
Optimizing Rectangle and Boomerang Attacks: A
Unified and Generic Framework for Key Recovery

Qianqian Yang1,5, Ling Song2,3B, Nana Zhang1,5, Danping Shi1,5, Libo Wang2,
Jiahao Zhao1,5, Lei Hu1,5, and Jian Weng2,3,4

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 College of Cyber Security, Jinan University, Guangzhou, China
3 National Joint Engineering Research Center of Network Security Detection and

Protection Technology, Jinan University, Guangzhou, China
4 Guangdong Key Laboratory of Data Security and Privacy Preserving,

Jinan University, Guangzhou, China
5 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

yangqianqian@iie.ac.cn,songling.qs@gmail.com,zhangnana_mail@163.com,
shidanping@iie.ac.cn,wanglibo12b@gmail.com, zhaojiahao@iie.ac.cn,

hulei@iie.ac.cn, cryptjweng@gmail.com

Abstract. The rectangle attack has shown to be a very powerful form
of cryptanalysis against block ciphers. Given a rectangle distinguisher,
one expects to mount key recovery attacks as efficiently as possible. In
the literature, there have been four algorithms for rectangle key recovery
attacks. However, their performance varies from case to case. Besides,
numerous are the applications where the attacks lack optimality. In this
paper, we delve into the rectangle key recovery and propose a unified and
generic key recovery algorithm, which supports any possible attacking
parameters. Not only does it encompass the four existing rectangle key
recovery algorithms, but it also reveals five new types of attacks that
were previously overlooked. Further, we put forward a counterpart for
boomerang key recovery attacks, which supports any possible attacking
parameters as well. Along with these new key recovery algorithms, we pro-
pose a framework to automatically determine the best parameters for the
attack. To demonstrate the efficiency of the new key recovery algorithms,
we apply them to Serpent, AES-192, CRAFT, SKINNY, and Deoxys-BC-256
based on existing distinguishers, yielding a series of improved attacks.

Keywords: Boomerang attack, Rectangle attack, Key recovery algorithm,
Serpent, AES-192, CRAFT, SKINNY, Deoxys-BC

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS91],
is one of the most powerful cryptanalytic approaches for assessing the security
of block ciphers. The basic idea is to exploit non-random propagation of input
difference to output difference, i.e., high-probability differentials. In many cases,

Figure 1: Basic boomerang attack (left) and the schematic view of the key recovery
(right)

it may be hard to find a long differential of high probability. In 1999, Wagner
proposed the boomerang attack [Wag99], which divides a cipher E into two
sub-ciphers and utilizes two short differentials of high probability to construct a
long one.

Suppose E = E1 ◦ E0, where there are two short differentials α → β and
γ → δ with probability p and q for E0 and E1, respectively. The boomerang
attack, as depicted in Figure 1 (left), exploits the high probability of the following
differential property:

Pr
[
E−1(

E(x)⊕ δ
)
⊕ E−1(

E(x⊕ α)⊕ δ
)

= α
]

= p2q2. (1)

The basic boomerang attack requires adaptive chosen plaintexts and cipher-
texts. Later, Kelsey et al. developed a chosen-plaintext variant, named the
amplified boomerang attack [KKS00]. However, this transition reduced the prob-
ability of the distinguisher to 2−np2q2 where n is the block size. In [BDK01],
Biham et al. further converted the amplified boomerang attack into the rectangle
attack by considering as many differences as possible in the middle to estimate
the probability more accurately. As a result, the probability of a rectangle distin-
guisher becomes 2−np̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ).

The boomerang and rectangle attack then have been applied to numerous block
ciphers, such as Serpent [BDK01], AES [BK09], KASUMI [DKS10b, DKS14], etc.

Since the boomerang attack was proposed, there has been a line of research
on estimating the probability of boomerang distinguishers more accurately to
find better distinguishers. At first, the probability of a boomerang distinguisher
was considered as p2q2 by simply assuming the two differentials are independent
until the dependency issue between the two differentials came into view. In
boomerang or rectangle attacks on concrete ciphers, observations were made that
the probability computed via p2q2 may be inaccurate in some cases [BK09, Mur11],

2

where the probability can be higher by using tricks or the two chosen differentials
may even be incompatible. Taking the dependency between the two differentials
into account, Dunkelman et al. suggested the sandwich attack [DKS10b, DKS14]
which estimates the probability by p2q2r, where r is the exact probability for a
middle part. Later, a new tool named boomerang connectivity table (BCT) was
proposed to estimate the probability r theoretically [CHP+18, SQH19].

Another line of research on the boomerang and rectangle attack is to mount
key recovery attacks as efficiently as possible using different strategies of guessing
the key. Figure 1 (right) displays a schematic view of key recovery attacks
based on a distinguisher over the middle part Ed. The first rectangle key recovery
algorithm was proposed by Biham et al. together with the proposal of the rectangle
attack [BDK01]. This algorithm guesses all the key bits involved in both Eb and
Ef and was applied to 10-round Serpent [ABK98] with an 8-round rectangle
distinguisher. Shortly after that, in [BDK02] the same authors introduced the
second rectangle key recovery algorithm, which guesses no key bit and can improve
the result on Serpent by reducing the time complexity. Along with the rectangle
key recovery algorithm, a boomerang key recovery algorithm was proposed as
well in [BDK02]. There was no improvement until Zhao et al. proposed a new
rectangle key recovery algorithm in [ZDM+20] which guesses the key bits involved
only in Eb. Such an algorithm, when applied to SKINNY [BJK+16] outperforms
the two previous key recovery algorithms. However, the algorithm presented in a
very recent work [DQSW22] makes a step further in improving rectangle attacks
on SKINNY and some other ciphers by guessing additional key bits in the bottom
part Ef .

Motivation. Even though the two recent rectangle key recovery algorithms
provide surprisingly good results on SKINNY, we carefully check that they do not
beat the algorithm in [BDK02] when applied to Serpent. On the other hand,
the rectangle key recovery algorithm in [BDK02] is not efficient on SKINNY when
compared with the two recent ones. Then, the following questions arise.

– Given a rectangle distinguisher of a block cipher, how efficient can the
rectangle key recovery be?

– Are there any other ways to mount rectangle key recovery attacks?
– Can advances in rectangle key recovery attacks be transferred to the boomerang

key recovery attacks and other related attacks?

Not only would answers to these questions be of great significance to the crypt-
analysis of block ciphers, but they would also provide a deeper understanding of
the key recovery of rectangle and boomerang attacks.

Our contributions. In this paper, we investigate the key recovery phase of
rectangle and boomerang attacks thoroughly and completely answer the above
questions. In the previous key recovery algorithms, the involved subkey bits in
the outer rounds added around the distinguisher may or may not be guessed. The
four previous rectangle key recovery algorithms use four different kinds of subkey

3

guessing strategies. Our basic idea is that any possible guessing strategy should
be allowed and that there exists a guessing strategy yielding optimal complexities
for the key recovery attack. To realize these ideas, we have to solve two problems.
The first is how the attack proceeds when partial key bits (the extreme cases
are full/none of the subkey bits) are guessed on both sides of the distinguisher.
Note that such generalized cases have never been considered before. The second
problem is how the attack proceeds so that the time complexity is low.

The starting point of our work is some new insights that the key recovery
of the rectangle attack always includes steps of constructing pairs from single
messages and quartets from pairs, whereas the number of pairs or quartets that
will be constructed is affected by the guessed subkey bits. Unlike in the previous
works that always construct pairs on a fixed side, we do not restrain ourselves to
only one side but generate pairs on either side. With this in mind, we come up
with a unified and generic rectangle key recovery algorithm that supports any
possible attacking parameters. Moreover, we adapt the algorithm and suit it to
the adaptive chosen-plaintext/ciphertext requirement of the boomerang attack,
leading to a unified and generic boomerang key recovery algorithm. Besides, we
propose a framework to find the best-attacking parameters, especially the subkey
bits to be guessed. Our contributions are summarized as follows.

– Based on a deeper understanding of the rectangle key recovery, a unified and
generic key recovery algorithm is proposed. It supports any number of guessed
key bits and covers the four previous rectangle key recovery algorithms, i.e.,
any of the previous four algorithms is a special case of our algorithm. In
addition, it unveils five types of new attacks that were missed previously (see
Figure 4 in Section 4.1 for more information).

– Inspired by the new rectangle key recovery algorithm, we put forward a
counterpart for boomerang key recovery attacks, which also supports any
number of guessed key bits.

– Although our new algorithms support any set of attacking parameters, it does
not tell which is the best on its own. As a complement, we propose a framework
for automatically finding the best parameters for the new algorithms. When
we feed the parameters returned by this framework to our new key recovery
algorithms, the time complexity of the attack will be minimized.

– We analyze the relationship between the basic rectangle/boomerang attack
and the related attacks, i.e., the retracing boomerang attack [DKRS20], the
mixture differential attack [Gra18], and the boomeyong attack [RSP21]. We
further discuss the applicability of our new algorithms in these attacks.

Previously, the four mentioned rectangle key recovery algorithms are treated as
separate ones. Given a rectangle distinguisher, one can compute the complexities
for all algorithms and pick the algorithm with the lowest complexity. Now, we
can work with the new rectangle key recovery algorithm only. To demonstrate
the efficiency of the new key recovery algorithms, we apply them to five block
ciphers using existing distinguishers and obtain a series of improved results.

– We revisit both the rectangle attack and the boomerang attack on 10-round
Serpent and find better attacks than the one given in [BDK02].

4

– We give an improved 12-round rectangle attack and the first 13-round rect-
angle attack on AES-192, which are the best attacks on AES-192 so far in the
related-key setting.

– We revisit the rectangle attacks on round-reduced SKINNY in [DQSW22],
which are the best existing attacks on SKINNY in the related-tweakey setting.
For the four distinguishers of SKINNY, we find better attacks for three of
them, despite the fact that these distinguishers were searched dedicatedly for
the key recovery algorithm in [DQSW22].

– We extend the rectangle attack on CRAFT by one round and give the first
19-round attack, which is the best attack on this cipher so far in the single-key
setting.

– On Deoxys-BC-256, we improve the 11-round rectangle attack and extend
the boomerang attack by one round in the related-tweakey setting. These
are the best attacks on Deoxys-BC-256 so far in terms of time complexity.

These results are summarized in Table 1. According to these applications, we find
that the best attacking parameters differ significantly from those that were used
in previous works, and even the number of rounds added around the distinguisher
is different. Notably, these new attacking parameters are not covered by the
previous key recovery algorithms in many cases. Thus, it is likely that previous
rectangle attacks can be improved to some extent using the new key recovery
algorithms.

Organization. The rest of the paper is organized as follows. In Section 2, we
give notations that will be used throughout the paper. In Section 3, the new key
recovery algorithms will be introduced as well as the framework for automatically
finding the best-attacking parameters. In Section 4, we compare our new key
recovery algorithms with the previous ones in detail and discuss the applicability
of our algorithms to other attacks based on non-random properties of quartets.
Section 5 presents applications of the new algorithms to five block ciphers. We
conclude this paper in Section 6.

2 Notations

In this paper, we focus on the key recovery for a given boomerang distinguisher.
For simplicity, we treat a target cipher E : {0, 1}n × {0, 1}k → {0, 1}n as
E = Ef ◦Ed ◦Eb, where there is a boomerang distinguisher over Ed of probability
P 2, i.e.,

Pr
[
E−1

d (Ed(P1)⊕ δ)⊕ E−1
d (Ed(P1 ⊕ α)⊕ δ) = α

]
= P 2. (2)

That is, we take the probability of the boomerang distinguisher for P 2 and do
not pay attention to whether it is evaluated with p2q2r or p̂2q̂2. Figure 1 (right)
depicts the framework of E, where Eb and Ef are added around Ed. The aim of
the key recovery is to identify partial subkeys used in Eb and Ef by utilizing the

5

Table 1: Summary of the cryptanalytic results.
Cipher Rounds Data Memory Time Approach Setting Ref.

Serpent 10

2126.3 2126.3 2173.8 Rectangle SK [BDK02]
2126.3 2126.3 2159.11 Rectangle SK Sect. 5.1
2124.15 2124.15 2155.67 Rectangle SK Sect. 5.1
2128 296 2173.80 Boomerang SK [BDK02]
2128 2128 2158.85 Boomerang SK Sect. 5.1
2128 2128 2154.55 Boomerang SK Sect. 5.1

AES-192
12 2123 2152 2178 Rectangle RK [BK09]
12 2120.5 2127.5 2135.5 Rectangle RK Sect. 5.2
13 2126.5 2133.5 2170 Rectangle RK Sect. 5.2

CRAFT
18 260.92 284 2101.7 Rectangle SK [HBS21]
19 260.92 272 2112.61 Rectangle SK Sect. 5.3

SKINNY-64-128 25 261.67 264.26 2118.43 Rectangle RK [DQSW22]
261.67 263.67 2110.03 Rectangle RK Sect. 5.4

SKINNY-128-384 32 2123.54 2123.54 2354.99 Rectangle RK [DQSW22]
2123.54 2129.54 2344.78 Rectangle RK Sect. B.1

SKINNY-128-256 26 2126.53 2136 2254.4 Rectangle RK [DQSW22]
2126.53 2136 2241.38 Rectangle RK Sect. B.1

Deoxys-BC-256

10 2127.58 2127.58 2204 Rectangle RK [CHP+17]
11 2122.1 2128.2 2249.9 Rectangle RK [ZDJ19]
11 2126.78 2128 2222.49 Rectangle RK Sect. B.2
10 298.4 288 2109.1 Boomerang RK [ZDJ19]
11 2122.4 2128 2218.65 Boomerang RK Sect. 5.5

distinguisher over Ed and further to find the master key more efficiently than
the exhaustive search.

To describe the key recovery, a series of notations are used throughout the
paper. For convenience, we borrow some notations which are frequently used
in the previous works on boomerang and rectangle attacks, such as [BDK02,
LGS17, ZDM+20, DQSW22]. As shown in Figure 2, the input difference of the
distinguisher α propagates back over E−1

b to α′. Let Vb be the space spanned by
all possible α′ where rb = log2 |Vb|. The output difference of the distinguisher δ
propagates forward over Ef to δ

′ . Let Vf be the space spanned by all possible δ′

where rf = log2 |Vf |. Let kb be the subset of subkey bits which are employed in
Eb and affect the propagation α′ → α. Similarly, let kf be the subset of subkey
bits which are used in Eb and affect the propagation δ ← δ′. Then let mb = |kb|
and mf = |kf | be the number of bits in kb and kf , respectively.

In a specific key recovery algorithm, a part of kb and kf , denoted by k′
b, k′

f ,
may be guessed at first. Let m′

b = |k′
b| and m′

f = |k′
f |. With the guessed subkey

bits, the differential propagations α′ → α and δ ← δ′ can be partially verified.

6

Eb Ed Ef
α

difference between
(P1, P2) and (P3, P4)

δ

difference between
(C1, C3) and (C2, C4)

α′ δ
′

rb
rf

mb

kb

︸ ︷︷ ︸

mf

︸ ︷︷ ︸
kf

Figure 2: Outline of rectangle/boomerang key recovery attack

Suppose under the guessed subkey bits a r′
b-bit condition on the top and a r′

f -bit
condition on the bottom can be verified. Finally, let r∗

b = rb−r′
b and r∗

f = rf −r′
f .

In this paper, we mainly focus on the key recovery algorithms in the single-key
setting and these can be easily converted into the related-key setting for ciphers
with a linear key schedule.

3 Unified and Generic Key Recovery Algorithms

In this section, we present our unified and generic key recovery algorithms for
the rectangle attack and the boomerang attack, respectively. Both algorithms
support any possible key guessing strategy. Given a specific distinguisher, which
parameters are the best for our algorithm? A framework for automatically finding
the best parameters is then introduced afterward.

3.1 Key Recovery Algorithm for the Rectangle Attack

3.1.1 Basic Ideas and Intuitions

In this subsection, we recall the principles of the rectangle attack and give some
new insights on the key recovery which are core ideas behind our new algorithm.

As can be seen from Figure 1 and Eq. (2), the boomerang distinguisher is
built on a non-random property of quartets. The rectangle distinguisher is an
chosen-plaintext variant. This non-random property is then used to extract subkey
information in Eb and Ef . As in standard differential cryptanalysis, candidates for
subkey kb and kf are identified if they are suggested by a sufficiently large number
of quartets. Here, kb and kf are suggested by a quartet (Pi, Ci), i = 1, 2, 3, 4, if

Eb(kb, P1)⊕ Eb(kb, P2) = Eb(kb, P3)⊕ Eb(kb, P4) = α,

E−1
f (kf , C1)⊕ E−1

f (kf , C3) = E−1
f (kf , C2)⊕ E−1

f (kf , C4) = δ

7

holds. As shown in Figure 2, the α difference propagates to α′ via E−1
b and

α′ ∈ Vb. It does not mean every element of Vb is a possible α′, whereas any
difference outside Vb is impossible for α. The same applies to the bottom side.
This means quartets with plaintext differences outside Vb or ciphertext differences
outside Vf will not suggest any subkeys. Therefore, an important step in rectangle
key recovery algorithms is to construct quartets that are possible to suggest
subkeys and at least satisfy P1 ⊕ P2, P3 ⊕ P4 ∈ Vb, and C1 ⊕ C3, C2 ⊕ C4 ∈ Vf .

Data complexity. A commonly-used idea to improve differential cryptanalysis
is to employ plaintext structures. A plaintext structure takes all possible values
for the rb bits and chooses a constant for the remaining n − rb bits. It allows
enjoying the birthday effect. For each structure, there are 22rb−1 pairs of plaintext
with the difference in Vb and 2rb−1 of them satisfy α difference by meeting the
rb-bit condition.

Given a boomerang distinguisher with probability P 2, the number of quartets
satisfying the input difference α of the distinguisher should be at least sP −22n

for a rectangle attack, where s is the expected number of right quartets (say
s = 4). These quartets can be formed from plaintext pairs taken in structures.
Suppose the number of structures needed is y. Note y structures can constitute
2 ·

(
y2rb−1

2
)6 quartets that satisfy α difference. Then y =

√
s2n/2−rb+1/P and

the data complexity is D = y · 2rb =
√

s2n/2+1/P. This infers that the data
complexity is the same with different key recovery algorithms.

Time complexity. Next, let us investigate the time complexity from a high-
level perspective. We stress that the key recovery of the rectangle attack always
includes steps of constructing pairs from single messages and quartets from pairs.
Therefore, the whole key recovery can be split into the following phases: (1) data
collection, (2) pair construction, (3) constructing quartets and processing them
to extract subkeys, and (4) a brute force search for the unique right master key
among key candidates. The time complexities of the first and the last phases
are easy to estimate, so let us focus on the time complexities of the middle two
phases, which we denote by T2 and T3, respectively.

T3 is mainly affected by the number of quartet candidates. From D plaintexts,
we can construct N = D2 · 22rb+2rf −2n−2 quartet candidates with plaintext
difference in Vb and ciphertext difference in Vf . This seems to be a fixed term like
the data complexity. However, the number of quartets to be processed may be
reduced when some subkey bits are guessed. Recall that mb-bit kb and mf -bit kf

are involved in the propagation α′ ← α and δ → δ′ and verifying α difference and δ
difference for such a quartet takes 2rb-bit and 2rf -bit conditions (as there are two
pairs), respectively. Thus, there will be N · 2mb+mf −2rb−2rf = D2 · 2mb+mf −2n−2

suggestions for kb and kf in total. On average, the number of suggestions for a
wrong subkey is less than 1 as D2 · 2−2n−2 < 1, while it is s for the right subkey.
6 If both (P1, P2) and (P3, P4) satisfy α difference, then we can form two quartets:

(P1, P2, P3, P4) and (P1, P2, P4, P3).

