
Efficient Two-Party Secure Aggregation via Incremental Distributed Point
Function

Nan Cheng
University of St. Gallen
St. Gallen, Switzerland

nan.cheng@unisg.ch

Aikaterini Mitrokotsa
University of St. Gallen
St. Gallen, Switzerland

katerina.mitrokotsa@unisg.ch

Feng Zhang
Nanyang Institute of Technology

Nanyang, China
gudengxia@gmail.com

Frank Hartmann
University of St. Gallen
St. Gallen, Switzerland

frank.hartmann@unisg.ch

Abstract—Computing the maximum from a list of secret
inputs is a widely-used functionality that is employed ei-
ther indirectly as a building block in secure computation
frameworks, such as ABY (NDSS’15) or directly used in
multiple applications that solve optimisation problems, such
as secure machine learning or secure aggregation statistics.
Incremental distributed point function (I-DPF) is a powerful
primitive (IEEE S&P’21) that significantly reduces the client-
to-server communication and are employed to efficiently and
securely compute aggregation statistics.

In this paper, we investigate whether I-DPF can be used
to improve the efficiency of secure two-party computation
(2PC) with an emphasis on computing the maximum value
and the k-th (with k unknown to the computing parties)
ranked value from a list of secret inputs. Our answer is affir-
mative, and we propose novel secure 2PC protocols that use
I-DPF as a building block, resulting in significant efficiency
gains compared to the state-of-the-art. More precisely, our
contributions are: (i) We present two new secure computa-
tion frameworks that efficiently compute secure aggregation
statistics bit-wisely or batch-wisely; (ii) we propose novel
protocols to compute the maximum value, the k-th ranked
value from a list of secret inputs; (iii) we provide variations of
the proposed protocols that can perform batch computations
and thus provide further efficiency improvements; and (iv)
we provide an extensive performance evaluation for all
proposed protocols.

Our protocols have a communication complexity that is
independent of the number of secret inputs and linear to
the length of the secret input domain. Our experimental re-
sults show enhanced efficiency over state-of-the-art solutions,
particularly notable when handling large-scale inputs. For
instance, in scenarios involving an input set of five million
elements with an input domain size of 31 bits, our protocol
ΠMax achieves an 18% reduction in online execution time
and a 67% decrease in communication volume compared to
the most efficient existing solution.

1. Introduction

Privacy-preserving secure aggregation techniques are
becoming increasingly crucial as the volume of sensitive
data surges due to widespread digital device usage and the
growth of business data [15], [16], [20]. These techniques
safeguard the privacy of data holders, while enabling
the extraction of valuable insights through aggregation
analysis.

Secure computations of the maximum or k-th ranking
element within a private dataset X are essential within
secure aggregation analyses, finding applications across
diverse sectors. For instance, in the context of smart
grids, secure computation of the maximum value within
a dataset X (representing collective energy usage) is key
for operational integrity while upholding user privacy. It
serves a foundational role in grid infrastructure planning,
pinpointing peak load capacities that dictate crucial system
enhancements to avert failures. It also plays a pivotal
role in conducting grid stress tests, gauging system re-
silience during peak demand periods. Furthermore, maxi-
mum computation facilitates equitable energy distribution
across diverse sources, particularly during times of high
demand. It also aids in the detection of consumption
anomalies [18], which could signal equipment failures or
energy theft. Moreover, analyzing peak demand trends is
vital for refining load forecasting models, a cornerstone
for strategic energy procurement and generation planning.
Secure maximum computation also plays a vital role in
scientific collaboration, especially within a consortium
or union of medical data sources. For example, it could
help determine the highest recorded level of a particular
biomarker across different patient groups from various in-
stitutions, without revealing the data of any single patient.
This is crucial in understanding the cause of a disease
or effectiveness of a treatment, thus indicate a need for
further investigation or intervention.

Motivation. However, existing privacy-preserving
techniques that find the maximum of a large dataset are
unsatisfactory, i.e., as it is the case in two recent secure
aggregation frameworks [1], [9] that provide efficient so-
lutions only for a set that comprises of short integers.
On the other hand, given a set X of size m, for proto-
cols that employ secure comparison pair-wisely in O(m)
iterations, because secure comparison is a costly non-
linear primitive, the concrete efficiency of such general
comparison-based solutions do not scale well when the
number of inputs m is very large.

Problem and setting. Thus, in this paper, we consider
a large number of clients holding secret values who want
to outsource the computation to two powerful servers for
secure aggregation analysis. More precisely, each client
submits secret sharing (SS) of their secret value to two
servers, we consider as the outsourced secure functionali-
ties the following: (i) FMAX: Computing the maximum of
the clients’ secret inputs and outputs the SS of the targeted
value; (ii) Function hiding FKRE: With additional SS of a

secret index k as input which hides the function definition,
outputs the SS of the k-th ranked element of the clients’
secret inputs.

We consider that each client provides as input
one/multiple Boolean SS and outsources the computation
of the desired functionality to two honest-but-curious
computing servers. This implies that the servers adhere
strictly to the protocol’s prescribed steps. However they
might extract sensitive information from their data during
execution if possible. Our goal is to keep the result of
the computation (i.e., maximum or the k-th ranked value)
in secret shared form to the two servers so that it can
be used as input for other functionalities. Of course the
final result could also be revealed to a target receiver. All
our protocols run in an outsourced distributed computing
model. In this model, there is a large amount of clients
who submit their secret shared input to two outsourced
servers, and these servers execute the desired functionality
in a privacy-preserving way. To achieve better online
efficiency, we design our protocols in the offline/online
model, where in the offline phase independent correlated
randomness is generated among the servers, which are
subsequently consumed in the online evaluation phase.

Our Contributions. We proposed protocols address-
ing these two functionalities effectively even dealing with
a large set as input. Our protocols rely on incremental
distributed point functions (I-DPFs), which were recently
introduced by Boneh et al. [3]. In their work, they use
I-DPF as the encoding of a client’s input such that it
enables a client to secret-share the labels on the nodes
of an exponentially large binary tree in a concise manner,
while significantly reducing the communication overhead
between the client and server. In our work, we also employ
I-DPFs as a building block of our protocols, however,
we use it differently and we adapt it to a new secure
computation framework that efficiently computes secure
aggregation tasks.

More specifically, our proposed protocols leverage se-
cure incremental prefix counting and secure comparisons
to achieve their desired functionality. The protocols that
calculate the maximum or the k-th ranked element com-
pute their target value bit-wisely from the most significant
bit (MSB) to the least significant bit (LSB). The protocol,
that verifies a given maximum candidate, determines the
output bit in merely three rounds. Concretely, our contri-
butions can be summarised as follows:

1) We presented a new secure computation framework
in Fig. 4 that efficiently computes some secure aggregation
tasks bit-wisely, we also presented its variant in Fig. 5 that
further reduces communication complexity by computing
target functionality batch-wisely.

2) We present two efficient protocols ΠMax and ΠBitKre

that compute the maximum respectively the k-th ranked
element of a set X bit-wisely.

3) We extend ΠBitKre to support batch-wise com-
putation and thus obtain ΠBatchKre, compare it ΠBitKre,
ΠBatchKre gives us reduced communication complexity.

4) We have implemented and outsourced our protocols
ΠMax, ΠBitKre and ΠBatchKre. In addition, we demonstrated
their efficiency advantage over state of the art solutions
by conducting a practical performance comparison with
established state of the art solutions (ΠScMax1,ΠScMax2)
from MP-SPDZ [17], and two basic comparison-based

solutions ΠICMax,ΠNaiveKre which we built up from scratch
that utilize function secret sharing for secure comparison.

Remark that our computation framework proposed in
Fig. 4 or Fig. 5 also supports the computation of other
secure aggregation statistics, due to page limit we have
put related discussions in Appendix C.

1.1. Related work

For a set X of size m with each element of n
bits, from existing literature we distinguish two ap-
proaches that compute the maximum from a secret set,
i.e., the comparison-based approach and encoding-based
approach.

Comparison-based approach. This approach neces-
sitates m − 1 secure comparisons in logm rounds to
determine the maximum of X . Within this comparison-
based approach, the overall efficiency for computing the
maximum is determined by the efficiency of the secure
comparison protocol employed. There is a rich literature
on secure comparison protocols, for the purpose of secure
maximum computation three secure comparison protocols
are analysed in [7], namely Damgård et al.’s [13], Garay
et al.’s [14], and Couteau [10]’s protocols. Damgård et
al. [13]’s protocol is based on homomorphic encryption.
Garay et al. [14]’s work employs the encryption scheme
from [11]. Couteau [10]’s protocol applies a block de-
composition technique and executes the comparison us-
ing Oblivious Transfer. When applied to computing the
maximum, these protocols exhibit different communica-
tion complexities. Specifically, the method employed by
Damgård et al. [13] requires a communication complex-
ity of O (mn(n+ κ)) across O (logm) rounds. The ap-
proach employed by Garay et al. [14] necessitates O(mn)
in O (logm log n) rounds and the technique introduced
by Couteau [10] requires O (mn) in O (logm log log n)
rounds. However, the scalability of these protocols is
limited, particularly for large data sets, due to the high
computational cost of secure comparisons. The number
of communication rounds in these implementations is
dependent on the number of the secret input values m.

MP-SPDZ [17] is a general secure multi-party com-
putation framework, it provides implementations of some
of the state-of-the-art secure comparison protocols, like
the one from Catrina et al. [6] that works in a prime
field, and the one from Damgård et al. [12] that works
in a ring. Both of these two protocols perform the secure
comparison between two secret integers by extracting the
most significant bit. Boyle et al. [5]’s function secret
sharing based secure comparison protocol is also another
alternative performing secure comparison, and is consid-
ered the most efficient protocol by now in terms of online
efficiency as it requires only ℓ bits communication in one
round where ℓ indicates the length of the output domain.

Encoding-based approach. There are also other differ-
ent protocols proposed to find the maximum from a secret
set. Zhang et al. [21] introduced a bit-wise protocol for
computing the maximum that works from the most sig-
nificant bit (MSB) to the least significant bit (LSB). This
protocol employs special encoding on the client inputs and
relies on ciphertexts that encode each bit of a secret integer
using a probabilistic scheme. It considers an unreliable ag-
gregator and produces results with an accuracy of at least

(a) Online commu. rounds comparison (b) Online commu. volume comparison

Figure 1: Concrete online evaluation cost comparison

TABLE 1: Comparative overview of protocols for securely computing the maximum. This table sets out the communi-
cation complexity comparison among our protocols ΠMax, solutions that employ existing secure comparison protocols
from (GSV07, DGK07, Cou18, Catrina10, Damgaard19), and the encoding-based protocols (ZCZ15, Prio, Prio+). Here
m is the size of the input set X , n the input domain size, κ the corresponding security parameter.

Ref. Primitive Comm.[bits] Online roundsOffline Online
DGK07 [13] DGK - O(mn(n+ κ)) O(logm)
GSV07 [14] OT O(κmn/ log κ) O(mn) O(logm logn)
Cou18 [10] OT O(κmn/ log κ) O(mn) O(logm log logn)

Catrina10 [6] Truncation - O(m(n+ κ)) O(logm logn)
Damgård19 [12] Bit triple O(mn) O(mn) O(logm logn)

Boyle19 [5] DCF O(mn) O(mn) O(logm)
ZCZ15 [21] - - O(κnm) O(n)

Prio [9] - 0 O(2nκ) 0
Prio+ [1] - 0 O(2nκ) 0
Our ΠMax I-DPF O(κmn) O(mn) n+ 1

TABLE 2: Comparative overview of protocols for securely
computing the k-th ranked element. The table sets out
our protocol against existing methods. Here m is the
size of the input set X , n the input domain size and
κ the security parameter. For ZCZ15 p is the output
precision. For CHH+22, S denotes the range of database.
For our protocol ΠBatchKre, ω denotes the batch size. The
symbol • indicates the presence of information leakage
in the corresponding protocol, on the contrary the symbol
◦ indicates no information leakage in the corresponding
protocol.

