
Designing a General-Purpose 8-bit (T)FHE Processor
Abstraction∗

Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud
Sirdey

Université Paris-Saclay, CEA-List, Palaiseau, France
{nom.prenom}@cea.fr

Abstract

Making the most of TFHE programmable bootstrapping to evaluate functions or oper-
ators otherwise difficult to perform with only the native addition and multiplication of
the scheme is a very active line of research. In this paper, we systematize this approach
and apply it to build an 8-bit FHE processor abstraction, i.e., a software entity that
works over FHE-encrypted 8-bits data and presents itself to the programmer by means
of a conventional-looking assembly instruction set. In doing so, we provide several ho-
momorphic LUT dereferencing operators based on variants on the tree-based method
and show that they are the most efficient option for manipulating encryptions of 8-bit
data (optimally represented as two base 16 digits). We then systematically apply this
approach over a set of around 50 instructions, including, notably, conditional assign-
ments, divisions, or fixed-point arithmetic operations. We then conclude the paper by
testing the approach on several simple algorithms, including the execution of a neuron
with a sigmoid activation function over 16-bit precision. Finally, this work reveals that
a very limited set of functional bootstrapping patterns is versatile and efficient enough
to achieve general-purpose FHE computations beyond the boolean circuit approach.
As such, these patterns may be an appropriate target for further works on advanced
software optimizations or hardware implementations.

Keywords — FHE ⋅ TFHE ⋅ Programmable Bootstrapping ⋅ General Computations

1 Introduction
The key idea behind homomorphic encryption is to be able to perform any calculation directly over
ciphertexts. In the early years of FHE, the hope was to achieve this goal by executing boolean
circuits over ciphertexts encoding binary messages with both XOR and AND (homomorphic) gates.
Although this computing model is universal, it also leads to many efficiency bottlenecks: for ex-
ample, to merely perform a simple addition over Zt (t >> 2), one has to perform many boolean
operations. Because of this, work on FHE has progressively departed from this paradigm to focus
on running arithmetic circuits over polynomial rings with a plaintext modulus much larger than
2. In doing so, FHE efficiency has greatly improved, allowing to address concrete applications,

∗This work was supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

1

for example, in the field of Machine Learning, with reasonable latencies and overheads. However,
this latter approach comes with difficult challenges for applications in need of zero testing or other
non-linear functions despite a number of attempts using bivariate polynomial optimizations [IZ21]
or polynomial approximations [LLKN21, CKK19] for implementing comparisons and zero-testing
with schemes such as BFV/BGV or CKKS. At the other end of the spectrum stands TFHE. On
the downside, TFHE is intrinsically an LWE scheme, meaning that it offers no batching (apart
from additions) and only allows for small plaintext moduli (e.g., less than 32). On the bright
side, TFHE has the most efficient bootstrapping procedure, which is furthermore “programmable”.
Indeed, TFHE bootstrapping refreshes ciphertext noise essentially by interpreting the input ci-
phertext as an encrypted index for dereferencing a cleartext table encoding the identity function
with some redundancy. When the identity function is replaced by another function f ∶ Zt Ð→ Zt,
the bootstrapping operation evaluates f “for free”. As such, compared to the raw boolean-circuit
approach, TFHE offers a toolbox to mitigate its efficiency bottlenecks by supporting a non-binary
(albeit still small) plaintext domain Z2k , thus allowing to factor the evaluation of k-bit to k-bit
boolean circuits in single bootstrapping operations.

Natural questions to explore are then the following. Can we build on the TFHE functionnal
bootstrapping toolbox to achieve universal encrypted domain computations beyond the boolean
circuit approach? And at which computational cost? Can this be achieved from a restricted set of
patterns based only on functional bootstrapping, hence with a homogeneous algorithmic structure?
In this paper, we give a first answer to these questions by designing and implementing general-
purpose 8-bit FHE processor abstraction working over encryptions of bytes represented by pairs of
TFHE ciphertexts encoding their most and least significant nibbles1. As one may intuit, however,
the resulting instruction set is quite different from that of a usual processor as many instructions
cannot be performed directly when working in the encrypted domain, and new instructions have
to be provided to work around these limitations. For example, the lack of conditional branching
instructions (an FHE “processor” can evaluate any condition but cannot access the resulting en-
crypted boolean to branch) has to be worked around by providing a set of conditional assignment
instructions.

Our approach relies heavily on TFHE programmable bootstrapping, one of the first uses of
which was calculating the sign function [BMMP18], notably for evaluating a new class of strongly
discretized neural networks over FHE encrypted inputs. However, this programmable bootstrapping
can only natively be used on a single input ciphertext. Thus, to overcome such limitations, we need
bootstrapping composition techniques to homomorphically evaluate functions on larger data types
represented by several encryptions of their basis B digits. A number of such methods have been
proposed and investigated in the literature in recent years, such as the tree-based and chain-based
methods [GBA21], the WoP-PBS [BBB+23] and the p-encoding method [BPR23]. We first review
these methods and select the most appropriate one along with the most appropriate basis B to
design a small set of generic operators for dereferencing one or more LookUp Table (LUT) with
256 entries in ZB using an encrypted index. We then systematically use these operators as a basis
to build our set of 8-bit instructions.

Related works – To the best of our knowledge, previous attempts at building FHE-based virtual
processors are quite scarce and, for the most part, date back to the first few years after Gentry’s
breakthrough. By virtual processor or processor abstraction, we mean a software entity that works
over FHE-encrypted data and presents itself to the programmer by means of a conventional-looking
assembly instruction set. Perhaps the first attempt is that of Brenner et al. [BPS12]2, which was
based on the Smart-Vercauteren scheme [SV10]. This work proposes an abstract processor that
executes an encrypted program (over encrypted data). The processor has a very small instruction
set containing only bitwise logical operations as well as load/store (with encrypted addresses, hence
with an access complexity linear in memory size) and 3 branching instructions. Each (encrypted)
instruction is fetched from the encrypted memory and then homomorphically interpreted (at an

1“Nibble” is the cute name for 4-bits entities
2github.com/hcrypt-project.

2

extra cost equivalent to that of explicitly running all instructions in the set). Being more than
twelve years old, from an experimental point of view, this latter work is obsolete. Still, our approach
departs significantly from it in the sense that we run public programs over encrypted data i.e., the
stream of instructions is not encrypted. The main consequence is that we restore constant-time
memory access (because all the addresses are public) but cannot perform any branching (conditioned
on encrypted values), which then has to be emulated using explicit conditional assignments at an
extra cost equivalent to that of explicitly running all branches. Also, we can then afford to have a
much more complete instruction set, which is tailored to the capabilities of our modern functional
bootstrapping tool. Another attempt is that of [FSF+13], which considers a richer set of operators
(rather than explicit instructions) and is boolean-circuit oriented. From an experimental viewpoint,
this latter work is also too old not to be obsolete. Other works include experiments at building a one-
instruction set processor abstraction working over FHE-encrypted data [TM14, TM13, CS19], an
approach which also achieves Turing completeness but leads to even worse blow-ups in the number
of instructions than the boolean circuit one. A more recent attempt at supporting a subset of the
ARM (v8) instruction set over TFHE is given in [GN20]. This approach has two main drawbacks.
First, it uses TFHE only in gate-bootstrapping mode and, as such, does not work over a larger
plaintext space as we do with functional bootstrapping techniques. Second, it handles conditional
branching in a client-aided fashion with the consequence of granting the FHE processor access to
a decryption oracle. This is furthermore likely to induce vulnerabilities in realistic deployment
scenarios since TFHE is trivially insecure against a CCA(1) adversary. By opposition, we “handle”
branching in a non-interactive way via conditional assignment instructions (but at the extra cost of
running all branches). Lastly, a few works [IMP18, CGRS14] propose to extend the instruction set
of existing processors with a small set of additional instructions for driving FPGA-implementations
of FHE operations (with [IMP18] also handling branching in a client-aided fashion). On top of the
above, there presently are many works on hardware implementation of FHE without any focus on
instruction sets.
Contributions – This paper’s contributions are as follows:

• We define a set of functionnal bootstrapping tools and optimal parameters to manipulate
encryptions of 8-bit data by means of LUT dereferencing by TFHE ciphertexts. We designed this
toolboox such that blind rotations and keyswitches (the most costly operations within TFHE
bootstrapping) can be factored as much as possible to improve efficiency. By analogy to a real
microprocessor, this can be seen as the micro-code level of a processor abstraction.

• We then define a complete set of over 50 instructions suitable for working with (T)FHE en-
cryptions of 8-bit data, including FHE-specific instructions as well as advanced operators such
as conditional assignment, division, or even fixed-point arithmetic operations among many oth-
ers. For each of these instructions, we provide strategies to efficiently instantiate them using
our LUT-dereferencing building blocks. To the best of our knowledge, we present the first ever
concrete implementation of the Euclidean and decimal division operators over FHE not relying
on the boolean circuit approach.

• We test our approach over several higher-level simple algorithms (sorting, average computation,
finding the minimum or maximum of an array, ...) and provide extensive timing experiments.
To the best of our knowledge, we provide the first FHE instantiation of a fixed-precision sig-
moid function over 16 bits leading to the FHE instantiation of standard neurons which can be
seamlessly chained to enable the evaluation of larger (possibilty recurrent) neural networks over
encrypted data.

• Lastly, as a matter of perspectives, we carefully analyze the computational hotspots in the
approach, providing cleanly defined candidate kernels of increasing complexity for low-level or
even hardware acceleration.

