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Abstract

Privacy-preserving machine learning (PPML) enables multiple distrusting parties to jointly
train ML models on their private data without revealing any information beyond the final trained
models. In this work, we study the client-aided two-server setting where two non-colluding
servers jointly train an ML model on the data held by a large number of clients. By involving the
clients in the training process, we develop efficient protocols for training algorithms including
linear regression, logistic regression, and neural networks. In particular, we introduce novel
approaches to securely computing inner product, sign check, activation functions (e.g., ReLU,
logistic function), and division on secret shared values, leveraging lightweight computation on
the client side. We present constructions that are secure against semi-honest clients and further
enhance them to achieve security against malicious clients. We believe these new client-aided
techniques may be of independent interest.

We implement our protocols and compare them with the two-server PPML protocols pre-
sented in SecureML (Mohassel and Zhang, S&P’17) across various settings and ABY2.0 (Patra
et al., Usenix Security’21) theoretically. We demonstrate that with the assistance of untrusted
clients in the training process, we can significantly improve both the communication and compu-
tational efficiency by orders of magnitude. Our protocols compare favorably in all the training
algorithms on both LAN and WAN networks.

Keywords: Privacy-Preserving Machine Learning, Secure Multi-Party Computation, Client-
Aided Protocols.

1 Introduction

In recent years, we have witnessed machine learning (ML) emerge as one of the most influential
technologies and rapidly expanding research domains. Its applications span a diverse spectrum,
ranging from recommendation systems to self-driving cars, large language models, and even medical
prediction and diagnosis. This is in part due to increasing amount of data being collected and
available in the Big Data era. Meanwhile, as these machine learning algorithms and applications
are deployed in various real-world scenarios, data privacy is becoming increasingly critical, especially
in domains dealing with sensitive or confidential data such as healthcare, finance, and government.
In cases where entities are hesitant or restricted from sharing their data due to privacy regulations,
the significance of protecting data privacy is further emphasized.

Addressing these concerns, privacy-preserving machine learning (PPML) has become a crucial
approach to training ML models in a distributed manner, which enables multiple distrusting parties



to collaboratively train ML models on their private data while maintaining data privacy. The most
commonly considered setting in PPML, as proposed by Mohassel and Zhang [29], involves data
owners (e.g., clients) secret sharing their data among two non-colluding parties (e.g., servers), who
then jointly perform training on the secret-shared data.

At a high level, this approach can be conceptualized as two servers engaging in secure two-party
computation to train the ML model on secret-shared data. Importantly, the servers learn nothing
beyond the final trained model, ensuring the privacy of individual data points. Nevertheless, prior
work [16,21, 27,29, 30, 32, 33] has overlooked the fact that the data was initially owned by the
clients in the clear. In this work, we show that actively involving clients in the training process can
yield significant improvements in both communication and computational efficiency of the overall
protocol.

1.1 Owur Contributions

We study two-server PPML training where the data is held by a large number of clients. Since the
clients initially hold the training data in the clear, they can assist in certain computations based on
their clear data to achieve better efficiency than computing on shared data. Additionally, we can
leverage techniques from secure two-party computation with the assistance of an untrusted third
party by treating the clients as the untrusted third party. This approach introduces a novel way
of computing activation functions as well as division in the training algorithms, which proves to
be much more efficient than the garbled circuit-based approaches commonly used in PPML. We
believe these client-aided techniques may be of independent interest.

Our Contributions. In this work, we
e develop a new client-aided inner product protocol that enables a client and two servers to

jointly compute the inner product of two private vectors (x,y), where x is secret shared
among the two servers and y is held by the client;

e develop a series of client-aided protocols that, with the assistance of an untrusted client, allow
two servers
— to determine if their secret shared value is positive or not,
— to compute activation functions (e.g., ReLU, logistic function) on their secret shared
value, and
— to compute divisions on their secret shared values (for softmax);

e put these techniques all together into PPML training protocols for linear regression, logistic
regression, and neural networks, which are secure against semi-honest servers and clients;

e present techniques to enhance our security guarantees to protect against malicious clients;

e implement our protocols and demonstrate performance improvement compared with prior
work.

Experimental Results. We implement our two-server PPML protocols for both semi-honest
and malicious clients. We compare our performance with SecureML [29] in various settings and
compare with the state-of-the-art ABY2.0 [30] theoretically (their code is not available). For linear
regression, we achieve an improvement of 6.12—1047x over [29] in the LAN setting and 3.63—73.5%
in the WAN setting. For logistic regression, we achieve an improvement of 4.85—723x on LAN and
2.71—44.3x on WAN. For neural networks, we achieve an improvement of 3.19x on LAN and 3.92x



on WAN. When enhancing our security guarantees to malicious clients, we incur a small constant
(2.55 — 4.95x) overhead compared to our semi-honest variant. This is orders of magnitude more
efficient than the OT- and LHE-based variants of [29]. We also give comprehensive comparisons
for the communication costs as well as the offline/online efficiency. See Section 6 for more details.

1.2 Related Work

Privacy-Preserving Machine Learning. In the PPML domain, secure multi-party computation
has been used for various ML algorithms such as decision trees [24], k-means clustering [5,15], and
SVM classification [35,39]. However, these solutions are far from practical due to the high overheads
that they incur. Mohassel and Zhang [29] introduced a practically-efficient PPML framework in
the two-server setting. Since then, there has been a rich body of research in PPML that follows the
same framework: data owners first secret share their data among two or more non-colluding parties
who then perform training on the secret-shared data. Prior work has studied this problem in various
settings, including secure training and inference, semi-honest and malicious security, with a focus on
a small number of servers (e.g., two-server [16,21,27,29,30,32,33], three-server [8,20,21,28,31,36],
and four-server [6,9,20]) where the adversary can corrupt at most one of them. In this work, we
focus on the two-server setting for ML training, and we anticipate that the client-aided techniques
developed here can be applied to ML inference.

Federated Learning. As a similar setting of PPML, federated learning (FL) [3,4,10,17,19,25] en-
ables multiple entities (e.g., mobile devices) to collaboratively train a model under the coordination
of a central server (e.g., service provider) while keeping the training data decentralized, protecting
the privacy of the individual users. The two-server setting has also been studied in FL [1,10]. Most
of the existing FL frameworks rely on a key building block known as secure aggregation [1,3,4,10],
which protects clients’ raw data (in particular, individual model updates) through secure aggre-
gation. However, they reveal the global model updates, particularly the mini-batch stochastic
gradient descent, to the central server(s) as well as all the clients. Recent work has shown that
this framework is vulnerable to various privacy attacks [13,26,34,37,40]. As a side product of this
work, we can apply client-aided PPML to two-server FL to enhance the privacy guarantee of FL,
revealing only the final model to the central servers.

1.3 Roadmap

We give a high-level overview of our new techniques in Section 2. We provide preliminaries including
the definitions of required cryptographic building blocks and machine learning algorithms in Section
3. In Section 4, we present our new client-aided protocols for inner product, sign check, activation
functions, and division over secret shared values. In Section 5, we assemble the building blocks to
present our client-aided PPML protocols that are secure against semi-honest clients. Additionally,
we enhance the security guarantees to protect against malicious clients in Appendix A. Finally, we
discuss our performance and experimental results in Section 6.

2 Technical Overview

During the training process, we keep the invariant that all the intermediate values (e.g., model
parameters, clients’ data, etc.) are additively secret shared among the two servers. Their secret



shares are only revealed to each other when the training process is finished and they would like to
learn the final model. We discuss how to maintain the invariant for each type of operation in the
training algorithms. First, addition is almost free, which can be computed locally by the servers.
We discuss below how to deal with the operations that require more work, and how we can improve
the efficiency by involving an untrusted client in the computation. We refer the reader to Section
3.3 for the ML algorithms we consider in this work.

Client-Aided Inner Product. One of the key steps in linear regression is to compute the inner
product of two vectors, one vector w denoting the current model, and the other vector x denoting
the client’s data. In the existing PPML framework, the servers hold secret shares of both w
and x and they perform a secure two-party computation protocol to compute secret shares of the
inner product (w,x), e.g., by using Beaver multiplication triples [2] generated in an offline setup
phase [29].

We notice that since x is entirely known to the client, she can compute a masked inner product
with x and share the masking information with the two servers. This improves both the computation
and communication between the servers. Moreover, it does not require heavy computation on the
client side, nor does it require extra round of communication between the servers and the client.
In particular, the client still sends secret shares of x to the servers, along with which she will send
some extra masking values. We present the detailed protocol in Section 4.1.

When the vectors have dimension 1 (as a special case), this technique can be used to compute
multiplication of a value shared among the servers with another value held by the client. This will
be a key building block below.

Client-Aided Activation Functions. For logistic regression and neural networks, besides vector
inner product (and more generally matrix multiplication), we also need to perform activation
functions (e.g., logistic function, ReLU) on secret shared values. To do this, we need a way for
the two servers to jointly determine whether a secret shared value is positive or not (we view the
value as a two’s complement representation). This is not an arithmetic operation, and the existing
PPML frameworks [28-30] mainly rely on garbled circuits that compute the sum of two secret
shared values to determine its highest order bit.

In this work, we present a new approach that utilizes a client as an untrusted third party. For
two secret shares [z], and [];, the problem of determining if [z],+ [«]; > 0 is essentially a secure
comparison problem, namely determining whether [z], > — [z];. Instead of relying on garbled
circuits [38], we reduce this problem to a special secure two-party computation problem, private set
intersection cardinality (PSI-CA), via a certain encoding of the input values. In particular, each
party generates a set of elements based on their input and they jointly compute the cardinality
of the intersection of the two sets. [z], > —[x], iff the set intersection cardinality is 1, and
[x], < — [z], iff the set intersection cardinality is 0. With the assistance of an untrusted third
party (i.e., untrusted client), PSI-CA can be securely computed in an extremely efficient way
requiring only symmetric-key cryptographic operations.

There are two issues in this approach. First, the existing client-aided PSI-CA protocols reveal
the cardinality of the set intersection to either the client or one of the two servers. However, it is
crucial that the result is never revealed to any party in our PPML protocols. We develop a new
way to secret share the cardinality result between the client and the two servers. Another issue is
that the reduction above only works if values are both positive or both negative. We observe that
[x], and [z], have different signs with high probability throughout the training process, hence we
can ensure the comparison is only between values of the same sign in our protocol.



To compute ReLLU, we need to multiply the secret shared PSI-CA result with the secret shared
value z. We can utilize the aforementioned client-aided inner product (with dimension 1) to ef-
ficiently compute the multiplication. Putting it all together, we present the client-aided ReLU
protocol in Section 4.2. We further extend these ideas to the logistic function in Section 5.2.

Client-Aided Division. In neural network training, we additionally need to compute a softmax
function on secret shared values. We use the MPC-friendly variant of it (see Section 3.3) which
requires division of two secret shared values. We compute the quotient bit-by-bit sequentially
starting from the most significant bit. In every step, we need to compare the current dividend with
the divisor, which can be done using the client-aided sign check protocol described above. The
secret shared output needs to be multiplied with the secret shared divisor, which can be done using
the client-aided inner product with dimension 1. The protocol is presented in Section 4.4.

Security Against Malicious Clients. In the aforementioned client-aided protocols, it is critical
that the clients are semi-honest, namely they follow the protocol description honestly while trying
to extract more information from the protocol execution. This might not be a realistic assumption
in practice. Hence we further enhance the security guarantees of our protocol to protect against
malicious clients. The two main building blocks we need is the client-aided inner product and
client-aided sign check. To ensure security against malicious clients, we leverage the cut-and-choose
technique to verify that the results are computed correctly. See Appendix A for details. As it turns
out, our malicious variant only incurs a small constant overhead compared to our semi-honest
variant and is orders of magnitude more efficient than prior work (see Section 6.5).

3 Preliminaries

Notation. We use ), o to denote the computational and statistical security parameters, respec-
tively. We use [v] to denote an additive secret sharing of a value v € Zye between two servers Sg, Sy.
In particular, server S; (i € {0,1}) holds [v]; such that v = [v], + [v];. To sample a random addi-

tive secret sharing of v, we use the notation ([v], , [v];) < Sharing(v). We use & to denote random
sampling from a uniform distribution. We use [n] to denote the set {1,2,...,n}. For a vector v,
we use vli] to denote the i-th element of the vector. By negl(\) we denote a negligible function,
i.e., a function f such that f(\) < 1/p(A) holds for any polynomial p(A) and sufficiently large A.

Fixed-Point Arithmetic. Throughout our protocols, we follow the prior work [29,30] to use the
two’s complement fixed-point representation to denote real numbers and keep at most £ bits in the
fractional part for all intermediate values during the training process. In particular, we transform
a real number z (with at most £ bits in its fractional part) into an integer in Zy, by computing
x’ = 2 . . Furthermore, we assume that all intermediate values have at most ¢, bits in the whole
number part and that £, + ¢; < ¢ (this follows from prior work [29,30]). To multiply two real
numbers x and y, we multiply 2/ = 2 -z with y/ = 2% - y to obtain 2/ = 2/ -/ € Z.. Note that 2’
has 2 - /; bits representing the fractional part of the product, so we truncate the least significant
¢ Dbits of 2’ such that it has £ bits in the fractional part. Since we keep the invariant that all
intermediate values are additively secret shared between the two servers and that £,, + ¢y < ¢, we
can truncate z’ by truncating its shares [2], and [2], locally on the two servers [29].

We use the function Rtol (z) to denote the function of transforming a real number x to an
integer in Zgye, namely Rtol (z) = 2¢/ - z. We use the function Trunc (z') to denote the function of
truncating an integer in Zye by the lowest order £ bits, namely Trunc (2/) = |z/2% |. When we



compare x € Zqy with 0, we view x as a two’s complement representation and compare it with 0.
When we divide x by y, which are both positive real numbers represented in Z,¢, we compute the
quotient by Quotient (x,%) := |z - 2% /y| € Zqe.