8

Figure 3: A toy example to illustrate the parameters of the rectangle key recovery. Both
Eb and Ef contain one round. Bold lines stand for active bits, so rb = 12, rf = 8, and
the number of involved subkey bits in Eb and Ef are mb = 12 and mf = 8, respectively.
The subkey bits corresponding to blue lines are guessed. With the guessed subkey bits,
r′

b = 4 out of rb = 12 bits of conditions can be ensured. Likewise, r′
f = 4 out of rf = 8

bits of conditions can be ensured.

On the one hand, this confirms that the rectangle attack works; on the other
hand, it means that when the subkey is fixed, most quartets are wrong and thus
are likely to be filtered out before being constructed. This is what has been done
in the first rectangle key recovery algorithm proposed in [BDK01], which guesses
the whole kb and kf . We rewrite this algorithm in Appendix C.1.

However, a full guess of kb and kf is not necessary to reduce the number of
quartet candidates, as studied in [ZDM+20, DQSW22]. In this paper, we consider
the most general situation where a part of kb, i.e., k′

b, and a part of kf , i.e.,
k′

f are guessed, with m′
b = |k′

b|, m′
f = |k′

f |, 0 ≤ m′
b ≤ mb and 0 ≤ m′

f ≤ mf .
To have a better view of this situation, we present a toy example in Figure 3
to illustrate the parameters. Assume under the guess a r′

b-bit (resp. r′
f -bit)

condition can be verified for a plaintext (resp. ciphertext) pair. Then the number
of quartets to be processed is 2m′

b+m′
f ·D2 ·22r∗

b +2r∗
f −2n−2, where r∗

b = rb−r′
b and

r∗
f = rf − r′

f . We point out that the number of quartet candidates gets smaller as
long as m′

b + m′
f < 2r′

b + 2r′
f .

Let us come to the time complexity of constructing pairs, i.e., T2. Note that
T2 is determined by the number of pairs that are used to construct quartets.
We emphasize that pairs can be constructed either on the top for plaintexts
or on the bottom for ciphertexts. Still assume partial subkey bits are guessed.
Then the number of filters for plaintext pairs is n− r∗

b while it is roughly n− r∗
f

for ciphertext pairs (we will present the exact number of filters in the next
subsection). Since filters for plaintext pairs and filters for ciphertext pairs work
on different faces, they can not be taken into account simultaneously in the phase
of constructing pairs. The key principle is to form pairs on the side with more
filters so that T2 is lower.

9

Questions. Then, there come two questions:

Question 1: How does the key recovery algorithm proceed when k′
b and k′

f are
guessed, where m′

b = |k′
b|, m′

f = |k′
f |, 0 ≤ m′

b ≤ mb and 0 ≤ m′
f ≤ mf ?

Question 2: What is the best choice for (k′
b, k′

f) so that the overall time com-
plexity is minimized?

To answer the first question, we propose a detailed algorithm for the rectangle
key recovery in the next subsection. Because this algorithm supports any possible
(k′

b, k′
f) and covers all previous key recovery algorithms, we call it a generic and

unified algorithm for the rectangle key recovery. For the second question, we
present a framework for automatically finding the best (k′

b, k′
f) in Section 3.3.

Combining both, we can find the most efficient rectangle key recovery attack.

3.1.2 Details of the Algorithm

In the following, we describe our algorithm for the rectangle key recovery attack
which works for any number of guessed key bits. Like most of the key recovery
algorithms, our new algorithm also employs the counting method. Namely, we
set counters for the involved subkey bits and search for the correct one among
the subkey candidates with a large number of suggestions. Suppose m′

b-bit k′
b

and m′
f -bit k′

f are to be guessed. For these guessed subkey bits, we may or may
not set counters for them. To enjoy such flexibility, we set counters for t bits of
the guessed subkey bits, 0 ≤ t ≤ m′

b + m′
f .

Our algorithm for the single-key setting proceeds as follows. A variant of this
algorithm for the related-key setting is given in A.1 for ciphers with a linear key
schedule. Refer to the illustrative toy example in Figure 3 for a helpful guide to
comprehending the algorithm.

1. Collect and store y structures of 2rb plaintexts. Hence, the data complexity
is D = y · 2rb . The time and memory complexities of this step are also D.

2. Split (m′
b + m′

f)-bit k′
b∥k′

f into two parts: GL∥GR where GL has t bits.
3. Guess GR:

(a) Initialize a list of key counters for GL and the unguessed key bits of
kb, kf . The memory complexity in this step is 2t+mb+mf −m′

b−m′
f .

(b) Guess the t-bit GL:
i. For each data (P1, C1), partially encrypt P1 and partially decrypt

C1 under the guessed subkey bits. Let P ∗
1 = Enck′

b
(P1) and C∗

1 =
Deck′

f
(C1). For each structure, we will get 2r′

b sub-structures, each of
which includes 2rb−r′

b = 2r∗
b plaintexts which take all possible values

for the active bits. In other words, there are y∗ = y · 2r′
b structures of

2r∗
b plaintexts. The time complexity of this step is D.

ii. Let 2−µ = D · 2−n. If r∗
b ≤ r∗

f − µ7, it turns to step (A); else if
r∗

b > r∗
f − µ, it turns to step (D).

7 The number of filters for plaintext pairs is n − r∗
b − µ while it is n − r∗

f for ciphertext
pairs.

10

A. Insert all the obtained (P ∗
1 , C∗

1) into a hash table according to
n− r∗

b bits of P ∗
1 . Then construct a set as S = {(P ∗

1 , C∗
1 , P ∗

2 , C∗
2) :

P ∗
1 and P ∗

2 have difference only in r∗
b bits}. The size of S is

y · 2r′
b · 22(rb−r′

b)−1 = D · 2r∗
b −1. Hence, the time and memory

complexities of this step are both D · 2r∗
b −1.

B. Insert S into a hash table by n− (rf − r′
f) = n− r∗

f inactive bits
of C∗

1 and n− (rf − r′
f) = n− r∗

f inactive bits of C∗
2 .

C. For each 2(n−r∗
f)-bit index, we pick two distinct (P ∗

1 , C∗
1 , P ∗

2 , C∗
2),

(P ∗
3 , C∗

3 , P ∗
4 , C∗

4) to generate the quartet. We will get

2 ·
(|S|

2
2(n−r∗

f
)

2

)
· 22(n−r∗

f) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets. Then go to step (iii).
D. Insert all the obtained (P ∗

1 , C∗
1) into a hash table according to

n− r∗
f bits of C∗

1 . Then construct a set as S = {(P ∗
1 , C∗

1 , P ∗
3 , C∗

3) :
C∗

1 and C∗
3 are colliding in n − r∗

f bits}. The size of S is D2 ·
2rf −r′

f −n−1 = D · 2r∗
f −1−µ. Hence, the time and memory com-

plexities of this step are both D · 2r∗
f −1−µ.

E. Insert S into a hash table by n− r∗
b inactive bits of P ∗

1 and n− r∗
b

inactive bits of P ∗
3 .

F. There are at most 22(n−r∗
b −µ) possible values for the 2(n− r∗

b)-bit
index. For each index, we pick two distinct entries (P ∗

1 , C∗
1 , P ∗

3 , C∗
3),

(P ∗
2 , C∗

2 , P ∗
4 , C∗

4) to generate the quartet. We will get

2 ·
(|S|

22(n−r∗
b

−µ)

2

)
· 22(n−r∗

b −µ) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets.
iii. Determine the key candidates involved in Eb and Ef and increase the

corresponding counters. Denote the time complexity for processing
one quartet as ϵ. Then the time complexity in this step is D2 · 22r∗

b ·
22r∗

f · 2−2n−2 · ϵ.
(c) Select the top 2t+mb+mf −m′

b−m′
f −h hits in the counters to be the can-

didates, which delivers a h-bit or higher advantage, where 0 < h ≤
t + mb + mf −m′

b −m′
f .

(d) Guess the remaining k −mb −mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key. The time complexity of this step is 2k+t−m′

b−m′
f −h.

Data complexity. The data complexity is D = y · 2rb =
√

s2n/2+1/P.

Memory complexity. The memory complexity is M = D + min{D · 2r∗
b −1, D ·

2r∗
f −1−µ}+2t+mb+mf −m′

b−m′
f for storing the data, the set S, and the key counters.

11

Time complexity. The time complexity of collecting data is T0 = D, the time
complexity of doing partial encryption and decryption under guessed key bits is

T1 = 2m′
b+m′

f ·D = 2m′
b+m′

f · y · 2rb =
√

s · 2m′
b+m′

f + n
2 +1/P,

the time complexity of generating set S is

T2 = 2m′
b+m′

f ·D ·min{2r∗
b −1, 2r∗

f −1−µ}

= min{
√

s · 2m′
b+m′

f +rb−r′
b+ n

2 /P, s · 2m′
b+m′

f +rf −r′
f +1/P 2},

the time complexity of generating and processing quartet candidates is

T3 = 2m′
b+m′

f ·D2 ·22r∗
b ·22r∗

f ·2−2n−2 · ϵ = (s ·2m′
b+m′

f −n+2rb+2rf −2r′
b−2r′

f /P 2) · ϵ,

and the time complexity of the exhaustive search is T4 = 2m′
b+m′

f −t·2k+t−m′
b−m′

f −h =
2k−h, where h ≤ t + mb + mf −m′

b −m′
f . The overall time complexity is the

sum of Ti, i ∈ [0, 4].

On h. According to [Sel08], the success probability of differential analysis is

Ps = Φ

(√
sSN − Φ−1(1− 2−h)√

SN + 1

)
,

where SN is the signal-to-noise ratio and SN = 2−nP 2

2−2n in rectangle attacks as
well as in boomerang attacks. In the algorithm, the parameter t not only gives
much greater flexibility in choosing h but also allows the previous rectangle key
recovery algorithm to fit in easily regarding the setting of the key counters. We
will discuss more about the relation with the previous algorithms in Section 4.1.

On ϵ. In the algorithm, m′
b bits of kb and m′

f bits of kf are guessed, respectively.
With the guessed subkey bits, partial differential propagation over Eb (resp. Ef)
can be ensured by properly selecting pairs. Now suppose the input difference (resp.
output difference) falls in a smaller space V ∗

b (resp. V ∗
f) where r∗

b = |V ∗
b | (resp.

r∗
f = |V ∗

f |). In step 3(d) of the algorithm, the subkey information is extracted
from quartets with input difference in V ∗

b and output difference in V ∗
f . Then, ϵ is

defined to be the time to process one such quartet.
Recall that a right quartet satisfies Eb(P1)⊕Eb(P2) = α = Eb(P3)⊕Eb(P4).

Both pairs are encrypted by the same subkey, so a right quartet must agree on the
remaining m∗

b bits of kb. Under the guess of m′
b bits of kb, there are 2r∗

b possible
input differences that lead to α difference after Eb. Since each pair suggests
2m∗

b −r∗
b subkeys on average, both pairs agree on 22(m∗

b −r∗
b)/2m∗

b = 2m∗
b −2r∗

b for
Eb. Similarly, for Ef we get 2m∗

f −2r∗
f suggestions for the remaining m∗

f bits of
kf . Consequently, each quartet suggests 2m∗

b +m∗
f −2r∗

b −2r∗
f possible subkeys.

There are different methods to deduce the remaining m∗
b bits of kb suggested

by these quartets. A recommended method is to precompute a hash table for all
possible input pairs and the value of m∗

b -bit kb that can lead to α difference. This

12

table can be built with time complexity 2r∗
b +m∗

b and indexed by the values of
the pairs. The memory cost of this table is 2r∗

b +m∗
b (rather than 2r∗

b in [BDK01]).
When processing a quartet, we can extract the subkey candidates suggested by
both pairs by looking up the table twice. Do the same thing for Ef . Therefore,
ϵ will be no more than max{4, 2m∗

b −r∗
b + 2m∗

f −r∗
f } memory accesses, provided

that two lookup tables have been built with time and memory complexity of
2r∗

b +m∗
b + 2r∗

f +m∗
f . If 2m∗

b −r∗
b + 2m∗

f −r∗
f is relatively large, ϵ can be lowered to no

more than max{2, 2m∗
b −2r∗

b + 2m∗
f −2r∗

f } by using tables built for quartets. In this
case, the memory cost increases to 22r∗

b +m∗
b +22r∗

f +m∗
f , which also means achieving

the smallest ϵ at the cost of memory. This proves particularly advantageous when
22r∗

b +m∗
b + 22r∗

f +m∗
f does not heavily influence memory costs.

Note that sometimes the above method of processing quartets may not be
applied directly. In certain cases, besides the r∗

b bits, some other non-active bits
of pairs are needed to verify α difference after Eb, resulting in a larger time
complexity for building a precomputation table as well as a larger memory cost.
For the bottom part Ef , it is similar. As an example, this can be seen from
rectangle attacks on SKINNY (e.g., Figure 9). In such cases, we suggest building
lookup tables for smaller local operations. Consequently, ϵ can be equivalent to a
few memory accesses.

Another method to determine the remaining subkey bits suggested by a
quartet candidate is to guess and check. One can guess the remaining subkey bits
and check if the quartet is a right one under the guess. Such a method does not
require additional memory, whereas ϵ is some partial encryptions or decryptions.

Minimizing the time complexity. As can be seen from the formulas of
Ti, i ∈ [0, 4], the overall time complexity depends on the number of guessed
subkey bits m′

b + m′
f and the number of filters r′

b + r′
f obtained under these

guessed subkey bits. In order to reduce the time complexity, a natural strategy
is to guess those subkey bits which can lead to a large filter. If each subkey cell
is equally profitable (e.g., the attack on Serpent in Section 5.1), one can find
by hand the subkey k′

b and k′
f to be guessed in the key recovery so that the

time complexity is minimized. However, this is not the case for many ciphers.
For certain ciphers, not only the subkey cells are not equally profitable, but
also the subkey cells are closely related through the key schedule. Finding the
best parameters by hand is challenging. Moreover, given a set of parameters
that permit an efficient key recovery, one may wonder whether it is optimal or
not. Therefore, optimal rectangle attacks are possible only when the above key
recovery algorithm is fed with a set of proper parameters.

3.2 Key Recovery Algorithm for the Boomerang Attack

Recall that the boomerang attack requires adaptively chosen plaintexts and
chosen ciphertexts. In concrete boomerang attacks, the distinguisher is usually
extended on only one side. If it is extended on both sides, the key recovery

13

becomes complicated and the required data complexity depends not only on the
distinguisher but also on the extended rounds.

In this subsection, we give a generic key recovery algorithm for the boomerang
attack which has the same advantage as the algorithm for the rectangle attack in
Section 3.1. Namely, it supports any type of extension and any possible strategy
for guessing keys.

3.2.1 Basic Ideas

Assume the goal is to mount key recovery attacks on a cipher E = Ef ◦ Ed ◦ Eb

using a boomerang distinguisher of Ed, as shown in Fig. 2. The attack can start
either from the top or from the bottom. For convenience, assume we start from
the top, i.e., we choose plaintexts first.

Suppose the probability of the distinguisher is P 2. Then we need 1/P 2 pairs
of plaintexts such that the difference after Eb is α. We use structures of plaintexts.
From y structures, we can form y · 22rb−1 plaintext pairs. Among them, y · 2rb−1

pairs satisfy α difference on average. Let s be the expected number of right
quartets. Then, we have y · 2rb−1 · P 2 = s, y = s · 21−rb/P 2. That is, we need
D0 = y · 2rb = 2s/P 2 chosen plaintexts.

As the ciphertext differences fall in a set of 2rf elements, we need many more
chosen ciphertexts. The number of chosen ciphertexts the attack needs depends
on rf , which roughly is D0 · 2rf . As in the key recovery phase of the rectangle
attack, guessing some subkey bits may help filter wrong quartets in advance.
Suppose a part of kf , i.e., k′

f are guessed, with m′
f = |k′

f |, 0 ≤ m′
f ≤ mf . With

the guessed subkey bits, the differential propagation δ ← δ′ can be partially
verified. Suppose a r′

f -bit condition on the bottom can be verified. If m′
f < r′

f ,
the number of chosen ciphertexts can be reduced from D0 · 2rf to D0 · 2rf −r′

f +m′
f

by adaptively choosing ciphertexts under each guess of k′
f .

As in the rectangle attack, we need to decide on which side we construct
pairs. If we construct pairs on the top, the time complexity for generating pairs
and quartets is 2m′

b+m′
f · (D0 · 2r∗

b + D0 · 2r∗
b +r∗

f) while it is 2m′
b+m′

f · D0 · 2r∗
f

if we construct pairs on the bottom. This distinction comes from the adaptive
chosen-plaintext/ciphertext requirement of the boomerang attack. Therefore, it
is advantageous to construct pairs on the bottom (when we start from the top).

Next, we will give the details of our generic algorithm for the boomerang key
recovery attack, which incorporates the above ideas.

3.2.2 Details of the Algorithm

Our algorithm for the single-key setting proceeds as follows. A variant of this
algorithm for the related-key setting is given as well in A.2 for ciphers with a
linear key schedule.

1. Collect and store y structures of 2rb plaintexts such that D0 = y2rb = 2s/P 2.
Query for the corresponding ciphertexts and store the plaintext-ciphertext
pairs in L0. (M = T = D0)

14

2. Let D1 = min{D0 · 2rf , D0 · 2r∗
f +m′

f , 2n}. If D1 = 2n, query for the plaintext
for each possible ciphertext. If D1 = D0 · 2rf , for each possible δ′, shift the
ciphertexts in L0 by δ′ and query for their plaintexts. Store these plaintext-
ciphertext pairs in L1. The size of L1 is min{D0 · 2rf , 2n}.

3. Split m′
b-bit k′

b into two parts: GL∥GR where GL has t bits, 0 ≤ t ≤ m′
b.

4. Guess k′
f :

(a) If r′
f ≥ m′

f , for each data (P1, C1) ∈ L0, partially decrypt C1 to C∗
1

under k′
f and for each possible r∗

f -bit difference, construct C∗
3 and new

ciphertexts C3. If D1 < 2n query for the plaintexts P3; otherwise, read
P3 from L1. Store (P3, C∗

3) in L1,k′
f
. (Let L̂1 = ∪k′

f
L1,k′

f
. The size of L̂1

is D0 · 2r∗
f +m′

f . The memory cost for L1,k′
f

is D0 · 2r∗
f .)

(b) Guess GR:
i. Initialize a list of key counters for GL and the unguessed key bits of

kb, kf . The memory complexity in this step is 2t+mb+mf −m′
b−m′

f .
ii. Guess the t-bit GL:

A. For each data (P1, C1) ∈ L0, partially encrypt P1 and partially
decrypt C1 under the guessed subkey bits. Let P ∗

1 = Enck′
b
(P1)

and C∗
1 = Deck′

f
(C1). For each structure, we will get 2r′

b sub-
structures, each of which includes 2rb−r′

b = 2r∗
b plaintexts which

take all possible values for the active bits. In other words, there
are y∗ = y · 2r′

b structures of 2r∗
b plaintexts. (T = D0)

B. If r′
f < m′

f , do partial encryption and decryption for (P3, C3) ∈ L1
to get (P ∗

3 , C∗
3). (T = D0 · 2rf = D1)

C. If r′
f ≥ m′

f , do partial encryption for data in L1,k′
f

get (P ∗
3 , C∗

3).
(T = D0 · 2r∗

f)
D. Insert (P ∗

3 , C∗
3) into a hash table H1 according to (n−r∗

f) inactive
bits of C∗

3 . (The size of H1 is D0 · 2rf or D0 · 2r∗
f .)