Ref. Primitive Leakage Total Comm. Rounds
AMP10 [2] - • O

(
mn2

)
O(n)

ZCZ15 [21] - • O(κnm) pn

TKK+20 [19]
YGC ◦ O

(
κm2

)
4

AHE1 ◦ O
(
κm2nt

)
4

AHE2 ◦ O
(
κm2nt

)
4

CHH+22 [7] OT • O(κmn) O(logS)
Our ΠBitKre I-DPF ◦ ∼ mn 1 + 2n

Our ΠBatchKre I-DPF ◦ ∼ mn 1 + 4n/ω

1−n/2κ, where n is the integer length and κ is the security
parameter. However, this approach requires revealing each
bit of the maximum to all participants and disallows
accidental dropouts during execution. The recently pro-
posed frameworks for secure aggregation Prio [9] and
Prio+ [1] focus on providing input verification schemes
to contain possible malicious behavior from clients. Prio

employs efficient zero-knowledge proofs, namely SNIP.
Prio+ uses Boolean secret sharing of the clients’ inputs.
Both frameworks also propose protocols that compute the
maximum functionality. In their settings, multiple clients
submit M = 2n sized encoding of private integers from
small domain {0, 1}n to two computing servers. The
maximum can be computed by employing an OR sub-
protocol M times non-interactively. However, since the
encoding size of the secret input grows exponentially
with the size of input domain, their maximum protocol
only works efficiently with a relative small input domain
(e.g., an input domain capped by a few thousands). To
compute the maximum/minimum when dealing with a
large input domain, the authors in Prio also proposed a
c-approximation variant protocol that uses a similar idea
to their original one. More precisely, they divide the input
range {0, · · · , B− 1} into b = logcB bins, then they use
the small-range protocol over all b bins, to compute the
approximate statistic.

Compute the k-th ranked value (KRE) from a secret
set. In Table 2 we present the complexities comparison
between our proposed protocols ΠBitKre, ΠBatchKre, and
existing works. Notably the works in [2], [19], [21] and [7]
assume the multiple party computation setting. Among all
the listed protocols in Table 2 our protocols and [7], [21]
have the least communication complexity. The protocols
in [7] and [21] involve a multi-party setting and exhibit
information leakage during the protocol execution. The

latter is not the case in our protocols. In [7] multiple
iterations are involved and comparisons between each
local set and public parameter mi are made in the i-th
iteration. Here the number of elements greater or smaller
than mi in the union of all databases is revealed.

Comparison between our protocols and state-of-the-
art. Regarding protocols that compute FMAX, in Table 1
we compare the communication complexities between our
protocol ΠMax and works mentioned. When we focus
on the efficiency of online evaluation, from Table 1 we
see that works in [10] [12] [5] represent state-of-the-
art, which requires relatively low online communication
volume and rounds. Notably the works in [21] and [7] as-
sume a multiple party computation setting, while Prio [9]
and Prio+ [1] consider the outsourcing computation model
similar to our setting. Despite these differences we list
and compare them to provide a broader overview of
the existing literature. Our proposed protocols for secure
maximum computation based on I-DPFs (which is one
of the latest extension of DPF) are executed in O (n)
communication rounds.

Comparing our protocols to those encoding-based pro-
tocols in [9] and [1], ours are not as efficient as theirs
in terms of communication rounds as the encoding-based
protocols perform the online evaluation non-interactively.
However, in terms of the communication volume required
for every secret input submitted from the clients to each
server, our protocol requires only n bits compared to a
communication complexity of O(2n) in theirs, our proto-
cols reduce significant amount of communication volume
as well as memory usage used when processing same size
of inputs. Thus, for small input domain (bounded by a
few thousands), the protocols in [9] and [1] might have
better online efficiency over ours when the encoded size of
client’s input are still reasonable; However, when the the
size of input domain increases, e.g., for n = 20, κ = 32, to
get an accurate maximum computation using the protocol
in Prio it would require 32 × 220 bits (4GB) to repre-
sent one secret input on one server which is practically
prohibitive.

Our protocols also differ from the works in [10], [13],
[14] where communication rounds depend on the set size
m. Furthermore, our scheme guarantees no information
leakage, unlike the scheme in [21] which requires re-
vealing the maximum in clear to all participants in their
protocol design.

For a more concrete online evaluation cost comparison
with the above three protocols, in Fig. 1 we present
concrete comparison results between our protocol ΠMax

and three comparison-based protocols that compute the
maximum of a set where the internal secure comparison
protocols are separately instantiated from [10], [12] and
[5]. To get the overall costs illustrated in 1, we rely on a
single secure comparison evaluation cost reported on these
three works, where in [10] the secure comparison protocol
SC3 costs 622 bits in 9 rounds for n = 32, and 1286 bits
in 10 rounds for n = 64; in [12] it costs 6n − 8 bits in
log (n− 1)+2 rounds; and in [5] there is an theoretical op-
timal cost which is n bits in one round. Thus, for n = 32,
the overall online cost for computing the maximum using
secure comparison from [10] is approximately 21.5nm
bits in 11 logm rounds; approximately (8n − 2)m bits
in 8 logm rounds from [12]; approximately 3nm bits in

2 logm rounds from [5]; while in our protocol ΠMax, it
costs approximately nm bits in n + 1 rounds. When the
input set size m is greater than 216.5(0.92×105), as shown
in Fig. 1 that our protocol ΠMax requires the least online
rounds. Furthermore, independently of the value of m, our
protocol ΠMax requires the least communication volume
which is a third of that in the protocol introduced in [5]
(the best of SOTA).

A generalization of secure maximum computation.
Compared to the computation of the maximum from
a secret set, in a related line of research Aggarwal et
al. [2] and Gowri et al. [7] have focused on a generalized
computation problem where participants have confidential,
ordered data sets and aim to compute the maximum or kth

ranked element from their collective data. In their pioneer-
ing work Aggarwal et al. [2] introduced the use of secure
binary search for identifying the target value, requiring
O (logN) communication rounds, where N is the input
domain size. Gowri et al. [7] extended the functionality of
this framework allowing more general comparison-based
operations such as finding the convex hull of a set of points
or job scheduling problems. They employed Oblivious
Transfer (OT) for the secure comparison sub-protocol.

2. Preliminary

In this paper, we refer to S0,S1 as the two comput-
ing servers in our protocols. We use following notations
throughout this paper:

• ε: An empty string.
• b̄: The negation of a bit b.
• [n]: A set of integers ranging from 1 to n where n

is a positive integer.
• si: The ith bit of a binary string s counting from left

to right where i ≤ |s|.
• s[i..j]: The substring from the ith bit to the jth bit of

a binary string s counting from left to right where
i, j ≤ |s|.

• ai: The ith element of a vector a⃗ where i < |⃗a|.
• [x]B: 2-out-of-2 Boolean secret sharing where x ∈
Z2.

• [x]A: 2-out-of-2 arithmetic secret sharing over ZN for
N ∈ {2ℓ, p} where p is an odd prime.

• [x]Bb : The Boolean secret share of x held by party b
where b ∈ {0, 1}.

• [x]Ab : The arithmetic secret share of x held by party
b where b ∈ {0, 1}.

• FBDC(x, ℓ) - bits decomposition: Upon receiving an
integer x and output length specification ℓ, it converts
x to its bits representation format y (padding zeros
by the start until |y| = ℓ), then it outputs y.

• FBC(s) - bits composition: Upon receiving a bi-
nary string s of length ℓ, it outputs an integer
y =

∑ℓ
i=1 2

ℓ−i · s[i].

2.1. Secure Two-party Computation over Addi-
tive Secret Sharing

We use the following two-party secure computation
functionalities in our protocols:

• FReveal - secret sharing revelation: Upon receiving
either a Boolean secret sharing [b]B or an arithmetic

secret sharing [x]A, it reveals the corresponding bit b
or value x to the two servers.

• FA2B - arithmetic to Boolean secret sharing conver-
sion: Upon receiving an arithmetical secret sharing
[x]A where x ∈ {0, 1}, it outputs the corresponding
Boolean secret sharing [x]B.

• FB2A - Boolean to arithmetic secret sharing conver-
sion: Upon receiving a Boolean secret sharing [b]B,
it outputs [b]A.

• FNZ - Nonzero check over a secret sharing: Upon re-
ceiving an arithmetical secret sharing [x]A, it outputs
[1]A if x is not zero, otherwise it outputs [0]A.

• FLessEqualThan - LessEqual check between two values:
Upon receiving two arithmetical secret sharing [x]A

and [y]A, it outputs [1]A if x ≤ y, otherwise [0]A.

2.2. Incremental Distributed Point Function

We can informally define a point function that has
a value of β ∈ G at a special point α ∈ {0, 1}n and
is zero everywhere else. Naturally this function can be
represented as a vector of 2n elements, where only a
single element is non-zero. Distributed point functions [4]
are a way to secret share this vector among two parties.
Distributed point functions consist of two routines. In the
Gen(α, β)→ k0, k1 routine, two keys are produced which
represent the secret shares. The individual keys can be
evaluated as Eval(k, x)→ G giving the value of the secret
shared vector at the point x. Combining the evaluation
results for k0 and k1 will yield the corresponding result
of the underlying point function. The advantage of dis-
tributed point functions is that the secret shares have the
size O(n), while naive secret sharing would yield share
of size 2n. Importantly, an adversary who learns either k0
or k1 learns nothing about α and β.

In our case, we need a slightly different functionality
than the one provided by point functions. More specifi-
cally, we want a function that returns a non-zero value
βℓ whenever a query point x ∈ {0, 1}∗ is a prefix of
α ∈ {0, 1}n. To address this, we introduce All-Prefix
Point Functions. These functions are defined by a tu-
ple (α, (G1, β1), · · · , (Gn, βn)) (shorthand (α, β̄)), where
α ∈ {0, 1}n and for every ℓ ∈ [n], Gℓ is the description
of an Abelian group and βℓ ∈ Gℓ. The function is then
defined as follows:

fα,β̄ : ∪ℓ∈[n]{0, 1}ℓ → ∪ℓ∈[n]Gℓ, given by

fα,β̄(x1∥ · · · ∥xℓ) =

{
βℓ if x1∥ · · · ∥xℓ = α1∥ · · · ∥αℓ,

0 otherwise.

All-Prefix Point Functions can be visualised as a bi-
nary tree with 2n leaves, where there is a single non-zero
path, whose nodes have non-zero values βℓ.

Incremental Distributed Point Functions (I-DPF) is a
class of functions that allows secret sharing of the binary
trees of All-prefix Point Functions, similar to Distributed
Point Functions. The concept is schematically depicted
in Fig. 2. In [3] Boneh et al. first proposed I-DPF to
address the secure computation of t-heavy hitters from
a set of strings. Like Distributed Point Functions, there
is one routine for key generation, but two routines for
evaluation, as we will see in the following.

Figure 2: Visualization of the two binary trees for an
I-DPF and the sum of the evaluations. Picture taken
from [3].

According to the formal definition of I-DPF provided
in [3], a (2-party) I-DPF scheme is a tuple of algorithms
(Gen,EvalNext,EvalPrefix) such that:

• IDPF.Gen(1κ, (α, (G1, β1), · · · , (Gn, βn))) is
a PPT key generation algorithm that given
1κ (security parameter) and a description
(α, (G1, β1), · · · , (Gn, βn)) of an all-prefix
function, it outputs a pair of keys and public
parameters (k0, k1, pp = (pp1, · · · , ppn)), where pp
includes the public values κ, n,G1, · · · ,Gn.

• IDPF.EvalNext(b, sti−1
b , ppi, xi) is a polynomial-

time incremental evaluation algorithm that given a
server index b ∈ {0, 1}, secret state sti−1

b , public
parameter ppi, and input evaluation bit xi ∈ {0, 1},
it outputs an updated state and output share value:
(stib, y

i
b).

