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Abstract. We propose AQQUA: a digital payment system that combines auditability and privacy. AQQUA
extends Quisquis by adding two authorities; one for registration and one for auditing. These authorities
do not intervene in the everyday transaction processing; as a consequence, the decentralized nature of the
cryptocurrency is not disturbed. Our construction is account-based. An account consists of an updatable
public key which functions as a cryptographically unlinkable pseudonym, and of commitments to the bal-
ance, the total amount of coins spent, and the total amount of coins received. In order to participate in the
system a user creates an initial account with the registration authority. To protect their privacy, whenever
the user wants to transact they create unlinkable new accounts by updating their public key and the total
number of accounts they own (maintained in committed form). The audit authority may request an audit
at will. The user must prove in zero-knowledge that all their accounts are compliant to specific policies.
We formally define a security model capturing the properties that a private and auditable digital payment
system should possess and we analyze the security of AQQUA under this model.
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1 Introduction

Privacy vs Auditability: Addressing this dilemma becomes crucial, as blockchain technology advances and
decentralized digital payment systems (DPS) evolve and gain in popularity. This prominence of DPS brings
about integration with the heavily regulated traditional financial systems. A major question that must be
answered is to what extent this can be achieved without sacrificing privacy and decentralization.

All flavors of DPS have some built-in support for privacy and regulation, even if it is rudimentary. Starting
with Bitcoin [16], all DPS share the common feature of depending on a globally distributed, append-only, public
ledger to document monetary transactions in a transparent, verifiable and immutable manner. The underlying
consensus mechanism used to settle exchange history and introduce new transactions, along with the security
properties of the cryptographic primitives employed, makes sure that these systems adhere to some (simple)
rules. Further auditing can be achieved by merely inspecting this ledger, as everything is in the clear. To protect
their privacy, users rely on the use of renewable pseudonyms to obscure their identities (but not the amounts
exchanged). It has been shown, though, that by combining publicly available data from the blockchain in a
smart way [15], anyone could link the pseudoidentities of the users and even uncover their real-world identities.

To overcome this problem, privacy-enhanced cryptocurrencies (e.g. Zerocash [2], Monero [18], Quisquis [10])
arose. These systems hide transaction identities and amounts exchanged, thus providing privacy in a provable
cryptographic manner. At the same time, however, they allow malicious users to conduct illegal activities (e.g.
money laundering, unauthorized money transition, tax evasion). This misuse of privacy has led to the need
for a compromise, i.e. the creation of protocols that combine user privacy and auditability. Such auditable
privacy solutions [11, 7, 13, 14, 17] aim to guarantee that both the system and its participants comply with
financial regulations and laws, preventing them from engaging in illicit activities without being accountable
to the authorities. Financial regulations that are usually supported in such schemes are KYC (Know-Your-
Customer), Anti Money Laundering (AML), as well as restrictions to the number or the value of transactions
a single user can make, or the total value that can be exchanged in a single transaction.

Our proposal. We propose AQQUA: a system to equip DPS with auditability, without changing its decentralized,
permissionless, and trustless nature. AQQUA extends the QuisQuis [10] DPS with mechanisms to allow the
auditing of users, while preserving privacy and confidentiality of transactions.

AQQUA introduces two new entities: A Registration Authority (RA), whose purpose is to enroll users into
the system, and an Audit Authority (AA), whose purpose is to perform audits to users. In order to transact in
AQQUA, users must first register to the RA and provide their real-world credentials, thus fulfilling KYC. They
then acquire a cryptographic pseudonym, a unique initial public key, which can be used to create new accounts
within AQQUA.

Contrary to other private and auditable DPS that either restrict the number of accounts a user can own
within the system or trade anonymity for auditability, AQQUA enables users to own as many accounts as they
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wish within the system, while preserving anonymity and confidentiality of transactions and allowing auditing
of users. This is achieved by splitting the state into two sets: The UTXOSet, which is similar to the state of
QuisQuis and contains user accounts, and a UserSet that maintains a mapping between registered public keys
and commitments to the number of accounts they own. The addition of a new public key to the UserSet can
happen only after the approval of the RA, however the RA cannot censor or identify user transactions after their
enrollment.

After the enrollment of a user in the system and in order to ensure anonymous participation, anyone can
create new accounts for them that are provably unlinkable to their registered public key. This is achieved by
utilizing updatable public keys, introduced in [10], which allow the creation of new, provably indistinguishable
and independent public keys, from an initial key pair, without changing the underlying secret counterpart.
While each user can create accounts on their own, the commitment to the number of accounts correspoding to
their initial public key in the UserSet must be updated.

AQQUA accounts consist of commitments (for confidentiality) for the balance, the total amount of coins
spent and the total amount of coins received in the corresponding updatable public key. In AQQUA, transactions
can be thought of as ‘wealth redistribution’ between inputs and outputs, an idea originating from Quisquis [10].
Input accounts include the senders, the recipients as well as an anonymity set. Output accounts are new, updated
but unlikable accounts for the senders, recipients, and decoys. To counter theft prevention, the sender proves
in zero-knowledge that they have correctly updated the accounts and have not taken coins away from anyone
except themselves.

Finally, the audit is executed by the AA asynchronously on the initial public key of each user. During auditing,
each user should prove in zero-knowledge that for a specified period of time all of the their accounts are compliant
to the system’s policies, using data that are only stored on-chain. Penalties for non-compliance can then be
enforced to misbehaved users.

2 Related Work

The proposed solutions in the literature that aim to combine privacy and transparency, can be examined from
various angles depending on their approach to compliance.

A first criterion to sort the various approaches is the extent of control that the regulating authority is allowed
to exercise. It must be noted, that in regulated cryptocurrencies the existence of some point of concentration
cannot be entirely avoided, since there must be some mapping between cryptocurrency accounts and real-world
identities. Some solutions [13, 20] try to limit their power by distributing its functionalities to different parties
and using secure multi-party computation techniques to apply the regulation policies.

Regulation can be embedded into the consensus layer, allowing only compliant transactions to become part
of the blockchain or they can be external by auditing public transactions at specific intervals [5]. The former
approach is called accountability, while the latter auditability [5], and can also include some countermeasures for
the offending parties. Accountability is better suited to permissioned blockchains, since the additional checks
implied by regulation will place more burden on standalone miners in permissionless systems thus lowering their
throughput even more. Other schemes such as [20] have the unique approach of allowing users a privacy budget
to spend in order to satisfy KYC policies.

Some regulation is combined with points of concentration on the decentralized blockchains such as privacy
mixers [3], since they know the actual senders and receivers of transactions. For privacy-preserving mixers, recent
compliant solutions aim to allow transactions only from approved senders or disallow transactions from black-
listed participants [9]. Exchanges are also natural candidates for regulation, since they maintain the mapping
between real-world identities and account identifiers and as a result they can report to the authorities aggregated
statistics on the behavior of their users [14].

Another aspect on which the various approaches differ is on whether they prioritize privacy over regulation
or vice versa. In the former case regulation is usually added as an addon to an already privacy preserving
cryptocurrency. For instance, one of the first such works [11] adds policies for auditability to Zerocash [2]-like
systems, by extending their coin format to accommodate a counter that is used when aggregating transactions
for auditing. These counters are bound to real-world identities and are incremented for each transaction, and
enable the system to enforce policies, such as spending limits, taxes and even allow the tracing of users.

PGC [7] provides a generalized design and an implementation of a scheme that combines privacy with
auditability, leaning towards the latter. Their proposed schemes support a rich set of regulation policies to limit
money laundering and enable taxation.

As far as usage is concerned, some proposals are aimed towards blockchains, or (better in this case) dis-
tributed ledgers whose users are large organizations (e.g. banks, or exchanges) [8, 17] that usually aggregate
assets from many participants, while others pose no such restrictions and are aimed to regular blockchain users.

AQQUA combines the anonymity of Quisquis [10] with the policy expressiveness and regulation of [7].
While there are two centralized entities, the RA and the AA, their intervention is minimal as they cannot censor
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transactions. AQQUA does not offer traceability, but suffers from anonymity loss only between the system
snapshots when auditing takes place. From the next transaction after auditing and onwards anonymity is
restored. AQQUA can be used by simple users and large organizations alike. Thus we can claim that AQQUA
is one of the most privacy - preserving proposals in the literature.

3 Preliminaries

3.1 Notation

We denote by λ the security parameter. We denote byM the message space and by R the randomness space
of our cryptographic schemes. V = {0, . . . , V } is the set that defines the range of valid currency values, where
V is an upper bound on the maximum possible number of coins in the system (|V| ≪ |M|). When an element
x is sampled uniformly at random from a set X , we write x←$ X . Given a tuple t = (a, b) we refer to its parts
using the dot notation, i.e. t.a or t.b. We denote (ax, bx) as tx = (a, b)x.

3.2 Updatable Public Keys

We utilize the Updatable Public Key (UPK) primitive from [10] to implement accounts. The concept of an UPK
scheme is that public keys can be updated while remaining indistinguishable from freshly generated keys. A
UPK scheme is a tuple of algorithms (Setup,KGen,Update,VerifyKP,VerifyUpdate).

– Setup generates the public parameters, which are implicitly given as input to all other algorithms, i.e.
pp← Setup(λ). For instance, pp could be a prime-order group (G, g, p).

– KGen generates a keypair (pk, sk). Concretely, it is implemented as: Sample r, sk ←$ Fp, calculate pk =

(gr, grṡk) and output (sk, pk).
– Update takes as input a set of public keys {pk}ni=1 and a secret key and generates a new set {pk′}ni=1 where

pk′i = pkri = (gri , g
r·sk
i ) for all i.

– VerifyKP takes as input a keypair (sk, pk) and checks if it is valid, i.e. if pk corresponds to sk. It is constructed

by parsing pk = (g′, h′) and outputting the result of the check (g′)sk
?
= h′.

– VerifyUpdate takes as input a pair of public keys and some randomness (pk′, pk, r) and checks if pk′ is a valid

update of pk using r. This is done by checking if Update(pk; r)
?
= pk′.

An UPK scheme must satisfy the following properties, formally defined in [10]:

– Correctness: All honestly generated keys verify correctly, the update process can be verified and the
updated keys also verify successfully.

– Indistinguishability, meaning that an adversary cannot distinguish between a freshly generated public
key and an updated version of a public key it already knows.

