms] ✓1 [ 32 ms] ✓1 [ 94 ms] ✓[ 0.32 s] ✓[ 1.1 s]
NF2

2 [ 19 ms] ✓2 [ 0.12 s] ✓2 [ 1.3 s] ✓2 [ 0.30 s] 2 [ 20 ms] 2 [ 3.0 ms] ✓2 [ 2.2 s] ✓2 [ 0.36 s] ✓[ 3.6 s] ✓[ 2.5 s]

Midori

L3
2 ✓2 [3.7 min] ✓2 [ 0.29 s] ✓2 [ 16 s] ✓2 [ 4.0 s] ✓2 [ 12 s] ✓2 [ 0.12 s] ✓2 [ 5.4 h] ✓2 [ 11 s] ✓[ 37 s] ✓[ 5.6 s]

L4
2 ✓2 [ 36 s] ✓2 [ 0.11 s] ✓2 [ 5.8 s] ✓2 [ 0.99 s] ✓2 [ 5.9 s] ✓2 [ 96 ms] ✓2 [ 39 s] ✓2 [ 1.4 s] ✓[ 22 s] ✓[ 0.62 s]

L3
2∗ ✓2 [ 36 min] ✓2 [ 1.9 s] ✓2 [ 2.8 h] ✓2 [ 25 s] ✓2 [3.5 min] ✓2 [ 1.0 s] ?2 [ > 24 h] ✓2 [ 1.4 min] ? [ > 24 h] ✓[ 21 s]

LL2 ✓2 [5.1 min] ✓2 [ 3.3 s] ✓2 [2.1 min] ✓2 [1.2 min] ✓2 [ 7.2 s] ✓2 [ 0.37 s] ?2 [ > 24 h] ✓2 [ 11 s] ✓[ 5.4 s] ✓[ 0.93 s]
LL∗

2 ?2 [ OoM] ✓2 [ 18 s] ✓2 [ 7.7 h] ✓2 [4.5 min] ✓2 [ 53 s] ✓2 [ 3.2 s] ?2 [ > 24 h] ✓2 [ 47 s] ? [ > 24 h] ✓[ 24 s]
NF1

1 [ 23 ms] 1 [ 8.0 ms] ✓1 [ 0.12 s] ✓1 [ 57 ms] 1 [ 30 ms] 1 [ 8.0 ms] ✓1 [ 0.13 s] ✓1 [ 0.10 s] ✓[ 0.54 s] ✓[ 0.47 s]
NF2

2 [ 0.11 s] 2 [ 0.90 s] ✓2 [ 4.4 s] ✓2 [ 1.8 s] 2 [ 95 ms] 2 [ 11 ms] ✓2 [ 11 s] ✓2 [ 2.4 s] ✓[ 8.5 s] ✓[ 0.30 s]

PRESENT

L3
2 ✓2 [2.8 min] ✓2 [ 0.50 s] ✓2 [ 21 s] ✓2 [ 3.4 s] ✓2 [ 8.5 s] ✓2 [ 0.18 s] ?2 [ > 24 h] ✓2 [ 23 s] ✓[ 41 s] ✓[ 5.5 s]

L5
2 ✓2 [1.5 min] ✓2 [ 0.34 s] ✓2 [ 7.5 s] ✓2 [ 1.5 s] ✓2 [ 12 s] ✓2 [ 0.18 s] ✓2 [ 47 s] ✓2 [ 1.9 s] ✓[ 26 s] ✓[ 1.4 s]

L3
2∗ ✓2 [ 24 min] ✓2 [ 4.8 s] ✓2 [ 2.7 h] ✓2 [ 20 s] ✓2 [2.4 min] ✓2 [ 1.7 s] ?2 [ > 24 h] ✓2 [ 6.1 min] ? [ > 24 h] ✓[ 47 s]

NF1
1 [ 18 ms] 1 [ 6.0 ms] ✓1 [ 59 ms] ✓1 [ 0.19 s] 1 [ 18 ms] 1 [ 8.0 ms] ✓1 [ 53 ms] ✓1 [ 0.27 s] ✓[ 1.7 s] ✓[ 87 ms]