• IDPF.EvalPrefix(b, kb, pp, x1∥ · · · ∥xℓ) is a
polynomial-time prefix evaluation algorithm that
given a server index b ∈ {0, 1}, secret state sti−1

b ,
public parameter pp, and input evaluation prefix
x1∥ · · · ∥xℓ ∈ {0, 1}ℓ, it outputs a corresponding
share value yℓb.

Assuming that the keys are generated accord-
ing to (k0, k1, pp) ← IDPF.Gen(1κ, (α, (G1, β1),
· · · , (Gn, βn))) each party b ∈ {0, 1} can calculate its
output share yℓb for a prefix x1∥ · · · ∥xℓ as:

1: st0b ← kb
2: for j = 1 to ℓ do
3: (stjb, y

j
b)← IDPF.EvalNext(b, stj−1

b , ppj , xj)
4: end for
5: return yℓb.

For these output shares derived using IDPF.EvalNext, we
require that: yℓ0+y

ℓ
1 = fα,β̄(x1∥ · · · ∥xℓ) holds at all times.

This ensures that the reconstructed value is always equal
to the output of the original All-Prefix Point Function for
the prefix in question.

Similarly, for the output shares yℓb of party b ∈
{0, 1} output by IDPF.EvalPrefix(b, kb, x1∥ · · · ∥xℓ), we
require that yℓ0 + yℓ1 = fα,β̄(x1∥ · · · ∥xℓ) holds at all
times. It is assumed that the keys are generated ac-
cording to (k0, k1, pp) ← IDPF.Gen(1κ, (α, (G1, β1),
· · · , (Gn, βn))).

Regarding security, it is guaranteed that an adversary
who learns either k0 or k1 will not gain information about
the special point α or the values β1, · · · , βn.

2.3. Conditional Evaluation

CondEval is a cryptographic primitive that was ini-
tially introduced in [8], it inputs a Boolean secret sharing

[s]B, an arithmetic secret share [x]A, a function secret
sharing of a function f and a binary operator ◦, outputs
the arithmetical secret sharing [s ◦ f(x)]A, i.e.,

[s ◦ f(x)]B ← CondEval
(
[b]B, ◦, f, [x]A

)
.

More specifically, CondEval works in the pre-processing
model, it contains a Setup algorithm ran in the offline
phase and a Eval algorithm ran in the online phase. For
a Boolean secret sharing [s]B, an arithmetic secret share
[x]A, a function f , and a binary operator ∧, CondEval is
realized by

K∧ ← CondEval.Setup(∧, 1λ, pp, f) and

[s ∧ f(x)]B ← CondEval.Eval(∧,K∧, [s]
B, [x]A)

respectively in the offline and online phase.
In the offline phase, a trusted third party takes the

operation ∧, a specific function f can be secret shared, and
public parameters pp to generate and distribute conditional
evaluation key shares K∧ to two servers. These keys are
used for secure computations in the online phase. In the
online phase, upon the secret share [s]B and the arithmetic
share [x]A are ready, two servers collaboratively perform
CondEval.Eval in a single round and obtain [s ∧ f(x)]B.
Consequently, some of our protocols leverage CondEval
to achieve an optimized design with fewer rounds.

3. High-level Overview

In this section, we introduce the high-level compu-
tation framework for our proposed protocols that se-
curely determine either the maximum/minimum or the k-
th ranked element of a set X . Before delving into our
framework, we first introduce the technique of ”incre-
mental prefix counting” proposed by Boneh et al. in [3]
that inspired our work, where this technique was initially
proposed for computing t-heavy hitters.
How to find t-heavy hitters. The authors in [3] outline
an efficient method for identifying all t-heavy hitters from
a set of strings, here, a t-heavy hitter is a string (value)
that appears more than t times in a set of strings. The set
of strings is made by the inputs of many clients who send
their strings (values) to a service provider. The service
provider wants to find all t-heavy hitters without knowing
the clients strings. To do this, they use a technique called
‘incremental prefix counting’. In this technique each client
produces two keys from their string and sends them to two
servers. The servers make a list of valid prefixes L. For
each prefix pi in L the servers make two new prefixes
pi,t = pi∥t for t ∈ {0, 1} and count the occurrence of
each pi,t in the set. If pi,t appears more than t times, they
add it to L and remove pi from L. This way the servers
can find the t-heavy hitters from the set without learning
any individual string from the dataset.

Let us consider at a concrete example to under-
stand Boneh et al.’s [3] method better. We have a
set X with ten strings of two bits each: X =
{11, 10, 01, 00, 10, 00, 10, 11, 10, 10}. We aim to identify
all t-heavy hitters in X with t = 2.

In the initial step, beginning with the prefix query
tree’s root (referenced in Fig. 3), the servers evaluate
the prefixes ‘0’ and ‘1’ within X . They discover three

10

3

2

0

1

1

0

7

5

0

2

1

1

Figure 3: The prefix query tree of X .

occurrences of ‘0’ and seven of ‘1’. Since both exceed
the threshold t = 2, both are included in the prefix list L,
resulting in L = {0, 1}) at the end of the first round.

The servers repeat this step. They count how many
times ‘0’ is followed by 0 or 1. The count for ‘00’ is 2
and for ‘01’ it is 1. So they only add ‘00’ to L. They do
the same for ‘10’ and ‘11’. The count for ‘10’ is 5 and for
‘11’ it is 2. Both are more than or equal to t, so they add
them to L. Now L = {00, 10, 11} gives all the t-heavy
hitters in X .

Boneh et al. [3] use I-DPF keys to do ‘incremental
prefix counting’ fast. However, this method reveals every
intermediate prefix count result to the servers, i.e., , refer-
ing to Fig. 3, every node value of this prefix query tree
of X is leaked to both servers.

3.1. Overview of our Idea

We propose a new framework that can do prefix-count
queries without revealing any partial counts to the servers.
This makes ‘incremental prefix counting’ more private and
secure. In the approach described in the previous para-
graph (t-heavy hitters), the I-DPF key pairs are computed
directly from the elements in X . Then, the I-DPF function
is evaluated in an algorithmic fashion using the prefixes
in L. We construct the I-DPF keys in a different manner.
We describe below the intuition behind our approach.

Let us assume that we choose a random value
α←$Z2n . We derive the I-DPF keys as

((k0, k1), pp)← IDPF.Gen(1κ, α, (G1,1), · · · , (Gn,1))

and we set the initial state to st0b ← kb. Now when
we evaluate the I-DPF keys for the first bit we have two
cases:

• For α1 ⊕ 0 we have:
(st1b , [1]

A
b)← IDPF.EvalNext(b, st0b , pp, α

1 ⊕ 0).
• For α1 ⊕ 1 we have:
(st1b , [0]

A
b)← IDPF.EvalNext(b, st0b , pp, α

1 ⊕ 1).

Let us assume that we add the results from the servers.
If we get 0, it means that the bits are different. If we get
1, it means the bits are the same. We can use XOR to
check this. For example, if x1 and q1 are the first bits of
some values x and q, then x1 ⊕ q1 = 0 means x1 and q1
are equal, and x1⊕ q1 = 1 means x1 and q1 are different.
We can do this for the rest of the bits in α, x and q in a
similar fashion.

The random values α and q are used to hide the real
inputs (i.e., act as masks). We use a different αj for each
input xj and a common q for all of them. The servers get
some parts of [xj]

B, [αj]
B and [q]B and reveal the string

tj = q ⊕ xj ⊕ αj for each input xj . These strings do not
reveal anything about the inputs xj because of the way αj

and q are chosen. The servers then use the IDPF.EvalNext

function on the strings tj to find out if qi is equal to xij ,
i.e., they get a Boolean secret sharing of 1 iff qi ≡ xij .
Since the same q is employed for all xj , it is possible to
count how often qi appears in the inputs by computing on
the strings tj .

As we will see in the following it is possible to
derive the protocols to compute the maximum and k-th
ranked element by combining the prefix counts for qi with
information about the cardinality of the certain ’helper
sets’.

3.2. Comparison to Private Heavy Hitters

Our work employs ‘incremental prefix counting’ as the
private heavy hitters introduced in [3]. However, there are
notable differences in the following three aspects:

• Targeted Functionality. In [3], the authors target
only the computation of subset histograms and iden-
tifying multiple private heavy-hitters without explic-
itly addressing Max/KRE computation. In contrast,
our work specifically targets computing the max/kre
element, yielding a singular output.

• Information Leakage. Furthermore [3] allows both
servers to learn i) the set of all heavy strings, and ii)
the count of strings starting with each heavy string
(section 5.1 of [3]). Conversely, in our method, both
servers learn nothing related with the input or output.

We emphasize that the computational framework
from [3] is unsuitable for computing FMAX or FKRE.
In [3], the servers learn every prefix count in the com-
putation of t-heavy hitters, while our method incorporates
additional masking over ‘incremental prefix counting’ to
hide prefix counts from servers, as detailed in section 3.3.
We also enhance concrete online efficiency by minimiz-
ing the required online rounds for computing FMAX; for
computing FKRE, we utilize the recent round-reducing
CondEval primitive [8] and introduce a batch variant for
further efficiency improvement. Addressing this function-
ality with optimal performance is an open and challenging
problem that is very different from computing the heavy
hitters problem.

3.3. Our Computation Framework

Now we are ready to present our computation frame-
work, which involves an offline/online model. We assume
that both servers are semi-honest. This means all parties
follow the protocol correctly, but might try to extract
information from the transcript view they see during the
protocol execution.

Offline phase. Let’s assume the existence of a trusted
third party (TTP) T , a data set X of m inputs and a
domain size of n for each xj ∈ X . In the offline phase
for each input xj ∈ X , T does the following:
- It picks a random value αj ←$Z2n and calculates [αj]

B.
- It runs IDPF.Gen(1κ, αj , (G1,1), · · · , (Gn,1)) for each
i ∈ [n] using the algorithm from [3]. This gives two keys
(kj,0, kj,1) and a public parameter pp.
- It chooses a random binary string q ∈ {0, 1}n and
computes [qi]A, i ∈ [n]. Then for each b ∈ {0, 1}, T sends

Kb = {(k1,b, [α1]
B
b), · · · , (km,b, [αm]Bb)} and

Qb = {[q1]Ab , · · · , [qn]Ab }

Input: Input bit b ∈ {0, 1} identifying server Sb and
selecting inputs (Kb, Qb) from the offline phase and
[xj]

B
b where j ∈ [m] from the online phase.

Output: [c]B where c = f(X).
1: for i = 1 to n do
2: [qi]

B ← FA2B([qi]
A)

3: end for
4: for j = 1 to m do
5: st0j,b ← kj,b
6: tj ← Freveal([q ⊕ xj ⊕ αj]

B)
7: end for
8: for i = 1 to n do
9: for j = 1 to m do

10: (stij,b, [β
j
i]

A
b)← IDPF.EvalNext(b, sti−1

j,b , pp, tji)

11: end for
12: [µ]A ←

∑m
j=1[β

j
i]

A

13: if i < n then
14: (δi, ∗)← Πf (i, [µ]

A, [qi]
A, ∗)

15: [ci]
B ← δi ⊕ [qi]

B

16: else
17: [ci]

B ← Πf (i, [µ]
A, [qi]

A, ∗)
18: end if
19: if i < n and δi = 1 then
20: for j = 1 to m do
21: (stij,b, [β

j
i]

A
b)← IDPF.EvalNext(b, sti−1

j,b , pp,¬tji)
22: end for
23: end if
24: end for
25: Outputs [c]B ← [c1]

B∥ · · · ∥[cn]B.

Figure 4: Our bit-wise computation framework.

to server Sb.
Note that it’s also possible to generate K = (K0,K1)

and Q = (Q0, Q1) without the TTP. This requires a two-
party secure computation scheme that generating required
key pairs among two servers.

Online phase. In the online phase, the clients send

{[x1]Bb , · · · , [xm]Bb }

to the server Sb for each b ∈ {0, 1}. These values
correspond to the Boolean secret sharing of a multi-set
X = {x1, · · · , xm}.