E. Look up H1 with (P ∗
1 , C∗

1) and construct a set as S = {(P ∗
1 , C∗

1 ,
P ∗

3 , C∗
3) : C∗

1 and C∗
3 have difference only in r∗

f bits}. The size of
S is D0 ·2r∗

f . Insert pairs from S into the hash table H2 according
to n − r∗

b inactive bits of P ∗
1 and n − r∗

b inactive bits of P ∗
3 .

(T = D0 · 2r∗
f)

F. There are y · 2r′
b possible values for the n − r∗

b bits of P ∗
1 and

2n−r∗
b possible values for the n− r∗

b bits of P ∗
3 . For each index,

we pick two distinct entries (P1, C∗
1 , P3, C∗

3) and (P2, C∗
2 , P4, C∗

4)
to generate the quartet. The number of quartets we will get is(|S|

2n−r∗
b ·y·2r′

b

2

)
· 2n−r∗

b · y · 2r′
b = D0 · 22r∗

b +2r∗
f −n−1.

iii. Determine the key candidates involved in Eb and Ef and increase the
corresponding counters. Denote the time complexity for processing
one quartet as ϵ. Then the time complexity in this step is D0 ·
22r∗

b +2r∗
f −n−1 · ϵ.

15

iv. Select the top 2t+mb+mf −m′
b−m′

f −h hits in the counters to be the
candidates, which delivers a h-bit or higher advantage, where 0 <
h ≤ t + mb + mf −m′

b −m′
f .

v. Guess the remaining k−mb−mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover
the correct key. The time complexity of this step is 2k+t−m′

b−m′
f −h.

Data complexity. From y structures, we can form y · 22rb−1 plaintext pairs.
Among them, y ·2rb−1 pairs satisfy α difference on average. Let s be the expected
number of right quartets, so we have y ·2rb−1 ·P 2 = s, y = s ·21−rb/P 2 and D0 =
y · 2rb = 2s/P 2 chosen plaintexts as well as D1 = min{D0 · 2rf , D0 · 2r∗

f +m′
f , 2n}

chosen ciphertexts.

Memory complexity. The memory complexity is M = D0+D1+2t+mb+mf −m′
b−m′

f

when r′
f < m′

f or D1 = 2n and M = D0 + min{D0 · 2r∗
f , 2n}+ 2t+mb+mf −m′

b−m′
f

when r′
f ≥ m′

f and D1 < 2n to store the data, the set S of pairs, and the counters.

Time complexity. The time complexity of collecting data is T0 = D0 + D1, the
time complexity of doing partial encryption and decryption under guessed key
bits is

T1 = 2m′
b+m′

f · (D0 + D1),

when r′
f < m′

f and
T1 = 2m′

b+m′
f · (D0 + D0 · 2r∗

f),

when r′
f ≥ m′

f , the time complexity of generating set S is

T2 = 2m′
b+m′

f ·D0 · 2r∗
f ,

the time complexity of generating and processing quartet candidates is

T3 = 2m′
b+m′

f ·D0 · 22r∗
b +2r∗

f −n−1 · ϵ = s · 2m′
b+m′

f +2r∗
b +2r∗

f −n/P 2 · ϵ,

and the time complexity of the exhaustive search is T4 = 2m′
b+m′

f −t+k−mb−mf ·
2t+mb+mf −m′

b−m′
f −h = 2k−h, where 0 < h ≤ t + mb + mf −m′

b −m′
f .

3.3 Framework for Finding the Best Attacking Parameters

In this subsection, we present a framework that acts as a complement to our new
key recovery algorithms. This framework finds the best parameters for the attack.
When we apply the parameters returned by this framework to our key recovery
algorithms, the time complexity of the attack will be minimal.

Specifically, the framework takes as input a boomerang distinguisher with
(α, δ, P 2), i.e., the input difference and output difference, and its probability,
and extended rounds (Ed, Ef), and returns (k′

b, k′
f) and the minimal time com-

plexity. In essence, this is an optimization problem that can be solved with

16

various tools. A similarity can be observed in finding optimal differential/linear
trails [SHW+14, SWW21, KLT15], the division property [HLM+20], the meet-
in-the-middle attack [SSD+18], etc. Therefore, tools like Mixed-Integer Linear
Programming (MILP) and SAT which are widely used for solving these previously
mentioned problems can be applied as well in this framework. Since we want to
keep our framework generic and flexible, we will describe it as a template in a
high-level language. When it comes to a specific cipher, one can instantiate it
and solve it with MILP solvers or SAT solvers.

Our framework has five modules:

Difference propagation. Model the differentials α′ E−1
b←−−− α and δ

Ef−−→ δ′, both
of which propagate difference with probability 1. Compute rb and rf . Mark
the state cell if its difference is fixed.

Value path. Mark the state cells whose values are needed for verifying α dif-
ference and δ difference. Alongside, mark the subkey kb and kf which are
needed for the verification.

Guess-and-determine. Model the relation between the subkey bits and the
internal state cells, i.e., when certain subkey bits are guessed, the correspond-
ing internal state cell can be determined. When an internal state cell resulting
from some active cells is determined and should have a fixed difference, then
a filter is reached. Model the number of filters r′

b + r′
f .

Key bridging. 8 Model the relation between subkey bits according to the key
schedule algorithm. Model the number of independent guessed subkey bits
m′

b + m′
f .

Objective function. Compute Ti, i ∈ [0, 4] from P, n, rb, rf , r′
b, r′

f , m′
b and m′

f .
Set the objective function to min

∑4
0 Ti.

Other constraints can be imposed alongside, such as constraints on memory. Given
a boomerang distinguisher of a certain cipher, one can follow this framework to
build a concrete model dedicated to this cipher and try different Eb and Ef to
find a set of best parameters. Key information that can be extracted from these
parameters include

– Subkey k′
b and k′

f which will be guessed;
– The number of independent key bits in k′

b and k′
f , i.e., m′

b + m′
f ;

– The overall time complexity.

Feed these parameters to our key recovery algorithms, and the rectangle or
boomerang key recovery will be optimized. For more details, one can refer to
our source codes9 which showcase the implementation of this framework for the
attack on Serpent and SKINNY.

8 “Key bridging” is borrowed from [DKS10a, DKS15] which originally connects two
subkeys separated by several key mixing steps.

9 https://github.com/Ling-Song-000/Optimizing-Rectangle-Attacks

17

https://github.com/Ling-Song-000/Optimizing-Rectangle-Attacks

4 Comparisons and Extensions

In this section, we compare our new algorithms with related works and discuss
their applicability to other attacks that also exploit non-random properties of
quartets, such as the retracing boomerang attack [DKRS20] and the mixture
differential attack [Gra18]. In the literature, more algorithms have been proposed
for the rectangle key recovery attack, so we mainly compare our new algorithms
with previous algorithms for the rectangle key recovery attack.

4.1 Comparison with Previous Works on Rectangle Attacks

Rectangle key recovery algorithms in previous works. The rectangle
attack was proposed by Biham, Dunkelman, and Keller in [BDK01] and has been
applied to Serpent [ABK98]. The key recovery algorithm used for attacking
Serpent is rewritten in Appendix C.1. Later, the same authors introduced a
new rectangle key recovery algorithm in [BDK02] which improves the result on
Serpent by reducing the time complexity. Since then, not much progress has
been made until Zhao et al. proposed a new key recovery algorithm in [ZDM+20]
which originally worked for ciphers with a linear key schedule in the related-
key setting, but it can be converted to the single-key setting trivially. Such an
algorithm, when applied to SKINNY, outperforms the two previous key recovery
algorithms. However, the algorithm presented in a very recent work [DQSW22]
takes a step further in improving rectangle attacks on SKINNY. For convenience,
we call these four rectangle key recovery algorithms in chronological order by
Algorithm 1, Algorithm 2, Algorithm 3, and Algorithm 4, respectively. Details of
these algorithms can be found in Appendix C. As concluded in [DQSW22], these
algorithms seem independent and perform differently for different parameters.
Given a rectangle distinguisher, one can pick the algorithm with the lowest
complexity among them.

Similarities between our algorithm and the previous algorithms. Our
new algorithm reuses some techniques of the previous algorithms.

– Like Algorithm 2, we recommend using hash tables when generating pairs
and quartets. It costs a certain amount of memory (not necessarily increasing
the overall memory complexity), but the time complexity is lowered.

– When constructing quartets, we apply the filters on both pairs simultaneously
with the help of hash tables. This is also a strategy to trade memory with
time which has been used in Algorithms 3 and 4.

– When processing a quartet, we make use of precomputation tables so that
the term ϵ appearing in the time complexity is as small as possible. This
has been suggested in Algorithm 2 and we develop this technique in a more
practical way.

18

Algorithm 1 mb + mf

mb + mfAlgorithm 2

Algorithm 3 mb mf

Algorithm 4 mb + m′f mf −m′f

m′b mb + mf −m′b

mb −m′b mf + m′b

mb mf

m′fmb + mf −m′f

m′b mb −m′b m′f mf −m′f

Our algorithmm′b mb −m′b m′f mf −m′f

︸
︷︷

︸

0 ≤ m′b ≤ mb 0 ≤ m′f ≤ mf

the number of guessed key bits
the number of unguessed key bits

Figure 4: Diagram of guessed key for different algorithms

Our new algorithm unifies all the previous rectangle key recovery
algorithms. All the previous four algorithms are distinct from each other by the
number of guessed key bits. Figure 4 illustrates the comparison of our algorithm
with the four previous algorithms.

Specifically, Algorithm 1 guesses the full (mb + mf)-bit subkey; the main
refinement of Algorithm 2 is to generate quartets with birthday paradox without
guessing key bits involved in Eb and Ef ; Algorithm 3 guesses the mb-bit key
bits involved in Eb to generate quartets; Algorithm 4 extended Algorithm 3 by
guessing additional key bits in Ef and exploiting the inner state bits as fast
filters.

Our new algorithm supports any number of guessed key bits. Hence, it not
only covers all the cases considered by the four previous algorithms but also
includes five types of new cases (see Figure 4).

Any of the previous four algorithms is a special case of our algorithm.
We summarize the complexities of different algorithms in Table 2 using notations
in this paper. Note the data complexity D remains the same and all the algorithms
have to store the data and the subkey counters10. Some algorithms may need
some extra memory. Therefore, we mainly focus on the comparison of the time
complexity and the extra memory complexity.

From complexities listed in Table 2, we can see that Algorithms 1 to 4 are
special cases of our algorithm by substituting the corresponding parameters–
the exact number of guessed subkey bits and the number of resulted filters–for
m′

b + m′
f and r′

b, r′
f in our formulas shown in the last big row of Table 2. Note

r∗
b = rb − r′

b, r∗
f = rf − r′

f . More specifically,

1. When replacing m′
b = mb, m′

f = mf and setting t = mb + mf , we have
Algorithm 1. Since r∗

b = r∗
f = 0, the time complexities T2, T3 disappear or

can be neglected.
10 The key counters can be set flexibly. Thus the memory cost for them is elastic.

19

2. Algorithm 2 is the case of our algorithm with m′
b = m′

f = 0, t = 0 which
constructs pairs on the bottom side for ciphertexts.

3. Algorithm 3 is the case of our algorithm with m′
b = mb, m′

f = 0 which
constructs pairs on the top side for plaintexts.

4. Algorithm 4 is the case of our algorithm with mb +m′
f guessed key bits which

constructs pairs on the top side for plaintexts.

Table 2: Comparisons of different rectangle key recovery algorithms
Alg. #Guessed bits Extra memory Time

1 mb + mf 0 T1 = 2mb+mf · D

2 0 0 T2 = D2 · 2rf −n−1 = D
2 · 2rf −µ

T3 = D2 · 22rb+2rf −2n−2 · ϵ2

3 mb
D
2

T1 = 2mb · D
T2 = 2mb · D

2
T2 = 2mb · D2 · 22rf −2n−2 · ϵ3

4 mb + m′
f

D
2

T1 = 2mb+m′
f · D

T2 = 2mb+m′
f · D

2
T2 = 2mb+m′

f · D2 · 22r∗
f

−2n−2 · ϵ4

This m′
b + m′

f
D
2 · min{2r∗

b , 2r∗
f

−µ}
T1 = 2m′

b
+m′

f · D

T2 = 2m′
b

+m′
f · D

2 · min{2r∗
b , 2r∗

f
−µ}

T3 = 2m′
b

+m′
f · D2 · 22r∗

b
+2r∗

f
−2n−2 · ϵ

Application to concrete ciphers. The four previous key recovery algorithms
were treated as separate ones. Given a rectangle distinguisher, one can compute
the complexities for different algorithms and pick the one with the lowest com-
plexity. Now, with the new algorithm, we can work with this one only, and the
best parameters that allow the minimization of the time complexity may likely
lie outside the cases covered by the four previous algorithms. Section 5 includes
a series of such examples.

4.2 Comparison with Previous Works on Boomerang Attacks

In [BDK02], an algorithm for the boomerang key recovery attack was proposed. In
this algorithm, none of the key bits involved in the outer rounds are guessed, which
is similar to Algorithm 2 mentioned in the previous subsection for the rectangle key
recovery attack. Similarly, our algorithm for the boomerang key recovery attack
in Section 3.2 covers this algorithm and is more generic. The comparison between
the algorithm in [BDK02] and our new algorithm is showcased in Section 5.1.

20

4.3 Applicability to Related Attacks

For attacks that exploit non-random properties of quartets, one must construct
pairs from single messages, quartets from pairs, and then check the properties of
quartets. The advantage of our new algorithms for the rectangle and boomerang
key recovery attack comes from two things. One is that any possible key guessing
strategy is supported. The other is that generating pairs on the more advantageous
side results in lower time complexity. The core ideas of our new algorithms should
not be limited to the standard rectangle or boomerang attack. Next, we consider
the applicability of our new algorithms to other attacks that utilize properties of
quartets. Such attacks include the truncated boomerang attack, the retracing
boomerang/rectangle attack, the mixture differential attack, and the boomeyong
attack.

The truncated boomerang attack. In [Wag99], Wagner observed that the
boomerang attack can exploit truncated differential characteristics if several diffi-
culties are addressed. In [BL22], Bariant et al. formalize the truncated boomerang
attack. For the basic boomerang distinguisher, the input difference and the output
difference are both specific values, while for the truncated boomerang distin-
guisher, the input and the output differences are sets of differences Din and Dout,
respectively. The distinction mainly lies in the computation of probability. Specif-
ically, Pr[α E0−−→ β] = Pr[α E0←−− β] holds for standard differential characteristics
while Pr[Din

E0−−→ Dout] and Pr[Din
E0←−− Dout] are usually not equal for truncated

differential characteristics. Here, we focus on the key recovery.
In the basic boomerang attack, we consider pairs of plaintexts (P1, P2) with

P1 ⊕ P2 = α, then generate the corresponding pair of ciphertexts (C3, C4) with
C3 = C1⊕ δ, C4 = C2⊕ δ, and check whether the corresponding pair of plaintexts
(P3, P4) satisfies P3 ⊕ P4 = α. In the truncated boomerang attack, we consider
pairs P1⊕P2 = α ∈ Din, the corresponding pair of ciphertexts C3 = C1⊕δ ∈ Dout,
C4 = C2 ⊕ δ ∈ Dout, and check whether the corresponding pair of plaintexts
(P3, P4) satisfies P3 ⊕ P4 = α ∈ Din.

The algorithm in Section 3.2 is specifically targeted at the basic boomerang
attack. Since in the key recovery phase, only conditions on the two sides of
the distinguisher matter, the algorithm in Section 3.2 can be adapted to the
truncated boomerang key recovery attack without any modification.

The retracing boomerang/rectangle attack. The retracing boomerang
attack and rectangle attack were proposed by Dunkelman et al. in [DKRS20].
Extra conditions are imposed on the quartets in these attacks. Specifically, the
retracing boomerang attack imposes extra conditions on the output quartets while
the retracing rectangle attack imposes extra conditions on the input quartets.
According to the type of conditions, the retracing attack contains a shifting type
and a mixture type.

In the shifting retracing boomerang attack, we consider only pairs (P1, P2)
with P1 ⊕ P2 = α and CL

1 ⊕ CL
2 = 0 or δL to generate the corresponding

21

ciphertext pair (C3, C4) with C3 = C1 ⊕ δ, C4 = C2 ⊕ δ, and check whether the
corresponding pair of plaintexts (P3, P4) satisfies P3 ⊕ P4 = α, where δ = δL∥δR,
Ci = CL

i ∥CR
i for 1 ≤ i ≤ 4. In the mixing retracing boomerang attack, we

consider only pairs (P1, P2) with P1 ⊕ P2 = α to generate the corresponding pair
of ciphertexts (C3, C4) with C3 = (CL

2 , CR
1), C4 = (CL

1 , CR
2), and check whether

the corresponding pair of plaintexts (P3, P4) satisfies P3 ⊕ P4 = α.
In the standard rectangle attack, we consider quartets of plaintexts ((P1, P2),

(P3, P4)) such that P1 ⊕P2 = P3 ⊕P4 = α, and check whether the corresponding
quartets of ciphertexts ((C1, C3), (C2, C4)) satisfy C1 ⊕ C3 = C2 ⊕ C4 = δ. In
the shifting retracing rectangle attack, we consider only quartets of plaintexts
that satisfy P1 ⊕ P2 = P3 ⊕ P4 = α and P L

1 ⊕ P L
3 = 0 or αL, where α = αL∥αR,

Pi = P L
i ∥P R

i for 1 ≤ i ≤ 4. In the mixing retracing rectangle attack, we consider
only quartets of plaintexts that satisfy P L

1 ⊕ P L
2 = P L

3 ⊕ P L
4 = P L

1 ⊕ P L
3 , or in

other words, the pair (P3, P4) is the mixture counterpart of the pair (P1, P2) with
P3 = (P L

2 , P R
1), P4 = (P L

1 , P R
2).

Mixture differentials. The mixture differential technique was presented by
Grassi [Gra18]. The core step of the mixture differential attack of Grassi on
5-round AES is included in the mixture retracing rectangle attack framework.
In the mixture differentials, the upper path is closely related to the one in the
mixing retracing rectangle attack, and the lower path is closely related to the
one in the truncated rectangle attack. In other words, the mixture differential
attack is a truncated version of the mixing retracing rectangle attack.

Boomeyong. The boomeyong, embedding yoyo with boomerang, was presented
by Rahman et al. in [RSP21]. For boomeyong, the lower path is closely related to
the mixing boomerang variant, the upper path is closely related to the truncated
boomerang variant. In other words, boomeyong is a truncated version of the
mixing retracing boomerang attack.

Key recovery for different attacks. Regardless of the construction of dis-
tinguishers, we only consider the key recovery when some rounds are added on
both sides of the distinguishers.

For the key recovery, we have an algorithm in Section 3.1 targeted at the basic
rectangle attack and an algorithm in Section 3.2 targeted at the basic boomerang
attack. Is it possible to apply our algorithms to these related attacks?

In essence, the retracing rectangle attack and the mixture differential attack
are variants of the rectangle attack; the retracing boomerang attack and the
boomeyong attack are variants of the boomerang attack. Compared with the basic
boomerang and basic rectangle attacks, these related attacks can be classified
into two types of variants, where quartets satisfy the truncated differences rather
than the fixed difference in one type, and in the other type, quartets need to
satisfy extra conditions. For the first type, our algorithms can be directly applied,
where one only needs to change the filter from a fixed value to a truncated value.

22

For the second type, we can impose extra conditions after getting the quartets
that satisfy normal conditions. In other words, it needs to add extra filters after
the step of obtaining the quartets in the algorithms in Section 3.1 and Section
3.2. In summary, we can apply our algorithm to all these related attacks. Table
3 compares these related attacks and lists the extra filters needed for different
attacks.