3.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) [14, 38] allows multiple parties, each holding a private
input, to jointly compute a function on their private inputs without revealing anything beyond the
output of the function. In this work, we consider MPC protocols for three parties with honest
majority. In particular, the three parties are two servers and a client, where the adversary corrupts
either the client or one of the two servers. We say an adversary is semi-honest if it follows the
protocol description honestly while trying to extract more information from it, while a malicious
adversary may arbitrarily deviate from the protocol specification. In our work, we assume both
servers are semi-honest, and we consider both semi-honest and malicious clients. We follow the
Universal Composition (UC) security definition of MPC, and refer the reader to [7] for details.

Private Set Intersection. Private set intersection (PSI) is a special secure two-party computation
(2PC) protocol which allows two parties, each holding a private set of elements, to jointly compute
the intersection of their sets without revealing any other information. In this work, we will be
leveraging techniques from client-aided PSI [18,22] where the two parties compute PSI (more
specifically, the cardinality of the set intersection, PSI-CA) with the assistance of an untrusted
client.

Yao’s Millionaires’ Problem. Yao’s millionaires’ problem [38] is another special secure 2PC
protocol that allows two parties, each holding a private input value, to jointly compare the two
values. In this works, we will be reduce this problem to PSI-CA [36].

3.2 Pseudorandom Function

A pseudorandom function (PRF) is a keyed function that can be computed efficiently (in polynomial
time) but looks like a random function without knowledge of the key. In particular, let F' :
{0,13* x {0,1}™ — {0,1}™ where ) is the security parameter, and let F = {f : {0,1}" — {0,1}™}.
We say F'is a PRF if for any probabilistic polynomial time (PPT) A,

Pr  |ARO) = 1] — Pr [Af(') = 1} < negl(\).
kﬁ{o,l}A EF

3.3 Machine Learning Algorithms

In this section, we briefly review the ML algorithms considered in this work, including linear
regression, logistic regression, and neural networks. We refer the reader to prior work [29,30] on
more details about these ML models. We consider a set of training data {x;,y;}i—=1, n. All the
algorithms take the stochastic gradient descent (SGD) approach, which involves iteratively updating
a target coefficient vector/matrix by following the gradient of a particular loss function evaluated
on a random batch of training data. In the SGD method, we use B to denote the batch size, a to
denote the learning rate, E to denote the number of epochs, n to denote the size of training data,

and define t = % as the number of iterations.



Linear Regression. In linear regression, we try to learn a coefficient vector w such that the
following loss function is minimized: Y ;" | ((w,x;) — yl-)Q. Applying SGD to the linear loss function
gives that we update w in each iteration according to the following expression:

B
w%w—g;“w,xﬁ—yi)-xi.

Logistic Regression. The only difference between logistic regression and linear regression is that
the logistic (Sigmoid) function f(z) = 1+i—z is applied to the inner product z = (w,x;), and the

loss function needs to be adjusted accordingly so that the loss function is convex and SGD still
works. The SGD update step in this case is identical to linear regression except for applying the
logistic function to the inner product. In particular,

W <— W —

SelRs)

B
D (FUw %)) = 9i) - i
i=1

The above logistic function is not MPC-friendly, and we follow the approach of [29] by con-
sidering a piecewise linear function instead, which they demonstrated yields comparable accuracy
in training. We refer the reader there for more details. In particular, we approximate the logistic
function by

0 if 2 < —1/2
f(z)={ z2+1/2 ifze[-1/2,1/2
1 if z2>1/2

Neural Networks. Neural networks are a generalization of regression to learn more complex
relationships between high dimensional input and output data. A basic neural network can be
divided into m layers, each containing d; nodes. Each node is a linear function composed with a
non-linear activation function. One of the most popular activation functions considered in neural
networks is the rectified linear unit (ReLU) function, which can be expressed as f(z) = max{0, z}.
To evaluate a neural network, the nodes at the first layer are evaluated on the input features. The
outputs of these nodes are then forwarded as inputs to the next layer of the network until all layers
have been evaluated in this manner. For classification problems with multiple classes, usually a

softmazx function is applied at the output layer, and we use the MPC-friendly variant [29] of the
RELU (u;)

S dm RELU (uy)

in a similar manner to logistic regression except that each layer of the network should be updated

in a recursive manner, starting at the output layer and working backward.

softmax function f(u;) = . The training of neural networks is performed using SGD

4 Client-Aided Protocols

4.1 Client-Aided Inner Product

In this section, we present a protocol for computing the inner product of a vector x € Zgz that
is additively secret shared among two servers and another vector y € Z‘zil held by a client. As a
result, the two servers learn an additive secret sharing of the inner product (x,y) and the client
learns nothing. The ideal functionality for our client-aided inner product is presented in Figure



1. Looking ahead, whenever we run this protocol, the vector y will also be shared among the
servers (either directly shared by the client or learned from another protocol), hence in the ideal
functionality we also let the servers input a secret share of y. This will make this protocol better
compile with our other protocols, especially in the case of malicious clients.

Functionality F#NNERPROD:

Parties: Two servers Sg,S7 and a client C.
Inputs: Each server S; (i € {0,1}) inputs two secret shared vectors [x]; , [y]; € ZZ,. The client C
inputs a vector y = [y], + [¥];-
Functionality: On receiving [x],, [y]; from S; (i € {0,1}) and y from C:
e Recover x = [x], + [x], and compute the inner product v = (x,y).
e Sample a random secret sharing of v, namely ([v],, [v];) < Sharing(v).

e Send [v], to each server S; (i € {0,1}) and send L to the client C.

Figure 1: Ideal functionality fIdNNERPROD for computing the inner product.

Construction Overview. The client first samples a uniform random vector r & Zgz. Viewing r
as a mask for the servers’ input x, the client generates a data-dependent multiplication triple by
computing the inner product of r and its input vector y, and sends the a secret share of the triple
to the two servers. By using the data-dependent triple generated by the client, the two servers
recover x —r and compute a secret share of (x,y). Our protocol is described in Figure 2. We state
the theorem below and give the security proof in Appendix B.1.

Protocol H‘IiNNERPROD:
1. The client C does the following:

(a) Sample [r],, [r], & Zgz and compute r = [r], + [r];.
(b) Compute u = (r,y).
(c) Sample random secret sharings of u, namely ([u],, [u],) < Sharing(u).
(d) Send ([r], , [u];) to server S; for i € {0, 1}.
2. Each server S; (i € {0,1}) does the following:
(a) Compute [s], = [x];, — [r]; and send it to the other server.
(b) Recover s = [s], + [s]; and compute [v], = (s, [y],) + [u],; as the output.

Figure 2: Protocol H?NNERPROD for computing the inner product.

Theorem 4.1. The protocol H(IjNNERPROD (Figure 2) securely computes the ideal functionality ‘FIdNNERPROD

(Figure 1) against a semi-honest adversary that corrupts either the client C or one of the two servers.

Communication and Optimizations. In our protocol, each party computes only one inner
product, so the servers and the client compute three inner products in total. The communication
between the client and two servers is (2d + 2) ring elements in Zy and the communication among
the two servers is 2d ring elements. The total communication is (4d + 2) ring elements.

We discuss some optimizations in our implementation. In Steps la, lc, 1d, the client needs
to sample random vectors [r],, [r]; as well as random secret shares of u, and send them to the
servers, leading to a total communication cost of (2d + 2) ring elements in Z,:. To reduce this
communication, we let each server share a PRF key with the client. Then the client can use the



PRF keys to generate (pseudo)random vectors [r] , [r]; for the two servers without communication.
To generate a (pseudo)random secret sharing of u, the client can use the shared PRF key with one
server Sg to generate [ul, without communication, and send the other share [u]; to S;. That is,
apart from sharing the PRF keys, we can reduce the communication between the client and the
servers from (2d 4 2) to 1 ring element.

4.2 Client-Aided Sign Check

In this section, we present a protocol that allows two servers to jointly learn if a secret shared value
x € Zqye is positive or not (by viewing = as a two’s complement representation), with the assistance
of a client. The three parties will learn a binary secret sharing of the sign check outcome b. In
particular, the servers both learn one binary share b° and the client learns the other share b¢ such
that b> @ b¢ = b. The ideal functionality is presented in Figure 3. Looking ahead, this protocol
will be used in computing activation functions as well as divisions (for softmax). In our learning
algorithms, we note that the absolute value of x is significantly less than 2¢ throughout the training
process, hence [z], and [z]; have opposite signs with overwhelming probability. In particular, we
assume x has at most £y bits in the fractional part and /£, bits in the whole number part, and
that ¢, + ¢y < ¢ (this follows from prior work [28-30]). Given that ([z],, [z];) is a uniformly
random share of x € Zye, the probability that [z], and [z]; have the same sign is no greater than
20wtlr=f The proof follows from the analysis in [29]. Therefore, we assume [z], and [z], in the
ideal functionality. In addition, we let the two servers learn a secret share of b¢ so that this protocol
can be incorporated more easily into other protocols.

Functionality Fsiencurck:

Parties: Two servers Sp,S; and a client C.
Inputs: Each server S; (i € {0,1}) inputs a secret shared value [z]; € Zy¢, where [z], and [z],
have opposite signs. The client C has no input.
Functionality: On receiving [z], from S; (i € {0,1}):
e Recover x = [z], + [«], and let b := (z > 0). That is, view x as a two’s complement
representation and let b be the indicator of weather x is a positive number.

e Sample b° & {0,1} and let b := b @ b°.
e Sample a random secret sharing of b, namely ([[bc]]o , [6¢] )= Sharing(b©).
e Send b° to both servers and [[bc]]i to each server S; (i € {0,1}). Send b¢ to the client C.

Figure 3: Ideal functionality Fgiencurck for determining if a secret shared value is positive or not.

Construction Overview. We first give an overview of our construction. The two servers hold
an additive secret share of a value x € Zgy¢, namely each server S; (i € {0,1}) holds [z], such that
[x], + [#], = . We additionally assume that [z], and [x], have opposite signs. Suppose without
loss of generality that [x], > 0 and [z], < 0, then checking whether [z], + [z]; > 0 is equivalent
to checking whether [z], > — [z];, where both [z], and — [z]; are non-negative values. We take
inspiration from [23] to reduce our problem to PSI and then leverage techniques from client-aided
PSI.

Let a = ay---aj denote the binary representation of a non-negative value a. We denote its 0-
encoding by P = {ay---a;1110---0|i € [{],a; = 0} and its I-encoding by PL = {ay---a;,0---0|i €




[¢],a; = 1}. Note that all binary strings in the sets have the same length ¢. We then pad the two
sets with dummy elements to be of size £ each. Define two sets GY and G as follows. G0 is a set
of size £ — |PY| where all the elements are random /-bit strings starting with 10, and G/ is a set of
size £ —|PL| where all the elements are random /-bit strings starting with 11. Let the corresponding
augmented 0-encoding be defined as A2 = PY U GY and augmented 1-encoding be ALl = PL U GL.
Following the work [23], the set intersection Aﬁx]]o N A(i[m]l has size 1 if and only if [z], > — [z],
and the intersection is empty otherwise. For the other case where [z], < 0 and [z]; > 0, we simply
swap the tasks of two parties and check whether — [z], < [z];.

Now we reduce our problem to computing the size of the intersection of two private sets, namely
PSI-CA. With the assistance of an untrusted client, we can utilize techniques from client-aided PSI-
CA [18,22]. Nevertheless, we need an additional security guarantee that the servers and the client
only learn a binary secret share of the PSI-CA result.

We leverage the fact that the output of our PSI-CA can only be 0 or 1, and we randomly
choose to compare either [z], > —[z]; or [z], < —[z]; . In particular, the servers randomly
sample a bit b° and flip the comparison if b> = 1. To be more specific, Sy generates an augmented
(1—b°)-encoding of [z], and S; generates an augmented b>-encoding of — [«];. Then they perform
a client-aided PSI-CA protocol using a pseudorandom function (PRF). The client-aided sign check
protocol is presented in Figure 4. We state the theorem below and give the security proof in
Appendix B.2.

PI‘OtOCOl HSIGNCHECK:

0. The two servers Sg and S; agree on a computational security parameter A and a
pseudorandom function F : {0,1}* x {0,1}* — {0, 1}*.
1. Sp samples a random bit b° il {0,1} and random PRF key k & {0,1}*, and sends (b°, k) to
Si.
2. Each server S; (i € {0,1}) does the following:
(a) View [z]; as a two’s complement representation. If [z], > 0, then let b; := 1 @ b°;
otherwise let [z], := — [z], and let b; := b°.
(b) Generate an augmented b;-encoding of [z], as A,;.
(c) Apply the PRF Fj, to each element in A; to obtain 7; = Fj(A;).
(d) Randomly shuffle the elements in 7; and send the shuffled set 7; to the client C.

3. Upon receiving ’76 and 7T; from the two servers, the client C sets b€ = 0 if 76 NT = (0, and
sets b¢ = 1 otherwise.

4. The client C samples a random secret sharing of b%, namely ([[bc]]o , [[bc]] 1) <+ Sharing (bc),
and sends [[bc]]i to each server S; (i € {0,1}).

5. Bach server S; (i € {0,1}) outputs (b°, [[bc]]i). The client C outputs b¢.

Figure 4: Protocol Ilgioncuecx for determining if a secret shared value is positive or not.