Paper Organization – This paper is organized as follows: Section 2 reviews the basics of the TFHE
cryptosystem and gives the necessary details of the tree-based method for bootstrapping with
multi-input ciphertexts and its optimization with multi-value bootstrapping. Section 3 details the

3

rationale for the functional bootstrapping technique and associated parameters selection. Sections
4, 5 and 6 (unitary timings) focus on our instruction set, which is then used in Section 7 to
implement several algorithms. Finally, Section 8 concludes this paper with some perspectives.

2 Preliminaries
2.1 Notations
Let E = (KeyGen, Enc, Dec, Eval) denote an FHE scheme with key space K, plaintext domainM and
ciphertext domain C. For a message m ∈ M, we denote JmK ⊂ C, the set of all its valid encryptions,
which we sometimes refer to as the ciphertext class of m. Let F be the function domain of Eval
i.e., Eval ∶ F × C∗ Ð→ C is such that for all (ek, dk) ∈ K, all f ∈ F and all m1,⋯, mK ∈ MK ,

Eval(f, Enc(m1),⋯, Enc(mK))) ∈ Jf(m1,⋯, mK)K.

Unless otherwise stated, the (uppercase or lowercase) letter c always denotes a ciphertext. Other
(uppercase or lowercase) letters denote plaintexts.

Let T = R/Z be the real torus, that is to say, the additive group of real numbers modulo 1 (R
mod 1). We further denote by TN [X]n the set of vectors of size n whose coefficients are polynomials
of T [X] mod (XN + 1). N is usually a power of 2.

2.2 The TFHE Scheme
The TFHE scheme is a fully homomorphic encryption scheme introduced in 2016 [CGGI16] and
implemented in the TFHE library3. TFHE defines three structures to encrypt plaintexts, which we
summarize below as fresh encryptions of 0:
• TLWE sample: A pair (a, b) ∈ Tn+1, where a is uniformly sampled from Tn and b = ⟨a, s⟩ + e.

The secret key s is uniformly sampled from Bn and the error e ∈ T is sampled from a Gaussian
distribution with mean 0 and standard deviation σ.

• TRLWE sample: A pair (a, b) ∈ TN [X]k+1, where a is uniformly sampled from TN [X]k and b =
⟨a, s⟩+e. The secret key s is uniformly sampled from BN [X]k, the error e ∈ T is a polynomial with
random coefficients sampled from a Gaussian distribution with mean 0 and standard deviation
σ. One usually chooses k = 1; therefore, a and b are vectors of size 1 whose coefficient is a
polynomial.

• TRGSW sample: a vector of (k + 1)l TRLWE fresh samples.
Let M denote the discrete message space (M ∈ TN [X] or M ∈ T)4. To encrypt a message

m ∈ M, we add what is called a noiseless trivial ciphertext (0, m) to a fresh encryption of 0. We
denote by c = (a, b) + (0, m) = (a, b +m) ∈ T(R)LWEs(m) the T(R)LWE encryption of m with key
s. A message m ∈ Z[X] can also be encrypted in TRGSW samples by adding m ⋅H to a TRGSW
sample of 0, where H is a gadget decomposition matrix. As we will not explicitly need such an
operation in this paper, more details about TRGSW can be found in [CGGI16]. To decrypt a
ciphertext c, we first calculate its phase ϕ(c) = b−⟨a, s⟩ =m+e. Then, we need to remove the error,
which is achieved by rounding the phase to the nearest valid value in M. This procedure fails if
the error exceeds half the distance between two consecutive elements of M.

3tfhe.github.io/tfhe/
4In practice, we discretize the torus with respect to our plaintext modulus. For example, if we want to

encrypt m ∈ Z4 = {0, 1, 2, 3}, we encode it in T as a value in M= {0, 0.25, 0.5, 0.75}.

4

2.3 TFHE Bootstrapping and Programmable Bootstrapping
TFHE bootstrapping – Bootstrapping is the operation that reduces the noise of a ciphertext, thus
allowing further homomorphic calculations. It relies on three basic operations, which we briefly re-
view in this section (see [CGGI16] for details). The first operation, BlindRotate, rotates a plaintext
polynomial testv5 by a TLWE encrypted index c ∈ JmK. It returns a TRLWE encrypted polynomial
of testv ⋅Xϕ(c) mod (XN + 1), where ϕ(c) is the phase of c rescaled in Z2N . Then, one must apply
the TLWESampleExtract, which extracts a coefficient from an encrypted TRLWE polynomial and
converts it into a corresponding TLWE ciphertext. Finally, the PublicFunctionalKeyswitch enables
the switching of keys and parameters. It is used to switch the extracted TLWE ciphertext to an
encryption of the same message but with the initial key. In practice, the computation time of a
TFHE bootstrapping depends mainly on the efficiency of the BlindRotate [CBSZ23]. So, from now
on, we will denote by Nbr the number of BlindRotate required to evaluate a function on encrypted
data. Nbr will simplify comparing instructions implemented with the same set of TFHE parame-
ters.
Programmable bootstrapping – Bootstrapping involves doing an indirection in a table using an
encrypted index while reducing noise. Indeed, if we set the coefficients of testv to the results of
the evaluation of a function f on elements of M, performing the bootstrapping on this new testv
outputs c′ ∈ Jf(m)K. That is to say, the bootstrapping gives an encryption of f(m) without any
additional cost and so allows the implementation of a LUT of f . We refer to this bootstrapping
as programmable or functional. We note that the original bootstrapping is a special case of pro-
grammable bootstrapping with f set to the identity function. TFHE programmable bootstrapping
is natively well-suited but limited to implementing LUTs of negacyclic functions6 for two reasons.
First, TFHE plaintext space is T, where [0, 1

2) corresponds to positive values and [1
2 , 1) to negative

ones. So, if c is a TLWE encryption of a positive value, its phase ϕ(c) lies in [0, 1
2), and it satisfies

ϕ(c) ∈ [0, N) after rescaling to Z2N . Conversely, if c is a TLWE encryption of a negative value, its
phase satisfies ϕ(c) ∈ [N, 2N) after rescaling to Z2N . Second, BlindRotate outputs an encryption
of testv mulitplied by Xϕ(c) mod (XN + 1)7. So, if testv coefficients are set to the evaluation of
a negacyclic function on the positive values of M (values in M∩ [0, 1

2)), a bootstrapping with an
input TLWE ciphertext c encrypting m returns either f(m) if m ∈ M ∩ [0, 1

2), or −f(m − 1
2) if

m ∈ M∩ [1
2 , 1).

2.3.1 Tree-based Method
Almost all of the functional bootstrapping methods from the state of the art ([CJP21, KS22,
YXS+21, CLOT21, CBSZ23]) take as input a single ciphertext of a message in a rather small set.
In 2021, Guimarães et al. [GBA21] specified the tree-based and the chaining methods for performing
functional bootstrapping over several ciphertexts. Their idea is to decompose the input message
being encrypted into a smaller basis B. Thus, the encryption of the initial plaintext value is a
vector of encryptions of its decomposition digits in basis B. Figure 1 shows the tree-based method
for the functional bootstrapping of the identity function. First, we create the test polynomials that
will be rotated during the BlindRotate step. In the example, the decomposition basis is B = 4, so we
need to decompose the LUT of the identity function into four polynomials, each with four distinct
coefficients. Each coefficient is actually repeated consecutively N

B
times to fill the polynomials.

Then, we perform four BlindRotate, one with each cleartext polynomial and with the first input
c0, followed by four TLWESampleExtract. We get four ciphertexts that we combine together with
PublicFunctionalKeyswitch to create a TRLWE encryption of a new test polynomial. Then, we apply
a BlindRotate to this encrypted test polynomial with the second encrypted input c1, and apply a
TLWESampleExtract followed by PublicFunctionalKeyswitch to get the final result. In practice, we

5We sometimes refer to this polynomial as the test polynomial or vector.
6Negacyclic functions are antiperiodic functions over T with period 1

2 , satisfying f(x) = −f(x + 1
2).7We remind that ∀α ∈ [0, N), Xα+N

= −Xα mod (XN
+ 1).

5

Figure 1: Illustration of the tree-based method on the identity function with decomposition
in basis B = 4. The message is m = 9 = 1 ⋅ 40 + 2 ⋅ 41 and its corresponding encryption is
C = ([1], [2]). Red arrows indicate bootstrapping.

implement two different PublicFunctionalKeyswitch. The first allows the packing of many TLWE
ciphertexts into one TRLWE ciphertext. Meanwhile, the second switches the keys of a TLWE
sample. The first key switch has a non-negligible impact on the computation time of a tree-based
functional bootstrapping, as seen in Table 1. So, from now on, we will refer by Nks to the number
of calls to PublicFunctionalKeyswitch for TLWE ciphertexts packing into one TRLWE required to
evaluate a function on encrypted data. For the considered example, the tree-based method requires
five BlindRotate (Nbr= 5) and one PublicFunctionalKeyswitch (Nks= 1). For more details about the
tree-based functional bootstrapping, the reader is referred to [GBA21].