Taking AES as the main target, these attacks extend either at the top or at
the bottom of the distinguisher to recover the key, which can be handled by
previous key recovery algorithms. Thus, we could not find improved results by
simply applying our new algorithms to existing distinguishers. However, our key
recovery algorithms are potentially useful in more generic cases of these attacks.

Table 3: Comparisons of different attacks
Attack Generate Extra Filtering Check

Standard P1 ⊕ P2 = α
P3 ⊕ P4 = αboomerang C3 ⊕ C1 = δ -

C4 ⊕ C2 = δ

Truncated P1 ⊕ P2 = α ∈ Din

P3 ⊕ P4 = α∗ ∈ Dinboomerang C3 ⊕ C1 = δ ∈ Dout -
C4 ⊕ C2 = δ∗ ∈ Dout

Shifting retracing P1 ⊕ P2 = α CL
1 ⊕ CL

2
P3 ⊕ P4 = αboomerang C3 ⊕ C1 = δ =0 or δL

C4 ⊕ C2 = δ

Mixing retracing P1 ⊕ P2 = α CL
1 ⊕ CL

2 =
P3 ⊕ P4 = αboomerang C3 ⊕ C1 = δ ∈ Dout CL

1 ⊕ CL
3 = -

C4 ⊕ C2 = δ∗ ∈ Dout CL
2 ⊕ CL

4

Boomeyong
P1 ⊕ P2 = α ∈ Din CL

1 ⊕ CL
2 =

P3 ⊕ P4 = α∗ ∈ DinC3 ⊕ C1 = δ ∈ Dout CL
1 ⊕ CL

3 =
C4 ⊕ C2 = δ∗ ∈ Dout CL

2 ⊕ CL
4

Standard P1 ⊕ P2 = α - C3 ⊕ C1 = δ
rectangle P3 ⊕ P4 = α C4 ⊕ C2 = δ

Shifting retracing P1 ⊕ P2 = α P L
1 ⊕ P L

3 = 0 C3 ⊕ C1 = δ
rectangle P3 ⊕ P4 = α or αL C4 ⊕ C2 = δ

Mixing retracing P1 ⊕ P2 = α ∈ Din P L
1 ⊕ P L

2 = P L
3 ⊕ P L

4 C3 ⊕ C1 = δ
rectangle P3 ⊕ P4 = α∗ ∈ Din = P L

1 ⊕ P L
3 C4 ⊕ C2 = δ

Mixture differential P1 ⊕ P2 = α ∈ Din P L
1 ⊕ P L

2 = P L
3 ⊕ P L

4 C3 ⊕ C1 = δ ∈ Dout

P3 ⊕ P4 = α∗ ∈ Din = P L
1 ⊕ P L

3 C4 ⊕ C2 = δ∗ ∈ Dout

Din and Dout are sets of differences.

23

5 Applications

In this section, we apply our new key recovery algorithms to five block ciphers
using existing distinguishers: Serpent, AES-192, CRAFT, SKINNY, and Deoxys-BC-
256. We find that the best attacking parameters differ significantly from those
that were used in previous works and even the number rounds in the outer part
Eb or Ef are different. Moreover, these new attacking parameters are not covered
by the previous key recovery algorithms in many cases. Consequently, improved
results on these ciphers are obtained.

5.1 Application to Serpent

We apply our new rectangle key recovery algorithm to Serpent [ABK98], which
was the first target when the rectangle attack was proposed in 2001 [BDK01].
Serpent is a block cipher that ranked second in the Advanced Encryption
Standard (AES) finalist. It was an SP-network designed by Ross Anderson, Eli
Biham, and Lars Knudsen, which has a block size of 128 bits and supports a
key size of 128, 192 or 256 bits. Serpent iterates 32 rounds, and each round
i ∈ {0, 1, ..., 31} consists of three operations: key mixing, S-boxes, and linear
transformation. Suppose Bi represents the internal state before round i, Ki is
the 128-bit subkey, and Si denotes the application of S-box in round i. Let L be
the linear transformation. Then the Serpent round function is defined as follows.

Xi = Bi ⊕Ki

Yi = Si(Xi)
Bi+1 = L(Yi), i = 0, · · · , 30
Bi+1 = Yi ⊕Ki+1, i = 31

The internal state of Serpent can be seen as a 4× 32 array, where each row
is a 32-bit word. The S-boxes are applied to 4-bit columns. Serpent applies eight
different 4-bit S-boxes, and these eight S-boxes are used four times. As our attack
does not depend on the order of S-boxes, we omit the details here.

Distinguisher. We use the 8-round rectangle distinguisher of Serpent proposed
by Biham et al. in [BDK01] to attack 10-round Serpent with Eb and Ef consisting
of round 0 and round 9 respectively. The probability of the distinguisher is
2−nP 2 = 2−128−120.6, and other parameters of the attack are: n = 128, mb =
rb = 76, mf = rf = 20.

Recently in [KT22], this distinguisher has been re-evaluated and a more
accurate probability of 2−128−116.3 is reported. For a better comparison, we will
mount key recovery attacks with both probabilities of the distinguisher.

In the case of Serpent, a 4-bit key guess for an active S-box will lead to a 4-bit
inner state filter for a pair of messages. That is, all the key nibbles corresponding
to the active S-boxes of the first round and the last round are equivalently good
for filtering data.

24

Parameters and complexities of the rectangle attack. When we take the
old probability, the best guessing parameters are m′

f = r′
f = 20, m′

b = r′
b = 8,

which means guessing all the kf and two nibbles of kb. Note that, this type of
guessing strategy is not supported by previous rectangle key recovery algorithms.
The complexities are as follows.

– The data complexity is D = y · 2rb =
√

s · 2n/2+1/P =
√

s · 2125.3.
– The memory complexity is M = D + D2 · 2r∗

f −n−1 + 2t+mb+mf −m′
b−m′

f =√
s · 2125.3 + s · 2121.6 + 2t+68.

– The time complexity T1 = 2m′
b+m′

f ·D =
√

s · 2153.3;
– T2 = 2m′

b+m′
f ·D2 · 2r∗

f −n−1 = s · 2149.6;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n−2 · ϵ = s · 228+250.6+2×68+0−2×128−2 · ϵ =

s · 2156.6 · ϵ;
– T4 = 2k−h, h < 68 + t.

For each of the remaining quartets, it can be processed S-box by S-box, so ϵ takes
about 1 + 2−4 + 2−8 + · · ·+ 2−16∗4 = 20.09 memory accesses. Set s = 4, then the
data and memory complexities of our attack are both 2126.3. The time complexity
besides the brute forcing part includes 2154.3 partial encryptions/decryptions and
2158.69 memory accesses. Assume a partial encryption/decryption is equivalent
to 7 memory accesses as 7 S-boxes are involved. Then it needs 2159.11 memory
accesses in total.

When we take the new probability, the guessing parameters m′
f = r′

f =
20, m′

b = r′
b = 8 are still the best. Another choice for these parameters is

m′
f = r′

f = 16, m′
b = r′

b = 12 which leads to the same time complexity but a
slightly higher memory complexity. Thus we choose the former. Set s = 4, then the
data and memory complexities of our attack are both 2124.15. The time complexity
besides the brute forcing part includes 2152.15 partial encryptions/decryptions
and 2154.39 memory accesses, which is about 2155.67 memory accesses in total.

Parameters and complexities of the boomerang attack. We use the
same distinguisher to give 10-round boomerang attacks. If we take the old
probability P 2 = 2−120.6 for the distinguisher, the best attacking parameters are
m′

b = 12, m′
f = 20.

– The data and memory complexities are both 2128;
– T0 = 2128 encryptions, T1 = 2155.6 partial encryptions, T2 = 2155.6 memory

accesses, and T3 = 232 · 2123.6 · 22∗64−128−1 · ϵ = 2154.6 · ϵ = 2154.69 memory
accesses. In total, it needs 2158.85 memory accesses.

If we take the new probability, the best attacking parameters remain the same.
The time complexity is improved to 2154.55 memory accesses.

The comparison with the previous rectangle attacks11 based on the same
distinguisher is presented in Table 4.
11 In [DQSW22], a rectangle attack on 10-round Serpent was also given. However,

the authors seem to mistake mf , rf for mb, rb. So we do not include their result in
Table 4.

25

Table 4: Comparisons of key recovery attacks on 10-round Serpent where
the time is measured by the number of memory accesses.

Attack P 2 mb, mf m′
b, m′

f Data Memory Time Reference

Rectangle 2−120.6 76, 20
76,20 2126.8 2192 2217 [BDK01]
0,0 2126.3 2126.3 2173.8 [BDK02]
8,20 2126.3 2126.3 2159.11 This

2−116.3 76, 20 8,20 2124.15 2124.15 2155.67 This

Boomerang 2−120.6 76, 20 0,0 2128 296 2173.80 [BDK02]
12,20 2128 2128 2158.85 This

2−116.3 76, 20 12,20 2128 2128 2154.55 This

5.2 Application to AES-192
Using the 10-round distinguisher from [DEFN22], we can get the same 12-round
boomerang attack on AES-192 as in [DEFN22] and the best 12-round rectangle
attack so far. Applying our new algorithm for the rectangle attack to a new
distinguisher extended from the 10-round one, we obtain the first 13-round
rectangle attack on AES-192. Next, we give details about the 12-round and
13-round rectangle attacks of AES-192.

Specification. The Advanced Encryption Standard (AES) [DR02] is an iterated
block cipher that encrypts 128-bit plaintext with the secret key of sizes 128,
192, and 256 bits. Its internal state can be represented as a 4× 4 matrix whose
elements are byte values (8 bits). The round function, as depicted in Figure 5,
consists of four basic transformations in the following order:

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

- ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column with a Maximum
Distance Separable (MDS) matrix over GF (28).

- AddRoundKey (AK) is an exclusive-or with the round key.

SB
0
1
2
3

0 1 2 3

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC AK

Figure 5: AES round function

At the very beginning of the encryption, an additional whitening key addition
is performed, and the last round does not contain MixColumns. AES-128, AES-192,

26

and AES-256 share the same round function with different numbers of rounds: 10,
12, and 14, respectively.

The key schedule of AES transforms the master key into round keys that are
used in the round function. Here, we describe the key schedule of AES-192. The
192-bit master key is divided into six 32-bit words (W [0], W [1], ..., W [5]), then
W [i] for i ⩾ 6 is computed as

W [i] =
{

W [i− 6]⊕ SB(RotByte(W [i− 1]))⊕Rcon[i/6] i ≡ 0 mod 6,

W [i− 6]⊕W [i− 1] otherwise

where RotByte is a cyclic shift by one byte to the left, and Rcon is the round
constant.

12-round related-key rectangle attack. We reuse the 10-round boomerang
distingisher of AES-192 proposed by Derbez et al. in [DEFN22]. The probability
of the distinguisher is 2−nP 2 = 2−128−108 = 2−236. The attack extends one round
before and after the distinguisher respectively. The parameters of the attack are
n = 128, mb = 8, rb = 16, mf = 32, rf = 35.

Note that our original rectangle key recovery algorithm works in the related-
key setting for ciphers with a linear key schedule. Even though the key schedule
of AES contains many linear operations, it is not fully linear. Therefore, we must
treat the S-boxes in the key schedule carefully when applying our new algorithm.
In particular, we choose to guess the subkey bytes at the positions that have
fixed differences for both trails. In this way, a one-byte guess will lead to known
values for the four related keys at the same position. Besides, when processing
the remaining quartets to extract more subkey bytes, we also need to take into
account the nonlinearity of the key schedule.

With this in mind, we apply our rectangle key recovery algorithm to it and find
that the best strategy is to guess 1 byte of kb for a 1-byte filter. The complexities
of our new attack are as follows.

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 2120.
– The memory complexity is MR = DR + D · 2 · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 2120 +

√
s · 2127 + 2t+40.

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 28+120 =
√

s · 2128;
– T2 = 2m′

b+m′
f ·D · 2 · 2rb−r′

b =
√

s · 28+118+1+8 =
√

s · 2135;
– T3 = 2m′

b+m′
f ·D2 ·22r∗

b +2r∗
f −2n ·ϵ = s ·28+2×118+2×35+2×8−2×128 ·ϵ = s ·276 ·ϵ;

The remaining key bytes are gradually recovered using the right quartets and
available data. Set s = 2, then the data, memory, and time complexities of our
attack are 2120.5, 2127.5, and 2135.5 memory access.

13-round related-key rectangle attack. Adding one round before the 10-
round boomerang distinguisher from [DEFN22], we get a 11-round rectangle
distinguisher with probability 2−nP 2 = 2−128−120 = 2−248, as shown in Figure 13.

27

We still extend one round before and after the distinguisher respectively. As a
result, we get the first 13-round related-key rectangle attack on AES-192. The
parameters of the attack are: n = 128, mb = 56, rb = 56, mf = 32, rf = 35, as
shown in Figure 6.

Note that the i-th subkey, denoted by Ki, is of size 192-bit and K1 is the
master key. We denote the difference between subkeys in the upper trail by ∆Ki,
and in the lower trail by ∇Ki. We add the difference ∆K2 to K2 for the upper
trail and add the difference ∇K5 to K5 for the lower trail. The details of the
subkey differences are listed in Table 14. The best strategy is to guess 1 byte of
kb to get a 1-byte filter. The attack proceeds as follows:

11-Round Boomerang
 Distinguisher for AES

Zero difference Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

01

? 21 21 21

3e 3e 3e 3f

1f 1f 1f 1f

1f 1f 1f 1f

21

3f

1f

1f

01 01

21

1f

A

A

A

A A

cb cb cb cb f8

7c

7c

f8

7c

7c

33

7c

7c

f8

7c

7c

? ? ? ?

7c 7c 7c 7c

7c 7c 7c 7c

? ? ? ?

? 21 21 21

3e 3e 3e 3e

1f 1f 1f 1f

1f 1f 1f 1f

1f1f1f

Figure 6: AES-192 13-round rectangle attack

1. Construct y structures of 2rb plaintexts and query for the ciphertexts under
the key Ki, and store them in set Li, for i = 1, 2, 3, 4. The data complexity
is DR = 4 · y · 2rb =

√
s · 2126.

2. Guess 8-bit round key RK1
0 [13] as marked in Figure 6:

(a) Initialize a list of key counters for the unguessed key bits of kb, kf .
(b) For each (Pi, Ci) in data set Li, partially encrypt Pi under the 8 bit

RKi
0[13]. The time of this step is T1 = 28 ·DR = s·2134 partial encryptions.

(c) Construct two sets as S3 = {(P ∗
1 , C∗

1 , P ∗
3 , C∗

3) : (P ∗
1 , C∗

1) ∈ L1, (P ∗
3 , C∗

3) ∈
L3, C∗

1 and C∗
3 are colliding in 93 bits}, S4 = {(P ∗

2 , C∗
2 , P ∗

4 , C∗
4) :

(P ∗
2 , C∗

2) ∈ L2, (P ∗
4 , C∗

4) ∈ L4, C∗
3 and C∗

4 are colliding in 93 bits}. The
size of each set is D2 · 2−93 = s · 2155. Note that an 88-bit filter can be
used before we get the pairs, and another 5-bit filter can be used after we

28

get the pairs, thus the time of this step is T2 = 25 · 28 · 2 · s · 2155 = s · 2169

memory access.
(d) Insert S3 into a hash table H3 by n − r∗

b = n − 48 in active bits of P ∗
1

and n− 48 in active bits of P ∗
3 . Insert S4 into a hash table H2 by n− 48

in active bits of P ∗
2 and n− 48 in active bits of P ∗

4 .
(e) There are at most 22(n−48−µ) = s · 22(80−4) = s · 2152 possible values for

the 2(n − 48) = 160-bit index. With each 2(n − 48)-bit index, we pick
two distinct (P ∗

1 , C∗
1 , P ∗

3 , C∗
3), (P ∗

2 , C∗
2 , P ∗

4 , C∗
4) to generate the quartet.

We will get

D2 · 22·48 · 22·35 · 2−2n = s · 2124·2−90 = s · 2158

quartets. The time of this step is 28 · s · 2158 = s · 2166 memory accesses.
3. Determine the key candidates involved in Eb and Ef and increase the corre-

sponding counters. In bytes 9, 10, and 15 of the RK0, the key differences in
the upper and lower trail are known. We construct tables for quartets S-box
by S-box. Traversing the value of the key and the four input values before the
AddRoundKey operation, we can calculate the output differences for a quartet.
Then for a fixed quartet, there is 2−8 solution on average for a fixed output
difference. Thus we can get the key values by looking up the table once. In
bytes 0, 1, 5 of the RK0 and 0, 4, 8, 12 of the RK13, the key difference in
the lower path is unknown. Similar to constructing the tables about quartets,
we construct tables for pairs. Traversing the value of the key and the two
input values before the AddRoundKey operation, we can calculate the output
difference. Then for a fixed pair, there is 1 solution on average for a fixed
output difference. Thus we can get the key values by looking up the table
once.
(a) By looking up the table for a quartet, we get (K1

0 [9], K2
0 [9], K3

0 [9], K4
0 [9]),

and there are s · 2166−8 = s · 2158 quartets.
(b) Similarly, by looking up the table for a quartet, we get (K1

0 [10], K2
0 [10],

K3
0 [10], K4

0 [10]). Traversing the output differences, there are 28·s·2158−8 =
s · 2158 quartets.

(c) Similarly, by looking up the table for a quartet, we get (K1
0 [15], K2

0 [15],
K3

0 [15], K4
0 [15]), and there are s · 2158−8 = s · 2150 quartets remaining.

(d) By looking up the table for a pair, we get (K1
0 [0, 1, 5], K2

0 [0, 1, 5]) and
(K3

0 [0, 1, 5], K4
0 [0, 1, 5]), respectively. There are s ·2150 quartets remaining.

(e) Similarly, by looking up the table for a pair, we get (K1
13[0, 4, 8, 12],

K13
2 [0, 4, 8, 12]) and (K3

13[0, 4, 8, 12], K4
12[0, 4, 8, 12]), respectively. There

are s · 2150+8 = s · 2158 quartets remaining.
Therefore, the time of this step is T3 = 2 · s · 2166 = s · 2167 memory accesses.

The remaining key bytes are gradually recovered using the right quartets and
available data. Set s = 2, then the data, memory, and time complexities of our
attack are 2126.5, 2133.5, and 2170 memory accesses. The comparison with the
previous rectangle attacks is presented in Table 5. Even though the full AES-192
has only 12 rounds, our result shows it is possible to attack more rounds using
our rectangle key recovery algorithm.

29

Table 5: Comparisons of key recovery attacks on AES-192 where the time is
measured by the number of memory accesses.

P 2 Rounds mb, mf m′
b, m′

f Data Memory Time Reference

2−110 2+9+1 48,32 0,0 2123 2152 2178 [BK09]

2−108 1+10+1 8, 32 8,0 2120.5 2127.5 2135.5 This

2−120 1+11+1 56, 32 8,0 2126.5 2133.5 2170 This

5.3 Application to CRAFT

We apply our new rectangle key recovery algorithm to CRAFT in the single-key
setting and obtain the first 19-round rectangle attack, which is one more round
than the previous work in [HBS21].

