
R3PO: Reach-Restricted Reactive Program Obfuscation and its

Application to MA-ABE

Kaartik Bhushan1, Sai Lakshmi Bhavana Obbattu2, Manoj Prabhakaran1, and Rajeev Raghunath1

1 IIT Bombay, Mumbai, India
{kbhushan,mp,mrrajeev}@cse.iitb.ac.in

2 IIT (BHU) Varanasi, India
oslbhavana@gmail.com

Abstract. In recent breakthrough results, novel use of garbled circuits yielded constructions for several
primitives like Identity-Based Encryption (IBE) and 2-round secure multi-party computation, based on
standard assumptions in public-key cryptography. While the techniques in these di�erent results have
many common elements, these works did not o�er a modular abstraction that could be used across
them.
Our main contribution is to introduce a novel notion of obfuscation, called Reach-Restricted Reactive-
Program Obfuscation (R3PO) that captures the essence of these constructions, and exposes additional
capabilities. We provide a powerful composition theorem whose proof fully encapsulates the use of
garbled circuits in these works.
As an illustration of the potential of R3PO, and as an important contribution of independent interest,
we present a variant of Multi-Authority Attribute-Based Encryption (MA-ABE) that can be based on
(single-authority) CP-ABE in a blackbox manner, using only standard cryptographic assumptions (e.g.,
DDH). This is in stark contrast to the existing constructions for MA-ABE, which rely on the random
oracle model and/or support only limited policy classes.

1 Introduction

Consider the following approach to Identity-Based Encryption (IBE):

� The master key pair is a veri�cation/signing key pair for a signature scheme.

� The decryption key for an identity is simply a signature on the identity.

� The ciphertext is an obfuscation of the following program: it checks if its input is a valid signature on a
target identity, and if so, it outputs the message.

With the right notion of obfuscation, as we shall see, this construction indeed translates to a secure IBE
scheme! Further, such an obfuscation can be instantiated using standard cryptographic assumptions like
DDH, based on the tools in [21, 22].

The motivation of this work comes from the breakthrough results of [7, 18, 22, 30]. These results were
surprising not only because of the end results, but also because the central tools involved � garbled circuits,
oblivious transfer, smooth projective hash functions, etc. � were all well known for a long time. The power
behind these results lay in a machinery that carefully meshed these tools together.

However, this line of works has lacked reusable high-level abstractions, even as the low-level techniques
were clearly similar across multiple works. Even the few abstractions of this machinery that appeared subse-
quently, e.g., in the form of hash-garbling [25], were not comprehensive enough to capture the multifarious
applications of the machinery itself.

The main contribution of this work is to develop a versatile abstraction of the common machinery under-
lying the above works, and take it beyond the current set of applications. Our abstraction involves a strong
form of obfuscation, which can be realized for programs that are appropriately sampled. The obfuscation
formulation gives an intuitive description of potential solutions, and facilitates realizing it via a novel compo-
sition theorem. This not only aids in understanding the current constructions better, but also shows the way
to new applications. As an illustration, and as an important contribution of independent interest, we present

a variant of Multi-Authority Attribute-Based Encryption (MA-ABE) that can be based on (single-authority)
ABE in a blackbox manner, using only standard cryptographic assumptions (e.g., DDH) in addition. This
is in stark contrast to the constructions available for the original formulation of MA-ABE, which rely on
speci�c assumptions, are for special restricted policy classes and/or are in the random oracle model [17, 19,
44, 50].

1.1 Our Contributions

Our contributions are in two parts � (1) developing a powerful new framework to capture several important
results from the recent literature, and (2) using it to construct a multi-authority version of ABE.

The R3PO framework. Our primary contribution is to develop the notion of Reach-Restricted Reactive
Program Obfuscation (R3PO) that modularly encapsulates and extends the powerful techniques behind the
surprising results of [7, 18, 22, 26, 30]. Our de�nition of R3PO allows an intuitive description of prior
constructions like IBE [22] (with an easy extension to Identity-Based Functional Encryption [60]), 2-Round
MPC [7, 30], and RBE [26], all of them using obfuscation of natural reactive programs.

Our applications are instantiated as follows.

� We present a library of useful R3PO schemes. The library includes obfuscations for non-reactive programs
that check a commitment opening, verify a signature, and verify the (partial) opening of a hashed value.

� We present a composition theorem that can be used to obtain an R3PO scheme for a reactive program
from R3PO schemes for smaller (non-reactive) programs (like those in the library above) into which it
decomposes.

� For each of the applications we consider (as well as some of the programs in the library), we de�ne
an appropriate reactive program, construct an R3PO for it and use it to complete our construction. The
requisite R3PO maybe directly available from the library, or is constructed using the composition theorem.

The grabled circuit technique is entirely encapsulated within the proof of the composition theorem above.
This is in contrast with prior work that used these techniques, where the proof would use a sequence of
indistinguishability arguments interleaving garbled circuit simulation with other arguments speci�c to the
construction. Indeed, one of the main technical challenges we overcome is to allow disentangling the garbled
circuits from the other cryptographic elements, in these security proofs, using a strong simulation based
de�nition of R3PO and our novel notion of decomposition.

Private Multi-Authority ABE Another important contribution of this work is a new version of Multi-
Authority Attribute-Based Encryption (called Private Multi-Authority ABE or p-MA-ABE), and a construc-
tion for it, conceived in terms of an R3PO.

The motivation for p-MA-ABE stems from the natural use-case for MA-ABE (or even ABE) where
a user has privacy requirements against an attribute authority (e.g., they may want to obtain attributes
corresponding to a city and a state that they consider their primary home, but without revealing the name
of those locations to the authority). Correspondingly, the authority would be willing to issue attributes that
satisfy a (possibly private) attribute-granting policy (e.g., issue the attributes for any one state and any one
city within that state). The privacy requirement is that the authority (or authorities) shall not learn anything
about the attributes of a user, and the user shall not learn anything about the attribute-granting policy,
beyond whether the policy is met by the attribute set.

Now, a non-private MA-ABE (or ABE) scheme can be easily converted into a private version, via secure
2-party computation of a function to which the user's input is their attribute request, and the authority's
input is its master secret key and its attribute-granting policy. Since such a 2PC protocol can be implemented
in two rounds (e.g., a simple protocol based on Yao's Garbled Circuit works, as we consider the authorities
to be honest-but-curious), this only requires the user to send a single message to the server � which we call
an attribute request � before the server responds.

p-MA-ABE captures this trade-o�: allow the user to initiate the contact with the authority,3 and in
return obtain a strong privacy guarantee. Though the above transformation shows that standard MA-ABE

3 We remark that in a practical situation, this extra round comes at virtually no cost, since anyway a user would
�rst need to establish a secure channel and authenticate itself with the authority before receiving its credentials.

2

can be easily turned into p-MA-ABE, the former is known to be realizable only for very limited functions
and in the random oracle model. In contrast, our results show that p-MA-ABE is as widely realizable as
ABE itself!

We give a construction for p-MA-ABE from any (single-authority, ciphertext-policy) ABE scheme in a
blackbox manner, using R3PO for (non-reactive) programs for signature checking and commitment opening,
that is provably secure in the standard model. The scheme supports general access policies as supported by
the underlying ABE scheme, and is policy-hiding if the ABE is policy-hiding.

1.2 Related Work

We mention a few related works below, and discuss how R3PO relate to other notions in Section 2.7.

Obfuscation. A large variety of notions of obfuscation have been studied in the literature leading to several
important breakthroughs along the way (e.g., [3, 5, 6, 8, 24, 34, 38, 39, 40, 45, 55, 57]). Like R3PO, many of
these require security only when the program being obfuscated is generated appropriately [5, 8, 36, 57].

Composition. Composition has been considered in the context of cryptographic protocols, leading up
to UC security and its variants [4, 13, 14, 15, 20, 23, 35, 49, 53, 58], as well as alternate approaches like
Constructive Cryptography [48]. Composition for obfuscation has received far less attention, although it was
explicitly considered in an early work [47].

Garbled Circuits. Garbled ciruits were conceived by Yao [59]. The techniques of chaining multiple garbled
circuits appeared in garbled RAM schemes [27, 28, 31, 46], and later several results like Laconic OT [18],
IBE from DDH [21, 22], 2-round MPC [7, 30], and several extensions of these works have all relied on these
techniques.

Multi-Authority Attribute Based Encryption (MA-ABE) The notion of Ciphertext Policy-Attribute
Based Encryption (CP-ABE) was introduced in [54] and formally de�ned in [33]. There is a rich sequence
of works realizing ABE, based on lattice based (LWE) [11, 32] and pairing based assumptions [33, 37, 43].
But for MA-ABE, �rst proposed in [17], realizations so far have been limited. In the standard GID model,
[44] formalized the notion of decentralized MA-ABE (where in, no trusted setup algorithm other than a
common reference string is allowed), and gave a scheme for it under appropriate bilinear maps assumptions
in the random oracle model (supporting general policy structures). A sequence of works culminated in [19],
where they gave a scheme under the Learning With Errors (LWE) assumption in the random oracle model
for policies corresponding to DNF formulae. Concurrently, [50] modi�ed the de�nition to consider sender
security (policy hiding) as well as receiver security (attribute hiding), and gave a construction for it under
the k-linear assumption in the random oracle model for a special subset of policies. More recently, [56] gave
a (current state-of-the-art) construction for MA-ABE in the plain model for subset policies (including DNF
formulae) from the new evasive LWE assumption. Their construction however requires a global setup.

[42] proposed a variant of MA-ABE called the OT model. It is a relaxed model where there is no global
identity �xed for the users. However, as pointed out in [19], this allows multiple users to pool their attributes,
defeating one of the main goals of ABE. Our model has a global identity that an authority would incorporate
into the key issued for a party, and as captured in the security de�nition, the user can combine only attributes
that are issued for the same global id. Another drawback of [42] was that it used a global setup; we do not.
Our setup is local to each authority (as in the global id model). Our model much more closely resembles the
standard global id model, but with an additional key request step in the syntax. On the other hand, our
results are much stronger than those available in the standard model (which are in the random oracle model
and/or for limited function classes). We also o�er further �exibility by not requiring each attribute to be
attached to a unique authority.

We also note that MA-ABE can be modeled as an appropriate functionality in the framework of public-
key Multi-Party Functional Encryption (MPFE) [1]. Their work gives a construction for public-key MPFE
for general functionalities. However, this does not yield the result in our work due to the following limitations.
Their construction uses an interactive setup, forcing the authorities to be aware of and interact with each
other, while we require the MA-ABE authorities to only use �local� setup. Further, their construction is based
on Multi-Input Functional Encryption for general functionalities (which is a strong assumption that implies
iO). In contrast, we rely only on ABE and standard assumptions. Indeed, the main motivation behind R3PO

3

and the entire line of work leading to it, is to be able to base various cryptographic schemes on simpler
assumptions, and to avoid the need for assumptions like iO.

2 Technical Overview

2.1 Motivating Examples

We start with a few motivating constructions, along the lines of the IBE construction mentioned at the
beginning of this paper, which we seek to base on our new notion of obfuscation. In the general case, we
would be obfuscating a reactive program (or more speci�cally, a Moore machine), which at each step, accepts
an input, updates its state, and produces an output based on the new state.

Identity-Based Functional Encryption. IBFE is an extension of IBE where each identity id is associated
with a unique function fid (not known to the encryptor), so that when an encryption of a messagem addressed
to id is decrypted using the key for fid, one receives fid(m). An IBFE scheme can be obtained by simply
modifying the IBE scheme above so that the obfuscated program takes a signature on (id, f) (where id is
already �xed in the program, but f is not), and transitions to a state encoding f , where it outputs f(m).

IBFE has been explored in a prior work [60], but their de�nition is incomparable to our notion above.
On the one hand, their de�nition does not allow the adversary to obtain any function keys � under any IDs
� for a function f such that f(m0) and f(m1) are not equal; on the other hand, it is not made very clear
if the adversary is restricted to obtaining a single function key for the challenge id, as is the case in our
de�nition. Finally, they o�er a construction for the primitive only for a very restricted class of functions,
while our construction supports general functionalities.

2-Round MPC. Following the constructions in [7, 30], an underlying (multi-round) MPC protocol can
be reinterpreted as evaluating a blinded circuit, in which each boolean gate is owned by a party, and the
protocol amounts to evaluating the wires of this circuit publicly. The wire values are public, but each gate
is private to its owner.

The 2-round MPC constructed from the blinded circuit is as follows. In the �rst round, each party
broadcasts a commitment to the 4 bits (separately) of the truth table of each of its gates. In the second
round, each party broadcasts the obfuscation of the following reactive program:

� The program maintains a public state consisting of all the wire values of the circuit, evaluated thus
far.

� If the next gate is owned by another party, the program accepts as input the output wire value of the
gate, along with an opening of the corresponding commitment in the gate. If the opening veri�es, it updates
its state to correspond to having evaluated this wire. It produces no output for this transition.

� If the next gate is owned by this party, then it takes no input, transitions to a state that includes the
output wire value of this gate, and outputs the opening of the corresponding commitment.

Finally, given these obfuscated reactive programs, the parties evaluate the blinded circuit gate by gate,
at each step �rst running the program from the owner of the gate, and then feeding its inputs to all the
other programs.

Laconic OT. This is a version of OT in which the receiver has a vector D of choice-bits, which it commits
to by sending a short string y to the sender. Later, on input (i, x0, x1), the sender should send a string to
the receiver from which the latter should learn only xDi

.

We consider the following implementation of Laconic OT: Using a hash that supports �selective opening�
of a bit in the hashed string, with a collision resistance guarantee that prevents opening any bit in two
di�erent ways, the receiver hashes D to obtain y. On input (i, x0, x1), the sender obfuscates the following
(small) program and sends it over to the receiver: The program accepts as input an opening of y at position
i to a bit b, and if the opening is valid, then it outputs xb.

Each of the above simplistic constructions relied on an intuitive notion of �obfuscation.� In the sequel, we
develop a formal notion of obfuscation which will let us make the above descriptions precise, while retaining
their simplicity. Importantly, our new obfuscation notion is indeed realizable in all the above cases, using
the same standard cryptographic assumptions as in the prior works which introduced these constructions.

4

2.2 De�ning R3PO

At a high-level, we consider obfuscation of reactive programs. A reactive program (a �nite-state machine,
or more precisely, a Moore machine) takes inputs over multiple rounds, updating its state and producing
an output based on the state at each round. It is speci�ed by a start state, a transition function π and a
message function µ, so that, on reaching a state σ, the program outputs µ(σ).

Before discussing the de�nitions, it will be useful to have a couple of running examples in mind. In these
examples, µ is arbitrary (and secret), and a public π is as speci�ed below.

� Commitment. πc incorporates a commitment string c. On input d at the start state, if d decommits
c to m, then πc transitions to a state σm encoding m.

� Signature. A signature veri�cation key vk is encoded in the start state σvk of π (denoted as π[σvk]),
from where, given a valid signature on a message m as input, it transitions to a state σm encoding m.

These are both instances of �one-step programs� which have transitions only out of the start state. (We
shall later explain the slightly di�erent choices for how the values c and vk are incorporated into π in the
two cases.) In these examples, π is not hidden, and the goal of obfuscating such a program would be to hide
µ. More generally, π and µ can both have secrets in them (when de�ning reactive programs formally, we will
denote them as π(α) and µ(β), where α and β are the secrets).

Reach Extraction and Simulation. Our simulation-based notion of obfuscation requires that a �reach-
extractor� should exist for the program being obfuscated. A reach extractor would predict all the states of a
reactive program that are reachable using inputs that can be e�ciently computed by any adversary. Then,
the obfuscation of the program should be simulated using only the outputs produced by the program at
those states. We elaborate on reach-extaction and the rest of the simulation below.

Reach Extractability.Which states in a program π are e�ciently reachable is a consequence of the process that
generates the program (analogous to how an �evasive program� being evasive is a consequence of sampling
it from a distribution). This process involves a generator G and an adversary Q. A reach extractor for an
adversary Q is a program that passively (possibly in a non-blackbox manner) observes Q as it interacts with
G, and then predicts (a superset of) the set of states that the adversary will be able to reach in the program
output by G. This prediction is made explicitly in the form of inputs to a (possibly di�erent) reactive program
Π that will reach all the states reachable by the adversary, and perhaps more. Here we allow the extractor to
specify Π, which belongs to a transition function family P̊ that may be di�erent from the transition program
family P that is obfuscated. We refer to this as the �reach bounding� guarantee of the reach extractor.

We illustrate a reach extractor for the two running examples.

� Commitment: G accepts a commitment string c from Q, and then outputs πc. A reach extractor can
extract a value m from the commitment, either when Q is semi-honest, or when a setup is used that the
extractor can control. Now, m is not a decommitment as expected by πc. Instead, we allow the extractor to
specify a di�erent program Πm which accepts m itself as the input and transitions to σm.

This extractor is reach bounding, because, due to the binding property of the commitment scheme, the only
state Q could reach in πc is also σm.

� Signature: In this case, G internally samples a pair (sk, vk) of signing and veri�cation keys. It sends vk
to Q, and further may answer signature requests by Q. An extractor can collect all the signatures Q receives
from G and output them as a reach-bounding set of inputs for Π = π[σvk]. Note that here the program family
to be used by the extractor P̊ is the same as the one being obfuscated P (and it has only one program in
it but with various start states). The reach bounding property follows from unforgeability of the signature
scheme.

Simulation. An obfuscator for a generator R3PO security de�nition requires that a 2-stage simulation exists
for any adversary Q, as follows:

� Stage 1: After Q �nishes interacting with G, a reach extractor observing Q speci�es a set of reachable
states (in the form of a program Π and inputs to it).

� Stage 2: Given the output of the original message function µ on those states, a simulated obfuscation
is produced. This should be indistinguishable from the obfuscation of the reactive program produced by G,
even given auxiliary information output by both G and Q.

5

Note that this is a stronger notion of simulation than even VBB obfuscation, which only requires the
simulation of one predicate at a time, rather than a simulation of the entire obfuscated program. Indeed,
requiring such a simulator would typically entail that the program is learnable and hence trivial to obfuscate.
What keeps our de�nition from becoming trivial is the fact that the extracted inputs are a function of the
program generation process, and are not available to the obfuscator.

Reach Restriction. The �nal component in our de�nition of R3PO is in the form of an additional
requirement on the reach extractor in Stage 1 above. This requirement stems from the �one-time� nature
of Yao's Garbled Circuits, a key ingredient in the constructions that we wish to capture. Intuitively, these
constructions require that an adversary can evaluate any garbled circuit on only one set of inputs. We
incoporate a corresponding reach restriction requirement into our de�nition of reach extractability of a
reactive program (De�nition 15), which leads to the name reach-restricted reactive programs (R3P).4

To de�ne reach restriction, we require the state space of the reactive programs to be a priori partitioned
into a polynomial number of parts, Σ = Σ1 ∪ · · · ∪ ΣN . Then, informally, the reach restriction property of
a reactive program is that no e�cient adversary would be able to �nd inputs that take π to two di�erent
states that belong to the same part. Formally, the reach restriction property is imposed on the reachable
states produced by the reach-extractor.

We return to our running examples.
� Commitment: We let Σ1 consist only of the start state and Σ2 consist of all states of the form σm.

Since the extractor outputs only one message m, the reach restriction property already holds.
� Signature: We let Σ1 consist of all the potential start states σvk and Σ2 consist of all states of the

form σm (the two kind of states are encoded so that Σ1 ∩ Σ2 = ∅). To be reach restricting, we will require
that the generator G gives out at most one signature. Further, we would want to enforce that breaking reach
restriction in Π must correspond to forging signatures with respect to the key sampled by G. This is enforced
by keeping vk in the start state of π[vk] (rather than in the transition function itself), which in turn forces
Π to use the same start state and hence the same veri�cation key.

2.3 R3PO Composition Theorem

As noted earlier, a major motivation of this work is to encapsulate a range of powerful techniques using
garbled circuits in a reusable form. This result takes the form of a composition theorem, which allows
obfuscating a reactive program via an obfuscation of its various components.

The high-level idea is to view a reactive program π ∈ P, over a state space Σ = Σ1 ∪ · · · ∪ ΣN as
consisting of separate programs π̂1, . . . , π̂N , such that π̂i is identical to π on states σ ∈ Σi, and in other
states it ignores all inputs (i.e., remains at the same state). Let Pi denote the class of such programs π̂i.
W.l.o.g. (due to reach-restriction), we require π to not have any transitions between states in the same part,
and hence each π̂i is a �one-step� (or non-reactive) program that halts after its �rst transition out of the
start state. However, attempting to formalize this leads to a couple of conundrums.
Conundrum 1: Dynamically Determined Programs. As a naïve starting point, one could try building an ob-
fuscator for P from obfuscators for Pi. However, this runs into an immediate problem: When executing a
program in P, the state reached in Σi is dynamically determined by the inputs used, whereas when obfus-
cating a program in Pi, its start state needs to be �xed. The resolution of this conundrum, which goes back
to [18, 21, 22, 27, 28, 31, 46], is to provide a garbled circuit that can dynamically compute the obfuscation
of π̂i[σi] with the correct start state σi; the input to this garbled circuit would be the labels encoding σi,
which in turn would be released by the obfuscation of a previous program πj [σj] on an input x such that
πj(σj , x) = σi.

However, the price we pay for using garbled circuits is that only one set of labels can be made available
to the adversary for each garbled circuit, in turn resulting in the reach-restriction requirement.
Conundrum 2: Intertwined Generators. Recall that to formalize reach restriction, our de�nition needed to
take into account the generators. Now, when we try to map the di�erent parts of a single reactive program
as being generated by multiple generators, the generators can become deeply intertwined, sharing secret keys

4 Formally, we do not de�ne R3P, but only an R3P Generator, as a program generator (De�nition 14) that has a
reach extractor.

6

and state variables. Further, the program generated by one generator needs to have a start state that is
determined by the outputs produced by programs in other parts. So it may not always be possible to view
a (reach-restricted) reactive program produced by a generator as the composition of single-step reactive
programs produced by separate generators.

The resolution to this conundrum is to require some additional relation between the generator for the
reactive program and the generators for the one-step programs. This leads us to the notion of decomposition.

Decomposition. Unlike in the case of MPC protocols, wherein the subprotocols are explicitly executed
by a composite protocols, a reactive program generator need not have �sub-generators� running within it.
Indeed, this presents a challenge to composition that is fundamentally di�erent from composition in MPC.

Our novel solution is to de�ne decomposition in terms of a bisimulation requirement. Roughly, for G to
decompose into a smaller generator H (and additional computation), we require that G can be viewed as H
via a simulator, and vice versa. More precisely, we require that there be two simulators J and Z such that
G
J

(denoting that J internally runs G as a black box) and
Z

H are indistinguishable from each other from

the point of view of any adversary Q (or more precisely, for
Q

W
, where the wrapper W is also part of the

simulation). This by itself can be trivially arranged by letting J = H and Z = G. We need to further capture
the requirement that the program π̂ produced by H corresponds to a single step in the program π produced
by G. More precisely, the state space of the generator H corresponds to a part Σi of the state space of G,
and we require that the start state of π̂ is the same as the only state in Σi that is reachable in π.

Now, by requiring this, we require J to know the reachable state in π produced by G. While this is
possible in some cases (e.g., when the reachable state is determined by a signed message sent by G), in
certain other cases it is not possible (e.g., when it is determined by a message hidden in a commitment). To
accommodate these di�erent situations, we allow J to obtain this information from the wrapper W , which is
in turn allowed to obtain this from a reach-extractor for G (or more precisely, from a �partial� reach extractor
which only extracts the reach within Σi).

Finally, for use in our composition theorem, we shall require a uniformly sampled message function to be
associated with the reactive program produced by J . (While the de�nition of decomposition allows arbitrary
message function class here, the composition theorem is for decomposition that uses a particular message
function class.)

We refer the reader to Section 5.1 for a more detailed discussion and a precise de�nition of decomposition.

Composition. Having de�ned decomposition, we turn to stating and proving the composition theorem.
Informally, it states that if a generator G decomposes into generators (H1, . . . ,HN) (for a partition of its
state space (Σ1, . . . , ΣN)), and if each Hi has an R3PO scheme Oi, then there is one for G as well. The
construction uses garbled circuits, following the outline at the beginning of this section. The �nal obfuscation
consists of one garbled circuit GCi for each part Σi, such that on reaching σ ∈ Σi, an evaluator would have
the labels that encode σ as input for GCi, and GCi would then output µ(σ) as well as an obfuscation
Oi(π̂i[σ], µ̂i) (using a hard-coded random tape). Feeding an input x to this obfuscated program will release
the labels for the state π̂i(σ, x) = π(σ, x).

To prove that this construction yields an R3PO for G, we use a sequence of hybrids that would replace one
garbled circuit at a time with a simulated one, which in turn outputs not the actual obfuscation Oi(π̂i[σ], µ̂i),
but a simulated one. At each step, we will be able to apply the decomposition guarantee (using an inductively

maintained partial reach extractor) to go from G to G
Ji

to
Zi

Hi
, wherein we use the R3PO guarantee to

replace the actual obfuscation used to simulate GCi with a simulated one (while also extending the partial

extractor); then we move back from
Zi

Hi
to G

Ji
and then G.

2.4 R3PO Library

We present R3PO schemes for a few basic program classes which can be combined together in a variety of
constructions.

7

� Commitment-Opening. This is similar to the running example presented above. In Appendix B.1, we
realize the R3PO for a couple of �avors of this (UC secure commitment, and �weakly secure� commitment
that is suitable for semi-honest committers), based on the standard assumption of 2-round OT.

� Signature-Checking. We provide an R3PO for signature-checking programs as in the running example.
To facilitate full security in applications like IBE and IBFE, we support puncturable signature schemes.5 We
instantiate a puncturable signature scheme and give an R3PO scheme for this program family assuming an
OTSE scheme in Appendix B.2.

� Hash-Opening. This is similar to the commitment opening reactive program, but with a compressing
hash instead of a binding commitment. The R3PO for this program class can be constructed from Laconic
OT [18]. Alternately, we can use our composition theorem to bootstrap from an R3PO for the same class
instantiated with a factor-2 compressing laconic OT (see Section 2.5 below).

� ϵ-Transition While specifying reactive programs using the above building blocks, often it is useful to
transition from state reached via one building block to a state that is suitable as the start state of another
building block. ϵ-transitions provide the essential syntactic sugar to enable this. R3PO for an ϵ-transition is
implemented using a garbled circuit.

2.5 Applications: The Di�erent Ways of Using R3PO

Our R3PO library and our composition theorem form a versatile toolkit for instantiating new and old
constructions. There are a few di�erent ways in which they can be put to use.

O�-the-Shelf Without Composition. In certain cases, the components in our library are already powerful
enough o�-the-shelf to yield a construction for a desired application. An illustrative example is that an R3PO
for (puncturable) signature-checking can be used to construct an IBFE scheme (and, as a special case, IBE),
as sketched in Section 2.1 and elaborated in Appendix D. The security proof is fairly direct, by using a
generator for the R3PO that models the security experiment of IBFE.

Using Composition. We illustrate a typical �work�ow� for using the R3PO composition theorem in a
higher-level application. We use the example of Laconic OT [18], which is one of the early constructions that
form the inspiration for this work. For the sake of readability we use slightly imprecise terminology.

� We start by identifying a reactive program family, such that an R3PO for it directly yields our applica-
tion.In the case of laconic OT, this reactive program traverses a pre-determined path along a Merkle tree,
with states holding the hash value at each node, and making a transition if the input �explains� the hash
at that node. The Merkle tree uses an underlying hash scheme which compresses by a factor of 2.

� We consider the one-step restrictions of this reactive program as another reactive program family, and
carry out the following two steps:

• We show that the original reactive programs can be decomposed into its one-step restrictions. This
involves matching the de�nition of decomposition with straightforward constructions.

• We give an R3PO scheme for these one-step restrictions. This can be directly based on the construction
in [18] for factor-2-compression laconic OT (not involving garbled circuit chaining).

� Then we simply invoke our composition theorem to obtain an R3PO for the original program family.

� We package the original reactive program as another one-step program, so that it can be included in our
R3PO library for various applications (see Appendix B.3). Laconic OT is a direct consequence of an R3PO
for this one-step program.

Another example of this work�ow is in the construction of the R3PO for signature-checking that was
mentioned above as part of our library (where the smaller non-reactive programs used correspond to one-time
signature checking).

5 In our constructions of IBE and IBFE, the ciphertext corresponds to an obfuscated program. For full security, the
adversary must be allowed to make key queries even after receiving the ciphertext. But, no interaction is allowed
between the program generator and the adversary after the program has been generated. Hence, we consider a
generator which gives out an appropriately punctured signing key before the interaction �nishes.

8

R3PO as a Component. In the above examples, once an R3PO is constructed, the �nal application is
fairly immediately realized. However, it is also possible to use R3PO as a component in a larger construction,
wherein the step from R3PO to the �nal security proof may be non-trivial. The proof may involve multiple
hybrids, with R3PO security used to replace a real obfuscation in one hybrid with the simulated obfuscation
in the next. One such example is the 2-round MPC protocol of [7, 30], which we rederive in Appendix E using
R3PO for commitment opening. In this construction, as sketched in Section 2.1, several programs obfuscated
using R3PO are involved. The security of R3PO can be used to move to an �ideal� execution of the MPC
protocol (or more precisely, build a simulator for the 2-round MPC using the simulators of R3PO and the
simulator for the underlying MPC protocol).

Our main application of p-MA-ABE (discussed below) also falls into this category, where the security of
the �nal construction depends on several components, one of which is an R3PO scheme. This construction
also illustrates the possibility of combining multiple library components (commitment-opening and signature-
checking) in the same reactive program.

2.6 Private Multi-Authority ABE

In this section, we give a brief overview of the new variant of MA-ABE that we introduce, called Private
Multi-Authority ABE (p-MA-ABE), and the main ideas behind our construction for it. Our construction
is intuitive in terms of an obfuscation of a reactive program, and can indeed be realized using R3PO. The
�exibility of the new framework allows a relatively easy construction, using existing ABE schemes, and with
a robust security de�nition.The full description can be found in Section 7.

De�ning p-MA-ABE: The setting of p-MA-ABE (as well as MA-ABE) involves a set of mutually dis-
trusting authorities (say A1, . . . , AN), a sender and a receiver. The algorithms in an p-MA-ABE scheme are
as follows:

� Setup: At the start of the execution, each authority Ai does a local (decentralized) setup to generate its
public and secret keys (mpki,mski) and shares the public key mpki with the other users in the system.