Now we are ready to present our basic framework as
illustrated in Fig. 4, which computes the desired func-
tionality f over X in a bit-wise manner. In the offline
phase server Sb gets Kb and Qb for each b ∈ {0, 1}. In
the online phase server Sb gets some parts of X from all
clients using Boolean secret sharing. When all inputs are
there, the servers compute a masked string tj = q⊕xj⊕αj

(of size n) for each j ∈ m. This is the input for the I-
DPF evaluation functions. Then we use ci for the ith bit of
f(X) for each i ∈ [n]. To compute the new target bit ci the
servers use arithmetical secret sharing to count the prefixes
of the string c1∥ · · · ∥qi over X (CountPrefix), which is
indicated by [µ]A in Fig. 4. Then [µ]A is passed to a sub-
protocol Πf which will output a masked bit δi = ci ⊕ qi
(ComputeBit). In case δi = 1 and i ≤ n the servers
update their I-DPF states (UpdateState). Specifically, for
each i ∈ [n] the servers do these three steps:

TABLE 3: Extra input/output of ΠBitMax

i Extra Input Extra Output

1 [qi+1]
A [vi]

A, [wi]
A

(1, n) [qi+1]
A, [vi−1]

A, [wi−1]
A [vi]

A, [wi]
A

n [vi−1]
A, [wi−1]

A −

1) CountPrefix: For each j ∈ [m], Sb does the follow-
ing:
- It runs IDPF.EvalNext(b, sti−1

j,b , pp, t
j
i) to get a new

I-DPF state stij,b.
-It also gets [βj

i]
A
b , which is either 0 or 1.

-It adds up all [βj
i]

A
b to get [µ]A which indicates

the amount of the prefix string c1|| · · · ||ci−1||qi that
appears in X .

2) ComputeBit: After obtaining [µ]A, this framework
feeds [µ]A along with [qi]

A to the corresponding 2PC
protocol Πf . This gives a masked bit δi = ci⊕qi. For
the MAX and KRE computations, we use ΠBitMaxand
ΠBitKre respectively.

3) UpdateState: If δi = 1, it means that the ran-
dom bit qi (generated in the offline phase) is
different from ci. Then the I-DPF states need
to be updated. The servers do this by running
IDPF.EvalNext(b, sti−1

j,b , pp,¬t
j
i) again for each j ∈

[m]. They get a new state stij,b for each input. These
states count the prefixes of the string c1∥ · · · ∥ci−1∥ci
in X . This step is only performed when i < n.

At each iteration the servers get the Boolean secret
sharing of a new target bit ci and the correct I-DPF states
for the prefix c1∥ · · · ∥ci. After executing n iterations the
protocol outputs the final Boolean secret sharing of the
target binary string [c]B. In the following sections we
outline the construction and correctness of our protocols
for computing the maximum and k-th ranked element.
For brevity, the formal security proofs are included in
Appendix A.

4. Bit-wise Constructions

In this section, we present sub-protocols designed for
computing the ith bit of the maximum and the k-th ranked
element of X . While for the sub-protocol that compute the
ith bit of the minimum of X , we attach it in Appendix C.1.

4.1. Realizing ΠBitMax

We present ΠBitMax, (described in Protocol 1) a pro-
tocol that securely determines the ith bit of the maximum
value in X . The interface for ΠBitMax is described as:

(δi, [c]
B, ∗)← ΠBitMax(i, [µ]

A, [qi]
A, ∗).

To use this interface it is required to provide at least i
and [µ]A as inputs. At least δ and [c]B will be returned as
outputs. There may be other inputs or outputs which are
indicated by the symbol ∗. The exact interface of ΠBitMax

depends on the value of i. These variations are detailed
in Tab. 3.

Our goal is to find the ith bit of the maximum of X
in Protocol 1. We use two variables [v]A and [w]A to keep
track of the progress. [v]A is the number of values in X
that could be the maximum, and [w]A is the product of

[v]A and the probability that the i-th bit of the maximum
is 0, which we denote by [qi+1]

A). We start with [v]A =
SS.share(m), where m is the size of X . We update both
[v]A and [w]A whenever we determine a new bit of the
maximum.

Correctness. We establish the correctness of Proto-
col 1 as follows. In the ith iteration where i ∈ [n] let
p = c1∥ · · · ∥ci−1 denote the prefix of the maximum of X
up to the i−1 bit. Recall that [µ]A represents the count of
strings in X that have the prefix p∥qi. We then distinguish
between two cases based on the actual value of qi:

• qi = 1: We get [w]A = [v]A · (1− [qi]
A) = [0]A. Upon

invoking FNZ([µ]
A − [w]A) we perform a nonzero

check on [µ]A. If the check passes, this signifies that
at least one string in X starts with the prefix p∥1.

• qi = 0: We have [w]A = [v]A · (1 − [qi]
A) = [v]A.

When invoking FNZ([µ]
A− [w]A) the nonzero check

is performed on [µ]A − [v]A. If this check passes, it
indicates that not all remaining maximum candidates
start with the prefix p∥0. In simpler terms, at least
one string starts with the prefix p∥1.

In both scenarios, if the corresponding non-zero check
passes, we can be certain that the ith bit of the maximum
is 1. By analogy if the non-zero check does not pass the
ith bit is 0, independently of the value of qi. Therefore
Protocol 1 accurately computes the Boolean secret sharing
of the maximum value of X after n iterations. Note
that when δ is revealed, both [v]A and [w]A are updated
correctly. More specifically if δ = 0(ci ≡ qi), then
[v]A = [µ]A indicates the current count of maximum
candidates. Conversely if δ = 1(ci ≡ 1 − qi), then
[v]A = [v]A − [µ]A tells the amount of strings that start
with p∥1−qi = c1∥ · · · ∥ci−1∥1−qi, which is the amount
of all candidates of the maximum by the ith iteration.

Protocol 1 Bit-wise maximum protocol-ΠBitMax

Functionality: (δi, ∗)← ΠBitMax(i, [µ]
A, [qi]

A, ∗)
Input: [µ]A and [qi]

A, possibly other inputs based on the value
of i.

Output: A bit δi, [v]A and [w]A if i < n; otherwise [ci]
B.

1: if i = 1 then
2: [v]A ← SS.share(m)
3: [w]A ← m(1− [qi]

A)
4: end if
5: [ci]

B ← FNZ([µ− w]A)
6: if i < n then
7: [v0]

A ← [µ]A

8: [v1]
A ← [v]A − [µ]A

9: [w0]
A ← [v0]

A(1− [qi+1]
A)

10: [w1]
A ← [v1]

A(1− [qi+1]
A)

11: end if
12: if i < n then
13: δi ← Freveal([ci ⊕ qi]

B)
14: [v]A ← [vδi]

A

15: [w]A ← [wδi]
A

16: Outputs (δi, [v]
A, [w]A).

17: else
18: Outputs [ci]

B.
19: end if

4.1.1. Rounds Optimization on Protocol 1. In Proto-
col 1, assuming FNZ is instantiated by function secret
sharing in the pre-processing model that requires only a

single communication round, this gives us a total commu-
nication round of 2n for computing the maximum of X
within the computation framework 4. However, for each
i ∈ [1, · · · , n− 1], we observe that it’s possible to further
reduce the overall communication rounds by combining
the Freveal operation from ith iteration with the FNZ from
the next (i+ 1)th iteration, enabling a cost of mere n+ 1
communication rounds computing the maximum of X .

For this to work, we propose a modification that
involves pre-computing additional prefix counts over [X]B

before invoking Protocol 1. Specifically, instead of limit-
ing ourselves to computing the prefix count of q1 over
[X]B, we expand our computation to include the prefix
counts of q1, ¬q1, q1∥q2, ¬q1∥q2 respectively, thus obtain
[µ]A, [µ̄]A, [µ0]

A, [µ1]
A along with associated internal I-

DPF evaluation states. With these preliminary computa-
tions, the execution of Protocol 1 becomes more efficient.
In the second round, alongside performing Freveal as out-
lined in Protocol 1, the servers undertake additional tasks:

• They compute two candidate bits, one of which will
indicate the second comparison bit, through:

[c0]B ← FNZ([µ0]
A − [w0]

A) and

[c1]B ← FNZ([µ1]
A − [w1]

A),

• They also prepare a list of candidate terms for the
third comparison bit computation using FNZ, which
include:

[w00]
A ← (1− [q3]

A)[µ0]
A,

[w01]
A ← (1− [q3]

A)[µ1]
A,

[w10]
A ← (1− [q3]

A)([µ− µ0]
A),

[w11]
A ← (1− [q3]

A)([µ̄− µ1]
A).

Upon the second round’s completion and the revelation
of δ1, the servers adjust their computation of the prefix
count over c1∥q2∥q3 and c1∥¬q2∥q3 based on δ1:

• if δ1 = 0, from the I-DPF states held by evaluating
q1∥q2, servers do one more bit prefix count over
q1∥q2∥q3, and from the I-DPF states by evaluat-
ing q1, servers do two more bits prefix count over
q1∥¬q2∥q3;

• otherwise, from the I-DPF states held by evaluating
¬q1∥q2, servers do one more bit prefix count over
¬q1∥q2∥q3, and from the I-DPF states by evaluating
¬q1, servers do two more bits prefix count over
¬q1∥¬q2∥q3.

By following the established naming convention, we
denote the obtained prefix count results over c1∥q2,
c1∥¬q2, c1∥q2∥q3, and c1∥¬q2∥q3 as [µ]A, [µ̄]A, [µ0]

A,
and [µ1]

A respectively.
In the third round, the servers reveal the second

masked comparison bit [cδ1 ⊕ q2]
B, denoted as δ2, and

perform two tasks similar to the previous iteration, aiming
to compute candidate bits and prepare terms for subse-
quent comparison bit computations. Servers repeat above
procedure until the (n−1)th round, however by the last nth

iteration, servers need only reveal δn−1 and compute two
candidate comparison bits. Without any further commu-
nication, this gives us [cδn−1]

B, which exactly represents
the final target comparison bit.

This optimized methodology is outlined in detail in
Tab. 4. Compared to the original Protocol 1, this optimiza-
tion reduces the communication rounds from 2n to n+1,
albeit with an increase in computation overhead due to the
additional prefix counts and the slightly higher costs asso-
ciated with secret sharing-based equality checks and mul-
tiplication operations. Applying this round optimization
technique on sub-protocol 1, and integrate this resulting
protocol variant within the computational model in Fig. 4,
results in our finalized protocol for computing FMAX,
which we refer to as ΠMax. The communication complex-
ity of ΠMax involves exactly (m + 1)n + 10nκ − 11κ
bits, distributed over n + 1 rounds, incurring a computa-
tional cost of 3mn invocations of IDPF.EvalNext on each
server.

4.2. BitMax to BitKre

Secure maximum computing and the k-th ranked ele-
ment computation are two closely related functionalities.
The computation of the maximum can be generalized
to the computation of the first ranked element, but not
vice visa. Thus, in the same setting the k-th ranked
element computation often comes with higher cost than
the maximum computation. In our proposed protocols, the
k-th ranked element computation protocol 2 has slightly
more computational cost than the maximum computation
Protocol 1.

Before discussing the details of our bit-wise k-th
ranked element computation protocol in Protocol 2 let us
again refer to the example in Fig. 3. Remember that the
nodes in this graph represent the prefix counts. Assume
k = 6, let us explore how to find the k-th ranked element
(in descending order) in set X based on Fig. 3. We proceed
as follows.

In the first step, we execute a prefix query for the
bit string 1 and obtain a result of 7, which exceeds k.
Therefore, we leave k unchanged and determine that the
first bit of the k-th ranked element is 1. Moving to the
next iteration, the protocol performs a prefix query for
11 and receives a result of 2, which is less than k. As a
result, k is updated to k = k − 2 = 4 and the correct bit
is determined to be 0.