– Unforgeability, meaning that for every honestly generated keypair an adversary cannot learn the secret
key of an updated public key without knowing the secret key of the original public key.

If the DDH assumption holds in (G, g, p) then this construction satisfies correctness, indistinguishability and
unforgeability [10].

3.3 Commitments

We use a commitment scheme Commit relative to a public key pk that, given a message m ∈M and randomness
r ∈ R, computes m ← Commit(pk,m; r). Our commitments must satisfy the following properties:

– Computational hiding: An adversary has negligible advantage in distinguishing between Commit(pk,m0; r0)
and Commit(pk,m1; r1), where r0, r1 ←$R.

– Unconditional binding: A commitment cannot be opened to two different messages, even with the knowl-
edge of the secret key sk.

– Additively homomorphic: For given operation ⊙ it holds that Commit(pk,m; r) ⊙ Commit(pk,m′; r′) =
Commit(pk,m+m′; r + r′).

– Key-anonymous: An adversary cannot distinguish between (m, pk0, pk1,Commit(pk0,m)) and
(m, pk0, pk1,Commit(pk1,m)) for any honestly generated public keys pk0, pk1 and adversarially chosen mes-
sage m.
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We construct such a scheme using the unconditionally binding commitments of [10]. They are defined in a
prime-order p group (G, g, p) generated by g, where the DDH problem is hard. In essence, ElGamal ‘encryption’
is used in the exponent where the public keys are of the form pk = (g, h) ∈ G2. Specifically, Commit(pk,m; r)
yields m = (c, d), where c = gri and d = gmhri .

Using UKPs as the commitment public keys, one can verify and open commitments using the secret key,
without needing to know the randomness used.

– VerifyCom(sk, pk, com,m): Checks if com = (c, d) is a commitment to m under pk, by checking if d = gmcsk

holds.
– OpenCom(sk, m ): Given m = (c, d), calculates m by calculating dc−sk and brute-forcing to obtain m.

3.4 Σ-protocols

Let R be a binary relation for instances x and witnesses w, and let L be its corresponding language, i.e.
L = {x|∃w : (x,w) ∈ R}. A Σ-protocol for R is a three-move public-coin protocol between two PPT algorithms
P,V, whose transcript consists of the following phases: (1) Commit: P commits to an initial message a and
sends it to V (2) Challenge: V sends a challenge c to P (3) Response: P responds to the challenge with message
z.

A Σ-protocol must satisfy the following properties:

– Completeness: if x ∈ L, then if P acts according to the protocol, V always accepts the transcript.
– Special Soundness: given two transcripts with the same commitment and different challenges (a, c, z), (a, c′, z′)

one can efficient compute w such that (x,w) ∈ R.
– Special honest-verifier zero-knowledge (SHVZK): there exists a PPT simulator Sim that on input
x ∈ L and a honestly generated verifier’s challenge c, outputs an accepting transcript of the form (a, c, z)
with the same probability distribution as a transcript between honest P,V on input x.

AQQUA utilizes the following Σ-protocols: proof of knowledge of discrete logarithm [19], proof of knowledge
of DDH tuple [6], Bayer-Groth shuffle [1], and Bulletproofs [4] for range proofs.

Additionally we utilize the following Σ-protocols defined in [10] and repeated below for convenience:

– Σvu: proof a valid update. Prover shows knowledge of w such that pk′ = pkw.

Prover(pk, pk′, w) Verifier(pk, pk′)
s←$ Fp
α← pks = (gs, hs)

α−−→
c←−− c←$ {0, 1}κ

z ← cw + s
z−−→

Check pkz = (pk′)c · α

– Σcom : proof of knowledge of two commitments of the same value v under different public keys. Prover
shows knowledge of w = (v, r1, r2) such that com1 = Commit(pk1, v; r1), com2 = Commit(pk2, v; r2).

pk1 = (g1, h1), com1 = (c1, d1)
pk2 = (g2, h2), com2 = (c2, d2)

Prover(v, r1, r2) Verifier
v′, r′1, r

′
2 ←$ Fp

(e1, f1)← (g
r′1
1 , g

v′h
r′1
1 )

(e2, f2)← (g
r′2
2 , g

v′h
r′2
2 )

α−−→
x←−− x←$ {0, 1}κ

(zv, zr1, zr2)← x(v, r1, r2) + (v′, r′1, r
′
2)

(zv,zr1,zr2 )−−−−−−−→
Check for i = 1, 2:

gzrii = cxi · e1
gzvhzrii = dxi · fi

4 Definition of Auditable Private Decentralized Payment System

4.1 Entities

– Registration Authority (RA): The role of the RA is to enroll new users into the system. Users register by
sending their real-world identity information together with an initial public key that they create on their
own. The RA stores this information off-chain. All the accounts that transact on behalf of this real-world
user will originate from this initial public key, through the mechanism of subsection 3.2. The purpose of the
registration procedure is essential as it establishes a link between a user’s public key and their real identity,
to be used for the potential penalization of non-compliant users.
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– Audit Authority (AA): Its role is to initiate the audit procedure in order to verify that users comply with
the system’s policies. If a user of the system is found to be non-compliant, the AA will collaborate with the
RA to enforce the relative penalties.

– Users (U): Users of the system that transact with each other.

4.2 State

In an auditable decentralized payment system, the state (denoted state) should at the very least contain the
following two sets:

– UTXOSet: A table containing the ‘unspent’ accounts, i.e. the accounts that are recorded as outputs of a
valid transaction, but have not (yet) been used as inputs.

– UserSet: A table containing information about the accounts a user maintains in the system. This table
is part of the public state and will be employed by the AA as a way to connect their privately maintained
information about the real identity of the user with their used accounts. The challenge in designing auditable
and private payment systems is to maintain privacy despite the existence of this mapping. In our proposal
the UserSet is composed of the user’s initial public key and a commitment to the number of accounts owned
by the user.

4.3 Functionalities

An auditable private decentralized payment system is a tuple of polynomial-time algorithms defined as below:

– (state0, pp)← Setup(λ)
Generates the initial state of the system state0 and the public parameters pp, which are implicitly given as
input to all other algorithms.

– (sk, userInfo, acct, π)← Register()
Used by a user to create the registration information userInfo and their first account acct.

– 0/1← VerifyRegister(userInfo, acct, π, state)
Used by the Registration Authority to verify the registration information and the account of a user.

– state′ ← ApplyRegister(userInfo, acct, state)
Used by the Registration Authority to add a user to the system after their successful registration.

– tx = ({acct}ni=1, {acct′}ni=1, π)← Trans(sk, S, R, #»vS,
#»vR, A)

Used by the sender with secret key sk to create a transaction that redistributes their coins from their
accounts in S among the recipients accounts in R. The vectors #»vS,

#»vR describe the changes in the values in
S, R respectively. To hide the participating accounts, an anonymity set A is passed as input.

– txCA = (acct, {userInfoi}ni=1, {userInfo
′
i}ni=1, π)← CreateAcct(userInfo, A)

Creates a transaction to create a new account for the owner of userInfo.pk0 and appropriately updates the
value of the commitment to the number of accounts they own, userInfo.com#accs. To hide the link between
the newly created account acct and the corresponding pk0, an anonymity set A is given.
txDA = ({acct}ni=1, {acct′}ni=1, {userInfo}ni=1, {userInfo

′}ni=1π)← DeleteAcct(sk, userInfo, acctD, acctC, A1, A2):
Delete a zero-balance account acctD from the UTXO set from owner of sk, and adding its auditing info
(out, in) to another account acctC that shares the same sk. Anonymity sets A1, A2 are included to hide acctC
and userInfo, respectively.

– 0/1← VerifyTrans(tx, state)
It is a public verification algorithm that checks the validity of a transaction tx given the current state and
outputs 1 if and only if it is valid.

– state′ ← ApplyTrans(tx, state)
Used to apply to the current state a transaction tx, after its verification.

– auditInfo = (π, #accs1, {acct1i}#accs1i=1 , #accs2, {acct2i}#accs2i=1 )← PrepareAudit(sk, pk0state1, state2, (f, aux)):
Used by a user with secret key sk and initial public key pk0 to generate a proof π for being compliant with
policy f , concerning a specific period of time defined by two blockchain snapshots state1, state2. The aux

variable contains the auxiliary information needed for the policy.
– 0/1← VerifyAudit(pk0, state1, state2, (f, aux), auditInfo)

Used by the Audit Authority to check if the user with initial public key pk0 is compliant with policy f .

4.4 Policies

An auditable DPS should support a rich set of compliance policies. They can be captured as predicates over
an initial public key pk0, a time period represented by a starting state state1 and an ending state state2, and
auxiliary information aux which is dependent on an specific compliance goal. In all the policy predicates, we
use the notation A1, A2 to denote the set of accounts in state1.UTXOSet, state2.UTXOSet that are owned by the
owner of pk0.
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– Sending Limit policy fslimit: The total amount a real-world user can send within a specific period. It can be
determined by the AA off-chain and announced to the user for a specific period, depending on the application.
The state1, state2 are the states of the blockchain at the beginning and end of the period, respectively.

fslimit(pk0, (state1, state2), amax) = 1 ⇐⇒

{( ∑
acct∈A2

out−
∑

acct∈A1

out

)
≤ amax

}

where out is the total amount an account has sent.
– Receiving Limit policy frlimit: Similarly, the total amount a ‘physical’ user can receive from other accounts.

frlimit(pk0, (state1, state2), amax) = 1 ⇐⇒

{( ∑
acct∈A2

in−
∑

acct∈A1

in

)
≤ amax

}

where in is the total amount an account has received.
– Open policy fopen: The value of the amount sent or received by a user in a transaction.

fopen(pk0, (state1, state2), vopen) = 1 ⇐⇒



(v =

( ∑
acct∈A2

bl−
∑

acct∈A1

bl

)
∈ V

∨ v =

( ∑
acct∈A1

bl−
∑

acct∈A2

bl

)
∈ V)

∧ v = vopen


where bl is the balance of an acct.