� Key-Request: a receiver can construct a set of key-requests req = (req1, . . . , reqN) for a global identi�er gid
and attribute set x̄ from the public keys. It can then submit a key-request query (of the form (gid, reqi))
to an authority Ai and get back a key-component skgid,reqi from Ai (req will hide x̄).

� Key-Gen: an authority Ai receives as input a key-request reqi for a global identi�er gid, and outputs a

key-component skgid,reqi that incorporates an attribute-granting policy Θgid
i (which, for simplicity, we do

not consider a secret).

� Encryption: a sender can encrypt a message m with a ciphertext policy ϕ, using the public keys of the
authorities to produce a ciphertext ctm,ϕ.

� Decryption: a receiver can decrypt a ciphertext ctm,ϕ using key components of the form (skgid,req1 , · · · ,
skgid,reqN) where all the requests reqi were generated using gid and x̄ such that Θgid

i (x̄) = 1 for all i, and
ϕ(x̄) = 1.

Compared to the original de�nition of MA-ABE, there are two main di�erences in p-MA-ABE: Firstly,
since the attributes are to be kept private even from the authorities, there is a key-request step, wherein the
user generates the key-request messages to all the authorities based on its desired set of attributes. Secondly,
we allow each authority to use an arbitrary attribute-granting policy, which depends on the entire attribute
vector.6

We de�ne security w.r.t. a corruption model where the adversary is allowed to maliciously corrupt the
receivers and semi-honestly corrupt any subset of authorities. If a receiver is honest, we require that the
key-request req reveals nothing about x̄ to the authorities, even if all of them collude. When the receiver
is corrupt, we guarantee that, for any choice of (ϕ,m0,m1), the adversary cannot distinguish between the

encryptions of m0 and m1 w.r.t. a policy ϕ, unless for a pair (gid, x̄) such that Θgid
i (x̄) = 1 for all honest

authorities Ai, ϕ(x̄) = 1 and the adversary sent a valid key request for (gid, x̄) (i.e., a request that can be

6 In particular, it captures the standard formulation of MA-ABE, where each authority Ai �owns� a set of attributes
and its key-issuing decision is based on the values of the attributes it owns.

9

produced by the Key-Request algorithm on those inputs) to at least one honest authority (and it could have
sent it to the others as well).

A p-MA-ABE Scheme: Our scheme is easily described in terms of obfuscating a reactive program. The
key-request reqi is a commitment to x̄ (using a common random string in the public-key of Ai). The key
issued by each authority is the obfuscation of a reactive program; the reactive programs by the di�erent
authorities �talk� to each other and con�rm that they all agree on granting the same attribute x̄ to gid, and
if so, issue standard CP-ABE keys for x̄. More precisely, the reactive program (π(α), µ(β)) works as follows
(with Ai's CP-ABE master secret-key constituting the secret β; α can be empty, or alternately, can be used

to store Θgid
i privately):

� at the start state accepts a decommitment for reqi and transitions to a state with x̄. There, if Θgid
i (x̄) = 1,

then it outputs a signature on (gid, x̄), using Ai's signature key.

� Then, it moves through N− 1 states accepting signatures on (gid, x̄) from all the other servers.

� On reaching the last of these states, it outputs a CP-ABE key for the attribute x̄, under a (standard)
CP-ABE scheme for which Ai is the authority.

If Θgid
i (x̄) = 1 for all i, then the receiver can obtain the CP-ABE keys for x̄ under all the authorities. Now,

to encrypt a message under a policy ϕ, one simply secret-shares m into N shares, and encrypts each share
under the CP-ABE public key of the corresponding authority.

Note that if even one (honest) authority's key component is missing, no honest authority's CP-ABE key
can be obtained. This is crucial because the CP-ABE keys do not involve gid and cannot prevent the use of
keys obtained using multiple gids.

Using the composition theorem, we show that there is an R3PO for a suitably de�ned generator that
models the p-MA-ABE security game. (As it turns out, we need to do this for two di�erent generators to
handle two di�erent hybrids; the �rst hybrid does not rely on the unforgeability of the signatures, and lets
the adversary specify all the signing keys. We show that the same obfuscator O is an R3PO scheme for both
the generators.)

2.7 Comparison of R3PO with Existing Primitives

It is instructive to compare R3PO with various existing primitives and techniques.

Hash Garbling. This abstraction from [25] gives a similar interface to R3PO for a speci�c class of program
generators, namely, �Hash Opening.� More precisely, hash garbling involves a hash-opening check as well
as a circuit evaluation, which corresponds to a reactive program that carries out a hash-opening transition
followed by an epsilon transition (that evaluates the circuit).

{Batch, Hash, Chameleon, OneTime Signature}-Encryption. These �avors of encryption that were
introduced in prior work [10, 21, 22] correspond to R3PO schemes for one-step programs that are included in
our library (Hash Opening and Signature Checking). While these original de�nitions di�er in their details,
R3PO provides a simulation-based de�nition that can be uniformly used in all their applications.

Witness Encryption over Commitments (cWE). cWE, recently de�ned in [12], is quite similar to
an R3PO for �Commitment Opening� followed by an epsilon transition. It was instantiated from Oblivious
Transfer (OT) and garbled circuits, just as the R3PO scheme obtained directly from our library and the
composition theorem is.

Garbled Circuit Chaining. The technique of garbled circuit chaining has appeared in a long line of
works [7, 22, 26, 30, 46]. We note that R3PO allows di�erent one-step programs (for example combining
commitment and signature in p-MA-ABE), while all prior works used garbled circuit chaining with links that
correspond to a single cryptographic element. Also, as already mentioned, the prior works do not separate
out the chaining from the cryptographic elements that are chained together.

Obfuscation notions. Our notion of R3PO is di�erent in many ways from the other notions of obfuscation.
Many notions of obfuscation are either unrealizable in general or inhabit �obfustopia,� requiring a combination
of relatively strong assumptions, and are not practical in terms of e�ciency [3, 5, 6, 8, 16, 38]. But there
are a few exceptions for specialized applications, like obfuscation of reencryption based on bilinear pairings

10

[36] or compute-and-compare obfuscation based on LWE [57]. R3PO could be considered to be in the latter
group, but with a much richer class of applications compared to the others.

The original notions of obfuscation require worst-case security, but there are several others, including
obfuscation of evasive circuit families [5], strong iO [8], reencryption obfuscation [36], compute-and-compare
obfuscation [57], etc. which require only distributional security, when the program being obfuscated is sampled
from distributions with particular properties. Again, R3PO falls into the latter class here, with the sampling
process being interactive.

2.8 Future Directions

As the R3PO framework has several new elements, in this work we have not ventured into many useful
extensions, nor attempted to exploit all the available features. Several directions suggest themselves, for future
work: 1. Extending the framework, by allowing the exact states during transition to be hidden. 2. Expanding
the library, with new primitives, and to capture more constructions, like that of Garbled RAM [46] as
instances of R3PO. 3. Capturing additional techniques used in extensions of the IBE or 2-round MPC
protocol [9, 29] under the umbrella of R3PO. 4. Constructing more applications by exploiting the full power
of the R3PO framework and novel combinations of the library elements.

3 Preliminaries

3.1 Garbling Scheme

De�nition 1 (Garbled Circuits). A Garbling scheme is a pair of PPT algorithms (GCkt,GCEval) such
that

� GC ← GCGarble(C, β̂) : GCkt takes as input a circuit C, and a set of labels β̂(= {β̂w,b : b ∈ {0, 1}, w ∈
inputwire(C)}) containing two labels per input wire of the circuit C. The procedure outputs a garbled
circuit GC.

� ev← GCEval(GC, {β̂w,xw}w∈inputwire(C)): GCEval takes two inputs, a garbled circuit GC and a sequence of
input labels and outputs a string ev.

Correctness. For correctness, we require that for each input x to the circuit C,

Pr[C(x) = GCEval(GC, labx)] = 1

where GC ← GCGarble(1κ, C, β̂) and xw corresponds to the value on input wire w(while evaluating C) and

labx = {β̂w,xw}w∈inputwire(C).
Security. For security, we require that

1. There exists a simulator GSim such that for any circuit C, its input x and uniformly random β̂, we have
that

GC, labx ≈ GSim(Φ(C), labx, y)

where GC ← GCGarble(C, β̂), lab = {β̂w,xw}w∈inputwire(C) y = C(x) and Φ(C) denotes the topology of the
circuit C.

2. There exists a simulator GCircSim such that for any circuit C and uniformly random β̂, we have that

GC ≈ GCircSim(Φ(C))

where GC ← GCGarble(C, β̂). This requirement guarantees that a garbled circuit (without given input
labels for evaluation) can be simulated just from the topology of the circuit C.

◁

11

3.2 CP-ABE

De�nition 2 (Ciphertext-Policy ABE (ABE)). An ABE scheme for a message space M, attribute space
{0, 1}l and a circuit class C consists of PPT algorithms de�ned as follows:

� Setup(1κ, 1l) → (mpk,msk): On input the security parameter κ, outputs the master public key mpk and
master secret key msk.

� KeyGen(msk, x) → skx: On input master secret key msk and an attribute string x, outputs a secret key
skx.

� Encrypt(mpk, ϕ,m)→ ct: On input master public key mpk, a policy ϕ : {0, 1}l → {0, 1} in C and a message
m ∈ M, outputs a ciphertext ct.

� Decrypt(mpk, skx, ct) → m: On input master public key mpk, a secret key skx and ciphertext ct, outputs
message m.

The following correctness and security properties are required:

1. Correctness: ∀κ, messages m ∈ M, policies ϕ ∈ C, attributes x ∈ {0, 1}l s.t. ϕ(x) = 1, it holds that if
(mpk,msk)← Setup(1κ, 1l), skx ← KeyGen(msk, x), then

Pr
[
Decrypt(mpk, skx,Encrypt(mpk, ϕ,m)) = m

]
= 1− negl(κ)

2. Selective Security: For any PPT adversary A = (A0,A1,A2), there exists a negligible function negl(.)
such that the following holds

Pr[INDabe

sel (A) = 1] ≤ 1

2
+ negl(κ)

where INDabe

sel is shown in 1.

Experiment INDabe

sel

Parameter: Let κ be the security parameter.

� (sA0 , ϕ)← A0(1
κ).

� (mpk,msk)← Setup(1κ, 1l).

� (m0,m1, sA1)← A
KeyGen(msk,.)
1 (sA0 ,mpk).

� b← {0, 1}.
� m := mb.

� ct← Encrypt(mpk, ϕ,m).

� b′ ← AKeyGen(msk,.)
2 (sA1 ,mpk, ct).

� If A1 or A2 asked for secret key of any x∗ s.t ϕ(x∗) = 1, output r ← {0, 1}.
Else, output 1 if b = b′ else 0.

Fig. 1. ABE ind-security Experiment.

3. Full Security: For any PPT adversary A = (A1,A2), there exists a negligible function negl(.) such that
the following holds

Pr[INDabe

full(A) = 1] ≤ 1

2
+ negl(κ)

where INDabe

full is shown in 2.

◁

12

Experiment INDabe

full

Parameter: Let κ be the security parameter.

� (mpk,msk)← Setup(1κ, 1l).

� (sA0 , ϕ)← A0(1
κ).

� (ϕ,m0,m1, sA1)← A
KeyGen(msk,.)
1 (sA0 ,mpk).

� b← {0, 1}.
� m := mb.

� ct← Encrypt(mpk, ϕ,m).

� b′ ← AKeyGen(msk,.)
2 (sA1 ,mpk, ct).

� If A1 or A2 asked for secret key of any x∗ s.t ϕ(x∗) = 1, output r ← {0, 1}.
Else, output 1 if b = b′ else 0.

Fig. 2. ABE full ind-security Experiment.

3.3 Commitment Schemes

De�nition 3 (Commitment scheme). A UC-secure commitment scheme Com over input space M =
{0, 1}l consists of the algorithms (Setup,Commit,Open) with the following syntax:

� Setup(1κ)→ crs : takes the security parameter κ as input (in unary), and outputs the common reference
string crs.

� Commit(crs, x)→ (c, d) : takes as input a common reference string crs, a string x, and outputs a commit-
ment c, decommitment d.

� Open(crs, c, d) → x : takes as input a common reference string crs, a commitment c, a decommitment d,
and outputs a string x.

and the following properties:

� Hiding. For all κ, all strings x0, x1 ∈ X and PPT adversaries A, there exists a negligible function negl (.)
such that if crs← Setup(1κ), (c0, d0)← Commit(crs, x0), (c1, d1)← Commit(crs, x1), then it holds that∣∣∣Pr [A(crs, c0) = 1

]
− Pr

[
A(crs, c1) = 1

]∣∣∣ ≤ negl(κ)

� Binding. There exists a PPT extractor E = (E1, E2), such that for all PPT adversaries A = (A1,A2), it
holds that ∣∣∣Pr [INDreal

A (1κ) = 1
]
− Pr

[
IND

ideal

A,E (1κ) = 1
]∣∣∣ ≤ negl(κ)

where the experiments are de�ned as follows:

Experiment INDreal

A (1κ):
crs← Setup(1κ)

(stA1 , c, d)← A1(crs)

x← Open(crs, c, d)

Output A2(stA1 , x)

Experiment INDideal

A,E (1κ):
(crs, stE1)← E1(1κ)
(stA1 , c, d)← A1(crs)

x← E2(stE1 , c)

Output A2(stA1 , x)

13

� Equivocal Commitment. There exists PPT simulator SimEq such that for any x ∈ X , it holds that{
(crs, (c, dx)) : (crs, c, {dy | y ∈ X})← SimEq(1

κ)
}
≈{

(crs,Commit(crs, x)) : crs← Setup(1κ)
}

◁

Statistical v.s. Computational Binding. The above de�nition requires statistical binding, where each
commitment c has at most a single string x that can be opened to (and extracted by E). We also de�ne a
weaker de�nition for a semi-honest adversary that requires only computational binding, where an honestly
generated commitment c could have multiple openings, but it must be hard for an adversary to open it to
anything other than x.

De�nition 4 (Weak Commitment scheme). A weak commitment scheme Com over input space M =
{0, 1}l consists of the algorithms (Commit,Open) with the following syntax:

� Commit(x)→ (c, d) : takes as input a string x, and outputs a commitment c, decommitment d.

� Open(c, d)→ x : takes as input a commitment c, a decommitment d, and outputs a string x.

and the following properties:

� Hiding. For all κ, all strings x0, x1 ∈ X and PPT adversaries A, there exists a negligible function negl (.)
s.t. if (c0, d0)← Commit(x0), (c1, d1)← Commit(x1), then it holds that∣∣∣Pr [A(c0) = 1

]
− Pr

[
A(c1) = 1

]∣∣∣ ≤ negl(κ)

� Weakly-Binding. For all κ, all strings x ∈ X and PPT adversaries A, the following probability is
negligible:

Pr
[
(c, d)← Commit(x; r), m′ ← Open(c,A(x, r)), m′ /∈ {m,⊥}

]
◁

3.4 Oblivious Transfer

De�nition 5 (Oblivious Transfer (OT)). AUC-secure OT scheme consists of four algorithms (Setup,OT1,OT2,OT3)
with the following syntax:

� Setup(1κ)→ crs: takes as input the security parameter 1κ, and outputs the common random string crs.

� OT1(crs, b) → (ots1, ω): takes as input a common random string crs, bit b, and outputs a tuple (ots1, ω),
where ots1 is a ciphertext and ω is a secret state.

� OT2(crs, ots1, (m0,m1)) → ots2: takes as input a common random string crs, a ciphertext ots1, messages
m0,m1, and outputs a ciphertext ots2.

� OT3(crs, ots2, ω) → mb : takes as input a common random string crs, a ciphertext ots2, a secret state ω,
and outputs a message mb.

and the following properties:

� Correctness. It holds for all κ, every bit b ∈ {0, 1}, every string ω, every pair of messages m0,m1, that
if crs← Setup(1κ), ots1 ← OT1(crs, b) and ots2 ← OT2(crs, ots1, (m0,m1)), then

OT3(crs, ots2, ω) = mb

14

� Receiver's Security. It holds for all κ that{
(crs, ots1) : crs← Setup(1κ), (ots1, ω)← OT1(crs, 0)

}
≈{

(crs, ots1) : crs← Setup(1κ), (ots1, ω)← OT1(crs, 1)
}

� Sender's Security. There exists a PPT extractor E = (E1, E2) such that for any choice of messages
K0,K1 ∈ {0, 1}κ, and PPT adversary A = (A1,A2), we have that∣∣Pr[INDreal

A (1κ,K0,K1) = 1]− Pr[INDideal

A,E (1κ,K0,K1) = 1]
∣∣ ≤ negl(κ)

Experiment INDreal

A (1κ,K0,K1):
crs← Setup(1κ)

(stA1 , ots1)← A1(crs)

ots2 ← OT2(crs, ots1,K0,K1)

Output A2(stA1
, ots2)

Experiment INDideal

A,E (1κ,K0,K1):
(crs, τ)← E1(1κ)
(stA1 , ots1)← A1(crs)

β ← E2(τ, ots1)
L0 := Kβ and L1 := Kβ

ots2 ← OT2(crs, ots1, L0, L1)

Output A2(stA1
, ots2)

� Equivocal Receiver's Security. There exists a PPT simulator SimEq such that for any b ∈ {0, 1}, it
holds that{

(crs, (ots1, ωb)) : (crs, ots1, ω0, ω1)← SimEq

}
≈

{
(crs,OT1(crs, b)) : crs← Setup(1κ)

}
◁

3.5 Hash Schemes

De�nition 6 (Block-Openable CRH). A block-openable collision-resistant hash scheme over input space
X = {0, 1}n and digest space D = {0, 1}d consists of the algorithms (crsGen, hash, openBlock, acceptBlock)
with the following syntax:

� crs← crsGen(1κ). It is a probabilistic algorithm that takes as input the security parameter 1κ and outputs
a common reference string crs.

� digest ← hash(crs,m). It is a deterministic algorithm that takes as input a common reference string crs
and a message m, and outputs a digest.

� w ← openBlock(crs,m, i). It is a deterministic algorithm that takes as input a common reference string
crs, a message m and a block index i ∈ [n] s.t. m = m1∥ . . . ∥mn, and outputs a string w.

� y ← acceptBlock(crs, digest, i, w). It is a deterministic algorithm that takes as input a common reference
string crs, a hash output digest, a block index i and a string w, and outputs a string y.

and the following properties:

� Correctness: For all m ∈ M, and all crs in the support of crsGen,

acceptBlock(crs, hash(crs,m), i, openBlock(crs,m, i)) = mi,

where i ∈ [n] is a block index and m = m1∥ . . . ∥mn.

� Collision Resistance: For all PPT adversaries A, the following probability is negligible:

Pr
crs←crsGen(1κ)
(m,i,w)←A(crs)

[acceptBlock(crs, hash(crs,m), i, w) ̸∈ {⊥,mi}] .

◁

Compression Factor. The compression factor is given by n
d . For example, a scheme that hashes inputs

of size 2d to a digest of size d corresponds to a factor-2 compression. We would typically require hash and
openBlock to produce an output that is much shorter than the messages being hashed, that is d << n.

15

3.6 Laconic Oblivious Transfer

De�nition 7 (Laconic OT). A laconic OT (ℓOT) scheme syntactically consists of four algorithms crsGen,
hash, Send and Receive.

� crs← crsGen(1κ). It takes as input the security parameter 1κ and outputs a common reference string crs.

� (digest, D̂)← hash(crs, D). It takes as input a common reference string crs and a database D ∈ {0, 1}∗ and
outputs a digest digest of the database and a state D̂.

� ct← Send(crs, digest, L,m0,m1). It takes as input a common reference string crs, a digest digest, a database
location L ∈ N and two messages m0 and m1 of length κ, and outputs a ciphertext ct.

� m ← ReceiveD̂(crs, ct, L). This is a RAM algorithm with random read access to D̂. It takes as input a
common reference string crs, a ciphertext ct, and a database location L ∈ N. It outputs a message m.

We have slightly changed the sender privacy de�nition from the original paper by allowing the adversary to
read the crs before outputting its challenge messages. We require the following properties of an ℓOT scheme
(crsGen, hash,Send,Receive).

� Correctness:We require that it holds for any database D of size at most m = poly(κ), for any polynomial
function poly(·), any memory location L ∈ [M], and any pair of messages (m0,m1) ∈ {0, 1}κ×{0, 1}κ that

Pr

m = mD[L]

crs← crsGen(1κ)

(digest, D̂)← hash(crs, D)

ct← Send(crs, digest, L,m0,m1)

m← ReceiveD̂(crs, ct, L)

 = 1,

where the probability is taken over the random choices made by crsGen and Send.

� Sender Privacy Against Semi-Honest Receivers: There exists a PPT simulator ℓOT.Sim, such that
for all PPT adversaries A, the following holds

realA(1
κ) ≈ ideal

ℓOT.Sim
A (1κ)

where the experiments are de�ned as follows:

Experiment realA(1
κ):

crs← crsGen(1κ)

(aux,m0,m1, D, L)← A(crs)

digest := hash(crs, D)

ct← Send(crs, digest, L,m0,m1)

Output (aux, ct)

Experiment idealℓOT.Sim
A (1κ):

crs← crsGen(1κ)

(aux,m0,m1, D, L)← A(crs)

ct′ ← ℓOT.Sim(crs, D, L,mD[L])

Output (aux, ct′)

In the above, database D should be of size at most M = poly(κ), for any polynomial function poly(·),
memory location L ∈ [M], and messages (m0,m1) ∈ {0, 1}κ × {0, 1}κ.

� E�ciency Requirement: The length of digest is a �xed polynomial in κ independent of the size of
the databse; we will assume for simplicity that |digest| = κ. Moreover, the algorithm hash runs in time
|D|.poly(log |D|, κ), Send and Receive run in time poly(log |D|, κ).

◁

3.7 Signature Schemes

De�nition 8 (One-Time Signature). A one-time signature (OTS) scheme OTS for message space M =
{0, 1}n consists of three algorithms as follows:

16

� OTS.gen(1κ) → (OTS.vk,OTS.sk): On input security parameter κ, outputs a pair (OTS.vk,OTS.sk) of
veri�cation and signing keys.

� OTS.sign(OTS.sk, x)→ τ : On input a signing key OTS.sk and message x, outputs a signature τ .

� OTS.verify(OTS.vk, τ, x) → b′: On input veri�cation key OTS.vk, signature τ and a message x, outputs a
bit b′.

where they satisfy the following properties.

1. Succinctness: For (OTS.vk,OTS.sk)← OTS.gen(1κ) it holds that |OTS.vk| is independent of n and only
depends on κ.

2. Correctness of veri�cation: ∀κ, x ∈ M, it holds that if (OTS.vk,OTS.sk)← OTS.gen(1κ), then

OTS.verify(OTS.vk,OTS.sign(OTS.sk, x), x) = 1

3. Unforgeability: For any PPT adversary A, there exists a negligible function negl(.) such that the fol-
lowing holds:

Pr[Sig-forge1-time(A) = 1] ≤ negl(κ)

where Sig-forge1-time is shown in Figure 3.

Experiment Sig-forge1-time

Parameter: Let κ be the security parameter.

� (OTS.vk,OTS.sk)← OTS.gen(1κ).

� (m, τ)← AOTS.sign(OTS.sk,.)(OTS.vk), where A can make a single query m′ to oracle OTS.sign(OTS.sk, .).

� If OTS.verify(OTS.vk, τ,m) = 1 and m ̸= m′, output 1.

Else, output 0.

Fig. 3. One-time Signature unforgeability security Experiment.

◁

De�nition 9 (One-Time Signature with Encryption). A one-time signature with Encryption (OTSE)
scheme is a one-time signature (OTS) scheme that consists of additional algorithms as follows:

� OTSE.enc(OTSE.vk, i, b,m)→ ct: On input veri�cation key OTSE.vk, a bit position i, a bit b and plaintext
m, outputs a ciphertext ct.

� OTSE.dec(OTSE.vk, τ, x, ct)→ m: On input veri�cation key OTSE.vk, message x, signature τ and cipher-
text ct, outputs a plaintext m.

Where they satisfy the following properties.

1. Correctness of encryption: ∀κ, x,m, it holds that if (OTSE.vk,OTSE.sk) ← OTSE.gen(1κ) and τ ←
OTSE.sign(OTSE.sk, x); then

OTSE.dec(OTSE.vk, τ, x,OTSE.enc(OTSE.vk, i, xi,m)) = m

17

2. Selective security of encryption: For any PPT adversary A = (A1,A2,A3), there exists a negligible
function negl(.) such that the following holds:

Pr[INDotse(A) = 1] ≤ 1

2
+ negl(κ)

where INDotse is shown in Figure 4.

Experiment INDotse

Parameter: Let κ be the security parameter.

� (sA1 , x)← A1(1
κ).

� (OTSE.vk,OTSE.sk)← OTSE.gen(1κ).

� τ ← OTSE.sign(OTSE.sk, x).

� (sA2 , i,m0,m1)← A2(sA1 ,OTSE.vk, τ).

� b∗ ← {0, 1}.
� m∗ := mb∗ .

� c∗ ← OTSE.enc(OTSE.vk, i, 1− xi,m
∗).

� b′ ← A3(sA2 , c
∗).

� Output 1 if b′ = b∗ and 0 otherwise.

Fig. 4. One-time Signature with Encryption ind-security Experiment.

◁

De�nition 10 (Signature scheme). A signature scheme Sig for message space M = {0, 1}n consists of
three algorithms as follows:

� Sig.gen(1κ)→ (Sig.vk,Sig.sk): On input security parameter κ, outputs a pair (Sig.vk,Sig.sk) of veri�cation
and signing keys.

� Sig.sign(Sig.sk, x)→ τ : On input a signing key Sig.sk and message x, outputs a signature τ .

� Sig.verify(Sig.vk, τ, x) → b′: On input veri�cation key Sig.vk, signature τ and a message x, outputs a bit
b′.

where they satisfy the following properties.

1. Succinctness: For (Sig.vk,Sig.sk) ← Sig.gen(1κ) it holds that |Sig.vk| is independent of n and only
depends on κ.

2. Correctness of veri�cation: ∀κ, x ∈ M, it holds that if (Sig.vk,Sig.sk)← Sig.gen(1κ); then

Sig.verify(Sig.vk,Sig.sign(Sig.sk, x), x) = 1

3. Unforgeability: For any PPT adversary A, there exists a negligible function negl(.) such that the fol-
lowing holds:

Pr[Sig-forge(A) = 1] ≤ 1

2
+ negl(κ)

where Sig-forge is shown in Figure 5.

18

Experiment Sig-forge

Parameter: Let κ be the security parameter.

� (Sig.vk,Sig.sk)← Sig.gen(1κ).

� (m, τ)← ASig.sign(Sig.sk,.)(Sig.vk).

� If A did not query the oracle Sig.sign(Sig.sk, .) for signature of m and Sig.verify(Sig.vk, τ,m) = 1, output 1.

Else, output 0.

Fig. 5. Signature unforgeability security Experiment.

◁

De�nition 11 (Puncturable Signature). A puncturable signature scheme Sig is a signature scheme that
consists of the following additional algorithms:

� Sig.punct(Sig.sk,mpre) → Sig.sk′: On input a signing key Sig.sk and a message pre�x mpre, outputs a
punctured signing key Sig.sk′.

� Sig.psign(Sig.sk′,m)→ τ : On input a punctured signing key Sig.sk′ and a message m, outputs a signature
τ .

where they satisfy the following properties.

1. Correctness of veri�cation: ∀κ, pre�xmpre and x ∈ M, it holds that if (Sig.vk,Sig.sk)← Sig.gen(1κ),Sig.sk′ ←
Sig.punct(Sig.sk,mpre), and x does not have mpre as pre�x, then

Sig.verify(Sig.vk,Sig.psign(Sig.sk′, x), x) = 1

2. Unforgeability: For any PPT adversary A = {A1,A2}, there exists a negligible function negl(.) such
that the following holds:

Pr[Sig-forgepunct(A) = 1] ≤ 1

2
+ negl(κ)

where Sig-forgepunct is shown in Figure 6.

◁

3.8 Puncturable PRF

De�nition 12 ((Pre�x) Puncturable Pseudorandom Function Family). A pre�x puncturable pseu-
dorandom function family scheme (PPRF) consists of the following PPT algorithms.

� F.gen(1κ)→ s : On input the security parameter, outputs a key s.

� F.punct(s, pre)→ s∗ : On input a key s and a pre�x pre, outputs a punctured key s∗.

� F.eval(s, x)→ y : On input a key s and a string x, outputs a string y.

The following properties are required. Pseudorandomness: For all PPT adversaries Adv, it holds that:

Pr[AdvF.eval(s,.) outputs 1]− Pr[AdvR(.) outputs 1] ≤ negl(κ)

where, s← F.gen(1κ) and R(.) is a random function. Correctness of Puncturing: ∀s, pre, it holds that

F.eval(F.punct(s, pre), x) =

{
F.eval(s, x) if x does not have pre�x pre

⊥ else

19

Experiment Sig-forgepunct

Parameter: Let κ be the security parameter.

� (Sig.vk,Sig.sk)← Sig.gen(1κ).

� (mpre, sA1)← A
Sig.sign(Sig.sk,.)
1 (Sig.vk).

� Sig.sk′ ← Sig.punct(Sig.sk,mpre).

� (m, τ)← ASig.sign(Sig.sk,.)
2 (sA1 ,Sig.sk

′).

� If mpre is a message pre�x of m, and A1, A2 queried the oracle Sig.sign(Sig.sk, .) for signature of at most one
message m′ s.t. mpre is a message pre�x of m′ and m ̸= m′, and Sig.verify(Sig.vk, τ,m) = 1, output 1.

Else, output 0.

Fig. 6. Puncturable Signature unforgeability security Experiment.

Security of Puncturing: For any PPT adversary A = (A1,A2), there exists a negligible function negl(.)
such that the following holds

Pr[INDpprf(A) = 1] ≤ 1

2
+ negl(κ)

where INDpprf is shown in Figure 7. ◁

Experiment INDpprf

Parameter: Let κ be the security parameter.

� s← F.gen(1κ).

� (stA0 , pre)← A
F.eval(s,.)
0 (1κ).

� s∗ ← F.punct(s, pre).

� (stA1 , x)← A
F.eval(s,.)
1 (stA0 , s

∗).

� b← {0, 1}.
If b = 0, set y ← F.eval(s, x), else uniformly sample y ← Y.

� b∗ ← AF.eval(s,.)
2 (stA1 , y).

� Output 1 if b∗ = b and A0,A1,A2 did not query oracle F.eval(s, .) for any x′ with pre�x pre, else 0.

Fig. 7. Puncturable PRF Security Experiment.