2.3.2 Multi-value Bootstrapping
Multi-Value Bootstrapping (MVB) [CIM18] refers to a method for evaluating k different LUTs on a
single input at the cost of a single bootstrapping. MVB factors the test polynomial Pfi associated
with the function fi into a product of two polynomials Pfi = v0 ⋅ vi, where v0 is a common factor to
all Pfi . This factorization allows computing many LUTs using a unique blind rotation. Indeed, it
is enough to initialize the test polynomial testv with the value of v0 during bootstrapping. Then,
we run BlindRotate to get a TRLWE encryption of the polynomial acc. We multiply acc by each
vi corresponding to the LUT of fi to get acci. Finally, we run a TLWESampleExtract for each acci,
followed by PublicFunctionalKeyswitch to output k TLWE samples. From now on, we refer to Npm
as the number of multiplications between the plaintext polynomial (vi) and the TRLWE ciphertext
(acc). So, an MVB requires one BlindRotate (Nbr= 1) and k plaintext/ciphertext multiplications
(Npm= k). More details about the MVB factorization are given in [CIM18]. As already noted in
[GBA21], the MVB can be applied to the first level of a tree evaluation, as several BlindRotate are
performed on different polynomials with the same encrypted input. For instance, regarding Figure
1, instead of requiring five BlindRotate and one PublicFunctionalKeyswitch (Nbr= 5 and Nks= 1),
the tree-based evaluation of the identity function with MVB will only cost two BlindRotate, one
PublicFunctionalKeyswitch and four plaintext/ciphertext multiplications (Nbr= 2, Nks= 1 and Npm= 4).
For example, for TFHE parameters associated to Z16 as plaintext space (Table 2), a BlindRotate
takes 29 ms, a PublicFunctionalKeyswitch runs in 70 ms and a plaintext/ciphertext multiplication
requires 0.1 ms.

6

3 Choosing the Right Toolbox
3.1 On the Choice of the Functional Bootstrapping Method
Univariate functional bootstrapping – Many works tackled the restriction of TFHE bootstrapping
to the evaluation of LUTs of negacylic functions (Sect. 2.3). The half-torus method works around
the negacyclic restriction by encoding all the plaintext space M on [0, 1

2) (i.e., on the positive
half of the torus). As no plaintext values are encoded on the negative half of the torus, any LUT
can be encoded within the coefficients of the test polynomial. Then, it is evaluated with only
one bootstrapping (Nbr= 1). Other methods, such as TOTA [YXS+21], FDFB [KS22], or ComBo
[CBSZ23], specify several solutions to work around the restriction of working only with half of
the torus as a plaintext space. They provide different ways for implementing any LUT with the
full torus as plaintext space at the cost of making at least two consecutive BlindRotate (Nbr≥ 2).
However, Clet et al. [CBSZ23] compared all of these methods for the same TFHE parameters and
levels of security and showed that the half-torus method achieves the best speed-to-error-rate ratio.
Multivariate functional bootstrapping – In 2021, Guimarães et al. [GBA21] proposed the tree-based
and chaining methods to evaluate LUTs over several encrypted inputs with bootstrappings. These
methods can be optimized by using the MVB as discussed in Section 2.3.2. Given a message space
of size B, the chaining method requires using a plaintext space of size B2 with a full torus functional
bootstrapping technique or 2B2 with the half-torus functional bootstrapping. Meanwhile, the tree-
based method requires a plaintext space of size 2×B and is only meant to be used with the half-torus
method. As such, for the chaining method, the size of the parameters dramatically increases with
B. This growth in parameters jeopardizes the other speed improvements that could come with
the chaining method compared ot the tree-based method [TCBS23b]. A recent work by Bon et
al. [BPR23] proposes a method to evaluate boolean functions with several encrypted inputs with
one bootstrapping. However, their method is limited to binary plaintexts that must be encoded on
a small ring Zp before encryption. In addition, it requires finding a non-trivial encoding set for the
function to be evaluated. Their approach further requires a plaintext domain size dependent on
the size of the truth table of the function, which makes it difficult to find an encoding, for example,
for adding or multiplying two encryptions of k-bit messages, where a carry must be propagated.
Just as recently, [BBB+23] proposed a new programmable bootstrapping operator (WoP-PBS),
which inputs several ciphertexts and permits the evaluation of any multivariate LUT. This new
method enables efficient bootstrapping of ciphertexts with up to 21-bit precision. A follow-up
study presented in [BBB+], however, shows that for 8-bit messages, the tree-based method is at
least as efficient as the new WoP-PBS independently of the chosen decomposition basis B. In
this work, we thus use the tree-based method over the half-torus to compute multivariate 8-bit
instructions.

3.2 Optimal Basis Selection for LUT Evaluation
Decomposition basis choice – The plaintext space corresponding to 8-bit messages is the set P =
{0, 1,⋯, 255}. Since we use the half-torus bootstrapping method, we have to work on a 512-element
discretized torus to match such P. This requires very large TFHE parameters leading to a very
slow bootstrapping (≈1.5 secs for a single bootstrapping [TCBS23b]). As a consequence, we need
to break down our 8-bit data into a smaller basis. For 8-bit plaintexts, several decompositions are
available: we can decompose a message into four 2-bit digits, into three 3-bit digits (with the most
significant one only taking values in {0,⋯, 3}), or into two 4-bit digits. For instance, basis 16 allows
the decomposition of 8-bit messages into two nibbles. Note that the smaller the decomposition
basis, the smaller the parameters, and thus the faster the bootstrapping evaluation. However, the
smaller the decomposition basis, the greater the number of digits, and so the greater the number
of bootstrapping to be performed. A tradeoff must, therefore, be achieved between the number of
bootstrapping needed and the parameters’ size corresponding to the decomposition basis. We refer
to the evaluation of the tree-based method (using MVB) on an 8-bit message decomposed into d

7

digits in basis B as LUTeval, as opposed to SimpleBoot, which is the usual bootstrapping operation
taking only one encrypted input. The bootstrapping cost of LUTeval is NBboot = 1+∑d−2

i=0 Bi, where
1 refers to the trick of computing the output of the first level of the tree with MVB instead of
running Bd−1 bootstrappings (Sect. 2.3.2). To obtain the d digits forming the result of evaluating a
LUT fromM toM, LUTeval must be performed d times on the same inputs. That is why we further
introduce MVLUTeval, which uses the MVB optimization to reduce the number of BlindRotate Nbr.
As seen in Table 1, when run under TFHElib with the parameters from Table 2, the SimpleBoot
is the most efficient for basis 4. However, in the sequel, the most used operators are LUTeval and
different flavors of MVLUTeval. The best timings for these operations are the ones obtained with
decomposition basis 16. As a matter of illustration, evaluating two LUTeval in basis 16 costs 0.26
seconds. So MVLUTeval⋆, which does the same thing with one less BlindRotate, takes 0.23 seconds.
However, MVLUTeval is less interesting in other bases, where the initial number of BlindRotate is
larger: MVLUTeval⋆ saves one BlindRotate, i.e. 1

4 in basis 16, but only 1
10 in basis 8 and 1

22 in
basis 4. Note that for binary operators, basis 16 is not optimal. Indeed, these operations can
be implemented with depth-2 tree-based bootstrapping regardless of the decomposition basis. For
basis 2, 4 and 8, this respectively leads to 8, 8 and 6 blind rotations vs 4 for basis 16. On the other
hand, for any operation requiring calls to LUTeval, basis 16 remains the most efficient. For example,
for the addition, which is the most straightforward bivariate operation apart from bitwise ones, the
number of bootstrappings required to propagate the carry with decomposition basis 4 is such that
the evaluation of the addition takes just as long as for basis 16. For all other non-bitwise functions,
basis 16 is the most efficient. So, despite the better efficiency of basis 4 for bitwise operators, we
can conclude that basis 16 is the optimal choice. † LUT dereferencing operators – Now

Table 1: Execution times of SimpleBoot, LUTeval and MVLUTeval depending on the plaintext
decomposition basis. MVLUTeval⋆ stands for an evaluation of two different LUTs, and
MVLUTeval◇ for four different LUTs.

Decomposition basis Size of LUT Number
of output
digits

Corresponding
output basis

Nbr Nks Execution
Timings
(secs)

SimpleBoot 16 1 16 1 0 0.029
16 LUTeval 256 1 16 2 1 0.13

MVLUTeval⋆ 256 2 256 3 2 0.23
MVLUTeval◇ 256 4 256 5 4 0.43
SimpleBoot 8 1 8 1 0 0.015

8 LUTeval 256 1 8 10 9 0.47
MVLUTeval⋆ 256 2 64 19 18 0.93
MVLUTeval◇ 256 4 256 37 36 1.83
SimpleBoot 4 1 4 1 0 0.007

4 LUTeval 256 1 4 22 21 0.5
MVLUTeval⋆ 256 2 16 43 42 0.993
MVLUTeval◇ 256 4 256 85 84 1.98

that we know the optimal decomposition basis for our 8-bit plaintext inputs, we can instantiate
our LUT dereferencing tools SimpleBoot, LUTeval, and MVLUTeval. The first is the basic TFHE
bootstrapping with a 4-bit ciphertext as an encrypted index. Let tab_16 be a cleartext LUT with
16 entries in Z16, given a ciphertext c ∈ JmK, SimpleBoot(c; tab_16) returns c′ ∈ Jtab_16[m]K. The
second allows us to evaluate a 16 × 16 LUT on two ciphertexts c0 ∈ Jm0K and c1 ∈ Jm1K, with
m0, m1 ∈ M = {0, 1,⋯, 15}. We note it LUTeval(c0, c1; tab), with tab the 16 × 16 table that will
be used to instantiate the 16 test-vectors polynomials required for the tree-based bootstrapping.