Theorem 4.2. Assuming F is a secure PRF, the protocol llgignenpck (Figure 4) securely computes
the ideal functionality Fsioxcuecx (Figure 3) against a semi-honest adversary that corrupts either
the client C or one of the two servers.

Communication and Optimizations. In our protocol, each server computes ¢ PRF opera-
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tions. The total communication cost is (2A¢ + A + 1) bits with 2 ring elements. We can apply
the same optimization as in Section 4.1 to reduce communication by using shared PRF keys to
generate random values. In particular, in Step 1 the servers can use a shared PRF key to generate
(pseudo)random values (b°, k) together without communication; in Step 4 the client C can use
the shared PRF key to generate a (pseudo)random value with one server without communication.
Then, the communication can be reduced to 2A¢ bits with 1 ring elements.

4.3 Client-Aided ReLU

In this section, we present a protocol that allows two servers to jointly compute the ReLLU function
of an integer x € Zy that is additively secret shared among them, with the assistance of the client.
Looking ahead, this protocol is a crucial component in computing activation functions. The ideal
functionality for our client-aided ReLU is presented in Figure 5.

Functionality Frgpu:

Parties: Two servers Sp,S; and a client C.
Inputs: Each server S; (i € {0,1}) inputs [z]; € Zyc. The client C inputs nothing.
Functionality: On receiving [z], from S; (i € {0,1}):
e Recover x = [z], + [z],. View z as a two’s complement representation and compute
y = max{z,0}.
e Sample a random secret sharing of y, namely ([y],, [y];) < Sharing(y).
e Send [y]; to each server S; (i € {0,1}) and send _L to the client C.

Figure 5: Ideal functionality Frgpu for computing the RELU function.

Construction Overview. The servers hold a secret share of an integer z € Zy and want to
jointly learn a secret share of RELU(z) = max{0,2} = (x > 0) - . Observe that the ReLU
function simply consists of a sign check operation and a multiplication operation, which can be
computed by using the protocols in Sections 4.2 and 4.1, respectively. To combine these two
protocols, the challenge is that the output of the sign check is a binary share among the servers
and the client, while the input of the inner product should be additive secret shares. Observe that
z- (P PbY) =2+ (x-b%) - (1 — 2b°) and the servers have b° in clear, we only need to use the
inner product protocol (with dimension 1) to compute a secret share of x - bC, and then let each
server S; (i € {0,1}) compute [z - (b° & bc)]]i = [z], - b° + [z~ bc]]i (1 —2b%). Our protocol is
described in Figure 6. We state the theorem below and defer the proof to Appendix B.3.
Theorem 4.3. The protocol gery (Figure 6) securely computes the ideal functionality Freru
(Figure 5) in the (FSIGNCHECIQFIINNERPROD)'hbeid model against a semi-honest adversary that cor-
rupts either the client C or one of the two servers.

Communication and Optimization. The communication of a ReLU function consists of the
communication of a sign check and an inner product of vectors with dimension 1. Applying the
optimizations we mentioned, the communication between the client and the servers is 2A¢ bits
with 2 ring elements and the communication between the two servers is 2 ring elements. The
computational cost on each server mainly contains ¢ PRF (AES) operations.
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Protocol Ilgg,u:

1. S0, S1 and C call Fiencunex to compute
(05 [5],) - (v o)) 29) = Fsoncuscx(laly - [l L).
2. 50,51 and C call FL . prop tO compute
(lao [l + L) Fhspron ((I21o - [6], ) - (11, [6] ) 6) -

3. Each server S; (i € {0,1}) outputs [y]; = []; - b° + [a], - (1 — 2b%).

Figure 6: Protocol IIgg,u for computing RELU in the (]:SIGNCHECK,FIINNERPROD)—hybrid model.

4.4 Client-Aided Division

In this section, we present a client-aided protocol that computes division of two shared values.
Assume the servers hold secret shares of x,y € Zqye such that 0 < z < y and y # 0, they jointly
compute an additive secret share of the quotient Quotient (x,%) = |z - 2% /y| with the assistance of
the client. See Figure 7 for the ideal functionality. Looking ahead, the division protocol is used to
approximate the softmax function in the output layer of neural networks.

Functionality Fp:

Parties: Two servers Sg,S; and a client C.
Inputs: Each server S; (i € {0,1}) inputs two secret shared values [x]; € Zye and [y]; € Zqy:
subject to the constraint that 0 < x <y and y # 0. The client C inputs nothing.
Functionality: On receiving [«]; and [y]; from S; (i € {0,1}):

e Recover z = [z], + [z];, ¥ = [¥], + [y]; and compute the quotient ¢ = Quotient (z,y).

e Sample a random secret sharing of ¢, namely ([q],, [¢],) < Sharing(q).
e Send [q]; to each server S; (i € {0,1}) and send L to the client C.

Figure 7: Ideal functionality Fp, for computing division of two secret shared values.

Construction Overview. Inspired by the division protocol of SecureNN [36], we compute the
quotient bit by bit. Let k; (i € {{f,...,0}) be every bit of the quotient. In our protocol, the
servers compute a secret share of each bit step by step and then combine them together to get
a secret share of the quotient. In particular, the servers store a secret share of an intermediate
variable u € Zy (the dividend) initiated to be x. We start with the most significant bit k,, by
computing the sign check of u — y. Afterwards, we replace u by u =2 - (u — ky ;e y). Then we can
compute the next bit in exactly the same way, i.e., k¢, —1 is equal to the sign of u —y. We can
simply repeat the above two steps for the remaining bits. The main idea is that when we compute
the i-th bit k; (i € {€y —1,...,0}) after getting ky,, ..., ki1, we are actually computing the sign

& : :
of -2 —y - 3 k;j-27 —y-2'. Our protocol is described in Figure 8. We state the theorem

j=it+1
below and give the security proof in Appendix B.4.
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Protocol Ilpy:
1. Each server S; (i € {0,1}) sets H:Ugf_l,_l]]i = [z],-

)

2. For j from £y downto 0:
(a) Each server S; (i € {0,1}) computes [2;]; = [uj41]; — []; + i
(b) Sp, S1 and C call Fgencurck to compute

((8.51,)- (5[5 15) = Foncmntey
(¢) So, S1 and C call F\prprop t0 compute
([[Uj]]o ) [[Uj]]l ?J-) = “FIlNNERPROD (([[y]]o ) |:|:b‘]c:|:| 0) ) ([[y]]l ) [[bjc]] 1) 7bjC) .

(d) Each server S; computes

sl =i+ [o5] - a=28),  [ui], = Dol 5 + [, - (1 — 289),

7

[l =2 (Bl - [],)

3. Each server S; (i € {0,1}) outputs [¢];, = Zﬁf:o 27 - [kj],.

Figure 8: Protocol IIpy, for computing division in the (Fsiencurck, Finwgrprop)-hybrid model.

Theorem 4.4. The protocol Ilp,, (Figure 8) securely computes the ideal functionality Fpr, (Figure
7) in the (FsienCueck s fIlNNERPROD)—hbeid model against a semi-honest adversary that corrupts either
the client C or one of the two servers.

Communication. Considering all the computation among secret shared values, the servers and
the client jointly compute (¢; + 1) sign checks and multiplications in our division protocol. We
can naturally use the protocols proposed in Sections 4.1 and 4.2. The total communication is
2(0f 4+ 1) - X- £ bits with 4 - (¢4 + 1) ring elements.

5 Client-Aided PPML

In this section, we present our client-aided two-server privacy-preserving machine learning protocols
for linear regression, logistic regression, and neural networks. All the training algorithms follow the
stochastic gradient descent (SGD) method, and we present a single ideal functionality Fyr,_sgp in
Figure 9.

5.1 Linear Regression

In this section, we present a protocol for an SGD iteration in linear regression training, where
servers update the model w with the assistance of the clients in the mini-batch:

B
«a
w—w— Bz;“w,xi) —Yi) - X;.
1=
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Functionality Fyi_sgp:

Parties: Two servers So,S; and a set of clients Cq,...,Cy,.
Inputs: Each client C; (j € [m]) inputs a data point (x;,y;) where x; € de and y; € Zge. The
servers have no input.
Functionality: On receiving (x;,y;) from C; (j € [m]):
e Initialize the model w randomly.
e In each SGD iteration:

— Pick a mini-batch of B clients (public information).

— Use these clients’ data to update the model and obtain a new model w'.

— Sample a random secret sharing of w’, namely ([w'],, [w'],) < Sharing(w’).
Send [w']; to each server S; (i € {0,1}) and send _L to all the clients.

Figure 9: Ideal functionality Fur,_sqp for two-server PPML.

Construction Overview. The most important steps in the process are two multiplications, one
in forward propagation and one in backward propagation. Both can be computed by utilizing the
client-aided inner product methodology we proposed. The servers first compute (w,x;) by simply
using the client-aided inner product for vectors of dimension d. The multiplication in the backward
propagation can be viewed as d inner products for vectors of dimension 1. We need to truncate the
results of the inner products since all elements in the vectors represent real numbers. The protocol
is described in Figure 10.

Theorem 5.1. The protocol Iy nparsgp (Figure 10) securely computes the ideal functionality
Fursep (Figure 9) for linear regression in the Fixngrprop-hybrid model against a semi-honest
adversary that corrupts either one of the two servers Sg,S1, or an arbitrary subset of the clients.

Proof Sketch. First we prove correctness of the protocol. Note that in each iteration of linear
regression, the model should be updated as w <+~ w — 3 Zf}:l ((w,x;) —y;) - x;. For each client
C; in a mini-batch: in Step 1b the servers learn a secret sharing of (w,x;) (without truncation); in
Step 1d they learn a secret sharing of (w,x;) — y; (with truncation); in Step le they learn secret
shares of ((w,x;) — y;) - xj, which are truncated and combined into a vector [u;] in Step 1f. The
correctness of truncation for fixed-point arithmetic is proved in [29]. Finally, in Step 2 the servers
perform a linear combination of the current model [w] and the gradient descent {[[uj]]}je[B] to
obtain an updated secret shared model [w'].

In terms of privacy, any corrupted client does not learn any information from the protocol
because it does not receive any message. This also holds for an arbitrary subset of corrupted and
colluding clients. For a corrupted server, it only receives secret shared values in Steps la, 1b, lc,
le, which information theoretically hides the clients’ data. The formal proof is similar to the proofs
of Theorems 4.3 and 4.4.

Communication and Optimizations. In our linear regression protocol, the communication
among the servers is 4Bd ring elements and that between the servers and the clients is 3Bd 4+ 3B
ring elements. Hence the total communication for an SGD iteration is 7Bd + 3B ring elements.

To further improve the communication, we can take advantage of the batched training. Consider
the inner product in the forward propagation (Step 1b). The communication between the servers
can be reduced by a factor of B if different clients share the same vectors ([r],, [r],) in protocol
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Protocol Il ygarsaD:
1. For each client C; (j € [B]) in a mini-batch:

(a) The client C; samples a random secret sharing of x;, namely
([x5]y , [x;],) < Sharing(x;), and sends [x;], to S; (i € {0,1}).
(b) So,S1 and C; call F& prop to compute

([[vj]]o ) [[Uj]]l 7J—) A FIdNNERPROD (([[w]]o ) [[Xj]]o)7 (Iwl [[Xj]]1)7xj) .

(c) The client C; samples a random secret sharing of y;, namely
([y;]y > [ysl,)  Sharing(y;), and sends [y;], to S; (i € {0,1}).
(d) Each server S; (i € {0,1}) computes [{yﬂ] = Trunc ([v;],) — [w;;-

i
(e) For each k € [d], the two servers S, Sy and C; call FL . prop t0 compute

(Je], - Jet], 1) = Fhwrpnon (Ll Beil 16D, ([y31,  Tsly D), 5[]

(f) Each server S; (i € {0,1}) combines {[[ué“]] }k a into a vector, namely [u;], € Z4,
i) ke
where [u;[k]], = Trunc ([[uﬂ] )

2. Each server S; (i € {0,1}) outputs [w']; = [w], — % Zle [u;],

Figure 10: Protocol Il ngarscp (in the FiynerProp-hybrid model) for a single SGD iteration of
linear regression.

4 wprop (Figure 2). Thus servers can reconstruct the same w — r for all the clients in Step 2a
of H?NNERPROD. Notice that it does not leak any information about the clients’ data. Although the

clients use the same r to compute u; := (r,x;) (for j = 1,...,B), they will be sent to servers in
the form of arithmetic secret sharing. As mentioned above, we use PRF to generate r; without
communication. Thus in Step 1b of IIjyearsep (Figure 10), the communication between the two
servers is 2d ring elements and the communication between the clients and the servers is B ring
elements for each iteration.

Similarly, the optimization can also be applied in the backward propagation. For each k € [d],
the two servers Sg,S; and C; call fllNNERPROD in Step le. Observe that during this step, yj is the
same for all the dimensions of x;, so the client C; can use the same ([r],,[r];) in the protocol
I enprop tO mask y; for each k € [d] in order to reduce the communication between the two
servers. That is, each client C; can actually compute a triple for the product of an integer and a
vector, yr - x;, instead of d irrelevant inner products with dimension 1. As a result, in Step le of
Iy xearscep (Figure 10), the communication between the two servers is reduced to 2B ring elements
and the communication between the clients and the servers is B - d ring elements.

As mentioned earlier, we can use PRF to reduce communication. In Steps la and lc, the client
needs to sample random secret sharings of x; and y;. This communication can be reduced from
(2d + 2) to (d + 1) ring elements by using PRF.

Furthermore, in Steps la and 1c, the client needs to send the secret sharings of its data to the
servers, which leads to a total communication of B-(d+1)-t ring elements. In our implementation,
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we let all the clients share this with the servers at the beginning, so each data sample is shared only
once and reused across different epochs. The communication becomes n - (d + 1) ring elements.