– Transaction Value Limit ftxlimit: Upper bound to the total transferred amount that can be sent in a trans-
action.

ftxlimit(pk0, (state1, state2), vmax) = 1 ⇐⇒

{
v =

( ∑
acct∈A1

bl−
∑

acct∈A2

bl

)
≤ vmax

}

– Non-participation fnp: Non-participation in a specific transaction tx or inactivity of the user for a time
period. The states state1, state2 are the states before and after a transaction is applied or at the beginning
and end of the period.

fnp(pk0, (state1, state2)) = 1 ⇐⇒


∧

( ∑
acct∈A1

out−
∑

acct∈A2

out

)
= 0

∧

( ∑
acct∈A1

in−
∑

acct∈A2

in

)
= 0


5 Security Model

An anonymous payment system should provide anonymity and theft prevention. Anonymity requires that an
observer of the system cannot find the identities of senders and the receivers of a transaction if they don’t own
the sender’s private key, and that even the recipient of a transaction cannot know the sender. Theft prevention
means that users can only move funds from accounts they own. For the definitions of the anonymity and
theft prevention properties, we adapt the definitions of Quisquis for the corresponding properties to AQQUA.
Additionally, an auditable payment system requires the security property of audit soundness, which means that
there cannot be a successfully verified audit generated by a user who is non-compliant.

We formally define these properties, using security games where the adversary has access to the following
oracles.

– sk ← OCorrupt(pk, state): Returns the secret key that corresponds to a public key. The public key should
belong either in an account or a user information entry of the state.

– state← ORegister(): Creates a keypair and registers the public key. Returns the new state.
– (txCA, state)← OCreateAcct(userInfo, A): Creates a new account for a userInfo entry using the anonymity set

A. Returns the corresponding transaction and resulting state after the transaction application.
– (txDA, state)← ODeleteAcct(userInfo, acctC, acctD, A1, A2): Creates and applies a transaction to delete an ac-

count by calling DeleteAcct. Returns the transaction and the resulting state after the transaction application.
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– (tx, state) ← OTrans(S, R, #»vS,
#»vR, A): Creates and applies a transaction, returns the transaction and the new

state.
– state← OApplyTrans(tx): Checks if a transaction is valid and if so, applies it. Returns the resulting state.
– auditInfo← OPrepareAudit(pk0, state1, state2, (f, aux)): Creates and returns an audit proof.

Our games make use of bookkeeping functionalities that can be called by the challenger and the available
oracles. The bookkeeping keeps a list states of consecutive states created through oracle queries, a set entries
containing all the secret keys that control the accounts appearing in these states, and a partition of the keys set
into honest and corrupt (controlled by the adversary) keys, honest and corrupt, respectively. The bookkeeping
functionalities are:

– sk← findSecretKey(pk, state): Finds the secret key corresponding to a public key present in a state.
– s ← totalWealth(set, state): Counts and returns the total amount of funds of the accounts of state that are

owned by a set of secret keys (set = honest or set = corrupt).
– 0/1 ← verifyPolicy(pk0, state1, state2, (f, aux)): Checks whether pk0 is compliant with policy f for the time

period represented by state1, state2.

The bookkeeping functionalities are presented in algorithm 1.1, and the oracles the adversary has access to
are presented in algorithm 1.2.

Algorithm 1.1: bookkeeping functionalities

entries← ∅ // set of all secret keys

corrupt← ∅ // set of corrupt secret keys

honest← ∅ // set of honest secret keys

states← [] // list of states, updated through oracles

Function findSecretKey(pk, state)
if state ̸∈ states then

return ⊥
for sk ∈ entries do

for acct ∈ state.UTXOSet do
if acct.pk = pk ∧ VerifyKP(sk, acct.pk) = 1 then

return sk
for userInfo ∈ state.UserSet do

if userInfo.pk0 = pk ∧ VerifyKP(sk, userInfo.pk) = 1 then
return sk

return ⊥
Function totalWealth(set, state)

s← 0
for sk ∈ set do

for acct ∈ state.UTXOSet do
if VerifyKP(sk, acct.pk) then

s← s+ OpenCom(sk, acct.combl)
return s

Function verifyPolicy(pk0, state1, state2, f, aux)
if state1, state2 ̸∈ states ∨ state1 is not older than state2 then

return ⊥
A1, A2 ← ∅, ∅
sk← findSecretKey(pk0, state1)

// Find accounts owned by sk in state1.UTXOSet and state2.UTXOSet resp.

for acct ∈ state1.UTXOSet do
if VerifyKP(sk, acct.pk) then

A1 ← A1 ∪ {acct}
for acct ∈ state2.UTXOSet do

if VerifyKP(sk, acct.pk) then
A2 ← A2 ∪ {acct}

if f(pk0, (state1, state2), aux) = 1 then
// Check if f holds using A1, A2, sk

return 1
return 0

5.1 Anonymity

In the anonymity game, the challenger first picks a bit b ←$ {0, 1}. The adversary, after interacting with the
oracles, has to output two sender accounts acct0, acct1, two receiver accounts acct′0, acct

′
1, two amounts v0, v1
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Algorithm 1.2: Oracles for security definitions

Oracle OCorrupt(pk, state)
// pk should be a key of an account or user information in state, aborts otherwise

sk← findSecretKey(pk, state)
honest← honest \ {sk}
corrupt← corrupt ∪ {sk}
return sk

Oracle ORegister()
state← bookkeeping.states[−1] // most recent state of bookkeeping

(sk, userInfo, acct, π)← Register()
if VerifyRegister(userInfo, acct, π, state) = 0 then

return ⊥ // cannot be registered given current state

entries← entries ∪ {sk}
honest← honest ∪ {sk}
state′ ← ApplyRegister(userInfo, acct, state); states← states ∪ [state′]
return state′

Oracle OCreateAcct(userInfo, A)
state← bookkeeping.states[−1] // most recent state of bookkeeping

txCA ← CreateAcct(userInfo, A)
if VerifyTrans(txCA, state) = 0 then

return ⊥ // transaction cannot be applied to state

state′ ← ApplyTrans(txCA, state); states← states ∪ [state′]
return txCA, state

′

Oracle ODeleteAcct(userInfo, acctC, acctD, A1, A2)
state← bookkeeping.states[−1]
sk← findSecretKey(acctC)
txDA ← DeleteAcct(sk, userInfo, acctC, acctD, A1, A2)
if VerifyTrans(txDA, state) = 0 then

return ⊥ // transaction cannot be applied to state

state′ ← ApplyTrans(txDA, state); states← states ∪ [state′]
return txDA, state

′

Oracle OTrans(S, R, #»vS,
#»vR, A)

state← bookkeeping.states[−1] // most recent state of bookkeeping

for sk ∈ entries do
Take an arbitrary acct ∈ S

if VerifyKP(sk, acct.pk) = 1 then
tx← Trans(S, R, #»vS,

#»vRA) // If sk is not the owner of all accounts in S, the transaction

will not be created.

if VerifyTrans(tx, state) = 0 then
return ⊥ // transaction cannot be applied to state

state′ ← ApplyTrans(tx, state); states← states ∪ [state′]
return tx, state′

return ⊥
Oracle OApplyTrans(tx)

if VerifyTrans(tx, state) = 0 then
return ⊥

state′ ← ApplyTrans(tx, state)
states← states ∪ [state′]; return state′

Oracle OPrepareAudit(pk0, state1, state2, f, aux)
sk← findSecretKey(pk0, state1)
if state1, state2 ∈ states ∧ state1 is older than state2 then

auditInfo← PrepareAudit(sk, pk0, state1, state2, f, aux)
if VerifyAudit(pk0, state1, state2, (f, aux), auditInfo) then

return auditInfo
return ⊥ // pk0 was invalid for the snapshots, state1, state2 were not valid or f was not

satisfied
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and an anonymity set A. Then, the challenger creates a transaction in which acctb sends amount vb to acct′b
using A∪{acct1−b} as the anonymity set. Finally, the adversary has to guess b, and if they guess correctly, they
win the game.

In the anonymity game, the following rules must be enforced or else the adversary could trivially guess b.

– Both senders must be honest. If one of the senders were corrupted, the adversary would be able to see whose
account’s balance decreases.

– Both receivers are honest. If both were corrupted then acct′0 = acct′1 and v0 = v1. If one is corrupted, the
adversary would be able to see which account’s balance increased or the amount by which it increased.

The anonymity game is presented in Game 1.3.

Game 1.3: Anonymity game ExpanonA (λ)

Input : λ
Output: {0, 1}
b← {0, 1}
(state0, pp)← Setup(λ)

(acct0, acct1, acct
′
0, acct

′
1, A, v0, v1)← AOCorrupt,ORegister,OCreateAcct,ODeleteAcct,OTrans,OApplyTrans(state0)

state← states[−1] // most recent state of bookkeeping

sk0 ← findSecretKey(acct0.pk, state); sk1 ← findSecretKey(acct1.pk, state)
sk′0 ← findSecretKey(acct′0.pk, state); sk

′
1 ← findSecretKey(acct′1.pk, state)

if (sk0 ∈ corrupt ∨ sk1 ∈ corrupt) ∨ ((sk′0 ∈ corrupt ∨ sk′1 ∈ corrupt) ∧ ((acct′0 ̸= acct′1) ∨ (acct′0 = acct′1 ∧ v0 ̸=
v1))) ∨ (acct0.bl < v0 ∨ acct1.bl < v1) then

return ⊥
for y ∈ {0, 1} do

Ay ← A

if sk0 ̸= sk1 then
Ay ← A ∪ {acct1−y}

if sk′0 ̸= sk′1 then
Ay ← A ∪ {acct′1−y}

txy ← Trans(sky, {accty}, {acct′y}, (−vy), (vy), Ay)
if VerifyTrans(txy, state) = 0 then

return ⊥
state′ ← ApplyTrans(txb, state)
b′ ← A(state′)
return (b = b′)

Definition 1. The advantage of the adversary in winning the anonymity game is defined as: AdvanonA (λ) =|
Pr[ExpanonA (λ) = 1]− 1

2
|. A DPS satisfies anonymity if for every PPT adversary A, AdvanonA (λ) is negligible in

λ.

5.2 Theft Prevention

In order for the adversary to win the theft prevention game, they have to output a valid transaction that, when
applied, either increases the wealth of the users they control, decreases the wealth of the honest parties, or alters
the total wealth of all the users (i.e. the adversary’s transaction either created or destroyed wealth). The theft
prevention game is presented in Game 1.4.