8

LUTeval(c0, c1; tab) returns a 4-bit ciphertext c′ ∈ Jtab [16m0 +m1]K. Lastly, let us assume that
we want to evaluate k LUTeval on the following pairs of ciphertexts ((cα, c1),⋯,(cα, ck)) using the
tables (tab_1,⋯,tab_k). Each pair (cα, cj) is an encryption of Tj = 16mα +mj , where mα, mj ∈ Z16.
As cα is a common input for the k LUTeval, we can rely on only one MVB to compute the first level
of the k trees simultaneously instead of running k separate MVB for each LUTeval(cα, cj ; tab_j),
where j ∈ {1,⋯, k}. The second level of each tree is then computed separately on (c1,⋯, ck). As
such, we end up running k + 1 BlindRotate (Nbr= k + 1) instead of 2k ones for computing k LUTeval,
with k PublicFunctionalKeyswitch (Nks= k) and 16k plaintext/ciphertext multiplications (Npm= 16k).

From now on, we define MVLUTeval(cα; c1,⋯, ck; tab_1,⋯,tab_k) as the operation that com-
putes with a unique MVB the first level of the trees associated to LUTeval(cα, cj ; tab_j), and
outputs k encrypted 4-bit digits c′j ∈ Jtab_j [16mα +mj]K ∀j ∈ {1,⋯, k}. MVLUTeval can be further
optimized when provided with the same table tab_j twice (or more) by computing less PublicFunc-
tionalKeyswitch.

Table 2: Parameter sets for the considered decomposition basis (λ ≈ 128). Bg and l denote
the basis and levels associated with the gadget decomposition, BKS and t denote the de-
composition basis and the precision of the decomposition of the PublicFunctionalKeyswitch,
q denotes the size of the used plaintext size, and ϵ is the error probability of one MVB
tree-based evaluation.

basis n N l Bg BKS t q ϵ TRLWE noise TLWE noise
4 700 1024 5 16 1024 2 8 2−30 5.6 × 10−8 1.9 × 10−5

8 700 2048 2 2048 1024 2 16 2−23 9.6 × 10−11 1.9 × 10−5

16 1024 2048 3 256 1024 2 32 2−23 9.6 × 10−11 6.5 × 10−8

In summary, our toolbox mainly consists of LUTeval ∶ C2 × L Ð→ C (L being the set of all 256
4-bit entries tables) which, given (c0, c1) ∈ Jm0K × Jm1K, is such that

LUTeval(c0, c1; tab) ∈ Jtab[16m0 +m1]K.

and MVLUTeval ∶ C(k+1) ×Lk Ð→ Ck, its optimization for running several LUTeval with one common
input cα ∈ JmαK and k other inputs cj ∈ JmjK,∀j ∈ {1,⋯, k}, which satisfies

MVLUTeval(cα; c1,⋯, ck; tab1,⋯, tabk) ∈ Jtab1[16mα +m1]K × ⋅ ⋅ ⋅ × Jtabk[16mα +mk]K.

4 An FHE-Optimized Instruction Set
4.1 Instruction Set Overview
In this paper, we propose an exhaustive set of some fifty 8-bit instructions which manipulate
(T)FHE-encrypted data. Some of the provided instructions are relatively standard, but others
are more specific and included because a smallernumber of homomorphic operations is required to
implement them. As an example of this, for additions, we provide three instructions: ADD, ADDI,
and ADDZ. The ADD instruction takes two input ciphertexts (with an 8-bits cleartext payload)
and, without surprise, produces a third one whose decryption is expected to be the sum of the two
input ciphertexts’ plaintexts. The ADDI instruction takes one input ciphertext and an immediate
(public) value V . This instruction can then be seen as a family of univariate instructions ADDIV
(for V = 0,⋯, 255) and, as we shall later see, can be much faster implemented than the previous
general purpose ADD. Lastly, the ADDZ instruction also takes two input ciphertexts and performs
an addition under the assumption that at least one of the two input ciphertexts is an encryption of 0
(a case which occurs recurrently in several algorithmic patterns). As a result, this instruction also
executes much faster than the general purpose ADD instruction. This first example illustrates our

9

design mindset, according to which we have proposed standard general purpose instructions for all
usual operations found in typical processor ISA but also additional variants providing better FHE
evaluation when some (frequently occurring) assumptions are met.

In summary, we provide the following categories of instructions:
• Bitwise/arithmetic instructions (addition, multiplication, division, modulo, shift, rotation,

etc.), each coming in different flavors as discussed just above. These instructions names are
relatively conventional.

• Test instructions for testing equality and performing comparisons over encrypted data. All
these instructions also come with different flavors and are expected to return encryptions of
either 0 or 1.

• Conditional assignment instructions (CDUP, NCDUP and CSEL, the latter being the only
trivariate instruction in the set). These instructions provide the building blocks to be able
to emulate if-then-else or do-while statements with encrypted data-dependant conditions.

• Advanced instructions: support for multiplication with 16-bit results (i.e., computation of
the most significant byte of the product of two bytes), support for fixed-point arithmetic
(including decimal division), min/max operators, absolute value, to name a few.

• User defined univariate instructions: we further provide an XOP instruction which may be
arbitrarily configured by the programmer.

For readability’s sake and also due to space limitation, the following sections are intended only to
discuss the key difficulties we had to overcome and the optimization techniques we had to consider
in order to implement the full set of instructions.

4.2 Notations for Homomorphic Operator Specifications
In this work, following Sect. 3 and most particularly Sect. 3.2, we manipulate 8-bit plaintexts
broken down into two 4-bit digits. Thus, to encrypt an 8-bit plaintext M decomposed into two
4-bit digits m0 and m1 such that M = 16m0+m1, we encrypt m0 and m1 separately under the same
scheme E to obtain C = (c0, c1) ∈ Jm0K × Jm1K as an encryption of M . We consistently denote 8-bit
plaintexts M ∈ M2 and their corresponding ciphertexts C ∈ C2 with uppercase letters. Conversely,
4-bit plaintexts and their encryptions are denoted with lowercase letters. For instance, for h, l ∈ M2,
C = (c0, c1) ∈ JhK × JlK ⊂ C2 denotes an encryption of the 8-bit cleartext value (h, l) ∈ M2 which
encodes the 8-bit message M = 16h + l. We call h the most significant nibble of M . Similarly, l is
the least significant nibble of M . We respectively denote these parts msn and lsn. With a slight
abuse of notation, as already done above, we will use T = (u, v) and T = 16u+v interchangeably. In
some cases, a ciphertext C may have no msn and is denoted as (�, c1). This, for example, occurs for
outputs of test instructions, which are encrypted booleans (in that case, it can further be assumed
that c1 ∈ J0K∪ J1K). Some instructions also result in a cleartext 0 value in the msn or lsn of a given
ciphertext, e.g. an unsigned right (respectively left) shift of C = (c0, c1) gives ciphertext (0, c0)
(respectively (c1, 0)). We can use this to perform cleartext/ciphertext operations on the fly.

As a “Hello world!” example of how we later use these notations to specify our operators
and instructions, let us consider the AND instruction which, given C = (c0, c1) ∈ JhK × JlK and
C = (c′0, c′1) ∈ Jh′K × Jl′K, is defined as

Eval(AND; C, C ′) = C̄ = (c̄0, c̄1) ∈ Jh&h′K × Jl&l′K

To actually implement the above, we then proceed by evaluating

c̄0 = LUTeval(c0, c′0; tab_and) and c̄1 = LUTeval(c1, c′1; tab_and)

where tab_and is a table with 256 4-bit entries such that tab_and[16i+j] = i&j and where LUTeval ∶
L×C2 Ð→ C (L being the set of all 256 4-bit entries tables) is the tree-based functional bootstrapping
operator instantitate in Sect. 3.2.

10

4.3 Implementing Univariate Instructions
In this work, univariate instructions are those that only take one input ciphertext (with an 8-bit
cleartext payload). These can correspond to univariate operators, such as the absolute value (ABS)
or the negation (NEG) of a signed 8-bit value, the bitwise inversion operator (INV), etc. They can
also correspond to cleartext-ciphertext operations such as the addition of a (public) immediate value
(ADDI), left shift, or rotation by a (public) number of positions (SHLI or ROLI), etc. With respect
to our 8-bit plaintext domain, all these operations can be implemented by simply dereferencing a
table with 256 8-bits entries with an 8 bits plaintext input, i.e., any such instruction inst on input
i ∈ Z256 can be implemented as tab_inst[i] with tab_inst[i] = f(i) (for i = 0,⋯, 255) and f the
function that inst performs. For instructions implementing cleartext-ciphertext operations, there
is one such table tab_instV for each of the 256 possible plaintext inputs, V , with the proper table
selected at runtime (and, even possibly generated on the fly). Following the notation introduced in
the previous section, to perform the instruction inst over C = (c0, c1) ∈ JhK × JlK we simply have to
evaluate

(c̄0, c̄1) =MVLUTeval(c0; c1, c1; tab_inst_msn, tab_inst_lsn) (1)
with tab_inst_msn[i] = ⌊tab_inst[i]/16⌋ and tab_inst_lsn[i] = tab_inst[i] (mod 16), for i = 0 to
255. To illustrate that this pattern allows implementing arbitrary complex univariate instructions,
we can consider the case of the divide-by-V (V ∈ Z256) operation8 which induces the instructions:
DIVI (quotient of the euclidean division by V with tab_diviV [i] = ⌊i/V ⌋), MODI (remainder of the
euclidean division by V with tab_modiV [i] = i mod V).