NF2
2 [ 89 ms] 2 [ 1.7 s] ✓2 [ 4.4 s] ✓2 [ 2.3 s] 2 [ 88 ms] 2 [ 6.0 ms] ✓2 [ 13 s] ✓2 [ 3.9 s] [ 4.2 s] [ 56 ms]

TINU1
1 [ 16 ms] 1 [ 65 ms] 1 [ 64 ms] 1 [ 0.63 s] 1 [ 23 ms] 1 [ 5.0 ms] 1 [ 72 ms] 1 [ 0.75 s] [ 0.18 s] [ 0.57 s]

TIU1
1 [ 24 ms] 1 [ 0.26 s] ✓1 [ 77 ms] ✓1 [ 57 ms] 1 [ 24 ms] 1 [ 7.0 ms] ✓1 [ 97 ms] ✓1 [ 0.12 s] ✓[ 0.28 s] ✓[ 14 ms]

TIU′
1

1 [ 19 ms] 1 [ 67 ms] ✓1 [ 0.14 s] ✓1 [ 0.15 s] 1 [ 40 ms] 1 [ 18 ms] ✓1 [ 0.12 s] ✓1 [ 0.24 s] ✓[ 0.26 s] ✓[ 0.11 s]

PRINCE

INF1
1 [ 31 ms] 1 [ 11 ms] ✓1 [ 67 ms] ✓1 [ 84 ms] 1 [ 40 ms] 1 [ 7.0 ms] ✓1 [ 58 ms] ✓1 [ 0.14 s] [ 0.37 s] [ 0.53 s]

L4
2

2 [ 13 min] 2 [ 1.7 s] 2 [ 50 s] 2 [ 6.3 s] 2 [ 0.69 s] 2 [ 0.39 s] 2 [ 39 min] 2 [2.0 min] ✓[ 2.6 min] ✓[2.3 min]
L4

2′
2 [ 14 min] ✓2 [ 1.7 s] ✓2 [7.1 min] ✓2 [ 18 s] 2 [ 0.72 s] 2 [ 0.41 s] ?2 [ > 24 h] ✓2 [ 13 min] ✓[ 3.8 min] ✓[2.3 min]

L6
2 ✓2 [6.8 min] ✓2 [ 1.00 s] ✓2 [6.3 min] ✓2 [ 8.2 s] 2 [ 6.2 s] 2 [ 47 min] ✓2 [ 4.0 h] ✓2 [ 18 s] ✓[2.8 min] ✓[ 28 min]

LL2 ?2 [ OoM] ✓2 [ 3.2 s] ✓2 [2.6 min] ✓2 [1.3 min] ✓2 [ 50 s] ✓2 [ 0.43 s] ?2 [ > 24 h] ✓2 [ 1.6 min] ✓[ 18 s] ✓[ 0.33 s]
LL∗

2 ?2 [ OoM] ✓2 [ 22 s] ✓2 [ 9.1 h] ✓2 [6.2 min] ✓2 [1.4 min] ✓2 [ 4.2 s] ?2 [ > 24 h] ✓2 [ 26 min] ? [ > 24 h] ✓[ 34 s]
NF1

1 [ 24 ms] 1 [ 13 ms] ✓1 [ 64 ms] ✓1 [ 68 ms] 1 [ 40 ms] 1 [ 7.0 ms] ✓1 [ 55 ms] ✓1 [ 0.15 s] [ 0.20 s] [ 1.7 s]
NF2

2 [ 0.28 s] 2 [ 17 s] ✓2 [ 45 s] ✓2 [ 5.0 s] 2 [ 0.21 s] 2 [ 6.0 ms] ✓2 [2.2 min] ✓2 [ 8.4 s] ✓[ 22 s] ✓[ 0.98 s]
TI1

1 [ 24 ms] 1 [ 27 ms] ✓1 [ 70 ms] ✓1 [ 51 ms] 1 [ 53 ms] 1 [ 16 ms] ✓1 [ 0.14 s] ✓1 [ 0.12 s] ✓[ 0.78 s] ✓[ 0.52 s]

SKINNY

CMS1
1 [ 25 ms] 1 [ 37 ms] ✓1 [ 0.36 s] ✓1 [ 65 ms] 1 [ 24 ms] 1 [ 10 ms] ✓1 [ 0.89 s] ✓1 [ 0.13 s] ✓[ 1.7 s] ✓[ 0.74 s]