In summary, the total communication between the two servers can be reduced to 2(B +d) - ¢
ring elements, and the total communication between all the clients and the servers can be reduced
ton-(d+1)+ B-d-t+ B -t ring elements.

5.2 Logistic Regression

Compared to linear regression, logistic regression merely adds a logistic function in each iteration.
We use the MPC-friendly logistic function from [29]:

0 if z< —1/2
fz) =4 z+1/2 ifze[-1/2,1/2]
1 if z2>1/2
We observe that this function can be computed via two RELU functions. In particular,
|0 if z<—1/2
RELU(2+1/2)—{Z+1/2 2> —1/2
1 if 2 < —1/2
RELU(1 —RELU(z+1/2)) =<} 1/2—2 ifze€[-1/2,1/2]
0 if 2 >1/2

1 —RELU(1 — RELU(z + 1/2)) = f(#)
Our protocol is represented in Figure 11.

Theorem 5.2. The protocol Ilyoaisticsap (Figure 11) securely computes the ideal functionality
Furscp (Figure 9) for logistic regression in the (FinnerProps FSienCaeck ) -hybrid model against a
semi-honest adversary that corrupts either one of the two servers Sg,S1, or an arbitrary subset of
the clients.

Proof Sketch. First we prove correctness of the protocol. Note that in each iteration of logistic
regression, the model should be updated as w < w — & Ele (f((w,x;)) — y;) -x;. For each client
C; in a mini-batch: in Step 1b the servers learn a secret sharing of v; = (w, x;) (without truncation),
which is truncated in Step lc. Next they jointly perform f(-) on the shared value [v;]. In Step 1d
they learn a secret sharing of RELU(v; +1/2); in Step le they learn a secret sharing of RELU(1 —
RELU(v; +1/2)); in Step 1g they obtain a secret sharing of 1 — RELU(1 — RELU(v; +1/2)) — y;,
namely f((w,x;)) —y;. Next, in Step 1h they learn secret shares of (f({w,x;)) — y;) - xj, which
are truncated and combined into a vector [u;] in Step 1f. Finally, in Step 2 the servers perform
a linear combination of the current model [w] and the gradient descent {[u;[},c 5 to obtain an
updated secret shared model [w’].

In terms of privacy, any corrupted client does not learn any information from the protocol
because it does not receive any message. This also holds for an arbitrary subset of corrupted and
colluding clients. For a corrupted server, it only receives secret shared values in Steps la, 1b, 1d,
le, 1f, 1h, which information theoretically hides the clients’ data. The formal proof is similar to
the proofs of Theorems 4.3 and 4.4.

Communication and Optimizations. Since the logistic function simply contains two ReL.U
operations, the communication overhead compared to linear regression is 4B - A - £ bits with 8B
ring elements for each SGD iteration.
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Protocol Iy ocsticsap:
1. For each client C; (j € [B]) in a mini-batch:

(a) The client C; samples a random secret sharing of x;, namely
([x5]y , [x;],) < Sharing(x;), and sends [x;], to S; (i € {0,1}).
(b) So,S1 and C; call F&  prop to compute

([[vj]]o ) ij]h L)+ ‘FIC{\INERPROD (([[WHO ) ij]]o)a ([[W]]l ) [[Xj]]1)7xj) .

(¢) Each server S; (i € {0,1}) truncates the output [v;]; := Trunc ([v;],).
(d) So,S1 and C; call Freru to compute

([ajlg s [yl s L) < Frevu([vjly, [v;]; + Rtol (1/2), L).
(e) So,S1 and Cj call Freryu to compute
(Hﬁjﬂo ) [[5]']]1 7J—) «— -FRELU(_ [[aj]]o , Rtol (1) - [[aj]]l 7J—)'

(f) The client C; samples additive secret sharings of y;, namely
([y;1o+ [y;1,) + Sharing(y;), and sends ([[yj]]z) to S; (i € {0,1}).

(g) Each server S; (i € {0,1}) computes [{y]"ﬂz = Rtol (4) — [8;]; — w1,

(h) For each k € [d], the two servers So, Sy and the client C; call Fl\.xprop t0 compute
(Je], - Jet], 1) = Fhwerpnon (Ll Beil 16D, ([T, Tsly D), x50

(i) Each server S; (i € {0,1}) combines {[{u?]]i}ke[d} into a vector, namely [u;], € Z4,
where [u;[k]], = Trunc ([[uﬂ] )

2. Each server S; (i € {0,1}) outputs [w']; = [w], — & Ele [u;],.

Figure 11: Protocol Ilyoaismicsgp for a single update iteration of logistic regression in the
(]:INNERPRODa ]:SIGNCHECK)_hybrid model.

5.3 Neural Networks

To train an m-layer neural network with d; (i € {0,...,m}) nodes in the i-th layer, the servers
update the coefficients of all nodes in each SGD iteration. All techniques we proposed for linear
and logistic regression naturally extend to support neural network training.

All the functions in forward and backward propagation include additions, multiplications (inner
product), and activation functions. For the multiplications that involve clients’ data, we utilize our
client-aided inner product protocol. For the multiplications that do not involve clients’ data, we
let the clients generate Beaver multiplication triples [2], similarly as in the client-aided variant
of [29]. To evaluate the activation function RELU and its derivative, we can simply run the
client-aided ReLLU twice in each iteration. Finally, for the MPC-friendly softmax function f(u;) =
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RELU(ul)
Sy RELU (u)
sum up all the shares, and then perform the client-aided division.

, we first run the client-aided ReLU to compute secret shared values of RELU (uy),

Optimizations. After the first layer of the neural network, the input to the remaining layers is
shared among the two servers and not held by the clients, so we use the same approach as the client-
aided variant of [29] to implement the remaining layers. In each layer, the three multiplications we
need to calculate are X - W, XT .G, and G- W . Notice that each matrix X, W, G is used twice,
and the clients can use the same random matrix to mask the same matrix twice, which can halve
the communication among the servers and reduce half of the PRF operations for generating masks.

Note that there is no need to run separate sign checks for ReLLU and its partial derivative, since
they are exactly the same comparison. The (secret shared) comparison result will be multiplied by
two different values, so the clients should generate two multiplication triples.

6 Performance Evaluation

We implement our two-server PPML protocols for training algorithms including linear regression,
logistic regression, and neural networks, against both semi-honest and malicious clients. We re-
port our performance in comparison with SecureML [29] in the semi-honest model in this section
and defer the performance against malicious clients to Section 6.5. We did not compare the con-
crete performance with the state-of-the-art ABY2.0 [30] because their code for ML training is not
available, but we did theoretical comparisons with their work.

We did not compare our protocols to prior works on PPML with three or more non-colluding
servers because we believe our model differs from theirs in several key aspects. While the clients
in our model could be considered as an additional server, the requirements on them are much
weaker. Specifically, in prior works with three or more non-colluding servers, all the servers jointly
hold secret shares of all the intermediate values. They participate in every step of the computation
throughout the entire protocol. Nevertheless, our approach does not require the clients to stay online
or hold any secret state. In client-aided sign check, activation functions, and division protocols,
each time the servers may choose an arbitrary client for assistance while other clients are offline.
After each iteration, the client may completely go offline without having to keep any secret state.
Furthermore, the clients initially hold their data in the clear, which can be leveraged in client-aided
inner product.

6.1 Implementation Details

We implement our protocols in C++. The only cryptographic primitive we need is PRF, which
is instantiated with AES. We set the computational security parameter A = 128 and statistical
security parameter o = 40.

Experiment Settings. Our experiments are performed on a single Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) c4.8xlarge virtual machine with 18-core 2.9GHz Intel Xeon CPU
and 60 GB of RAM which is the same as [29]. We simulate the network connection using the Linux
tc command. For the experiments on a LAN network, we set the round-trip time (RTT) latency
to be 0.34 ms and network bandwidth to be 8192 Mbps, same as [29]. For the experiments on a
WAN network, we set the RTT latency to be 60 ms and the network bandwidth to be 60 Mbps.
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Dataset and Parameters. In our experiments, we train our algorithms on the MNIST dataset
[11], which contains images of handwritten digits from 0 to 9. Each training sample has 784 features
representing 28 x 28 pixels in the image.

In our training protocols, we have the number of features d = 784; we set the mini-batch size
B = 128 and the number of epochs E = 2 (all the samples are used twice in training). The total
number of training samples n varies between 10,240 and 100,352. The total number of training
iterations is t = %.

For fixed-point arithmetic, we set £ = 64,y = 13,¢,, = 6. That is, all the values are represented
in Zgsa, where the lowest order 13 bits are the fractional part, and we assume there are at most 32

bits in the whole number part. These parameters are taken from [29].

Offline vs. Online. In the protocols of [29], there is an offline and an online phase, where the
offline phase includes all the computation and communication that can be done without presence
of data while the online phase consists of all data-dependent steps of the protocols. In the offline
phase, they proposed three different approaches, one based on oblivious transfer (OT), one based
on linearly homomorphic encryption (LHE), and one client-aided. The OT-based and LHE-based
offline protocols are performed among the two servers to generate multiplication triples, while the
client-aided offline protocol relies on a client to generate the triples.

Our protocols, on the other hand, only have an online phase, where the clients are heavily
involved in the protocol execution. In particular, they will generate data-dependent triples in
the client-aided inner product protocol. Getting rid of the offline phase allows us to reduce the
offline storage on the servers as well as the amount of communication between the servers. In our
experiments below, we give comprehensive comparisons to [29] in both offline and online phases.

6.2 Linear Regression

In this section, we compare the performance of our semi-honest linear regression training to [29]
instantiated with an OT-based, LHE-based, or client-aided offline phase. We report the running
time in both LAN and WAN settings in Table 1 and the communication costs in Table 2.

Offline Time (s) | Online Time (s) | Total Time (s)

" LAN | WAN |LAN| WAN | LAN | WAN
o . 10,240 0 0 1.32 | 52.1 1.32 | 52.1
twor 100,352 0 0 13.2 | 505 13.2 505
10,240 | 266 3733 | 242 | 578 268 3791
_ ( b b 9
OT-based [29] | 150350 | 2667 | 36.600% | 25.8 557 2,692 | 37,157*

10,240 | 1,414 | 1,435 | 242 | 57.8 1,416 | 1,493
100,352 | 13,800% | 14,000% | 25.8 557 | 13,826% | 14,557*
10,240 | 4.69 94.9 | 339 | 944 3.08 189
100,352 | 52.0 749 | 353 | 1,126 87.3 1,875

LHE-based [29]

Client-aided [29]

Table 1: Running time of semi-honest linear regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

In Table 1, we report the running time for both the offline and online phases in [29] as well as the
total time. Our protocol does not incur any offline cost, and our online phase is also more efficient
as our computation overhead is lower. In particular, in the online phase we achieve 1.83 — 2.67x
improvement over [29] in the LAN setting and 1.11 — 2.23x improvement in the WAN setting. For
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Offline Comm (MB) | Online Comm (MB) Total

" S-S C-S |S—S[C—S] Total | Comm
Our work 10,240 0 0 2.23 | 185 | 187 | 187
W 100,352 | 0 0 21.8 | 1,814 | 1,836 | 1,836
10,240 | 24,151 0 125 | 123 | 248 | 24,399
OT-based [29] | 17359 | 236.607 0 1,224 | 1,204 | 2,428 | 239,034
10,240 | 115 0 125 | 123 | 248 362
LHE-based [29] | 105 559 | 1 190* 0 1,224 | 1,204 | 2,428 | 3,548*
10,240 0 614 368 | 123 | 491 | 1,105
. _a C ) )
Client-aided [29] | 0 0 0 6,016 | 3,609 | 1,204 | 4,813 | 10,829

Table 2: Communication cost of semi-honest linear regression comparing our protocol to [29] instantiated
with different offline approaches. “S —S” and “C — S” denote the communication between the two servers
and the communication between the clients and servers, respectively. * indicates estimated communication.

the total running time (offline + online), we achieve 6.12 — 1047 x improvement in the LAN setting
and 3.63 — 73.5x improvement in the WAN setting.

In Table 2, we report both the communication between the two servers and the communication
between the clients and servers, which are denoted by “S—S5” and “C—S” respectively in the table.
Again, our protocol does not incur any offline cost. In the online phase, our communication cost
between the two servers is significantly lower than [29]. In particular, our S—S online communication
is 2(B + d) - t ring elements. The S — S online communication of the OT-based and LHE-based
protocols in [29] is 2n - d + 2(B + d) - t ring elements, and that of the client-aided variant is
2n-d+ 2(Bd+ B) -t ring elements. Although our online communication between the clients and
servers is higher than [29], the total communication is still much lower than [29]. In particular,
in the online phase our S — S communication achieves 56.1 — 165x improvement over [29], and
our total online communication achieves 1.32 — 2.63x improvement. For the total communication
(offline + online), we achieve 1.93 — 130x improvement.

Increasing Mini-Batch Size. If we increase the mini-batch size B, we can achieve lower commu-
nication, and hence the performance also improves especially in the WAN setting. This is because
some part of the communication grows with the number of iterations. If the number of epochs and
n remain the same and the mini-batch size is increased, then the number of iterations decreases
and the communication is lowered as well. See Figure 12 for the performance of the online phase
in the WAN setting with different mini-batch sizes. We only compare with the client-aided variant
of [29] because they achieve the most comparable overall running time.

Comparison with ABY2.0 [30]. We compare our performance with [30] theoretically as their
code is not available. Since [30] uses the same OT-based and LHE-based multiplication triples
generation as [29] in the offline phase, as seen in Tables 1 and 2, their offline time and communication
are already much higher than our total time and communication.