This example serves as a useful guide for compre-
hending the protocol outlined in Protocol 2. The protocol
adopts the same approach we have previously described,
but conducts each operation—including comparisons and
internal value updates—in a secure manner.

4.3. Realizing ΠBitKre

In Protocol 2, we introduce ΠBitKre, which securely
computes the ith bit of the k-th ranked element of X . The
interface for ΠBitKre is described as:

(δi, ∗)← ΠBitKre(i, [µ]
A, [qi]

A, [k]A, ∗).

This interface requires at least inputs of i and [µ]A and
outputs δi. The symbol ∗ denotes potential additional
input/output, and the precise interface of are detailed in
Tab. 5. The scalar v represents the number of remaining
target value candidates and is initially set to m. At a high
level, the protocol aims to achieve two objectives:

TABLE 4: Detailed operations of the rounds reduction method on ΠBitMax

1st Round 2nd Round 3rd Round · · · nth Round
[c1]B ← FNZ([µ− w]A) δ1 ← Freveal([c1 ⊕ q1]B) δ2 ← Freveal([cδ1 ⊕ q2]B) δn−1 ← Freveal([cδn−2

⊕ qn−1]B)

[w0]A ← [v0]A[1− q2]A [c0]B ← FNZ([µ0 − w0]A) [c0]B ← FNZ([µ0 − w0δ1]
A) [c0]B ← FNZ([µ0 − w0δn−2

]A)

[w1]A ← [v1]A1[1− q2]A [c1]B ← FNZ([µ1 − w1]A) [c1]B ← FNZ([µ1 − w1δ1]
A) [c1]B ← FNZ([µ1 − w1δn−2

]A)

− [w00]A ← [1− q3]A[µ0]A [w00]A ← (1− [q4]A)[µ0]A · · · -
− [w01]A ← [1− q3]A[µ1]A [w01]A ← [1− q4]A[µ1]A -
− [w10]A ← [1− q3]A[µ− µ0]A [w10]A ← [1− q4]A[µ− µ0]A -
− [w11]A ← [1− q3]A[µ̄− µ1]A [w11]A ← [1− q4]A[µ̄− µ1]A -

TABLE 5: Extra input/output of ΠBitKre

i Extra Input Extra Output

1 [qi+1]
A [vi]

A, [wi]
A

(1, n) [qi+1]
A, [vi−1]

A, [wi−1]
A [vi]

A, [wi]
A

n [vi−1]
A, [wi−1]

A −

1) To compute the correct bit c of the target value using
a secure comparison between k and µ.

2) To accurately update the internal variables v and k
for use in the next iteration.

To achieve the first objective, a straightforward method
involves two steps and two rounds of communication:

[r]A ← [qi]
A · [µ]A + (1− [qi]

A) · [v − µ]A,
[ci]

B ← FLessEqualThan

(
[k]A, [r]A

)
.

Firstly [r]A is computed based on the value of [qi]
A

indicating IncPrefixCount(p∥1). This costs one round of
communication. Secondly the function FLessEqualThan is
used to compare [k]A and [r]A and assign the result to
[c]B. This costs a second round of communication.

Instead of using this straightforward method, we
achieve the first objective in Protocol 2 using only one
round of communication by computing:

[r0]
A ← [v]A − [µ]A, [r1]

A ← [µ]A,

[c0]B ← CondEval
(
[qi]

B,∧, f≤([k]A, [r1]A)
)
,

[c1]B ← CondEval
(
[1− qi]B,∧, f≤([k]A, [r0]A)

)
,

[ci]
B ← [c0]B ⊕ [c1]B.

This ensures secure and correct derivation of the target bit
c in an efficient way. The key innovation is simultaneously
comparing [k]A with both [r0]

A and [r1]
A, enabling two

evaluations to occur within a single round of communi-
cation. The use of the primitive CondEval ensures that
one of c0 or c1 will be zero, allowing for the oblivious
and secure determination of [ci]B through the computation
[ci]

B = [c0]B ⊕ [c1]B.
To achieve the second objective let [l]A and [r]A denote

the left and right branches of the current prefix query tree
result. Then a straightforward way to update [v]A and [k]A

would be to compute the following:

[k]A ← [ci]
A · [k]A + (1− [ci]

A) · [k − r]A,
[v]A ← [ci]

A · [r]A + (1− [ci]
A) · [l]A.

In a typical scenario, converting from [ci]
B to [ci]

A and
then executing the above operations would take two
rounds. However Protocol 2 introduces an optimization.
Given that our secure computation framework mandates

the revelation of a bit δi = ci ⊕ qi, we can do both the
revelation of δi and the computation of

[t1]
A = [qi]

A · [l]A,
[t2]

A = [qi]
A · [r]A

in one round. We can express ci as δi⊕qi = δi+qi−2δ·qi.
Substituting this expanded form of ci and [t1]

A, [t2]
A into

the previous operations, we get the following equations
for updating [k]A and [v]A:

[k]A = [k]A + (δi − 1) · [r]A + (1− 2δi) · [qi]A · [r]A

= [k]A + (δi − 1) · [r]A + (1− 2δi) · [t2]A,
[v]A = (1− δi) · [l]A + (2δi − 1) · [qi]A · [l]A

+ δ · [r]A + (1− 2δi) · [qi]A · [r]A

= (1− δi) · [l]A + (2δi − 1) · [t1]A

+ δi · [r]A + (1− 2δi) · [t2]A.
This optimization streamlines the update process for

[k]A and [v]A in Protocol 2, effectively reducing the num-
ber of communication rounds required.

Protocol 2 Bit-wise k-th ranked element computation

Functionality: (δi, [k]
A, [v]A)← BitKre(i, [µ]A, [qi]

A, [k]A, ∗)
Input: An index i ∈ [n], [µ]A, [b]A and the target ranking [k]A,

it also inputs [v]A if i > 1.
Output: A bit δi, and the updated [v]A, [k]A; otherwise [ci]

B.
1: if i = 1 then
2: [v]A ← Fshare(m)
3: end if
4: [qi]

B ← FA2B([qi]
A)

5: [r0]
A ← [v]A − [µ]A

6: [r1]
A ← [µ]A

7: [c0]B ← CondEval
(
[qi]

B,∧, f≤([k]A, [r1]A)
)

8: [c1]B ← CondEval
(
[1− qi]

B,∧, f≤([k]A, [r0]A)
)

9: [ci]
B ← [c0]B ⊕ [c1]B

10: if i < n then
11: [r]A ← [qi]

A · [r1]A + [1− qi]
A · [r0]A

12: [l]A ← [v]A − [r]A

13: [t1]
A = [qi]

A · [l]A
14: [t2]

A = [qi]
A · [r]A

15: δi ← Freveal([ci]
B ⊕ [qi]

B)
16: [k]A ← [k]A + (δi − 1)[r]A + (1− 2δi)[t2]

A

17: [v]A ← (1 − δi)[l]
A + (2δi − 1)[t1]

A + δi[r]
A + (1 −

2δi)[t2]
A

18: Ouputs (δi, [k]
A, [v]A).

19: else
20: Outputs [ci]

B.
21: end if

Correctness. The correctness of our Protocol 2 is
already shown when we present the construction above.

Efficiency. Integrating protocol 2 within the computa-
tional framework in Fig. 4 results in our finalized protocol

for computing FKRE, which we refer to as ΠBitKre. In
Protocol 2 the first round corresponds to the operations
in lines 7,8,11, while the second round corresponds to the
computation of [t1]A, [t2]A in lines 13,14,15. Thus, ΠBitKre

involves exactly (m+1)n+8(n−1)κ+2(L+1+κ) bits,
distributed over 2n rounds, incurring a computational cost
of 3nm/2 invocations of IDPF.EvalNext on average on
each server, here L denotes passed decryption key length
when evaluating CondEval.

5. Batch-wise Variants

Our bit-wise protocols compute the target value from
the input domain of size n, at the communication com-
plexity of O (n), which is independent on the size of
the secret input set m. This is different with comparison-
based approaches, where amount of the communication
rounds is affected by m (see tables 1 and 2). This property
enhances the scalability of our protocols for dataset X ,
making them more adaptable to larger data sets where the
input domain size does not hinder performance. However,
the communication rounds of the bit-wise protocols can
still be inefficient in some cases. For example if n is big
or the network has high latency, the total communication
time could become a performance bottleneck.

Therefore we want to know how to further reduce the
number of communication rounds required for our target
functionality. We remind ourselves that in the original
computation framework from Fig. 4 that a single bit is
computed per iteration. Thus, a straightforward intuition is
try to compute multiple target bits, i.e., a batch in a lower
number of iteration. We denote by ω the batch size and
assume n is a multiple of ω. Thus, if we compute the target
string batch-wisely, with a lower number of iterations
d = n/ω required, we could reduce the communication
complexity from O (n) to O (d), potentially reducing
communication rounds required in the end.

We denote by [v⃗]A a resulting prefix count vector of a
prefix list

p∥(ψ ⊕FBDC(2
ω − 1, ω)), · · · , p∥(ψ ⊕FBDC(0, ω))

over X for ψ = q(i−1)ω+1..iω, where ψ is the ith batch
of the random string q, thus, [v⃗]A indicates an unordered
prefix count vector. However, for meaningful computa-
tion with these values, we need somehow convert this
unordered vector [v⃗]A to an ordered vector [v⃗′]A, by
ordered vector we mean a resulting vector over an ordered
prefix list

p∥(FBDC(2
ω − 1, ω)), · · · , p∥(FBDC(0, ω)).

To realize this conversion, the trick is to employ a conver-
sion matrix Mi within each iteration i ∈ d. The conversion
matrices Mi are prepared during the offline phase from ψ.
We outlined the details of generating Mi in Fig. 6, where
the resulting Mi contains τ rows, each representing a one-
hot vector of size τ . In a one-hot vector only one element
is one, while all other elements are zero. For instance
let us assume ω = 2, τ = 4 and ψ = 1∥0. Then the
corresponding matrix M10 is: 0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0

 .

These matrices are secret shared with the two servers as
[Mi]

A, which implies that the servers cannot infer any
information about q from them. With [Mi]

A ready in the
ith(i ∈ [d]) iteration, it allows the servers to convert the
prefix count results in each iteration from an unordered
state to an ordered state, i.e., from [v⃗]A to [v⃗′]A. Specifi-
cally, this is done by computing

[v⃗′]A ← [v⃗]A × [Mi]
A.

Now with this insight, we introduce a batch-wise
framework as depicted in Fig. 5, consisting of the fol-
lowing key processes:

1) Initialization: The process begins with initializing
the I-DPF states, detailed in line 6, followed by
revealing the vectors tj in line 7.

2) Iterative Computation: For each i ∈ d, the follow-
ing steps are executed:

a) Computation of the prefix count vector [v⃗]A for the
unordered prefix list, covered in lines 10-17.

b) Invocation of the function Πf with [v⃗]A and [Mi]
A

and other parameters passed in line 18, which
computes and returns the masked target batch δi.

c) The I-DPF states are then updated in lines 19-24
to align with the prefix c1∥ · · · ∥ciω, based on the
value of δi.

3) Output Generation: Output result bits [c]B in line
26.

A notable aspect of this framework is its computa-
tional demand, which intensifies with an increase in ω.
This surge in complexity is attributed to the exponential
growth in the number of potential outcomes τ = 2ω,
underscoring a trade-off between execution efficiency and
communication complexity.

5.1. Realizing ΠBatchKre

We introduce ΠBatchKre which securely computes the
ith batch of the KRE of X , the interface for ΠBatchKre is
defined as:

(δ, ∗)← ΠBatchKre(i, [v⃗]
A, [M]A, [q]B, [k]A, ∗).

It interface requires at least inputs of prefix query result
vector [v⃗]A, conversion matrix [M]B, a partial bit mask
[q]B and the value [k]A, outputs a masked target batch δ
and an updated [k]A for i < d. For the full details of
ΠBatchKre, please refer it to Appendix B.