Specification. CRAFT is a lightweight tweakable block cipher that was introduced
by Beierle et al. [BLMR19]. It supports 64-bit plaintexts, 128-bit keys, and 64-bit
tweaks. Its round function is composed of involutory building blocks. The 64-bit
input is arranged as a state of 4× 4 nibbles. The state is then going through 32
rounds Ri, i ∈ 0, · · · , 31, to generate a 64-bit ciphertext. As depicted in Figure 7,
each round, excluding the last round, has five functions, i.e., MixColumn (MC),
AddRoundConstants (ARC), AddTweakey (ATK), PermuteNibbles (PN), and S-box
(SB). The last round only includes MC, ARC and ATK, i.e., R31 = ATK31 ◦ARC31 ◦MC,
while for any 0 ≤ i ≤ 30, Ri = SB ◦ PN ◦ ATKi ◦ ARCi ◦ MC.

The tweakey schedule of CRAFT is rather simple. Given the secret key K =
K0∥K1 and the tweak T ∈ {0, 1}64, where Ki ∈ {0, 1}64, four round tweakeys
TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕Q(T) and TK3 = K1 ⊕Q(T) are
generated, where Q is a nibble-wise permutation. Then at the round Ri, TKi%4
is used as the subtweakey.

Figure 7: A round of CRAFT

30

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

A

A

A

A

A

A

A

AA

A

Dedicated 14-Round Rectangle Distinguisher for CRAFT

MC

MC

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift A

A

A

A

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

A

A

A

A

A

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

A

A

A

A

A

Figure 8: A 19-round key recovery attack against CRAFT

Distinguisher. We use the 14-round rectangle distinguisher of CRAFT proposed
by Hadipour et al. in [HBS21] to attack 19-round CRAFT with 3-round Eb and 2-
round Ef , as shown in Figure 8. The probability of the distinguisher is 2−nP 2 =
2−64−55.85, and other parameters of the attack are: n = 64, k = 128, mb =
112, rb = 60, mf = rf = 24. The first three subtweakeys are TK0, TK1, and
TK2, respectively. The last subtweakey is TK2. Note TK2 shares the same key
information with TK0, and kb ∪ kf only contains (16 + 12 + 6 − 6) × 4 = 112
information bits.

Parameters and complexities. The best guessing parameters are m′
b =

32, r′
b = 16, mf = r′

f = 24, and |k′
b ∪ k′

f | = 40, which means guessing 10 cells of
kf and kb to get 10 cells filters. The key cells to be guessed and the corresponding
filters are highlighted with red squares in Figure 8. Note that this type of guessing
is not covered in previous rectangle key recovery attacks. The complexities of
our new attack are as follows.

31

– The data complexity is D = y · 2rb =
√

s · 2n/2+1/P =
√

s · 260.92.
– The memory complexity is M = D + D2 · 2r∗

f −n−1 + 2mb+mf −m′
b−m′

f =√
s · 260.92 + s · 256.85 + 2t+72

– The time complexity T1 = 2m′
b+m′

f ·D =
√

s · 2100.92;
– T2 = 2m′

b+m′
f ·D2 · 2r∗

f −n−1 = s · 296.85;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n−2 · ϵ = s · 240+121.85+2×44+0−2×64−2 · ϵ =

s · 2119.85 · ϵ;
– T4 = 2k−h, h < t + 72.

Processing a candidate quartet to retrieve the rest of kb can be realized by
looking up tables. We precompute several tables as illustrated in Table 15. How
will these tables be used? For each quartet candidate, we first look up the first table
using known values (Y i

1 [9], Y i
1 [12]), i = 1, 2, 3, 4 for TK1[9], TK1[12]. Each quartet

candidate will have one TK1[9], TK1[12] on average. Then, look up the second
table using (Y i

0 [3], Xi
1[2] ⊕ Xi

1[10], ∆Xj
2 [1], TK0[13]), i = 1, 2, 3, 4, j = 1, 3 and

only 2−8 of the quartet candidates can find a hit in the table for TK0[3], TK1[2].
Discard those quartet candidates which can not find a hit in the table. Then
look up the next table and so on. Therefore, ϵ is equivalent to about 2 memory
accesses which is around 2× 1

16 ×
1

19 = 2−7.24 encryption. If we set s = 1, h = 28,
and t = 0, then the data, memory, and time complexities of our attack are 260.92,
272, and 2112.61, respectively. The success probability is about 74.59% which is
computed by Selçuk’s formula [Sel08].

The comparison with the previous rectangle attacks based on the same
distinguisher is presented in Table 6.

Table 6: Comparisons of key recovery attacks on CRAFT

P 2 Rounds mb, mf m′
b, m′

f Data Memory Time Reference

2−55.85 1 + 14 + 3 24, 84 24, 0 260.92 284 2101.7 [HBS21]

2−55.85 3 + 14 + 2 112, 24 32, 24 260.92 272 2112.61 This

5.4 Application to SKINNY

When we apply our new rectangle key recovery algorithm to SKINNY’s distin-
guishers from [DQSW22], better attacks are obtained for three out of four
distinguishers, and for the rest, our attack matches with the one in [DQSW22].
Even though these distinguishers were searched dedicatedly for the key recovery
algorithm in [DQSW22] (named Algorithm 4 in Section 4.1), we found that the
best-attacking parameters may be not covered by that key recovery algorithm.

Next, we give the detailed attack on 25-round SKINNY-64-128, and the attacks
on 32-round SKINNY-128-384 and 26-round SKINNY-128-256 are postponed to
Appendix B.1.

32

Specification. SKINNY [BJK+16] is a family of lightweight block ciphers which
adopt the substitution-permutation network and elements of the TWEAKEY
framework [JNP14]. Members of SKINNY are denoted by SKINNY-n-tk, where
n ∈ {64, 128} is the block size and tk ∈ {n, 2n, 3n} is the tweakey size. The
internal states of SKINNY are represented as 4× 4 arrays of cells with each cell
being a nibble in case of n = 64 bits and a byte in case of n = 128 bits. The
tweakey state is seen as a group of z 4×4 arrays, where, z = tk/n. The arrays are
marked as TK1, (TK1, TK2) and (TK1, TK2, TK3) for z = 1, 2, 3 respectively.

SKINNY iterates a round function for Nr rounds and each round consists of
the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by the

matrix M whose branch number is only 2.

The tweakey schedule of SKINNY is a linear algorithm. The tk-bit tweakey
is first loaded into z 4 × 4 tweakey states. After each ART step, a cell-wised
permutation P is applied to each tweakey state, where P is defined as: P =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Then cells in the first two rows of all
tweakey states but TK1 are individually updated using LFSRs. For complete
details of the tweakeys scheduling algorithm, one can refer to [BJK+16].

Distinguisher of SKINNY-64-128. We reuse the 18-round rectangle distinguisher
of SKINNY-64-128 from [QDW+21, DQSW22] and apply our new rectangle key
recovery algorithm to it. As a result, we obtain a new 25-round rectangle attack.
The probability of the distinguisher is 2−nP 2 = 2−64−55.34 = 2−119.34. Our
key recovery extends the distinguisher by three rounds at the top and four
rounds at the bottom, as shown in Figure 9. The parameters for this attack are
rb = 8× 4 = 32, rf = 12× 4 = 48, mb = 10× 4 = 40, and mf = 21× 4 = 84. Due
to the tweakey schedule, we can deduce SKT22[6, 1, 7, 2] from STK0[0, 5, 6, 7]
and STK24[5, 0, 1, 4], and deduce STK21[6] from STK1[2] and STK23[5]. Such
that kb ∪ kf only contain (31− 5)× 4 = 104 information bits.

Parameters and complexities. We apply the related-key version of our new
algorithm in Appendix A.1 to the above distinguisher. The best parameters are
m′

b = 32, r′
b = 28, and m′

f = r′
f = 16, which means guessing partial bits of kb

and kf . This guessing strategy is not covered in previous rectangle key recovery
algorithms. The complexities of our new attack are as follows.

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 261.67.

33

SC AC
>>>1

>>>2

A

>>>3

A

A

A

A

A

A

A

A

A

SC

A

A

A

A

A

A
AC

A

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

A

A

A

A

A

SC AC
>>>1

>>>2

>>>3

A

SC AC
>>>1

>>>2

>>>3

A

A

SC AC
>>>1

>>>2

>>>3

9 2

2

2 2

2

2

2

2

2

2

9

A

A

A

A
SC

A

A

A

A
AC

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

SC AC
>>>1

>>>2

A

A

A

>>>3

d

d

d

d

7

2

7

18-round rectangle distinguisher of SKINNY-64-128

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

A

A

A

A

A

A

A

A

A

A

A

A

A

A 77

A A A

8

c

c

3

3

Figure 9: A 25-round key recovery attack against SKINNY-64-128

– The memory complexity is MR = DR + D · 2r∗
b + 2t+mb+mf −m′

b−m′
f =√

s · 261.67 +
√

s · 263.67 + 256+t

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 212×4+61.67 =
√

s · 2109.67;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 212×4+59.67+4 =
√

s · 2111.67;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n · ϵ = s · 212×8+119.34+2×4+2×32−2×64 · ϵ =

s · 2111.34 · ϵ;
– T4 = 2128−h, h < 56 + t.

Processing a candidate quartet to retrieve the rest of kb and kf can be realized
by looking up tables. We pre-compute several tables as illustrated in Table 17,
so that ϵ is equivalent to about 1 + 1 + 24 + 24 + 1 = 35 memory accesses which
is around 35× 1

16 ×
1

25 = 2−3.51 encryption. If we set s = 1, h = 30, and t = 0,

34

then the data, memory, and time complexities of our attack are 261.67, 263.67,
and 2110.03, respectively. The success probability is about 75.81%.

The comparison with the previous rectangle attacks based on the same
distinguisher is presented in Table 7.

Table 7: Comparisons of key recovery attacks on SKINNY-64-128
P 2 Rounds mb, mf m′

b, m′
f Data Memory Time Reference

2−55.34 2 + 18 + 5 12, 116 12, 40 261.67 264.26 2118.43 [DQSW22]

2−55.34 3 + 18 + 4 40, 84 32, 16 261.67 263.67 2110.03 This

5.5 Application to Deoxys-BC-256

We apply our new boomerang key recovery algorithm to Deoxys-BC-256 and
obtain the first 11-round boomerang attack and an improved 11-round rectangle
attack. Next, we give details about the 11-round boomerang attack while the
11-round rectangle attack is postponed to Appendix B.2.

Specification. Deoxys-BC is an AES-based tweakable block cipher [JNPS16],
based on the tweakey framework [JNP14]. The Deoxys authenticated encryp-
tion scheme makes use of two versions of the cipher as its internal primitive:
Deoxys-BC-256 and Deoxys-BC-384. Both versions are ad-hoc 128-bit tweak-
able block ciphers which besides the two standard inputs, a plaintext P (or
a ciphertext C) and a key K, also take an additional input called a tweak T .
The concatenation of the key and tweak states is called the tweakey state. For
Deoxys-BC-256 the tweakey size is 256 bits.

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-permutation
network (SPN) that transforms the initial plaintext (viewed as a 4× 4 matrix
of bytes) using the AES round function, with the main differences with AES
being the number of rounds and the round subkeys that are used every round.
Deoxys-BC-256 has 14 rounds.

Similarly to the AES, one round of Deoxys-BC has the following four transfor-
mations applied to the internal state in the order specified below:

– AddRoundTweakey – XOR the 128-bit round subtweakey to the internal state.
– SubBytes – Apply the 8-bit AES S-box to each of the 16 bytes of the internal

state.
– ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ =

(0, 1, 2, 3).
– MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix

of AES.

35

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

We denote the concatenation of the key K and the tweak T as KT , i.e.
KT = K||T . The tweakey state is then divided into 128-bit words. More precisely,
in Deoxys-BC-256 the size of KT is 256 bits with the first (most significant) 128
bits of KT being denoted W2; the second word is denoted by W1. Finally, we
denote by STKi the 128-bit subtweakey that is added to the state at round i
during the AddRoundTweakey operation. For Deoxys-BC-256, a subtweakey is
defined as STKi = TK1

i ⊕TK2
i ⊕RCi. The 128-bit words TK1

i , TK2
i are outputs

produced by a special tweakey schedule algorithm, initialized with TK1
0 = W1

and TK2
0 = W2 for Deoxys-BC-256. The tweakey schedule algorithm is defined

as TK1
i+1 = h(TK1

i), TK2
i+1 = h(LFSR2(TK2

i)), where the byte permutation h
is defined as (

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes of a 128-bit tweakey word numbered by the usual AES byte
ordering.

Boomerang attack. We reuse the 9-round boomerang distinguisher of Deoxys-BC-
256 proposed by Cid et al. [CHP+17, WP19] to attack 11-round boomerang
Deoxys-BC-256 with 2-round Ef , as shown in Figure 10. The probability of the
distinguisher is P 2 = 2−120.4, and other parameteres are: n = 128, k = 256, mb =
rb = 0, mf = (16 + 10)× 8 = 208, rf = 16× 8 = 128.

e4

72

72

96 9d

9d

bc

21

25

14

9-round boomerang distinguisher of Deoxys-BC-256

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

Figure 10: Rectangle/Boomerang attack on 11-round reduced Deoxys-BC-256

36

The best guessing parameters are m′
f = 12 × 8 = 96 and r′

f = 8 × 8 = 64,
which means guessing 8 bytes of kf . The complexities of our new attack are as
follows.

– The data complexity is DRB = 4s/P 2 = s · 2122.4.
– The memory complexity is MRB = DRB + D + 2mf −m′

f +t = s · 2122.4 + s ·
2120.4 + 2112+t.

– The time complexity T1 = 2m′
f ·DRB = 296 · s · 2122.4 = s · 2218.4;

– T2 = 2m′
f ·D = s · 2216.4;

– T3 = 2m′
f ·D · 22(rf −r′

f) · 2−n · ϵ = s · 296+120.4+2×64−128 · ϵ = 2212.4 · ϵ;
– T4 = 2256−h, h < 112 + t.

We consider the equivalent subtweakey MTKi = SR−1 ◦MC−1(STKi) in
round i. To process a candidate quartet to retrieve the rest of kf , we prepare
some tables as illustrated in Table 16, so that ϵ is equivalent to about 1 memory
accesses which is around 1× 1

16 ×
1

11 = 2−7.45 encryption. If we set s = 1, h = 40
and t = 0, then the data, memory, and time complexities of our attack are
2122.4, 2128, 2218.65, respectively. The success probability is about 68.89%. The
comparison with the previous boomerang attacks is presented in Table 8.

Table 8: Comparisons of key recovery attacks on Deoxys-BC-256
P 2 Rounds mb, mf m′

b, m′
f Data Memory Time Reference

2−96.4 10 0,88 0,0 298.4 288 2109.1 [ZDJ19]

2−120.4 11 0,208 0,96 2122.4 2128 2218.65 This

6 Concluding Remarks

In this paper, we propose unified and generic key recovery algorithms for the
rectangle/boomerang attack, as well as a framework for automatically finding
the best-attacking parameters. Combining both, we can find the optimal rectan-
gle/boomerang attack in terms of time complexity for a given distinguisher. We
also show that our new generic algorithms can be applied to other attacks that
exploit non-random properties of quartets. Such attacks include the retracing
boomerang attack, the mixture differential attack, and the boomeyong attack.
Applications to block ciphers Serpent, AES-192, CRAFT, SKINNY, and Deoxys-BC-
256 show that the best rectangle or boomerang attacks are missed by the previous
key recovery algorithms in many cases. Thus, better attacks can be obtained.
Also, it is likely that previous rectangle/boomerang attacks can be improved to
some extent using the new key recovery algorithms.

37

Acknowledgement. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by
the National Key Research and Development Program (No. 2018YFA0704704) and
the National Natural Science Foundation of China (Grants 62022036, 62202460,
62372213, 62132008, 62172410, 62102167). Jian Weng is supported by the National
Natural Science Foundation of China under Grant Nos. 61825203, 62332007,
and U22B2028, Science and Technology Major Project of Tibetan Autonomous
Region of China under Grant No. XZ202201ZD0006G, National Joint Engineering
Research Center of Network Security Detection and Protection Technology,
Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong
Hong Kong Joint Laboratory for Data Security and Privacy Protection, and
Engineering Research Center of Trustworthy AI, Ministry of Education.

38

Bibliography

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal
for the advanced encryption standard. NIST AES Proposal, 174:1–23,
1998.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle
attack—rectangling the Serpent. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 340–357.
Springer, 2001.

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on
boomerang and rectangle attacks. In International Workshop on Fast
Software Encryption, pages 1–16. Springer, 2002.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key
boomerang and rectangle attacks. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
pages 507–525. Springer, 2005.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. The SKINNY family of block ciphers and its low-latency
variant MANTIS. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer
Science, pages 123–153. Springer, 2016.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis
of the full AES-192 and AES-256. In Mitsuru Matsui, editor, Advances
in Cryptology - ASIACRYPT 2009, 15th International Conference on
the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

[BL22] Augustin Bariant and Gaëtan Leurent. Truncated boomerang attacks
and application to AES-based ciphers. IACR Cryptol. ePrint Arch.,
page 701, 2022.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Ra-
soolzadeh. CRAFT: lightweight tweakable block cipher with efficient
protection against DFA attacks. IACR Trans. Symmetric Cryptol.,
2019(1):5–45, 2019.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like
cryptosystems. Journal of CRYPTOLOGY, 4(1):3–72, 1991.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
A security analysis of Deoxys and its internal tweakable block ciphers.
IACR Trans. Symmetric Cryptol., 2017(3):73–107, 2017.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
Boomerang connectivity table: a new cryptanalysis tool. In An-

nual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 683–714. Springer, 2018.

[DEFN22] Patrick Derbez, Marie Euler, Pierre-Alain Fouque, and Phuong Hoa
Nguyen. Revisiting related-key boomerang attacks on AES using
computer-aided tool. Cryptology ePrint Archive, Paper 2022/725,
2022. https://eprint.iacr.org/2022/725.

[DKRS20] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The
retracing boomerang attack. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of Lecture Notes in Computer Science, pages
280–309. Springer, 2020.

[DKS10a] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key
attacks on 8-round AES-192 and AES-256. In Masayuki Abe, editor,
Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Singapore, December 5-9, 2010. Proceedings, volume
6477 of Lecture Notes in Computer Science, pages 158–176. Springer,
2010.

[DKS10b] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time
related-key attack on the KASUMI cryptosystem used in GSM
and 3G telephony. In Tal Rabin, editor, Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture
Notes in Computer Science, pages 393–410. Springer, 2010.

[DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time
related-key attack on the KASUMI cryptosystem used in GSM and
3G telephony. Journal of cryptology, 27(4):824–849, 2014.

[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key
attacks on 8-round AES-192 and AES-256. J. Cryptol., 28(3):397–422,
2015.

[DQSW22] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key
guessing strategies for linear key-schedule algorithms in rectangle at-
tacks. In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology - EUROCRYPT 2022 - 41st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part III,
volume 13277 of Lecture Notes in Computer Science, pages 3–33.
Springer, 2022.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES
- The Advanced Encryption Standard. Information Security and
Cryptography. Springer, 2002.

[Gra18] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach
to distinguishers and attacks on round-reduced AES. IACR Trans-
actions on Symmetric Cryptology, 2018, Issue 2:133–160, 2018.

40

https://eprint.iacr.org/2022/725

[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle
attacks on SKINNY and CRAFT. IACR Transactions on Symmetric
Cryptology, pages 140–198, 2021.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju
Wang. Modeling for three-subset division property without unknown
subset - improved cube attacks against Trivium and Grain-128AEAD.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology
- EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 466–495. Springer, 2020.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys
for block ciphers: The TWEAKEY framework. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture
Notes in Computer Science, pages 274–288. Springer, 2014.

[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin.
Deoxys v1. 41. Submitted to CAESAR, 124, 2016.

[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified
boomerang attacks against reduced-round MARS and Serpent. In
Bruce Schneier, editor, Fast Software Encryption, 7th International
Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Pro-
ceedings, volume 1978 of Lecture Notes in Computer Science, pages
75–93. Springer, 2000.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on
the SIMON block cipher family. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 161–185. Springer, 2015.