Definition 2. The advantage of the adversary in winning the theft prevention game is defined as AdvtheftA (λ) =
Pr[ExptheftA (λ) = 1] A DPS satisfies theft prevention if for every PPT adversary A, AdvtheftA (λ) is negligible in
λ.

5.3 Audit soundness

In order for the adversary to win the audit soundness game for a policy f , they have to output a valid audit
proof for a user that is non-compliant regarding the particular policy. The audit soundness game is presented
in Game 1.5.

Definition 3. The advantage of the adversary in winning the audit soundness game for policy f is defined
as: AdvausoundA,f (λ) = Pr[ExpausoundA,f (λ) = 1] A DPS satisfies audit soundness for a policy f if for every PPT

adversary A, AdvausoundA,f (λ) is negligible in λ.
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Game 1.4: Theft prevention game ExptheftA (λ)

Input : λ
Output: {0, 1}
(state0, pp)← Setup(λ)

tx← AOCorrupt,ORegister,OCreateAcct,ODeleteAcct,OTrans,OApplyTrans(state0)
state← states[−1] // most recent state of bookkeeping

sh ← totalWealth(.honest, state)
sc ← totalWealth(corrupt, state)
if VerifyTrans(tx, state) = 0 then

return ⊥
state′ ← ApplyTrans(tx, state)
s′h ← totalWealth(honest, state′)
s′c ← totalWealth(corrupt, state′)
return (s′h < sh) ∨ (s′c > sc) ∨ (s′c + s′h ̸= sc + sh)

Game 1.5: Audit soundness game ExpausoundA,f (λ)

Input : λ
Output: {0, 1}
b← {0, 1}
state0, pp← Setup(λ)

(pk0, state1, state2, f, aux, auditInfo)← A
OCorrupt,ORegister,OCreateAcct,ODeleteAcct,OTrans,OApplyTrans,OPrepareAudit(state0)

if VerifyAudit(pk0, state1, state2, (f, aux), auditInfo) = 1 then
// run bookkeeping and check if f is satisfied and that state1, state2 are valid

if verifyPolicy(pk0, state1, state2, (f, aux)) = 1 then
return 0

else
return 1

else
return ⊥

6 Our construction

6.1 Setup

The Setup algorithm takes as input the security parameter λ and returns the output of UPK.Setup and the
initial state which contains an empty UserSet and UTXOSet.

6.2 Accounts

User accounts are of the form acct = (pk, bl , out , in ), where bl is the account balance and out, in is the
total amount that the account has sent and received, respectively. Each user may own multiple accounts which
are stored in the UTXOSet. The following functionalities create, verify and update accounts.

– acct ← NewAcct(pk0; r1, r2, r3, r4): takes as input a public key pk0 and outputs a new account of the form

acct = (pk, bl , out , in ), where pk = Update(pk0; r1), bl = Commit(pk, 0; r2), out = Commit(pk, 0; r3)

and in = Commit(pk, 0; r4).
– 0/1← VerifyAcct(acct, sk, bl, out, in): Parses acct as (pk, com1, com2, com3) and outputs 1 if

VerifyCom(sk, pk, com1, bl) ∧ VerifyCom(sk, pk, com2, out)∧
VerifyCom(sk, pk, com3, in) ∧ (bl, out, in ∈ V)

– {acct′i}ni=1 ← UpdateAcct({accti, vbli, vini, vouti}ni=1; r1, r2, r3, r4)
takes as input a set of accounts accti = (pki, combli, comouti, comini) and values vbli, vouti, vini ∈ V and
outputs a new set of accounts {acct′i}ni=1, where

acct′i ←(Update(pk; r1), combli ⊙ Commit(pk, vbli; r2),

comouti ⊙ Commit(pk, vouti; r3), comini ⊙ Commit(pk, vini; r4)).

– 0/1← VerifyUpdateAcct({acct′i, accti, vbli, vouti, vini}ni=1; r1, r2, r3, r4): outputs 1 if

{acct′i}ni=1 = UpdateAcct({accti, vbli, vouti, vini}ni=1; r1, r2, r3, r4) ∧ (|vbl|, vout, vin ∈ V).
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6.3 User information

Each real-world user is associated with a tuple userInfo = (pk0, #accs ), stored in the UserSet. The public key
pk0 is an initial public key provided at the time of registration. The public key of every account owned by the
user will share the same secret key with pk0.

The value #accs is the number of accounts in the UTXOSet that are owned by the user, and is stored as
a commitment so that it remains hidden. Keeping track of the number of accounts a user owns is necessary
in order to support policies related to value limits, such as the total amount a user has received or sent in a
period of time. Otherwise, such policies could be easily bypassed through the creation of sybil identities [5]. The

opening of the commitment #accs will be revealed only to the AA during the auditing procedure.
The following functions create, verify and update userInfo entries of the UserSet.

– (sk, userInfo, acct)← GenUser(): Picks r1, r2, r3, r4, r5 ←$R and let r⃗ = (r1, r2, r3, r4). Then runs (sk, pk0)←
KGen(), acct ← NewAcct(pk0; r⃗), calculates the tuple userInfo = (pk0,Commit(pk0, 1; r5)) and returns
(sk, userInfo, acct).

– 0/1← VerifyUser((pk0, com), (sk, #accs)): outputs 1 if VerifyCom(sk, pk0, com, #accs) ∧ (#accs ∈ V)
– {userInfo′i}ni=1 ← UpdateUser({userInfoi, v#accsi}

n
i=1; r) takes as input a set of user-value pairs where

userInfoi = (pk0i , com#accsi) and v#accsi ∈ V and outputs a new set of users {userInfo′i}ni=1 = {(pk0i , com
′
#accsi)}ni=1

where
com′#accsi = com#accsi ⊙ Commit(pk0, v#accs; r)

– 0/1← VerifyUpdateUser({userInfo′i, useri, v#accsi}
n
i=1; r) outputs 1 if

{userInfo′}ni=1 = UpdateUser({userInfoi, v#accsi}
n
i=1; r) ∧ (v#accs ∈ V)

6.4 Registration

In order for users to register in the system, they first use the Register algorithm to create a secret key, a userInfo
entry and a first empty account acct. The Register algorithm also provides proofs that userInfo, acct have been
properly created. Then, the user sends userInfo, acct and the proofs to the RA and the RA verifies the proofs using
the VerifyRegister algorithm. If the proofs verify, the RA adds userInfo to the UserSet and acct to the UTXOSet
using the ApplyRegister algorithm.

Register The Register algorithm creates a secret key sk, the entry userInfo = (pk0, 1 ) that will be later stored

in the UserSet, the user’s first account acct = (pk, 0 , 0 , 0 ) and a zero-knowledge proof π for the fact that the

commitments 1 of userInfo and 0 , 0 , 0 of acct are indeed commitments to the correct values. The proof π
can be posted on-chain for public verification.

The user must keep sk secret, and sends through a secure channel userInfo, acct, π to the RA, together with
their real-world identity information. The detailed description of the Register algorithm is depicted in Figure 1.

The Register algorithm performs the following steps:

1. Run (sk, userInfo, acct)← GenUser().
2. Create a zero-knowledge proof π of the relation R(x,w), where x = (acct, userInfo), w = (sk) and R(x,w) = 1 if:

VerifyCom(userInfo.pk0, userInfo.com#accs, (sk, 1)) = 1

∧ VerifyKP(userInfo.pk0, sk) = 1

∧ VerifyKP(acct.pk, sk) = 1

∧ VerifyCom(acct.pk, acct.combl, (sk, 0)) = 1

∧ VerifyCom(acct.pk, acct.comout, (sk, 0)) = 1

∧ VerifyCom(acct.pk, acct.comin, (sk, 0)) = 1

3. Return (sk, userInfo, acct, π).

Fig. 1. The Register algorithm.

Verify Register The VerifyRegister(userInfo, acct, π, state) algorithm guarantees the validity of the registration
information. It first checks that the userInfo.pk0 does not already exist in a userInfo entry of UserSet. Afterwards,
it executes the verification algorithm for the NIZK argument π and returns its result.
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Apply Register The ApplyRegister(userInfo, acct, state) algorithm runs after the registration verification and
adds a new record to the UserSet containing the userInfo as well as a new record to the UTXOSet containing the
newly created account acct.

6.5 Transactions

Trans Algorithm Transactions enable a sender to redistribute their wealth to one or more recipients. Similarly
to Quisquis [10], transactions are composed of input and output sets, which both include the sender and
the intended recipients, and a NIZK proof that the output list has been computed according to the protocol
specification. We assume that the size of each of the inputs and outputs sets is a predetermined number n.

The Trans algorithm is used to create a transaction that redistributes a number of coins from a set of sender
accounts, which are owned by the same secret key, to a set of receiver accounts. In order to substract an amount
from a sender account or add an amount to a receiver account, the homomorphic property of the commitment
scheme is used. Furthermore, in the algorithm the total amount sent and total amount received of the sender
and receiver accounts is also updated appropriately. Finally, the account public keys are re-randomized in order
to hide the connection between the input and output accounts.

In order to hide the participating accounts, an anonymity set is included. The balances of the accounts
belonging to the anonymity set do not change, however the commitments and the public keys are re-randomized
in order to be indistinguishable from the actual participating accounts. The account updates happen though
the invocation of the UpdateAcct algorithm, and the outputs set is composed of these updated accounts.

The ordering of the accounts in the input and output sets should not remain the same, since this trivially
reveals the link between every account and its update. Therefore, the input and output lists are always ordered
in some canonical order. This can be thought of as applying a random permutation to shuffle the updated
accounts.

The detailed description of the Trans algorithm is depicted in Figure 2. It takes as input the sender’s secret
key sk, the set of sender accounts S, the set of receiver accounts R, two vectors #»vS,

#»vR containing the desired
changes to the balances of the sender and receiver accounts respectively, and an anonymity set A. It returns a
transaction tx = (inputs, outputs, π), where π is a zero-knowledge proof that outputs is created correctly.

Due to the way transactions are generated, every address appears at most twice: once when it is created
in the output of some transaction, and once when included in the inputs of another transaction (regardless of
whether it serves as the actual sender or is only included for anonymity).