Integrating protocol 3 within the computational frame-
work in Fig. 5 results in our finalized protocol for com-
puting FKRE, which we refer to as ΠBatchKre. Note that it
requires four rounds in Protocol 3, the first round involves
converting [v⃗]B to [v⃗′]B, the second round is to perform
FLessEqualThan check. The third round computes [bt]

B for
t ∈ [τ], which aids in determining the target batch and
in the final round σ is revealed. Thus, ΠBatchKre involves
exactly (m+1)n+ nκ

ω

(
τ+2τ2+2(τ−1)+4(nω−1)

)
bits,

distributed over 1 + (4n)/ω rounds, incurring a compu-
tational cost of (2ωnm)/ω invocations of IDPF.EvalNext
on average on each server.

Input: Input bit b ∈ {0, 1} identifying server Sb and
selecting inputs (Kb, Qb, [M]Ab) from the offline phase
and [xj]

B
b where j ∈ [m] from the online phase.

Output: [c]B where c = f(X).
1: τ ← 2ω, d← n/ω
2: for j = 1 to m do
3: [qi]

B ← FA2B([qi]
A)

4: end for
5: for j = 1 to m do
6: st0j,b ← kj,b
7: tj ← Freveal([q ⊕ xj ⊕ αj]

B)
8: end for
9: for i = 1 to d do

10: for t = 1 to τ do
11: η ← FBDC(t− 1, ω)⊕ tj [((i− 1)ω + 1)..iω]
12: for j = 1 to m do
13: (ŝt

t
j,b, [β

j
t]

A
b)← IDPF.EvalNext(b, sti−1

j,b , pp, η)

14: end for
15: [µt]

A ←
∑m

j=1[β
j
t]

A

16: end for
17: [v⃗]A ← {[µ1]

A, · · · , [µτ]
A}

18: (δi, ∗)← Πf (i, [v⃗]
A, [Mi]

A, ∗)
19: idx← FBC(δi)
20: if i < n then
21: for j = 1 to m do
22: stiωj,b ← ŝt

idx
j,b

23: end for
24: end if
25: end for
26: Outputs [c]B ← (δ1∥ · · · ∥δd)⊕ [q]B.

Figure 5: Our batch-wise computation framework.

6. Experimental Evaluation

In this section, by performing a detailed experimental
evaluation, we report the comparison results of our final-
ized protocols ΠMax, ΠBitKre, and ΠBatchKre to the state-
of-the-art solutions.

Experiment Setting. Except for ΠICMax from MP-
SPDZ [17] that is realized in c++, all other protocols
(including basis and our finalized protocols) are realized
in Rust and can be found at Github1. All our experiments
are performed on a server equipped with 32GB RAM,
12th Gen Intel(R) Core(TM) i7-12700K CPU model that
ran Ubuntu 22.04 LTS. For the evaluation of the offline
phase, we assume the existence of a Trustful Third Party
(TTP) that distributes correlated randomness to the two
computing servers, and we measured the offline phase
overhead by running the corresponding offline phase key
generation algorithm. For the online phase evaluation, we
established a simulated WAN network within the above
server. The round-trip time (RTT) latency and bandwidth
are set to 80ms and 285Mbps, respectively.

6.1. Evaluation for FMAX

SOTA implementations for FMAX. As mentioned
in the related work, to compute the maximum from a

1. https://github.com/nann-cheng/FSS-KRE

secrete set of size m, state-of-the-art solutions employ a
secure comparison protocol internally, with which they
perform pair-wise comparisons in O(logm) iterations to
determine the maximum. Here, the concrete efficiency
depends on the underlying secure comparison protocol
being used. To have a good efficiency understanding of
such solutions, we employ two secure integer comparison
protocols, respectively from [6] and [12], both are already
implemented in MP-SPDZ [17]. Both of these two proto-
cols compute the secure comparison result by extracting
the most significant bit of the subtraction result of two
integers being compared. However, the protocol from [6]
works in a finite field F, while the protocol from [12] in
a ring R. Additionally, we also implemented the recent
secure integer comparison protocol in [5] from scratch,
which works in a group G.

Thus, from the state-of-the-art secure comparison pro-
tocol in [12], [6] and [5], we devised three basis, respec-
tively denoted as ΠScMax1, ΠScMax2 and ΠICMax. Differ-
ent with our protocol ΠMax that inputs/outputs Boolean
secret sharing, ΠScMax1, ΠScMax2 and ΠICMax input the
arithmetical secret sharing [X]A of set X and output
the arithmetical sharing of the maximum of X . Most of
the source codes for ΠScMax1 and ΠScMax2 are readily
available in MP-SPDZ [17], respectively can be found
in the semi2k protocol and the semi-party protocol,
however, on top of MP-SPDZ’s source code we add a
python script describing the pair-wise comparison based
maximum computation procedure to completely realize
ΠScMax1 and ΠScMax2. For the complete implementation of
ΠICMax, on top of our interval containment function secret
sharing implementation of the secure integer comparison
protocol in [5], we implemented the same high-level pair-
wise comparison based maximum computation algorithm
as in ΠScMax1 and ΠScMax2.

We compared three existing solutions, ΠScMax1,
ΠScMax2 and ΠICMax, with our protocol ΠMax. The final
comparison results are displayed in Tab. 6. In this table,
the input domain of X , denoted as n, comprises 31 bits,
and the size of the set, m, varies from 103 to 5 × 106.
For a fair comparison, in our implementation we have all
protocols operate on a 32 bit ring except for ΠScMax2,
which works in a prime field of length 32 + λ, where
security parameter λ is defined in [6] and aims to provide
statistical privacy for the underlying secure comparison
protocol, in our test of ΠScMax2 we use the default set-
ting of MP-SPDZ [17] where λ = 40. Additionally,
for the optimal performance in ΠScMax1 that we turned
on optimization options use_split and use_edabit,
here use_split enables local arithmetic-binary share
conversion, and use_edabit further improve online
efficiency for non-linear functionality. We set the security
parameter κ as 128 for the instantiating of function secret
sharing universally through all protocols.

Offline phase comparison. Considering the funda-
mental similarity in the utilization of function secret shar-
ing by both our protocol, ΠMax, and the naive protocol,
ΠICMax—with each assuming the presence of a Trusted
Third Party (TTP) responsible for distributing function
secret sharing key pairs and other correlated randomness
to two computing servers—we restrict our comparison
to an offline phase. Specifically, we compare ΠMax and
ΠICMax in terms of the time required for all the key

TABLE 6: Comparison of offline/online costs for protocols ΠScMax1, ΠScMax2, ΠICMax, and ΠMax.

Phase Measurements Ref. 103 104 105 106 2× 106 5× 106

Offline
KeyGen Time (s) ΠICMax [5] 0.008 0.093 0.864 8.465 16.61 37.08

Our ΠMax 0.007 0.064 0.611 5.573 12.122 24.65

Key size/Server (MB) ΠICMax [5] 0.73 7.34 73.42 734.32 1468.65 3671.64
Our ΠMax 0.74 7.07 70.41 703.8 1407.6 3519.09

Online

Rounds

ΠScMax1 [12] 80 112 136 − − −
ΠScMax2 [6] 80 112 136 − − −
ΠICMax [5] 20 28 34 40 42 46
Our ΠMax 32 32 32 32 32 32

Run Time (s)

ΠScMax1 [12] 6.42 9.03 11.68 − − −
ΠScMax2 [6] 6.44 9.20 11.85 − − −
ΠICMax [5] 1.66 2.35 3.34 9.80 17.35 40.44
Our ΠMax 2.60 2.83 3.60 8.45 14.43 33.40

Commu. Volume/server (MB)

ΠScMax1 [12] 0.03 0.29 2.96 − − −
ΠScMax2 [6] 0.062 0.61 6.18 − − −
ΠICMax [5] 0.011 0.114 1.144 11.444 22.88 57.22
Our ΠMax 0.005 0.038 0.370 3.696 7.392 18.47

generation and the final key size hold by each server,
including corresponding function secret sharing key shares
and associated correlated randomness. In above two pro-
tocols, the primary overhead in the offline phase for these
two protocols stems from the generation and storage of
function secret sharing keys. In ΠMax, these are I-DPFs,
while in ΠICMax, they are interval containment function
secret sharing keys. Both protocols require roughly m
function secret sharing keys for a later online input set
X of size m, leading to a linear increase in both offline
key generation time and key size with the increasing of
m. However, as indicated in Tab. 6, ΠMax exhibits slightly
better than ΠICMax in terms of both key generation time
and key size.

Let λ represent the seed size, n the input domain size,
and ℓ the output domain size. Based on the construction of
I-DPF from [3], and the construction of an integer interval
containment (IC) gate from [5] that we used in ΠICMax,
we provide the theoretical analysis of their key generation
efficiency disparity as follows.

• A single key share of I-DPF is of λ+ n(λ+ 2 + ℓ)
bits, while a single key share of IC is of λ+ n(λ+
2+ ℓ)+ 2ℓ bits. Consequently, ΠMax requires 2ℓ bits
less for each function secret sharing key compared
to that in ΠICMax.

• Moreover, within the distributed key comparison
function (DCF) secret sharing design that serves
as the foundation of the interval containment gate
design, it necessitates two invocations of a pseudo-
random generator G : {0, 1}λ → {0, 1}2(2λ+1) and
three invocations of a pseudo-random group element
converter ConvertG, in contrast to two invocations of
a lighter pseudo-random generator G : {0, 1}λ →
{0, 1}2λ+2 and one invocation of a pseudo-random
group element converter ConvertG in I-DPF from [3].

Hence, it is evident that the IC key generation is more
costly than the I-DPF key generation in terms of both
key size and computation time. This observation is further
supported by our experimental results in Tab. 6.

Online phase comparison Next, we compare the
online phase costs among ΠScMax1, ΠScMax2, ΠICMax, and
ΠMax. In Table 6, we record the actual communication
rounds/volume and total online runtime in our benchmarks
of all four protocols with varying input size m. For
protocol ΠScMax1 and ΠScMax2, we are limited to testing

its performance over an input set X of size up to 105, as
the program compiling hangs after more than ten minutes
waiting when we attempt to test them with m = 106.
From the results shown in Table 6, it is evident that
ΠMax requires the least communication volume, roughly
a third of that required in ΠICMax and one-eighth of that
required in ΠScMax1, this is consistent with our analysis
presented in the related work. Additionally, in terms of
concrete communication rounds required, our protocol
ΠMax requires n+ 1 = 32 rounds regardless of the value
of m, while both ΠScMax1 and ΠScMax1 need 8⌈log(m)⌉
rounds and ΠICMax needs 2⌈log(m)⌉ rounds. Lastly, we
compare the online runtime of these four protocols and
make the following observations and explanations. In our
evaluation, ΠScMax1 and ΠScMax2 were found to perform
the least effectively, necessitating a higher volume of
communication and significantly more rounds compared
to the others. Interestingly, when comparing ΠScMax1 with
ΠScMax2, we observed that the operation domain has a
small impact on the final online run time, as both protocols
exhibit similar performance given the same inputs.

By comparing ΠICMax to ΠMax, as shown in Table 6,
it is evident that the final performance of two pro-
tocols differs on the actual value of input set size
m. Here, since the communication volume required in
both protocols is relatively small, we assume that the
final practical online evaluation efficiency is mostly af-
fected by two factors: communication rounds and local
computation time, i.e., the more communication rounds,
the more online evaluation time required; and the more
local computational overhead, the more online evaluation
time required. Before going into further analysis, from a
theoretical point of view we present the run-time cost dif-
ference in terms of computation overhead within protocol
ΠICMax and ΠMax. The evaluation algorithm of IC used
in ΠICMax, requires 2n invocations of a pseudo-random
generator G : {0, 1}λ → {0, 1}2(2λ+1), 2n invocations
of a pseudo-random group element converter ConvertG
plus other arithmetical operation cost denoted as T (2n),
in contrast to 3n invocations of a lighter pseudo-random
generator G : {0, 1}λ → {0, 1}2λ+2, 3n invocation of
a pseudo-random group element converter ConvertG and
other arithmetical operation cost denoted as T (3n) in our
evaluation of I-DPF used in ΠMax. Considering both a
pseudo-random generator G and a pseudo-random group

TABLE 7: Comparison of offline/online costs for protocols ΠNaiveKre, ΠBitKre, and ΠBatchKre(ω = 3).