4 The R3PO Framework

4.1 Reactive Programs and Generators

Below we de�ne a reactive program as a stateful machine that takes inputs, transitions its state and produces
outputs as a function of its state. Formally, such a program consists of a deterministic transition function
π and a deterministic message function µ, both of which can be parameterized by (secret) values α, β
(hardwired into circuits π(·), µ(·) respectively).

20

De�nition 13 (Reactive Program over (X , Σ, A, B, M)). A reactive program (π(α), µ(β)), with input
alphabet X , a state-space Σ, a start-state start ∈ Σ and secret spaces A, B is speci�ed by a deterministic
transition program π(α) : Σ×X → Σ parameterized by a secret α ∈ A and a deterministic7 message function
µ(β) : Σ → M parameterized by a secret β ∈ B, that on input sequence (x1, . . . , xℓ) ∈ X , reaches a state
σℓ, where σi = π(α)(σi−1, xi) for i = 1, . . . , ℓ and σ0 = start, and outputs a message µ(β)(σℓ). We also de�ne
reachπ(α)(x1, . . . , xℓ) = {σ0, · · · , σℓ} and π(α)(x1, . . . , xℓ) = σℓ. ◁

Reactive programs have an associated implicit security parameter κ; speci�cally, we require that the states
in Σ and secrets in A, B are represented as binary strings of length polynomial in the security parameter κ,
and the functions π(α) and µ(β) are polynomial in κ. Throughout the rest of the paper, we shall omit κ and
implicitly refer to �polynomial in κ� as simply being polynomial.
Partition Function and Program Class. A transition function class P refers to a set of transition functions
along with an associated partition function I that maps states to integers, i.e., I : Σ → [N] for some positive
integer N . We say that I partitions the state space Σ into Σ1, · · · , ΣN where,

Σi = I−1(i) := {σ | σ ∈ Σ, I(σ) = i}

Unless otherwise stated, the start state of a reactive program is assumed to be in Σ1. We say that a transition
function π(α) is tree-ordered with respect to I, if the directed graph over [N] (each partition as a vertex)
with an edge-set

{(i, j) | ∃ distinct σ ∈ Σi, σ
′ ∈ Σj , ∃x ∈ X s.t π(α)(σ, x) = σ′}

is a tree, and all its edges (i, j) satisfy i < j. That is, for any partition j, there is at most a single partition
i < j from which states in partition j can be transitioned to. Further, we say that a transition function class
P is tree-ordered if every π(α) ∈ P is tree-ordered w.r.t. the partition associated with P.

A program class (P,M) is a set of reactive programs (π(α), µ(β)) with π(α) ∈ P and µ(β) ∈M.

Reactive Program Generator. We now describe the process which generates a reactive program to be
obfuscated. A PPT program G (which we call the generator) interacts with a PPT program Q (which we
call the adversary) over many rounds; at the end G outputs a reactive program (π(α), µ(β)). Both G and Q
are also allowed to produce auxiliary outputs.

De�nition 14 ((P,M)-Generator G). A (P,M)-generator G for a transition function class P and message
function classM is a PPT interactive program that interacts with an arbitrary PPT program Q. We write(

(π(α), µ(β)), aG; aQ

)
← ⟨G : Q⟩

to indicate that at the end of the interaction, G outputs
(
(π(α), µ(β)), aG

)
and Q outputs aQ (where π(α) ∈ P,

µ(β) ∈M). A generator class is simply a set of generators. ◁

An adversary class Q is simply a set of adversaries Q. Some useful adversary classes depending on the
application are: set of all PPT machines (for active corruption) and set of �semi-honest� PPT machines which
follow a given protocol. We also consider adversary classes with setup. For any T that is a program in a
setup class T , we use QT to denote an adversary Q that gets oracle access to an honest execution of T .

4.2 Reach Extractor

To de�ne a reach extractor, we introduce some notation. We write Q|̂E to denote a composite machine in
which E semi-honestly runs Q internally in a straight-line manner (where E can read the internal state of
Q), letting Q directly communicate externally (with a generator). E produces the �nal auxiliary output.

For an adversary class with a setup, given an adversary QT in the composite machine QT |̂E , E is allowed
to replace T with any program from T . For example, to capture common reference strings as a setup, T
7 As described in Appendix A.1, restricting our obfuscations to deterministic message functions is without loss of
generality, even if we are interested in randomized message functions.

21

would correspond to {Setup,SetupSim}, where Setup is the standard setup algorithm and SetupSim produces
a simulated CRS.
E is a valid reach-extractor if the following hold: in the ideal interaction, E observes the adversary Q

and produces an extra output (Π, X∗) such that the states reached in Π using X∗ (that is, reachΠ(X
∗))

is an upper bound on what D can reach in π(α); further the output is such that it reaches at-most a single
state in each partition.8

De�nition 15 (Reach-Extractor for Q w.r.t. (G, P̊)). A reach-extractor for an adversary Q ∈ Q w.r.t.
a (P,M)-generator class G and a transition function class P̊, is a PPT program E such that, for all G ∈ G
and PPT D, the output X produced by the following two experiments are indistinguishable:

real(G,Q,D):

(
(π(α), µ(β)), aG; aQ

)
← ⟨G : Q⟩

output X ← D(π(α), µ(β), aG, aQ)

ideal(G,Q|̂E , D):

(
(π(α), µ(β)), aG; aQ,Π, X

∗
)
← ⟨G : Q|̂E⟩

output X ← D(π(α), µ(β), aG, aQ)

and further the following hold:

� In ideal(G,Q|̂E , D), Π ∈ P̊.
� Suppose I partitions Σ into N parts Σ1, · · · , ΣN . Then
• Reach-Bound: For all i ∈ [N], Pr[(reachπ(α)(X) ∩Σi) ⊈ (reachΠ(X

∗) ∩Σi)] is negligible.

• Reach-Restriction: For all i ∈ [N], |reachΠ(X
∗) ∩Σi| ≤ 1. ◁

Real and Ideal Program Classes. Note that, in the above de�nition, E in the ideal world is allowed
to extract an idealized reactive program Π ∈ P̊ to describe the set of states reachable by the adversary
Q. While in many of our examples, P̊ is the same as P, the class of �real world� reactive programs being
obfuscated, this is not mandatory. This �exibility in the ideal world can help with enabling reach extraction
while remaining useful in a higher level application. For example, looking ahead, in the case of commitment
opening (Section 6.1), the reactive program in the real world transitions out of the start state on an input
that is a valid opening of a commitment hardwired into the program, while the one in the ideal world requires
the input to simply be the message that this commitment can be opened to. This is to accommodate the
construction (based on a UC-secure OT) in which the reach extractor (using the simulator for the OT) can
extract only the message in the commitment and not necessarily the opening of the commitment (randomness
used in the OT protocol). This still su�ces for applications like 2-round MPC, where either the commitments
are created by the adversary, or the commitments in the reachable states are meant to be revealed to the
adversary.

4.3 Reach-Restricted Reactive Program Obfuscation

Recall that, our goal in obfuscating a reactive program is to hide the parameters α, β, except for the states
an adversary can reach. Let E be a reach-extractor for Q w.r.t. G s.t. E outputs Π, X∗ and reachΠ(X

∗)
bounds the reach of the adversary in π(α). Then, we de�ne a secure obfuscation as requiring a simulator Sim
which, given only the circuits π(·), µ(·) and the reachable states (x, µ(β)(Π(x))) for input sequences x ∈ X∗,
can output an obfuscation indistinguishable from a real obfuscation.

De�nition 16 (R3PO scheme O for (G,Q,P̊)). A PPT program O is an Reach-Restricted Reactive
Program Obfuscation (R3PO) scheme for a (P,M)-Generator class G and transition function class P̊, if the
following hold:9

8 As discussed just before Section 2.3, the reach-restriction condition is to enable our composition theorem (which
depends on the use of garbled circuits).

9 We assume that the programs π(α), µ(β), I,O are all speci�ed as circuits. Further, π(α) and µ(β) are given as circuits
for π(·) and µ(·) (resp.), which take α and β (resp.) as an input.

22

� Correctness: For all π(α) ∈ P, µ(β) ∈ M, ρ ← O(π(α), µ(β)), and x ∈ X ∗, it holds that ρ(x) =
µ(β)(π(α)(x)).

� Security: There exists a PPT program Sim s.t. ∀Q ∈ Q, there exists a reach-extractor E w.r.t. (G, P̊), so
that ∀ G ∈ G, the outputs of the following two experiments are indistinguishable:

real(G,Q):

(
(π(α), µ(β)), aG; aQ

)
← ⟨G : Q⟩

ρ← O(π(α), µ(β))

output (ρ, aG, aQ)

ideal(G,Q):

(
(π(α), µ(β)), aG; aQ,Π, X

∗
)
← ⟨G : Q|̂E⟩

ρ← Sim
(
π(·), µ(·),Π, {x, µ(β)(Π(x))}x∈X∗

)
output (ρ, aG, aQ)

◁

5 A Composition Theorem for R3PO

We now describe our composition theorem that enables building an R3PO for a generator class from R3POs
for generator classes that produces smaller �one-step� (or non-reactive) programs. First we formalize the
notion of decomposition.

5.1 Decomposition

The goal of decomposition is to view the transition function π of a reactive program produced by a generator
G, as consisting of several one-step transitions πi of reactive programs produced by generators Hi. Below,
we de�ne the notion of a σ-restriction of π at a state σ.

One-Step Restriction of a Transition Function. Given a reactive program's transition function π(α)

and one of its states σ, we de�ne a one-step σ-restriction of π(α) as a transition function π̂
(α)
σ with start

state σ, where

π̂(α)
σ (σ′, x) =

{
π(α)(σ, x) if σ′ = σ

σ otherwise.

(i.e., in π̂
(α)
σ , the only transitions allowed are from its start state σ).

Note that the state space Σ of π can be exponentially large in κ, and correspondingly π consists of
that many one-step transition functions. When decomposing π, we will group them into polynomially many
classes of transition functions, using the partition I of the state space, Σ = Σ1 ∪ · · · ∪ ΣN associated with
π. This imposes the following structure on the class of transition functions P to which π belongs.
The transition function class P1 × · · · × PN . For any set of N classes P1, · · · ,PN over the (same) state
space Σ and partition function I : Σ → [N], we de�ne P1 × · · · × PN to consist of transition functions π(α)

such that for each state σ ∈ Σi, the one-step σ-restriction of π(α) is in Pi. That is, for all σ ∈ Σ and inputs

x, π(α)(σ, x) = π̂
(α)
σ (σ, x) where π̂

(α)
σ ∈ PI(σ).

Though π can have exponentially many states, we would like to view it as composed of N transition
functions, π̂σi

∈ Pi, where σi ∈ Σi. Thanks to the reach-restriction requirement on the reactive programs
that we are interested in, for each i, there would indeed be only one state σi ∈ Σi that we need to consider.
However, recall that π is dynamically generated by a generator G interacting with an adversary Q, and the
reachable states in π are determined by this interaction. So the decomposition should be framed at the level
of the interactive generators, rather than individual transition functions.

This leads us to a bi-simulation based de�nition of decomposition that views the generator G as incorpo-
rating another generator H (which produces one-step programs), and gives a two-way equivalence between
them. To formalize this notion of bi-simulation, we introduce the following notation of composite machines.

23

Composite machines. It will be convenient to de�ne a few di�erent ways in which a program (a generator
or an adversary) can be wrapped by another program. As described below, a generator will be wrapped by
a blackbox simulator, J or Z.10 We also introduce a non-blackbox wrapper W which will be used to adapt
an adversary Q (that expects to interact with G) so that it can interact with both G and H.

� For a generator H, we write
Z

H to denote a composite machine in which Z runs H internally in a blackbox
straight-line manner. The reactive program output by the composite generator is produced H, and the
auxiliary output produced by it contains outputs from both H and Z. H may communicate with Z, and

further the composite machine can communicate externally as described shortly. The running time of
Z

H

is bounded by that of H plus an additive poly(κ) overhead that depends on Z.

� For a generator G, we write G
J

to denote a slightly di�erent composite machine, which is similar to
J

G

(G is run internally by J in a blackbox straight-line manner, and the auxiliary information is produced by
both) but the reactive program it produces is output by J . The external communication pattern is also
di�erent as described below.

� For an adversary Q, we write
Q

W
to denote a composite machine in which W internally runs Q in a

straight-line manner with additive overhead, but W can read the internal state of Q. The auxiliary output
of this composite machine is the entire view of W (which includes the auxiliary information aQ produced
by Q). The communication pattern is described below.

� Each of G
J

,
Z

H and
Q

W
has three external communication channels � one used by the internal machine

(shown boxed) and the other two by the wrapper machine. In all machines the �middle� channel is used
by the wrapper (J, Z and W , respectively); the �top� channel is used by G,Z and Q (resp.); the �bottom�

channel is used by J,H and W (resp.). Note that when G
J

is connected to
Q

W
, Q directly interacts with

G, whereas when
Z

H is connected to
Q

W
, Q interacts with Z.

For the ease of writing expressions, we shall denote G
J

by GUJ , and Z

H by HTZ. We will denote

Q

W
by Q⌊W ; in fact, we will be interested in Q|̂E

W
(where Q|̂E itself is a composite machine involving a

reach-extractor which interacts with Q as de�ned in De�nition 15); we shall denote it by Q|̂E⌊W .
Partial Reach-Extractor: For a valid decomposition, it will be important to have a bi-simulation that
maps π to a one-step restriction πσ such that σ is the unique reachable state in a subset of states Σi.
To enforce this, we shall rely on an extractor for the adversary Q w.r.t. the generator G that produces π.
However, the purpose of decomposition and composition is to be able to obtain an extractor for Q w.r.t. G
along with a simulator, as in the de�nition of R3PO (De�nition 16). To break this apparent circularity, we
use the notion of a partial reach extractor: An (i − 1)-partial reach extractor will be su�cient for de�ning
decomposition �at part Σi,� and it can be extended to an i-partial reach extractor, using the R3PO guarantee
for the one-step generator.

Formally, a t-partial reach-extractor is de�ned identically to De�nition 15, but with the relaxation that
the reach-bound condition needs to hold only for i ≤ t, instead of i ≤ N . (The reach-restriction condition is
still required to hold for all i ∈ N .) Thus, an N -partial reach extractor is a �full� reach-extractor.

Now we are ready to state the de�nition of decomposition. While informally we shall refer to decomposing
a reactive program (or even a transition function) to one-step programs, formally, the decomposition is of a
generator class to a sequence of generator classes, speci�ed along with corresponding adversary classes and
relaxed program classes.

De�nition 17 (Decomposition of (G, Q) to L). Let G be a (P,M)-generator class where P = P1 ×
· · · × PN is tree-ordered. Let L = (H,Q, P̊), where H = {HTZ | PPT Z} for a �xed (Pi,Mi)-generator H,
Q is an adversary class, and P̊ is a transition function class.

10 Looking ahead, the role of J below is to simulate the presence of a one-step generator H when the actual execution
involves the generator G, and the role of Z is to simulate the presence of G when the actual execution involves H.

24

Then, a generator G ∈ G is said to be decomposable at part i to L if, there exist PPT J, Z,W so that

∀Q ∈ Q, and all (i− 1)-partial reach-extractors E for Q w.r.t. (G, P̊), it holds that Q|̂E|W ∈ Q and:

� Indistinguishability: ⟨GUJ : Q|̂E⌊W ⟩ ≈ ⟨HTZ : Q|̂E⌊W ⟩.
� In ⟨GUJ : Q|̂E⌊W ⟩, let the output of G be ((π(α), µ(β)), aG), and of E be (aQ,Π, X

∗); then J outputs

((π̂
(α)
σ , µ̂

(β̂)
σ), aJ) s.t.

• Correct One-Step Restriction: reachΠ(X
∗) ∩Σi ⊆ {σ}.

• Correct Message Function: µ̂
(β̂)
σ ←Mi is uniformly sampled at the end of the execution.

(G,Q) is said to be decomposable into L = (L1, . . . ,LN) if ∀G ∈ G, i ∈ [N], it holds that Li = (Hi,Qi, P̊i)
where Qi ⊇ Q, and G is decomposable at part i to Li. ◁

Above, we require two simulations to produce indistinguishable outputs (which includes their communi-

cation, as Q|̂E⌊W outputs its entire view as part of output), with J mimicking H, and Z mimicking G. The
�correct one-step restriction� condition forces J (and hence H) to output a one-step restriction whose start
state is the state that is reachable, as reported by a (partial) reach-extractor for G.

An Illustrative Example. We illustrate the above decomposition de�nition via an example. Consider a
program corresponding to �Signature + Commitment� that makes two moves: (1) from a start state that
includes a veri�cation key vk, it accepts an input (c, s), and if s is veri�ed as a signature on c w.r.t. vk,
then it moves to a state specifying the string c; (2) then it accepts (d,m), and if d is an opening of c as a
commitment to m, it moves to a state specifying m.

The corresponding transition function family is P = P1×P2, where P1 corresponds to signature veri�ca-
tion and P2 to commitment opening, from Section 6. We consider a generator G which samples a signature
key-pair (sk, vk), uses sk to sign a single signature request, and outputs a program in P above, with vk in its
start state.

To illustrate that G decomposes at part 2 to G,commit we use the following simulators:

� Q receives vk from G (or Z) and Q sends back a single signature request on a string c (if any). At this
point, W will forward c as a commitment, through its bottom channel that is connected to H or J .

� J accepts c from W , and outputs a reactive program whose transition function is from P2 with the start
state encoding c (and a uniformly random message function fromM2, which can be arbitrary).

� Z samples a signature key-pair (sk, vk) and sends it to Q (through the top channel). Then, when the �rst
signature request arrives from Q, it responds by signing it using sk (any further requests will be ignored).
Finally, Z outputs a reactive program with a transition function from P and start state encoding vk.11

It can be seen that J, Z,W as above meet all the requirements for decomposition. In particular, the unforge-
ability of the signature scheme used to de�ne P1 enforces the requirement that the output of any 1-partial
reach extractor takes the program produced by G to the same state (if any) as the start state σ of the
one-step restriction produced by J .

5.2 Composition Theorem

Above, decomposition related the transition functions in P = P1×· · ·×PN to those in each Pi. Before stating
our composition theorem, we need to specify the message function space µ̂i of these one-step programs as
well.

As described in Section 2.3, µ̂i should release garbled circuit labels for the state at which it is evaluated.
For our purposes, it will be helpful to consider a labeling function (denoted below as β̂) which takes the part

index i as an input, along with a bit position j and bit value b. Then µ̂i will be of the form encodeI,t
β̂

de�ned

below, which only retains the part of β̂ for parts i > t.

11 For simplicity, we omit the message function from this description. Z would sample it from the same distribution
as G.

25

Parameters: Program classes P = P1×· · ·×PN with state-space Σ = {0, 1}n, and partition function I : Σ → [N].
A message function classM.

Given One-Step Obfuscators: For each i ∈ [N], Oi (taking inputs in Pi × M̂I,i)

Garbling Scheme: Let (GCGarble,GCEval) be a garbling scheme.

Obfuscator O:
• Input: (π(α), µ(β)), where π(α) ∈ P, µ(β) ∈M.

• Uniformly randomly sample β̂ : [N]× [n]× {0, 1} → {0, 1}κ

• For each i ∈ [N],

* De�ne µ̂i to be encodeI,i

β̂
.

* De�ne the function fi as follows (with a fresh random tape hard-coded for Oi and, if needed, µ
(β)):

fi(σ) =
(
Oi(π̂

(α)
σ , µ̂i), µ

(β)(σ)
)

* Let GCi ← GCGarble(fi, β̂i), where β̂i(ℓ, b) = β̂(i, ℓ, b) for ℓ ∈ [n], b ∈ {0, 1}.
• Let i0 = I(start), where start is the start-state of π(α).

Output
(
fi0(start), {GCi}i∈[N]\{i0}

)
, along with a �driver program.�

Fig. 8. Obfuscator O used to prove Theorem 1.

De�nition 18 (Message function space M̂). Let Σ = {0, 1}n, with a partition function I : Σ → [N],

and β̂ : [N]× [n]× {0, 1} → {0, 1}κ. A state labeling function encodeI,t
β̂

: Σ → {0, 1}nκ is de�ned as

encodeI,t
β̂

(σ) =

{(
β̂(I(σ), 1, a1), . . . , β̂(I(σ), n, an)

)
if I(σ) > t,

⊥ otherwise,

where σ = (a1, ..., an). Then, we de�ne M̂ =
⋃
I:Σ→[N],t∈[N] M̂I,t, where

M̂I,t =
{(

encodeI,t
β̂

)
| β̂ : [N]× [n]× {0, 1} → {0, 1}κ

}
◁

We are now ready to state our composition theorem.

Theorem 1. Suppose G is a (P,M)-generator class that is decomposable into L = {Hi,Qi, P̊i}i∈[N], such

that, for each i ∈ [N], Hi is a (Pi,M̂I,i)-generator class and there exists an R3PO scheme Oi for (Hi,Qi, P̊i).

Then there exists an R3PO scheme O for (G,Q, P̊) where P̊ = P̊1 × · · · × P̊N .

Proof Sketch. The obfuscator O is shown in Figure 8. We prove that this is a valid obfuscation scheme
for every (P,M)-generator class G via a sequence of hybrids. Fix any G ∈ G and any Q ∈ Q. For each
i ∈ {1, 2, · · · , N}, we de�ne a sequence of hybrid experiments Hybridi,0 through Hybridi,6, and argue in-
distinguishability of the outputs from adjacent hybrids, and further show that the outcome of Hybridi,6 is
indistinguishable from that of Hybridi+1,0. Finally, the outcome of the real obfuscation experiment will be
shown to be identical to that of Hybrid1,0 and that of the ideal obfuscation experiment will be shown to be
identical to that of HybridN+1,0.

For each i ∈ [N], as we go from Hybridi,0 to Hybridi+1,0, we build a successively increasing (i + 1)-
partial reach-extractor Ei and a corresponding partial simulation. Ei is built recursively from an i-partial

26

reach-extractor Ei−1 and a one-step extractor Ei corresponding to Hi w.r.t. Q. This is immediate from the
tree-ordering property of reactive programs in P12. The corresponding partial simulation will simulate the
garbled circuit for partition i on a simulated obfuscation of a one-step σi-restricted program, where {σi} is
as extracted by Ei−1 and bounds the reach of the adversay in partition i.

� Hybridi,0: In this hybrid, the reactive program is generated by G after interacting with the adversary

Q|̂Ei−1. All garbled circuits upto partition i− 1 and the one-step obfuscated programs output by them are
simulated. The garbled circuits for partitions i, · · · , N are as in the real obfuscation O.

� Hybridi,1: In this hybrid, the ith garbled circuit is simulated on an input stti extracted by Ei−1, but
with a real output fi(σi) (that will have labels for all states reachable from σi). Indistinguishability follows
from a combination of reach restriction of Ei−1 and garbled circuit security.

� Hybridi,2: In this hybrid, we augment the interaction with additional programs corresponding to the

decomposition at partition i. That is, we let GUJi interact with Q|̂Ei−1⌊Wi. Ji outputs a one-step σi-
restricted reactive program, where σi is the state in partition i reachable by Ei−1. Indistinguishability holds

since, the interaction between G and Q|̂Ei−1 is unchanged, and so is the rest of the experiment.

� Hybridi,3: In this hybrid, we use the decomposition of G to Li to have HiTZi interact with Q|̂Ei−1⌊Wi.

� Hybridi,4: In this hybrid, we use the one-step extractor Ei and obfuscation simulator Simi for Hi from
the library to simulate the fi(σi) (obfuscation of the one-step program at σi). This �nishes the simulation
of the ith garbled circuit. Indistinguishability follows from R3PO security of Oi.

� Hybridi,5: In this hybrid, we rewrite the above as an interaction between GUJi and Q|̂Ei−1⌊Wî|Ei.
Indistinguishability follows from the property of Wi, that it outputs its entire state as auxiliary output.
Thus, decomposition holds even if a passive program Ei is allowed to see inside Wi.

� Hybridi,6: In this hybrid, we move a part of Ji to the other side to get back an interaction between G

and adversary Q composed with a new partial reach-extractor Ei (de�ned in terms of Ei−1⌊Wî|Ei and Ji).
Indistinguishability with Hybridi,5 follows from the properties of Ji. Also hybrid Hybridi,6 and Hybridi+1,0 are
identical to each other.

Please refer to Appendix A for the full proof that it is an R3PO scheme.

6 A Library of One-Step Program Obfuscators

We now give examples of simple generators that output �one-step� reactive programs that have a single tran-
sition from the start state, and R3PO obfuscations for them w.r.t. some standard cryptographic primitives.
The examples will also be useful as one-step program obfuscations to build obfuscations for bigger reactive
programs (via our composition theorem, Theorem 1).

6.1 Commitment Opening R3PO

Let Com = (Setup,Commit,Open) be a UC-secure extractable commitment scheme. We de�ne a class of
reactive programs, where the one-step transition corresponds to the opening of a commitment hardwired in
the program (and �xed during the interaction).

start σm

d s.t. Open(crs, c, d) = m ̸= ⊥

Σ1 = {start} Σ2 = {σm}m∈M

Fig. 9. Transition function πc,crs is hardwired with a commitment c and a setup crs. On input d, it transitions from
start to σm ∈ Σ2 i� d is a valid opening of c to m.

12 there is at most a single partition k < i from which states in partition i can be transitioned to. Then, the extraction
corresponds to using the one-step extractor Ek

27

Generator class and Program family. For a commitment scheme Com and message function classM,
the generator class GCom,M

commit is de�ned as a set of generators of the form HTZ for a �xed H and all polynomial
Z 13. The generator H behaves as follows. It accepts a setup crs and a commitment c from Q. It also accepts
a message function µ(β) ∈ M from Z. It then outputs a reactive program (πc,crs, µ

(β)), whose transition
function w.r.t. a state space Σ = {start} ∪ {σm|m ∈ M} is speci�ed as follows:

πc,crs(start, d) =

{
σm if d s.t. Open(crs, c, d) = m ̸= ⊥
start otherwise.

The partition function is de�ned as: Icommit(start) = 1 and Icommit(σm) = 2 for all m ∈ M.

Adversary class and Reach-Extractor. Let SetupSim denote the setup algorithm used by a simulator
for the security experiment of Com; then the adversary class QCom

commit is de�ned to have adversaries of the
form QT , where T ∈ {Setup,SetupSim} and Q is an arbitrary PPT program that runs T honestly, receives
crs from it, �xes a commitment c arbitrarily and sends (crs, c) to the generator.

In the real experiment of De�nition 16, T will correspond to Setup (the setup algorithm of Com). In
the ideal experiment, we de�ne an extractor E as follows. It replaces T to be the simulated setup SetupSim,
which outputs crs and a trapdoor for crs. When Q outputs a commitment c, it runs the extractor of Com
(using the trapdoor of crs) to extract the message m from c. However, recall that the extractor of the
commitment scheme cannot directly extract the commitment opening d, and thus E cannot output a valid
input for the real transition function. Instead, we will have E output X∗ = {m} and a relaxed transition
function Πm ∈ P̊commit de�ned as: Πm(start,m′) = σm if m = m′. It is easy to verify that E is a valid
reach-extractor.

R3PO. In Appendix B.1 we show how to construct a commitment scheme Com and an R3PO w.r.t.
(GCom,M

commit ,QCom
commit, P̊commit) from any UC-secure 2-round OT. This construction repurposes the OT scheme as

a commitment scheme, following [7, 30]. 2-round OT itself can be based on a variety of standard assumptions
such as DDH ([2, 51, 52]), quadratic residuosity assumption ([41, 52]) or learning with errors assumption
([52]). If the OT scheme is semi-honest secure, then we instead get a weakly-secure commitment scheme
(De�nition 4). We state the result as the following lemma.

Lemma 1. Given a UC-secure 2-round OT scheme in the CRS model, there exists a UC-secure commit-
ment scheme Com = (Setup,Commit,Open) and an R3PO scheme w.r.t. (GCom,M

commit ,QCom
commit

, P̊
commit

), for any
message function classM.

Further, given a semi-honest secure 2-round OT scheme, there exists a weakly-secure commitment scheme
Com = (Commit,Open) and an R3PO scheme w.r.t. (GCom,M

commit-sh,QCom
commit-sh

, P̊
commit-sh

), for any message
function classM.

6.2 Signature Checking

Let Sig = (gen, sign, verify, punct, psign) be a puncturable signature scheme (De�nition 11). We de�ne a class
of reactive programs, where the one-step transition corresponds to checking the signature of a �xed message
on a �xed veri�cation key. That is, the reactive program has hardwired a message m and a veri�cation key
vk, and transitions from the start state to the state σm on input a signature τ if vk veri�es (m, τ). All states
σm are de�ned as being in the same partition. Note that, such a reactive program is trivially reach-restricted.

One can de�ne a generator class (and thus the interaction) in one of two ways. We show that (surprisingly)
the same obfuscation is a valid R3PO for both cases.

� The generator picks the signature key pair and speci�es the veri�cation key vk. We discuss this in Sec-
tion 6.2.1 for the general case: Q speci�es a target message pre�x mpre.

� A semi-honest adversary Q speci�es the veri�cation key vk. We discuss this in Section 6.2.2.

13 the generator HTZ is designed so that, Z's only role is to specify the message function µ(β)

28

σ1
vk σ2

m

(τ,m) s.t. verify(vk, τ,m) = 1 and mpre is a pre�x of m

Σ1 = {σ1
vk}vk∈VK Σ2 = {σ2

m}m∈M

Fig. 10. Transition function πmpre[σ
1
vk] has mpre hardwired in it and vk encoded in the start state σ1

vk ∈ Σ1. On input
(τ , m), it transitions to σ2

m i� τ is a valid signature on m w.r.t. vk and mpre is a pre�x of m.

6.2.1 R3PO for Signature-Checking with Generator key

In this section, we consider the �rst case, the generator samples the signature key pair. The target message
from Q can be generalized to �xing only a pre�x mpre and reach restriction holds so long as generator gives
out at most a single signature for the target pre�x mpre.

Generator class and Program Family. The generator class GSig,Msign is a set of generators of the form
HSig
signTZ for a �xed HSig

sign and all polynomial time Z. The generator HSig
sign behaves as follows. It samples

a signature key pair (sk, vk) and sends vk to Q. It then accepts polynomial queries mi ∈ M from Q and
responds with sign(sk,m). It then accepts a target message m from Q, sets mpre to be the t-bit pre�x of m,
veri�es that at most a single signature with mpre was given out and punctures the key as punct(sk,mpre).
It �nally accepts a message function µ(β) ∈ M from Z and outputs a reactive program (πmpre[σ

1
vk], µ

(β), s)
with start state σ1

vk, whose transition function w.r.t. a state space Σ = {σ1
vk|vk ∈ VK} ∪ {σ2

m|m ∈ M} is
speci�ed as follows:

πmpre(σ
1
vk, (τ,m)) =

{
σ2
m if verify(vk, τ,m) = 1 and mpre is a pre�x of m

σ1
vk otherwise.