[KT22] Andreas B. Kidmose and Tyge Tiessen. A formal analysis of
boomerang probabilities. IACR Transactions on Symmetric Cryptol-
ogy, 2022(1):88–109, Mar. 2022.

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of
SKINNY under related-tweakey settings. IACR Trans. Symmetric
Cryptol., 2017(3):37–72, 2017.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE
Transactions on Information Theory, 57(4):2517–2521, 2011.

[QDW+21] Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yun-
wen Liu. Automated search oriented to key recovery on ciphers
with linear key schedule applications to boomerangs in SKINNY
and ForkSkinny. IACR Trans. Symmetric Cryptol., 2021(2):249–291,
2021.

41

[RSP21] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. Boomeyong:
Embedding yoyo within boomerang and its applications to key recov-
ery attacks on AES and Pholkos. IACR Trans. Symmetric Cryptol.,
2021(3):137–169, 2021.

[Sel08] Ali Aydın Selçuk. On probability of success in linear and differential
cryptanalysis. Journal of Cryptology, 21(1):131–147, 2008.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic security evaluation and (related-key) differential
characteristic search: Application to SIMON, PRESENT, LBlock,
DES(L) and other bit-oriented block ciphers. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture
Notes in Computer Science, pages 158–178. Springer, 2014.

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table
revisited: Application to SKINNY and AES. IACR Trans. Symmetric
Cryptol., 2019(1):118–141, 2019.

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun,
and Lei Hu. Programming the Demirci-Selçuk meet-in-the-middle
attack with constraints. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, volume 11273 of Lecture Notes in Computer
Science, pages 3–34. Springer, 2018.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of
differential and linear characteristics with the SAT method. IACR
Trans. Symmetric Cryptol., 2021(1):269–315, 2021.

[Wag99] David A. Wagner. The boomerang attack. In Lars R. Knudsen,
editor, Fast Software Encryption, 6th International Workshop, FSE
’99, Rome, Italy, March 24-26, 1999, Proceedings, volume 1636 of
Lecture Notes in Computer Science, pages 156–170. Springer, 1999.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multi-
ple rounds. application to AES variants and deoxys. IACR Trans.
Symmetric Cryptol., 2019(1):142–169, 2019.

[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey
boomerang and rectangle attacks on Deoxys-BC including BDT effect.
IACR Trans. Symmetric Cryptol., 2019(3):121–151, 2019.

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang.
Generalized related-key rectangle attacks on block ciphers with linear
key schedule: applications to SKINNY and GIFT. Designs, Codes
and Cryptography, 88(6):1103–1126, 2020.

42

A Our Algorithms in the Related-Key Setting

A.1 Related-key Rectangle Key Recovery Algorithm for Ciphers
with a Linear Key-Schedule

Our key recovery algorithm in Section 3.1.2 can be easily adapted to the related-
key setting for ciphers with a linear key schedule. In related-key setting, as in
[BDK05], the differential α→ β over E0 is considered with key difference ∆K
and for γ → δ over E1 the key difference is ∇K. Then the keys related to the
master key K1 are determined, where K2 = K1 ⊕ ∆K, K3 = K1 ⊕ ∇K and
K4 = K1 ⊕ ∆K ⊕ ∇K. When the key schedule is linear, the partial guess of
subkeys of K1 will determine the corresponding parts of subkeys of K2, K3,
and K4. Considering the related keys, the data set will be different. Choose
y =
√

s · 2 n
2 −rb/P and we get about s = (y · 22rb)2 · 2−2rb · 2−n ·P 2 right quartets.

The related-key algorithm proceeds as follows.

1. Collect and store y structures of 2rb plaintexts each. Let D = y · 2rb . Query
the corresponding ciphertexts for each structure under the four related keys
K1, K2, K3 and K4 and get the corresponding plaintext-ciphertext sets L1,
L2, L3 and L4.

2. Split (m′
b + m′

f)-bit k′
b∥k′

f into two parts: GL∥GR where GL has t bits.
3. Guess GR:

(a) Initialized a list of key counters for GL and unguessed key bits of kb, kf .
(b) Guess the t-bit GL:

i. For each (Pi, Ci) in data set Li, partially encrypt Pi under the m′
b-

bit (k′
b)i and partially decrypt C under the m′

f -bit (k′
f)i of Ki(i =

1, 2, 3, 4). Let P ∗
i = Enc(k′

b
)i

(Pi) and C∗
i = Dec(k′

f
)i

(Ci). For each
structure under Ki (i = 1, 2, 3, 4), we will get 2r′

b sub-structures, each
of which includes 2r∗

b plaintexts. In other words, there are y∗ = y · 2r′
b

structures of 2r∗
b plaintexts each.

ii. Let 2−µ = D · 2−n. If r∗
f − µ ≥ r∗

b , it turns to step (A); else if
r∗

f − µ < r∗
b , it turns to step (D).

A. Construct two sets as S1 = {(P ∗
1 , C∗

1 , P ∗
2 , C∗

2): (P ∗
1 , C∗

1) ∈ L1,
(P ∗

2 , C∗
2) ∈ L2, P ∗

1 and P ∗
2 have difference in r∗

b bits}, S2 =
{(P ∗

3 , C∗
3 , P ∗

4 , C∗
4): (P ∗

3 , C∗
3) ∈ L3, (P ∗

4 , C∗
4) ∈ L4, P ∗

3 and P ∗
4 have

difference in r∗
b bits}. The size of each set is y · 2r′

b · 22(rb−r′
b) =

y · 22rb−r′
b = D · 2r∗

b .
B. Insert S1 into a hash table H1 by n− r∗

f inactive bits of C∗
1 and

n − r∗
f inactive bits of C∗

2 . Insert S2 into a hash table H2 by
n− r∗

f inactive bits of C∗
3 and n− r∗

f inactive bits of C∗
4 .

C. With each 2(n−r∗
f)-bit index, we pick two distinct (P ∗

1 , C∗
1 , P ∗

2 , C∗
2),

(P ∗
3 , C∗

3 , P ∗
4 , C∗

4) to generate the quartet. We will get(
|S|

22(n−r∗
f

)

)2
· 22(n−r∗

f) = D2 · 22r∗
b · 22r∗

f · 2−2n

quartets. Then go to step (iii).

43

D. Construct two sets as S3 = {(P ∗
1 , C∗

1 , P ∗
3 , C∗

3): (P ∗
1 , C∗

1) ∈ L1,
(P ∗

3 , C∗
3) ∈ L3, C∗

1 and C∗
3 are colliding in n − r∗

f bits}, S4 =
{(P ∗

2 , C∗
2 , P ∗

4 , C∗
4): (P ∗

2 , C∗
2) ∈ L2, (P ∗

4 , C∗
4) ∈ L4, C∗

2 and C∗
4 are

colliding in n− r∗
f bits}. The size of each set is D2 · 2rf −r′

f −n =
D · 2r∗

f −µ.
E. Insert S3 into a hash table H3 by n− r∗

b inactive bits of P ∗
1 and

n−r∗
b inactive bits of P ∗

3 . Insert S4 into a hash table H4 by n−r∗
b

inactive bits of P ∗
2 and n− r∗

b inactive bits of P ∗
4 .

F. There are at most 22(n−r∗
b −µ) possible values for the 2(n− r∗

b)-bit
index. For each index, we pick two distinct entries (P ∗

1 , C∗
1 , P ∗

3 , C∗
3),

(P ∗
2 , C∗

2 , P ∗
4 , C∗

4) to generate the quartet. We will get(
|S|

22(n−r∗
b

−µ)

)2
· 22(n−r∗

b −µ) = D2 · 22r∗
b · 22r∗

f · 2−2n

quartets.
iii. Determine the key candidates involved in Eb and Ef and increase

the corresponding counters. Likewise, denote the time complexity in
this step as ϵ.

(c) Select the top 2t+mb+mf −m′
b−m′

f −h hits in the counters to be the candi-
dates, which delivers a h-bit or higher advantage.

(d) Guess the remaining k −mb −mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key, where k is the key size.

Data complexity. The data complexity is DR = 4 ·y ·2rb = 4 ·D =
√

s2n/2+2/P .

Memory complexity. The memory complexity is MR = DR + 2 ×min{D ·
2r∗

b , D ·2r∗
f −µ}+2t+mb+mf −m′

b−m′
f to store the data, the sets Si, and key counters.

Time complexity. The time complexity of collecting data is T0 = DR, the time
complexity of doing partial encryption and decryption under guessed key bits is

T1 = 2m′
b+m′

f ·DR = 2m′
b+m′

f · 4 · y · 2rb =
√

s · 2m′
b+m′

f + n
2 +2/P,

the time complexity of generating set Si is

T2 = 2m′
b+m′

f ·D · 2 ·min{2r∗
b , 2r∗

f −µ}

= min{
√

s · 2m′
b+m′

f +rb−r′
b+ n

2 +1/P, s · 2m′
b+m′

f +rf −r′
f +1/P 2},

the time complexity of generating quartet candidates is

T3 = 2m′
b+m′

f ·D2 · 22r∗
b · 22r∗

f · 2−2n · ϵ = (s · 2m′
b+m′

f −n+2rb+2rf −2r′
b−2r′

f /P 2) · ϵ,

and the time complexity of the exhaustive search is

T4 = 2m′
b+m′

f −t · 2k+t−m′
b−m′

f −h = 2k−h,

where h ≤ t + mb + mf −m′
b −m′

f .

44

A.2 Related-key Boomerang Key Recovery Algorithm for Ciphers
with a Linear Key-Schedule

Our key recovery algorithm in Section 3.2.2 can be easily adapted to the related-
key setting for ciphers with a linear key schedule. The related-key algorithm
proceeds as follows.

1. Collect and store y structures of 2rb plaintexts such that y2rb = s/P 2. Query
for the corresponding ciphertexts under the related keys K1, K2 and store
the plaintext-ciphertext pairs in sets L1 and L2. The size of these two sets is
D0 = y2rb+1.

2. Let D1 = min{D0 · 2rf , D0 · 2r∗
f +m′

f , 2n+1}. If D1 = 2n+1, query for the
plaintext for each possible ciphertext under K3, K4 respectively. If D1 =
D0 · 2rf , for each possible δ′, shift the ciphertexts in L1, L2 by δ′ and query
for their plaintexts. Store these plaintext-ciphertext pairs in sets L3 and L4.
The size of the two sets is D0 · 2rf .

3. Split m′
b-bit k′

b into two parts: GL∥GR where GL has t bits, 0 ≤ t ≤ m′
b.

4. Guess k′
f :

(a) If r′
f ≥ m′

f , for each data (P1, C1) ∈ L1, partially decrypt Ci to C∗
i

under (k′
f)1 and for each possible r∗

f -bit difference, construct C∗
3 and

new ciphertexts C3. If D1 < 2n, query for the plaintexts P3 under K3;
otherwise, read P3 from L3. Store (P3, C∗

3) in L3,k′
f
. Do the same for each

data in L2 and obtain L4,k′
f
. (Let L̂3 = ∪k′

f
L3,k′

f
, L̂4 = ∪k′

f
L4,k′

f
. The

size of L̂3, L̂4 is D0 · 2r∗
f +m′

f . The memory cost for this step is D0 · 2r∗
f .)

(b) Guess GR:
i. Initialized a list of key counters for GL and the unguessed key bits of

kb, kf . The memory complexity in this step is 2t+mb+mf −m′
b−m′

f .
ii. Guess the t-bit GL:

A. For each data (Pi, Ci) ∈ Li, i = 1, 2, partially encrypt Pi and
partially decrypt Ci under the guessed subkey bits. Let P ∗

i =
Enc(k′

b
)i

(Pi) and C∗
i = Dec(k′

f
)i

(Ci). For each structure, we will
get 2r′

b sub-structures, each of which includes 2rb−r′
b = 2r∗

b plain-
texts which take all possible values for the active bits. In other
words, there are y∗ = y ·2r′

b structures of 2r∗
b plaintexts. (T = D0)

B. If r′
f < m′

f , do partial encryption and decryption for (Pj , Cj) ∈ Lj

to get (P ∗
j , C∗

j) for j = 3, 4. (T = D0 · 2rf)
C. If r′

f ≥ m′
f , do partial encryption for data in Lj,k′

f
get (P ∗

j , C∗
j)

for j = 3, 4. (T = D0 · 2r∗
f)

D. Insert (P ∗
j , C∗

j) into a hash table Hj for j = 3, 4, according to
(n− r∗

f) inactive bits of C∗
j . (The size of the two hash tables is

D0 · 2rf or D0 · 2r∗
f .)

E. For (i, j) ∈ {(1, 3), (2, 4)}, look up Hj with (P ∗
i , C∗

i) and construct
a set as Si,j = {(P ∗

i , C∗
i , P ∗

j , C∗
j) : C∗

i and C∗
j have difference

only in r∗
f bits}. The size of each Si,j is D0 · 2r∗

f −1 no matter
when r′

f < m′
f or r′

f ≥ m′
f . Insert pairs from Si,j into hash table

45

Hi according to n − r∗
b inactive bits of P ∗

i and n − r∗
b inactive

bits of P ∗
j . (T = D0 · 2r∗

f)
F. For (i, j) ∈ {(1, 3), (2, 4)}, there are y · 2r′

b possible values for the
n−r∗

b bits of P ∗
i and 2n−r∗

b possible values for the n−r∗
f bits of P ∗

j .
For each index, we pick two distinct entries (P1, C∗

1 , P3, C∗
3) and

(P2, C∗
2 , P4, C∗

4) to generate the quartet. The number of quartets
we will get is

|S1,3| · |S2,4|(
2n−r∗

b · y · 2r′
b

)2 · 2
n−r∗

b · y · 2r′
b = D0 · 22r∗

b +2r∗
f −n−1.

iii. Determine the key candidates involved in Eb and Ef and increase the
corresponding counters. Denote the time complexity for processing one
quartet as ϵ. Then the time complexity in this step is D0 ·22r∗

b +2r∗
f −n ·ϵ.

iv. Select the top 2t+mb+mf −m′
b−m′

f −h hits in the counters to be the
candidates, which delivers a h-bit or higher advantage, where 0 <
h ≤ t + mb + mf −m′

b −m′
f .

v. Guess the remaining k−mb−mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover
the correct key. The time complexity of this step is 2k+t−m′

b−m′
f −h.

Data complexity. From y pairs of structures under K1 and K2 respectively, we
can form y · 22rb plaintext pairs. Among them, y · 2rb pairs satisfy α difference on
average. Let s be the expected number of right quartets, so we have y ·2rb ·P 2 = s,
y = s · 2−rb/P 2 and D0 = 2 · y · 2rb = 2s/P 2 chosen plaintexts as well as
D1 = min{D0 · 2rf , D0 · 2r∗

f +m′
f , 2n+1} chosen ciphertexts.

Memory complexity. The memory complexity is M = D0+D1+2t+mb+mf −m′
b−m′

f

when r′
f < m′

f or D1 = 2n+1 and M = D0+min{D0·2r∗
f , 2n+1}+2t+mb+mf −m′

b−m′
f

when r′
f ≥ m′

f and D1 < 2n+1 to store the data, the pairs, and the counters.

Time complexity. The time complexity of collecting data is T0 = D0 + D1, the
time complexity of doing partial encryption and decryption under guessed key
bits is

T1 = 2m′
b+m′

f · (D0 + D1),
when r′

f < m′
f and

T1 = 2m′
b+m′

f · (D0 + D0 · 2r∗
f),

when r′
f ≥ m′

f , the time complexity of generating set S2 is

T2 = 2m′
b+m′

f ·D0 · 2r∗
f ,

the time complexity of generating and processing quartet candidates is
T3 = 2m′

b+m′
f ·D0 · 22r∗

b +2r∗
f −n−1 · ϵ = s · 2m′

b+m′
f +2r∗

b +2r∗
f −n/P 2 · ϵ,

and the time complexity of the exhaustive search is T4 = 2m′
b+m′

f −t+k−mb−mf ·
2t+mb+mf −m′

b−m′
f −h = 2k−h, where 0 < h ≤ t + mb + mf −m′

b −m′
f .

46

B Application to Some Other Ciphers

B.1 Other Variants of SKINNY

Attack on 32-round SKINNY-128-384. We reuse the 23-round rectangle distin-
guisher of SKINNY-128-384 from [DQSW22]. The probability of this distinguisher
is 2−nP 2 = 2−128 · 2−115.09. Our key recovery extends the distinguisher by four
rounds at the top and five rounds at the bottom, as shown in Figure 11. The
parameters for this attack are: rb = 12 × 8, rf = 16 × 8, mb = 18 × 8 and
mf = 24× 8. Note that kb ∪ kf only contain (18 + 24− 2)× 8 information bits.

We apply our generic framework and obtain that when constructing pairs on
the top and guessing 27 subtweakey cells leads to the lowest complexity overall.
The positions of the guessed subtweakey cell and 19 filters (r′

b = 11×8, r′
f = 8×8)

that can be checked under these subtweakey cells are marked by red squares in
Figure 11.

Next, we compute the complexities of our attack.

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 2123.54.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 2123.54 +

√
s · 2129.54 + 2104+t

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 227×8+123.55 =
√

s · 2339.54;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 227×8+121.55+8 =
√

s · 2345.54;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n · ϵ = s · 227×8+243.09+2×8+2×64−2×128 · ϵ =

s · 2347.09 · ϵ;
– T4 = 2384−h, h < 104 + t.

Processing a candidate quartet to retrieve the rest of kb and kb can be realized
by looking up tables. We pre-compute several tables as illustrated in Table 9, so
that ϵ is equivalent to about 4 memory accesses which is around 4× 1

16×
1

32 = 2−7

encryption. If we set s = 1, h = 40 and t = 0, then the data, memory, and time
complexities of our attack are 2123.54, 2129.54, and 2344.16, respectively. The success
probability is about 82.1%.

The comparison with the previous rectangle attacks based on the same
distinguisher is presented in Table 10.

Attack on 26-round SKINNY-128-256. Applying our new rectangle key recovery
algorithm to SKINNY-128-256, we get a new 26 rectangle attack by appending
3-round Eb and 4-round Ef , with using the 19-round rectangle distinguisher of
SKINNY-128-256 in [DQSW22], as shown in Figure 12. The probability of the
distinguisher is 2−nP 2 = 2−128−121.07 = 2249.07. The parameters for this attack
are rb = 9× 8 = 72, rf = 12× 8 = 96, mb = 11× 8 = 88 and mf = 21× 8 = 168.
Due to the tweakey schedule, kb∪kf only contain (88+168−16) = 240 information
bits.

The best guessing parameters are m′
b = 72, r′

b = 64, and m′
f = r′

f = 32, which
means guessing partial bits of kb and kf . This type of guessing is not covered in
previous rectangle key recovery attacks. The complexities of our new attack are
as follows.

47

58

A

SC

A A

A
AC

A A

A

>>>1

>>>2

A A

>>>3

A

A

A

A

A

A

A

A

A

A

A
SC

A

A

A

A

A

A
AC

A

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

A

A

A

A

A

A

A
SC

A

A
AC

A

A

>>>1

>>>2

>>>3

A A

SC AC
>>>1

>>>2

>>>3

A

A

SC AC
>>>1

>>>2

>>>3

c0

20

20

20 20

20

20

20

20

20

20

c0

A

A

A

A

A

A
SC

A

A

A

A

A

A
AC

A

A

A

A

A

>>>1

>>>2

A

A

A

A

A

A

>>>3

A

A

A

A

A

A

A

A
SC

A

A

A

A
AC

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

SC AC
>>>1

>>>2

A

A

A

>>>3

61

61

50

50

58 58 58

58

A

A

A

A

A

A
SC

A

A

A

A

A

A
AC

A

A

A

A

A

>>>1

>>>2

A

A

A

A

A

A

>>>3

A

A

A

A

A

A

1c

1c

58

23-round rectangle distinguisher of SKINNY-128-384

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

e8

Figure 11: A 32-round key recovery attack against SKINNY-128-384

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 2126.53.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 2126.53 +

√
s · 2132.53 + 2136+t.