Although not mentioned in their paper, we observe that a similar client-aided approach can be
applied to [30] to improve the efficiency of the offline phase while introducing some overhead in
the online phase. Nevertheless, we expect our work to still outperform [30] in that case. With a
client-aided offline phase, the total communication (offline + online) of [30] is (12Bd + 6B +4d) - t
ring elements. If using all the optimizations we mentioned, its communication can be reduced
ton-(3d+ 1)+ (Bd+ 3B+ 2d) - t ring elements. In comparison, our total communication is
n-(d+1)+ (Bd+ 3B+ 2d) -t ring elements and our computation cost is roughly half of [30]. This
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Figure 12: Total running time of semi-honest linear regression over WAN with different mini-batch sizes.

is because each server computes two matrix multiplications for a private inner product in [29, 30],
while they each compute one matrix multiplication in our protocol.

6.3 Logistic Regression

In this section, we compare the performance of our semi-honest logistic regression training to [29]
in Tables 3 and 4. Compared to linear regression, the only overhead of logistic regression is the
cost of the activation function. In each iteration, each client and the two servers run Ilggr,y twice.

Offline Time (s) | Online Time (s) | Total Time (s)
" LAN | WAN | LAN| WAN | LAN | WAN
Our work 10,240 0 0 1.96 | 87.6 1.96 | 87.6
W 100,352 0 0 19.8 | 850 19.8 850
10,240 | 266 3,733 | 3.86 | 108 270 3.841
OT-based [29] |40 350 | 2667 | 36.600% | 400 | 1,056 | 2,707 | 37.656*
10,240 | 1,414 | 1,435 | 386 | 108 1,418 | 1,543
LHE-based [29] | 10 350 | 13'800% | 14.000% | 40.0 | 1.056 | 13.840% | 15.056*
. 10,240 | 4.71 954 | 4.81 142 9.52 237
Client-aided [29] | |1 350 | 559 941 | 46.3 | 1,398 102 2,339

Table 3: Running time of semi-honest logistic regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

Our computation cost of one ReLU mainly consists of £ PRF operations and sorting these £ PRF
results for each server. As shown in Table 3 for the running time, in the online phase we achieve
1.97 — 2.45x improvement over [29] in the LAN setting and 1.23 — 1.64x improvement in the WAN
setting. For the total running time (offline + online), we achieve 4.85 — 723x improvement in the
LAN setting and 2.71 — 44.3x improvement in the WAN setting.

In terms of communication, our total communication overhead in Ilggr,y is 4B -t- A - £ bits with
8B-t ring elements, while the communication overhead in [29] is 2B-t-(2A-(2¢—1)+3¢) bits. In [30],
the online communication for one ReLLU is 3¢+230 bits and the offline communication is 1337A+5¢+
1332 bits, so its total communication overhead for logistic regression is 2B - ¢ - (1337 + 8/ + 1562)
bits. As shown in Table 4, in the online phase our S — S communication achieves 90.1 — 176x
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Offline Comm (MB) | Online Comm (MB) Total

" S-S C-S |S—S[C—S] Total | Comm

Owr work 10,240 0 0 2.85 | 266 | 269 | 269

W 100,352 0 0 28.0 | 2,605 | 2,633 | 2,633

10,240 | 24,151 0 257 | 123 | 380 | 24,531
OT-based [29] | 17359 | 236.607 0 2,524 | 1,204 | 3,728 | 240,335

10,240 | 115 0 257 | 123 | 380 495
LHE-based [29] |0 559 | 1 190+ 0 2,524 | 1,204 | 3,728 | 4,848*
10,240 0 614 502 | 123 | 625 | 1,239
. _a C ) )

Client-aided [29] | 0 0 0 6,016 | 4,424 | 1,204 | 5,628 | 11,644

Table 4: Communication cost of semi-honest logistic regression comparing our protocol to [29] instantiated
with different offline approaches. “S —S” and “C — S” denote the communication between the two servers
and the communication between the clients and servers, respectively. * indicates estimated communication.

improvement over [29], and our total online communication achieves 1.41 — 2.32Xx improvement.
For the total communication (offline + online), we achieve 1.84 — 91.3x improvement.

6.4 Neural Networks

We train a neural network consisting of three fully connected layers while the cross entropy function
is employed as the loss function. The neural network has 128 neurons in each hidden layer and
10 in the output layers. We use the ReLLU activation function for the two hidden layers and the
MPC-friendly variant of the softmax function (see Section 3.3) for the output layer.

n Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work 10,240 0 0 257 5875 257 5875
100,352 | 0 0 2,510% | 57,500% | 2,510% | 57,500*
Client-aided [20] 10,240 674 16,350* 147 6,690* 821 23,040*
100,352 | 6,600* | 160,200* | 1,440* | 65,600* | 8,040* | 225,800*

Table 5: Running time of semi-honest neural networks on LAN and WAN networks comparing our protocol

to client-aided [29]. * indicates estimated running time.

n Offline Comm (MB) Online Comm (MB) Total
S-S C-S S-S c-S Total Comm
10,240 0 0 664 35,798 36,462 36,462
Our work « % %
100,352 0 0 6,500* | 351,000 357,500 357,500
Client-aided [29] 10,240 0 112,114 43,659 124 43,783 155,897
“1 1 100,352 0 1,099,000*% | 427,900* | 1,220%* 429,100* | 1,528,000%*

Table 6: Communication cost of semi-honest neural networks comparing our protocol to client-aided [29].
“S —S” and “C —S” denote the communication between the two servers and the communication between
the clients and servers, respectively. * indicates estimated communication.

We compare the performance of our semi-honest neural network training to [29] in Tables 5 and

6. We only compare with the client-aided variant of [29] because it achieves the most comparable
performance to ours. The neural network has two hidden layers with 128 neurons in each layer.
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As shown in Table 5, in the online phase we achieve an improvement of 1.14x on WAN. For the
total running time (offline + online), we achieve an improvement of 3.19x on LAN and 3.92x on
WAN. As shown in Table 6, our S —S communication in the online phase achieves an improvement
of 65.8x and our total online communication achieves an improvement of 1.20x. We achieve a
4.28x improvement for the total communication (offline + online).

6.5 Security Against Malicious Clients

In this section, we report the performance of our protocols against malicious clients in Tables 7,
8, 9 for linear regression, logistic regression, and neural networks, respectively. When comparing
with [29], we notice that OT-based and LHE-based variants are also secure against malicious clients
because clients do not participate in the offline phase and only secret share their inputs in the online
phase. We report the total running time on LAN and WAN networks for n = 100,352, B = 128,d =
784, FE = 2.

Malicious | Offline Time (s) | Online Time (s) | Total Time (s)
Clients LAN WAN | LAN WAN LAN WAN
Our malicious work v 0 0 65.3 2,082 65.3 2,082
Our semi-honest work 0 0 13.2 505 13.2 505
OT-based [29] v 2,667 | 36,600*% | 25.8 557 2,692 | 37,157*
LHE-based [29] v 13,800* | 14,000*% | 25.8 557 13,826* | 14,557*
Client-aided [29] 52.0 749 35.3 1,126 87.3 1,875

Table 7: Running time of malicious linear regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

For linear regression, the total time of our malicious protocol incurs a 4.95x overhead compared
to our semi-honest protocol on LAN and a 4.12x overhead on WAN. This is consistent with our
choice of § = 4 for verifying multiplication triples. Compared to OT-based and LHE-based variants
of [29], we achieve an improvement of 41.2 — 212x in the total time on LAN and 6.99 — 17.8X in
the total time on WAN.

Malicious | Offline Time (s) | Online Time (s) | Total Time (s)
Clients LAN WAN | LAN WAN LAN WAN
Our malicious work v 0 0 90.3 2,860 90.3 2,860
Our semi-honest work 0 0 19.8 850 19.8 850
OT-based [29] v 2,667 | 36,600* | 40.0 1,056 2,707 | 37,656*
LHE-based [29] v 13,800* | 14,000*% | 40.0 1,056 13,840* | 15,056*
Client-aided [29] 55.9 941 46.3 1,398 102 2,339

Table 8: Running time of malicious logistic regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

For logistic regression, the overhead of our malicious protocol compared to our semi-honest
protocol is 4.56x on LAN and 3.36x on WAN. This is consistent with our choice of § = 3 for
the activation function. Compared to OT-based and LHE-based variants of [29], we achieve an
improvement of 30.0 — 153 in the total time on LAN and 5.26 — 13.2x in the total time on WAN.
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Malicious | Offline Time (s) | Online Time (s) Total Time (s)

Clients | LAN | WAN | LAN | WAN | LAN | WAN
Our malicious work v 0 0 6,400% | 154,000% | 6,400% | 154,000%
Our semi-honest work 0 0 2,510% | 57,500% | 2,510% | 57,500%
Client-aided [29] 6,600% | 160,200% | 1,440% | 65,600% | 8,040% | 225,800%

Table 9: Running time of malicious neural networks on LAN and WAN networks comparing our protocol
to client-aided [29]. * indicates estimated running time.

For neural networks, the overhead of our malicious protocol compared to our semi-honest proto-
col is 2.55x on LAN and 2.68x on WAN. Compared to [29], we even outperform their semi-honest
client-aided protocol (so we did not compare with the OT-based or LHE-based variant). In par-
ticular, we achieve an improvement of 1.26x on LAN and 1.49x on WAN in the total time. We
expect the improvement to be even higher compared to their OT-based and LHE-based variants.
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A Security Against Malicious Clients

In this section, we enhance the security of our protocols to protect against malicious clients. At a
high level, we only need to verify that the client-aided inner product and the client-aided sign check
are computed correctly, which we present in Sections A.1 and A.2 respectively. The client-aided
ReLU, client-aided division, and linear/logistic regression only rely on these two building blocks.
For neural networks, we additionally need to guarantee that the Beaver multiplication triples are
generated correctly, which we show in Section A.3. Finally, we present the performance evaluation
in Section 6.5

A.1 Client-Aided Inner Product

We present a general protocol for verifying the correctness of matrix multiplication for any dimen-
sion (instead of only for vectors). This allows for optimizations that we discuss at the end of this
section.

. . . b .
Construction Overview. First, we present a subprotocol H%P’ECNTRIPLE to verify whether a secret

shared triple (X € Zgsz,Y € ngc, Z € 75;°) is correct by revealing the triple in the clear. Here
one triple (X,Y,Z) is correct means X - Y = Z. In this subprotocol, each server S; has the secret
sharing of the triple ([X],, [Y],,[Z];) as input. Since the servers are both semi-honest, we simply
let each server send the secret shares to each other, reconstruct the triple, and check whether
X -Y = Z. The communication cost between the two servers is 2(a-b+b- ¢+ a - ¢) ring elements

in total. The subprotocol is described in Figure 13.

a7b7c .
Protocol G e TripLE:

Parties: Two servers Sp, S1.
Inputs: Each server S; (i € {0, 1}) inputs secret shared matrices

[X]; € deXba [Y]; € dexca [Z]; € 25,
Protocol: Each server S; (i € {0,1}) does the following:

1. Send [X], € Z;eXb, Y], € Zgéxc, [Z]; € Z35,¢ to the other server.

2. Recover X = [X], + [X],, Y = [Y], + [Y],, Z = [Z], + [Z],-

3. Outputs 1 if X -Y = Z and 0 otherwise.

Figure 13: Subprotocol H'(I)’lli’ECNTRIPLE for verifying a multiplication triple by revealing the matrices

in the clear. Each server outputs 1 if X - Y = Z and 0 otherwise.
We present another subprotocol H%&ETRIPLES to verify one multiplication triple (X,Y,Z) using
another multiplication triple (A, B, C) without opening. Through the protocol, the servers can
get the result of (XY —Z) — (A-B — C). Then the servers can gain some information from
this result, in particular, if the result is non-zero, then the two triples cannot be both correct. In
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this subprotocol, each server S; has the secret sharings of the two triples ([X],,[Y];,[Z];) and
([A];,[B];,[CI];) as input. Then the servers reconstruct E = X — A and F =Y — B and use these
to recover and output A-F+E-B+E-F —Z + C, which is equal to (X-Y -Z)—-(A-B-C).
The communication cost between the two servers is 2(a-b+b-c+ a- c) ring elements in total. The
subprotocol is described in Figure 14.

a,b,c .
Protocol HTVV()TRIPLES'

Parties: Two servers Sg, Sy.
Inputs: Each server S; (i € {0, 1}) inputs secret shared matrices
[X];.[A]; € deXbQ [Y];,[B]; deXCQ [2],,[C]; € Z5“.
Protocol: Each server S; (i € {0,1}) does the following:
1. Compute [E], = [X], — [A], and [F], = [Y]; — [B];, and send ([E],, [F],) to the other

server.

2. Recover E = [E], + [E]; and F = [F], + [F],.

3. Compute [S], =i-E-F+[A],-F+E- [B], — [Z], + [C];, and send it to the other server.
4. Output S = [S], + [S];-

Figure 14: Subprotocol H%S\;STRIPLES for verifying one multiplication triple using another multipli-

cation triple without opening. Each server outputs (XY —Z) — (A-B - C).
With these two subprotocols, we use cut-and-choose to design a protocol H%’g}f{%TRIPLE
M multiplication triples together. The ideal functionality is described in Figure 15.

to verify

fa‘yb’C:M .
VERIFYTRIPLE®

Parties: Two servers Sg,S; and a clients C.
Inputs: The client C inputs nothing. Each server S; (i € {0,1}) inputs M additively secret

shared triples {([[XJ]]I € ngb, ﬂYj]]i € ZQ?C, [Zjﬂi € dexc) }je[M}'

Functionality: On receiving {([X7],, [Y’],,[2’],) }je[M} from each server S; (i € {0,1}):
e For each j € [M], recover X7 = [X7] 4+ [X'],,Y? = [Y/],+ [Y?],. Z7 = [27] ,+ [Z] ,
e Compute D7 = XJ .Y/ — ZJ for all j € [M] and send {Dj}je[M] to each server. Send L to
the client.