Univariate test instructions are handled slightly differently in the sense that, with respect to the
plain domain, they output only encryption of a boolean 1-bit value (still contained in a single 4-bit
digit). As such, only an evaluation of LUTeval is needed to perform them. For example, the LT(C, v)
instruction, which outputs ciphertext C̄ = (�, c1) ∈ {�} × JbK from ciphertext C = (c0, c1) ∈ JhK × JlK
with b = 1 if 16h + l < v and b = 0 otherwise, is performed by evaluating only

c̄1 = LUTeval(c0, c1; tab_ltv). (2)

Note that some univariate instructions can be implemented more efficiently than by (1). For
example, for an addition by V (ADDi) we can proceed as follow:

c̄1 = SimpleBoot(c1, tab_add4V &15)
c̄0 = LUTeval(c̄0, c1, tab_fin4)

with tab_add4v[i] = (i+v) mod 16, tab_fin4V [16i+j] = tab_add4[16×tab_add4
⌊V /16⌋[i]+tab_car4V &15[j]],

tab_car4v[i] = ⌊(i+ v)/16⌋ and tab_add4[16i+ j] = (i+ j) mod 16. Following the notations in Sect.
4.2, this can further be optimized as

(c̄0, c̄1) =MVLUTeval(c1;�, c0; tab_add4V &15, tab_fin4)

which has the effect of factoring an additional blind rotation (overall resulting in 2 blind rotations
vs 3 if (1) is used). In a similar spirit, bitwise instructions, e.g. ANDi, can simply be implemented
with two calls to SimpleBoot leading, again, to 2 blind rotations vs 3 when (1) is used. We have
considered such optimizations on a case-by-case basis, resorting to (1) only when we found no better
options. †

Lastly, we provide an additional univariate XOP instruction taking a user-defined 256 × 8 bits
table rather than an immediate value V as input. For example, this instruction can be used to
perform special operations such as the AES S-box or the six GF (256) multiplication-by-cleartext
in that algorithm [TCBS23b]. A variant of this latter instruction, XOPN(ibble) also takes a user-
defined 256 × 4 bits table as input in order to evaluate custom conditions following (2). Table 3
provides a synthetic (yet exhaustive) list of the univariate instructions we have implemented.

8Division, even by a cleartext value, is a good example of an operation which is notoriously difficult to
perform efficiently over FHE (even when one of the two operands is cleartext). Here, with our techniques,
division by a cleartext value does not cost much more than a mere addition...

11

Arithmetic inst.

ADD(i) (addition of two bytes); SUB(i); MUL(i); MULM(i) (most sig. byte of the
product of two bytes); DIV4(i) (division of an encrypted byte by an encrypted nibble);
DIV(i) (division of an encrypted byte by another encrypted one); MOD4(i) (modulo
of an encrypted byte by an encrypted nibble); MOD(i) (modulo of an encrypted byte
by another encrypted byte)

Bitwise inst.
AND(i); OR(i); (U)SHL(i) (shift an encrypted byte (signed or unsigned) left by an
encrypted 8-bit index), (U)ROL(i) (rotate an encrypted byte left by an encrypted 8-
bit index); (U)SHR(i); (U)ROR(i)

Test inst.
EQ(i) (test if two ciphertexts encrypt the same byte); GT(i) (test if the first ciphertext
encrypts an 8-bit value greater than the one encrypted by the second ciphertext);
LT(i); GTE(i); LTE(i)

Other inst.
MIN(i) (minimum of two encrypted bytes); MAX(i); CDUP(i); NCDUP(i); ABS (abso-
lute value of an encrypted signed byte); NEG (returns the opposite of an encrypted
signed byte); XOP; XOPN

Table 3: List of our instructions. For each instruction denoted by INSTR(i), INSTR is the
bivariate instruction taking two encrypted inputs, and INSTRi is the variant taking as inputs
an encryption of a byte and a cleartext one. Instructions denoted by (U)INSTR(i) have an
unsigned and a signed version.

4.4 Implementing Bivariate Instructions
Bivariate Instructions Basics – We now turn to bivariate instructions, which are instructions that
take two input ciphertexts (each with an 8-bit cleartext payload). These correspond to additions
(ADD), left shift or rotation by an encrypted number of positions (SHL or ROL), etc. In Sect.
4.2, we have already seen how to perform bitwise instructions. As another simple example, let us
consider instruction ADD which turns C = (c0, c1) ∈ JhK × JlK and C′ = (c′0, c′1) ∈ Jh′K × Jl′K into
C̄ = (c̄0, c̄1) ∈ Jh̄K×Jl̄K such that 16h̄+ l̄ = (16h+ l+16h′+ l′) mod 256 leading to two calls to LUTeval
and one call to MVLUTeval with two tables to produce C̄:

cs = LUTeval(c0, c′0, tab_add4)
(c̄1, cc) =MVLUTeval(c1; c′1, c′1; tab_add4, tab_carry) (3)
c̄0 = LUTeval(cs, cc, tab_add4).

with tab_add4[16i + j] = (i + j) mod 16 and tab_carry[16i + j] = ⌊(i + j)/16⌋.
As for the univariate case (Sect. 4.3), bivariate test instructions output only a single (encrypted)

nibble with a single-bit payload, i.e., ciphertexts of the form (�, c1) with c1 ∈ J0K∪J1K. Quite often in
FHE computations, we have to sum two encrypted values where an unknown one of them encrypts 0.
On a cleartext processor, this does not make any difference, and a special instruction is usually not
included for that case. When working over encrypted data, however, the lack of carry propagation
means that we can save a call to MVLUTeval, (3) above. For this reason, we also provide the ADDZ
instruction, which thus “sums” two ciphertexts under the assumption that at least one of them
belongs to J0K by means of two independant calls to LUTeval.

As we shall see, the CDUP (“Conditional DUPplication”) instruction plays an important role
in being able to perform a conditional assignment and, as such, is fundamental in the context of
FHE calculations. Given an encrypted boolean (�, c1) ∈ JlK and an input C′ = (c′0, c′1) ∈ Jh′K × Jl′K,
CDUP produces ciphertext C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K with h̄ = h′ and l̄ = l′ when l = 1 (i.e. when the
input boolean is true) and h̄ = l̄ = 0 when l = 0 (we leave the instruction behavior unspecified when
l > 1). Essentially, CDUP can be implemented by a single call to MVLUTeval:

CDUP((�, c1), C ′) =MVLUTeval(c1; c′0, c′1; tab_sel1, tab_sel1),

12

with tab_sel1[16i+j] = j if i = 1 and 0 otherwise. Conversely, instruction NCDUP behaves similarly
except that it outputs (encryption of) 0 when the input boolean is true. As such, it is implemented
exactly as CDUP but using table tab_sel0[16i+ j] = j if i = 0 and 0 otherwise. Lastly, we provide a
single trivariate instruction CSEL (“Conditionnal SELection”) which, given an encrypted boolean
(�, c1) ∈ JbK (b ∈ {0, 1}) and two inputs C′ = (c′0, c′1) ∈ Jh′K × Jl′K and C′′ = (c′′0 , c′′1) ∈ Jh′′K × Jl′′K,
produces ciphertext C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K such that h̄ = bh′ + (1 − b)h′′ and l̄ = bl′ + (1 − b)l′′.
Interestingly, even if it is a trivariate instruction, CSEL can be implemented rather efficiently by
factoring 4 blindRotate in a single call to MVLUTeval,

(c̃0, c̃1, c̃2, c̃3) =MVLUTeval(c1; c′0, c′1, c′′0 , c′′1 ; tab_sel1, tab_sel1, tab_sel0, tab_sel0)
(c̄0, c̄1) = ADDZ((c̃0, c̃1), (c̃2, c̃3)).

This gives us the conditional assignment instruction needed to emulate if-then-else constructs on
our FHE processor abstraction. Note that we also provide instructions CDUPi, NCDUPi, and CSELi,
which all take an encrypted boolean as input and either one or two cleartext values. We do not
detail them further. See Table 3 for a full list.
An Homomorphic Division Operator – Using division as a yardstick, we now illustrate how our
approach can be used to lead to a division operator between two ciphertexts C = (c0, c1) ∈ JhK × JlK
and C′ = (c′0, c′1) ∈ Jh′K × Jl′K. For simplicity’s sake, we consider here the unsigned division. This
operator returns C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K such that 16h̄ + l̄ = ⌊(16h + l)/(16h′ + l′)⌋.

Let 16h̄ + l̄ = Q = ∑7
i=0 qi2i = ∑7

i=0 pi with qi ∈ {0, 1}. We then have

qi = { 1 if 2i(16h′ + l′) ≤ (16h + l) −∑7
j=i+1 qj2j ,

0 otherwise.

Following this, Q can be naively obtained by means of a carryless summation of the pi = qi2i’s.
But we note that if h′ ≠ 0, the msn of 16h+l

16h′+l′
is always 0. If h′ = 0, then the msn of the quotient

is given by h
l′

. So instead of computing the qi’s for i ∈ {7, 6, 5, 4}, it is sufficient to compute
c̄0 = LUTeval(SimpleBoot(c′0,tab_is_zero), LUTeval(c0, c′1;tab_div);tab_mul). Then, to compute the
lsn of the quotient, we must follow the algorithm presented in Figure 2, starting from Ct rather than
C. Indeed, after computing c̄0, the value that will be compared to obtain the lsn of the quotient
must be updated the following way. First, we need to compute cs = LUTeval(c̄0, c′1;tab_mul), and
then update c0 with the value ct = LUTeval(c0, cs,tab_sub).