Our transaction construction is similar to the one of Quisquis [10], with the difference that we introduce the
vectors #     »vout,

#  »vin to perform the updates to the associated total amount sent and total amount received of the
accounts.

Proof of transaction correctness In each transaction created from Trans algorithm a prover essentially has
to prove in zero-knowledge that:

1. accounts in outputs are proper updates of inputs
2. the updates of balances satisfy preservation of value
3. balances in accounts of recipients and anonymity set do not decrease
4. the sender account in outputs contain a balance in V
5. the vectors #  »vbl

′, #     »vout
′ have the same values for the sender accounts and #  »vbl

′, #  »vin
′ for the receivers accounts

and ( #     »vout
′, #  »vin

′) have zero value for the rest.

Properties 3,4 can be proved by range proofs and we implement them with Bulletproofs [4]. For the properties
1,2,5 we are doing the following analysis similar to Quisquis[10].

Let the sender’s accounts be inputs1, . . . , inputss and the receivers’ accounts be inputss+1, . . . , inputst.

In order to easily verify the validity of the updates, the prover creates accounts ⃗acctδ, where acctδ,i =
(pki, vbli , vouti , vini ). Now in order to prove property 5, the prover shows that for acctδ,1, . . . , acctδ,s the

values under the vbli and vouti are the same. Respectively for the recipients, for acctδ,s+1, . . . , acctδ,t the

values under the vbli and vini are the same.

Since the sender-prover knows all the values of the acctδ, they can create commitments for the same values un-
der a different public key pkϵ = (g, h). So the prover creates ⃗acctϵ where acctϵi = ((g, h), vbli

ϵ
, vouti

ϵ
, vini

ϵ
).

Then they use the homomorphic property of the commitment in order to prove the preservation of value, since∑
i vbli = 0 ⇐⇒

∏
i vbli

ϵ
is a commitment of 0 under pkϵ = (g, h). The values in acctϵ,s+1, . . . , acctϵ,t will be

used to prove that balances of recipients set and anonymity set is not decreased, meaning vblϵ,s+1, . . . , vblϵ,n ∈ V.
Now in order to hide the sender’s and the receiver’s position in inputs and outputs we first shuffle inputs

list to inputs′ before the updates, then we execute the updates to produce outputs′, and finally we shuffle
again after the updates to get outputs in arbitrary order. The first shuffle uses the aforementioned permutation
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The algorithm tx← Trans(sk, S, R, #»vS,
#»vR, A) performs the following steps:

1. Ensure that for each acct ∈ S, VerifyKP(sk, acct.pk) = 1, and that |S| = | #»vS|, |R| = | #»vR|.
2. Let IS = {1, . . . , |S|}. For all i ∈ IS, calculate the opening of the committed balance bli of accti ∈ S, denoted bli.

3. Let #  »vbl =
#»vS|| #»vR, where || denotes vector concatenation. Let also IR = {|S|+ 1, . . . , |S|+ |R|}. Ensure that:

(a)
∑
i∈IS∪IR

vbli = 0
(b) ∀i ∈ IR : vbli ∈ V
(c) ∀i ∈ IS : −vbli ∈ V ∧ bli + vbli ∈ V

4. Construct #    »vout,
#  »vin as follows:

(a) #    »vout =
#»vS|| (0, . . . , 0)︸ ︷︷ ︸

length |R|

|| (0, . . . , 0)︸ ︷︷ ︸
length |A|

(b) #  »vin = (0, . . . , 0)︸ ︷︷ ︸
length |S|

|| #»vR|| (0, . . . , 0)︸ ︷︷ ︸
length |A|

.

Furthermore, expand #  »vbl too with zero values for each acct ∈ A.
5. Order P ∪ A in some canonical order and let inputs be the result. Let also #  »vbl

′, #    »vout
′, #  »vin

′ be the permutation of
#  »vbl,

#    »vout,
#  »vin in the same order. Let I∗S , I

∗
R , I

∗
A denote the indices of the respective accounts of the sender, the recipients

and the anonymity set in this list.
6. Pick r1, r2, r3, r4 ←$R and let #»r = (r1, r2, r3, r4).

Perform UpdateAcct(inputs, #  »vbl
′, #    »vout

′, #  »vin
′; #»r ), order the result in some canonical order, and denote by outputs the

final result.
7. Let ψ : [n]→ [n] be the implicit permutation mapping inputs into outputs; such that accounts accti ∈ inputs and

acct′ψ(i) ∈ outputs share the same secret key.
8. Form a zero-knowledge proof π of the relation R(x,w), where x = (inputs, outputs), w =

(sk, {bli, outi, ini}i∈I∗S
, #  »vbl

′, #    »vout
′, #  »vin

′, #»r , ψ, I∗S , I
∗
R , I

∗
A ), and R(x,w) = 1 if

VerifyUpdateAcct(acct′ψ(i), accti, 0, 0, 0;
#»r ) = 1 ∀i ∈ I

∗
A

∧ (VerifyUpdateAcct(acct′ψ(i), accti, vbl
′
i, vout

′
i, vin

′
i;

#»r ) = 1 ∧ vbl
′
i, vout

′
i, vin

′
i ∈ V) ∀i ∈ I

∗
R

∧ VerifyUpdateAcct(acct′ψ(i), accti, vbl
′
i, vout

′
i, vin

′
i;

#»r ) = 1 ∀i ∈ I
∗
S

∧ VerifyAcct(acct′ψ(i), sk, bli + vbl
′
i, outi + vout

′
i, ini + vin

′
i) = 1 ∀i ∈ I

∗
S

∧
∑

i∈I∗S ∪I∗R ∪I∗A

vbl
′
i = 0

∧ vbl
′
i = vout

′
i ∀i ∈ I

∗
S

∧ vbl
′
i = vin

′
i ∀i ∈ I

∗
R

∧ vout
′
i = v

′
ini = 0 ∀i ∈ I

∗
A

The transaction created is tx = (inputs, outputs, π).

Fig. 2. The Trans algorithm.
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where senders’ accounts are first,followed by recipients’ accounts and then the anonymity set. The second shuffle
uses a permutation in order to order the outputs lexicographically.

Therefore, we need some auxiliary functions for the proof that are defined as following:

– CreateDelta({accti}ni=1, {vbli}ni=1, {vouti}ni=1, {vini}ni=1): Creates a set of accounts that contains the differ-
ences between accounts’ variables bl, out, in in the input and output accounts, and another set of accounts
that also contains these differences but all with the global public key (g, h):

1. Parse accti = (pki, combl,i, comout,i, comin,i). Sample r(bl|out|in),1, . . . , r(bl|out|in),n−1 ←$ Fp and set r(bl|out|in),n =

−
∑n−1
i=1 r(bl|out|in),i.

2. Set acctδ,i = (pki,Commit(pki, vbli; rbl,i),Commit(pki, vouti; rout,i),Commit(pki, vini; rin,i))

3. Set acctϵ,i = ((g, h),Commit((g, h), vbli; rbl,i),Commit((g, h), vouti; rout,i),Commit((g, h), vini; rin,i))

4. Output ({acctδ,i}ni=1, {acctϵ,i}ni=1, r⃗bl, ⃗rout, r⃗in)

– VerifyDelta({acctδ,i}ni=1, {acctϵ,i}ni=1, v⃗bl, ⃗vout, v⃗in, r⃗bl, ⃗rout, r⃗in): Verifies that accounts created using CreateDelta
are consistent:

1. Parse acctδ,i = (pki, vbli , vouti , vini ) and acctϵ,i = (pkϵ,i, comϵ,i)

2. If
∏n
i=1 comϵ,i = (1, 1) and ∀i vbli = Commit(pki, vbli; rbl,i) ∧ vouti = Commit(pki, vouti; rout,i) ∧

vini = Commit(pki, vini; rin,i) ∧ acctϵ,i = ((g, h),Commit((g, h), (vbli; rbl,i)) output 1. Else output 0.

– VerifyNonNegative(acctϵ, vbl, rbl): Verifies that an account contains a balances in V:
1. If acctϵ = ((g, h), (gr, gvhr)) ∧ v ∈ V outputs 1. Else output 0.

– UpdateDelta({accti}ni=1, {acctδ,i}ni=1): Updates the input accounts by vbli, vouti, vini but with the public key
unchanged:

1. Parse accti = (pki, combl,i, comout,i, comin,i) and acctδ,i = (pk′i, vbli , vouti , vini ).

2. If pki = pk′i ∀i output {(pki, combl,i · vbli , comout,i · vouti , comin,i · vini )}, else output ⊥.

– VerifyUD(acct, acct′, acctδ): Verifies that UpdateDelta was performed correctly:

1. Parse acct = (pk, combl, comout, comin), acct
′ = (pk, com′bl, com

′
out, com

′
in) and acctδ = (pkδ, vbl , vout , vin ).

2. Check that pk = pk′ = pkδ ∧ com′bl = combl · vbl ∧ com′out = comout · vout ∧ com′in = comin · vin .

– VerifyDeltaSender(acctδ, v, rbl, rout): Verifies that sender’s value out is correct.

1. Parse acctδ = (pkδ, vbl , vout , vin ).

2. If vbl = Commit(pkδ, v; rbl) ∧ vout = Commit(pkδ, v; rout) then return 1. Else return 0.

– VerifyDeltaReceiver(acctδ, v, rbl, rin): Verifies that receiver’s value in is correct.

1. Parse acctδ = (pkδ, vbl , vout , vin ).

2. If vbl = Commit(pkδ, v; rbl) ∧ vin = Commit(pkδ, v; rin) then return 1. Else return 0.

Then the NIZK.ProveTrans(x,w) performs the following steps:

1. Parse x = (inputs, outputs), w = (sk, {bli, outi, ini}i∈I∗S ,
#  »vbl

′, #     »vout
′, #  »vin

′, #»r , ψ, I∗S , I
∗
R , I

∗
A). If R(x,w) = 0

abort;

2. Let ψ1 be a permutation such that ψ1(I
∗
S) = [1, s], ψ1(I

∗
R) = [s+ 1, t] and ψ1(I

∗
A) = [t+ 1, n];

3. Sample ρ1, ρ2, ρ3, ρ4 ←$ Fp and let ρ⃗ = (ρ1, ρ2, ρ3, ρ4);

4. Set inputs′ = UpdateAcct({inputsψ1(i)
, 0, 0, 0}i; ρ⃗);

5. Set vectors #  »vbl,
#     »vout,

#  »vin such that vbli = vbl
′
ψ(i), vouti = vout

′
ψ(i),vini = vin

′
ψ(i);

6. Set ({acctδ,i}, {acctϵ,i}, r⃗bl, ⃗rout, r⃗in)←$ CreateDelta(inputs′, #  »vbl,
#     »vout,

#  »vin);

7. Update outputs′ ← UpdateDelta(inputs′, {acctδ,i});

8. Let ψ2 = ψ−1
1 ◦ψ, ρ′1 = r1

ρ1
, ρ⃗′2 = r2−ρ2

ρ1
−rbli, ρ⃗′3 = r3−ρ3

ρ1
−routi, ρ⃗′4 = r4−ρ4

ρ1
−rini and let ρ⃗′ = (ρ′1, ρ⃗

′
2, ρ⃗

′
3, ρ⃗

′
4).