The partition function is de�ned as: Isign(σ1
vk) = 1 for all vk ∈ VK and Isign(σ2

m) = 2 for all m ∈ M.

Adversary class and Reach-Extractor. The adversary class is the set of all PPT Q. For any adversary
Q, let the target message be m and signature be τ . There is a trivial extractor that simply outputs πmpre[σ

1
vk]

and X∗ = {(m, τ)} from the transcript of Q's interaction.

R3PO. In Appendix B.2.3, we show how to construct a puncturable signature scheme Sig and an R3PO
w.r.t. (GSig,Msign , QSig

sign, PSig
sign) from any one-time signature with encryption (OTSE) scheme, which in turn

can be instantiated from the Decisional Di�e-Hellman assumption (DDH). Our construction borrows from
results and ideas in [21, 22]. We state the result as the following lemma.

Lemma 2. If there exists a semi-honest secure OTSE scheme, then there exists a puncturable signature
scheme Sig and an R3PO scheme OSig w.r.t. (GSig,Msign ,QSig

sign, P̊Sig
sign) for any message function spaceM.

6.2.2 R3PO for Signature-Checking with Adversarial key

In this section, we consider the case where adversary speci�es the signature key. In this case, note that the
generalization to �x only the pre�x mpre in the reactive program is not reach-restricted, since the adversary
can sign arbitrary messages and transition to all the corresponding states. Thus, we only consider reactive
programs that have hardwired a message m and a veri�cation key vk, and transition from the start state to
the state σm on input a message m and signature τ if vk veri�es (τ,m).

Generator class and Program Family. The generator class is a set of generators of the form HTZ for a
�xed H and all PPT Z. The generator H behaves as follows. It accepts a veri�cation key vk and a message
m from Q and outputs a reactive program with start state σ1

vk, whose transition function w.r.t. a state space
Σ = {σ1

vk|vk ∈ VK} ∪ {σ2
m|m ∈ M} is speci�ed as follows:

πm(σ1
vk, (τ)) =

{
σ2
m if verify(vk, τ,m) = 1

σ1
vk otherwise.

The partition function is de�ned as: Isign(σ1
vk) = 1 for all vk ∈ VK and Isign(σ2

m) = 2 for all m ∈ M.

29

Adversary class. The adversary class is a set of all PPT Q that honestly picks the signature key pair as
(sk, vk)← Sig.gen(1κ) and sends vk to the generator.

R3PO. There exists a trivial obfuscation scheme for GSigqsign via a general epsilon transition (refer Section 6.4).
Nevertheless, we show that the obfuscation scheme described in Appendix B.2.3 for signature checking with
generator key, is infact also a secure obfuscation scheme for signature checking with adversary key. We state
the result as the following lemma.

Lemma 3. If there exists a semi-honest secure OTSE scheme, then there exists a puncturable signature
scheme Sig and a PPT program OSig s.t. OSig is an R3PO obfuscation scheme w.r.t. (GSigqsign,Q, P̊Sig

qsign) as

well as (GSigsign-po,Q, P̊Sig
sign-po).

6.3 Hash with Selective Opening

Let Hash = (crsGen, hash, openBlock, acceptBlock) be a block-openable collision-resistant hash function scheme
(De�nition 6), wherein the hash digest on a matrix D can be opened via the openBlock algorithm to any
index i in D. We de�ne a class of reactive programs, where the one-step transition corresponds to the opening
of a �xed hash digest at a �xed index position.

start σy
k s.t. acceptBlock(crs, digest, i, k) = y

Σ1 = {start} Σ2 = {σy}y∈{0,1}κ

Fig. 11. Transition Program πdigest,i,crs for Hash with Selective Opening.

Generator class and Program Family. The generator class GHashhash is a set of generators of the form H||Z
for a �xed H and all polynomial Z. The generator H behaves as follows. It generates crs← crsGen(1κ), sends
it to Q, and then reads a hash digest digest and a block index i from Q. It also accepts a message function

µ̂(β̂) ∈ M̂ from Z. It then outputs a reactive program (πdigest,i,crs, µ̂
(β̂)), whose transition function w.r.t. a

state space Σ = {start} ∪ {σy|y ∈ M} is speci�ed as follows:

πdigest,i,crs(start, k) =

{
σy if acceptBlock(crs, digest, i, k) = y

start otherwise.

The partition function is de�ned as: Ihash(start) = 1 and Ihash(σy) = 2 for all y ∈ M.

Adversary class and Reach-Extractor. The adversary class is de�ned as the set of all PPT QT , where
T is a setup in {crsGen} that samples the crs and each Q honestly constructs the hash of a message D ∈ M
as digest = hash(crs, y). For any adversary Q, there exists a trivial extractor that simply looks inside Q,
extracts the message D, digest digest and the opening k for target index i; and outputs πdigest,i,crs, X

∗ = {k}.
R3PO. In Appendix B.3 we show how to construct an arbitrarily-compressing hash scheme Hash and an
R3PO scheme w.r.t. (GHashhash,QHash

hash, P̊Hash
hash), assuming a laconic OT scheme with factor-2 compression. We

state the result as the following lemma.

Lemma 4. If there exists a laconic OT scheme with factor-2 compression, then there exists an arbitrarily-
compressing hash scheme Hash and an R3PO scheme w.r.t. (GHash

hash
,QHash

hash
, P̊Hash

hash
).

6.4 Epsilon-Transition R3PO

The generator class GΣϵ over state space Σ = Σ1∪Σ2∪Σ3 is a set of generators of the form HTZ, for a �xed
H and all PPT Z, where H behaves as follows. It accepts two state σ1 ∈ Σ1, σ2 ∈ Σ2 from Q and outputs
a reactive program that transitions from σ1 (as the start state) to σ2 on input ϵ. That is:

πσ2(σ1, ϵ) = σ2

30

This can be generalized to allow Q to specify a function f . Then, the transition corresponds to transitioning
from σ1 to f(σ1) ∈ Σ2 on input ϵ. The corresponding partition function is simply Iϵ(σ) = i if σ ∈ Σi.

σ1 f(σ1)
ϵ

Σ1 Σ2

Fig. 12. Transition Program πf

An R3PO obfuscation scheme for Epsilon Transition. There is a trivial R3PO obfuscation scheme
for PΣ

ϵ w.r.t. adversary class Q (all PPT Q) and a relaxed program class same as PΣ
ϵ):

Oϵ(πf , µ̂
(β̂)) = µ̂(β̂)(f(σ1))

6.5 Generalizing the State Space and Partition Function

Let G be a (P,M̂, I)-generator class of the form HTZ, for a �xed H and PPT Z (where P is de�ned w.r.t.

a state space Σ and I : |Σ| → [N] is a partition function), and O be an R3PO obfuscation for (G,Q, P̊).
Let P be a set of pre�xes, Σ′ = P || Σ14 be a state space, and I ′ : |Σ′| → [N ′] be a partition function s.t.
there exists an injective map η : [N]→ [N ′] which satis�es

∀pre ∈ P, ∀σ ∈ Σ, I ′(pre||σ) = η(I(σ))

We de�ne the following wrapper programs. In particular, for all pre ∈ P, π(α) ∈ P, we describe the
program WrapOne(pre, π(α)) in Figure 13.

Input: (σ′, x).

� Set y as

y =

{
pre || π(α)(σ, x) if ∃σ s.t. σ′ = pre∥σ,
σ′ otherwise.

� Output y.

Fig. 13. Wrapper Program WrapOne(pre, π(α))

Similarly, for all pre ∈ P, µ̂(β̂) ∈ M̂, we de�ne the program WrapTwo(pre, µ̂(β̂), µ̂(β̂)′) in Figure 14.
Then, we modify G to get a generator class G′ that supports state space Σ′ and partition function I ′ as

follows:

� Program family P ′: Every program in P ′ is de�ned as a wrapper on a corresponding program π(α) ∈P.
That is,

P ′ = {WrapOne(pre, π(α)) | pre ∈ P, π(α) ∈P}

� Program family P̊ ′: This program family is same as P ′.

14 We basically consider all states of the form {pre∥σ}pre∈P,σ∈Σ .

31

Input: σ′.

� Parse β̂′ as (β̂0, β̂1).

� If µ̂(β̂) ̸= encodeβ̂1
(.) then abort.

� Else, set y as

y =

{(
encodeβ̂0

(pre), encodeβ̂1
(σ)

)
if ∃σ s.t. σ′ = pre∥σ,

⊥ otherwise.

� Output y.

Fig. 14. Wrapper Program WrapTwo(pre, µ̂(β̂), µ̂(β̂)′)

� A (P ′,M̂)-Generator Class G′: This class contains all generators of the form H ′TZ ′ for all PPT Z ′ and

a �xed H ′, where H ′ behaves as follows: it internally runs H, allows H to interact with Z ′, gets output

((π(α), µ(β)), aG) from H, receives (pre, µ̂(β̂)′ , I ′) from Z ′ and �nally outputs ((π(α)′ , µ̂(β̂)′), aG), where

π(α)′ = WrapOne(pre, π(α)) and µ̂(β̂)′ = WrapTwo(pre, µ̂(β̂), µ̂(β̂)′).

We now build an obfuscator scheme for (G′,Q, P̊ ′) (refer Figure 15).

Preliminaries: Let G be a (P,M̂, I)-generator class and O be an R3PO obfuscation for (G,Q, P̊). Also, let pre
be a �xed state pre�x, I′ be a partition function and η be an injective map s.t. ∀σ ∈ Σ, η(I(σ)) = I′(pre||σ).
Input: (π(α)′ , µ̂(β̂)′).

� Parse π(α)′ as WrapOne(pre, π(α)).

� Parse β̂′ as (β̂0, β̂1) and µ̂(β̂)′ as WrapTwo(pre, µ̂(β̂), µ̂(β̂)′).

� Construct ρ← O((π(α), µ(β))).

� Output
(
encodeβ̂0

(pre), ρ
)
.

Fig. 15. Obfuscator O′ for (G′,Q, P̊ ′)

Lemma 5. Let G be a (P,M̂, I)-generator class and O be an R3PO obfuscation for (G,Q, P̊). Then for
all pre�xes pre ∈ P, partition function I ′ and injective map η s.t. ∀σ ∈ Σ, η(I(σ)) = I ′(pre||σ), there exists

an R3PO scheme for (G′,Q, P̊ ′).

Proof: To show that the scheme given in Figure 15 is a valid obfuscation scheme for (G′,Q, P̊ ′), we need
to de�ne a simulator Sim′ and an extractor E ′ satisfying our R3PO de�nition. Since O is a valid obfuscation
scheme for (G,Q, P̊), there must exist a simulator Sim and extractor E for security. E ′ can simply be de�ned
to use E and Sim′ can also be de�ned to use Sim for achieving our notion as follows. Note that the new
message function has been split into two parts - one for the pre�x and another for the original program.
Since the pre�x is known to the extractor, extraction is trivial as transitions only happen according to the
original program. Plus the �rst part of the message function, corresponding to the pre�x, is unchanged for
the entire program. The original simulator can be used for the second part. □

32

7 Private Multi-Authority ABE

In this section, we de�ne Private Multi-Authority ABE and show how to instantiate it from any CP-ABE
scheme, using R3PO schemes for commitment-opening and signatures together. Section 2.6 gives an overview
of the notion and the construction described below.

7.1 De�nition for Private Multi-Authority ABE

Let the authorities in the system be A1, . . . ,AN, s.t. each authority Ai publishes its public key mpki after a

local non-interactive setup. Each authority Ai also has an attribute-granting policy Θgid
i w.r.t. each gid. A

sender encrypts a message m with a ciphertext-policy ϕ under the public keys of all the authorities, s.t. a
receiver with global identi�er gid and attribute vector x̄ can decrypt it only if it has attribute key for x̄ and
each authorities' attribute-granting policies accepts (that is, ∀i ∈ [N], Θgid

i (x̄) = 1) and the ciphertext-policy
accepts (that is, ϕ(x̄) = 1). To get the attribute key for attribute vector x̄, the receiver sends a key-request reqi
to each authority Ai, gets back a key-component skreqi , and combines all the key-components to construct
the key skx̄.

We de�ne security w.r.t. a corruption model where the adversary is allowed to maliciously corrupt the
receiver and semi-honestly corrupt any subset of the authorities. If the receiver is honest, we require that any
key-request req reveals nothing about x̄ to the adversary (even if it semi-honestly corrupts all the authorities).
If the receiver is corrupt, we require that the adversary is unable to distinguish between encryptions of any
m0 andm1 w.r.t. a policy ϕ, if it did not send a key-request for any x̄ that satis�es ϕ to the honest authorities.

De�nition 19 (Private Multi-Authority ABE (p-MA-ABE)). A p-MA-ABE scheme for N author-
ities, message space M, class C of ciphertext-policies and class Θ of attribute-granting policies, both over
n-bit attributes, and global identi�ers space GID consists of PPT algorithms as follows:

� SetupAuth(1κ)→ (mpk,msk): On input the security parameter κ, outputs the master keys for an individual
authority.

� Encrypt
(
{mpki}i∈[N], ϕ,m

)
→ ct: On input the master public keys of all authorities, a policy ϕ : {0, 1}n →

{0, 1} in C and a message m ∈ M, outputs a ciphertext ct.

� KeyRequest
(
{mpki}i∈[N], gid, x̄

)
→ (st, {reqi}i∈[N]): On input the master public keys of all authorities, a

global identity gid ∈ GID and an attribute vector x̄ ∈ {0, 1}n, outputs a recipient state st and requests
{req1, . . . , reqN}.

� KeyGen
(
i,mski, Θ

gid
i , reqi, {mpkj}j∈[N]

)
→ skreqi : On input an authority index i ∈ [N], master secret key

mski, an attribute-granting policy Θgid
i , a request reqi and the master public keys of all authorities, outputs

a key component skreqi or ⊥.
� KeyCombine

(
st, {skreqi}i∈[N]

)
→ skx̄: On input a receipient state st and a set of key components {skreqi}i∈[N],

outputs a secret key skx̄.

� Decrypt (skx̄, ct)→ m: On input a secret key skx̄ and a ciphertext ct, outputs a message m or ⊥.

The following correctness and security properties are required:

1. Correctness: ∀ security parameter κ, number of authorities N ∈ N, identities gid ∈ GID, messagesm ∈ M,
ciphertext policies ϕ ∈ C, attribute granting policies {Θgid

i ∈ Θ}i∈[N], and attribute vectors x̄ s.t ϕ(x̄) = 1

and Θgid
i (x̄) = 1 for all i ∈ [N], it holds that if:

∀i ∈ [N], (mpki,mski)← SetupAuth(1κ)

(st, {reqi}i∈[N])← KeyRequest({mpki}i∈[N], gid, x̄)

∀i ∈ [N], skreqi ← KeyGen
(
i,mski, Θ

gid
i , reqi, {mpki}i∈[N]

)
skx̄ ← KeyCombine

(
st, {skreqi}i∈[N]

)
then Pr

[
Decrypt

(
skx̄,Encrypt({mpki}i∈[N], ϕ,m)

)
= m

]
= 1.

33

2. Security of encryption: For any PPT adversary A = (A0,A1,A2,A3) with semi-honest corruption of
any subset of authorities and malicious corruption of the receiver, there exists a negligible function negl(.)
such that the following holds in the experiment INDp-MA-ABE

mesg shown in Figure 16:

Pr[INDp-MA-ABE
mesg (A) = 0] ≤ 1

2
+ negl(λ).

Parameter: Let κ be the security parameter, N be the number of authorities.

Experiment INDp-MA-ABE
mesg

� (st0, H)← A0(1
κ).

� {(mpki,mski)← SetupAuth(1κ)}i∈H .

�
(
st1, {mpki}i∈[N]\H

)
← A1(st0, {mpki}i∈H).

Let Ok(y, {Θgid
i }i∈H) := KeyGen

(
k,mskk, Θ

gid
k , y, {mpki}i∈[N]

)
, where y = (gid, c).

� (st2, ϕ,m0,m1)← A{Ok(.,.)}k∈H
2 (st1)

� b← {0, 1}.
� ct← Encrypt

(
{mpki}i∈[N], ϕ,mb

)
.

� b′ ← A{Ok(.)}k∈H
3 (st2, ct).

� If A2 or A3 queried any oracle with di�erent key-policies {Θgid
i }i∈H for the same globalid gid, output a← {0, 1}.

If ∃gid, x̄ s.t. ϕ(x̄) = 1 and, ∀k ∈ H, Θgid
k (x̄) = 1, and ∃r, k∗ ∈ H s.t. A2 or A3 queried the oracle Ok∗ with reqk∗ ,

where (st, {reqk}k∈[N])← KeyRequest({mpkk}k∈[N], gid, x̄; r), then output a← {0, 1}.
Else, output a = b⊕ b′.

Experiment IND
p-MA-ABE
attr

� (st0, {mpki}i∈[N], x̄0, x̄1, gid)← A0(1
κ).

� b← {0, 1}.
� b′ ← A1(st0,KeyRequest({mpki}i∈[N], gid, x̄b)).

� Output b⊕ b′.

Fig. 16. p-MA-ABE security experiments.

3. Receiver Privacy against Semi-Honest Adversary: For any PPT adversary A = (A0,A1) that
corrupts each authority in a semi-honest way, there exists a negligible function negl(.) such that the

following holds in the experiment INDp-MA-ABE
attr shown in Figure 16:

Pr[INDp-MA-ABE
attr (A) = 0] ≤ 1

2
+ negl(λ). ◁

7.2 Construction for Private Multi-Authority ABE

In this section, we give a scheme for p-MA-ABE from the following primitives:

� a CP-ABE scheme (De�nition 2)

� a non-interactive UC secure commitment scheme (De�nition 3)

� a puncturable signature scheme (De�nition 11)

� an R3PO scheme Op-MA-ABE w.r.t. (G1p-MA-ABE,Qp-MA-ABE) and (G2p-MA-ABE,Qp-MA-ABE), which we de-
scribe in Appendix C.2.

34

Let the number of authorities be N, space of access policies C correspond exactly to the policies supported
by the underlying single-authority CP-ABE scheme.

Completeness requirement of Commitment scheme: We will additionally require that, given a com-
mitment setup Com.crs, for any c, d s.t. Com.Open(Com.crs, c, d) = m, it holds that (m, c, d) lies in the support
of the commit algorithm, that is: there exists r s.t. (c, d) ← Com.Commit(Com.crs,m; r). Any commitment
scheme can be enhanced to have this property, by modifying it as follows.

Commit′(Com.crs,m; r) =

{
(c, d) if r = 0k||c||d and Com.Open(Com.crs, c, d) = m

Com.Commit(Com.crs,m; r) otherwise.

Protocol for Private Multi-Authority ABE

Parameter: Let κ be the security parameter, N be the number of authorities.

Primitives:

A CP-ABE scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt)

A Commitment scheme Com = (Com.Setup,Com.Commit,Com.Open)

A puncturable signature scheme Sig = (Sig.gen,Sig.sign,Sig.verify)

An obfuscation scheme Op-MA-ABE

� p-MA-ABE.SetupAuth(1κ):

• Sample the common random string Com.crs← Com.Setup(1κ).

• Sample the signature keys (Sig.vk,Sig.sk)← Sig.gen(1κ).

• Sample the ABE keys (ABE.mpk,ABE.msk)← ABE.Setup(1κ).

• Set mpk := (Com.crs,Sig.vk,ABE.mpk) and msk := (Sig.sk,ABE.msk).

• Output (mpk,msk).

� p-MA-ABE.Encrypt (pk, ϕ,m):

• For all i ∈ [N], parse mpki as (Com.crsi, Sig.vki,ABE.mpki).

• Sample s1, . . . , sN s.t. s1 + . . .+ sN = m.

• For all i ∈ [N], compute ABE.cti ← ABE.Encrypt(ABE.mpki, ϕ, si).

• Output ct := {ABE.ct1, . . . ,ABE.ctN}.

� p-MA-ABE.Decrypt (skx̄, ct):

• Parse skx̄ as {skABEx̄,1 , . . . , skABEx̄,N }.
• Parse ct as {ABE.ct1, . . . ,ABE.ctN}.
• For all i ∈ [N], set si = ABE.Decrypt(ABE.mpki, sk

ABE
x̄,i ,ABE.cti).

• Set m := s1 + . . .+ sN.

• Output m.

� p-MA-ABE.KeyRequest(pk, gid, x̄):

• For all i ∈ [N], parse mpki as (Com.crsi, Sig.vki,ABE.mpki),

compute (ci, di)← Com.Commit(Com.crsi, gid∥x̄)
and set reqi := (gid, ci).

• Set st := (gid, x̄, {di}i∈[N]).

• Output (st, {reqi}i∈[N]).

35

� p-MA-ABE.KeyGen(t,mskt, Θ
gid
t , reqt, pk): Computes

• Parse msk as (Sig.skt,ABE.mskt).

• For all i ∈ [N], parse mpki as (Com.crsi, Sig.vki,ABE.mpki).

• Parse reqt as (gid, ct).

• Fix π
(α)
pp ∈ Pp-MA-ABE where pp = (t,Com.crst, ct), α = Θgid

t , and start = σ1
pk,gid.

• Fix µ(β) ∈Mp-MA-ABE where β = (0, Sig.skt,ABE.mskt).

• Compute skreqt ← Op-MA-ABE(π
(α)
pp , µ(β)).

• Output skreqt .

� p-MA-ABE.KeyCombine
(
st, {skreqi}i∈[N]

)
:

• Parse st as (gid, x̄, {di}i∈[N]).

• For all t ∈ [N], parse skreqt as ρt and evaluate as τt ← ρt(dt)
15

• Finally, for all t ∈ [N], compute skABEx̄,t ← ρt(τ1, . . . , τN).

• Output {skABEx̄,t }t∈[N].

Fig. 17. A secure p-MA-ABE Protocol.

We now prove that the protocol in Figure 17 is in fact a secure p-MA-ABE scheme.

Lemma 6. If there exists a CP-ABE scheme, a non-interactive UC secure commitment scheme, a punc-
turable signature scheme, and an R3PO scheme Op-MA-ABE w.r.t. (G1p-MA-ABE,Qp-MA-ABE)

16, then there
exists a secure p-MA-ABE scheme.

Please refer to Appendix C for the full details of the proof.

References

[1] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. �Multi-Party Functional Encryption�. In: Theory of Cryp-
tography. 2021.

[2] William Aiello, Yuval Ishai, and Omer Reingold. �Priced Oblivious Transfer: How to Sell Digital Goods�. In:
EUROCRYPT. 2001.

[3] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Di�ering-Inputs Obfuscation
and Applications. Cryptology ePrint Archive, Report 2013/689. 2013.

[4] Michael Backes, Birgit P�tzmann, and Michael Waidner. �A General Composition Theorem for Secure Reactive
Systems�. In: Theory of Cryptography. 2004, pp. 336�354.

[5] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. �Obfuscation for
Evasive Functions�. In: Theory of Cryptography. 2014, pp. 26�51.

[6] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
�On the (Im)Possibility of Obfuscating Programs�. In: J. ACM 59.2 (2012). issn: 0004-5411.

[7] Fabrice Benhamouda and Huijia Lin. �k-Round Multiparty Computation from k-Round Oblivious Transfer
via Garbled Interactive Circuits�. In: EUROCRYPT. Vol. 10821. Lecture Notes in Computer Science. 2018,
pp. 500�532.

[8] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. �On Virtual Grey Box Obfuscation for
General Circuits�. In: CRYPTO. Vol. 8617. Lecture Notes in Computer Science. 2014, pp. 108�125.

[9] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. �Public Key Encryption with
Keyword Search�. In: EUROCRYPT. Ed. by Christian Cachin and Jan L. Camenisch. 2004, pp. 506�522.

[10] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. �Anonymous IBE, Leakage Resilience
and Circular Security from New Assumptions�. In: EUROCRYPT. 2018, pp. 535�564.

[11] Zvika Brakerski and Vinod Vaikuntanathan. �Lattice-Based FHE as Secure as PKE�. In: ITCS '14. 2014, 1�12.
[12] Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring, and Jesper Buus Nielsen.

Encryption to the Future: A Paradigm for Sending Secret Messages to Future (Anonymous) Committees. Cryp-
tology ePrint Archive, Paper 2021/1423. 2021.

15 formally, ρt also takes as input a state σ1 and also outputs a state σ2. for brevity, we ignore mentioning it here.
16 which is also an R3PO w.r.t. (G2p-MA-ABE,Qp-MA-ABE).

36

[13] R. Canetti. �Universally composable security: a new paradigm for cryptographic protocols�. In: Proceedings
42nd IEEE Symposium on Foundations of Computer Science. 2001, pp. 136�145.

[14] Ran Canetti. �Security and Composition of Multiparty Cryptographic Protocols�. In: J. Cryptol. 13.1 (2000),
143�202.

[15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. �A Simpler Variant of Universally Composable Security for
Standard Multiparty Computation�. In: CRYPTO. 2015, pp. 3�22.

[16] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. �Obfuscation of Probabilistic Circuits
and Applications�. In: Theory of Cryptography. 2015, pp. 468�497.

[17] Melissa Chase. �Multi-authority Attribute Based Encryption�. In: Theory of Cryptography. 2007, pp. 515�534.
[18] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroniadou. �La-

conic Oblivious Transfer and Its Applications�. In: CRYPTO. 2017, pp. 33�65.
[19] Pratish Datta, Ilan Komargodski, and Brent Waters. �Decentralized Multi-authority ABE for DNFs from LWE�.

In: EUROCRYPT. 2021, pp. 177�209.
[20] Danny Dolev, Cynthia Dwork, and Moni Naor. �Non-Malleable Cryptography�. In: SIAM Journal of Computing

30 (Mar. 2001).
[21] Nico Döttling and Sanjam Garg. �From Selective IBE to Full IBE and Selective HIBE�. In: Theory of Cryptog-

raphy. 2017, pp. 372�408.
[22] Nico Döttling and Sanjam Garg. �Identity-Based Encryption from the Di�e-Hellman Assumption�. In: CRYPTO.

2017, pp. 537�569.
[23] Cynthia Dwork, Moni Naor, and Amit Sahai. �Concurrent Zero-Knowledge�. In: J. ACM 51.6 (2004), 851�898.
[24] Steven D. Galbraith and Lukas Zobernig. �Obfuscating Finite Automata�. In: SAC. Vol. 12804. Lecture Notes

in Computer Science. 2020, pp. 90�114.
[25] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. �Registration-Based

Encryption: Removing Private-Key Generator from IBE�. In: Theory of Cryptography. 2018, pp. 689�718.
[26] Sanjam Garg, Mohammad Hajiabadi, MohammadMahmoody, Ahmadreza Rahimi, and Sruthi Sekar. �Registration-

Based Encryption from Standard Assumptions�. In: PKC. 2019, pp. 63�93.
[27] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-Box Garbled RAM. Cryptology ePrint Archive, Report

2015/307. 2015.
[28] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. �Garbled RAM From One-Way Functions�.

In: STOC '15. 2015, 449�458.
[29] Sanjam Garg and Antigoni Polychroniadou. �Two-Round Adaptively Secure MPC from Indistinguishability

Obfuscation�. In: Theory of Cryptography. 2015, pp. 614�637.
[30] Sanjam Garg and Akshayaram Srinivasan. �Two-Round Multiparty Secure Computation from Minimal As-

sumptions�. In: EUROCRYPT. 2018, pp. 468�499.
[31] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs. �Garbled RAM

Revisited�. In: EUROCRYPT. 2014, pp. 405�422.
[32] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. �Attribute-Based Encryption for Circuits�. In: J.

ACM 62.6 (2015).
[33] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. �Attribute-Based Encryption for Fine-Grained

Access Control of Encrypted Data�. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security. CCS '06. 2006, 89�98.

[34] Satoshi Hada and Toshiaki Tanaka. �On the existence of 3-round zero-knowledge protocols�. In: CRYPTO.
1998, pp. 408�423.

[35] Dennis Hofheinz and Victor Shoup. �GNUC: A New Universal Composability Framework�. In: J. Cryptol. 28.3
(2015), 423�508.

[36] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan. �Securely Obfuscating Re-
encryption�. In: Theory of Cryptography. 2007, pp. 233�252.

[37] Susan Hohenberger and Brent Waters. �Attribute-Based Encryption with Fast Decryption�. In: PKC. 2013,
pp. 162�179.

[38] Yuval Ishai, Omkant Pandey, and Amit Sahai. �Public-Coin Di�ering-Inputs Obfuscation and Its Applications�.
In: Theory of Cryptography. 2015, pp. 668�697.

[39] Aayush Jain, Huijia Lin, and Amit Sahai. �Indistinguishability Obfuscation from Well-Founded Assumptions�.
In: STOC 2021. 2021, 60�73.

[40] Charanjit S. Jutla and Arnab Roy. �Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces�. In: ASI-
ACRYPT. 2013, pp. 1�20.

37

[41] Yael Tauman Kalai. �Smooth Projective Hashing and Two-Message Oblivious Transfer�. In: EUROCRYPT.
2005, pp. 78�95.

[42] Sam Kim.Multi-Authority Attribute-Based Encryption from LWE in the OT Model. Cryptology ePrint Archive,
Report 2019/280. 2019.

[43] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. �Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption�. In: EURO-
CRYPT. 2010, pp. 62�91.

[44] Allison Lewko and Brent Waters. �Decentralizing Attribute-Based Encryption�. In: EUROCRYPT. 2011, pp. 568�
588.

[45] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. �Indistinguishability Obfuscation with Non-trivial
E�ciency�. In: PKC. 2016, pp. 447�462.