L3
2 ✓2 [ 34 s] ✓2 [ 78 ms] ✓2 [ 4.9 s] ✓2 [ 0.98 s] ✓2 [ 3.4 s] ✓2 [ 70 ms] ✓2 [ 18 min] ✓2 [ 2.1 s] ✓[ 20 s] ✓[ 5.3 s]

L4
2 ✓2 [ 27 s] ✓2 [ 64 ms] ✓2 [ 4.2 s] ✓2 [ 0.73 s] ✓2 [ 3.4 s] ✓2 [ 49 ms] ✓2 [ 27 s] ✓2 [ 0.81 s] ✓[ 21 s] ✓[ 0.36 s]

L3
2∗ ✓2 [3.9 min] ✓2 [ 0.49 s] ✓2 [ 30 min] ✓2 [ 6.0 s] ✓2 [ 30 s] ✓2 [ 0.49 s] ?2 [ > 24 h] ✓2 [ 9.8 s] ? [ > 24 h] ✓[ 16 s]

NF2
2 [ 30 ms] 2 [ 56 ms] ✓2 [ 1.7 s] ✓2 [ 0.38 s] 2 [ 51 ms] 2 [ 4.0 ms] ✓2 [ 3.9 s] ✓2 [ 0.57 s] ✓[ 10 s] ✓[ 0.22 s]

TI1
1 [ 41 ms] 1 [3.5 min] ✓1 [1.4 min] ✓1 [ 1.4 s] 1 [ 50 ms] 1 [ 1.1 h] ✓1 [3.5 min] ✓1 [ 3.4 s] ✓[ 18 min] ✓[ 18 min]

The symbols ✓d and d have the same meanings as described in Subsection 5.1. Co-
coAlma and maskVerif suffer from false positives, where they may incorrectly categorize
a secure implementation as an insecure one. Such cases are marked with the symbol d .
In several benchmarks, SILVER exceeded the 24-hour time limit and CocoAlma encoun-
tered memory issues. We use the symbol ?d to denote such cases, indicating that the
tool did not complete the verification, and we are unsure whether it could verify that this
implementation is d-th order secure with more allotted time and memory. The symbols
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✓, , and ? indicate the implementation is uniform, not uniform, or that the tool could
not verify uniformity within the time limit.

5.2.1 Comparison over Four Tools

CocoAlma and maskVerif are more efficient formal verification tools than SILVER, but
both have false positives. We now briefly introduce these two tools.

Introduction to CocoAlma. CocoAlma represents an upgraded version of RE-
BECCA [BGI+18]with enhanced usability and performance, supporting stateful hardware
verification. The verification process in CocoAlma unfolds through three primary steps.
Initially, it parses the provided hardware design into a gate-level Verilog netlist using
Yosys [WGK13]. Subsequently, Verilator [Sny04] is employed to simulate this netlist
alongside a user-provided testbench. This step is crucial as it determines the inclusion
of each open-source masked implementation collected for our benchmarks. For example,
implementations that fail to produce correct outputs, such as the LL implementations of
SKINNY S-boxes from [SDM23], are excluded from our evaluation. The third step is to
verify the side-channel security of a masked implementation in a specified security model.

CocoAlma supports three models: standard probing model (or software probing
model in their terminology), time-constrained probing model, and stateful hardware prob-
ing model. In time-constrained probing model, CocoAlma accounts for leakage not only
from glitches but also from register transitions. Register transitions often happen when
the implementation processes two consecutive inputs during two consecutive clock cycles.
However, in our experiments, the inputs are fed to the circuit only in the first cycle when
using CocoAlma. We believe that the transitional leakage is unlikely to happen in this
setup thus the comparison to CocoAlma is relatively fair. The third model can handle
stateful circuits, a capability not supported by maskVerif, SILVER, and Prover. Therefore,
we verify the masked implementations only under the software probing model and time-
constrained probing model of CocoAlma. The results under these two models are shown
in the standard probing security column and glitch-extended probing security column of
Table 4, respectively.