Functionality

a,b,c, M
‘FVERIFYTRIPLE

Figure 15: Ideal functionality
shared among the servers.

for verifying M multiplication triples that are secret

Intuitively, the client C generates N = d - M + p new multiplication triples. To ensure these
triples are generated correctly, the servers first randomly pick p triples to open (in Step 4). Once
these checks are passed, the servers randomly partition the remaining triples into M groups, each
of size §, and each group is used to verify one triple. The protocol is described in Figure 16.

Theorem A.1. For the parameters we choose below, the protocol H%/fo%Tmpw
computes the ideal functionality fg’é)llicl’l?‘]gTRIPLE (Figure 15) against an adversary that corrupts either

one of the two servers So,S1 in a semi-honest way, or the client C maliciously.

(Figure 16) securely

Proof Sketch. For security against a semi-honest server Sy (the proof for a semi-honest Sp is
almost identical), note that Sy receives random secret shares in Step lc, verifies the randomly
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a,b,c, M X
Protocol HVERIFYTRIPLE'

0. The two servers Sg and S; and the client C agree on parameters d, u. Let N :=4§ - M + p.
1. The client C does the following:

(a) For each k € [N], sample random matrices A* & ngb, Bt & ngc and compute
CF = AF. BF.

(b) For each k € [N], generate additive secret sharings ([[Ak]]o, [A¥],) < Sharing(AF),
([[Bk]]o, [[Bk]]l) < Sharing(B*), ([[Ck]]o, [[Ck]]l) < Sharing(C¥).

(c) Send {([[Ak]]i7 [[Bk]]i, [[Ck]]i)}ke[N] to each server S; (i € {0,1}).

2. Server Sy randomly samples a permutation 7 : [N] — [N] and sends it to S;.

3. Each server S; (i € {0,1}) uses 7 to shuffle its triples and obtain

{([{Ak}]l ’ HBkHZ ) Hékﬂ Z) }ke[N]' In particular,
([A, [, [1]) = (1am®),. (871, o)),

a,b,c
OPENTRIPLE

{([{Aﬂ] , [[Bkﬂ , [[Ckﬂ )}M . The servers abort the protocol if any I1%%¢ instance
' i i/ J k=1

i i OPENTRIPLE

outputs 0.
5. For each j € [M]:

4. The two servers run II on each of the first u shuffled triples, namely

(a) For each t € [0], let k:=p+6-(j — 1)+, and let the two servers run H%S&STRIPLES on
([Xj]]“ [[Yj]]i, [[Zj]]i) and (HA’“H , [[Ek]] . Hékﬂ ) to learn Dg.

) % %
(b) If D] is the same for all ¢ € [§], then let D7 := DY; otherwise abort the protocol.
6. Both servers output {DJ }je[M}‘

Figure 16: Protocol H%}E’Q%TRIPLE for verifying M multiplication triples that are secret shared
among the servers.

generated multiplication triples in Step 4, and learns D’ for each j € [M] in Step 5. Simulation

a,b,c

involves generating random shares in Step 1c, revealing consistent shares in 115, rriprs 0 Step 4,
and revealing D/ (from the ideal functionality) in T3¢ in Step 5. Note that in I

the recovered E, F are both random matrices and do not reveal any information. The correctness
of the protocol is also easy to verify.

For security against an adversary A that corrupts the client C maliciously, note that it only
sends randomly generated shares in Step 1c. We construct a simulator that on receiving the triples
from A, verifies the correctness of all the triples, namely, A* - B¥ = CF for all k € [M]. If all
these triples are valid, then the simulator tells the ideal functionality to continue; otherwise, it
tells the ideal functionality to abort. The only difference between the real-world execution and
the simulation is when the malicious client succeeds in cheating, which happens with negligible
probability for the parameters we choose below.

Parameters. As discussed in the protocol, we use N = § - M + pu newly generated triples to check
M triples. We need to calculate the probability that the malicious client succeeds in generating
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incorrect triples without being caught, and we would like to make this probability negligible in the
statistical security parameter o. In particular, our goal is to choose appropriate parameters M, d, u
such that the probability is no more than 27.

We consider a malicious client A’s best strategy and bound the success probability. We start
by defining the following balls-and-buckets game for the newly generated triples.

Game(A, M, 0, ) :
1. The adversary A prepares N = § - M + 1 balls. Each ball can be either good or bad.

2. p random balls are chosen and opened. If one of the p balls is bad, then output 0. Otherwise,
the game proceeds to the next step.

3. The remaining § - M balls are randomly divided into M buckets of equal size §. We say that
a bucket is fully good if all balls inside it are good. Similarly, a bucket is fully bad if all balls
inside it are bad.

4. The output of the game is 1 if and only if each bucket is either fully good or fully bad, and
there exists at least one fully bad bucket.
Game'(A, M, 6, ) :

1. The adversary A prepares M balls to be checked and N = ¢ - M + p new balls. Each ball can
be either good or bad.

2. p random balls among N new balls are chosen and opened. If one of the p balls is bad, then
output 0. Otherwise, the game proceeds to the next step.

3. The remaining ¢ - M balls are randomly divided into M buckets of equal size §. The M balls
to be checked are also randomly assigned to these M buckets, one per bucket. We say that a
bucket is fully good if all balls inside it are good. Similarly, a bucket is fully bad if all balls
inside it are bad.

4. The output of the game is 1 if and only if each bucket is either fully good or fully bad, and
there exists at least one fully bad bucket.

Note that the output condition in the last step of Game and Game’ enforces the adversary to
choose at least one bad ball if it wishes to win. We first observe that for A to win the game, the
number of bad balls A chooses must be a multiple of M, the size of a bucket.

Lemma A.2. Let T be the number of bad balls chosen by the adversary A. Then a necessary
condition for Game(A, M,d, ) =1 is that T =0 -t for some t € [M].

Let ¢ be the number of buckets A has chosen to corrupt. Then for any 0 < ¢ < B, it holds that

Pr [Game(A, M, 6, 1) = 1] = ({f) (‘Wt; ”) o

1
Pr[Game'(A, M, §, 1) = 1] = Pr[Game(A, M, 5, 1) = 1] - <J\t/[>

(6 M\

= 5 )
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If 4 < 9, the best strategy of A is to corrupt M buckets. In this case, when M and § remain
the same, the upper bounds of Pr[Game(A, M, d, ) = 1] and Pr[Game’(A, M, §, ) = 1] increase
exponentially as u decreases. However, increasing ¢ is more costly than increasing p, concerning
both communication and computation overhead. From the honest parties’ perspective, the optimal
strategy is to set a greater u so that J can be smaller when the adversary’s success probability is
fixed. Hence we will assume p > 9.

Given that p > 6, the best strategy of A is to corrupt exactly one bucket. This allows us to
derive an upper bound of the success probability of the adversary.

Theorem A.3. If u >0, then for any adversary A, it holds that

-1
Pr [Game'(A,M,&,u)zl] < <5 A§+H> )
Proof. Since p > §, we can easily see that
Pr [Game'(A, M, 6, ) = 1] <m1n{<5 M+,u }
t>1
i d (0 M+u §- M+ p\ !
B § "\ 0-M
{(5 M+u <5.M+u>1}
= min ,
Y 7
B 5 M+ p\
N 0

O]

Therefore, to guarantee that Pr [Game’(A M, 6, pn) = 1] < 277, we only need to guarantee that
(M{ﬁ“)il < 279, which is equivalent to (‘S M*“) > 20,

From the above formula, we observe that the change of u has little influence on the adversary’s
success probability when p > §. Therefore, we set p := § to minimize 5']\]{;"
communication overhead. In Table 10, we present the minimum M (power of 2) for o = 40 and
different & and p values.

and achieve a minimum

0| p M N=4§-M+p
6|6 128(27) 774
515 256(2%) 1,285
4141 1,024(219 4,100
313 87192(28) 24,579

2 | 2 | 1,048,576(2%0) 1,048,578

Table 10: Parameters for verifying multiplication triples and sign check results for o = 40.

Communication and Optimizations. We can use PRF to reduce communication similarly as
discussed earlier. In Steps 1b and 1c, the client can use the shared PRF key with one server Sg to
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generate ([[Ak]] 04 [[Bk]] 04 [[Ck]] 0) without communication, and send the other share ([[Ak]] 1 [[Bk]] 1 [[Ck]] 1)
to S;. This can reduce the communication between the client and the servers to N - (a - ¢) ring
elements. Besides, in Step 2, the two servers can share a PRF key with each other and then use
the PRF key to generate a random permutation 7 : [N] — [N] without communication.

Moreover, in Step 5, we let the servers only verify whether DY is equal to O for all j € [M],t € [d]
and use linear combinations and PRF to reduce communication in our implementation. To be more
specific, we first let the servers use the shared PRF key to randomly sample § - M shared values
M, - N5 € Zoe without communication, then each server S; uses these as § - M coefficients to

construct a linear combination of [{Diﬂ for all j € [M],t € [§]. Finally, each server S; sends
3

Zj]\il Zle N§-(j—1)+¢ ° [{Diﬂ ~to the other server and checks whether the sum is equal to 0. The
7

probability of failure is negligible. This can reduce the communication of Step 5 between the two
servers to 2(6 - M) - (a-b+b-c) 4+ 2(a - ¢) ring elements.

Hence the final communication between the two servers is 2(6-M +p)-(a-b+b-¢)+2(u+1)-(a-c)
ring elements and the communication between the client and the servers is (0 - M + p) - (a - ¢) ring
elements.

In our implementation, we further improve communication and storage when the verification
protocol is applied to linear regression, logistic regression, and neural networks. In one iteration
of semi-honest linear regression and logistic regression, each client in the mini-batch generates two
multiplication triples. With the optimizations we mentioned in Section 5.1, the clients’ data x
is used twice in two multiplication triples and all the clients use the same mask of w. We can
apply similar optimizations during the verification phase. In particular, we pack these 2B triples
into a large triple in which these 2B triples are combined into two matrix multiplications, namely
X X Wpask and X T x Yﬁnask, where X denotes the matrix of clients’ data, Wmask and Y:nask denote
the mask of w and the mask of X x w — Y. In the large triple, all the reused values are stored
only once. We can directly verify the large triple instead of verifying 2B triples separately. More
specifically, we let the clients generate new large triples with the same dimension to verify the
previously computed large triples. In this case, we only have one large triple to be verified in each
iteration, but we improve approximately 4x of the communication in the verification phase. The
communication among the servers is 2(6 - M + u) - (Bd+ B +d) +2(u+ 1) - (B 4 d) ring elements
and the communication between the client and the servers is (0 - M + p) - (B + d) ring elements.
Similarly, in each layer of neural networks, we also pack all the multiplication triples into one large
triple.

Taking the servers’ storage cost into consideration, we do not expect M and N to be too large.
We also need to consider the total number of the multiplication triples that need to verify since
M shouldn’t exceed this. In our experiment for linear regression, logistic regression, and neural
networks with n = 100,352, we pick M = 1024, = 4, = 4, which means we call the protocol

a,b,c, M . .
I h ey TripLe €VETy 1024 iterations.

A.2 Client-Aided Sign Check

Construction Overview. In this section, we use similar ideas to verify sign check results. First,
For b° € {0,1} and b € Zy:, we define a function

Diff (6°,b%) := b° + (1 — 20°) - b©.
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Note that Diff (b, b%) = b© if b° = 0 and Diff (b°,b%) = 1—bC if b> = 1. In other words, Diff(b%, %) =
b® @ bC if b € {0,1}.

Similar to client-aided inner product, we present a protocol IltwosienCueck to verify one sign
check result (b°,b%) using another sign check result (¢°, ¢%) without opening. From the protocol,
the servers can get the value of b°> @ b¢ — > @ ¢© = Diff(b°,b%) — Diff(c>, c%). Then the servers
can gain some information from it, in particular, if the result is non-zero, then the two sign check
results cannot be both correct. In this protocol, each server S; has the input of two sign check
results: (b°, [[bc]]i) and (c°, [[cc]]i). Then the servers reconstruct and output b> — ¢ + (1 — 2b°) -
b — (1 —2¢%) -, which is equal to Diff(b%, %) — Diff(c®, ¢*). The communication is 2 ring elements
between the servers. The protocol is described in Figure 17.

Protocol IlTwosienCrrck:

Parties: Two servers Sp, S1.
Inputs: Each server S; (i € {0,1}) inputs °,¢> € {0,1} and additively secret shared values

[T, [T, € 2
Protocol: Each server S; (i € {0,1}) does the following;:
1. Compute [e], =i - (b° — %) + (1 — 2b°) - [[bc]]l. — (1 —2¢°) - [[CC]]i and send it to the other
server.

2. Output e = [e], + [e];.

Figure 17: Protocol Ilrwosigncreck for verifying one sign check result using another result. Each
server outputs Diff(b%,b¢) — Diff(c, c©).

Given the subprotocol Il wesiencurck, We use cut-and-choose to design a protocol H{‘,/IERIFYSIGNCHECK
to verify M sign check results together. The ideal functionality is described in Figure 18.