48

Table 9: Precomputation tables for the 32-round attack on SKINNY-128-384, where
underlined bytes are used as input and determine the time and memory complexity
for building the table. Note that the precomputation table may be built for pairs or
quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.
No. Starting cells subtweakey

bytes
Bytes deduced Filter Pairs or

quartets
Time and
memory

filter
effect

1 Z31[1], Z30[6],
X31[13], X′

31[13]
ST K31[1],
ST K30[6]

X30[14], X30[6],
Z′

31[1], Z′
30[6]

X30[14] ⊕ X30[6] ⊕
X′

30[14] ⊕X′
30[6] = 0

Quartets 296 1

(Zi
31[1], Xi

31[13], Zi
30[6]), i = 1, 2, 3, 4 : ST K31[1], ST K30[6]

2 Z30[0], X30[12],
Z29[1], ∆X29[9]

ST K30[0],
ST K29[1]

X29[13], X29[1],
Z′

30[0], Z′
29[1]

X29[13] ⊕ X′
29[13] =

∆X29[9], X29[1] ⊕
X29[13] ⊕ X′

29[1] ⊕
X′

29[13] = 0

Quartets 280 2−16

(Zi
30[0], Zi

29[1], Xj
30[12], ∆Xj

29[9]), i = 1, 2, 3, 4, j = 1, 3 :
ST K30[0], ST K29[1]

3 Z30[2], Z30[4],
X30[14], X′

30[14],
X30[8] ⊕ X30[12],
X′

30[8] ⊕ X′
30[12],

Z29[3]

ST K30[2],
ST K30[4],
ST K29[3],
ST K29[7]

X29[3], X29[7],
X29[15], Z′

30[2],
Z′

30[4], Z′
29[3]

X29[3] ⊕ X29[15] =
X′

29[3] ⊕ X′
29[15],

X29[7] ⊕ X29[15] =
X′

29[7] ⊕ X′
29[15]

Pairs 296 216

(1)

(Zi
30[2], Zi

30[4], Xi
30[14], Xi

30[8] ⊕ Xi
30[12], Zi

29[3]), i = 1, 2 :
ST K30[2], ST K30[4], ST K29[3], ST K29[7]

4 Z29[2], Z29[5],
X29[13], X29[14],
∆X28[3]

ST K29[2],
ST K29[5]

X28[11], X28[15],
Z′

29[2], X′
29[13]

X28[15] ⊕ X′
28[15] =

∆X28[3], X28[15] ⊕
X′

28[15] = X28[11] ⊕
X′

28[11]

Quartets 296 2−16

(Zi
29[2], Xi

29[13], Zj
29[5], Xj

29[14], ∆Xj
28[3]), i = 1, 2, 3, 4, j = 1, 3 :

ST K29[2], ST K29[5]

5 Z29[4],
X29[8] ⊕ X29[12],
X28[15], ST K28[7]

ST K29[4] X27[9], X′
28[15] X27[9] ⊕ X′

27[9] =
0x50

Quartets 264 2−8

(Xi
28[15], Zj

29[4], Xj
29[8] ⊕ Xj

29[12], ST K28[7]), i = 1, 2, 3, 4, j = 1, 3 :
ST K29[4]

6 Y1[6], Y1[9], Y2[4] ST K1[6],
ST K2[4]

W2[5], W2[9],
Y ′

2 [4]
Y3[9] ⊕ Y ′

3 [9] = 0x20 Quartets 264 1

(Y i
2 [4], Y j

1 [6], Y j
1 [9]), i = 1, 2, 3, 4, j = 1, 3 : ST K1[6], ST K2[4]

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 213×8+126.53 =
√

s · 2230.53;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 213×8+124.53+8 =
√

s · 2236.53;
– T3 = 2m′

b+m′
f ·D2 · 22r∗

b +2r∗
f −2n · ϵ = s · 213×8+124.53×2+2×8+2×64−2×128 · ϵ =

s · 2241.07 · ϵ;
– T4 = 2256−h, h < 136 + t.

Processing a candidate quartet to retrieve the rest of kb and kf can be realized
by looking up tables. We pre-compute several tables as illustrated in Table 11,
so that ϵ is equivalent to about 1 + 1 + 28 + 28 + 1 + 1 = 516 memory accesses
which is around 516 × 1

16 ×
1

26 = 20.31 encryption. If we set s = 1, h = 40 and
t = 0, then the data, memory and time complexities of our attack are 2126.53,
2136, 2241.38, respectively. The success probability is about 64.06%.

49

Table 10: Comparisons of key recovery attacks on 32-round SKINNY-128-384
P 2 mb, mf m′

b, m′
f Data Memory Time Reference

2−115.09 144, 192 144, 88 2123.54 2123.54 2354.99 [DQSW22]

2−115.09 144, 192 128, 88 2123.54 2129.54 2344.16 This

A A
SC

A A
AC

A

>>>1

>>>2

A

A

>>>3

A

A

SC AC
>>>1

>>>2

>>>3

cb

cb

cb

cb

cb

cb

cb

cb

cb

cb cb

cb

cb

f4

cb

cb

cb

cb

cbf4

A

A
SC

A

A

A
AC

A

A

A

>>>1

>>>2

A

A A

>>>3

A A

SC

A

A
AC

A

A

A

>>>1

>>>2

>>>3

A

SC

A

AC

A

>>>1

>>>2

A

>>>3

A

A

A

A

A
SC

A

A

A

AC

A

A >>>1

>>>2

A

>>>3

A

A

A

A

A

A

A

A
SC

A

A

A

A
AC

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

A

A

A

A

A

a2

A

A

A

81

81

81

81

19-round rectangle distinguisher of SKINNY-128-256

82

82

84

a2

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

82 82

Figure 12: A 26-round key recovery attack against SKINNY-128-256

The comparison with the previous rectangle attacks based on the same
distinguisher is presented in Table 12.

50

Table 11: Precomputation tables for the 26-round attack on SKINNY-128-256, where
underlined bytes are used as input and determine the time and memory complexity
for building the table. Note that the precomputation table may be built for pairs or
quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.
No. Starting cells Subtweakey

bytes
Bytes deduced Filter Pairs or

quartets
Time and
memory

Filter
effect

1 Z25[1], X25[6]
X25[13], X′

25[13]
ST K25[1],
ST K24[2]

X24[2], X24[14],
Z′

25[1], X′
25[6]

X24[2] ⊕ X′
24[2] =

X24[14] ⊕ X′
24[14]

Quartets 296 1

(Zi
24[1], Xi

24[13], Xi
24[6]), i = 1, 2, 3, 4 : ST K24[1], ST K23[2]

2 Z25[7],
X25[11] ⊕ X25[15],
∆X24[14]

ST K25[7],
ST K24[6]

X24[6], Z′
25[7],

X′
25[11] ⊕

X′
25[15]

X24[6] ⊕ X′
24[6] =

∆X24[14]
Quartets 280 1

(Zi
25[7], Xi

25[11] ⊕ Xi
25[15], ∆Xj

24[14]), i = 1, 2, 3, 4, j = 1, 3 :
ST K25[7], ST K24[6]

3 Z24[5], X24[9],
Z25[0], X25[12],
X′

24[9], X′
25[12]

ST K25[0],
ST K24[5]

X24[5], X24[12]
Z′

24[5], Z′
25[0],

X24[5] ⊕ X′
24[5]⊕

X24[9] ⊕ X′
24[9]⊕

X24[13] ⊕ X′
24[13] =

0x82

Pairs 272 28 (1)

(Zi
25[0], Xi

25[12], Zi
24[5], Xi

24[9]), i = 1, 2 : ST K25[0], ST K24[5]

4 Z23[2], X24[13],
Z24[1], X′

24[13],
ST K24[1],
ST K23[2]

X23[2], Z′
23[2],

Z′
24[1]

X23[2] ⊕ X′
23[2] =

∆X23[14]
Quartets 296 1

(Zi
24[1], Zi

23[2], Xi
24[13]), i = 1, 2, 3, 4 : ST K24[1], ST K23[2]

5 Z24[7], ∆X23[14],
X24[11] ⊕ X24[15],
ST K22[2]

ST K24[7],
ST K23[6]

X23[6], X22[2]
X′

24[11] ⊕
X′

24[15]

X23[6] ⊕ X′
23[6] =

∆X23[14], X22[2] ⊕
X22[2] = 0x81

Quartets 256 2−16

(Xi
24[11] ⊕ Xi

24[15], Zj
24[7], ∆Xj

23[14], ST K22[6]), i = 1, 2, 3, 4,

j = 1, 3 : ST K24[7], ST K23[6]

6 Z25[4], Z24[0],
Z23[1], X24[12]
ST K23[1]

ST K25[4],
ST K24[0]

X22[14], Z′
23[1] X22[14] ⊕ X′

22[14] =
0x81

Quartets 288 1

(Zi
23[1], Zj

25[4], Zj
24[0], Xj

24[12], ST K23[1]), i = 1, 2, 3, 4, j = 1, 3 :
ST K25[4], ST K24[0]

7 Z24[4],
X23[11] ⊕ X23[15],
X24[13], ST K22[6]

ST K24[4]
ST K23[7]

X22[6],
X′

23[11] ⊕
X′

23[15],

X22[6] ⊕ X′
22[6] =

0x81
Quartets 280 1

(Xi
23[11] ⊕ Xi

23[15], Xj
24[13], Zj

24[4], ST K23[2], ST K22[6]),

i = 1, 2, 3, 4 : ST K24[7], ST K23[6]

8 Y0[4], W1[15]
Y1[3], Y ′

0 [4]
ST K0[4],
ST K1[3]

Y2[9], W1[9], Y2[3] ⊕ Y ′
2 [3] = 0xcb Quartets 280 1

(Y i
0 [4], W i

1 [15], Y j
1 [3]), i = 1, 2, 3, 4, j = 1, 3 : ST K0[4], ST K1[3]

B.2 Deoxys-BC-256

Deoxys-BC [JNPS16] is the internal tweakable block cipher of Deoxys-II, which
is among the final portfolio of CAESAR competition. Both versions of the cipher
have a 128-bit state and variable size key and tweak. It has two versions with a
256-bit key size and a 384-bit key size.

51

Table 12: Comparisons of key recovery attacks on 26-round SKINNY-128-256
P 2 mb, mf m′

b, m′
f Data Memory Time Reference

2−121.07 88, 168 88, 24 2126.53 2136 2254.4 [DQSW22]

2−121.07 88, 168 72, 32 2126.53 2136 2241.38 This

Rectangle Attack. We reuse the 9-round rectangle distinguisher of Deoxys-BC-
256 proposed by Cid et al. [CHP+17] and reevaluated in [WP19] to attack
11-round rectangle Deoxys-BC-256 with 2-round Ef , as shown in Figure 10. The
probability of the distinguisher is 2−nP 2 = 2−128−120.4 = 2−248.4, and other
parameteres are: n = 128, k = 256, mb = rb = 0, mf = (16 + 10)× 8 = 208, rf =
16× 8 = 128.

The best guessing parameters are m′
f = 12 × 8 = 96 and r′

f = 8 × 8 = 64,
which means guessing 8 bytes of kf . The complexities of our new attack are as
follows.

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 2126.2.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 2126.2 +

√
s · 2124.2 + 2112+t.

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 212×8+126.2 =
√

s · 2222.2;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 212×8+124.2 =
√

s · 2220.2;
– T3 = 2m′

b+m′
f ·D2 ·22r∗

b +2r∗
f −2n ·ϵ = s·212×8+124.2×2+2×64−2×128 ·ϵ = s·2216.4 ·ϵ;

– T4 = 2256−h, h < 112 + t.

Table 13: Comparisons of key recovery attacks on 11-round Deoxys-BC-256
P 2 mb, mf m′

b, m′
f Data Memory Time Reference

2−122 0,80 0,0 2127.58 2127.58 2204 [CHP+17]

2−116.4 128,80 112,0 2122.1 2128.2 2249.9 [ZDJ19]

2−120.4 0,208 0,96 2126.78 2128 2222.49 This

Processing a candidate quartet to retrieve the rest of kf can be realized
by looking up tables. We consider the equivalent round subtweakey MTKi =
SR−1 ◦MC−1(STKi) in round i. To process a candidate quartet to retrieve the
rest of kf , we prepare some tables as illustrated in Table 16. So that ϵ is equivalent
to about 1 memory access which is around 1× 1

16 ×
1

11 = 2−7.45 encryption. If we
set s = 1.5, h = 36 and t = 0, then the data, memory, and time complexities of
our attack are 2126.78, 2128, 2222.49, respectively. The success probability is about
77.19%.

52

C Previously Proposed Key Recovery Algorithms

C.1 Algorithm 1: Biham-Dunkelman-Keller’s Algorithm at
EUROCRYPT 2001

Biham, Dunkelman, and Keller introduced the rectangle attack[BDK01] at EU-
ROCRYPT 2001 and first applied it to Serpent[ABK98]. The specific procedures
are as follows:
1. Create and store y =

√
s · 2 n

2 −rb+1/P structures including 2rb each by
traversing the active bits in each structure, where s denotes the expected
number of right quartets.

2. Initialize 2mb+mf key counters for the (mf + mb)-bit subkey involved in Eb

and Ef . For each (mf + mb)-bit subkey and each structure:
(a) Partially encrypt plaintext P1 to the position of α under the guessed

mb-bit subkey in Eb and partially decrypt the state xored the known
difference α to the plaintext P2.

(b) Denote C1 and C2 the corresponding ciphertexts of P1 and P2 respectively.
Partially decrypt C1 to the position of δ and encrypt it to the ciphertext
C3 after xoring δ. Similarly, we find C4 from C2 in the same way and
then obtain the quartet (C1, C2, C3, C4).

(c) Check whether the corresponding ciphertexts (C3, C4) exist in our data. If
exist, we check the difference is α after partially encrypting corresponding
plaintexts (P3, P4) under mb-bit subkey in Eb. If so, we increase the
corresponding counter by 1.

(d) Select the top 2mb+mf −h hits in the counter to be the candidates, which
delivers a h-bit or higher advantage.

(e) Guess the remaining k −mb −mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key, where k is the key size.

The data complexity is D = y · 2rb =
√

s · 2 n
2 +1/P . The memory complexity

is D + 2mb+mf to store the data and key counters. The time complexity of
generating quartets and determining the key candidates is

T1 = 2mb+mf ·D =
√

s · 2mb+mf + n
2 +1/P,

and the complexity of the exhaustive search is

T2 = 2mb+mf −h · 2k−(mb+mf) = 2k−h,

where h ≤ mb + mf .

C.2 Algorithm 2: Biham-Dunkelman-Keller’s Algorithm at FSE 2002

At FSE 2002, Biham, Dunkelman and Keller further introduced their new algo-
rithm for rectangle recovery attacks in the single-key setting. Later, the attack
was converted into the related-key setting by Liu et al. [LGS17] on ciphers with a
linear key schedule. The procedures are summarized as follows and more details
are described in [BDK01]:

53

1. Construct and store y structures of 2rb plaintexts each by traversing the
active bits in each structure.

2. Initialize an array of 2mb+mf counters for the (mf + mb)-bit subkey involved
in Eb and Ef .

3. Insert the y · 2rb ciphertexts into a hash table H according to the n − rf

inactive ciphertext bits. For each index, there are 2rb · 2rf −n plaintexts and
ciphertexts colliding in the n− rf bits for each structure.

4. In each structure S, we search for a ciphertext pair (C1, C2) and choose a
ciphertext C3 by the n − rf inactive ciphertext bits of C1 from the hash
table H. We pick a ciphertext C4 according to the n− rf inactive ciphertext
bits of C2 from the hash table in the same way. Then we check whether
the corresponding plaintexts P3 and P4 are in the same structure. If so,
then we generate a quartet (P1, P2, P3, P4) and its corresponding ciphertexts
(C1, C2, C3, C4).

5. Determine the key candidates involved in Eb and Ef with the quartets
obtained above and increase the corresponding counters. This phase is just a
guess and filter procedure. Denote the time complexity in this step as ϵ2.

6. Select the top 2mb+mf −h hits in the counter to be the candidates, which
delivers a h-bit or higher advantage.

7. Guess the remaining k −mb −mf unknown key bits according to the key
schedule algorithm and exhaustively search over them to recover the correct
key, where k is the key size.

The data complexity is D = y · 2rb =
√

s · 2 n
2 +1/P . The memory complexity is

D + 2mb+mf to store the data and key counters. The time complexity of inserting
the ciphertexts into the hash table is

T1 = D =
√

s · 2 n
2 +1/P,

the time complexity to generate quartets accessing the colliding pairs is

T2 =
(

D

2

)
· 2rf −n = D2 · 2rf −n−1 = y2 · 22rb+rf −n−1 = s · 2rf +1/P 2,

the complexity of determining the key candidates is

T3 = (y · 22rb+rf −n−1)2 = y2 · 24rb+2rf −2n−2 · ϵ2

= D2 · 22rb+2rf −2n−2 · ϵ2

= s · 22rb+2rf −n/P 2 · ϵ2

and the complexity of exhaustive search is

T4 = 2mb+mf −h · 2k−(mb+mf) = 2k−h,

where h ≤ mb + mf .
In step 4 of the above algorithm, quartets are constructed in time T2 and

the memory cost does not exceed D. Here we try to give an illustration of

54

how to avoid the increase in memory. Firstly, we need to store the collected
data and the memory complexity is D. Next, insert (P, C) into a hash table H1
according to n − rf bits in ciphertexts. There are D · 2−(n−rf) values in each
index and the time complexity of this step is D. Then for each structure Si(i =
1, 2, · · · , y), considering (P1, P2)(P1, P2 ∈ Si), we will obtain 22rb−1 such pairs.
The values in the same index with C1 in H1 are denoted as C1

3 , C2
3 , · · · , Cj

3 , · · ·
and C1

4 , C2
4 , · · · , Ck

4 , · · · for C2. Insert Cj
3 into a hash table H2 according to n−rb

bits of P j
3 , which is the same as we defined in our algorithm. We then look up

H2 with n− rb bits of P k
4 ; if a collision is found, (C1, C2, Cj

3 , Ck
4) is a candidate

quartet. In this step, the memory complexity of storing H2 is D · 2−(n−rf), which
can be ignored compared to D. We will get

y · 22rb−1 ·
(

D · 2−(n−rf)

2

)
· 2−(n−rb−µ) = D2 · 22rb+2rf −2n−2

candidate quartets.However, there will be an extra time complexity of accessing
the hash table H2, which is

y · 22rb−1 ·D · 2−(n−rf) = D2 · 2rb+rf −n−1.

It should be noted that the extra time complexity may not be omitted as it may
be a dominant part in some cases. We feel that this term of time complexity was
neglected by the authors of [BDK01] inadvertently, or the memory complexity
should be higher than D.