[46] Steve Lu and Rafail Ostrovsky. �How to Garble RAM Programs?� In: EUROCRYPT. 2013, pp. 719�734.
[47] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. �Positive Results and Techniques for Obfuscation�. In:

EUROCRYPT. 2004, pp. 20�39.
[48] Ueli Maurer. �Constructive Cryptography � A New Paradigm for Security De�nitions and Proofs�. In: Theory

of Security and Applications. 2012, pp. 33�56.
[49] Daniele Micciancio and Stefano Tessaro. �An Equational Approach to Secure Multi-Party Computation�. In:

ITCS '13. 2013, 355�372.
[50] Yan Michalevsky and Marc Joye. �Decentralized Policy-Hiding ABE with Receiver Privacy�. In: ESORICS,

Proceedings, Part II. 2018, pp. 548�567.
[51] Moni Naor and Benny Pinkas. �E�cient oblivious transfer protocols�. In: SODA '01. 2001.
[52] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. �A Framework for E�cient and Composable Oblivious

Transfer�. In: CRYPTO. 2008, pp. 554�571.
[53] Manoj Prabhakaran and Amit Sahai. �New Notions of Security: Achieving Universal Composability without

Trusted Setup�. In: STOC '04. 2004, 242�251.
[54] Amit Sahai and Brent Waters. �Fuzzy Identity-Based Encryption�. In: EUROCRYPT. 2005, pp. 457�473.
[55] Amit Sahai and Brent Waters. �How to Use Indistinguishability Obfuscation: Deniable Encryption, and More�.

In: STOC '14. 2014, 475�484.
[56] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-Authority ABE from Lattices without Random Oracles.

Cryptology ePrint Archive, Paper 2022/1194. https://eprint.iacr.org/2022/1194. 2022. url: https:
//eprint.iacr.org/2022/1194.

[57] Daniel Wichs and Giorgos Zirdelis. �Obfuscating Compute-and-Compare Programs under LWE�. In: FOCS.
2017, pp. 600�611.

[58] Douglas Wikström. �Simpli�ed Universal Composability Framework�. In: Theory of Cryptography. 2016, pp. 566�
595.

[59] Andrew Chi-Chih Yao. �How to generate and exchange secrets�. In: 27th Annual Symposium on Foundations
of Computer Science (sfcs 1986). 1986, pp. 162�167.

[60] Kelly Yun, Xin Wang, and Rui Xue. �Identity-Based Functional Encryption for Quadratic Functions from
Lattices�. In: Information and Communications Security. 2018.

38

https://eprint.iacr.org/2022/1194
https://eprint.iacr.org/2022/1194
https://eprint.iacr.org/2022/1194

Appendix
A Proof of Theorem 1

Theorem 1 (Restated). Suppose G is a (P,M)-generator class that is decomposable into L = {Hi,Qi, P̊i}i∈[N],

such that, for each i ∈ [N], Hi is a (Pi,M̂I,i)-generator class and there exists an R3PO scheme Oi for

(Hi,Qi, P̊i). Then there exists an R3PO scheme O for (G,Q, P̊) where P̊ = P̊1 × · · · × P̊N .

Proof Sketch. The obfuscator O is shown in Figure 8. We prove that this is a valid obfuscation scheme
for every (P,M)-generator class G via a sequence of hybrids. Fix any G ∈ G and any Q ∈ Q. For each
i ∈ {1, 2, · · · , N}, we de�ne a sequence of hybrid experiments Hybridi,0 through Hybridi,6, and argue in-
distinguishability of the outputs from adjacent hybrids, and further show that the outcome of Hybridi,6 is
indistinguishable from that of Hybridi+1,0. Finally, the outcome of the real obfuscation experiment will be
shown to be identical to that of Hybrid1,0 and that of the ideal obfuscation experiment will be shown to be
identical to that of HybridN+1,0.

For each i ∈ [N], as we go from Hybridi,0 to Hybridi+1,0, we build a successively increasing (i + 1)-
partial reach-extractor Ei and a corresponding partial simulation. Ei is built recursively from an i-partial
reach-extractor Ei−1 and a one-step extractor Ei corresponding to Hi w.r.t. Q. This is immediate from the
tree-ordering property of reactive programs in P17. The corresponding partial simulation will simulate the
garbled circuit for partition i on a simulated obfuscation of a one-step σi-restricted program, where {σi} is
as extracted by Ei−1 and bounds the reach of the adversay in partition i.

� Hybridi,0: In this hybrid, the reactive program is generated by G after interacting with the adversary

Q|̂Ei−1. All garbled circuits upto partition i− 1 and the one-step obfuscated programs output by them are
simulated. The garbled circuits for partitions i, · · · , N are as in the real obfuscation O.

� Hybridi,1: In this hybrid, the ith garbled circuit is simulated on an input stti extracted by Ei−1, but
with a real output fi(σi) (that will have labels for all states reachable from σi). Indistinguishability follows
from a combination of reach restriction of Ei−1 and garbled circuit security.

� Hybridi,2: In this hybrid, we augment the interaction with additional programs corresponding to the

decomposition at partition i. That is, we let GUJi interact with Q|̂Ei−1⌊Wi. Ji outputs a one-step σi-
restricted reactive program, where σi is the state in partition i reachable by Ei−1. Indistinguishability holds

since, the interaction between G and Q|̂Ei−1 is unchanged, and so is the rest of the experiment.

� Hybridi,3: In this hybrid, we use the decomposition of G to Li to have HiTZi interact with Q|̂Ei−1⌊Wi.
� Hybridi,4: In this hybrid, we use the one-step extractor Ei and obfuscation simulator Simi for Hi from

the library to simulate the fi(σi) (obfuscation of the one-step program at σi). This �nishes the simulation
of the ith garbled circuit. Indistinguishability follows from R3PO security of Oi.

� Hybridi,5: In this hybrid, we rewrite the above as an interaction between GUJi and Q|̂Ei−1⌊Wî|Ei.
Indistinguishability follows from the property of Wi, that it outputs its entire state as auxiliary output.
Thus, decomposition holds even if a passive program Ei is allowed to see inside Wi.

� Hybridi,6: In this hybrid, we move a part of Ji to the other side to get back an interaction between G

and adversary Q composed with a new partial reach-extractor Ei (de�ned in terms of Ei−1⌊Wî|Ei and Ji).
Indistinguishability with Hybridi,5 follows from the properties of Ji. Also hybrid Hybridi,6 and Hybridi+1,0 are
identical to each other.
Proof: We �rst state some key observations that will be useful in interpreting the hybrids:

� Programs Ji and Ki. Let the simulators corresponding to the decomposition (De�nition 17) of G, Q to
Li at any partition i be Ji, Wi, Zi. We rede�ne Ji as a composition of two programs Ji and Ki, s.t. Ki is

a non-interacting program that uniformly samples µ̂
(β̂)
i and outputs it at the end of the interaction. This

corresponds to the fact that Ji samples µ̂
(β̂)
i uniformly at the end of the interaction.

17 there is at most a single partition k < i from which states in partition i can be transitioned to. Then, the extraction
corresponds to using the one-step extractor Ek

39

� Partial reach-extractor Ei. For any i, as we go from hybrid Hybridi,0 to Hybridi+1,0, we will be building an
i-partial reach-extractor recursively from an i− 1-partial reach-extractor Ei−1 and an one-step extractor

Ei as follows. Ei−1 outputs (Πi−1, X∗,i−1) and Ei outputs (Π̂i, X̂∗i); then, output of Ei is de�ned as

Πi = Πi−1 × Π̂i, X
∗,i = X∗,i−1 × X̂∗i . The partial extractor E0 simply outputs aQ.

� Sampling the labeling function β̂.

• Hybrids with generator G sample the labeling function β̂ uniformly at random outside the interaction.

• Hybrids with generator GUJi∥Ki has Ki sample β̂(k, ., .) for k ∈ [i,N] uniformly at random. The labeling

functions β̂(k, ., .) for k < i are sampled uniformly at random outside the interaction.

• Hybrids with generator HiTZi has Zi sample β̂(k, ., .) for k ∈ [i,N] uniformly at random. The labeling

functions β̂(k, ., .) for k < i are sampled uniformly at random outside the interaction.

In all the three cases above, the distribution of β̂ does not change.

Reach-extractor and obfuscation simulator for G. As we prove the theorem, we also construct the
extractor and simulator that satisfy the R3PO de�nition. Looking ahead, the reach-extractor for G w.r.t. the
adversary Q corresponds to EN+1. Similarly, the R3PO simulator is essentially HybridN+1,0, excluding the
interaction.

� Hybridi,0: In this hybrid, the reactive program is generated by G while interacting with the adversary

Q|̂Ei−1, where Ei−1 is empty for i = 1 and the composite machine (Ei−2|Wi−1̂|Ei∥Ji−1) for i > 1. We show
in Lemma 7 that Ei−1 is a i-partial reach-extractor for Q w.r.t. G.

Hybridi,0:
� (π(α), µ(β), aG; aQ,Π

i−1, X∗,i−1)← ⟨G : Q|̂Ei−1⟩
� Sample β̂.
� De�ne Σrch = reachΠi−1(X∗,i−1) and extract {Π̂j , X̂∗

j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j < i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� Sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
� Let yσj = (ρ̃j , µ

(β)(σj)), labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each 1 < j ≤ N such that j ≥ i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

� Hybridi,1: In this hybrid, the ith garbled circuit is simulated given a input σi, input labels encodeI,i
β̂

(σi)

and output fi(σi); where, σi = Σrch ∩ Σj is the state extracted by the i-partial reach-extractor Ei−1.
Indistinguishability with Hybridi,0: Note that, from the reach bound and reach restriction of Ei−1, an
adversary can evaluate the garbled circuit GCi in Hybridi,0 at most a single point (corresponding to the
state reached: σi). Thus, from a reduction to garbled circuit security, the indistinguishability follows.

40

Hybridi,1:
� (π(α), µ(β), aG; aQ,Π

i−1, X∗,i−1)← ⟨G : Q|̂Ei−1⟩
� Sample β̂.
� De�ne Σrch = reachΠi−1(X∗,i−1) and extract {Π̂j , X̂∗

j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j ≤ i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� If j < i,

sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
and set yσj = (ρ̃j , µ

(β)(σj)),

� If j = i, set ρj = Oj(π̂
(α)
σ , µ̂

(β̂)
j) and yσj = (ρj , µ

(β)(σj))

� If j ≤ i, labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each j ∈ [N] such that j > i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

� Hybridi,2: In this hybrid, we let GUJi|Ki interact with Q|̂Ei−1|Wi, where Ji, Ki, Wi are as speci�ed by the
decomposition of G to Li at partition i. Indistinguishability with Hybridi,1: Ji, Ki and Wi are such that,
they are passive to the interaction between G and Q. Ki uniformly samples β̂(k, ., .) for k ∈ [i,N], but

only outputs it at the end of the interaction. Thus, we have that the distributions of (π(α), µ(β), aG, β̂) and
output of Ei−1 are identical in both the hybrids. Hence the hybrids are identical.
From the correctness of decomposition (De�nition 17), Ji outputs a one-step restriction at state σi consis-
tent with the extraction of Ei−1 (which is a i-partial reach-extractor).

41

Hybridi,2:

� (π̂
(α)
σi , µ̂

(β̂)
σi , π(α), µ(β), aG; aQ,Π

i−1, X∗,i−1)← ⟨GUJi∥Ki : Q|̂Ei−1|Wi⟩
� Sample β̂ consistent with µ̂

(β̂)
σi (that is, sample β̂(k, ., .) for k < i).

� De�ne Σrch = reachΠi−1(X∗,i−1) and extract {Π̂j , X̂∗
j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j ≤ i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� If j < i,

sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
and set yσj = (ρ̃j , µ

(β)(σj)),

� If j = i, set ρj = Oj(π̂
(α)
σ , µ̂

(β̂)
j) and yσj = (ρj , µ

(β)(σj))

� If j ≤ i, labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each j ∈ [N] such that j > i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

� Hybridi,3: In this hybrid, we use the interaction ⟨HiTZi : Q|̂Ei−1|Wi⟩ to generate the reactive program,
where Hi corresponds to the decomposition of G to Li. Indistinguishability with Hybridi,2 trivially follows:
corresponding to Q, Ei−1, Ji, Ki, Wi of the previous hybrid, Zi is such that the distributions ⟨G∥Ji∥Ki :

Q|̂Ei−1|Wi⟩ and ⟨HiTZi : Q|̂Ei−1|Wi⟩ are indistinguishable.

42

Hybridi,3:

� (π̂
(α)
σi , µ̂

(β̂)
σi , aZi ; aQ,Π

i−1, X∗,i−1)← ⟨HiTZi : Q|̂Ei−1|Wi⟩
� Parse aZi as (π

(α), µ(β), aG).

� Sample β̂ consistent with µ̂
(β̂)
σi (that is, sample β̂(k, ., .) for k < i).

� De�ne Σrch = reachΠi−1(X∗,i−1) and extract {Π̂j , X̂∗
j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j ≤ i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� If j < i,

sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
and set yσj = (ρ̃j , µ

(β)(σj)),

� If j = i, set ρj = Oj(π̂
(α)
σ , µ̂

(β̂)
j) and yσj = (ρj , µ

(β)(σj))

� If j ≤ i, labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each j ∈ [N] such that j > i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

� Hybridi,4: In this hybrid, we let Hi∥Zi interact with Q|̂Ei−1|Wî|Ei, where Ei is a reach-extractor for

Q|̂Ei−1|Wi−1 (such an extractor is guaranteed from the R3PO for Li). Further, the ith one-step obfuscta-
tion program is simulated using the R3PO simulator for Hi and Oi. Indistinguishability with Hybridi,3:
directly follows from from the one-step extractor guarantee and R3PO security of the one-step generator
Hi∥Zi (De�nition 16).

43

Hybridi,4:

� (π̂
(α)
σi , µ̂

(β̂)
σi , aZi ; aQ,Π

i−1, X∗,i−1, (Π̂i, X̂∗
i))← ⟨HiTZi : Q|̂Ei−1|Wî|Ei⟩

� Parse aZi as (π
(α), µ(β), aG).

� Sample β̂ consistent with µ̂
(β̂)
σi (that is, sample β̂(k, ., .) for k < i).

� De�ne Σrch = reachΠi−1(X∗,i−1) ∪ reachΠ̂i
(X̂∗

i) and extract {Π̂j , X̂∗
j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j ≤ i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� Sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
and set yσj = (ρ̃j , µ

(β)(σj)), labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each j ∈ [N] such that j > i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

� Hybridi,5: In this hybrid, we re-invoke the Ji, Ki (used in the previous hybrids). Indistinguishability with
Hybridi,4: We prove this via a reduction to the decomposition guarantee. Suppose the hybrids were dis-
tinguishable, then there exists a distinguisher (that simulates Ei using the auxiliary output of Wi, which
contains its entire state and view) and can break the decomposition.

44

Hybridi,5:

� (π̂
(α)
σi , µ̂

(β̂)
σi , π(α), µ(β), aG, ; aQ,Π

i−1, X∗,i−1, (Π̂i, X̂∗
i))← ⟨G∥Ji∥Ki : Q|̂Ei−1|Wî|Ei⟩

� Sample β̂ consistent with µ̂
(β̂)
σi (that is, sample β̂(k, ., .) for k < i).

� De�ne Σrch = reachΠi−1(X∗,i−1) ∪ reachΠ̂i
(X̂∗

i) and extract {Π̂j , X̂∗
j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j ≤ i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� Sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
and set yσj = (ρ̃j , µ

(β)(σj)), labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each j ∈ [N] such that j > i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

� Hybridi,6: We now move the sampling to outside the interaction (that is, remove Ki). It remains indistin-
guishable since Ki was non-interacting and producing its output at the end of the interaction. Finally, we

rewrite the interaction as ⟨G : Q|̂Ei−1|Wî|Ei∥Ji⟩. Indistinguishability with Hybridi,5: this follows from the
description of Ji, which we de�ned as only being allowed to see the interaction of ⟨G : Q⟩ (and not the

output of G). Indistinguishability with Hybridi+1,0: we de�ne Ei = Ei−1|Wî|Ei∥Ji. Then, the hybrids are
identical.

45

Hybridi,6:
� (π(α), µ(β), aG; aQ,Π

i−1, X∗,i−1, (Π̂i, X̂∗
i))← ⟨G : Q|̂Ei−1|Wî|Ei∥Ji⟩

� Sample β̂.
� De�ne Σrch = reachΠi−1(X∗,i−1) ∪ reachΠ̂i

(X̂∗
i) and extract {Π̂j , X̂∗

j)}1≤j<i from (Πi−1, X∗,i−1).

� For each j ∈ [N], de�ne functions µ̂
(β̂)
j , fj as follows:

� ∀σ′ ∈ Σ, µ̂
(β̂)
j (σ′) := encodeI,j

β̂
(σ′)

� ∀σ ∈ Σ, fj(σ) :=
(
Oj(π̂

(α)
σ , µ̂

(β̂)
j), µ(β)(σ)

)
� For each j ∈ [N] such that j ≤ i:
� σj = Σrch ∩Σj

� If σj = ⊥, then G̃Cj ← GCircSim
(
Φ(fj)

)
� Else:
� Sample ρ̃j ← Simj

(
π̂
(·)
σj , µ̂

(·)
j , Π̂j , {x, µ̂(β̂)

j (reachΠ̂j
(x))}

x∈X̂∗
j

)
and set yσj = (ρ̃j , µ

(β)(σj)), labσj = encodeI,j−1

β̂
(σj)

� If j > 1, sample G̃Cj ← GCSim
(
Φ(fj), labσj , yσj

)
� For each j ∈ [N] such that j > i, sample GCj ← GCGarble(fj , β̂j)

� If i ∈ {1, 2}, set
(
yσ1 , {GCj}1<j≤N

)
else ρ =

(
yσ1 , {G̃Cj}1<j<i, {GCj}N≥j≥i

)
� Output (aG, aQ, ρ)

Lemma 7. For each i ∈ [N + 1], Ei−1 is an i-partial reach extractor for G and Q with all but negligible
probability.

Proof: The claim trivially holds for i = 1. Now, we show that for any i ∈ [N], if Ei−1 is an i-partial reach
extractor then Ei is an (i+1)-partial reach extractor, which completes the proof. Recall that, Ei−1 outputs

(Πi−1, X∗,i−1); the one-step extractor Ei outputs (Π̂i, X̂∗i); �nally, Ei is of the form Ei−1|Wi|Ei|Ji and

outputs Πi = Πi−1 × Π̂i, X
∗,i = X∗,i−1 × X̂∗i .

Now, from the tree-ordering property of the reactive programs output by G, there is at most a single partition
k ≤ i from which states in partition i+1 can be reached. If k = i, then reach-restriction and reach-bounding
holds from the security of the one-step extractor Ei, if k < i, then reach-restriction and reach-bounding holds
from the security of Ei−1. Thus, Ei as de�ned above, is a (i+ 1)-partial reach-extractor. □

□

A.1 Randomized message functions.

The message function µ(β) could, in general, be a randomized function. But, due to the reach-restriction
requirement, one can replace it (at the time of obfuscation) with a deterministic function which uses N hard-
coded random tapes, one each for evaluating µ(β) on all the states in a partition. In both cases, a simulator
Sim gets the same message outputs (corresponding to the reachable states). Then, if R3PO security holds
for the �rst message function, it must also hold for the second (with the same simulator). Thus, w.l.o.g, for
the rest of the paper, we will only consider deterministic message functions.

B Details Omitted from Section 6

B.1 Commitment-Opening R3PO

Let generator class and adversary class be as described in Section 6.1. We show that a commitment scheme
Com and an R3PO scheme w.r.t. (GCom,M

commit , QCom
commit, P̊commit) can be built from any 2-round UC-secure

OT scheme. If the OT scheme is semi-honest secure, then we instead get a weakly-secure commitment
scheme. A weakly-secure commitment scheme (Commit,Open) has no setup, and the security requirements
are a standard hiding property, and a weak binding property wherein the commitment phase is carried out

46

honestly. 18 Correspondingly, we get a R3PO for a commitment-opening generator class w.r.t. a semi-honest
adversary class (that honestly commits to a valid string).

Commitment Scheme from OT

Security Parameter: Let κ be the security parameter.

Let OT = (OT.Setup,OT1,OT2,OT3) be an OT scheme.

Commitment Scheme Com:

- Com.Setup(1κ): Run l instances of the OT.Setup(1κ) algorithm, i.e.,

∀i ∈ [l], OT.crsi ← OT.Setup(1κ)

and output Com.crs := {OT.crsi}i∈[l].

- Com.Commit(Com.crs, x): Parse Com.crs = {OT.crsi}i∈[l]. Commit each bit of x as:

∀i ∈ [l], (otsi1, ω
i)← OT1(OT.crsi, xi)

and output (c, d) :=
(
{otsi1}i∈[l], {ωi}i∈[l]

)
.

- Com.Open(Com.crs, c, d): Parse (Com.crs, c, d) as
(
{OT.crsi}i∈[l], {otsi1}i∈[l], {ωi}i∈[l]

)
. Open each bit of x as

follows. For all i ∈ [l]:
(m0,m1)← {0, 1}κ,

ots2 ← OT2(OT.crsi, otsi1,m0,m1),

m← OT3(OT.crsi, ots2, ω
i),

xi = 0 if m = m0, else xi = 1

and output x.

Fig. 18. Commitment from OT

Lemma 1 (Restated). Given a UC-secure 2-round OT scheme in the CRS model, there exists a UC-secure

commitment scheme Com = (Setup,Commit,Open) and an R3PO scheme w.r.t. (GCom,M
commit ,QCom

commit
, P̊

commit
),

for any message function classM.
Further, given a semi-honest secure 2-round OT scheme, there exists a weakly-secure commitment scheme

Com = (Commit,Open) and an R3PO scheme w.r.t. (GCom,M
commit-sh,QCom

commit-sh
, P̊

commit-sh
), for any message

function classM.

Proof: We prove this for the message function class M̂ (De�nition 18). R3PO for any polynomial mes-
sage function class can easily be derived by applying the composition theorem via a trivial decomposi-
tion to the same class but for M̂. We give the proof for the UC-secure version. In particular, we use a
UC-secure 2-round OT scheme (De�nition 5) to give a commitment scheme and a R3PO scheme w.r.t.
(GComcommit,QCom

commit, P̊commit). It is easy to show that the scheme in Figure 18 is a valid commitment scheme
(De�nition 3). We now prove that obfuscator OCom

commit in Figure 19 is a secure R3PO.

18 Formally, the weak binding property is that for all PPT A, and ∀m ∈ M, Pr[(c, d) ←
Commit(m; r),Open(c,A(m, r)) = m′,m′ /∈ {m,⊥}] is negligible, where the probability is over the choice of
randomness r used by Commit and the randomness of A. The standard hiding property is that ∀m1,m2 ∈ M,
Commit(m1) and Commit(m2) are computationally indistinguishable.

47

� Correctness. If input d satis�es Com.Open(crs, c, d) = x, then from the correctness of the OT scheme,

the evaluator can recover function values {β̂(2, i, xi)}i∈[l] for x, which is equal to µ̂(β̂)(σx).

� E�ciency. Follows from the e�ciency of (l instances of) OT scheme.

� Security. We need to provide a SimCom
commit s.t. ∀ G ∈ GComcommit and ∀Q ∈ QCom

commit, there exists a reach-
extractor EComcommit w.r.t. (GComcommit, P̊commit) which satis�es De�nition 16.

• EComcommit :

* Let (E1, E2) be the extractors from the binding property of Com. EComcommit con�gures the crs as
(crs, stE1)← E1(1κ). It then runs Q honestly and lets it interact with G.

* As part of the interaction, Q sends c to G

* EComcommit extracts x as x ← E2(stE1 , c), samples a relaxed program Πx ∈ P̊commit and outputs Πx,
X∗ = {x}.

• SimCom
commit

(
πc,crs, µ̂

(·), Icommit,Πx, {x, µ̂(β̂)(reachΠx
(x))}

)
:

* The secrets available to the simulator are {β̂(2, i, xi)}i∈[l].
* Parse crs as {OT.crsi}i∈[l].
* Parse c as {otsi1}i∈[l].
* For every i ∈ [l], do the following:

otsi2 ←

{
OT2(OT.crs

i, otsi1, β̂(2, i, 0),⊥), if xi = 0,

OT2(OT.crs
i, otsi1,⊥, β̂(2, i, 1)), otherwise.

* Output the program ρ[crs, c, {otsi2}i∈[l]] (as described in Figure 19).

The rest of the argument can be easily completed by considering a sequence of l hybrids19 and using
sender's security of the underlying OT scheme for proving indistinguishability between two consecutive
hybrids.

□

B.2 Signature-Checking R3PO

In Appendix B.2.3, we prove Lemma 2 and in Appendix B.2.4 we prove Lemma 3.

Notation. Throughout this section, we will write (m)t for a string m and integer t to denote the t-bit pre�x
of x. We write mpre ≼ m to denote the predicate: mpre a pre�x of m.

B.2.1 R3PO for One-time Signature-Checking

Let 1-Sig =(1-Sig.gen, 1-Sig.sign, 1-Sig.verify) be a one-time signature scheme and F = (F.gen, F.punct, F.eval)
be a puncturable pseudorandom function family. We de�ne a family of generators as follows.

Program family and Generator class. Each program in P1-Sig
1-sign, over the state space Σ1-sign = Σ1 ∪Σ2

(where, Σ1 = {σ1
vk|vk ∈ VK} and Σ2 = {σ2

m| m ∈ M}), is parameterized by a message pre�x mpre and
speci�ed by a start state σ1

vk and transition function:

πmpre(σ
1
vk, (m, τ)) =

{
σ2
m if mpre ≼ m and 1-Sig.verify(vk, τ,m) = 1

σ1
vk otherwise.

The transition function is de�ned as: I1-sign(σ) = 1 if σ ∈ Σ1, else 2. Each generator in G1-Sig1-sign is of the form

H1-Sig
1-signTZ for PPT Z and a �xed H1-Sig

1-sign which interacts with any Z, Q as follows.

19 To elaborate further on this, we consider a hybrid Hybridj (j ∈ {0, 1, . . . , l}) where the �rst j ciphertexts
{otsi2}i∈[l],i≤j (in the description of the �nal program ρ) are generated as by SimCom

commit, while the remaining ones
are generated as in OCom

commit. It can be easily seen that the output of Hybrid0 is the same as that of real(G,Q),
while that of Hybridl is the same as ideal(G,Q); where these experiments were de�ned in De�nition 16.

48

R3PO scheme OCom
commit

Security Parameter: Let κ be the security parameter.

Let OT = (OT.Setup,OT1,OT2,OT3) be an OT scheme.

Let Com = (Com.Setup,Com,Com.Open) be a commitment opening scheme.

Input: Transition function πc,crs ∈ PCom
commit, message function µ̂(β̂) ∈ M̂Icommit,1.

Obfuscator OCom
commit

(
πc,crs, µ̂

(β̂)
)
:

• Parse crs as {OT.crsi}i∈[l].

• Parse c as {otsi1}i∈[l].

• For every i ∈ [l], construct ciphertext otsi2 ← OT2(OT.crsi, otsi1, β̂(2, i, 0), β̂(2, i, 1)).

• Output a program ρ[crs, c, {otsi2}i∈[l]] which does the following:

* takes as input d = {ωi}i∈[l]

* parses crs as {OT.crsi}i∈[l]

* sets x = Com.Open(crs, c, d)

* for every i ∈ [l], sets mi = ots3(OT.crsi, otsi2, xi, ω
i)

* outputs {mi}i∈[l]

Fig. 19. R3PO for Commitment-opening

� H1-Sig
1-sign samples a PRF key s← F.gen(1κ). For the rest of the interaction, we denote (ski, vki) as a one-time

signature key pair sampled using randomness F.eval(s, i). It will also sign at most a single message with
each ski (if multiple requests on the same message come, it sends the same signature).

� It accepts polynomial queries from Q:

Veri�cation key query: it accepts i from Q, and sends vki to Q.

Signature query: it accepts (i,mi) from Q, and sends 1-Sig.sign(ski,mi) to Q.

� It receives a target index I, target message m and pre�x size t from Q, and sends (vkI , 1-Sig.sign(skI ,m)
to Q. It sets mpre = (m)t.

� It receives a message function µ̂(β̂) ∈ M̂I1-sign,0 from Z, punctures the key s as s = F.punct(s, pre) on each

pre�x pre of I (pre ≼ I), and halts with output (πmpre[σ
1
vkI

], µ̂(β̂), s).

R3PO. We now show that, for an adversary class Q1-Sig
1-sign with all PPT Q and a relaxed program class

same as P1-Sig
1-sign, a 1-Sig scheme and an R3PO for G1-Sig1-sign can be constructed from any OTSE scheme. Recall

that, the message output corresponding to a state σm in partition 2 is µ̂(β̂)(σm) = {β̂(2, j,mj)}j∈|m| (refer
De�nition 18).

An R3PO scheme for One-Time Signature Checking

Let κ be the security parameter.

Let OTSE be an OTSE scheme (OTSE.gen, OTSE.sign, OTSE.verify, OTSE.enc, OTSE.dec)

Let SKE be a symmetric-key encryption scheme (SKE.gen, SKE.enc, SKE.dec)

49

Obfuscator O1-sign(πmpre[σ
1
vk], µ̂

(β̂)):

� let |mpre| = t.

� if t = 0, set k = 0; else, sample k ← SKE.gen(1κ) and secret-share it as k = s1 + . . .+ st

� construct a SKE ciphertext that encrypts the labels for mpre; for each index j ∈ [t], construct an OTSE ciphertext
that encrypts the secret-share sj on target (j,mprej)

ct← SKE.enc
(
k, {β̂(2, j,mprej}j∈[t]

) {
ctj ← OTSE.enc(vk, j,mprej , sj)

}
j∈[t]

� for each bit position j ∈ (t, n], construct two OTSE ciphertexts that encrypt the labels β̂(2, j, 0) and β̂(2, j, 1) for
bit position j and target bit 0, 1 respectively (under the secret-shared encryption key)

xj,0 ← SKE.enc(k, β̂(2, j, 0))

ctj,0 ← OTSE.enc(vk, j, 0, xj,0)

xj,1 ← SKE.enc(k, β̂(2, j, 1))

ctj,1 ← OTSE.enc(vk, j, 1, xj,1)

� output a program ρ
[
vk, ct, {ctj}j∈[t], {ctj,b}j∈(t,n],b∈{0,1}

]
20, which does the following:

• takes as input (τ,m).

• decrypts each OTSE ciphertext as: ∀j ∈ [t], xj = OTSE.dec(vk, τ,m, ctj)

• construct k = x1 + . . .+ xt

• decrypts the SKE ciphertext to get labels: {ℓj}j∈[t] = SKE.dec(k, ct)

• decrypts each OTSE ciphertext as: ∀j ∈ (t, n], yj = OTSE.dec(vk, τ,m, ctj,mj)

• decrypts the SKE ciphertexts to get labels: ∀j ∈ (t, n], ℓj = SKE.dec(k, yj)

• outputs {ℓj}j∈[n].

Fig. 20. R3PO Obfuscation for one-time signature checking from OTSE.

Lemma 8. If there exists a semi-honest OTSE scheme, then there exists a signature scheme 1-Sig and an
R3PO scheme w.r.t. (G1-Sig1-sign,Q

1-Sig
1-sign, P̊

1-Sig
1-sign).