Another distinction between CocoAlma and other tools is its use of an execution
trace that simulates the hardware running process. This approach is more realistic but
requires the user to identify the number of clock cycles to verify. We have configured this
parameter based on the Cycl. column in Table 2.

Introduction to maskVerif. maskVerif is a efficient verification tool that leverages
features of programming language. It employs three rules – INDEP, OPT, and CONV – to
verify the security of a masked hardware implementation. Rule INDEP asserts that if no
secret variable appears in a expression e (observable function f in our terminology), then
e is deemed secure. Rule OPT operates similarly to our Reduction Rule 1. It stipulates
that if n ∈ Od and perf(n)∩ supp(Od \{n}) = ∅, then substitute the expression of fn with
r ∈ perf(n) in Od, obtaining O′

d and continue verification with O′
d. Rule CONV employs

algebraic normalization to simplify expressions. Take the threshold implementation for
Q12 in Appendix A.2 of [RBN+15b] for example. Consider a single observation z̄1 =
z1 + z2 = (a1b1 + a1c1 + c1) + (a1c2 + a1b2) where a, b, and c are the secret variable and
a1, a2, b1, b2, c1, c2 are their corresponding shares. Neither rule OPT nor Reduction Rule 1
are directly applicable to verify the security of z̄1. However, maskVerif can verify it using
rule CONV. In maskVerif’s internal representation, a1, b1, c1 are treated as uniform random
variables, and a2, b2, c2 are represented as a + a1, b + b1, c + c1. Normalizing z̄1 results in
z̄1 = a1b1+a1c1+c1+a1(c+c1)+a1(b+b1) = c1+a1c+a1b. Now, c1 acts as a perfect mask
for z̄1, allowing application of rule OPT or Reduction Rule 1 to conclude that z1 is secure.
The application of rule CONV is likely why maskVerif has fewer false positive cases under
the standard probing model compared to CocoAlma. In fact, maskVerif could identify
that the Q12 is standard probing secure due to rule CONV while CocoAlma can not.
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However, because there are significantly more observable functions under glitch-extended
probing model, rule CONV is less effective in verifying glitch-extended probing security.
Besides, as noted by the authors of maskVerif, rule CONV negatively impacts performance
[BBD+15], which results in slower verification times for certain false positive cases in our
experiments, such as the TI1 implementation of the SKINNY S-box.

Identification of False Positives. Out of 45 benchmarks, there are 43 benchmarks
that are secure under both models. For the secure implementations, any leakage re-
ported by CocoAlma and maskVerif are considered as a false positive. CocoAlma and
maskVerif exhibited a significant issue with false positives when verifying Threshold Im-
plementations or implementations from [SM21a] and [SM21b]. These implementations
rely on Boolean function properties rather than fresh randomness to achieve standard
or glitch-extended probing security, while CocoAlma and maskVerif appear to excel in
verifying implementations that achieve security through fresh randomness.

Regarding the two insecure implementations, detailed analyses are available in the
repository of Prover4 to determine whether the leakages reported by CocoAlma and
maskVerif are genuine or false positives. Ultimately, we found that CocoAlma correctly
identified the genuine leakage of TINU1 implementation of PRESENT S-box under glitch-
extended probing model and maskVerif correctly identified the genuine leakage of L4

2 im-
plementation of PRINCE S-box under standard probing model. However, other reported
leakages on these two implementations by CocoAlma and maskVerif were false positives.

Comparison on Usability and Accuracy. CocoAlma encountered memory issues
in 5 benchmarks, primarily due to their higher order (such as the two third-order secure
implementations of the Keccak S-box) or larger circuit sizes (e.g., the paired version of
masked S-boxes).

In contrast to CocoAlma and maskVerif, SILVER avoided false positive cases by
leveraging Binary Decision Diagrams for symbolic and exhaustive analysis of probability
distributions and statistical independence of joint distributions. However, SILVER’s per-
formance is notably slower compared to other tools, especially with larger circuit sizes.
For instance, SILVER required more than one hour to verify 5 benchmarks out of 45
under the standard probing model, whereas other tools completed these verifications in at
most 36 minutes. Its performance under glitch-extended probing models was even more
constrained, with timeouts occurring in 10 benchmarks. It also ran out of time on 6
benchmarks in uniformity check.