Phase Measurements Ref. 10 50 103 104 105 106

Offline

KeyGen Time (s)
ΠNaiveKre [5] 0.001 0.009 − − − −
Our ΠBitKre 0.001 0.002 0.006 0.048 0.477 4.595

Our ΠBatchKre 0.001 0.002 0.006 0.053 0.494 4.644

Key Size/Server (MB)
ΠNaiveKre [5] 0.039 0.930 − − − −
Our ΠBitKre 0.159 0.261 0.834 6.970 68.339 682.02

Our ΠBatchKre 0.083 0.110 0.758 6.895 68.264 681.95

Online

Rounds
ΠNaiveKre [5] 73 765 − − − −
Our ΠBitKre 61 61 61 61 61 61

Our ΠBatchKre 51 51 51 51 51 51

Run Time (s)
ΠNaiveKre [5] 5.84 61.732 − − − −
Our ΠBitKre 4.93 4.93 5.00 5.32 6.63 12.61

Our ΠBatchKre 4.15 4.16 4.18 4.37 5.75 20.52

Commu. Volume/server (MB)
ΠNaiveKre [5] 0.0007 0.014 − − − −
Our ΠBitKre 0.038 0.038 0.041 0.073 0.395 3.614

Our ΠBatchKre 0.006 0.006 0.009 0.042 0.363 3.582

element converter ConvertG realized with AES expan-
sion, the overall expansion comparison within the corre-
sponding evaluation algorithm in ΠICMax and ΠMax are
8nλ+2n(ℓ+2), 6nλ+3n(ℓ+2). Thus, when comparing
the cost of ΠICMax to ΠMax, it requires n(2λ− ℓ− 2) bits
more expansion and T (n) less cost on other computational
overhead.

Assuming that the dominant factor determining the
online computation-time arises from the arithmetical op-
eration overhead part (T (n)) when m is small, and also
assuming that the dominant factor determining the online
run-time when m keeps on increasing arises from the AES
expansion part, then this clearly explains the numbers
shown in Table 6. When m ∈ {103, 104, 105}, we see
from Tab. 6 that ΠICMax performs better online efficiency
than ΠMax, because either less communication rounds
required, less computation overhead required, or both.
Conversely, when m keeps on increasing, we see a clear
online run-time efficiency advantage of ΠMax than ΠICMax,
which cannot only be explained by less communication
rounds used, e.g., when m = 5 × 106, ΠMax requires
almost seven seconds less than that in ΠICMax in terms
of online run-time, while meanwhile the communication
rounds difference between them two contributes to only
14× 80ms = 1.12s saving in theory.

6.2. Evaluation for FKRE

SOTA implementations for FKRE. Given the absence
of efficient solutions for FKRE, we constructed ΠNaiveKre, a
straightforward comparison-based solution for computing
the k-th ranked element from a secret shared set X . It
takes the arithmetical secret sharing [k]A of an index
k < m and the arithmetical secret sharing of set X as
inputs, and outputs the arithmetical secret sharing of the
k-th ranked element of X .

ΠNaiveKre begins by performing a full sorting over
[X]A to obtain a vector [V]A in O (m logm) iterations.
Subsequently, it identifies the k-th ranked element by
computing the inner product between [V]A and another
vector [I]A. Here, [I]A is of size m, where the ith (i ∈ [m])
element is the zero-check result over i− [k]A. Notably, the
input index [k]A is given as a secret sharing, preventing
the servers from utilizing binary search and necessitating
a full sort to extract the k-th ranked element of X . In our
implementation of ΠNaiveKre, we use the integer interval

containment function secret sharing as the underlying
secure comparison implementation, as the same as in
ΠICMax.

In Table 7, we evaluate the performance of our proto-
cols ΠBitKre and ΠBatchKre against ΠNaiveKre. Note that we
set the batch size ω = 3 in the benchmark of ΠBatchKre.
Thus, we use input domain size n = 30 throughout all
protocol benchmark in Table 7. Due to the significant com-
munication rounds and resulting high runtime required for
ΠNaiveKre, we could only evaluate it up to m = 50.

Offline/Online phase comparison. Apart from
slightly higher communication volume when m = 10 in
our protocols, ΠBitKre and ΠBatchKre outperform ΠNaiveKre

notably in terms of both offline and online efficiency in
every measurement. This advantage stems from the un-
derlying communication/computation complexity advan-
tage of our protocols over ΠNaiveKre. Furthermore, this
performance gap becomes increasingly substantial as m
increases.

7. Conclusion

In conclusion, comparing our proposed protocols with
existing general solutions, in terms of online evaluation
efficiency, all our proposed protocols exhibit better online
communication volume efficiency than existing works,
and all of them scale better than existing works. This
is particularly true for our protocols that compute FKre,
where it significantly excels the naive solution that utilize
full sorting.

Acknowledgements

This work was partially supported by the ArmaSuisse
project with number CYD-C-2020011 titled “Private, Ro-
bust, and Efficient Computation of Aggregate Statistics”.

References

[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and
Antigoni Polychroniadou. Prio+: Privacy preserving aggregate
statistics via boolean shares. Cryptology ePrint Archive, 2021.

[2] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure com-
putation of the median (and other elements of specified ranks).
Journal of Cryptology, 23(3):373–401, July 2010.

[3] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Lightweight techniques for private heavy hitters. In
2021 IEEE Symposium on Security and Privacy (SP), pages 762–
776. IEEE, 2021.

[4] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 1292–1303. ACM Press, October
2016.

[5] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation
with preprocessing via function secret sharing. In Theory of Cryp-
tography: 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1–5, 2019, Proceedings, Part I 17, pages 341–
371. Springer, 2019.

[6] Octavian Catrina and Sebastiaan De Hoogh. Improved primitives
for secure multiparty integer computation. In Security and Cryp-
tography for Networks: 7th International Conference, SCN 2010,
Amalfi, Italy, September 13-15, 2010. Proceedings 7, pages 182–
199. Springer, 2010.

[7] Gowri R Chandran, Carmit Hazay, Robin Hundt, and Thomas
Schneider. Comparison-based mpc in star topology (full version).
Cryptology ePrint Archive, 2022.

[8] Nan Cheng, Melek Önen, Aikaterini Mitrokotsa, Oubaı̈da
Chouchane, Massimiliano Todisco, and Alberto Ibarrondo. Privacy-
preserving cosine similarity computation with malicious security
applied to biometric authentication. Cryptology ePrint Archive,
Paper 2023/1684, 2023. https://eprint.iacr.org/2023/1684.

[9] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In 14th USENIX sym-
posium on networked systems design and implementation (NSDI
17), pages 259–282, 2017.

[10] Geoffroy Couteau. New protocols for secure equality test and
comparison. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18, volume 10892 of LNCS, pages 303–320. Springer,
Heidelberg, July 2018.

[11] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multi-
party computation from threshold homomorphic encryption. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 280–299. Springer, Heidelberg, May 2001.

[12] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller,
Peter Scholl, and Nikolaj Volgushev. New primitives for actively-
secure mpc over rings with applications to private machine learn-
ing. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1102–1120. IEEE, 2019.

[13] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient
and secure comparison for on-line auctions. In Josef Pieprzyk,
Hossein Ghodosi, and Ed Dawson, editors, ACISP 07, volume 4586
of LNCS, pages 416–430. Springer, Heidelberg, July 2007.

[14] Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical
and secure solutions for integer comparison. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS,
pages 330–342. Springer, Heidelberg, April 2007.

[15] Peng Hu, Yongli Wang, Bei Gong, Yongjian Wang, Yanchao Li,
Ruxin Zhao, Hao Li, and Bo Li. A secure and lightweight privacy-
preserving data aggregation scheme for internet of vehicles. Peer-
to-Peer Networking and Applications, 13:1002–1013, 2020.

[16] Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and
Kannan Ramchandran. Fastsecagg: Scalable secure aggrega-
tion for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

[17] Marcel Keller. MP-SPDZ: A versatile framework for multi-party
computation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1575–1590. ACM
Press, November 2020.

[18] Bruno Rossi, Stanislav Chren, Barbora Buhnova, and Tomas Pitner.
Anomaly detection in smart grid data: An experience report. In
2016 ieee international conference on systems, man, and cybernet-
ics (smc), pages 002313–002318. IEEE, 2016.

[19] Anselme Tueno, Florian Kerschbaum, Stefan Katzenbeisser, Yor-
dan Boev, and Mubashir Qureshi. Secure computation of the kth-
ranked element in a star network. In Joseph Bonneau and Nadia
Heninger, editors, FC 2020, volume 12059 of LNCS, pages 386–
403. Springer, Heidelberg, February 2020.

[20] Jing Wang, Libing Wu, Sherali Zeadally, Muhammad Khurram
Khan, and Debiao He. Privacy-preserving data aggregation against
malicious data mining attack for iot-enabled smart grid. ACM
Transactions on Sensor Networks (TOSN), 17(3):1–25, 2021.

[21] Yuan Zhang, Qingjun Chen, and Sheng Zhong. Efficient and
privacy-preserving min and k th min computations in mobile
sensing systems. IEEE Transactions on Dependable and Secure
Computing, 14(1):9–21, 2015.

A. Security Analysis

We consider a static corruption model where a Honest-
but-Curious adversary A chooses one of the two comput-
ing parties S0,S1 before the execution of the computa-
tions.

In the subsequent discussion, we focus exclusively on
a formal security proof of our protocol ΠMax. The security
analysis for other protocols ΠKre1,ΠKre2 follow a similar
structure, and we omit it here.

A.1. Security of ΠMax

In the following we define an ideal functionality FMax

that interacts with S0,S1, and the adversary A is param-
eterized by a public known function fMax(X).

• Input: FMax inputs a Boolean secret sharing [X]B of
a multi-set X .

• Computation: FMax reconstructs X from [X]B, com-
putes y = fMax(X).

• Output: FMax sends [y]Bb to Sb for b ∈ {0, 1}.
Also, we define another ideal functionality FBitMax

works almost the same as FMax, differently it inputs an
additional index i ∈ [n] and outputs [yi]

B
b instead of [y]Bb

to Sb for b ∈ {0, 1}.
Theorem 1. There is a PPT algorithm simulator Simb

that realizes ideal functionality FSetup, which inputs only
(1κ, (n,G1, · · · ,Gn)) and outputs (K∗

b , Q
∗
b), such that

the output is computationally indistinguishable with the
real offline execution in section 3.3.

Proof. From the security analysis of the I-DPF construc-
tion in [3] we know that there is a PPT algorithm simulator
that outputs string K∗

b that are computationally indistin-
guishable with the real world output Kb. Also, Qb is
perfectly indistinguishable with Q∗

b when the simulator
Simb chooses Q∗

b ←$Gn.

Theorem 2. In the (FSetup,FNZ)-hybrid model, there is
a PPT simulator Simb that ∀X ∈ Zm

2n and function
fBitMax(X, i) : {0, 1}n×m → {0, 1}, Sb realizes ideal
functionality FBitMax, such that its output is computation-
ally indistinguishable with the real execution of protocol
ΠBitMax.

Proof. We construct a simulator Simb, which inputs yi =
fBitMax(X, i) and outputs the view for the server Sb where
b ∈ {0, 1}:

• Sb uniformly generates δ∗i ←$ {0, 1}, which is per-
fectly indistinguishable with Sb’s view δi in line 13
of Fig. 4.

https://eprint.iacr.org/2023/1684

• As for all j ∈ [m], i ∈ [n] that, Sb uniformly select
αj ←$ {0, 1}n, qi←$ {0, 1}, it holds that they are
identical to that in the real execution of protocol
ΠMax.