Proof: We prove that the obfuscation scheme in Figure 20 is indeed a valid R3PO scheme w.r.t. (G1-Sig1-sign,Q
1-Sig
1-sign, P̊

1-Sig
1-sign).

The signature scheme 1-Sig in the R3PO is simply the underlying OTSE scheme; that is, 1-Sig = (OTSE.gen,
OTSE.sign, OTSE.verify). Recall that, the generator gives out at most a single signature on the signing key
of each index position i.

Let Z,Q be arbitrary parties and the output of the interaction ⟨H1-Sig
1-signTZ : Q⟩ be (π(α), µ̂(β̂), aG; aQ). We

now give an extractor E and simulator Sim for the scheme, so that it satis�es De�nition 16:

� E trivially extracts the veri�cation key vkI from the last step of the interaction: where Q sends a target
index I, message m from Q; and H1-Sig

1-sign replies with (vkI , σ). E outputs π[vkI] and X∗ = {(m,σ)}.
� Sim takes as input π(·), µ(·), Π and {µ(β)(reachΠ(x))}x∈X∗ (simply the labels {β̂(2, j,mj)}j∈[n] for the
message m). It outputs a simulated obfuscation ρ̂, where the OTSE ciphertexts corresponding to the bits
1−mj for each bit position j ∈ (t, n] are encryptions of 0:

̂ctj,1−mj
← OTSE.enc(vk, j, 1, 0)

Indistinguishability follows via a reduction to the underlying OTSE security.

□

20 where, ρ is a circuit with vk and ciphertexts hardcoded into it

50

Signi�cance of the message pre�x. The reach-restriction and obfuscation simulation only relies on the
generator giving out at most a single signature on the signing key skI for target index I. Thus, even for an
empty pre�x, i.e.. t = 0, the above is a valid obfuscation scheme, and the construction will correspondingly
have SKE ciphertexts on the key k = 0. But, if the pre�x is the full message, i.e.. t = n and mpre = m,
then the reach-restriction or simulation no longer relies on the generator. Indeed, the program will be reach-
restricted even if the veri�cation key vkI is speci�ed by a semi-honest Q. We use this key idea in Section 6.2.2
to give an R3PO for signature-checking where Q picks the veri�cation key.

B.2.2 Towards R3PO for Signature-Checking

In the previous section, we described a one-time signature-checking R3PO, where the generator was picking
a tree of one-time keys (via a PRF seed), but the reactive program was on a single veri�cation key (and
reach-restriction relied on giving out a single signature on its signing key). We now expand the scheme and
the interaction, so that, a path in the tree corresponds to a message pre�x mpre, and the signature is now a
sequence of one-time signatures along the path from root to mpre (where, each intermediate signature is on
the veri�cation keys of the child nodes). This allows us to have a single veri�cation key vkϵ corresponding to
the root node. Refer to Figure 21 for the construction of the puncturable signature scheme.

Towards constructing an obfuscation for signature-checking (as a one-step generator) in the library, we
�rst construct an obfuscation for a slightly di�erent reactive program family and generator class. Here, the
transition is not one-step, but a sequence of transitions, where in each transition, it veri�es the veri�cation
keys of the child nodes via a signature for them on the signing key of the current node. Finally, we will show
that, this can essentially be squished into a single one-step transition, to get R3PO for signature-checking.

Program family. Let the pre�x length be t and state space be Σ1-Sig
sign∗ = ∪ti=1

(
Σ(i,0)∪Σ(i,1)

)
∪Σt+1; where:

for i ∈ [t],

Σ(i,0) = {σ
(i,0)
vk | vk ∈ VK} Σ(i,1) = {σ

(i,1)
vk0∥vk1 | vk0, vk1 ∈ VK}

and Σt+1 = {σt+1
m | m ∈ M}. The partition function is de�ned as Isign∗(σ

(i,b)
x) = 2 ∗ (i − 1) + b, for

σ
(i,b)
x ∈ Σ(i,b).

Each program in P1-Sig
sign∗ , with start state σ

(1,0)
vkϵ ∈ Σ(1,0), is parameterized by a �xed pre�x mpre and is de�ned

by the transition function:

πmpre(σ
(i,0)
vk , y, τ) = σ(i,1)

y if i ̸= t and 1-Sig.verify(vk, y, τ) = 1

πmpre(σ
(i,1)
vk0||vk1 , ϵ) = σ

(i+1,0)
vkb

where b = vkmprei

πmpre(σ
(t,0)
vk ,m, τ) = σt+1

m if mpre = (m)i and 1-Sig.verify(vk,m, τ) = 1

This corresponds to a sequence of two-step transitions. For i < t, at a state σ
(i,0)
vk , it accepts a signature on

y, and transitions to the state σ
(i,1)
y . Then, it interprets y as the concatenation of two veri�cation keys vk0,

vk1 and does an epsilon transition to the state σ
(i+1,0)
vkb

by selecting the key corresponding to the bit value of

mpre at position i. Finally, at a state σ
(t,0)
vk , it accepts a message m, signature τ and transitions to the state

σt+1
m if τ veri�es and mpre is the i-bit pre�x of m.

Notation. We denote ski, vki to denote signature key pair sampled using randomness F.eval(s, i). We de�ne

sign∗(s,m) as a sequence of signatures along the path via (m)t, i.e..
(
{vki, τi}, vk(m)t , τ

)
for i ∈ [t], where

each τi = 1-Sig.sign(ski, vki0||vki1) and τ = 1-Sig.sign(sk(m)t ,m).

Generator class. Each generator in G1-Sigsign∗ is of the form H1-Sig
sign∗∥Z, for all PPT Z, and a �xed H1-Sig

sign∗ that
interacts with Z and Q as follows:

� It samples a PRF key s→ F.gen(1κ).

� It sends the root veri�cation key vkϵ to Q.

51

� It accepts polynomially many queries of messages mj ∈ M from Q and responds with sign∗(s,mj).

� It then accepts a target message m from Q, veri�es that Q had not queried any message with pre�x
mpre = (m)t and punctures the PRF key on each pre�x pre of mpre as PRF.punct(s, pre).

� It �nally accepts a message function µ̂(β̂) ∈ M̂I
sign

∗ ,0 from Z and outputs (πmpre[σ
1
vkϵ], µ̂

(β̂), s).

To give an R3PO obfuscation scheme for the above class, we �rst show that it decomposes to a library
of one-step program obfuscation schemes. We then invoke Theorem 1 to construct an obfuscation for it from
the library of one-step program obfuscation schemes.

Lemma 9. (G1-Sig
sign∗ ,Q1-Sig

sign∗) decomposes into a library of one-time signatures (G1-Sig1-sign,Q
1-Sig
1-sign) and epsilon-

transitions (GΣϵ ,QΣ
ϵ) (where, Σ = Σ1-Sig

sign∗).

Proof: We show that (G1-Sigsign∗ ,Q1-Sig
sign∗) decomposes into

L =
(
L(1,0),L(1,1), . . . ,L(t,0)

)
,

where

L(i,b) =

{(
G1-Sig1-sign,Q

1-Sig
1-sign

)
if b = 0,(

GΣϵ ,QΣ
ϵ

)
else.

We prove this by explicitly giving a J , W , Z that satisfy De�nition 17.

� Case b = 0: At this partition, G1-Sigsign∗ decomposes to G1-Sig1-sign (with the appropriate pre�x and partition

function, that we skip here; refer Section 6.5). Let G ∈ G1-Sigsign∗ be a generator that interacts with Q ∈ Q.
• De�ning W : W runs Q in a white-box way and interacts with either J or H1-Sig

1-sign via the bottom
channel.

* W sends query k = ϵ on the bottom channel and gets back vkϵ.

* For each query mj that Q makes in the top channel, it does the following. For each k ≺ mprej 21, it
queries indices k||0, k||1 on the bottom channel and gets back vkk0, vkk1; it then queries (k, vkk0||vkk1)
on the bottom channel and gets back τ jk . It �nally queries (mprej ,mj) on the bottom channel and

gets back τ jk+1.

* Similarly, for the target message m, pre�x mpre.

* W �nally sends the target index I = (m)i, target message vkk0||vkk1 if i < t, else m, and pre�x length
0 if i < t, else n (where |m| = n) on the bottom channel.

• De�ning J : J runs G in a black-box way and interacts with W via the bottom channel.

* G sends vkϵ on the top channel. W sends query ϵ on the bottom channel. J sends vkϵ on the bottom
channel.

* For each query mj that Q makes and G responds with τ j on the top channel, it does the following.
It responds to the queries of W from τ j .

* Similarly, for the target message m, pre�x mpre.

* It �nally samples µ̂(β̂) ∈ M̂I
sign

∗ ,i, receives target index I, target message m and pre�x size x; sets

target pre�x mpre as (m)x and halts with output π̂mpre[σ
(i,0)

vkI
], µ̂(β̂)).

• De�ning Z: Z runs H1-Sig
1-sign in a black-box way and interacts with Q via the top channel.

* W queries ϵ in the bottom channel and H1-Sig
1-sign responds with vkϵ. Z sends vkϵ in the top channel.

* For each query mj that Q makes in the top channel, W queries a sequence of veri�cation keys and
sequence of messages; and H1-Sig

1-sign responds with corresponding keys and signatures. Z constructs the
overall signature from it and sends in the top channel.

* Similarly, for the target message m, pre�x mpre.

21 that is, all pre�xes k of mj upto length t− 1

52

* Z �nally samples µ(β) ∈ M̂I
sign

∗ ,0 and halts with output (π(α), µ(β)).

� Case b = 1: At this partition, G1-Sigsign∗ decomposes to GΣϵ (with the appropriate pre�x and partition function,

that we skip here; refer Section 6.5). Let G ∈ G1-Sigsign∗ be a generator that interacts with Q ∈ Q.
• De�ning W : W runs Q in a white-box way and interacts with either J or HΣ

ϵ via the bottom channel.
W sees the interaction in the top channel. Let the target message be m and target pre�x be mpre that
Q sends in the top channel, and τ be the response. Let I be the i − 1-bit pre�x of m and b be mi; W

extracts the keys vkI0, vkI1 from τ and sends the states σ1 = σ
(i,1)

vkI0||vkI1 , σ2 = σ
(i+1,0)

vkIb
in the bottom

channel.

• De�ning J : J runs G in a black-box way and interacts with W via the bottom channel. It �nally

samples µ̂(β̂) ∈ M̂I
sign

∗ ,i, receives receives the states σ1, σ2 from W and halts with output πσ2 [σ1],

µ̂(β̂)).

• De�ning Z: Z runs HΣ
ϵ in a black-box way and interacts with Q via the top channel. Z runs G

internally, has it interact on the top channel, and outputs the output of G.

□

The following corollary follows directly from Lemma 9 and Theorem 1.

Corollary 1. If there exists a one-time signature primitive 1-Sig with an R3PO scheme w.r.t. (G1-Sig1-sign,Q
1-Sig
1-sign, P̊

1-Sig
1-sign),

then there exists an R3PO scheme w.r.t. (G1-Sig,M
sign∗ ,Q1-Sig

sign∗ , P̊1-Sig
sign∗) for any message function classM.

B.2.3 R3PO for a Puncturable Signature Scheme

All that is left is to squish the R3PO for G1-Sigsign∗ into a one-step transition and interpret as a R3PO for GSigsign.
We state this as the following lemma.

Lemma 10. If there exists an one-time signature primitive 1-Sig with an R3PO scheme w.r.t. G1-Sig
sign∗ , then

there exists a puncturable signature scheme Sig and an R3PO scheme w.r.t. (GSig,Msign ,Q, P̊Sig
sign) for any message

function spaceM.

Proof: Sig corresponds to the signature scheme that was implicit in the generator H1-Sig
sign∗ above. We explicitly

state it again in Figure 21. In the �gure, the symbol (x)i denotes the i-bit long pre�x of the string x. We

describe the wrapper on the R3PO of G1-Sigsign∗ in Figure 22.

□

We now prove the main lemma.

Lemma 2 (Restated). If there exists a semi-honest secure OTSE scheme, then there exists a puncturable

signature scheme Sig and an R3PO scheme OSig w.r.t. (GSig,Msign ,QSig
sign, P̊Sig

sign) for any message function space
M.

Proof: This result follows from Lemma 8, Corollary 1 and Lemma 10. We prove this for the message function
class M̂ (De�nition 18). R3PO for any polynomial message function class can easily be derived by applying

the composition theorem via a trivial decomposition to the same class but for M̂.

To build the required R3PO, we �rst build an R3PO for a one-time signature-checking scheme (Ap-
pendix B.2.1). We then build an R3PO for a signature-checking scheme, but with multiple transitions (Ap-
pendix B.2.2). We �nally squish this to get the required construction (Appendix B.2.3). □

B.2.4 R3PO for Signature Checking with Adversarial Key

Lemma 3 (Restated). If there exists a semi-honest secure OTSE scheme, then there exists a puncturable sig-

nature scheme Sig and a PPT program OSig s.t. OSig is an R3PO obfuscation scheme w.r.t. (GSigqsign,Q, P̊Sig
qsign)

as well as (GSigsign-po,Q, P̊Sig
sign-po).

53

Security Parameter: Let κ be the security parameter.

Let 1-Sig = (1-Sig.gen, 1-Sig.sign, 1-Sig.verify) be a one-time signature scheme.

Let F = (F.gen,F.punct,F.eval) be a puncturable pseudorandom function (PPRF) family.

� Sig.gen(1κ)→ (Sig.vk,Sig.sk):

s← F.gen(1κ),

(1-Sig.vkϵ, 1-Sig.skϵ)← 1-Sig.gen(1κ;F.eval(s, ϵ)).

Set (Sig.vk,Sig.sk) := (1-Sig.vkϵ, s).

� Sig.sign(Sig.sk, x)→ τ : Parse Sig.sk as s.

(1-Sig.vkϵ, 1-Sig.skϵ)← 1-Sig.gen(1κ;F.eval(s, ϵ)).

∀i ∈ [t] :

(1-Sig.vki+1
0 , 1-Sig.ski+1

0)← 1-Sig.gen(1κ;F.eval(s, (x)i||0),

(1-Sig.vki+1
1 , 1-Sig.ski+1

1)← 1-Sig.gen(1κ;F.eval(s, (x)i||1),

mi = 1-Sig.vki+1
0 ||1-Sig.vki+1

1 ,

τi ← 1-Sig.sign(1-Sig.skixi
,mi).

Finally, do

τx ← 1-Sig.sign(1-Sig.sktxt
, x).

Set τ :=
(
{(τi,mi)}i∈[t], (τx, x)

)
.

� Sig.verify(Sig.vk, τ, x)→ b: Parse τ as
(
{(τi,mi)}i∈[t], (τx, x)

)
.

∀i ∈ [t] :

Parse mi as 1-Sig.vk
i+1
0 ||1-Sig.vki+1

1 ,

bi = 1-Sig.verify(1-Sig.vkixb
, τi,mi).

If each bi = 1 and 1-Sig.verify(1-Sig.vktxt
, τx, x) = 1, then set b := 1, else b := 0.

� Sig.punct(Sig.sk,mpre)→ Sig.sk′: Output F.punct(s,mpre).

� Sig.psign(Sig.sk′, x)→ τ ′: Output Sig.sign(Sig.sk′, x).

Fig. 21. Puncturable Signature from One-Time Signature

Proof: Note that, in the construction of R3PO for G1-Sigsign∗ from G1-Sig1-sign (Appendix B.2.2), we had a target pre�x
mpre in the reactive program, and the reach-restriction to pre�x mpre was enforced via epsilon-transitions
(where it transitions along the path to mpre) and an explict pre�x check in the last one-step transition was

not needed. The intention of decomposing at the last transition to G1-Sig1-sign with a target pre�x mpre was to

allow the same obfuscation to also be a valid R3PO for GSigqsign. This follows from the fact that the R3PO for

G1-Sig1-sign over a target pre�x n (i.e.. full message as target pre�x) is secure even for an adversary that picks
the veri�cation key. We now prove the lemma.

We de�ne GSigsign-po as a set of generators in GSigsign that output reactive programs with full message as the
target pre�x, that is, |mpre| = n. Such a generator decomposes as in Lemma 9; where in, it decomposes

54

R3PO scheme OSig
sign

OSig
sign(πmpre[σ

1
vk], µ̂

(β̂)) :

• Parse vk as 1-Sig.vkϵ.

• Sample µ̂(β̂) ∈ M̂I
sign

∗ ,0.

• Set ρ← O1-Sig
sign∗(π

∗
mpre[σ

1
1-Sig.vkϵ], µ̂

(β̂)).

• Outputs a program ρ′[ρ] as follows:

* Takes as input (τ, x), where τ is parsed as
(
{τi}i∈[t], (τx, x)

)
.

* Traverse the program ρ by sequentially providing input τi interleaved with ϵ-transitions, for every i ∈ [t].

* Finally input (τx, x) and output ρ's outputs.

Fig. 22. Signature checking obfuscator

to G1-Sig1-sign at each partition (i, 0) with target pre�x length 0 (that is, no target pre�x) for each i < n and

decomposes to G1-Sig1-sign at partition (n, 0) with pre�x length n (that is, message m is the target pre�x).

We now show that, for any adversary class of all semi-honest adversaries Q that honestly pick the
signature key pair (as in Figure 21), the R3PO for GSigsign-po is also a valid R3PO for GSigqsign over the same
relaxed program class. Formally,

� Extractor E : For an adversary Q, it trivially extracts the veri�cation key vk and target message m from
the transcript of the interaction between any G ∈ GSigqsign and Q. It extracts the signature signing key sk

from Q, constructs the signature for m and outputs the same relaxed program as in GSigsign-po.

� Simulator Sim: it takes as input π(·), µ(·), Πm and {µ(β)(reachΠ(x))}x∈X∗ (simply the labels for m). It

outputs a simulated obfuscation ρ̂ as follows. It internally runs the obfuscator for GSigsign-po and outputs its
output.

Reach-restriction and obfuscation security trivially follows from the corresponding guarantees of GSigsign-po.
This can be seen in the underlying construction, where at the last partition (n, 0), the obfuscator used the

one-step obfuscation of G1-Sig1-sign with target pre�x length n and target pre�x m. Thus, the only message the
adversary can open to is m.

□

B.3 Hash-Opening R3PO

We �rst build a hash scheme with factor-2 compression (that is, a matrix D of 2 blocks is hashed into a
digest of single block) and a R3PO for it that supports one bit of indexing from laconic OT with factor-2
compression (Appendix B.3.1). We then do domain extension to get a hash scheme that supports arbitrary
compression and give a R3PO wr.t. this hash scheme, but for reactive programs with multiple transitions
(Appendix B.3.2). We �nally squish it to get a one-step transition reactive program class and R3PO for it
(Appendix B.3.3).

B.3.1 Block-Openable CRH with Factor-2 Compression

We now show how to construct a hash scheme 2-Hash with factor-2 compression 22 and an R3PO scheme
for hash opening instantiated with this scheme (that is, for (G2-Hashhash ,Q2-Hash

hash , P̊2-Hash
hash)) from laconic OT with

factor-2 compression.

22 where, an input of two blocks is hashed to a digest of one block and the block index for hash opening is simply a
bit

55

Block-Openable CRH with Factor-2 Compression

Let ℓOT = (crsGen, hash, Send,Receive) be a laconic OT with factor-2 compression.

Scheme 2-Hash:

- crsGen(1κ) : Compute crs← ℓOT.crsGen(1κ) and output crs.

- hash(crs,m) : Compute digest := ℓOT.hash(crs,m) and output digest.

- openBlock(crs,m, b) : Output w := m.

- acceptBlock(crs, digest, b, w) : Parse w as m = m0∥m1 such that |m0| = |m1|. If ℓOT.hash(crs,m) = digest, then
output mb, otherwise output ⊥.

Fig. 23. Block-Openable CRH with factor-2 compression from Laconic OT with factor-2 compression

Lemma 11. Assuming a laconic OT scheme with factor-2 compression, there exists a block-openable collision-
resistant hash scheme with factor-2 compression.

Proof: We show that the scheme in Figure 23 is a block-openable CRH with factor-2 compression.

� Correctness: from the correctness of the underlying ℓOT scheme, hash must be deterministic. Thus,
acceptBlock outputs correctly with probability 1.

� Factor-2 Compression: reduces to the compression of the underlying ℓOT scheme.

� Collision Resistance: we reduce this to the sender privacy of the underlying ℓOT scheme. Let Adv be an ad-
versary that outputs (m, b, w) with probability α s.t.m := m0||m1 and acceptBlock(crs, hash(crs,m), b, w) /∈
{⊥,mb}. We build an adversary Adv′, distinguisher D′ for the sender privacy experiment of ℓOT as follows:

• Adv′ internally runs Adv in straight-line blackbox way and behaves as follows. It receives crs from the
experiment and forwards it to Adv. It receives (m, b, w) from Adv. Let w := w0||w1. If mb ̸= wb, it
chooses an index L s.t. m[L] ̸= w[L] 23; if mb = wb, then it chooses a random L. It sets D = m,
samples challenge messages x0, x1 s.t. x0 ̸= x1 and sets aux = (crs,m,w, L, x0, x1); it �nally outputs
(aux, x0, x1, D, L) to the ℓOT experiment.

• D′ gets (aux = (crs,m,w, L, x0, x1), ct) from the ℓOT experiment and computes the following:

x′ := Receivem(crs, ct, L) x′′ := Receivew(crs, ct, L).

If x′ ̸= x′′, it outputs 0. Otherwise, it outputs 1.

Now, D′ is able to distinguish between the real world and ideal world if Adv outputs a valid collision (that
is, m[L] ̸= w[L]) and the ℓOT simulator is unable to guess the other message, in which case x′ = xm[L]

and x′′ = x1−m[L]. But, from the security of ℓOT , its advantage must be negligible. Thus, α must also be
negligible.

□

23 where, x[L] represents the bit at index position L in x

56

An R3PO scheme for 2-Hash

Let κ be the security parameter.

Let ℓOT = (crsGen, hash, Send,Receive) be a laconic OT with factor-2 compression.

Let 2-Hash = (crsGen, hash, openBlock, acceptBlock) be as in Figure 23.

Obfuscator O2-Hash
hash (πdigest,b,crs, µ̂

(β̂)):

• Let t = |digest|.
• If b = 0, then t0 := 0 else t0 := t.

• For each bit position j ∈ [t], construct a single ℓOT ciphertext that encrypts the labels β̂(2, j, ·) for bit position
j as follows

ctj ← ℓOT.Send(crs, digest, j + t0, β̂(2, j, 0), β̂(2, j, 1)).

• Output ρ
[
crs, b, {ctj}j∈[t]

]
.

Evaluating an obfuscation ρ
[
crs, b, {ctj}j∈[t]

]
on input k:

• Parse k as D.

• Let t = |D|/2.
• If b = 0, then t0 := 0 else t0 := t.

• For each j ∈ [t], decrypt ℓOT ciphertext as follows:

mj := ℓOT.ReceiveD(crs, ctj , j + t0).

• Output {mj}j∈[t].

Fig. 24. R3PO for Hash Opening for block-openable CRH with factor-2 compression.

Lemma 12. Assuming a laconic OT scheme with factor-2 compression, there exists a block-openable CRH
with factor-2 compression 2-Hash and a R3PO scheme w.r.t. (G2-Hash

hash
,Q2-Hash

hash
, P̊2-Hash

hash
).

Proof: We instantiate 2-Hash with the scheme in Figure 23. We now show that the scheme in Figure 24 is
a R3PO scheme w.r.t. (G2-Hashhash ,Q2-Hash

hash , P̊2-Hash
hash). Correctness follows from the correctness of the underlying

ℓOT scheme. For proving security, we will have to describe extractor E and simulator Sim for the scheme,
so that it satis�es De�nition 16. Let Z,Q be arbitrary parties s.t. the interaction between H2-Hash

hash , Z and Q
follows the description of generator class G2-Hashhash in Section 6.3. Note that we are restricting the adversaries
to be semi-honest i.e., Q behaves honestly w.r.t. some input database D being used to compute digest.
Therefore, the extractor can simply extract D and output (πdigest,b,crs, X

∗ = {D}), where (digest, b) is sent
by Q to HHash

hash in the interaction. The simulator Sim behaves as follows:

1. Takes as input
(
πdigest,b,crs, µ̂

(·), πdigest,b,crs, {x, µ̂(β̂)(reachπdigest,b,crs
(x))}x∈X∗

)
.

2. Parse x = D in X∗.

3. Let t = |digest|.
4. If b = 0, then t0 := 0 else t0 := t.

5. For each bit position j ∈ [t], construct a single ℓOT ciphertext as follows

ctj ← ℓOT.Sim(crs, D, j + t0, β̂(2, j,D[j + t0])).

6. Output ρ
[
crs, b, {ctj}j∈[t]

]
.

Indistinguishability between the distributions real(GHashhash, Q) and ideal(GHashhash, Q) can be shown by a se-
quence of t hybrids, where t = |D|/2 = |digest|. In the ith hybrid for every i ∈ [t], we change how the

57

ciphertext cti is being generated inside the output program ρ[crs, b, {ctj}j∈[t]]. While in the (i− 1)th hybrid

cti is obtained by the output of ℓOT .Send with the other message being β̂(2, i, 1−D[i+ t0]), in the ith hybrid

it is chosen to be the output of ℓOT.Sim with only β̂(2, i,D[i + t0]) provided. Proving indistinguishability
between these 2 hybrids reduces to sender security of ℓOT . Note that the �rst hybrid is the same as real
while the �nal hybrid is same as ideal. □

B.3.2 Towards R3PO for Hash Opening: Domain Extension

In this section, we show how to construct a block-openable CRH scheme with arbitrary compression and an
R3PO for its program family from a R3PO for block-openable CRH with factor-2 compression.

Program Family and Generator Class. The generator class is same as GHashhash described at the beginning
of Section 6.3. At the end of the interaction, a generator in the class outputs a reactive program in PHash

hash∗

parameterized by a hash digest, a location L (speci�ed as a sequence of bits (b1, b2, . . . , bl)), a common
random string crs; with start state σ1

digest and transition function w.r.t. a state space Σhash∗ = {σi
y | i ∈

[l + 1], y ∈ {0, 1}κ} as follows:

πdigest,L,crs(σ
i
x, w) =

{
σi+1
y if acceptBlock(crs, x, bi, w) = y.

The partition function is de�ned as Ihash∗(σi
y) = i for all y ∈ {0, 1}κ.

R3PO. We now show that there is an R3PO scheme w.r.t. (GHashhash∗ ,QHash
hash∗ , P̊Hash

hash∗) by decomposing
(GHashhash∗ ,QHash

hash∗) into a library of hash openings (GHashhash,QHash
hash) and then invoking Theorem 1.

Lemma 13. (GHash
hash∗ ,QHash

hash∗) decomposes into a library of R3PO (GHash
hash

,QHash
hash

).

Proof: We will show that (GHashhash∗ ,QHash
hash∗) decomposes into the library L = (GHashhash,QHash

hash, P̊Hash
hash)i∈[l]. There-

fore, for a generator G ∈ GHashhash∗ and a part i ∈ [l], we will describe J, Z,W so that ∀Q ∈ QHash
hash∗ , and all

(i)-partial reach-extractors E for Q, the conditions given in De�nition 17 hold.

� De�ning J . Here is a description of J :
1. Reads crs from HHash

hash∗ .

2. Reads (digest′, b) from W.

3. Sends a freshly sampled message function µ̂(β̂) ∈ M̂I
hash

∗ ,1 to HHash
hash∗ .

4. Outputs the program πdigest′,b,crs ∈ PHash
hash.

� De�ning Z. Here is a description of Z :
1. Reads crs from HHash

hash.

2. Reads (digest, L) from Q.

3. Also sends a freshly sampled message function µ̂(β̂) ∈ M̂Ihash,1 to HHash
hash.

4. Outputs the program πdigest,L,crs ∈ PHash
hash∗ .

� De�ning W . It reads the database D and location L from Q. It then computes the node digest′ and
bit b based on the ith-level in the Merkle tree with D representing the leaves. The bit b represents the
corresponding bit in the binary representation for the location L. It sends (digest′, b) to both J and HHash

hash.

□

The following follows immediately from Lemma 13 and Theorem 1.

Corollary 2. If there exists a block-openable CRH with factor-2 compression Hash, then there exists an
R3PO scheme w.r.t. (GHash

hash∗ ,QHash
hash∗ , P̊Hash

hash∗).

B.3.3 R3PO for Hash Opening

We �rst note that a block-openable CRH with arbitrary compression can be built from any block-openable
CRH with factor-2 compression. This is essentially the merkle-tree based domain extension and is similar to
the description of the generator PHash

hash∗ above.

58

Lemma 14. If there exists a block-openable CRH with factor-2 compression Hash′, then exists a block-
openable CRH with arbitrary compression Hash.

Proof: The description of Hash from Hash′ has been given in Figure 25. For ease of exposition, assume
that n = 2d for some d ∈ Z, and input messages consist of n blocks of κ length each. While Hash can be
instantiated using a Merkle tree with Hash′ being the underlying hash scheme, openBlock w.r.t. a particular
location L corresponds to the sequence of children (two for each node) in the tree along the path given by
L. acceptBlock then corresponds to just checking the hashes along this path only and then outputting the
correct leaf. Roughly speaking, collision resistance of Hash follows because �nding a collision in the Merkle
tree would correspond to �nding a collision in Hash′ at the node where the two sequences diverge. We skip
mentioning the full details here as this is a standard construction.

Let Hash′ = (crsGen, hash, openBlock, acceptBlock) be a doubly-compressing hash scheme.

• crsGen(1κ) : Run crs← Hash′.crsGen(1κ) and output crs.

• hash(crs,m) : Let m = m1∥ . . . ∥mn s.t. |mi| = κ for all i ∈ [n]. Construct a Merkle tree with m1, . . . ,mn

representing the leaves and Hash′.hash(crs, ·) being the doubly-compressing hash function i.e., in any iteration,
club two consecutive nodes on the same level and compute the hash on this pair. Repeat this process until a
single string digest of length κ remains at the root. Output digest.

• openBlock(crs,m, i) : Consider the Merkle tree with m forming the leaves like before. Output all the children
(two for each node) in this tree along the path from the root digest to the leaf mi.

• acceptBlock(crs, digest, i, k) : Parse k as k1, . . . , kd, where d is the depth of the Merkle tree. Check if kj,bj =

Hash′.hash(crs, kj+1), for all j ∈ [d], where bj denotes the child chosen at depth j to reach the ith leaf.