9. Update outputs = UpdateAcct({outputs′ψ2(i)
, 0, 0, 0}i; ρ⃗′)
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10. Generate a ZK proof π = (inputs′, outputs′, acctδ, acctϵ, π1, π2, π3) for the relation R1 ∧R2 ∧R3 where:

R1 = {(inputs, inputs′, (ψ1, ρ⃗))|
VerifyUpdateAcct({inputs′i, inputsψ1(i)

, 0, 0, 0}i; ρ⃗) = 1},
R2 = {((inputs′, outputs′, acctδ, acctϵ), (sk, {bl, out, in}si=0,

#  »vbl,
#     »vout,

#  »vin, r⃗bl, ⃗rout, r⃗in))|
VerifyUD(inputs′i, outputs

′
i, acctδ,i) = 1 ∀i

∧ VerifyUpdateAcct(inputs′i, outputs
′
i, 0, 0, 0; 1, rbl,i, rout,i, rin,i) = 1 ∀i ∈ [t+ 1, n]

∧ VerifyNonNegative(acctϵ,i, vbli, rbl,i) = 1 ∀i ∈ [s+ 1, t]

∧ VerifyAcct(outputs′i, (sk, bli + vbli)) = 1 ∀i ∈ [1, s]

∧ VerifyDelta({acctδ,i}, {acctϵ,i}, #  »vbl,
#     »vout,

#  »vin, r⃗bl, ⃗rout, r⃗in) = 1

∧ VerifyDeltaSender(acctδ,i, vbli, rbl,i, rout,i) = 1 ∀i ∈ [1, s]

∧ VerifyDeltaReceiver(acctδ,i, vbli, rbl,i, rin,i) = 1 ∀i ∈ [s+ 1, t]},

R3 = {(outputs′, outputs, (ψ2, ρ⃗′))|

VerifyUpdateAcct({outputsi, outputs
′
ψ1(2)

, 0, 0, 0}i; ρ⃗′) = 1}

Now R1, R3 can be proven using a slight modification of the Bayer-Groth shuffle argument [1]. The Σ2

protocol that proves R2 consists of the following sub-protocols:

1. Σvu: trivial check of VerifyUD.
2. Σδ: prover shows knowledge of #  »vbl,

#     »vout,
#  »vin, r⃗bl, ⃗rout, r⃗in such that

VerifyDelta({acctδ,i}ni=1, {acctϵ,i}ni=1,
#  »vbl,

#     »vout,
#  »vin, r⃗bl, ⃗rout, r⃗in) = 1.

Σδ can be implemented by using Σcom:
Σδ = ∧ni=1Σcom((pkδ,i, comδ,i), (pkϵ,i, comϵ,i); (vbl, rbl,i, rbl,i))
∧ni=1 Σcom((pkδ,i, comδ,i), (pkϵ,i, comϵ,i); (vout, rout,i, rout,i))
∧ni=1 Σcom((pkδ,i, comδ,i), (pkϵ,i, comϵ,i); (vin, rin,i, rin,i)) , but the verifier additionally checks that pkϵ,i =
(g, h) ∀i and that

∏n
i=1 vbli

ϵ
= (1, 1).

3. Σi
zero: prover shows knowledge of rbl,i, rout,i, rin,i such that

VerifyUpdateAcct(inputs′i, outputs
′
i, 0, 0, 0; (1, rbl,i, rout,i, rin,i)) = 1.

The sub-argument can be written as follows:
given acct1 = (pk, vbl

1
, vout

1
, vin

1
), acct2 = (pk, vbl

2
, vout

2
, vin

2
), the prover knows rbl, rout, rin

such that vbl
1
= vbl

2
· pkrbl , vout

1
= vout

2
· pkrout , vin

1
= vin

2
· pkrin . The equation is equivalent to:

∧i={bl,out,in}VerifyUpdate(pk,
com2,i

com1,i
, ri) = 1, hence can be done using AND-proofs of Σvu.

4. Σi
vds: prover shows knowledge of v, rbl,i, rout,i such that acctδ,i has the same value under commitments
vbl , vout . Σi

vds can be implemented by using Σcom((pkδ,i, vbl i
), (pkδ,i, vout i

); (vbli, rbl,i, rout,i)).

5. Σi
vdr: prover shows knowledge of v, rbl,i, rin,i such that acctδ,i has the same value under commitments
vbl , vin . Σi

vds can be implemented by using Σcom((pkδ,i, vbl i
), (pkδ,i, vin i

); (vbli, rbl,i, rin,i)).

6. Σrange: prover shows knowledge of acctϵ, v, r such that VerifyNonNegative(acctϵ, v, r) = 1. In order to imple-
ment this we use Bulletproofs [4].

7. Finally in order to prove VerifyAcct(acct, sk, bl):
(a) the prover shows knowledge of sk using Σdlog.
(b) Since sender may not know the randomness used to open his commitment, the prover opens the com-

mitment with the sk and finds the value bl.
(c) Chooses a new randomness r ←$ Fp and constructs acctϵ = ((g, h),Commit((g, h), bl; r)).
(d) Proves using Σcom that these two accounts has the same bl.
(e) Proves using Σrange(acctϵ, bl, r) that bl ∈ V.
So Σrange,sk = Σdlog ∧ Σcom ∧ Σrange.

HenceΣ2 = Σvud ∧Σδ ∧
(
∧ti=s+1Σrange(acctδ,i, v

′
bli, rbl,i)

)
∧
(
∧ni=t+1Σ

i
zero

)
∧ (∧si=1Σrange,sk(outputs

′
i, bli + vbli, sk)) ∧(

∧si=1Σ
i
vds

)
∧
(
∧ti=s+1Σ

i
vdr

)
. Σ2 is a public-coin SHVZK argument of knowledge of the relation R2 as follows

from the properties of AND-proofs.
The full SHVZK argument knowledge of Trans is then Σ := Σ1 ∧Σ2 ∧Σ3.

Transaction Verification The VerifyTrans(tx, state) algorithm guarantees the validity of transaction tx. De-
pending on the transaction type (tx, txCA, txDA) performs the following steps:

– if tx is an output of the Trans algorithm, then it first checks that all the accounts listed in tx.inputs are
deemed unspent in the current state, meaning for each acct ∈ tx.inputs, acct ∈ state.UTXOSet. Afterwards,
it executes the verification algorithm for the NIZK argument π and returns its result.
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– if txCA is an output of the CreateAcct algorithm, then it first checks that all the userInfo listed in txCA.inputs
are registered, meaning, for each userInfo ∈ txCA.inputs we have that userInfo ∈ state.UserSet. It also ensures
that txCA.acct ̸∈ state.UTXOSet. Afterwards, it executes the verification algorithm for the NIZK argument
π and returns its result.

– if txDA is an output of the DeleteAcct algorithm, then it first checks that all the accounts listed in tx.inputsUTXOSet

belong to state.UTXOSet and similarly for inputsuserInfo. Afterwards, it executes the verification algorithm
for the NIZK argument π and returns its result.

Create Account Algorithm Within the system every user can create a new account for any other registered
user, which improves the efficiency of the system [10]. Since each account can appear only once as input in a
transaction, if two concurrent transactions include the same account in their input set, one of them should be
rejected. As the number of accounts within the system increases, the probability of a non-empty intersection
between two transaction input sets decreases. In addition, creating new accounts allows users to own a fixed
key that can be used to receive funds, instead of the key constantly changing. Therefore, it improves the overall
communication overhead.

New accounts are composed of updates of the initial public key stored in the user’s userInfo and commitments
to zero values for the other attributes related to bl, out, in. Moreover, userInfo is updated, by increasing the
committed value for the number of accounts the user owns. This is achieved by using the homomorphic property
of the commitment scheme.

In order to hide the userInfo that corresponds to the user, an anonymity set A is used. The values of
the commitments of the userInfo that belong to the anonymity set are re-randomized without changing their
committed values. That is, transactions that create new accounts are composed of input and output sets, which
both include the intended user’s userInfo, and also the newly created account. The userInfo updates happen
through the invocation of the UpdateUser algorithm, and the outputs set is composed of these updated userInfo.

The detailed description of the CreateAcct algorithm is depicted in Figure 3. It takes as input the userInfo
of the intended user and an anonymity set A. It returns a transaction txCA = (acct, inputs, outputs, π).

The algorithm CreateAcct(userInfo, A) performs the following steps:

1. Pick r1, r2, r3, r4 ←$ R and let r⃗ = (r1, r2, r3, r4). Let acct = (pk, 0 , 0 , 0 ) be the output of
NewAcct(userInfo.pk0; r⃗).

2. Let inputs = {userInfo}∪A in some canonical order. Let c, IA be the indices of the chosen initial public key for which
we wish to construct the new account, and the anonymity set in this list.

3. Construct v⃗ as follows: vi = 0 ∀i ∈ IA and vc = 1.
4. Pick r5 ←$R and let outputs be the output of UpdateUser(inputs, v⃗; r5).
5. Form a zero-knowledge proof π of the relation R(x,w), where x = (acct, inputs, outputs), w = (c, v⃗, r⃗, r5) and

R(x,w) = 1 if ∀i ∈ {c} ∪ IA, userInfoi ∈ inputs, userInfo′i ∈ outputs we have that:

VerifyUpdateUser(userInfo′i, userInfoi, 0; r5) = 1 ∀i ∈ IA

∧ VerifyUpdateUser(userInfo′c, userInfoc, 1; r5) = 1

∧ VerifyUpdate(acct.pk, userInfoc.pk0, r1) = 1

∧ Commit(acct.pk, 0; r2) = acct.combl

∧ Commit(acct.pk, 0; r3) = acct.comout ∧ Commit(acct.pk, 0; r4) = acct.comin

The final transaction returned by the algorithm is txCA = (acct, inputs, outputs, π).