. . M .
Functionality F/; myvsionCrmok:

Parties: Two servers Sg,S; and a clients C.
Inputs: The client C inputs nothing. Each server S; (i € {0,1}) inputs M tuples

{([+7]; € Zye, ° € {0, 1}, [VC], € Zoe) } -
Functionality: On receiving {([’],, v, [[lﬂc]]l) }jE[M] from each server S; (i € {0,1}):
e For each j € [M], recover 2/ = [[:Uj]]o + [[xj]]l ¢ = [[bj’c]]o + [[bj’c]]l.
e If 35 € [M] where ¢ # 0 or 1, or > @ b7C # (27 > 0), then send (error, j) along with
e := Diff (b5 b)) — (27 > 0) to each server and halt.

e Send correct to each server.

Figure 18: Ideal functionality f%RIFYsIGNCHECK for verifying M sign check results with the assistance
of a client.

Intuitively, for each input (][], , b, [[bcﬂi) that needs to be verified, the servers first generate
0 equivalent instances to check. Specifically, for each instance the servers sample a random value
d € Zge, then So computes [z], 4+ d and S; computes [z], — d, which becomes a fresh secret sharing
of . Then they perform a client-aided sign check on this new secret sharing. Moreover, the servers
randomly sample p new values, for which they know the sign check result, and then perform the

sign check with the client.
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The servers randomly shuffle all these N = §- M + 1 instances and run sign check with the client.
Afterwards, for the u new values, the servers can simply verify if their results are correct by opening
the results. Once these checks are passed, we can think of it as the servers randomly partitioning
the remaining triples into M groups, each of size . They run the protocol IIwosiencurck to check
each sign check result using 6 newly computed results. The protocol is described in Figure 19.

Theorem A.4. For the parameters we choose below, the protocol H\]/WERIFYSIGNCHECK (Figure 19)
securely computes the ideal functionality F\%RIFYSIGNCHECK (Figure 18) against an adversary that

corrupts either one of the two servers Sg,S1 in a semi-honest way, or the client C maliciously.

Proof Sketch. For security against a semi-honest server Sy (the proof for a semi-honest S; is almost
identical), note that in Step 5 the two servers perform Ilgencnrck on their randomly sample values
and compare with their pre-computed output. Simulation for this step only needs to generate
a random [[ckvc]]o in Igiencnrex and reveal e = 0 in Hpwosiencurck- In Step 6 the two servers
perform Ilgioncueck on 7 and compare with their pre-computed output. To simulate this step, the
simulator first generates a random [[ck’c]] 0 in Igienenrck- 1f the output from the ideal functionality
is (error, j) for some j along with some e, then the simulator reveals this e in ywosiencuecx for
this j (on all ¢ € [0]); otherwise it reveals e = 0. The simulated view is indistinguishable from the
real-world execution because Sy only receives a random share of bC from the client in IganCrpox,
and Iltwosiencuecx reveals nothing beyond the output e. Correctness follows naturally from the
cross check done in Il rwosienCrrck -

For security against an adversary A that corrupts the client C maliciously, note that it only
sends randomly generated shares for ¢ in Hgiancupox (in Steps 5 and 6). We construct a simulator
that emulates the simulator for a semi-honest client in Ilgiencurck. On receiving the shares from
A, it verifies the correctness of the shares, namely, [[ck’cﬂ ot [[ck’c]] | is correct. If all these shares
are correct, then the simulator tells the ideal functionality to continue; otherwise it tells the ideal
functionality to abort. The only difference between the real-world execution and the simulation is
when the malicious client succeeds in cheating, which happens with negligible probability for the
parameters we choose below.

Parameters. The analysis for the probability that the malicious client succeeds in cheating is
exactly the same as in Section A.1. We refer to Table 10 for the choice of parameters.

Communication and Optimizations. Similarly as discussed earlier, we can use PRF to reduce
the communication in Step 3 and use linear combinations to reduce the communication in Step 6.
In Steps la and 2a, we can let the two servers share a PRF key at the beginning, then use the
PRF key to generate a (pseudo)random value d without communication. In Step 6, we combine
el —el (t € {2,...,0}) for all j € [m] by using linear combination and open the result to check
whether it is 0, reducing the communication from 2M - ¢ ring elements to 2 ring elements. Thus
the communication of the protocol HVMERIFYSIGNCHECK between the two servers is 2u 4 2 ring elements
and that between the client and the servers is 2(d- M + ) - (A-£) bits with (§- M + p1) ring elements.

In the semi-honest ReLU protocol, each sign check operation is followed with a multiplication.
Similar to the optimizations we mentioned in Section A.l, we can pack each comparison and its
corresponding multiplication together to verify. This also applies to the division protocol.

In logistic regression, after each iteration there will be B sign checks that need to be verified.
In our experiment for n = 100, 352, we pick 6 = u = 3, M = 8192 according to the total number of

sign checks, which means we run the protocol H\]/WERIFYSIGNCHECK every 64 iterations. In an m-layer
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Protocol 11

0. The two servers Sg and S; and the client C agree on parameters ¢, u. Let N :=§ - M + p.
1. For each j € [M], t € [§], let k:=6-(j — 1) + t and let the two servers do the following:

VERIFYSIGNCHECK *

(a) Sp samples a random d & Zoe and sends d to S;.
(b) So sets [a k]]o = [[xj]]o +d, b*S5 = b7, and [[bk’c]]o = [[bj’cﬂo;
Sy sets [a*], = [27], — d, bES = b3S and [[Ek’c]] = [,
2. Foreach ke {d-M+1,...,0 - M + p}, the two servers do the following:
(a) Sp samples a random d & Zgye and sends d to S.
(b) So sets [a*], = d, bES =0, and [[Ek’c]] =0.

0
(¢) Si samples a random r € Zoe such that |r| < 2% and sets [a*], = —d, b*S =0, and

[[Ekc]] = (r>0).

3. Server Sy randomly samples a permutation 7 : [N] — [N] and sends it to S;.

4. Each server S; (i € {0,1}) uses 7 to shuffle its tuples {([[ak]] . j)'k,S) [[gk’c]] ) }k N and obtain
i/ ) ke[N

{([[dk]i ,IA)’“’S, [[Bk)c]])}ke[m. In particular, ([[&kﬂi,?)k’s [[bk C]] ) : ([[a ﬂ b (k).S [[Zﬂ(k)ﬁ]]i).
5. Foreach k' e {6 - M +1,...,6 - M + u}, let k := (k).

(a) Sp,S1 and C run Hggnorpex t0 compute
((Ck’,S’ [[Ck7cﬂ O)a (Ck,S’ [[Ck7cﬂ 1)3 Ck7c)  Msiencmex [[&k]] 0’ [[dkﬂ 1 ;L)

(b) The two servers Sg,S1 run pwosienCarex 0N {(IA)’“S, cks, |[I§k>c]] , [[c’“c]] )} , and abort
i i€{0,1}
the protocol if the output is not 0.

6. For each j € [M]:
(a) Foreacht e [0],let k:=m(u+3d-(j—1)+1t), and let the two servers run Iggncupck 10 compute

("=, [T ) ("=, [T ), €)= Tsincusen([a*] . [a7] . L

and then run IltywosienCrrex 0N {(bk’s, ck’s, [[bk*c]] , [[ck’c]] )} to learn e{.
i 1€{0,1}

(b) If € is not the same for all t € [§], then abort the protocol. If el is the same for all ¢ € [§] but is
not 0, then output (error, j) along with e] and halt the protocol.

7. Both servers output correct.

Figure 19: Protocol II/
client.

VerrySionCrmox 10T verifying M sign check results with the assistance of a
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neural network, the number of sign checks is B - d; + B - ({y + 1) -dp, (i € {1,...,m}) in each
iteration. In our experiment for n = 100, 352, we pick d = u =2, M = 1,048, 576.

A.3 Client Generated Multiplication Triples

In neural networks, after the first layer, we use the same approach as the client-aided variant of [29],
where the clients generate multiplication triples. In this section, we present a protocol to generate
M correct multiplication triples with the assistance of a potentially malicious client. The ideal
functionality is described in Figure 20.

The protocol Hggﬁﬁj\r{ATETRIPLE is sj/lmilar to protocol H%gg%TRIPLE (presented in Section A.1).
The main difference is that in H%;E’PSI’FYTRIPLE the client generates N new multiplication triples to

verify whether the existing M triples are correct, while in the new protocol Hgg&fATETRIFLE the

client generates N multiplication triples, uses them to verify each other, and finally selects M
correct triples from them. The protocol is described in Figure 21.

Note that an alternative approach is to first perform the multiplication using the triples gener-
ated by the client, and then perform the verification for the multiplication results using the protocol
H%;g;f;%TRIPLE. The difference between the two protocols that we discussed above makes it possible
to achieve better parameters in HégﬁﬁfATETR’IPLE.

. . a,b,c, M .
Functionality F N BRATETRIPLE-

Parties: Two servers Sg, Sy and a clients C.
Inputs: None.
Functionality:

e For each j € [M], sample random matrices A7 & Z;ZXb, B & Zg?c and compute
C’ = AJ - BY. Sample random secret shares of AJ, B/, C7, namely
([A7],, [A7],) < Sharing(A7), ([B’],, [B’],) + Sharing(B/),
([Cj]]o, [[Cj]]o) < Sharing(C7).

e Send {([AJ]]Z € ngb, [[Bj]]z, € Zg@xc, [[Cj]]i € ngc) }de] to each server S; (i € {0,1}).

Fa,b,c,M
GENERATETRIPLE

Figure 20: Ideal functionality for generating of M multiplication triples.

Theorem A.5. For the parameters we chozseMbelow, the protocol Hé’gﬁéﬂfmﬂmpw (Figure 21)
faz ,Cy

securely computes the ideal functionality F&o eametrpe (Figure 20) against an adversary that
corrupts either one of the two servers Sg,S1 in a semi-honest way, or the client C maliciously.

Proof Sketch and Parameters. Our protocol is very similar to PROTOCOL 3.2 (Generating
Multiplication triples) in [12], except that they assume three parties with one malicious party
while we assume two semi-honest servers along with a malicious client. The security proof and the
analysis for the parameters are almost the same as [12], and we refer the reader to that paper for
more details. Here we only present the result.

Let ¢ be the number of buckets A has chosen to corrupt. Then for every 0 < ¢t < M, it holds

that -
Pr[Game(A, M, 6, 1) = 1] = <J\t4> (5 | ]\zi+ M) '
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a,b,c, M .
Protocol HGENERATETRIPLE'

0. The two servers Sg and S; and the client C agree on parameters d, u. Let N :=4§ - M + p.
1. The client C does the following:
(a) For each k € [N], sample random matrices A* & nglﬂ B+ & ngo and compute
Crk = AF.BF.
(b) For each k € [N], generate additive secret sharings ([A*] 0 [AF] ")
< Sharing(AF), ([B*],, [B*],) « Sharing(B¥), ([C*],, [C*],) < Sharing(C¥).
(c) Send {([A*],,[B"],, [[Ck]]i)}ke[N] to each server S; (i € {0,1}).

2. Server Sy randomly samples a permutation 7 : [N] — [N] and sends it to S;.

3. Each server S; (i € {0,1}) uses 7 to shuffle its triples and obtain

{([{Ak}]l J [[Bkﬂl ) [{Ckﬂl) }kse[N]' In particular,
([&1,. [8], . [e]) = (a1, 18, [,

2

a,b,c
4. The two servers run |1 A —

< N . 0
{([{Aﬂ] , [[Bkﬂ , Hckﬂ )} . The servers abort the protocol if any II1%%¢ instance
' ‘ i/ J k=1

i i OPENTRIPLE
outputs 0.
5. Foreach j € [M],let l:=p+4d-(j—1)+ 1.
(a) Foreacht e [0 —1],let k:=pu+0-(j —1)+t+ 1, and let the two servers run
H%‘?V,BTRIPLES on (HAZ]]Z" [{Elﬂi’ [{Clﬂ) and ([[Akﬂi’ [[Bkﬂi’ [{Ckﬂz) to learn D{‘
(b) If D} = 0 for all t € [§ — 1], then each server S; stores Og = ([[Alﬂ , [[Blﬂ . [{Cﬂ]),

i i

namely they store these shares in the j-th entry of O;. Otherwise abort the protocol.
6. Each server S; outputs {Of }

on each of the first u shuffled triples, namely

ey
Figure 21: Protocol HggﬁéfATETRIPLE for generating M multiplication triples.
0| M N=6M+p
6|6 128(27) 774
515 512(2%) 2,565
44| 8,192(21) 32,772
3| 3 | 524,288(2") 1,572,867

Table 11: Parameters for generating multiplication triples for ¢ = 40.

If 4 > 6, then for every adversary A, it holds that

-1
Pr [Game(A, M, 6, 1) = 1] < M<5'M+“) .

0

If 4 = 6 and §, M are chosen such that o < log (%), then for every adversary A it holds
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that Pr[Game(A, M,d, ) = 1] < 277, In Table 11, we present the minimum M (power of 2) for
o = 40 and different § and p values.

. . . . . .« e a,b,c, M . .
Communication and Optimizations. Similar to the protocol I/} /vy TripLe, the communication

of this protocol between the two servers is 2(M - (§ —1) 4+ p) - (a-b+b-¢c)+2(u+1) - (a-c) ring
elements and that between the client and the servers is (6 - M + p) - (a - ¢) ring elements.

In neural network training, we use the same optimizations as in Section A.l to combine 2B
multiplication triples into one triple. Considering the total number of the triples need to generate,

we select § = p = 5 and M = 512, which means we call the protocol H%:I];ﬁ]’EJRWATETRIPLE every 512
iterations.