Fig. 25. Arbitrarily-Compressing Hash from Doubly-Compressing Hash

□

Lemma 4 (Restated). If there exists a laconic OT scheme with factor-2 compression, then there exists an
arbitrarily-compressing hash scheme Hash and an R3PO scheme w.r.t. (GHash

hash
,QHash

hash
, P̊Hash

hash
).

Proof: We instantiate the block-openable CRH with arbitrary compression Hash with the scheme in Figure 25.
To get an R3PO scheme OHash

hash w.r.t. (GHashhash,QHash
hash, P̊Hash

hash), we must put a wrapper around the R3PO scheme
OHash′

hash∗ w.r.t. (GHash
′

hash∗ ,QHash′

hash∗ , P̊Hash′

hash∗), as obtained in Corollary 2. Consider the description given in Figure 26.
Then we prove the following properties:

� Correctness. This follows from the description of Hash, sampling of β̂ and correctness of OHash′

hash∗ .

� E�ciency. This follows from the e�ciency of OHash′

hash∗ .

� Security. We need to provide a SimHash
hash s.t. ∀ G ∈ GHashhash and ∀Q ∈ QHash

hash, there exists a reach-extractor
EHashhash w.r.t. (GHashhash, P̊Hash

hash) which satis�es De�nition 16. We describe these algorithms as follows:
• EHashhash :

* Since the interaction between G and Q is the same as that in the hash∗ generator class, EHashhash could
just invoke that extractor EHash′hash∗ to learn an input sequence (k1, . . . , kd), each ki ∈ {0, 1}2κ. Then set
X∗ = {k} and output the relaxed program as πdigest,i,crs ∈ PHash

hash, where (digest, i, crs) are obtained
from the interaction.

• SimHash
hash

(
πdigest,i,crs, µ̂

(·), πdigest,i,crs, {x, µ̂(β̂)(reachπdigest,i,crs
(x))}x∈X∗

)
:

* Parse x = k = (k1, . . . , kd), and set X as the sequence k only.

* Obtain ρ ← SimHash′

hash∗(π′digest,i,crs, µ̂
(·), π′digest,i,crs, {x, µ̂(β̂′)(reachπ′

digest,i,crs
(x))}x∈X), where π′digest,i,crs ∈

PHash′

hash∗ and β̂′ is generated from β̂ as in Figure 26.

59

R3PO scheme OHash
hash

OHash
hash(πdigest,i,crs, µ̂

(β̂)) :

• Consider the program π′
digest,i,crs ∈ PHash′

hash∗ as described in Appendix B.3.2.

• Consider the new message function β̂′ as follows:

β̂′(i′, j, b) =

{
β̂(2, j, b) if i′ = d,

u← {0, 1}κ otherwise.

where d denotes the number of partitions in π′
digest,i,crs.

• Compute ρ← OHash′
hash∗(π

′
digest,i,crs, µ̂

(β̂′)).

• Outputs a program ρ′[ρ] as follows:

* Takes as input k = (k1, . . . , kd).

* Execute ρ on kj , for every j ∈ [d] in sequence.

* Output the �nal output of ρ.

Fig. 26. Hash Opening Obfuscator

* Output ρ′[ρ], where ρ′ was de�ned in Figure 26.

Security of the above obfuscation scheme follows directly from that of OHash′

hash∗ as the interaction between
the parties and the input sequences follow the same semantics in both classes. We skip those details here
for brevity.

□

C Details Omitted from Section 7: Private Multi-Authority ABE

C.1 Proof of Security

Lemma 6 (Restated). If there exists a CP-ABE scheme, a non-interactive UC secure commitment scheme,
a puncturable signature scheme, and an R3PO scheme Op-MA-ABE w.r.t. (G1p-MA-ABE,Qp-MA-ABE)

24, then
there exists a secure p-MA-ABE scheme.

Proof: We now prove that the construction in Figure 17 is a secure p-MA-ABE scheme satisfying De�nition 19

� Correctness: Let

(st, {reqi}i∈[N])← p-MA-ABE.KeyRequest(pk, gid, x̄)

s.t. for each i ∈ [N], Θgid
i (x̄) = 1, reqi = (gid, ci) and st = (gid, x̄, {di}i∈[N]). For each t ∈ [N], let

ρt = p-MA-ABE.KeyGen(t,mskt, Θ
gid
t , reqt, {p-MA-ABE.mpki}i∈[N]).

From the correctness of the R3PO obfuscation scheme, on feeding dt (opening of ct) to each ρt, they output
Sig.sign(Sig.skt, gid||x̄), and on feeding these signatures, �nally output skreqt . But, this key component

is an ABE key skABEx̄,t of x̄ for the underlying ABE scheme t. From the correctness of the ABE scheme,

ABE.Decrypt on input the ABE key skABEx̄,t and ciphertext ABE.ctt ← ABE.Encrypt(ABE.mpkt, ϕ, st) outputs
the secret share st if ϕ(x̄) = 1. Finally, from the correctness of additive secret sharing, we get the message
m = s1 + . . .+ sN.

24 which is also an R3PO w.r.t. (G2p-MA-ABE,Qp-MA-ABE).

60

� Receiver Privacy: Let

(st, {reqi}i∈[N])← p-MA-ABE.KeyRequest(pk, gid, x̄)

s.t. each reqi = (gid, ci). The global identi�er gid is independent of x̄, and the commitment ci reveals nothing
about x̄ from the hiding property of the underlying commitment scheme (even against an adversary that
corrupts all the authorities).

� Security of Encryption:
We consider Adv to be a stateful PPT machine. Hybrid Hm0

: corresponds to the MA-ABE security

experiment (Figure 16), where the challenger encrypts message m0.

Hybrid Hm0 :

• Receive H from Adv.

• ∀i ∈ H, (mpki,mski)← p-MA-ABE.SetupAuth(1κ). Send {mpki}i∈H to Adv.

• Receive {mpkj}j∈[N]\H from Adv

• ∀j ∈ poly(1κ), receive request of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H . Send ρ, where

ρ← p-MA-ABE.KeyGen
(
t,mskt, Θ

gid
t , req, {mpki}i∈[N]

)
• Receive challenge policy ϕ, messages (m0,m1) from Adv. Send ct ←
p-MA-ABE.Encrypt

(
{mpki}i∈[N], ϕ,m0

)
to Adv

• ∀j ∈ poly(1κ), receive request of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H. Send ρ, where

ρ← p-MA-ABE.KeyGen
(
t,mskt, req, Θ

gid
t , {mpki}i∈[N]

)
• Receive a bit b′ from Adv.

Hybrids H1
k and H2

k : Let ℓ be the total number of keygen queries by the Adv. We rewrite the experiment
by using an interaction between G1

H and Qk, where we de�ne Qk for k ∈ [ℓ], that receives the state stAdv
of the adversary Adv, as follows.
Adversary Qk:

• Sample commitment setups in extractable mode: for i ∈ H, (sti,Com.crsi)← ECom0 (1κ). Sample public keys: ∀i ∈
H, (Sig.vki,Sig.ski)← Sig.gen(1κ), (ABE.mpki,ABE.mski)← ABE.Setup(1κ). Send {mpki := (Com.crsi, Sig.vki,ABE.mpki)}i∈H

to Adv. Receive {mpki}i[N]/H from Adv.

• Send {mpki}i∈[N] to G1
H .

• Queries:

* on receiving keygen query j < k of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H, req = gid, c).

· extract x̄← ECom1 (stt,Com.crst, c).

· Fix π
(α)
pp ∈ Pp-MA-ABE where pp = (t,Com.crst, c), α = Θgid

t , and start = σ1
{mpki}i∈[N],gid

.

· Fix µ(β) ∈Mp-MA-ABE where β = (1, τ,ABE.mskt), where τ = Sig.sign(Sig.skt, x̄).

· construct ρ̂← Op-MA-ABE(π
(α)
pp , µ(β)). send ρ̂ to Adv.

* on receiving challenge query of the form (ϕ,m0,m1) from Adv. Send ct← p-MA-ABE.Encrypt
(
{mpki}i∈[N], ϕ,m0

)
to Adv

• on receiving keygen query k of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H. Send (t, req, {Θgid

i }i∈H) as
the target query and (Sig.skt,ABE.mskt) to G1

H .

• halt with output: query k, keys {(sti,Com.crsi, Sig.vki, Sig.ski, ABE.mpki, ABE.mski)}i∈H , adversary state stadv.

61

Hybrid H1
k:

• Receive H from Adv.

• Run ⟨G1
H : Qk⟩ and get as output (π(α), µ(β), aG; aQ).

• Parse aG as ⊥, parse aQ as (t, gid, c, {Θgid
i }i∈H), {(stk,Com.crsk, Sig.vkk, Sig.skk,

ABE.mpkk,ABE.mskk)}k∈H , stAdv and load the state of Adv.

• Construct ρ← Op-MA-ABE(π
(α), µ(β)). Send ρ to Adv.

• Queries:

* on receiving keygen query j > k of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H. Send ρ, where

ρ← p-MA-ABE.KeyGen
(
t,mskt, Θ

gid
t , req, {mpki}i∈[N]

)
* on receiving challenge query of the form (ϕ,m0,m1) from Adv. Send ct ←
p-MA-ABE.Encrypt

(
{mpki}i∈[N], ϕ,m0

)
to Adv

• Receive a bit b′ from Adv.

Hybrid H2
k:

• Receive H from Adv.

• Run ⟨G1
H : Qk⟩ and get as output (π(α), µ(β), aG; aQ).

• Parse aG as ⊥, parse aQ as (t, gid, c, {Θgid
i }i∈H), {(stk,Com.crsk, Sig.vkk, Sig.skk,

ABE.mpkk,ABE.mskk)}k∈H , stAdv and load the state of Adv.

• extract x̄ ← ECom1 (stt,Com.crst, c). Fix µ(β)′ ∈ Mp-MA-ABE with β = (1, τ,ABE.mpkt), where τ =
Sig.sign(Sig.skt, gid||x̄).

• Construct ρ̂← Op-MA-ABE(π
(α), µ(β)′). Send ρ̂ to Adv.

• Queries:

* on receiving keygen query j > k of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H. Send ρ, where

ρ← p-MA-ABE.KeyGen
(
t,mskt, Θ

gid
t , req, {mpki}i∈[N]

)
* on receiving challenge query of the form (ϕ,m0,m1) from Adv. Send ct ←
p-MA-ABE.Encrypt

(
{mpki}i∈[N], ϕ,m0

)
to Adv

• Receive a bit b′ from Adv.

Indistinguishability of Hm0
and H2

ℓ : we have Hm0
≡ H1

1, and ∀k ∈ [ℓ], hybrids H2
k−1 ≡ H1

k, redrawing
of boundaries or rephrasing. Now, we prove that ∀k ∈ [ℓ], H1

k ≈ H2
k. Invoking the R3PO security, there

exists extractor E and simulator Sim s.t. in the experiment ⟨G1
H : Qk|E⟩, E outputs (aQ,Π, X

∗) and ρk ≈
Sim(π, µ,Π, {µ(β)(σ)}σ∈reachΠ(X∗). But, {µ(β)(σ)}σ∈reachΠ(X∗) = {µ(β)′(σ)}σ∈reachΠ(X∗). Thus, ρk ≈ ρ̂k.

Hybrids H3
n and H4

n : We rewrite the experiment by using an interaction between G2
H and Q′k, where

we de�ne Q′k as follows.
Adversary Q′

1:

• Sample commitment setup: ∀i ∈ H, (sti,Com.crsi) ← ECom0 (1κ), abe keys: ∀k ∈ H, (ABE.mpki,ABE.mski) ←
ABE.Setup(1κ). Send {(Com.crsi,ABE.mpki)}i∈H to G2

H . Receive {Sig.vki}i∈H from G2
H and send to Adv. Receive

{mpki}i∈[N]\H from Adv and send to G2
H .

62

• on receiving keygen query 1 of the form (t, gid, c, {Θgid
i }i∈H) from Adv, where t ∈ H. Extract x̄ ← ECom1 (stt, c),

send (t, gid, c, x̄, {Θgid
i }i∈H) as a query to G2

H , receive τ = {τi}i∈H from G2
H and send (t, gid, c, x̄, τt, {Θgid

i }i∈H)
as the target request to G2

H .

• halt with output {(sti,Com.crsi, ABE.mpki,ABE.mski, {mpki}i∈[N]\H , stadv

• Adversary Q′
k:

• Let Ek−1 be a reach extractor for Q′
k−1 w.r.t. generator G2

H .

• Internally run Q′
k−1|Ek−1.

• Receive {(Com.crsi,ABE.mpki)}i∈H from Q′
k−1 and forward it to G2

H . Receive {Sig.vki}i∈H from G2
H and forward

it to Q′
k−1. Receive {mpki}i∈[N]\H from Q′

k−1 and forward it to G2
H .

• Queries:

* on receiving query j < k of the form (t, gid, c, x̄, {Θgid
i }i∈H) from Q′

k−1, forward it to G2
H , receive τ from G2

H

and forward it to Q′
k−1

* on receiving target query j = k − 1 of the form (t, gid, c, x̄, τt, {Θgid
i }i∈H) from Q′

k−1:

· Get (aQ,Π, X
∗) as the output of Q′

k−1|Ek−1 after it halts.

· Parse aQ as {(sti,Com.crsi, ABE.mpki,ABE.mski, {mpki}i∈[N]\H , stadv
)
and load the state of Adv.

· Construct ρ̃← Simp-MA-ABE(π, µ,Π, {µ(β)(σ)}σ∈reachΠ(X∗)). Send ρ̃ to Adv.

* on receiving challenge query of the form (ϕ,m0,m1) from Adv. Send ct← p-MA-ABE.Encrypt
(
{mpki}i∈[N], ϕ,m0

)
to Adv

* on receiving query j = k of the form (t, gid, c, {Θgid
i }i∈H) from Adv.

· Extract x̄← ECom1 (stt, c) and send (t, gid, c, x̄, {Θgid
i }i∈H) as a request to G2

H . Receive τ = {τi}i∈H from G2
H .

Send (t, gid, c, x̄, τt, {Θgid
i }i∈H) as the target request to G2p-MA-ABE.

· halt with output {(sti,Com.crsi, ABE.mpki,ABE.mski, {mpki}i∈[N]\H , stadv.

Hybrid H3
k:

• Receive H from Adv.

• Run ⟨G2
H : Q′

k⟩ and get as output (π(α), µ(β), aG; aQ).

• Parse aG as {(Sig.vki,Sig.ski)}i∈H , parse aQ as {(sti,Com.crsi, ABE.mpki,ABE.mski, {mpki}i∈[N]\H , stadv
and load the state of Adv.

• Construct ρ← Op-MA-ABE(π
(α), µ(β)). Send ρ to Adv.

• Queries:

* on receiving keygen query j > k of the form (t, req, {Θgid
i }i∈H) from Adv, where tj ∈ H and req = (gid, c):

· extract x̄← ECom1 (stt,Com.crst, c).

· Fix π
(α)
pp ∈ Pp-MA-ABE where pp = (t,Com.crst, c), α = Θgid

t , and start = σ1
{mpki}i∈[N],gid

.

· Fix µ(β) ∈Mp-MA-ABE where β = (1, τt,ABE.mskt), where τ = Sig.sign(Sig.skt, x̄).

· construct ρ̂← Op-MA-ABE(π
(α)
pp , µ(β)). send ρ̂ to Adv.

* on receiving challenge query of the form (ϕ,m0,m1) from Adv. Send ct ←
p-MA-ABE.Encrypt

(
{mpki}i∈[N], ϕ,m0

)
to Adv

• Receive a bit b′ from Adv.

63

Hybrid H4
k:

• Receive H from Adv.

• Run ⟨G2
H : Q′

k|Ek⟩ and get as output (π(α), µ(β), aG; aQ,Π, X
∗).

• Parse aG as {(Sig.vki,Sig.ski)}i∈H , parse aQ as {(sti,Com.crsi, ABE.mpki,ABE.mski, {mpki}i∈[N]\H , stadv
and load the state of Adv.

• Construct ρ̃← Simp-MA-ABE(π, µ,Π, {µ(β)(σ)}σ∈reachΠ(X∗)). Send ρ̃ to Adv.

• Queries:

* on receiving keygen query j > k of the form (t, req, {Θgid
i }i∈H) from Adv, where t ∈ H and req = (gid, c):

· extract x̄← ECom1 (stt,Com.crst, c).

· Fix π
(α)
pp ∈ Pp-MA-ABE where pp = (t,Com.crst, c), α = Θgid

t , and start = σ1
{mpki}i∈[N],gid

.

· Fix µ(β) ∈Mp-MA-ABE where β = (1, τt,ABE.mskt), where τt = Sig.sign(Sig.skt, x̄).

· construct ρ̂← Op-MA-ABE(π
(α)
pp , µ(β)). send ρ̂ to Adv.

* on receiving challenge query of the form (ϕ,m0,m1) from Adv. Send ct ←
p-MA-ABE.Encrypt

(
{mpki}i∈[N], ϕ,m0

)
to Adv

• Receive a bit b′ from Adv.

Indistinguishability of Hm0 and H4
ℓ : we have H2

ℓ ≡ H3
1 and ∀k ∈ [ℓ], hybrids H4

k−1 ≡ H3
k, redrawing

of boundaries or rephrasing. Now, we prove that that ∀k ∈ [ℓ], H3
k ≈ H4

k. Invoking the R3PO security, in
the experiment ⟨G2

H : Qk|Ek⟩, Ek outputs (aQ,Π, X
∗) s.t. ρ̂k ≈ Sim(π, µ,Π, {µ(β)(σ)}σ∈reachΠ(X∗).

Note that, in the experiment ⟨G2
H : Q′k|Ek⟩, if the target request is of the form (t, gid, ct, x̄, τt) and the

extractor Ek outputs aQ,Π, X
∗, then we have:

• if ∀i ∈ H,Θgid
i (x̄) = 1, then σ3,N

pk,gid,x̄ ∈ reachΠ(X
∗). Then, {µ(β)(σ)}σ∈reachΠ(X∗) = {τt,ABE.KeyGen(ABE.mskt, x̄)}.

• otherwise, {µ(β)(σ)}σ∈reachΠ(X∗) = {τt}.
Hybrid Hm1

: We now replace the challenge messagem0 in the ciphertext ct with the challenge messagem1

as follows. Let the additive secret sharing ofm0 be {s1, . . . , sN}; the ABE ciphertexts be {ABE.ct0, . . . ,ABE.ctN},
where ∀i ∈ [N], ABE.cti ← ABE.Encrypt(ABE.mpki, ϕ, si); and the ciphertext p-MA-ABE.ct = {ABE.ct0, . . . ,ABE.ctN}.
Let H0 ∈ H be an honest authority. We replace the secret share sH0

with sH0
+ (m1 −m0) and compute

ciphertext c̃tH0
. Indistinguishability of Hm1

and H2
N ′ follows from the indistinguishability security of the

underlying ABE encryption scheme at authority AH0
.

Overall: we get that the hybrids Hm0 and Hm1 are indistinguishable. But, these hybrids correspond to

the MA-ABE security experiment in Figure 16. Thus, the above scheme satis�es MA-ABE security.

□

C.2 Modeling the Key-Component as an R3PO

We de�ne two generator classes that will be useful to prove security of the scheme in Figure 17. At a
high level, both generators pick the keys for the honest authorities. The �rst generator allows us to replace
the signing key ski of an honest authority Ai in each reactive-program obfuscation for a key-request gid∥c
with a signature τ on x̄ s.t. the commitment c can only be opened to x̄ (even for adversarially generated
commitments c). The second generator allows us to then replace the ABE master secret key mski of each
honest authority Ai in the obfuscation with: either the ABE key for x̄ (if the attribute-granting policies of
all the honest authorities agree) or empty key.

Program class : Each program (π
(α)
pp , µ(β)) in Pp-MA-ABE is speci�ed as follows:

� public parameter pp = (t,Com.crs, c) (hardcoded in the program)

� start state start = σ1
pk,gid, where pk = {Sig.vkk}k∈[n]

64

� transition function π
(α)
pp , where α = Θgid, is de�ned as:

π(α)
pp

(
σt
st, y

)
=



σ2
pk,gid,gid′,x̄ where t = 1, st = (pk, gid),

if Com.Open(Com.crs, c, y) = gid′∥x̄.
σ3,0
pk,gid,x̄ where t = 2, st = (pk, gid, gid′, x̄),

if Θgid(x̄) = 1, gid′ = gid.

σ3,k
pk,gid,x̄ where t = (3, k − 1), k ∈ [N], st = (pk, gid, x̄), y = (τk,mk),

if Sig.verify(Sig.vkk, τk,mk) = 1,mk = gid∥x̄.

� message function µ(β) ∈Mp-MA-ABE, with β = (b, ss,ABE.msk), for b ∈ {0, 1} and ss of the form:

ss =

{
Sig.sk if b = 0,

τ otherwise.

is de�ned as:

µ(β)(σ) =


Sig.sign(ss, gid∥x̄) if b = 0, σ = σ3,0

pk,gid,x̄.

ss if b = 1, σ = σ3,0
pk,gid,x̄.

ABE.KeyGen(ABE.mskt, x̄) if σ = σ3,N
pk,gid,x̄.

⊥ otherwise.

Partition function Ip-MA-ABE : Σ → [3 + N] de�ned as: Ip-MA-ABE(σ
1
st) = 1, Ip-MA-ABE(σ

2
st) = 2 and

Ip-MA-ABE(σ
3,t
st) = 3 + t for t ∈ {0, . . . ,N}, and some state information st.

Generator Class G1p-MA-ABE : This class contains a class of generators of the form G1
H , parameterized

by a set H (denoting the set of honest authorities), that interacts with an arbitrary PPT Q as follows:
• it receives master public keys {mpk}i∈[N] of the authorities from Q.

• it �nally receives a target request of the form (t, gid, c, {Θgid
i }i∈H), where t ∈ H and (Sig.skt,ABE.mskt).

• it halts with output (π
(α)
pp , µ(β)) ∈ Pp-MA-ABE, where pp = (t,Com.crst, c), α = Θgid

t , start = σ1
pk,gid and

β = (0,Sig.skt,ABE.mskt).

Generator Class G2p-MA-ABE : This class contains a class of generators of the form G2
H , parameterized

by a set H (denoting the set of honest authorities), that interacts with an arbitrary PPT Q as follows:
• it receives commitment setups {Com.crsi}i∈H , ABE key pairs {(ABE.mpki,ABE.mski)}i∈H from Q.

• it samples signature key pairs {(Sig.vki,Sig.ski)}i∈H and sends {Sig.vki}i∈H to Q.

• it receives signature veri�cation keys {Sig.vki}i∈[N]\H of the corupt authorities from Q.

• For k ∈ poly(1κ), it receives query of the form (t, gid, x̄, {Θgid
i }i∈H), and sends {τi}i∈H , where ∀i ∈ H:

τi =

{
Sig.sign(Sig.ski, gid||x̄) if Θgid

i (x̄) = 1,

⊥ otherwise.

it also updates25 the signature key for authorities i ∈ H as:

Sig.ski =

{
Sig.ski if Θgid

i (x̄) = 1,

Sig.punct(Sig.skik , gid||x̄) otherwise.

• it �nally receives a target request of the form (t, gid, c, x̄, τ, {Θgid
i }i∈H).

• it halts with output (π
(α)
pp , µ(β)) ∈ Pp-MA-ABE and auxilary output aG = {(Sig.vki,Sig.ski)}i∈H , where

pp = (t,Com.crst, c), α = Θgid
t , start = σ1

pk,gid and β = (1, τ,ABE.mskt).

25 Note that puncturing of the signing key is crucial here, both to allow decomposition to signature-checking one-step
program as well as in the proof.

65

Adversary Class Qp-MA-ABE : Set of all adversaries of the form Q{Ti}i∈H , for PPT Q and each Ti ∈
{Com.Setup,SetupSim}, for i ∈ H.

The obfuscation scheme : We show that the same obfuscation scheme is a valid R3PO w.r.t. both
generators described above. Further, it can be decomposed to commitment-opening (Appendix B.1) and
signature-checking (Appendix B.2) R3PO in the library. Thus, we have:

We prove that the MA-ABE generator classes de�ned above decompose to a library of one-step program
program generators.

Lemma 15. (G1p-MA-ABE,Q) decomposes into

L = (L1,L2,L3,0, . . . ,L3,N) ,

where:

Li =


(GCom

commit
,Q) if i = 1

(GΣϵ ,Q) if i = 2

(GSigqsign,Q) if i = (3, a), a+ 1 ∈ [N]

Proof: We prove that ∀G1
H ∈ G1p-MA-ABE, G

1
H decomposes to L.

Case i = 1:

At this partition, we prove that (G1
H ,Q) decomposes to (GComcommit,Q) (with the appropriate pre�x and par-

tition function, that we skip here; refer Section 6.5):

� De�ning J : It extracts pk, gid, pp from the transcript of the interaction and halts with output (π̂
(α)

σ1
st
, µ̂(β̂)).

� De�ning Z: It interacts with Q by internally running G1
H . Finally, it outputs G

1
H 's output.

� De�ning W : It extracts c from the transcript of the interaction and sends c on the bottom channel.

Case i = 2 :
At this partition, we prove that (G1

H ,Q) decomposes to (GΣϵ ,Q) (with the appropriate pre�x and partition
function, that we skip here; refer Section 6.5):

� De�ning J : It receives σ1, σ2 from W , samples a message function µ̂(β̂) ∈ M̂Ip-MA-ABE,1 and halts with

output (π̂
(α)
σ2 [σ1], µ̂

(β̂)).

� De�ning Z: It interacts with Q by internally running G1
H . Finally, it outputs G

1
H 's output.

� De�ning W : It extracts σ1, σ2 from the transcript of the interaction and the output of a 1-partial reach
extractor E (which extracts gid′ from c). It sends σ1, σ2 on the bottom channel.

Case i = (3, a), if a+ 1 ∈ [N] :

At this partition, we prove that (G1
H ,Q) decomposes to (GSigqsign,Q) (with the appropriate pre�x and partition

function, that we skip here; refer Section 6.5):

� De�ning J : It extracts σ = σ3,i
pk,gid,x̄ from the transcript of the interaction, samples a message function

µ̂(β̂) ∈ M̂Ip-MA-ABE,3+i and halts with output (π̂
(α)
σ , µ̂(β̂)).

� De�ning Z: It interacts with Q by internally running G1
H . Finally, it outputs G

1
H 's output.

� De�ning W : It extracts Sig.vki+1, gid, x̄ from the transcript of the interaction and sends Sig.vki+1, gid∥x̄
on the bottom channel.

□

Lemma 16. (G2p-MA-ABE,Qp-MA-ABE) decomposes into L = {LH}H , where, for each H (set of honest
authorities),

LH = (L1,L2,L3,0, . . . ,L3,N) ,

66

and ∀i ∈ [3 + N]:

Li =


(GCom

commit
,Q) if i = 1

(GΣϵ ,Q) if i = 2

(GSigqsign,Q) if i = (3, a), a+ 1 ∈ [N] \H
(GSigsign,Q) if i = (3, a), a+ 1 ∈ H

Proof: We prove that ∀G2
H ∈ G2p-MA-ABE, G

2
H decomposes to LH . The �rst three cases are similar to

Lemma 15.
Case i = (3, a), if a+ 1 ∈ H :

At this partition, we prove that (G2
H ,Q) decomposes to (GSigsign,Q) (with the appropriate pre�x and partition

function, that we skip here; refer Section 6.5):

� De�ning W : It internally runs Q in a white-box way. For each query mj that Q makes in the top channel,
it sends on the bottom channel and gets back τj . Finally Q sends the target message m on the top channel.
It extracts gid, x̄ from m and sends as the target message on the bottom channel.

� De�ning J : It responds to each query from W using the corresponding response of G2
H . It �nally receives

gid, x̄ from W as the target message, samples a message function µ̂(β̂) ∈ M̂Ip-MA-ABE,2+a and outputs

(π̂
(α)

σ3,a
st

, µ̂(β̂)).

� De�ning Z: It samples the signature keys for all honest authorities except i+ 1. It responds to each
query of Q using these keys. If Q queries on the key for i + 1, W makes a corresponding query in the
bottom channel and gets the corresponding response. Z uses this to respond to Q. Finally, Z halts with
output (π(α), µ(β)) (with the appropriate parameters).

□

We now prove the main lemma.

Lemma 17. If there exist R3PO schemes w.r.t. (GCom
commit

,QCom
commit

, P̊
commit

) and (GSigsign,QSig
sign, P̊Sig

sign), where
Com is a non-interactive UC-secure commitment scheme and Sig is a puncturable signature scheme, then
there exists a compiler Op-MA-ABE which is an R3PO scheme w.r.t. (G1p-MA-ABE,Qp-MA-ABE), and also an

R3PO w.r.t. (G2p-MA-ABE,Qp-MA-ABE).

Proof: If there exists a semi-honest secure OTSE scheme, then there exists a PPT program OSig s.t. OSig

is a R3PO scheme w.r.t. (GSigsign,Q, P̊Sig
sign) (Lemma 2) and OSig is a R3PO scheme w.r.t. (GSigqsign,Q, P̊Sig

qsign)
(Lemma 3).

Now, from our compiler (Theorem 1), Lemma 15 and Lemma 16 and Lemma 3, there exists a PPT
program Op-MA-ABE s.t. Op-MA-ABE is a R3PO obfuscation scheme w.r.t. (G1p-MA-ABE,Qp-MA-ABE) and

(G2p-MA-ABE,Qp-MA-ABE). □

D Identity Based Functional Encryption (IBFE)

As an illustration of the use of R3PO, we present an alternative derivation of the IBE construction in [21,
22] using an R3PO for signatures (Section 6.2). In fact, our construction readily extends to identity-based
functional encryption, which may be of further interest.

D.1 De�nition for IBFE

De�nition 20 (Identity Based Functional Encryption (IBFE)). An IBFE scheme for a functionality
F de�ned over (K,M) consists of the following PPT algorithms:

- Setup(1κ)→ (mpk,msk): On input security parameter κ, outputs a key-pair (mpk,msk).

- KeyGen(msk, id, f)→ skid,k: On input master secret key msk, identity id and key f ∈ K, outputs a function
key skid,f .

- Encrypt(mpk, id,m) → c: On input master public key mpk, identity id and message m ∈ M, outputs a
ciphertext c.

67

- Decrypt(skid,f , c)→ y: On input a function key skid,f and ciphertext c, outputs a message y.

The following properties are required from the above algorithms.