Let us further consider the case where it is known that h′ = 0 and let q0 = ⌊16h/l′⌋, q1 = ⌊l/l′⌋,
r0 = 16h mod l′ and r1 = l mod l′, then the division algorithm may be significantly simplified due
to the following relation, which holds ∀(h, l, l′) ∈ {0,⋯, 15}3,

⌊16h + l

l′
⌋ = ⌊16h

l′
⌋

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
q0

+ ⌊ l

l′
⌋

±
q1

+⌊16hr

l′
⌋

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
ϵ0

+ ⌊ lr

l′
⌋

±
ϵ1

, (4)

with hr = ⌊ r0+r1
16 ⌋ and lr = (r0 + r1) mod 16. This simplified division requires 20 blind rotations

and 12 key switches versus 97 and 56 for a full-blown division. See Table 4. †

5 Other Types of Ciphertexts
5.1 Working with Signed Inputs
In this section, we consider 8-bit messages decomposed into two 4-bit digits, but in signed repre-
sentation using two’s complement. This way, we can encrypt messages in M− = J−128, 127K. This,
of course, requires the user to know whether she is using signed or unsigned representation to be
able to correctly interpret the decrypted messages. Note that the used TFHE parameters do not
change, as it is only a matter of semantics. This way, new tables are required to perform additions,

13

Ct = (ct, c1)

cq ∈ J0K
for i = 3 to 0
Cm = (cm0 , cm1) = SHLi(C ′, i) // Shift Left by a cleartext index
cg = GTE(Ct, Cm) // Greater Than or Equal
cb = LUTeval(c′0, cg, tab_and_mulm_zero)
Cs =MVLUTeval(cb; cm0 , cm1 ; tab_mul_lsn, tab_mul_lsn)
Ct = SUB(Ct, Cs)

cq = LUTeval(cq, cb, tab_add_qi)

Figure 2: Division pseudo-code to obtain the lsn of C̄. tab_and_mulm_zero is a 256-
element table with tab_and_mulm_zero[16k + j] = (((k << i) >> 4) == 0)&(j == 1), that
we use to test if the overflow produced by the multiplication 2i(16h′ + l′) is zero and if
2i(16h′ + l′) ≤ (16h + l) −∑

7
j=i+1 qj2j . Indeed, the condition for qi = 1 is satisfied if and only

if the multiplication does not produce any overflow. tab_add_qi is a 256-element table such
that for k, j ∈ {0,⋯, 15}, tab_add_qi[16k + j] = k + (j ≠ 0) ⋅ 2i that we use to add the new qi

to cq. Finally, note that for i = 0, SHLi does nothing.

multiplications, shifts,... and to perform new operations such as the negation NEG or the absolute
value ABS. For many operators, these operations are very similar to their unsigned variants, we do
not detail them further.

5.2 Support for Fixed-point Arithmetic
We can also apply this paper approach to ciphertexts encrypting values represented in fixed-point
arithmetic. To do so, we have to work with 16-bit data: 8 bits for the integer part and 8 bits for
the fractional part of a fixed point number. In addition, we need an encoding layer adapted to
the semantics of this representation on top of the encryption layer. We consider that the integer
part can be signed or unsigned and that the fractional part is always positive. For example, 4.6 is
represented as (4, ⌊256 × 0.6⌋ = 153) and −4.6 as (−5, ⌊256 × 0.4⌋ = 102). We note the ciphertexts
and associated plaintexts corresponding to encryptions of such 16-bit messages with bold capital
letters: C = (c0, c1, c2, c3) ∈ JhK × JlK × JoK × JkK is an encryption of the 16-bit message T encoding
16h+ l+ 16o+k

256 . For example, an encryption of 1
256 = 0.00390625 will be C ∈ J0K× J0K× J0K× J1K. This

approach enables new functions to be implemented, such as decimal division or a fixed-precision
sigmoid (Section 7). As an example, let us consider the decimal division by a cleartext 8-bit value
d (assuming unsigned input semantic for simplicity sake), an operation which is often used when
computing basic statistics when the sample size is known, which given C = (c0, c1) ∈ JhK×JlK outputs
C̄ = (c̄0, c̄1) ∈ Jh̄K × Jl̄K and (c̃0, c̃1) ∈ Jh̃K × Jl̃K such that

16h̄ + l̄ = tab_int[16h + l] = ⌊16h + l

d
⌋ and 16h̃ + l̃ = tab_dec[16h + l] = ⌊256(16h + l) mod d

d
⌋ .

With only 5 BlindRotate, we then compute

(c̄0, c̄1, c̃0, c̃1) =MVLUTeval(c0; c1, c1, c1, c1; tab_int_msn, tab_int_lsn, tab_dec_msn, tab_int_lsn)

14

5.3 Input/output
In this section, we consider the issue of getting data in and out of our processor abstraction in the
setting where it is deployed on a remote server and available to a client which sends input ciphertexts
to the server (which we refer to as uplink input transmissions from the client to the server) and
expects output ciphertexts in return (which we refer to as downlink output transmissions from the
server back to the client), as the results of some useful computations. We then wish to avoid the
naive approach, which consists of the client sending its encrypted input data by transferring a full
TLWE ciphertext for each payload nibble (and similarly so on the downlink).
Uplink input data transmission – On the uplink, a standard approach is to resort to transciphering
to remove the transmission overhead [CCF+16, BBS22, BCBS23, PJH23], at the cost of homomor-
phically running a symmetric algorithm decryption function (which can then be easily “coded”
using our instruction set). If we accept a slightly higher transmission overhead, a computationally
lighter approach consists of simply synchronizing the client and server using a PRF to avoid sending
the a term of the TLWE pairs (i.e., both the server and the client are able to compute on their
own the a vector associated to a given b = ⟨a, s⟩ + q

16 m + e) and thus to transmit only the unique
coefficient b. The uplink expansion factor thus becomes independent of the n parameter. Since
the ciphertext and plaintext moduli, respectively, are q = 232 and B = 16 in our TFHE parameter
setting, this leads to an expansion factor of only 32

4 = 8, which is reasonable by “FHE standards”.
Downlink output data transmission – Remark that none of the above two approaches are applica-
ble to reduce the overhead of encrypted results transmission from the server to the client. Indeed,
transciphering allows to convert data encrypted under some (usually symmetric) scheme towards
an homomorphic scheme, but not the other way around. Besides, for results of FHE computations,
neither the server nor the client can control the resulting a term which therefore has to be somehow
transmitted. Still, to decrease as much as possible the burden of transmitting several encrypted
outputs, under the form of TLWE ciphertexts, the server can assemble them as much as possible
in TRLWE ones. Let us thus consider that we want to assemble K = 2L TLWE results into one or
more TRLWE ciphertexts. More precisely, if the server has to send back K encrypted bytes, i.e.,
2L TLWE ciphertexts. Then the server assembles up to n TLWE samples into a single TRLWE
sample by means of the usual keyswitch packing whereby n TLWE messages m0,⋯, mn−1 maps to
m(X) = ∑n−1

0 miX
i. Consider that K TLWE ciphertexts have to be transmitted, then, when K

mod n = 0, we have an expansion factor of

2 log2 q

log2 t
(5)

i.e., with n = 1024 and q = 232, this leads to an expansion factor of 16 (t = 16). So, the downlink
expansion factor is “only” twice that of the uplink (asymptotically). When, K mod n = r > 0,
expansion is given by

2⌊k/n⌋ log2 q + (n + r) log2 q

K log2 t
.

Expansion factor (5) is also valid in the asymptotic regime when K is large. Other techniques may
be used to further reduce the expansion factor on the downlink, e.g., [BDGM19].

5.4 Bit decomposition and recomposition
Decomposition – Let us consider that we have a ciphertext C = (c0, c1) with an 8-bit payload
decomposed in two nibbles. In some algorithms, it is more interesting for certain operations to
work with bits. For instance, the symmetric block cipher ASCON [DEMS21] requires switching
from a binary rows representation to a columns representation. We thus need to decompose a
ciphertext c into eight encryptions of bits. To do so, it is sufficient to decompose c0 and c1 each
into four ciphertexts. That means one needs four tables: one per decomposition bit. These tables
are easy to precompute as it only requires calculating for i ∈ {0, 1,⋯, 15}, the LUTs corresponding to

15

i & 0b0001, (i & 0b0010)>> 1, (i & 0b0100)>> 2, and (i & 0b1000)>> 3. Then, the user can perform
an MVB bootstrapping using the four test-vector polynomials given by the four 1 × 16 tables and
extract the four values. This operation is less expensive than a LUTeval call. Note that even if
we now have encryptions of 0s and 1s, these ciphertexts are still manipulated with the parameters
corresponding to a basis 16 encryption. This is a key principle for a cheap recomposition.
Recomposition – Once done working over the smaller basis, one should recompose his or her ci-
phertext into the initial basis to continue his or her computations. In our specific case of cipher-
texts of basis 16 decomposed 8-bit data, that means that we want to obtain c′ = (c′0, c′1) from
c = (c0, c1, c2, c3, c4, c5, c6, c7) encrypting the same message m. As previously stated, the individual
ciphertexts c0,⋯, c7, even encrypting 0s and 1s, are still in the 32-value discretized torus. This
simplifies the recomposition into 4-bit ciphertexts. Indeed, we have

c′0 = c0 + 2 ⋅ c1 + 22 ⋅ c2 + 23 ⋅ c3 and c′1 = c4 + 2 ⋅ c5 + 22 ⋅ c6 + 23 ⋅ c7.