Fig. 3. The CreateAcct algorithm.

Create Account Verification The VerifyCreateAcct(txCA, state) algorithm guarantees the validity of transac-
tion txCA. First, it checks that all the userInfo listed in txCA.inputs are registered and compliant in the current
state, meaning for each userInfo ∈ txCA.inputs, userInfo ∈ UserSet. Afterwards, it executes the verification
algorithm for the NIZK argument π and returns its result.

Delete Account Algorithm Allowing users to delete zero-balance accounts reduces the storage overhead of
AQQUA, since accounts that have no balance left to spend might be abandoned and thus not needed to be
stored in the UTXOSet. Furthermore, due to the fact that senders usually create new accounts for their intended
recipients, the number of accounts in the UTXOSet increases if the option to remove zero-balance accounts is
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not given. We note that users should be incentivized to delete the zero-balance accounts they own and don’t
need to keep. The mechanism to do so is left for future work.

In order to delete an account, the information containing the total amount out, in sent and received by the
account must be transferred to another account acctC of the corresponding owner. In order to hide acctC an
anonymity set is included.

The detailed description of the DeleteAcct algorithm is depicted in Figure 4. The algorithm takes as input
the secret key sk, the account to be deleted acctD, the account acctC to which out, in of acctD will be transferred,
and anonymity sets A1 for the UTXOSet and A2 for the UserSet respectively. It returns a transaction txDA =
(inputs, outputs, π).

The algorithm DeleteAcct(sk, userInfo, acctD, acctC, A1, A2) performs the following steps:

1. For the account acctD, calculate the opening of the commitments acctD.comout, acctD.comin, denoted outD, inD, using
the secret key sk.

2. Let inputsUTXOSet = {acctC} ∪ A1 in some canonical order. Let c∗, IA1 denote the indices of the account to be added
the information and the accounts of the anonymity set in this list.

3. Construct #  »vbl,
#    »vout,

#  »vin as follows:
– #  »vbl = 0 ∀i ∈ {c∗} ∪ IA1
– #    »vout = 0 ∀i ∈ IA1 and voutc∗ = outD
– #  »vin = 0 ∀i ∈ IA1 and vinc∗ = inD

4. Pick r1, r2, r3, r4 ←$ R. and let #»r = (r1, r2, r3, r4). Let outputsUTXOSet be the output of
UpdateAcct(inputsUTXOSet,

#  »vbl,
#    »vout,

#  »vin;
#»r ) in some canonical order.

5. Let ψ : [n] → [n] be the implicit permutation mapping inputsUTXOSet into outputsUTXOSet; such that accounts
accti ∈ inputsUTXOSet and acct′ψ(i) ∈ outputsUTXOSet share the same secret key.

6. Form a zero-knowledge proof π1 of the relation R(x,w), where
x = (acctD, inputsUTXOSet, outputsUTXOSet), w = (sk, outD, inD,

#»r , ψ, c∗, IA1), and R(x,w) = 1 if

VerifyKP(sk, acctD.pk) = 1 ∧ VerifyKP(sk, acctc∗ .pk) = 1

∧ VerifyUpdateAcct(acct′ψ(i), accti, 0, 0, 0;
#»r ) = 1 ∀i ∈ IA1

∧ VerifyUpdateAcct(acct′ψ(c∗), acctc∗ , 0, outD, inD;
#»r ) = 1

∧ VerifyCom(acctD.pk, acctD.combl, (sk, 0)) = 1

7. Let inputsUserSet = {userInfo} ∪ A2 in some canonical order. Let s∗, IA2 denote the indices of the chosen initial public
key for which we wish to construct the new account, and the anonymity set in this list.

8. Construct #»v as follows: vi = 0 ∀i ∈ IA2 and vs∗ = −1.
9. Pick r ←$R and let outputsUserSet be the output of UpdateUser(inputsUserSet,

#»v ; r).
10. Form a zero-knowledge proof π2 of the relation R(x,w), where x = (inputsUserSet, outputsUserSet), w = (sk, r, s∗, IA2)

and R(x,w) = 1 if ∀i ∈ {s∗} ∪ IA2 userInfoi ∈ inputsUserSet, userInfo
′
i ∈ outputsUserSet we have that:

VerifyKP(sk, userInfos∗ .pk0) = 1

∧ VerifyUpdateUser(userInfo′i, userInfoi, 0; r) = 1 ∀i ∈ IA2

∧ VerifyUpdateUser(userInfo′s∗ , userInfos∗ ,−1; r) = 1

The final transaction returned by the algorithm is
txDA = (inputsUTXOSet, outputsUTXOSet, inputsUserSet, outputsUserSet, π = (π1, π2)).

Fig. 4. The DeleteAcct algorithm.

Delete Account Verification The VerifyDeleteAcct(txCA, state) algorithm guarantees the validity of transac-
tion txDA. Firstly, it checks that all the accounts listed in tx.inputs are part of the UTXOSet. Afterwards, it
executes the verification algorithm for the NIZK argument π and returns its result.

Apply Transaction The ApplyTrans(tx, state) algorithm is executed after the verification of the transaction.
It applies the transaction tx by updating the current state, adding tx.outputs and removing tx.inputs.

– If tx is the result of the Trans algorithm, it updates only the state.UTXOSet with the new accounts.
– If tx is the result of the CreateAcct algorithm, it updates the state.UserSet and adds the newly created

account in the state.UTXOSet.
– If tx is the result of the DeleteAcct algorithm, it updates both state.UserSet and state.UTXOSet.
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Similarly to [10], upon receiving a new state, users whose accounts are included in a tranction’s inputs should
identify their updated accounts in outputs. This can be accomplished by iterating through every acct ∈ outputs

and using VerifyKP(sk, acct.pk). Once the user identifies an updated account, they can check whether their
account was used as part of the anonymity set or as a recipient, by running VerifyCom(sk, acct.pk, acct.combl, bl),
passing as input the account’s previous balance bl. If the result is 1, then the account was used as part of the
anonymity set. Otherwise, the user must find out the new value for the balance. The value is small enough so
that the computation of its discrete logarithm takes place in a reasonable time.

6.6 Audit

Audit Algorithm In the audit procedure, the AA selects a user by their initial public key pk0 and a time
period which is represented by two snapshots of the blockchain (state1, state2). For the policies that are applied
to transactions (namely ftxlimit, fopen), the snapshot state2 should be the state that results from applying the
transaction to state1. In the case where the policy is applied to a specified period (for example in fslimit, frlimit, fnp),
the snapshots state1, state2 should be the states right before the beginning and after the end of the period,
respectively.

The user which participates in the auditing should open for each of the two snapshots the committed value
of the number of accounts they own ( #accs field of userInfo). Then, they should reveal their accounts in each
of the two snapshots’ UTXOSet. The number of accounts they reveal in each snapshot should be equal to the
opening of the corresponding commitment. Revealing the accounts does not hurt the anonymity of the user,
since from the indistinguishability property of the UPK scheme and the hiding property of the commitment
scheme, the AA cannot link the accounts that will be revealed with updated versions of them that will appear
as a result of the user participating in any new transaction.

After opening the commitment and revealing the account, the user creates a zero-knowledge proof that the
sets of accounts satisfy the required policy predicate, as defined in subsection 4.4.

The detailed description of the PrepareAudit algorithm is depicted in Figure 5. It takes as input the user’s
secret key sk, the two blockchain snapshots (state1, state2), and the policy f along with the necessary information
aux.

Both the Register and PrepareAudit functionalities need a zero-knowledge proof for the statements:

– VerifyKP(pk, sk): prover shows knowledge of a valid (pk, sk) key-pair. The corresponding language can be
written as:

Lvu := {pk = (X = gr, Y = gr·sk) ∃sk s.t. Y = Xsk}

That can be proven through Σdlog with arguments (X,Y, sk).
– VerifyCom(pk, com, sk, v): prover shows knowledge of secret key sk that opens the commitment com to value
v. The corresponding language can be written as:

Lopen(sk) := {(com = (X = hr, Y = gvhsk·r), v) ∃sk s.t. Y/gv = Xsk}

That can be proven through Σdlog with arguments (X,Y/gv, sk).

The proof needed for Register results from the composition of these Σ-protocols and a range proof for showing
that bl ∈ V.

The PrepareAudit proof uses the same combination of these Σ-protocols and appropriate range proofs for
each policy fslimit, frlimit, fopen, ftxlimit, fnp.

Audit Verification The VerifyAudit algorithm is executed by the AA to check the compliance of the user with
a specific policy. Initially, the algorithm checks that the user has revealed #accs accounts that belongs to each
selected snapshot, calculate the necessary values (i.e. multiplication of committed amounts), and then runs the
verification algorithm for the NIZK argument π and returns its result.

7 Security Analysis

7.1 Anonymity

Intuitively, we argue that any PPT adversary A capable of distinguishing between tx0, tx1 in the anonymity
game (find if b′ = b) can be used to break either the indistinguishability of UPK scheme, the hiding property of
commitment scheme, or the zero-knowledge property of the NIZK proofs.

Transactions consist of inputs, outputs, and a zk-proof π (and if it is CreateAcct or DeleteAcct a newly
created account acct). One way A could determine b is based on π, but that violates the zero-knowledge property
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The algorithm auditInfo← PrepareAudit(sk, pk0, state1, state2, (f, aux)) performs the following steps:

1. Ensure that VerifyKP(sk, pk0). For each snapshot statej , j = 1, 2 find the userInfoj that contains pk0, and calculate

#accsj = OpenCom(sk, userInfo. #accsj )

2. For each snapshot find the set of accounts Aj = {accti}
#accsj
i=1 that belong to the user. That is, ∀acct ∈ statej .UTXOSet,

if VerifyKP(acct.pk, sk) = 1, then add acct to Aj .