� Completeness: For all security parameters κ, ∀id ∈ {0, 1}n, ∀f ∈ K, ∀m ∈ M it holds that, if (mpk,msk)←
Setup(1κ), skid,f ← KeyGen(msk, id, f), then:

Pr
[
Decrypt(skid,f ,Encrypt(mpk, id,m)) = F(f,m)

]
= 1

� Security: For any PPT adversary A = (A1,A2), there exists a negligible function negl(.) such that the
following holds:

Pr[INDibfe(A) = 1] ≤ 1

2
+ negl(κ)

where INDibfe is shown in Figure 27.

◁

Experiment INDibfe

Parameter: Let κ be the security parameter. Let F be the functionality.

� (mpk,msk)← Setup(1κ).

� (sA1 , id
∗,m0,m1)← AKeyGen(msk,·,·)

1 (mpk).

� b← {0, 1}.
� c← Encrypt(mpk, id∗,mb).

� b∗ ← AKeyGen(msk,·,·)
2 (sA1 ,mpk, c).

� If A1 or A2 queried key for an (id∗, f∗) such that F(f∗,m0) ̸= F(f∗,m1) or queried id∗ for more than one key,
output a random bit b← {0, 1}.
Else, output 1 if b′ = b∗ else 0.

Fig. 27. IBFE Security Experiment.

D.2 Construction for IBFE

In this section, we give a scheme for IBFE from the following primitives.

- a puncturable signature scheme (De�nition 11) Sig, with message space M = {0, 1}m+o+1, where m is the
length of identity strings and o is the length of function keys in IBFE.

- an R3PO scheme OSig
sign w.r.t. (GSigsign,QSig

sign, P̊Sig
sign) (de�ned in Section 6.2).

Lemma 18. If there exists a puncturable signature scheme Sig and an R3PO scheme w.r.t. (GSigsign,QSig
sign, P̊Sig

sign),
then there exists a secure IBFE scheme.

Proof: We prove that the scheme in Figure 28 is a secure IBFE scheme satisfying De�nition 20. It uses an
R3PO scheme OSig

sign w.r.t. (GSigsign,QSig
sign, P̊Sig

sign) as described in Section 6.2.1 (note that a generator in GSigsign

is denoted as HSig
signTZ there).

68

Parameter: Let κ be the security parameter.

Let Sig = (Sig.gen, Sig.sign, Sig.verify, Sig.punct, Sig.psign) be a puncturable signature scheme.

Let OSig
sign be an R3PO scheme w.r.t. (GSigsign,QSig

sign, P̊Sig
sign).

IBFE scheme:

- Setup(1κ):

(Sig.vk, Sig.sk)← Sig.gen(1κ)

output (mpk,msk) := (Sig.vk, Sig.sk).

- KeyGen(msk, id, f):

parse msk as Sig.sk

τid∥f ← Sig.sign(Sig.sk, id∥f)
output skid,f := (τid∥f , id∥f).

- Encrypt(mpk, id,m):

parse mpk as Sig.vk

let µid,F be as follows:

µ
(m)
id,F (σi

x) =

{
F(f,m) if i = 2 and x = id∥f,
⊥ otherwise.

output OSig
sign

(
π
(·)
id [σ1

Sig.vk], µ
(m)
id,F , Isign

)

� Decrypt(skid,f , ct):

parse skid,f as (τ, x)

parse ct as ρ

output m← ρ((τ, x))

Fig. 28. IBFE from R3PO for Signatures

Let Adv = (A1,A2) be an adversary for the IBFE security experiment in Figure 27 with advantage α.

We give a reduction to the R3PO security (De�nition 16) of OSig
sign by constructing a generator G ∈ GSigsign, an

adversary Q ∈ QSig
sign and a PPT distinguisher D′. Recall that, G is of the form HSig

signTZ for a �xed HSig
sign (in

the library) and PPT Z. We now describe Z, Q, D′ and the interaction:

� Q internally runs A1 in a straightline black-box way.

� Q receives Sig.vk from HSig
sign and forwards it to A1.

� KeyGen queries: Q receives polynomial many key queries from A1 of the form (idi, fi), for each such query,

Q sends query for signature of idi∥fi to HSig
sign and forwards the signature response to A1.

� Challenge: Q receives the challenge (id∗,m0,m1) from A1 and forwards it to Z. Z sends id∗ as the target

mpre to HSig
sign.

� Q receives the punctured key sk (punctured on all signature queries above and on id∗) from HSig
sign.

� Z samples b← {0, 1}, sets m := mb and sends µ
(m)
id∗,F to HSig

sign as the message function.

� Z outputs aG = b as its aux output, Q outputs aQ = (id∗, sk,m0,m1) as its aux output.

At the end of the interaction, D′ takes the output of the execution (ρ, aG, aQ) as its input; where ρ is the
real obfuscation for the execution real(G,Q) and the simulated obfuscation output by Sim for the ideal

execution ideal(G,Q|̂E). D′ internally runs A2 in a straightline black-box way and behaves as follows.

� D′ parses aG as b, parses aQ as (id∗, sk,m0,m1) and sends ρ to A2 as the challenge ciphertext.

� KeyGen queries: D′ responds to polynomial many keygen queries from A2 using the punctured key sk.

� D′ �nally receives a bit b′ from A2. Let the single keygen query on the target id by A1 ∪ A2 be (id∗, f).
If there are multiple queries or if F(k,m0) ̸= F(k,m1), D

′ outputs a random bit. Else, D′ outputs 1 if
b = b′, else outputs 0.

We now compare the outputs of D′ in the real and ideal cases. From above, it is trivial to see that for
the real execution, D′ outputs 1 with probability 1/2 + α. On the other hand, for the ideal execution, D′

69

and thus A2 get a simulated obfuscation ρ̃ that is independent of b, m0 and m1 (except for the output
F(k,m0) = F(k,m1)). Thus, it outputs 1 with probability 1/2. Now, if α is non-negligible, then D′ breaks
R3PO security. □

E MPC from R3PO for Commitment-Opening

In this section, we give our 2-round MPC construction, which is a simpler rederivation of the results in [7,
30] using an R3PO scheme for commitment opening (see Appendix B.1) and our composition theorem.

E.1 Conforming Protocols

An MPC protocol for a functionality F is a protocol where a group of n mutually distrusting parties
P1, . . . , Pn, with private inputs x1, . . . , xn respectively, interact with each other to achieve this functionality.
Conforming protocols are special kind of MPC protocols which satisfy the following properties:

� The topology of a circuit computing F , with L =
∑

i |xi| input gates (indexed as 1, . . . , L), T internal
binary gates (indexed as L + 1, . . . , L + T) and K binary output gates, is speci�ed by a function ϕ, as
follows: for each binary gate index w, ϕw = (i, u, v) denotes that the gate's inputs are the outputs of gates
u and v (for some u, v < w); further, this gate is �owned� by party Pi. Let Ai denote the set of binary
gate indices owned by Pi; i.e., Ai = {w | ϕw = (i, ·, ·)}.

� The protocol Φ is divided into 3 phases.

• In the �rst phase, every party Pi, based on its input xi and private randomness, generates private
gates {Gw}w∈Ai

and a string zi such that |zi| = |xi|. It then broadcasts zi. A common state vector s is
initialized as z1∥ . . . ∥zn (at this point s will be L bits long).

• The second phase consists of T rounds. In round w − L, if ϕw = (i, u, v), party Pi broadcasts the bit
sw = Gw(su, sv), which is appended to s.

• In the third phase, for each output gate w such that ϕw = (i, u, v), Pi computes its value as Gw(su, sv)
and outputs it.

Just like is done in [30], it can be shown that any MPC protocol can be converted to a conforming protocol
with at most a polynomial blowup in the round complexity of the protocol. If the underlying MPC protocol
is secure against active corruption, then the resulting protocol remains secure against active corruption in
Phase 1 (so that zi and {Gw}w∈Ai maybe arbitrary for corrupt Pi) and passive corruption in Phase 2.

E.2 MPC Construction

We will build a 2-round MPC protocol assuming a multi-round conforming protocol Φ for the same func-
tionality, a commitment scheme, and an R3PO scheme OCom

commit w.r.t. (GComcommit,QCom
commit, P̊commit).26 We only

need a commitment scheme where the messages to be committed are bits i.e.,M ={0,1}. First, we must de�ne
the program classes, the generator class and the adversary class w.r.t. which we will de�ne our transition
programs and their obfuscations. The party index i is �xed for each class, as each party's programs have
similar transitions in di�erent orders.

Here is a detailed description of the classes:

� Program family PCom,i
MPC : Each program in the program family is parameterized by a conforming protocol

Φ, a vector of common random strings crs = {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1}, a vector of commitments c =
{cw,γ,δ}w∈{L:T},γ,δ∈{0,1} and an index i. The state space is de�ned as

ΣMPC = {σw−L
s }w∈{L,...,L+T+1},s∈{0,1}w

26 De�ned in Appendix B.1.

70

A program π
(α)
Φ,crs,c,i[σ

0
s0] ∈ P

Com,i
MPC , where α = {Gw}w∈Ai

, is de�ned by the transition function:

π
(α)
Φ,crs,c,i[σ

0
s0](σ

w−L−1
s , x) =



σw−L
s′ if ϕw = (i, u, v),

where s′ = s∥Gw(su, sv).

σw−L
s′ if ϕw = (i∗ ̸= i, u, v),

where s′ = s∥Com.Open(crsw,su,sv , (cw,su,sv , x)).

σw−L−1
s otherwise.

for w ∈ {L : T}. We shall also associate a partition function IMPC : Σ → {0, . . . , T + 1}, such that
IMPC(σ

w−L
s) = w − L, for w ∈ {L, . . . , L+ T + 1}.

σ0
s0

{σ0
s }s∈{0,1}L

σ1
s1

{σ1
s }s∈{0,1}L+1

d1
σ2
s2

d2

{σ2
s }s∈{0,1}L+2

ϵ
σ3
s3

{σ3
s }s∈{0,1}L+3

d3
σ4
s4

{σ4
s }s∈{0,1}L+4

d4
• • •

σw−L−1
s σw−L

s′

d s.t. b = Com.Open(crsw,su,sv , (cw,su,sv , d))

and s′ = s∥b

σw−L−1
s σw−L

s′
ϵ

s′ = s∥Gw(su, sv)

dw,su,sv

Fig. 29. Top �gure shows the transition program π
(α)
Φ,crs,c,i[σ

0
s0] produced by Pi, when L+2, L+5 ∈ Ai and L+1, L+

3, L+ 4 ̸∈ Ai. The details of the transitions for w such that ϕw = (j, u, v), where j ̸= i (middle) and j = i (bottom)
are also shown.

� Program family P̊MPC: This program family is essentially the same as PCom,i
MPC where Com is a trivial, non-

hiding commitment scheme (i.e., Com.Commit(m) = m). In other words, a program ΠΦ,x[σ
0
s0] ∈ P̊MPC is

de�ned by the transition function:

ΠΦ,x[σ
0
s0](σ

w−L−1
s , x) =


σw−L
s′ if ϕw = (·, u, v) and x = xt,

where s′ = s∥x.
σw−L−1
s otherwise.

where x ∈ {0, 1}T .

� A (PCom,i
MPC ,M̂IMPC,1)-Generator Class G

Com,i
MPC : This class contains all generators of the form HCom,i

MPC ∥Z, for
all PPT Z, where HCom,i

MPC behaves as follows: It receives crs = {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1} from Q. It then

71

σ0
s0 σ1

s1 σ2
s2

• • •

σw−L−1
s σw−L

s′

x s.t. x = xw−L

and s′ = s∥x

Fig. 30. The top �gure denotes the relaxed transition program ΠΦ,x[σ
0
s0], with a particular transition for w s.t.

ϕw = (·, u, v) being shown in the bottom �gure.

generates (zi, {Gw}w∈Ai) ← pre(1κ, i, xi), with xi being an input to HCom,i
MPC . For every w ∈ Ai, and γ, δ ∈

{0, 1}, HCom,i
MPC generates

(cw,γ,δ, dw,γ,δ)← Com.Commit(crsw,γ,δ,Gw(γ, δ)).

When interacting withQ, it sends (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1}) toQ. It then reads {(zj , {cw,γ,δ}w∈Aj ,γ,δ∈{0,1})}j∈[n]\{i}
from Q. Also, HCom,i

MPC accepts a message function µ̂(β̂) ∈ M̂IMPC,1 from Z. Let c = {cw,γ,δ}w∈{L:T},γ,δ∈{0,1}.

HCom,i
MPC outputs (π

(α)
Φ,crs,c,i[σ

0
s0], µ̂

(β̂)), where s0 = z1∥ . . . ∥zN . (Z's output forms the auxiliary output of the

generator HCom,i
MPC ∥Z.)

� Adversary Class QCom,i
MPC : It is the class of all PPT adversaries who must send the common random string

crs = {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1} and messages of the form {(zj , {cw,γ,δ}w∈Aj ,γ,δ∈{0,1})}j∈[n]\{i} to HCom,i
MPC .

Next, we will show that the above classes decompose27 to the corresponding classes for commitment
opening and epsilon-transitions in the library, which already have R3PO schemes28. It is useful to do this
so that we can use our main theorem Theorem 1 to obtain a valid R3PO scheme for these MPC classes as a
corollary.

Lemma 19. (GCom,i
MPC ,QCom,i

MPC), for every i ∈ [n], decomposes into a library of commitment openings (GCom
commit

,QCom
commit

)
and epsilon-transitions (GΣϵ ,QΣ

ϵ) (where, Σ = ΣMPC).

Proof: We will show that (GCom,i
MPC ,QCom,i

MPC) decomposes into the library L = (Lw−L)w∈{L:T}, where

Lw−L =

{
(GComcommit,QCom

commit) if w /∈ Ai,

(GΣϵ ,QΣ
ϵ) otherwise.

where Σ = ΣMPC. First, we will show the decomposition at partitions w /∈ Ai. Therefore, for a generator
G ∈ GCom,i

MPC and a partition w /∈ Ai, we will describe J, Z so that ∀Q ∈ QCom,i
MPC , and all (w − L)-partial

reach-extractors E for Q, the conditions given in De�nition 17 hold.

� De�ning J . Here is a description of the interaction between HCom,i
MPC , J,Q and E :

1. J reads crs = {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1} from Q and forwards it to HCom,i
MPC .

27 Refer to De�nition 17.
28 These are also provided in the library.

72

2. J receives (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1}) from HCom,i
MPC and forwards it to Q.

3. J receives {(zj , {cw,γ,δ}w∈Aj ,γ,δ∈{0,1})}j∈[n]\{i} from Q and forwards it to HCom,i
MPC .

4. J receives (aQ,ΠΦ,x[σ
0
s0], X

∗) from extractor E . It parses X∗ = (xt)t∈[T], where xt is a bit for all t ∈ [T].
Set s0 = z1∥ . . . ∥zn. For every t ∈ [T], J does the following:

st = st−1∥xt.

where ϕt+L = (·, u, v).
5. Set γ = sw−L−1u and δ = sw−L−1v , where ϕw = (i∗ ̸= i, u, v).

6. J samples a message function µ̂(β̂) ∈ M̂IMPC,w and sends it to HCom,i
MPC .

7. J outputs (π̂
(α)
σ , µ̂

(β̂)
σ) as its auxilliary output, where σ = σw−L−1

sw−L−1 and π̂
(α)
σ is a one-step restriction

(de�ned in Section 5) of the program π
(α)
Φ,crs,c,i (de�ned in Appendix E.2). Note that this one-step

program only needs to have crsw,γ,δ and cw,γ,δ hard-coded in it.

� De�ning Z. Here is a description of the interaction between HCom
commit, Z,Q and E :

1. Z reads crs = {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1} from Q.

2. Z samples (zi, {Gw}w∈Ai
)← pre(1κ, i, xi), where xi is its input.

3. For every w ∈ Ai, and γ, δ ∈ {0, 1}, Z generates

(cw,γ,δ, dw,γ,δ)← Com.Commit(crsw,γ,δ,Gw(γ, δ)).

4. Z sends (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1}) to Q.

5. Z receives {(zj , {cw,γ,δ}w∈Aj ,γ,δ∈{0,1})}j∈[n]\{i} from Q.

6. Z receives (aQ,ΠΦ,x[σ
0
s0], X

∗) from extractor E . It parses X∗ = (xt)t∈[T], where xt is a bit for all t ∈ [T].
Set s0 = z1∥ . . . ∥zn. For every t ∈ [T], Z does the following:

st = st−1∥xt.

where ϕt+L = (·, u, v).
7. Set γ = sw−L−1u and δ = sw−L−1v , where ϕw = (i∗ ̸= i, u, v).

8. It then provides (cw,γ,δ, crsw,γ,δ) to HCom
commit.

9. Z then samples µ̂(β̂) ∈ M̂Icommit,w and sends µ̂(β̂) to HCom
commit.

10. Z halts with output (π
(α)
Φ,crs,c,i[σ

0
s0], µ̂

(β̂)), where s0 = z1∥ . . . ∥zN and c = {cw,γ,δ}w∈{L:T},γ,δ∈{0,1}.

� Indistinguishability check. We need to show that the outputs of ⟨HCom,i
MPC UJ : Q|̂E⟩ and ⟨HCom

commit∥Z :

Q|̂E⟩ are indistinguishable. This follows in a straightforward manner from the descriptions of J and Z
provided above.

� Reach-restriction check. Since J (as de�ned above) is only using the input sequence X∗ obtained

from E to determine the start state σ of the non-reactive program π̂
(α)
σ , the reach-restriction condition is

satis�ed.

Now, we will prove decomposition for w ∈ Ai. Consider the following description:

� De�ning J . In an interaction with HCom,i
MPC , Q and E , steps 1-4 are the same as the description of J for the

previous case. Here are the following steps:
1. J sets σ1 := σw−L−1

sw−L−1 and σ2 := σw−L
sw−L , where the (w − L)-th transition is done similarly to the �rst

w − L− 1 transitions i.e., using the output of E .
2. J samples a message function µ̂(β̂) ∈ M̂IMPC,w and sends it to HCom,i

MPC .

3. It outputs (π̂
(α)
σ1 , µ̂

(β̂)
σ1) as its auxilliary output, where π̂

(α)
σ1 is a one-step restriction of the program

π
(α)
Φ,crs,c,i at state σ1. Note that this one-step program only needs to have σ1 and σ2 hard-coded in it,

since it is an ϵ-transition.

73

� De�ning Z. In an interaction with HΣ
ϵ , Q and E (where Σ = ΣMPC), steps 1-6 are the same as in the

description of Z for the previous case. Here are the following steps:
1. Z sets σ1 := σw−L−1

sw−L−1 and σ2 := σw−L
sw−L , where the (w − L)-th transition is done similarly to the �rst

w − L− 1 transitions i.e., using the output of E .
2. Z samples µ̂(β̂) ∈ M̂Iϵ,w and sends ((σ1, σ2), µ̂

(β̂)) to HΣ
ϵ .

3. Z halts with output (π
(α)
Φ,crs,c,i[σ

0
s0], µ̂

(β̂)), where s0 = z1∥ . . . ∥zN and c = {cw,γ,δ}w∈{L:T},γ,δ∈{0,1}.

� Indistinguishability check.We need to show that the outputs of ⟨HCom,i
MPC UJ : Q|̂E⟩ and ⟨HΣ

ϵ ∥Z : Q|̂E⟩ are
indistinguishable, where Σ = ΣMPC. Again, this follows in a straightforward manner from the descriptions
of J and Z given above.

� Reach-restriction check. Since J (as de�ned above) is only using the input sequence X∗ obtained

from E to determine the start state σ of the non-reactive program π̂
(α)
σ , the reach-restriction condition is

satis�ed.

□

Corollary 3. Assuming a UC-secure commitment opening scheme Com, and an R3PO scheme w.r.t.
(GCom

commit
,QCom

commit
, P̊

commit
), there exists an R3PO scheme w.r.t. (GCom,i

MPC ,QCom,i
MPC , P̊MPC), for every i ∈ [n].

Now, we give our construction of a 2-round MPC protocol in Figure 31. The construction is very similar
to [30] except that the second round messages, consisting of multiple OT messages and a sequence of garbled
circuits, have been replaced by an obfuscation of a transition program as described above. As a result, this
leads to a much cleaner presentation. Correctness of this scheme follows from our description of Φ, Com and
correctness of OCom,i

MPC , for every i ∈ [n]. Also, let {L : T} denote the set {L+ 1, . . . , L+ T} in the following
description.
For security, we prove the following lemma.

Lemma 20. Assuming a conforming protocol Φ for a functionality, a UC-secure commitment scheme Com,
and an R3PO scheme w.r.t. (GCom,i

MPC ,QCom,i
MPC , P̊MPC) for every i ∈ [n], there exists a secure 2-round MPC

protocol for the same functionality.

Proof: Let A be a malicious adversary corrupting a subset of parties and let H ⊆ [n] be the set of honest
parties. This set is �xed before the execution of the protocol.

Description of the Simulator. We give the description of Sim that simulates the view of A. Sim will
internally use the simulator for malicious security of the underlying conforming protocol SimΦ, the extractors
(E1, E2) implied by binding property of Com, the simulator SimEq implied by equivocal commitment property,

the extractor ECom,i
MPC and the simulator SimCom,i

MPC for security of OCom,i
MPC , for every i ∈ H.

Simulating the interaction with Z. For every input value for the set of corrupted parties that Sim
receives from Z, Sim writes that value to A 's input tape. Similarly, the output of A is written as the output
on Sim 's output tape.

Simulating the interaction with A: Sim does the following:

� Generation of the common random string: It generates the common random string as follows:
• For each i ∈ H, w ∈ Ai, γ, δ ∈ {0, 1}, set(

crsw,γ,δ, cw,γ,δ, {d0w,γ,δ, d
1
w,γ,δ}

)
← SimEq(1

κ).

• For each i ∈ [n] \H, w ∈ Ai, γ, δ ∈ {0, 1}, generate

(crsw,γ,δ, statew,γ,δ)← E1(1κ).

• Output the common random string as {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1}.

� Initialization: Sim executes SimΦ(1
κ) to obtain {zi}i∈H .

74

MPC from R3PO

Let Φ be a conforming protocol for the same functionality, Com be a UC-secure commitment scheme, and OCom,i
MPC

be an R3PO scheme w.r.t. (GCom,i
MPC ,QCom,i

MPC , P̊MPC).

Common Random String: For each w ∈ {L : T}, γ, δ ∈ {0, 1}, sample crsw,γ,δ ← Com.Setup(1κ) and output
{crsw,γ,δ}w∈{L:T},γ,δ∈{0,1} as the common random string crs.

Round-1: Each party Pi does the following:

• Compute (zi, {Gw}w∈Ai)← pre(1κ, i, xi).

• For every w ∈ Ai, γ, δ ∈ {0, 1}

(cw,γ,δ, dw,γ,δ)← Com.Commit(crsw,γ,δ,Gw(γ, δ)).

• Send (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1}) to every other party.

Round-2: Each party Pi does the following:

• Set s0 := z1∥ . . . ∥zn.
• Set c := {cw,γ,δ}w∈{L:T},γ,δ∈{0,1}.

• Set β := {dw,γ,δ}w∈Ai,γ,δ∈{0,1}.

• De�ne a function µ
(β)
i over ΣMPC s.t.

µ
(β)
i (σw−L

s) =

{
dw,γ,δ where ϕw = (i, u, v), γ = su, δ = sv,

⊥ otherwise.

for all w ∈ {L : T}.
• De�ne α := {Gw}w∈Ai .

• Set ρi ← OCom,i
MPC (π

(α)
Φ,crs,c,i[σ

0
s0], µ

(β)
i , IMPC).

• Send ρi to every other party.

Evaluation: To compute the output of the procotol, each party does the following:

• Set s := z1∥ . . . ∥zn.
• Set xj = () for every j ∈ [n].

• For every w ∈ {L : T}, do:
* Parse ϕw = (i∗, u, v).

* Add ϵ to the sequence xi∗ .

* Evaluate ρi∗(xi∗) to get d.

* Append the bit Com.Open(crsw,γ,δ, (cw,γ,δ, d)) to s, where γ = su, δ = sv.

* For every j ∈ [n] \ {i∗}, add d to the sequence xj .

• For every w ∈ {T : K} s.t. ϕw = (i, u, v), append the bit Gw(su, sv) to s.

• Output the string s[T : K].

Fig. 31. Our MPC construction

75

� Round-1 messages from Sim to A: For each i ∈ H, the simulator Sim sends (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1})
to A on behalf of honest party Pi.

� Round-1 messages from A to Sim: For each i ∈ [n]\H, Sim receives the value (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1})
from A on behalf of corrupt party Pi. Next, for each i ∈ [n] \ H,w ∈ Ai, γ, δ ∈ {0, 1}, Sim extracts
bw,γ,δ := E2(statew,γ,δ, cw,γ,δ).

� Completing the execution with SimΦ: The interaction with SimΦ is completed assuming that the
corrupt parties behave semi-honestly in this phase of the protocol. For a round in which a corrupt party
is the speaker, Sim sends the bit bw,γ,δ to SimΦ, where γ and δ are chosen appropriately based on the
state vector maintained and ϕw. Let Z ∈ {0, 1}T , where Zt represents the bit sent in the tth round of the
computation phase of Φ, be the output of this execution. And let s∗ ∈ {0, 1}L+T be the state value at the
end of execution. Also, for each i ∈ H, t ∈ Ai, γ, δ ∈ {0, 1}, set dw,γ,δ := dZt

w,γ,δ.

� Round-2 messages from Sim to A: For each i ∈ H, the simulator Sim generates the second round
message on behalf of Pi as follows:
1. Set c := {cw,γ,δ}w∈{L:T},γ,δ∈{0,1}.

2. Run ECom,i
MPC internally by simulating an interaction between an HCom,i

MPC and some Q; where these are
described below.

3. First,Q sends {crsw,γ,δ}w∈{L:T},γ,δ∈{0,1} to H
Com,i
MPC . The generator HCom,i

MPC then sends (zi, {cw,γ,δ}w∈Ai,γ,δ∈{0,1})
to Q, while Q sends back the message {(zj , {cw,γ,δ}w∈Aj ,γ,δ∈{0,1})}j∈[n]\{i}. Set Q such that its reach is

described by the vector x = Z. Since ECom,i
MPC is allowed to look insideQ, it �nally outputs (aQ,ΠΦ,x[σ

0
s0], {x}).

4. For each w ∈ Ai s.t. ϕw = (i, u, v), set γw = s∗u and δw = s∗v.

5. Set ρi ← SimCom,i
MPC (π

(·)
Φ,crs,c,i[σ

0
s0], µ

(·)
i , IMPC,ΠΦ,x[σ

0
s0], {x, (xw−L, dw,γw,δw)w∈Ai

}).
6. Send ρi to A.

� Round-2 messages from A to Sim: For every i ∈ [n] \ H, Sim obtains the second round message ρi
from A on behalf of the malicious party Pi. The simulator halts with appropriate output to the ideal
functionality.

Proof of Indistinguishability. We prove indistinguishability via a sequence of |H|+2 hybrids. We describe
the hybrids below.

� Hreal : This hybrid is the same as the real world execution.

� H′real : In this hybrid, we change the distribution of the common random string. In particular, common
random strings for the corrupt parties are generated as in the simulation i.e., via the use of E1. Moreover,
E2 is used to extract the bits from these commitments. Indistinguishability between hybrids H0 and Hreal

follows by the binding property of Com.

� H0: In this hybrid, we change the distribution of how the �rst round messages and the common random
strings are generated for the honest parties. In particular, SimEq is used to generate crs and the commit-
ment c for every round w − L in which an honest party is the speaker and for every γ, δ ∈ {0, 1}.
Moreover, the corresponding decommitments generated by SimEq are hard-coded in the message function,
inside the obfuscated program (the second-round message) for the corresponding honest party. Indistin-
guishability between hybrids H0 and H1 follows by the equivocal commitment security.

� Hi (for i ∈ H): In this hybrid, we change the distribution of the second round message for the honest

party Pi. In particular, we use ECom,i
MPC and SimCom,i

MPC (just as in the simulation) to output the obfuscated
program ρi.
For this, the simulator Sim runs a mental execution of Φ using the honest parties' actual inputs and the
extracted bits from E2 for the outputs of the corrupt parties. At the end, it learns the transcript Z and
the state vector s∗, which are then used to provide the necessary inputs to SimCom,i

MPC . Indistinguishability

between two such consecutive hybrids follows from R3PO security of OCom,i
MPC .

� Hideal: In this hybrid, we change how the transcript Z, the honest party messages {zi}i∈H , random coins
of corrupt parties and the state value s∗ are generated. In particular, these values are generated as in

76

the simulation i.e., via invoking SimΦ. Indistinguishability between H′ideal and Hideal follows from the
malicious security of the underlying conforming protocol Φ. Finally, note that this is the same as the ideal
world execution.

□

77

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Technical Overview
	2.1 Motivating Examples
	2.2 Defining R3PO
	2.3 R3PO Composition Theorem
	2.4 R3PO Library
	2.5 Applications: The Different Ways of Using R3PO
	2.6 Private Multi-Authority ABE
	2.7 Comparison of R3PO with Existing Primitives
	2.8 Future Directions

	3 Preliminaries
	3.1 Garbling Scheme
	3.2 CP-ABE
	3.3 Commitment Schemes
	3.4 Oblivious Transfer
	3.5 Hash Schemes
	3.6 Laconic Oblivious Transfer
	3.7 Signature Schemes
	3.8 Puncturable PRF

	4 The R3PO Framework
	4.1 Reactive Programs and Generators
	4.2 Reach Extractor
	4.3 Reach-Restricted Reactive Program Obfuscation

	5 A Composition Theorem for R3PO
	5.1 Decomposition
	5.2 Composition Theorem

	6 A Library of One-Step Program Obfuscators
	6.1 Commitment Opening R3PO
	6.2 Signature Checking
	6.3 Hash with Selective Opening
	6.4 Epsilon-Transition R3PO
	6.5 Generalizing the State Space and Partition Function

	7 Private Multi-Authority ABE
	7.1 Definition for Private Multi-Authority ABE
	7.2 Construction for Private Multi-Authority ABE

	A Proof of Theorem 1
	A.1 Randomized message functions.

	B Details Omitted from [sec:rrp-library]Section 6
	B.1 Commitment-Opening R3PO
	B.2 Signature-Checking R3PO
	B.3 Hash-Opening R3PO

	C Details Omitted from [sec:ma-abe]Section 7: Private Multi-Authority ABE
	C.1 Proof of Security
	C.2 Modeling the Key-Component as an R3PO

	D Identity Based Functional Encryption (IBFE)
	D.1 Definition for IBFE
	D.2 Construction for IBFE

	E MPC from R3PO for Commitment-Opening
	E.1 Conforming Protocols
	E.2 MPC Construction