As the multiplication by a power of 2 less than 16 will not result in an overflow, we can simply
use a call to SimpleBoot on each ci being multiplied. In these conditions, we can use the native
TFHE TLWE addition to recompose each nibble. Still, this recomposition alone takes longer than
a SHLi instruction, so a decompose/shift-for-free/recompose approach is not competitive. Hence,
decomposing and recomposing ciphertexts is only efficient when a lot of binary operations have to
be performed.

6 Instructions timings
We have fully implemented our proposed instruction set. We summarize the timings in Table 4
obtained on our test machine (a 12th Gen Intel(R) Core(TM) i7-12700H CPU laptop with 64 Gib
total system memory with an Ubuntu 22.04.2 LTS server), using only a single core.

Instr. Nbr Nks ms Instr. Nbr Nks ms
ANDi/ORi/XORi 2 0 69 AND/OR/XOR 4 2 278

DC 2 0 81 RC 8 0 267
SHLi/SHRi 2 0 72 SHL/SHR 6 4 478
ROLi/RORi 4 0 125 ROL/ROR 9 6 714

EQi 2 0 88 EQ 6 3 393
LT(E)i/GT(E)i 2 1 126 LT(E)/GT(E) 9 5 623

(N)CDUP 3 1 159 CSEL 9 6 694
NEG/ABS 2 1 215 MIN/MAX 16 10 1176

ADDi/SUBi 2 1 137 ADD/SUB 7 4 493
ADDZ 4 2 271 MUL(M)i/DIV(4)i/MOD4i 2 1 133
MODi 3 2 267 MUL 10 6 725
MULM 32 20 2442 DIV4 21 14 1624

DIV 97 56 7711 MOD4 10 6 724
MOD 91 50 7584 (N)CDUPi 1 0 33

Table 4: Mnemonics, blind rotations and keyswitches counts as well as execution times for
our (T)FHE processor abstraction instruction set.

16

7 From instructions to algorithms
To test our instruction set, we now use it to implement a number of (simple) algorithms. Note that
in certain cases, it might be more efficient to directly implement these algorithms at the functional
bootstrapping level. However, by analogy to a real microprocessor, that would mean coding at the
micro-code rather than at the ISA level. So, in this section, we only use instructions from our set.

7.1 Testing a few Elementary Algorithms
Bubble sort – Using our MIN and MAX homomorphic operators, we are able to sort an array.
Bubble sorting consists of repeatedly comparing consecutive elements in an array and permuting
them when they are incorrectly ordered. One way to perform the conditional swap of two array
elements without resorting to an if-then-else construct can be, for example, done by means of MAX
and MIN computations as done in algorithm 1. Thus, for all comparisons, we have to compute
both MIN and MAX and reassign the results accordingly. To give an order of magnitude for the
execution time, sorting an array of five ciphertexts encrypting 8-bit values using this “sorting in
place” algorithm takes around 16 seconds. Execution timings can be found in Table 5.

Algorithm 1 Homomorphic bubble sort
Input: A an array of n encryptions of 8-bit values
Output: A sorted from the smallest value to the largest.

for i = n − 1 to 0 do
for j = 0 to i − 1 do

Ct ←MIN(A[j], A[j + 1])
A[j + 1] ←MAX(A[j], A[j + 1])
A[j] ← Ct

return A

Maximum/minimum of an array – As another simple example, it is easy to use our MIN and MAX
homomorphic operators to find the largest or smallest element in a table as done by Algo 2. With
this algorithm, finding the maximum or minimum of an array composed of five 8-bit encrypted
values takes less than 5 seconds (see Table 5).

Algorithm 2 Homomorphic maximum of an array
Input: A an array of n encryptions of 8-bit values
Output: C̄ a ciphertext encrypting the largest value in A

C̄ ← A[0]
for i = 1 to n − 1 do

C̄ ←MAX(C̄, A[i])
return C̄

Average of array elements – Thanks to our homomorphic decimal division operator, we are able
to precisely compute the average of an array in fixed-point arithmetic, including the final division.
Algo 3 gives an implementation with our instruction set. As shown in Table 5, when tried on a
five-element array, this computation takes less than 4 seconds.
Array dereferencing and assignment – Note that dereferencing an array of 256 (or less) cleart-
ext values (with an encrypted index) is just an evaluation of our MVLUTeval operator. Further
optimizations can be made on a case-by-case basis, for example, if the array to be dereferenced
contains fewer than 256 values. Note that it is also feasible to dereference an array of 256 (or
less) encrypted values with an encrypted index. Indeed, we can use a modified MVLUTeval running

17

Algorithm 3 Homomorphic average of array elements
Input: A an array of n encryptions of 8-bit values
Output: C̄ a ciphertext encrypting the 16-bit value corresponding to the average of

the table A

Ca ← A[0]
for i = 1 to n − 1 do

Ca ← ADD(Ca, A[i])

Ci ← DIVI(Ca, n)
Cd ← DIV_DECI(Ca, n)
return C̄ = (Ci, Cd)

directly on encrypted test polynomials, as in the second level of the evaluation of the tree-based
method (Section 2.3.1), where we rotate a new encrypted test polynomial by an encrypted index.
Dereferencing arrays with more than 256 elements is also possible but we do not detail that. Lastly,
we can also obtain an operator for assigning an array of 256 (or less) encrypted values, still with
an encrypted index. That is to say, given an encrypted table tab of size n, an encrypted index
Ci = (ci0 , ci1) ∈ Ji0K× Ji1K and an encrypted value CV = (cv0 , cv1) ∈ Jv0K× Jv1K, the operation affects
the value V = 16v0 + v1 to tab[16i0 + i1]. See Algo 4. As seen in Table 5, the sequential evaluation

Algorithm 4 Homomorphic array assignment
Input: A an array of n encryptions of 8-bit values, an encrypted index Ci and an

encrypted value CV

Output: A modified at index 16i0 + i1

for j = 0 to n − 1 do
(0, cb) ← EQI(Ci, j)
C0 ← CDUP(cb; CV)

C1 ← CDUP(cb; A[j])
A[j] ← ADDZ(C0, C1)

return A

of this operator on an array of five 8-bit encrypted inputs takes 4.45 seconds.
Loops – For completion, we highlight a technique to perform (encrypted) data dependant loop
termination when a bound B is known on the total number of iterations. Let S denote the state of
a program, then a statement of form “while c(S) do S ∶= f(S)” can be rewritten as “for 0 ≤ i < B
do if c(S) then S ∶= S else S ∶= f(S)”. In essence, that latter form computes a fixed point after
condition c(S) reaches a true value, and the inner if-then-else statement can then be done via a
CSEL instruction.

7.2 Evaluation of an elementary neuron
We now turn to the homomorphic evaluation of an elementary neuron, as usually found in convo-
lutional neural networks. Our simple neuron has two encrypted fixed-precision inputs representing
encryptions of numbers, F1 and F2, in [−1, 1] (each over 16 bits as in Sect. 5.2) and one encrypted
fixed-precision output of the same form. We emphasize that the output of our neuron can be fed to
another one, enabling the evaluation of larger networks over encrypted data. From an operational
viewpoint, the two encrypted inputs are first multiplied by fixed precision weights in [−1, 1] (W1
and W2, respectively), which may either be cleartexts or ciphertexts. The sum of these products is
then fed into an activation function, in this case, the sigmoid, noted σ, (which takes an encrypted

18

fixed-precision value as input and evaluates the sigmoid at that point). In summary, specified over
cleartext value, we have to evaluate

neuron(F1, F2) = σ(F1 ⋅W1 +F2 ⋅W2).

Let CF1 = (c0, c1, c2, c3) ∈ JhK × JlK × JoK × JkK, (meaning, as in Sect. 5.2, that CF1 encrypts the
value F1 = 16h + l + 16o+k

256) and CF2 = (c′0, c′1, c′2, c′3) ∈ Jh′K × Jl′K × Jo′K × Jk′K. This way, we have to
compute two cleartext-ciphertext decimal multiplications, one homomorphic decimal addition, and
the homomorphic evaluation of the sigmoid.