Table 5 provides an overview of the number of successfully verified benchmarks and
failures due to various reasons for each tool. CocoAlma and maskVerif handled a total
of 90 verification instances, whereas SILVER and Prover managed 135, as SILVER and
Prover could verify an additional security notion compared to CocoAlma and maskVerif in
our experiments. CocoAlma, maskVerif, and SILVER experienced failures in 50%, 42%,
and 12% of verification instances, respectively, while Prover succeeded in all instances.
Maximum verification times were also compared across tools, revealing that Prover had
the shortest maximum verification time despite not being the most efficient tool overall.

Table 5: Performance comparison between COCO-ALMA, maskVerif, SILVER, and Prover

Tool
#False Pos.

#OoM
#Timout

#Succ. Max. Timestd. rob. std. rob. unif.
CocoAlma 20 20 5 0 0 N/A 45/90 36 min
maskVerif 17 21 0 0 0 N/A 52/90 1.1 h
SILVER 0 0 0 0 10 6 119/135 > 24 h
Prover 0 0 0 0 0 0 135/135 28 min

4https://github.com/Lucien98/prover/tree/uniformity/experiment/tches2025_1

https://github.com/Lucien98/prover/tree/uniformity/experiment/tches2025_1
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Comparison over Non-false-positives. Now we compare the four tools on the
benchmarks that no tool exhibited false positives. We began the comparison with the
twenty-five benchmarks under standard probing model. maskVerif performed best on 24
benchmarks, with Prover achieving the best result on one benchmark. Overall, Prover
generally outperformed CocoAlma and SILVER. However, Prover did not surpass Co-
coAlma and SILVER in very small circuits, such as the four 1st-order implementations of
the Keccak S-box. Given the small circuit size, the methods employed by other tools are
efficient enough. However, Prover not only dedicates time to computing ROBDD represen-
tations for observable functions but also computes auxiliary data structures. Therefore,
it is understandable that Prover requires more time. Prover also did not outperform Co-
coAlma in the TI1 implementation of AES S-box, but Prover completed its verification
in less than 1 second.

This pattern persisted in the verification of 24 true negative cases under glitch-extended
probing model. However, Prover did not outperform maskVerif in any benchmark this time.
Apart from the previously mentioned 5 benchmarks, CocoAlma outperforms Prover on
6 larger implementations (Keccak L2, Midori LL2, PRESENT L3

2 and L3
2∗ , PRINCE LL2

and LL∗
2). Conversely, Prover outperforms CocoAlma in the rest 13 benchmarks.

5.2.2 Comparison to SILVER

Comparison to SILVER over False Positives of CocoAlma and maskVerif. Under
standard probing model, maskVerif failed to verify the security of 17 benchmarks while
CocoAlma failed on 20. There are three cases that CocoAlma failed to verify while
maskVerif succeeded: NF2 implementation of Keccak S-box and L4

2, and L4
2′ implementa-

tion of PRINCE S-box. maskVerif performed the best in these three benchmarks among
the three tools that could identify their security. Out of the 17 false positives of maskVerif,
Prover outperforms SILVER on 12 benchmarks. Under glitch-extended probing model,
there are 20 and 21 false positives for CocoAlma and maskVerif respectively. In the case
where maskVerif failed to verify while CocoAlma succeeded, i,e., the TINU1 implementa-
tion of PRESENT S-box, CocoAlma performed better than SILVER and Prover. Prover
outperforms SILVER on 15 of remaining 20 benchmarks. Under both models, all the
benchmarks where SILVER outperforms Prover were verified within 0.5 second by Prover.
Note that SILVER ran out of time while attempting to verify the L4

2′ implementation of
PRINCE S-box, where CocoAlma and maskVerif encountered false positive issues. In
contrast, Prover successfully verified it within 13 minutes.

Comparison to SILVER on Uniformity Check. Algorithm 3 is not employed
when the outputs of these implementations lack perfect masks or are 2-shared, totaling
22 benchmarks. For these benchmarks, the verification is conducted using the original
method from SILVER but with a different variable ordering, specifically variable ordering
2 as outlined in this paper. For the remaining benchmarks, Prover utilizes Algorithm 3 to
verify their uniformity. There are only 11 cases where Prover did not outperform SILVER.
Nine of them can be verified within 2 seconds, which we consider acceptable. In the
remaining two case, one is comparable to SILVER, while the other can be verified within
half an hour. Notably, half an hour represents the longest verification time of Prover in
all our experiments. On the contrary, SILVER run out of time in 6 benchmarks.