For all other secret share within the real protocol exe-
cution, Sb generates random group elements which are
perfectly indistinguishable to what in the real protocol
execution.

Definition 1. (Security) There is a PPT simulator
Simb such that ∀X ∈ Zm

2n and function fMax(X) :
{0, 1}n×m → {0, 1}n, Sb realizes the ideal functionality
FMax, such that its behavior is computationally indistin-
guishable from a real world execution of protocol ΠMax

in the presence of a semi-honest adversary A.

Theorem 3. In the (FSetup,FBitMax)-hybrid model, pro-
tocol ΠMax securely realize the functionality FMax.

Proof. We construct a simulator Simb that accepts
((K∗

b , Q
∗
b), {σ∗

i }i∈[n]) as input, where (K∗
b , Q

∗
b) is derived

from the simulation output of FSetup and {σ∗
i }i∈[n] is from

the simulation output of FBitMax. To accurately simulate
the view transcript of the server Serverb controlled by the
adversary A, we focus on the following two key points
that are sufficient for simulating the real-world execution
of ΠMax:

• Simb randomly select tj ←$ {0, 1}n simulating Sb’s
view in line 6 of Fig. 4 for all j ∈ [m]. As for all
j ∈ [m] that αj is uniformly randomly selected in
ΠMax, it holds that the view of A in our simulation
is identical to that in the real execution of protocol
ΠMax;

• Simb passes σ∗
i to A simulating Sb’s view in line 13

of Fig. 4.

By the composability of secure protocols, it is suffi-
cient to show that our protocol ΠMax is secure against a
Honest-but-Curious adversary A.

B. Full construction of ΠBatchKre

In Protocol 3, we present the full construction of
ΠBatchKre that securely computes the ith batch of the KRE
of X . Here, the servers start by computing the ordered
vector [v⃗′]A using the conversion matrix [M]A and the
initial vector [v⃗]A. Subsequently, ∀t ∈ [τ], the secret
sharing [v∗t]

A is computed as
∑t

ℓ=1[v
′
ℓ]
A, a FLessEqualThan

comparison is executed on each [v⃗∗t]
A producing a com-

parison result [ct]A. Denote v⃗∗ as {v∗1 , · · · , v∗τ} and c⃗ as
{c1, · · · , cτ}. Since the elements in v⃗∗ are monotonically
increasing, the vector c⃗ initially contains zeros. Starting
from a specific index in c⃗ , all subsequent elements will
have a value of one. Let ξ be the index of the first
nonzero element in c⃗. This marks target batch containing
the corresponding prefix of the kth ranked element of set
X . To identify ξ the following conditional equation is
utilized for each t in [τ]:{

[bt]
A ← [ct]

A if t = 1,

[bt]
A ← [ct]

A · (1− [ct−1]
A) if t > 1.

FUNCTIONALITY FConvMatrix(q):
Input: A binary string q of length ω.
Output: A τ × τ matrix M .

1: Set M as an τ × τ matrix initiated as all zeros.
2: Q ← {q1q2 · · · qω, · · · , (1− q1)(1− q2) · · · (1− qω)}
3: for i = 1 to τ do
4: η ← FBDC(τ − i, ω)
5: for j = 1 to τ do
6: ξ ← FBDC(τ − j, ω)
7: s← {0}ω
8: for k = 1 to ω do
9: if ηk = 1 then

10: sk ← ξk
11: else
12: sk ← ¬ξk
13: end if
14: end for
15: M [i][j]← Qτ−FBC(s)

16: end for
17: end for
18: Outputs M .

Figure 6: Conversion matrix generation.

Notice that only bξ will be one and all other bt values
for t ̸= ξ will be zero. This enables us to compute the
masked bits of the target batch δ accordingly with

[δi]
B ← [δi]

B ⊕ (si ∧ FA2B([bt]
A)), for i ∈ [ω].

And this also enables us to update k with

[k]A ← [b1]
A · [k]A +

τ∑
t=2

[bt]
A · ([k]A − [v∗t−1]

A).

C. Further supported functionality

Here we show that our proposed secure computation
framework 4 and its variant 5 are not limited to perform
only maximum or k-th ranked element over a set X . They
also support other functionalities, including computing the
minimum of X , verifying whether a given Boolean secret-
shared value [a]B is equal to the maximum of a set [X]B,
or computing one common number of X .

C.1. Computing the Minimum

With a few modifications on protocol 1 we can also
compute the minimum of X . For this to work, in pro-
tocol 1, we perform a zero check instead of a non-zero
check and adjust the computation of [w]A. Concerning
the latter, there are two instances where we prepare [w]A.
First, during initialization when i = 1, we compute
[w]A = m · [b0]A. Second, for i ∈ (1, n), we use following
computations instead:

[w0]
A ← [v0]

A · [b1]A,
[w1]

A ← [v1]
A · [b1]A.

These adjustments ensure the extraction of the ith bit
of the minimum value of X , as we outline below.

Protocol 3 The batch-wise k-th ranked element protocol

Functionality: (δ, ∗)← ΠBatchKre(i, [v⃗]
A, [M]A, [q]B, [k]A, ∗)

Input: A vector v⃗ of length τ , a binary string q of length ω and
[k]A.

Output: A binary string σ of length ω, and an updated [k]A if
i < d.

1: [v⃗′]A ← [v⃗]A × [M]A

▷ Compute ordered prefix query results.
2: for t = 1 to τ do
3: [v∗t]

A ←
∑t

ℓ=1[v
′
ℓ]

A

4: [ct]
A ← FLessEqualThan([k]

A, [v∗t]
A)

▷ Compute ordered comparison bits.
5: end for
6: [σ]B ← [q]B

7: for t = 1 to τ do
8: s← FBDC(τ − t, ω)
9: if t = 1 then

10: [bt]
A ← [ct]

A

11: else
12: [bt]

A ← [ct]
A · (1− [ct−1]

A)
13: end if
14: for i = 1 to ω do
15: [σi]

B ← [σi]
B ⊕ (si ∧ FA2B([bt]

A))
▷ Extract target batch.

16: end for
17: end for
18: σ ← Freveal([σ]

B)
19: if i < d then
20: [k]A ← [b1]

A · [k]A +
∑τ

t=2[bt]
A · ([k]A − [v∗t−1]

A)
▷ Update [k]A for use in the next iteration.

21: Outputs (σ, [k]A).
22: else
23: Outputs σ.
24: end if

• If qi = 1, We get [w]A = [v]A · [qi]A = [v]A. Upon
invoking FZeroCheck([µ]

A − [w]A), we perform a zero
check on [µ]A − [v]A. If this check passes, it implies
that all strings in X start with the prefix p∥1.

• Otherwise, We have [w]A = [v]A · [qi]A = [0]A. When
invoking FZeroCheck([µ]

A − [w]A), the zero check is
performed on [µ]A. If this check passes, it means that
all remaining candidates for the minimum start with
the prefix p∥1.

In both cases, if the corresponding zero check passes,
we can be certain that the ith bit of the minimum is 1;
otherwise, it is 0.

C.2. Detailed construction of ΠMaxVry

To verify whether a Boolean secret-shared value [a]B

is equal to the maximum of a set [X]B, a straightforward
method might involve using protocol 1 to first calculate the
maximum [c]B and then check for equality between [c]B

and [a]B. Yet, this direct approach leads to communication
rounds proportional to the input size n. Is it possible to
check for the maximum value with fewer communication
rounds?

Interestingly using I-DPF and the primitive CondEval,
we constructed a protocol ΠMaxVry, which verifies the
maximum value within a mere three rounds of communi-
cation. Protocol ΠMaxVry inputs [X]B and [a]B, and outputs
[c]B, which indicates if a is the maximal value in X . The
protocol achieves this by computing [c]B = [c0]

B ∧ [c1]
B,

where c0 checks the existence of a in X , and c1 deter-
mines whether any element greater than a is present in
X .

In the following we present protocol ΠMaxVry that
perform this maximum verification in just three com-
munication rounds. The protocol inputs [X]B and [a]B,
and outputs [c]B, where c indicates if a is the maximum
element in X . In essence, we compute [c]B = [c0]

B∧ [c1]B
where c0 confirms the existence of the value a in X , and
c1 indicates if there is greater value than a exists in X .

Protocol 4 The Maximum verification protocol

Functionality: [y]B ← ΠMaxVry([X]B,K, [a]B)
Input: For each b ∈ {0, 1}, Sb inputs Kb in the offline phase;

[a]B where a ∈ Z2n and [xj]
B
b (j ∈ [m]) in the online phase.

Output: A Boolean Secret Sharing [c]B where

c =

{
1 If a = FMax(X),

0 Otherwise.

1: for j = 1 to m do
2: for b = 0 to 1 do
3: st0j,b ← kj,b
4: end for
5: tj ← Freveal([a⊕ xj ⊕ αj]

B)
6: end for
7: [w]A ← FShare(0)
8: [β]A ← FShare(0)
9: for i = 1 to n do

10: [ai]
A ← FB2A([ai]

B)
11: for j = 1 to m do
12: for b = 0 to 1 do
13: (sti,0j,b, [β

j
i,0]

A
b)← IDPF.EvalNext(b, sti−1,0

j,b , pp, tji)

14: vji ← 1⊕ ¬tji
15: (sti,1j,b, [β

j
i,1]

A
b)← IDPF.EvalNext(b, sti−1,0

j,b , pp, vji)

16: end for
17: end for
18: [µi]

A ←
∑m

j=1[β
j
i,1]

A

19: end for
20: [β]A ←

∑m
j=1[β

j
n,0]

A

21: [c0]
B ← FNZ([β]

A)
22: [w]A ←

∑n
i=1

(
(1− [ai]

A) · [µi]
A
)

23: [c]B ← CondEval
(
[c0]

B,∧, f=0([w]A)
)

24: Outputs [c]B.

In our approach, most steps can be executed locally,
except for the following operations in protocol 4:

i. In line 10, servers run FB2A on each bit of [a]B and
obtain [ai]

A, which are used later for calculating [w]A.
ii. In lines 21 and 22, where servers compute [c0]

B and
[w]A.

iii. In line 23, where servers perform CondEval.
While this protocol incurs a computational overhead

of 2nm, which is 0.5nm more compared to what in
protocol 1, it compensates with the advantage of constant
communication rounds. This makes it a suitable trade-off
for applications with small to medium-sized client inputs.
For larger datasets, a careful evaluation of the trade-offs
is necessary to choose the most efficient protocol for the
task at hand.

To extend this protocol for verifying a minimum value,
a single modification is needed: in line 17 of protocol 4,
the calculation for [w]A should be adjusted to:

[w]A ← [w]A + [ai]
A · [µi]

A

This change ensures that c1 will indicate no existing
integer in X that is smaller than a, effectively accomplish-
ing the task of minimum verification.

C.3. Computing the common number

As for the protocol design of the computation of the
common number of X , where target string is computed
bit-wisely (e.g., from MSB to LSB), specifically, the ith
target bit is identified by comparing PrefixCount(p∥1) and
PrefixCount(p∥0), where p denotes the determined target
prefix.

	Introduction
	Related work

	Preliminary
	Secure Two-party Computation over Additive Secret Sharing
	Incremental Distributed Point Function
	Conditional Evaluation

	High-level Overview
	Overview of our Idea
	Comparison to Private Heavy Hitters
	Our Computation Framework

	Bit-wise Constructions
	Realizing _BitMax
	Rounds Optimization on Protocol 1

	BitMax to BitKre
	Realizing _BitKre

	Batch-wise Variants
	Realizing _BatchKre

	Experimental Evaluation
	Evaluation for F_MAX
	Evaluation for F_KRE

	Conclusion
	References
	 A: Security Analysis
	Security of _Max

	 B: Full construction of _BatchKre
	 C: Further supported functionality
	Computing the Minimum
	Detailed construction of _MaxVry
	Computing the common number