The most complicated part of that computation is the homomorphic evaluation of the sigmoid,
taking as input a ciphertext corresponding to a 16-bit fixed-point arithmetic value. To do so, we
evaluate a discretized sigmoid σ̃((i, j)) on several non overlapping intervals (−∞,−6), [−6,−5), ...,
[5, 6), [6,∞) as

σ̃((i, j)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0, 0) if i < −6,
(0, tab_sigi[j]) if i ∈ {−6,−4, ..., 4, 5},
(1, 0) if i ≥ 6,

with tab_sigi[j] = σ(i+ j/256) and then test the input to select the appropriate value among these.
However, because we do not have any way to branch on conditions over encrypted data, each of the
above (mutually exclusive yet collectively exhaustive) possibilities must be computed, multiplied
by an encrypted boolean, and then xored to obtain the final result. It follows that, for a ciphertext
C = (c0, c1, c2, c3) ∈ JhK×JlK×JoK×JkK, we compute the evaluation of the sigmoid SIG by computing:

C̄ = (C̄, C̃) = (GTEI((c0, c1), 6), ⊕
i∈{−6,⋯,5}

CDUP(((c0, c1), i), SIGLUT(i)((c2, c3))))

with C̄ and C̃, the respective encryptions of the integer and decimal parts of the result. In the
above equation, the ⊕ operator corresponds to multiple calls to our XOR instruction and SIGLUT(i)
is the homomorphic evaluation of the LUT corresponding to the decimal values of σ (i + 16o+k

256).
Note that from an instruction set perspective, SIGLUT(i) can be performed by means of the XOP
(user-defined) univariate instruction discussed in Sect. 4.3 using the above twelve tab_sigi tables.
This implementation of the sigmoid takes about 10 seconds to compute. With less precise encrypted
inputs and outputs, homomorphic sigmoid evaluation can be less costly [TCBS23a], but here, we
prioritize accuracy and the ability to feed a neuron output into another neuron without additional
conversion over faster execution. Based on this, we have been able to evaluate one neuron in about
16 seconds, so the evaluation of the sigmoid alone represents two-thirds of that cost. By comparison,
we have also implemented a homomorphic Heaviside function that operates on encrypted inputs
representing 16-bit fixed-point arithmetic values. Using this much simpler function, we can get the
execution timing from 16 seconds down to under 7 seconds. See Table 5.

Table 5: Execution times of different homomorphic algorithms.

Algorithm Execution Time (secs)
Bubble sort 16
Minimum/maximum 4.71
Average 3.68
Array assignment 4.45
Neuron with sigmoid 16
Neuron with Heaviside 6.85

19

8 Conclusion and perspectives
In this paper, we have essentially shown that a very limited set of functional bootstrapping patterns
is both versatile and optimal to build a complete conventional-looking assembly langage for manip-
ulating (T)FHE encryptions of 8-bit data. In terms of perspectives, this reveals several functional
bootstrapping operators of increasing complexity which may be appropriate targets for further
works on advanced software optimizations or hardware implementations. Indeed, our approach
would directly benefit from further efficiency improvements in the baseline TFHE bootstrapping
but also in the higher-level LUTeval or MVLUTeval operators. Beyond this, the approach can also
benefit from an ability to run several such primitives in parallel, ideally by exploiting the low-level
SIMD instructions offered by modern processors or dedicated HW.

Another important perspective is to further investigate several values for the bootstrapping
error probability to consider the recent attacks in [CSBB24, CCP+24]. Indeed, our parameters
achieve “only” a 2−40 bootstrapping error probability. Although parameters have been proposed
in [CSBB24] for a 2−128 bootstrapping error probability, showing a 20% overhead in the baseline
bootstrapping, they are valid only for B = 2. Finding a parameter set for basis B = 16 achieving
such a low probability remains challenging (due to the necessary increase in polynomial degree
and ciphertext modulus), and in that regime, basis 4 might be the optimal choice. So achieving
immunity against these recent attacks may, therefore, have an impact that remains to be studied
in depth.

References
[BBB+] L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J-B. Or-

fila, and S. Tap. Parameter Optimization & Larger Precision for (T)FHE.
https://www.zama.ai/post/parameter-optimization-and-larger-precision-for-tfhe.

[BBB+23] L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J-B. Orfila, and S. Tap.
Parameter Optimization and Larger precision for (T)FHE. Journal of Cryptology, 36,
2023.

[BBS22] A-A. Bendoukha, A. Boudguiga, and R. Sirdey. Revisiting stream-cipher-based homo-
morphic transciphering in the tfhe era. In Foundations and Practice of Security, pages
19–33, 2022.

[BCBS23] A-A. Bendoukha, P-E. Clet, A. Boudguiga, and R. Sirdey. Optimized stream-cipher-
based transciphering by means of functional-bootstrapping. In Data and Applications
Security and Privacy XXXVII, pages 91–109, 2023.

[BDGM19] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC, pages 407–437,
2019.

[BMMP18] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast homomorphic evaluation of
deep discretized neural networks. In CRYPTO, page 483–512, 2018.

[BPR23] N. Bon, D. Pointcheval, and M. Rivain. Optimized Homomorphic Evaluation of Boolean
Functions. Cryptology ePrint Archive, Paper 2023/1589, 2023.

[BPS12] M. Brenner, H. Perl, and M. Smith. How practical is homomorphically encrypted pro-
gram execution? an implementation and performance evaluation. In IEEE TrustCom,
pages 375–382, 2012.

[CBSZ23] P-E. Clet, A. Boudguiga, R. Sirdey, and M. Zuber. ComBo: A Novel Functional
Bootstrapping Method for Efficient Evaluation of Nonlinear Functions in the Encrypted
Domain, pages 317–343. 2023.

20

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and
R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-ciphertext
compression. In Fast Software Encryption, pages 313–333, 2016.

[CCP+24] J. H. Cheon, H. Choe, A. Passelègue, D. Stehlé, and E. Suvanto. Attacks against the
IND-CPAD security of exact FHE schemes. Technical Report 127, IACR ePrint, 2024.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast Fully Homomor-
phic Encryption Library, August 2016. https://tfhe.github.io/tfhe/.

[CGRS14] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok. An FPGA co-processor im-
plementation of homomorphic encryption. In IEEE HPEC, pages 1–6, 2014.

[CIM18] S. Carpov, M. Izabachène, and V. Mollimard. New techniques for Multi-value input Ho-
momorphic Evaluation and Applications. Cryptology ePrint Archive, Paper 2018/622,
2018.

[CJP21] I. Chillotti, M. Joye, and P. Paillier. Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In Cyber Security Cryptography and
Machine Learning, pages 1–19, Cham, 2021. Springer International Publishing.

[CKK19] J.H. Cheon, D. Kim, and D. Kim. Efficient homomorphic comparison methods with
optimal complexity. Cryptology ePrint Archive, Paper 2019/1234, 2019.

[CLOT21] I. Chillotti, D. Ligier, J-B. Orfila, and S. Tap. Improved Programmable Bootstrapping
with Larger Precision and Efficient Arithmetic Circuits for TFHE. Cryptology ePrint
Archive, Report 2021/729, 2021.

[CS19] A. Chatterjee and I. Sengupta. FURISC: FHE encrypted URISC design. In Fully
Homomorphic Encryption in Real World Applications, pages 87–115. Springer, 2019.

[CSBB24] M. Checri, R. Sirdey, A. Boudguiga, and J.-P. Bultel. On the practical cpad security
of “exact” and threshold FHE schemes. In CRYPTO, 2024.

[DEMS21] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2: Lightweight
authenticated encryption and hashing. Journal of Cryptology, 34, 2021.

[FSF+13] S. Fau, R. Sirdey, C. Fontaine, C. Aguilar-Melchor, and G. Gogniat. Towards practical
program execution over fully homomorphic encryption schemes. In IEEE 3PGCIC,
pages 284–290, 2013.

[GBA21] A. Guimarães, E. Borin, and D. F. Aranha. Revisiting the functional bootstrap
in TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(2):229–253, Feb. 2021.

[GN20] X. Gong and D. Negrut. Cryptoemu: An instruction set emulator for computation over
ciphers. Technical Report TR-2020-10, University of Wisconsin-Madison, 2020.

[IMP18] F. Irena, D. Murphy, and S. Parameswaran. CryptoBlaze: A partially homomorphic
processor with multiple instructions and non-deterministic encryption support. In IEEE
ASP-DAC, pages 702–708, 2018.

[IZ21] I. Iliashenko and V. Zucca. Faster homomorphic comparison operations for BGV and
BFV. Cryptology ePrint Archive, Paper 2021/315, 2021.

[KS22] K. Kluczniak and L. Schild. FDFB: Full domain functional bootstrapping towards prac-
tical fully homomorphic encryption. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 501–537, 11 2022.

[LLKN21] E. Lee, J-W. Lee, Y-Sik. Kim, and J-S. No. Optimization of homomorphic comparison
algorithm on RNS-CKKS scheme. Cryptology ePrint Archive, Paper 2021/1215, 2021.

[PJH23] Méaux P., Park J., and V. L. Pereira H. Towards practical transciphering for FHE with
setup independent of the plaintext space. Cryptology ePrint Archive, Paper 2023/1531,
2023.

21

[SV10] N. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key
and ciphertext sizes. In PKC, page 420–443, 2010.

[TCBS23a] D. Trama, P-E. Clet, A. Boudguiga, and R. Sirdey. Building Blocks for LSTM Homo-
morphic Evaluation with TFHE, pages 117–134. 06 2023.

[TCBS23b] D. Trama, P-E. Clet, A. Boudguiga, and R. Sirdey. A Homomorphic AES Evaluation
in Less than 30 Seconds by Means of TFHE. WAHC, page 79–90. Association for
Computing Machinery, 2023.

[TM13] N. G. Tsoutsos and M. Maniatakos. Investigating the application of one instruction set
computing for encrypted data computation. In SPACE, pages 21–37, 2013.

[TM14] N. G. Tsoutsos and M. Maniatakos. HEROIC: Homomorphically encrypted one in-
struction computer. In IEEE DATE, pages 1–6, 2014.

[YXS+21] Z. Yang, X. Xie, H. Shen, S. Chen, and J. Zhou. Tota: Fully homomorphic encryption
with smaller parameters and stronger security. Cryptology ePrint Archive, Report
2021/1347, 2021.

22