Among the 10 benchmarks that failed the uniformity check, four implementations
(AES S-boxes and PRINCE S-boxes) are from [SM21a], which the authors of [SM21a] also
claimed they are not uniform. Regarding the NF2 Implementations of PRESENT, the
authors of [SM21b] claimed that it is uniform and the original SILVER falsely recognized
it as uniform due to a bug. However, Prover and the corrected SILVER reported it as not
uniform. The authors of [SM21b] claimed the first-order DOM implementation without
fresh randomness (DOM′

1 implementation of Keccak) in [GSM17] is not uniform and they
provided a uniform solution (NF1) by using their searching techniques. All these were
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also confirmed by Prover. As for the L implementations of Keccak S-box, the outputs are
not compressed into d + 1 shares in the part of implementations we synthesized, i.e., each
output has (d+1)2 output shares. With (d+1)2 output shares, they failed the uniformity
check.

Table 6: Number of applications of reduction rules

Scheme
std rob

#Total #Red. #Robdd %Red. #Total #Sub. #Red. #Robdd %Red.

AES

1F1 791 121 670 15% 176 0 80 96 45%
4F1 816 158 658 19% 188 8 84 96 45%
CMS1 746 458 288 61% 192 0 176 16 92%
DOM1 644 356 288 55% 240 8 164 68 68%
NF1 948 77 871 8% 240 4 96 140 40%
TI1 664 375 289 56% 112 0 112 0 100%

Keccak

DOM1 91 71 20 78% 30 0 30 0 100%
DOM′

1 81 51 30 63% 30 0 20 10 67%
DOM2 17955 10265 7690 57% 1830 69 1650 111 90%
DOM3 7906623 3626245 4280378 46% 166750 7384 137460 21906 82%
L1 65 45 20 69% 20 0 20 0 100%
L2 9180 4010 5170 44% 1035 0 1035 0 100%
L3 2028025 540440 1487585 27% 85400 0 85400 0 100%
NF1 66 46 20 70% 30 0 22 8 73%
NF2 8256 3294 4962 40% 1830 161 1035 634 57%

Midori

L3
2 62481 39478 23003 63% 4186 244 3018 924 72%

L4
2 18721 10371 8350 55% 3570 487 2413 670 68%

L4
2∗ 241165 151239 89926 63% 14535 663 10639 3233 73%

LL2 584821 221554 363267 38% 5886 0 5790 96 98%
LL∗

2 1449253 605043 844210 42% 23436 0 23244 192 99%
NF1 168 27 141 16% 36 0 28 8 78%
NF2 25651 6174 19477 24% 5253 537 3203 1513 61%

PRESENT

L3
2 56616 38140 18476 67% 4278 239 3215 824 75%

L5
2 20706 11702 9004 57% 4656 333 3408 915 73%

L3
2∗ 215496 143731 71765 67% 14196 767 10606 2823 75%

NF1 142 37 105 26% 36 0 30 6 83%
NF2 25200 8789 16411 35% 5253 484 3200 1569 61%
TINU1 126 60 66 48% 7 0 6 1 86%
TIU1 263 128 135 49% 26 0 13 13 50%
TIU′

1 570 115 455 20% 25 0 12 13 48%

PRINCE

INF1 210 37 173 18% 40 0 32 8 80%
L4

2 47860 31038 16822 65% 265 38 165 62 62%
L4

2′ 75855 45548 30307 60% 5995 800 4096 1099 68%

L6
2 33411 18628 14783 56% 7260 406 5126 1728 71%

LL2 637885 265322 372563 42% 7260 208 6501 551 90%
LL∗

2 1805950 781301 1024649 43% 1844 375 675 794 37%
NF1 171 42 129 25% 40 0 32 8 80%
NF2 28920 11673 17247 40% 9591 433 6654 2504 69%
TI1 149 48 101 32% 37 15 15 7 41%