C.3 Algorithm 3: Zhao et al.’s Single-key Variant

Zhao et al. proposed a new generalized related-key rectangle framework [ZDJ19,
ZDM+20] for block ciphers with a linear key schedule. The attack can be applied
to single-key setting with simple modifications:

1. Collect and store y structures of 2rb plaintexts each by traversing the active
bits in each structure.

2. Guess the 2mb possible mb-bit subkey involved in Eb:
(a) Initialized a list of 2mf counters corresponding to a mf -bit subkey guess.
(b) For each structure, partially encrypt plaintext P1 under the guessed

subkey bits in Eb to the position of α and decrypt the intermediate value
xored the known difference α to obtain the plaintext P2 in the same
structure with P1. Construct a set S with the relevant plaintexts and
ciphertexts as

S = {(P1, C1, P2, C2) : Eb(P1)⊕ Eb(P2) = α} .

(c) The size of S is y · 2rb−1. Insert S into a hash table H indexed by the
n − rf bits of C1 and n − rf bits of C2 that are 0 in δ′. We randomly
choose (C1, C2) and (C ′

1, C ′
2) to generate quartet (C1, C2, C3, C4) with

each 2(n− rf)-bit index, where (C3, C4) = (C ‘
1, C ‘

2).

55

(d) Determine the key candidates related to Ef using the quartets obtained
above and increase the corresponding counters. Similarly, denote the time
complexity in this step as ϵ3.

(e) Select the top 2mf −h hits in the counter to be the candidates, which
delivers a h-bit or higher advantage.

(f) Guess the remaining k −mb −mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key, where k is the key size.

The data complexity is D = y · 2rb =
√

s · 2 n
2 +1/P . The memory complexity is

D + D/2 + 2mf to store the data, set S, and key counters. The time complexity
to generate quartets by constructing set S is

T1 = 2mb ·D =
√

s · 2mb+ n
2 +1/P,

the complexity of determining the key candidates is

T2 = 2mb · 22(n−rf) · 2 ·
(

D2 · 2−2(n−rf)−1

2

)
· ϵ3

= 2mb ·D2 · 22rf −2n−2 · ϵ3

= s · 2mb−n+2rf /P 2 · ϵ3

and the exhaustive search complexity is

T3 = 2mb · 2mf −h · 2k−(mb+mf) = 2k−h,

where h ≤ mf .

C.4 Algorithm 4: Dong et al.’s Single-key Variant

To avoid generating quartets that may never suggest key candidates as many as
possible, Dong et al. presented a new rectangle attack framework [DQSW22] to
transform Algorithm 3 into Algorithm 4 using a fast filter with partially guessed
key k′

f and hf -bit inactive internal states resulted from the the partially guessed
key. Denote m′

f = |k′
f |. We summarize the procedures as follows:

1. Collect and store y structures of 2rb plaintexts each by traversing the active
bits in each structure.

2. Guess the possible (mb + m′
f)-bit kb and k′

f involved in Eb and part of Ef :
(a) Initialize an array of 2mf −m′

f counters.
(b) For each structure, construct set S in the same way with Model 3 in the

following:

S = {(P1, C1, P2, C2) : Eb(P1)⊕ Eb(P2) = α} .

(c) The size of S is y · 2rb−1. For each (P1, C1, P2, C2) in S, partially decrypt
(C1, C2) to get two r′

f -bit partial internal state (Y1, Y2). Insert S into a
hash table indexed by n− rf inactive bits of C1, n− rf inactive bits of
C2, r′

f inactive bits of both Y1 and Y2.

56

(d) With each 2(n− rf + r′
f)-bit index, we pick two distinct (P1, C1, P2, C2),

(P ′
1, C ′

1, P ′
2, C ′

2) to generate the quartet, denoted as (C1, C2, C3, C4), where
(C3, C4) = (C ′

1, C ′
2).

(e) Determine the key candidates involved in Ef and increase the corre-
sponding counters. Likewise, denote the time complexity in this step as
ϵ4.

(f) Select the top 2mf −m′
f −h hits in the counter to be the candidates, which

delivers a h-bit or higher advantage.
(g) Guess the remaining k −mb −mf unknown key bits according to the

key schedule algorithm and exhaustively search over them to recover the
correct key, where k is the key size.

The data complexity is D = y · 2rb =
√

s · 2 n
2 +1/P . The memory complexity

is D + D/2 + 2mf −m′
f to store the data, set S, and key counters. The time

complexity of generating quartets by constructing set S is

T1 = 2mb+m′
f ·D =

√
s · 2mb+m′

f + n
2 +1/P,

the complexity to determine key candidates is

T2 = 2mb+m′
f · 22(n−rf +r′

f) · 2 ·
(

D · 2−1−2(n−rf +r′
f)

2

)
· ϵ4

= 2mb+m′
f ·D2 · 22rf −2r′

f −2n−2 · ϵ4

= s · 2mb+m′
f −n+2rf −2r′

f /P 2 · ϵ4

and the complexity of exhaustive search is

T3 = 2mb+m′
f · 2mf −m′

f −h · 2k−(mb+mf) = 2k−h,

where h ≤ 2mf −m′
f .

Actually, there are also another two refinements of Algorithm 4 presented in
[DQSW22]. The first refinement is to balance the overall complexity by guessing
different key cells among the partial key guesses. The second is to apply the
improved algorithm to the related-key setting. More details about this can be
found in [DQSW22]. In this paper, the refined algorithms can be grouped, in
which Algorithm 4 is representative.

D Distinguishers and Precomputation Tables

D.1 The new 11-round distinguisher for AES-192

D.2 Precomputataion Tables for Attacks in Section 5

57

01

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

21

3e

1f

1f

01

0101

01 01

01

01

010101

01 0101

01

cb cb 33 cb

7c

7c

84

f8

7c

7c

84
f8

7c

7c

84

f8

7c

7c

84

33

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

7c

7c

84

f8

7c

7c

84

cb

f8

7c

7c

84

33

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

cb

cb

cb cb cb cb

cb cb cb cb

cb

cb

cb

1f

1f

1f 1f

1f

 ? ? ? ?? ? ? ?

 ??

3e

1f

1f

3e

1f

1f

3e

1f

1f

3f

1f

1f
3f

1f

1f

7c7c 7c 7c

7c

7c

7c

7c

f8

7c

7c

84

f8

7c

7c

84

f8

7c

7c

84

7c

cb

cb

f8

7c

7c

84

f8

7c

7c

84

f8

7c

7c
 ??

f8

7c

7c
 ??

33

7c

7c
 ??

f8

7c

7c

84

f8

7c

7c

84

33

7c

7c

84

cb

cb
 ??

 ??

 ??

 ??

 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??

 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??

 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??

 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??

 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??
 ??

 ??

 ??

 ??

Figure 13: A 11-round boomerang distinguisher of AES-192. White stands for no
difference, blue for a set difference, green for a known difference, and gray for a free
variable.

58

Table 14: Key schedule difference in the AES-192 trail

∆K0

? ? 00 00 21 00

∆K1

? 21 21 21 00 00

∆K2

21 00 21 00 00 00

∆K3

21 21 00 00 00 00
3e 00 00 01 3f 01 3e 3e 3e 3f 00 01 3e 00 3e 01 01 00 3e 3e 00 01 00 00
1f 00 00 00 1f 00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00 00
1f 00 00 00 1f 00 1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00 00

∆K4

21 00 00 00 00 00

∆K5

? ? ? ? ? ?

∆K6

? ? ? ? ? ?

∆K7

? ? ? ? ? ?
3e 00 00 01 01 01 3e 3e 3e 3f 3e 3f ? ? ? ? ? ? ? ? ? ? ? ?
1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f ? ? ? ? ? ? ? ? ? ? ? ?
1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f ? ? ? ? ? ? ? ? ? ? ? ?

∆K8

? ? ? ? ? ?

∆K9

? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?

∇K0

? ? ? ? cb cb

∇K1

? ? ? f8 33 f8

∇K2

? ? 33 cb f8 00

∇K3

? f8 cb 00 f8 f8
? ? ? ? 00 00 ? ? ? 7c 7c 7c ? ? 7c 00 7c 00 ? 7c 00 00 7c 7c
? ? ? ? 00 00 ? ? ? 7c 7c 7c ? ? 7c 00 7c 00 ? 7c 00 00 7c 7c
? ? ? ? ? 00 ? ? ? ? 84 84 ? ? ? 00 84 00 ? ? 00 00 84 84

∇K4

f8 00 cb cb 33 cb

∇K5

f8 f8 33 f8 cb 00

∇K6

f8 00 33 cb 00 00

∇K7

f8 f8 cb 00 00 00
7c 00 00 00 7c 00 7c 7c 7c 7c 00 00 7c 00 7c 00 00 00 7c 7c 00 00 00 00
7c 00 00 00 7c 00 7c 7c 7c 7c 00 00 7c 00 7c 00 00 00 7c 7c 00 00 00 00
? 00 00 00 84 00 84 84 84 84 00 00 84 00 84 00 00 00 84 84 00 00 00 00

∇K8

f8 00 cb cb cb cb

∇K9

f8 f8 33 f8 33 f8
7c 00 00 00 00 00 7c 7c 7c 7c 7c 7c
7c 00 00 00 00 00 7c 7c 7c 7c 7c 7c
84 00 00 00 00 00 ? ? ? ? ? ?

59

Table 15: Precomputation tables for 19-round attack on CRAFT, where underlined bytes
are used as input and determine the time and memory complexity for building the table.
Note that the precomputation table may be built for pairs or quartets. When a table is
built for pairs, the filter effect in brackets is for two pairs.
No. Starting cells Subtweakey

bytes
Bytes deduced Filter Pairs or

quartets
Time and
memory

Filter
effect

1 Y1[9], Y1[12],
Y ′

1 [9]
T K1[9],
T K1[12]

X2[1], X2[5],
Y ′

1 [12]
X2[1] ⊕ X′

2[1] =
X2[5] ⊕ X′

2[5]
Quartets 232 1

(Y i
1 [9], Y i

1 [12]), i = 1, 2, 3, 4 : T K1[9], T K1[12]
2 Y0[3], ∆X2[1],

X1[2] ⊕ X1[10],
X′

1[2] ⊕ X′
1[10],

T K0[13]

T K0[3],
T K1[2]

X2[13], X3[2],
Y ′

0 [3]
X2[13] ⊕ X′

2[13]
= ∆X2[1]
X3[2] ⊕ X′

3[2] = 0xA

Quartets 244, 236 2−8

(Y i
0 [3], Xi

1[2] ⊕ Xi
1[10], ∆Xj

2 [1], T K0[13]), i = 1, 2, 3, 4, j = 1, 3 :
T K0[3], T K1[2]

3 Y0[0], Y0[11],
Y ′

0 [0]
T K0[0],
T K0[11]

X1[7], X1[15],
Y ′

0 [11]
X1[7] ⊕ X′

1[7] =
X1[15] ⊕ X′

1[15]
Quartets 232 1

(Y i
0 [0], Y i

0 [11]), i = 1, 2, 3, 4 : T K0[0], T K0[11]

4 Y0[8], X1[14],
X′

1[14]
T K0[8],
T K1[6]

X3[6], Y ′
0 [8] X3[6] ⊕ X′

3[6] = 0xA Quartets 232 1

(Y i
0 [8], Xi

1[14]), i = 1, 2, 3, 4 : T K0[8], T K1[6]

5 ∆X2[8], Y1[15] T K1[15] X2[0], Y ′
1 [15] X2[0] ⊕ X′

2[0] =
∆X2[8]

Quartets 220 2−4

(∆Xj
2 [8], Y i

1 [15]), i = 1, 2, 3, 4, j = 1, 3 : T K1[15]

6 Y1[8], Y1[13],
Y0[7], Y0[14],
X1[15] ⊕ X1[11],
X′

1[15] ⊕ X′
1[11],

T K0[6]

T K1[3],
T K1[8],
T K1[13],
T K0[7],
T K0[14]

X2[2], X2[14],
X3[4], X3[8],
Y ′

1 [8], Y ′
1 [3],

Y ′
0 [7], Y ′

0 [14]

X2[2] ⊕ X′
2[2] =

X2[14] ⊕ X′
2[14],

X3[3]⊕X′
3[3] = 0xA,

X3[8] ⊕ X′
3[8] = 0xA

Pairs 252 28

(2−4)

(Y i
1 [8], Y i

1 [13], Xi
1[15] ⊕ Xi

1[11], Y i
0 [7], Y i

0 [14], T K0[6]), i = 1, 2 :
T K0[7], T K0[14], T K1[3], T K1[8], T K1[13]

7 Y1[0], Y1[7],
Y1[11], Y1[14],
T K0[3], T K0[7],

T K1[0],
T K1[7],
T K1[11],
T K1[14]

X3[11], X3[14],
Y ′

1 [11], Y ′
1 [14]

X3[11] ⊕ X′
3[11] =

0xA, X3[14] ⊕
X′

3[14] = 0xA

Pairs 240 28 (1)

(Y j
1 [0], Y j

1 [7], Y i
1 [11], Y i

1 [14], T K0[3], T K0[7]), i = 1, 2, j = 1 :
T K1[0], T K1[7], T K1[11], T K1[14]

Table 16: Precomputation tables for the 11-round attack on Deoxys-BC-256, where
underlined bytes are used as input and determine the time and memory complexity for
building the table.
No. Starting cells Subtweakey bytes Bytes deduced Filter Pairs or

quartets
Time and
memory

Filter
effect

1 X10[1, 11]
W10[12, 14]

MT K11[12 ∼ 15]
MT K10[1, 11]

Z11[12 ∼ 15]
Z′

11[12 ∼ 15]
∆X10[1, 6, 11, 12] =
0xe4∥00∥21∥00

Quartets 2112 2−16

(Zi
11[12 ∼ 15]), i = 1, 2, 3, 4 : MT K11[12 ∼ 15], MT K10[1, 6]

2 X10[9, 14, 3, 14] MT K11[4 ∼ 7],
MT K10[4, 9, 14, 3]

Z11[4 ∼ 7],
Z′

11[4 ∼ 7]
∆X10[4, 9, 14, 3] =
0x25∥0x9d∥0x14∥72

Quartets 2128 1

(Zi
11[4, 5, 6, 7]), i = 1, 2, 3, 4 : MT K11[4, 5, 6, 7], MT K10[4, 9, 14, 3]

60

Table 17: Precomputation tables for the 25-round attack on SKINNY-64-128, where
underlined bytes are used as input and determine the time and memory complexity
for building the table. Note that the precomputation table may be built for pairs or
quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.
No. Starting cells Subtweakey

bytes
Bytes deduced Filter Pairs or

quartets
Time and
memory

Filter
effect

1 Z24[1], X24[6]
X24[13], X′

24[13]
ST K24[1],
ST K23[2]

X23[2], X23[14],
Z′

24[1], X′
24[6]

X23[2] ⊕ X′
23[2] =

X23[14] ⊕ X′
23[14]

Quartets 248 1

(Zi
24[1], Xi

24[13], Xi
24[6]), i = 1, 2, 3, 4 : ST K24[1], ST K23[2]

2 Z24[7],
X24[11] ⊕ X24[15],
X′

24[11] ⊕ X′
24[15]

∆X23[14]

ST K24[7],
ST K23[6]

X23[6], Z′
24[7] X23[6] ⊕ X′

23[6] =
∆X23[14]

Quartets 240 1

(Zi
24[7], Xi

24[11] ⊕ Xi
24[15], ∆Xj

23[14]), i = 1, 2, 3, 4, j = 1, 3 :
ST K24[7], ST K23[6]

3 Z23[5], X23[9],
Z24[0], X24[12],
X′

23[9], X′
24[12]

ST K24[0],
ST K23[5]

X23[5], X23[12]
Z′

23[5], Z′
24[0],

X23[5] ⊕ X′
23[5]⊕

X23[9] ⊕ X′
23[9]⊕

X23[13]⊕X′
23[13] =

0x7

Pairs 236 24 (1)

(Zi
24[0], Xi

24[12], Zi
23[5], Xi

23[9]), i = 1, 2 : ST K24[0], ST K23[5]

4 Z22[2], X23[13],
Z23[1], X′

23[13],
ST K22[2]

ST K23[1], X22[2], Z′
22[2],

Z′
23[1]

X22[2] ⊕ X′
22[2] =

∆X22[14]
Quartets 248 2−4

(Zi
23[1], Zi

22[2], Xi
23[13], ST K22[2]), i = 1, 2, 3, 4 : ST K23[1]

5 Z24[4], Z23[0],
Z22[1], X23[12]
ST K22[1]

ST K24[4],
ST K23[0]

X21[14], Z′
22[1] X21[14]⊕X′

21[14] =
0xd

Quartets 244 1

(Zi
22[1], Zj

24[4], Zj
23[0], Xj

23[12], ST K22[1]), i = 1, 2, 3, 4, j = 1, 3 :
ST K24[4], ST K23[0]

6 Z23[7], ∆X22[14]
X23[11] ⊕ X23[15]
ST K22[6]

ST K23[7] X22[6],
X′

23[11] ⊕
X′

23[15]

X22[6] ⊕ X′
22[6] =

∆X22[14]
Quartets 232 2−4

(Xi
23[11] ⊕ Xi

23[15], Zj
23[7], ∆Xj

22[14], ST K22[6]), i = 1, 2, 3, 4,

j = 1, 3 : ST K23[7]

7 Z21[2], Z23[4],
X22[11] ⊕ X22[15],
X23[13], ST K22[7],
ST K21[6]

ST K23[4]
ST K21[2]

X21[2], X21[6],
X′

22[11] ⊕
X′

22[15], Z′
21[2]

X21[6] ⊕ X′
21[6] =

0xd X21[2] ⊕
X′

21[2] = 0xd

Quartets 248 2−8

(Zi
21[2], Xi

22[11] ⊕ Xi
22[15], Xj

23[13], Zj
23[4], ST K22[7], ST K21[6]),

i = 1, 2, 3, 4, J = 1, 3 : ST K23[4], ST K21[2]

8 Y0[6], W0[11] Y1[4] ST K0[6],
ST K1[4]

W0[7], X1[11]
W1[9], Y ′

1 [4]
Y2[9] ⊕ Y ′

2 [9] = 0x2 Quartets 232 1

(Y i
1 [4], Y j

0 [6], W j
0 [11]), i = 1, 2, 3, 4, j = 1, 3 : ST K0[6], ST K1[4]

61

	1 Introduction
	2 Notations
	3 Unified and Generic Key Recovery Algorithms
	3.1 Key Recovery Algorithm for the Rectangle Attack
	3.2 Key Recovery Algorithm for the Boomerang Attack
	3.3 Framework for Finding the Best Attacking Parameters

	4 Comparisons and Extensions
	4.1 Comparison with Previous Works on Rectangle Attacks
	4.2 Comparison with Previous Works on Boomerang Attacks
	4.3 Applicability to Related Attacks

	5 Applications
	5.1 Application to Serpent
	5.2 Application to AES-192
	5.3 Application to CRAFT
	5.4 Application to SKINNY
	5.5 Application to Deoxys-BC-256

	6 Concluding Remarks
	A Our Algorithms in the Related-Key Setting
	A.1 Related-key Rectangle Key Recovery Algorithm for Ciphers with a Linear Key-Schedule
	A.2 Related-key Boomerang Key Recovery Algorithm for Ciphers with a Linear Key-Schedule

	B Application to Some Other Ciphers
	B.1 Other Variants of SKINNY
	B.2 Deoxys-BC-256

	C Previously Proposed Key Recovery Algorithms
	C.1 Algorithm 1: Biham-Dunkelman-Keller's Algorithm at EUROCRYPT 2001
	C.2 Algorithm 2: Biham-Dunkelman-Keller's Algorithm at FSE 2002
	C.3 Algorithm 3: Zhao et al.'s Single-key Variant
	C.4 Algorithm 4: Dong et al.'s Single-key Variant

	D Distinguishers and Precomputation Tables
	D.1 The new 11-round distinguisher for AES-192
	D.2 Precomputataion Tables for Attacks in Section 5