B Deferred Security Proofs

B.1 Proof of Theorem 4.1

Corrupted C: In the case of a semi-honest client, the construction of its simulator is trivial as
its view contains only messages it sends. We only need to prove the correctness of the protocol,
namely by executing the protocol the output is consistent with the ideal functionality. Upon
receiving ([r], , [u];) from the client, the servers first compute [s]; = [x];, — [r];, and then recover
s = [s[o+[sly = [x[o+[x]; = ([r]o+[r];) = x—r. Hence [v]; = (s, [yl;)+[u];, = (x —r, [y];)+[ul;-
Note that u = {r,y), so we have [o] + [o], = ((x—r, [ylo) + [ulg) + ((x — r,Ty],) + [ul) =
(x—r,y) + (r,y) = (x,y). Since [u], and [u], are additive secret shares of u, the outputs [v],
and [v], are additive secret shares of v, which is the same distribution as the ideal functionality.

Corrupted Sp: In the case of a semi-honest server, assume without loss of generality that the
adversary corrupts Sg as the two servers are symmetric in the protocol. We construct a simulator
S to simulate its view. We construct S given inputs ([x], , [y],) and output [v], as follows:

1. Sample uniform random vectors [r], & Zgz in Step 1d and [s], & Zgz in Step 2a.
2. Set [u]y := [v]o — ([x]o — [rlo + [s]y , [ylo) in Step 1d.

3. Follow the protocol description of Sg and output its view.
Next we prove that for any inputs ([x],, [¥],), (Ix];, [¥]1), [¥].

(Viewd, (Il - [¥1o): (Ix] D). IyD) » Outd, (([xly - Do) (Il - Iy D). Iy D))
(s (1% (Ixlo - [¥10)s fso ([xLo > [¥1o)s (Xl 1) I¥D)) » S5, (([xo s [v1o) (IxT » Iv1)s [vD))

[l

via the following hybrid argument, where =

identical.

denotes that the two distributions are statistically

Hyb, So’s view along with S;’s output in the real-world protocol execution.

Hyb, Same as Hyb, except that we randomly sample [s]; & 72, and set [r], := [x]; — [s];. This
hybrid is statistically identical to Hyby.

Hyb, Same as Hyb; except that we replace Si’s output with [v]; = (x,y) — [v],. This hybrid is

statistically identical to Hyb; because of the perfect correctness of the protocol that we show
above.

38



Hybs; Same as Hyb, except that we randomly sample [v], & Zoe and set [u]y == [v]y — (s, [¥]o)
in Step 1d. This hybrid is statistically identical to Hyb, because [u], is uniform randomly
sampled in Sharing(u).

Hyb, Same as Hybs except that we sample uniform random [r], & de in Step 1d. This hybrid is
statistically identical to Hybs, and is exactly S’s output along with S;’s output in the ideal
world.

B.2 Proof of Theorem 4.2

Corrupted C: For security against a semi-honest client, we construct Sc as follows. Given the

client’s output b, if b€ = 0, then Sc samples two sets ’76, 7'1, each of size ¢, where all the elements

are sampled from a uniform distribution over {0, 1})‘ if ¢ = 1, then Sc samples the two sets 76, 7'1

in the same way except that they share a common element. Sc follows the protocol description of

C, sets (767 ’7'1) as the two sets received from the servers in Step 2d, and output the view of C.
Next we prove that for any [x],, [x]; € Zyc that have different signs,

(Viewg ([x]o . [x], , 1), Outll s, ([xlo, [xTy » 1)) % (Sc (1 fe (Ixl - [xD15 1)) » Sy (Il [, 1))

via the following hybrid argument, where & denotes that the two distributions are computationally
indistinguishable.

Hyby C’s view along with the two servers’ outputs in the real-world protocol execution.

Hyb, Same as Hyb, except that we replace the PRF Fj by a truly random function. This hybrid
is computationally indistinguishable to Hyb, because otherwise we can break the security of
PRF. Specifically, if there exists a PPT D that can distinguish Hyb; from Hyb,, then we can
construct a PPT B that breaks the PRF security. The adversary B runs the protocol as in
Hyb, but when it needs to compute Fj(x) for some z, it queries the PRF challenger C on
z. Finally B runs D on the client C’s view along with the two servers’ outputs. If C returns
outputs of a Fj, then D receives Hyb; otherwise D receives Hyb,. If D can distinguish Hyb,
and Hyb;, then B can distinguish a PRF and a truly random function.

Hyb, Note that our construction of augmented sets guarantees that there is at most common
element in (Ao, A1). Hyb, is the same as Hyb, except we replace 7~6, '7'1 by randomly sampled
sets. In particular, if |AgN A1 = 0, then we sample all the elements in 7~6, ’7'1 from a uniform
distribution over {0,1}*; if |[Ag N Aj| = 1, then we sample all the elements in the same
way except that we reuse a value in 7N6 and 7~'1 This hybrid is statistically identical to Hyb,
because of the way a random function works.

Hyb; Same as Hyb, except that [Ag N Ay| is computed as (z > 0) @ b°. This hybrid is statistically
identical to Hyb,y, which follows from the construction of augmented sets and the correctness
of our protocol.

For two non-negative values a,b € Z, if we let Al be the augmented 1-encoding of a and let
AY be the augmented O-encoding of b, then a > biff |[ALNAY| =1 and a < biff |ALNAJ| = 0.

Without loss of generality we assume [z], > 0 and [z]; < 0. So generates Ag as an augmented
(1 ® b)-encoding of [z], and S; generates A; as an augmented b°-encoding of — [x];.
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If b° = 0, then [2], > — [#], iff |[Ao N Ay| = 1 and [z], < — [z], iff |Ao N Aq| = 0, hence
|Ag N A1| = (z > 0). If b° = 1, then — [z], > [z], iff |[AgN A1| = 1 and — [z], < [2], iff
|Ag N A;| =0, hence |Ag N Aj| = (2 > 0) @ 1. In both cases, |[AgNAj| = (z > 0) @ b°.

Hyb, Same as Hyb; except that we replace |AgNA1| by the client’s output b in the ideal world and
replace the server’s outputs with their outputs in the ideal world. This hybrid is statistically
identical to Hybs, and is exactly Sc’s output along with the two servers’ outputs in the ideal
world.

Corrupted Sg: For a semi-honest adversary that corrupts one of the two servers, we consider
the case where the adversary corrupts Sg, and the proof for a corrupted S; is almost identical.

Simulation for Sy is simple as we only need to randomly sample [[bc]] 0 & Zye in Step 4, which is
a random share of b¢. The rest of the proof follows from the correctness of the protocol, which is
shown above.

B.3 Proof of Theorem 4.3

Corrupted C: For a semi-honest adversary that corrupts the client C, the construction of its

simulator follows the protocol as an honest client, and only needs to sample a random b¢ ﬁ {0,1}
as the output from Fgiencurck in Step 1. The simulated view of C is statistically identical to its
view in Ilrgpu-

To prove security in this case, it only remains to show correctness of the protocol, namely by
executing the protocol the outputs of the servers are consistent with the ideal functionality. Let
b:= ([x],+[x]; > 0), namely a predicate of whether z is positive or not. Note that RELU(x) = x-b.
From Fsiencumok, it holds that b° @ bC = b.

If b = 0, then RELU(z) = x - b¢. The servers learn a random secret sharing of z - b%, in
particular ([a],, [a];), from Fi pmprop- Then they compute [y]; = [];, which results in a secret
sharing of z - bC.

If b° = 1, then RELU(z) = - (1 — b%) = & — 2 - bC. Again, the servers learn a random secret
sharing of z- b, in particular ([a],, [a];), from FLsxprop- LThen they compute [y], = [z]; — [a]
which results in a secret sharing of  — z - bC.

In both cases, the two servers output random secret shares of RELU(x), which is statistically
identical to the ideal functionality.
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Corrupted Sg: For a semi-honest adversary that corrupts one of the two servers, assume without
loss of generality that the adversary corrupts Sg as the two servers are symmetric in the protocol.
We construct a simulator S to simulate its view. Given the input [z], and output [y], from the
ideal functionality Frgru, S is constructed as follows:

1. Sample uniform random b° i {0,1} and [[bc]]o bl Zye as the output from Fgionoupck-

2. If b° = 0, then let [a], := [y],; otherwise compute [a], := [2],— [y],- Set [a], as the output
from J:IlNNERPROD'

3. Follow the protocol description of Sy and output its view.

Next we prove that for any [z],, [z], € Z4,,
(Viewd, (2o [2] , 1), Outlh ([ly, [l 1) = (S (1% 2]y fso (Tely s oy, D))+ fs, (Tl Ty, 1)
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via the following hybrid argument.

Hyby So’s view along with S;’s output in the real-world protocol execution.

Hyb, Same as Hyb, except that Si’s output is replaced with [y]; = max{z,0} — [y],. This hybrid
is statistically identical to Hyb; because of the perfect correctness of the protocol that we
show above.

Hyb, Same as Hyb, except that we first sample [y], & Zge and then compute [a], in Step 2 as
follows: if b°> = 0, then let [a], := [y],; otherwise compute [a], := [z], — [y],. This hybrid
is statistically identical to Hyb;.

Hyb, Same as Hyb, except that in Step 1 we sample uniform random b° & {0,1} and [bcﬂ 0 & ZLge
as the output from Fgioneupcx. This hybrid is statistically identical to Hyb,, which follows
from the functionality of Fsigncurcx- This hybrid is exactly S’s output along with S;’s output
in the ideal world.

B.4 Proof of Theorem 4.4

Corrupted C: For a semi-honest adversary that corrupts the client C, the construction of its

simulator follows the protocol as an honest client, and only needs to sample a random b]C & {0,1}
as the output from Fgigncusck in Step 2b for all j. The simulated view of C is statistically identical
to its view in Ilpy. To prove security in this case, it only remains to show correctness of the
protocol, namely by executing the protocol the outputs of the servers are consistent with the ideal
functionality.

The division is done bit by bit for (¢; + 1) times. We show that for each j from ¢; downto
0, ([wjs1]y, [uj+1];) is a secret sharing of the dividend in that step, and ([k;], ,[k;];) is a secret
sharing of the quotient bit in that step.

We can prove this by induction. First, [[W f“]]i is initialized as [z];, which is the dividend to
be used for j = ¢¢. For each j from ¢; downto 0, let b; := (uj41 —y > 0), namely a predicate of
whether the dividend is greater than or equal to y. In fact, the quotient bit in this step should be
exactly b; and the remainder should be u;1 —y - b;.

Note that ([v;],,[v;],) is a secret sharing of wjy1 —y + 1. From Fsiencueck, it holds that
b]S EBbJC = b;. Next, from F} . prop the servers learn ([v;], , [v;],), which are random secret shares
of v; =y - bjc. Similarly as in the proof of Theorem 4.3, we can analyze the two cases of bjs. =0
and b]s = 1. We omit the details here but in both cases, the two servers learn ([k;], , [%;],), which
are secret shares of k; = bjs- + b]C (11— 2bjs~) = bj;, exactly the quotient in this step. They also learn

<[{v;‘]] . [{v;]] 1), which are secret shares of v7 =y - b;, and ([uslg, [u;l,), which are secret shares
of 2 (ujy1 — y - bj), exactly the dividend to be used in the next step.

Finally, the quotient ¢ is computed as Zﬁf: 0 27 . k;, in a secret shared manner.

Corrupted Sg: For a semi-honest adversary that corrupts one of the two servers, we consider the
case where the adversary corrupts Sg, and the proof for a corrupted S; is almost identical. We
construct a simulator S to simulate its view. Given the input ([z],, [y],) and output [g], from
the ideal functionality Fpy, S is constructed as follows:

1. For j from £y downto 1: sample uniform random b]S- & {0,1} and [{bﬂ]o bl Zge as the
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output from FsignCueck in Step 2b; sample uniform random [[’Uj]]o ﬁ Zoe as the output from
in Step 2c; compute [k;], := [[bc-ﬂo (11— 2bjs-).

1
F INNERPROD J

2. For j = 0: sample uniform random b§ & {0,1}, compute [bgﬂo = (ﬂqﬂO—Z?:l 27-[k;])/(1—
2b8), and set (bg, [[bﬂ]() as the output from Fsigncuecex in Step 2b; sample uniform random

Twol, & Zqe as the output from Fl . prop in Step 2c.

3. Follow the protocol description of Sg and output its view.

Next we prove that for any [x],, [«], € Z4,,

(Viewd, ([l , 2], L), Outl, ([l [o], . 1)) = (S (12l Sso (Teo s [l L) - S, (Tey [l L))

via the following hybrid argument.

Hyby So’s view along with S;’s output in the real-world protocol execution.

Hyb, Same as Hyb, except that S;’s output is replaced with [¢]; = Quotient (z,y) — [¢],- This
hybrid is statistically identical to Hyb; because of the perfect correctness of the protocol that
we show above.

Hyb, Same as Hyb, except that we first sample [¢], & Zye and then compute (bjs-, [{bﬂ] 0) in Step 2b
as follows. For j from ¢; downto 1, sample uniform random bjs- & {0,1} and [{bﬂ]o & ZLoe
as the output from Fsiencueck, and compute [k;], := [{bﬂ] (1 - 2bjs-). For 7 = 0, sample

0
uniform random b3 & {0,1}, compute [[b((]:]]o = ([dl, — Zﬁle 2 - [k;],)/ (1 — 2b3), and set
(bg, [{bﬂ] 0) as the output from Fgigncurck- The indistinguishability of Hyby, and Hyb; follows

from the functionality of FsionCurck, namely (bjs-, [[bﬂ] 0) are all random shares. Note that

[ko0], randomly masks the secret share [¢], in the protocol, hence this hybrid is statistically
identical to Hyb;.

Hybs Same as Hyb, except that in Step 2c we sample uniform random [uv;], ul Zge as the out-
put from fllNNERPROD for all j. This hybrid is statistically identical to Hyby because of the
functionality of Fl\zrprop, and is exactly S’s output along with Si’s output in the ideal
world.
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