SKINNY

CMS1 96 51 45 53% 96 12 66 18 69%
L3

2 23436 16240 7196 69% 2926 22 2673 231 91%
L4

2 17766 10679 7087 60% 3570 46 2793 731 78%
L3

2∗ 90100 62024 28076 69% 10440 45 9787 608 94%
NF2 8515 4051 4464 48% 2628 135 1761 732 67%
TI1 274 149 125 54% 102 3 93 6 91%

Why Does SILVER Run Out of Time on These Benchmarks? SILVER failed
to provide results on glitch-extended probing security and uniformity in several bench-
marks due to the large size of observable sets. For instance, the TI1 implementation of
AES S-box has 8 observation sets of size 23 and 32 sets of size 21. Each set of size 23
requires approximately 44 hours to be verified, and each set of size 21 requires about 9
hours. In the LL∗

2 implementations, the largest sets are of size 18. There are 153 and 276
such sets in the LL∗

2 S-box implementations of Midori and PRINCE, respectively. While
we did not further inspect how much time is needed to verify such sets, they are the pri-
mary factor contributing to SILVER’s slow performance. After applying Reduction Rule
1 of Prover, the largest sets (and the number of largest sets) in these implementations are
of size 9 and 16 (with numbers 126 and 10). Since the size of the largest observable sets
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that need to be verified by ROBDDs is significantly smaller, Prover requires significantly
less time to verify these implementations. The same analysis could be applied to the other
benchmarks SILVER ran out of time.

The TI1 implementation of AES S-box did not compress the output shares, and the
outputs are 4-shared. To check the uniformity of its output sharing, SILVER needs to
construct (24 − 1)8 − 1 ≈ 231.3 ROBDDs and verify if they are all balanced. With such
complexity, it is not surprising that SILVER runs out of time. As for the uniformity check
of LL∗

2 implementations, SILVER needs to construct (23−1)8−1 ≈ 222.5 ROBDDs, which
also leads to running out of time.

The Application of Reduction Rules and Subset Strategy. For all the bench-
marks, we have counted the number of sets verified by Reduction Rules, subset strategy,
and statistical independence check via ROBDDs, as shown in Table 6. The first column
contains the names of the implementations. Columns 2-5 (and 6-10) show the total sets
verified by Prover (starting with d = 1), the number of secure sets verified using only re-
duction rules (as in lines 11 to 15 in Algorithm 2), the number of sets verified by ROBDDs
(in the for loop at line 28 in Algorithm 2), and the proportion of sets that are verified
solely relying on reduction rules under standard (glitch-extended) probing model. Since
the observation sets under glitch-extended probing model have an arbitrary size, the sub-
set strategy is applicable in this situation, and the number of sets verified by this strategy
is shown in column 7. From the table, one can see that in 32 benchmarks (more than 2

3
of benchmarks), more than 40% of sets are verified solely by reduction rules under the
standard probing model. This holds true for all benchmarks under the glitch-extended
probing model as well, demonstrating the efficacy of reduction rules.

5.3 Analysis on the Insecure Implementations
There are two benchmarks that are not probing secure under both models. The first
one, TINU1 implementation of PRESENT S-box, is available at SILVER’s repository.
In [EGMP17], the PRESENT S-box is decomposed as F ◦ G. The authors introduced
correction terms to ensure the output sharing of G is uniform, resulting in the design
TIU1. However, the TINU1 implementation of PRESENT S-box uses the function G
without correction terms, thereby exhibiting leakage. More details about the leakage
could be found at Prover’s Github repository.

However, to our knowledge, this paper is the first one to identify the security issue of the
L4

2 implementation of PRINCE S-box from [BDMS22]. Both SILVER and Prover detected
a second-order leakage for this implementation under both models (maskVerif identified
the genuine leakage under standard probing model). For detailed expressions of the L4

2 im-
plementation of PRINCE S-box, please refer to Appendix F in [BDMS22]. In the following,
the inputs of this S-box are denoted as a, b, c, d while a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2
are the corresponding shares. Under standard probing model, a probe placed at the par-
tial result of h8 in F function, P1 = a1c0 + c0d1, combining a probe at the partial results
of k6 in G function, P2 = dg

0bg
0 + dg

0cg
0 + bg

0 + ag
0, results in second-order leakage. The

variables can be expressed in terms of shares of a, b, c, d as shown in Equation 8 where the
variables with a superscript f or g come from function F or G.

P1 = a1c0 + c0d1

ag
0 = xf

0 = 1 + a1 + d1 + c2

bg
0 = yf

0 = c1

cg
0 = zf

0 = 1 + a1 + a1c1 + c1d1 + c2 + c2a1 + c2d1 + c1a2 + c1d2 + r0 + r2

dg
0 = tf

0 = d1a1 + 1 + d1a2 + b1 + a1d2 + r6 + r8

(8)

Here, r0 is only used by cg
0, r6 is only used by dg

0. According to the theory of maskVerif, we
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could substitute cg
0 and dg

0 with r0 and r6 respectively in the expression of P2. Therefore,
the observable set {P1, P2} is equivalent to {P ′

1, P ′
2} = {c0(a1 + d1), r6c1 + r6r0 + c1 + (1 +

a1 + d1 + c2)}. The histogram of the joint distribution of (P ′
1, P ′

2) for c = 0 and c = 1 is
depicted in Table 7. The distribution is dependent on the value of c, indicating leakage.

Table 7: Histogram of the joint distribution of (P ′
1, P ′

2) for c = 0 and c = 1
(P ′

1, P ′
2) (0, 0) (0, 1) (1, 0) (1, 1)

c = 0 28 20 4 12
c = 1 20 28 12 4

One can observe P1 includes one share of c in its expression while P2 involves another
two shares of c (in the expression of ag

0 and bg
0), resulting the leakage. One might question

whether changing the computation order of h8 and k6 could mitigate this issue. For
example, if we use the mask o0 from the expression of k6 to mask P2, P2 would have a
perfect mask o0. Consequently, when combined with P1, it will not reveal information
about c. More specifically, we reorder the computation of k6 as follows: first compute
P3 = o0 + ag

0, then incorporate the other terms into P3 to obtain k6. We manually
adjusted the netlist generated by Design Compiler in this manner and tested it with
SILVER and Prover, both of which reported no second-order leakage for the modified
netlist file under the standard probing model. However, second-order leakage persisted
under the glitch-extended probing model.

Under glitch-extended probing model, placing a probe at the input of the register z′
8

in function F would expose c0, a1, d1. Another probe placed at k6 in function G would
reveal ag

0 = 1 + a1 + d1 + c2 and bg
0 = c1. It is evident that c can be reconstructed by

combining these variables. To address this issue, we modified the design by replacing the
correction term c2 in the expression of xf

0 and xf
1 in function F with a fresh random bit

r. This revised design is referred to as L4
2′ implementation of PRINCE S-box in Table 2.

Its security was successfully verified by Prover within 13 minutes, whereas SILVER timed
out and other tools encountered false positive issues.

6 Conclusion
In this study, drawing inspiration from auxiliary data structures from [EWS14] and the
OPT rule from maskVerif [BBD+15], we introduced two reduction rules and two vari-
able ordering strategies to enhance SILVER’s capability in verifying standard and glitch-
extended probing security, as well as uniformity of masked implementations. This effort
led to the development of a tool named Prover. Thanks to these reduction rules, ob-
servation sets and secret input sets are significantly minimized before being verified by
ROBDDs or even becoming empty sets. This reduction mitigates the reliance for ROBDDs
and greatly enhances scalability. We also conducted numerous experiments to compare
Prover to state-of-the-art tools, CocoAlma, maskVerif, and SILVER. On verifying true
negatives of existing efficient tool CocoAlma and maskVerif, Prover generally performs
comparably or better than CocoAlma, although it is not as efficient as maskVerif. When
verifying false positives of CocoAlma and maskVerif, Prover outperforms SILVER across
most benchmarks. Notably, Prover successfully verified a design that SILVER could not
complete within time limit, while other tools encountered false positive issues. In sum-
mary, Prover achieves a superior balance between efficiency and accuracy than the other
state-of-the-art tools.

Future research directions could involve extending our methods to verify implementa-
tions under other security notions (such as NI, SNI, and PINI) and against other physical
attacks, such as transitions.
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