3. Form a zero-knowledge proof π1 of the relation R(x,w), where x = (pk0, {#accsj , #accsj , {acctji}
#accsj
i=1 }

2
j=1), w =

(sk) and R(x,w) = 1 if:

VerifyCom(pk0, #accsj , (sk, #accsj)) = 1 ∀j ∈ {1, 2}

∧ VerifyKP(pk0, sk) = 1

∧ VerifyKP(acctji.pk, sk) = 1 ∀i ∈ {1, . . . , #accsj}, ∀j ∈ {1, 2}

If f ∈ {fslimit, frlimit, fnp} then:
4. For each snapshot calculate out∗j =

∏#accsj
i=1 acctji. out , in∗j =

∏#accsj
i=1 acctji. in .

Then calculate out∗ = out∗2 ·
(
out∗1

)−1

, in∗ = in∗2 ·
(
in∗1

)−1

.

Finally, calculate out∗ = OpenCom(sk, out∗ ), in∗ = OpenCom(sk, in∗ ). These values represent the total
amount of coins that the user spent/received in the selected period of time.

5. Form a zero-knowledge proof π2 of the relation R(x,w) where x =

({acct1i}
#accsj
i=1 , {acct2i}

#accsj
i=1 , out∗ , in∗ , aux), w = (out∗, in∗) and R(x,w) = 1 if:

f(pk0, (state1, state2), aux) = 1

If f ∈ {ftxlimit, fopen} then:
4. For each snapshot calculate bl∗j =

∏#accsj
i=1 acctji. bl . Then calculate bl∗ = bl∗2 ·

(
bl∗1

)−1

and bl∗ =

OpenCom(sk, bl∗ ).

5. Form a zero-knowledge proof π2 of the relation R(x,w) where x = ({acct1i}
#accsj
i=1 , {acct2i}

#accsj
i=1 , bl∗ , aux), w =

(bl∗) and R(x,w) = 1 if:

f(pk0, (state1, state2), aux) = 1

The final output is auditInfo = (π = (π1, π2), #accs1, {acct1i}#accsi=1 , #accs2, {acct2i}#accsi=1 ).

Fig. 5. The PrepareAudit algorithm.
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of the NIZK proofs. Another way that A could determine b is to distinguish between tx0, tx1 through the outputs
sets of each tx. The only differences in the two outputs sets tx0.outputs, tx1.outputs are the accounts which
are used in P and in A as well as the amount v used to increase/decrease the variables in the accounts of P.
However, since both the accounts’ amounts and transferred value v are presented in a committed form, if A can
determine b based on the different values v0, v1 then the hiding property of the commitment scheme is violated.
In addition, since all the accounts participating in the transaction are updated and randomly permuted, A
cannot use P0, A0, P1, A1 to distinguish the two transactions without violating the indistinguishability property
of UPK scheme.

Before we give the proof of anonymity, we first recall a definition for indistinguishability of UPK scheme
[10].

Definition 4. The advantage of the adversary in winning the indistinguishability game is defined as:

AdvindA (λ) =| Pr[ExpindA ((λ)) = 1]− 1

2
|

A DPS satisfies indistinguishability if for every PPT adversary A, AdvindA (λ) is negligible in λ.

Game 1.6: Indistinguishability game ExpindA (λ)

Input : λ
Output: {0, 1}
b← {0, 1}
(pk∗, sk∗)← KGen()
r ←$R
pk0 ← Update(pk∗; r)
(pk1, sk1)← KGen()
b′ ← A(pk∗, pkb)
return (b = b′)

Note that in indistinguishability game the challenger can update many times the pk∗ before creating pk0 due to
the fact that even with more updates the pk0 can be described as an update of pk∗ with a different randomness.

Lemma 1. The constructed UPK scheme satisfies 4 if the DDH assumption holds in (G, g, p).

Proof of this lemma can be found in [10].

Theorem 1. AQQUA satisfies anonymity, as defined in Definition 1

Proof. We prove the theorem using a sequence of 14 hybrid games, as follows. Hybrid 0 and Hybrid 7 are the
anonymity game for b = 0, b = 1 respectively. Each of the rest hybrids differs in oracles’ functionalities in a way
that the successive hybrids are indistinguishable from the view of the adversary. We use these hybrids to prove
that the adversary cannot distinguish anonymity game for b = 0 and anonymity game with b = 1.
Hybrid 0. The anonymity game for b = 0.
Hybrid 1. Same as Hybrid 0, but here we run the NIZK extractor on each transaction generated by the adver-
sary. That means, whenA runs the OApplyTrans(tx) Oracle, the Oracle verifies tx by running VerifyTrans(tx, state)
depending on the transaction tx and if it is successful the oracle runs state′ ← ApplyTrans(state, tx), as well as
uses the NIZK extractor to extract the witness used to generate tx, including sk.
Hybrid 2. Same as Hybrid 1, but here the zero-knowledge arguments of the each transaction is replaced with
the output of the corresponding simulator of the zero-knowledge property of NIZK. In order to achieve this we
change the following oracles’ functionality:

– when A or the challenger creates tx through the OTrans(S, R, #»vS,
#»vR, A) Oracle, the Oracle runs tx ←

Trans(sk, S, R, #»vS,
#»vR, A), but replaces the zero-knowledge arguments in tx with a simulated argument.

– when A or the challenger creates tx through the OCreateAcct(userInfo, A) Oracle, the Oracle runs tx ←
CreateAcct(userInfo, A), but replaces the zero-knowledge arguments in tx with a simulated argument.

Hybrid 3. Same as Hybrid 2, but now the challenger replaces the potential senders’ and receivers’ accounts
of the challenge transaction tx0 (acct0, acct1, acct

′
0, acct

′
1), with new accounts that have a freshly created key

pair (sk, pk) derived from the output of the KGen(). In order to achieve this we change the following oracles’
functionality:



AQQUA 21

– when A creates one of these accounts accti through the OTrans Oracle (these accounts are presented in
tx.outputs), the Oracle runs tx← Trans(sk, S, R, #»vS,

#»vR, A), (pk
′
i, sk

′
i)← KGen and then return tx′, where tx′ =

tx except that each accti ∈ {acct0, acct1, acct′0, acct′1} is replaced with acct′i = (pk′i, combli, comouti, comini).

– whenA creates one of these accounts accti through the OCreateAcctOracle, the Oracle runs tx← CreateAcct(userInfo, A),
(pk′i, sk

′
i) ← KGen and then return tx′, where tx′ = tx except that each accti ∈ {acct0, acct1, acct′0, acct′1} is

replaced with acct′i = (pk′i, 0 , 0 , 0 ).

Hybrid 4. Same as Hybrid 3, but here the challenger replaces also the commitments of the accounts (acct0, acct1, acct
′
0, acct

′
1)

with newly created commitments to the same values with different randomness. In order to achieve this we change
the following oracles’ functionality:

– when A creates one of these accounts accti through the OTrans Oracle (these accounts are presented in
tx.outputs), the Oracle runs tx← Trans(sk, S, R, #»vS,

#»vR, A), (r1, r2, r3)←$R, bli ← OpenCom(sk, accti.combl),
outi ← OpenCom(sk, accti.comout), ini ← OpenCom(sk, accti.comin), com

′
bl ← Commit(pk′, bli; r1), com

′
out ←

Commit(pk′, outi; r2), com
′
in ← Commit(pk′, ini; r3) and then return tx′, where tx′ = tx except that each

accti ∈ {acct0, acct1, acct′0, acct′1} is replaced with acct′ = (pk, com′bl, com
′
out, com

′
in). (pk = pk′ as in the

Hybrid 3).

– when A creates one of these accounts accti through the OCreateAcct Oracle, the Oracle runs
tx← CreateAcct(userInfo, A), (r1, r2, r3)←$R, com′bl ← Commit(pk′0; r1), com

′
out ← Commit(pk′, 0; r2), com

′
in ←

Commit(pk′, 0; r3) and then return tx′, where tx′ = tx except that each accti ∈ {acct0, acct1, acct′0, acct′1} is
replaced with acct′ = (pk, com′bl, com

′
out, com

′
in). (pk = pk′ as in the Hybrid 3).

Hybrid 5. Same as Hybrid 4, but here also the updated accounts of (acct0, acct1, acct
′
0, acct

′
1) in the challenge

tx.outputs are replaced by accounts with freshly created public key pk′.
Hybrid 6. Same as Hybrid 5, but here also the updated accounts of (acct0, acct1, acct

′
0, acct

′
1) in the challenge

tx.outputs are replaced by accounts with freshly created commitments to the same value.

Afterwards, we create Hybrids 7-13 that are the same with Hybrids 0-6 with the difference that are made
for the anonymity game with b = 1.

Note that in Hybrid 6 and in Hybrid 13 all accounts of the potential senders’ and receivers’ accounts of
the challenge transaction txb (both in inputs and outputs) are fresh accounts, where in outputs have been
generated with values corresponding to the case b = 0 — b = 1.

Now we will prove that A has negligible advantage of distinguish Hybrid 0 and Hybrid 7.

Lemma 2. Hybrid 0 and Hybrid 1 are indistinguishable.

Corollary 1. Hybrid 7 and Hybrid 8 are indistinguishable.

Proof. The adversary’s view in the two hybrids’ game are identical.

Lemma 3. Hybrid 1 and Hybrid 2 are indistinguishable.

Corollary 2. Hybrid 8 and Hybrid 9 are indistinguishable.

Proof. Let A be an adversary that can distinguish Hybrid 1 and Hybrid 2 with advantage ϵ. We construct an
adversary B that breaks the zero-knowledge property of the NIZK proof π of transaction tx with probability ϵ.

Let Ozk(·) be an oracle that on input (tx.inputs, tx.outputs) creates a valid zero-knowledge proof for the
transaction. Then B wins if they can decide wether Ozk(·) is a prover or simulator oracle.
B takes as input the Ozk(·) and runs as follows:

1. B generates state← Setup(λ);
2. When A queries the OTrans(S, R, #»vS,

#»vR, A) oracle then B runs tx← Trans(sk, S, R, #»vS,
#»vR, A) with the difference

that B replace the proof with the output of Ozk(tx[inputs], tx[outputs])
3. When A queries the OCreateAcct(userInfo, A) oracle then B runs tx ← CreateAcct(userInfo, A) with the

difference that B replace the proof with the output of Ozk(tx[inputs], tx[outputs])
4. B runs b← A(state);

If A answers Hybrid 0 then Ozk(·) is a prover oracle. If A answers Hybrid 1 then Ozk(·) is a simulator oracle.
So B wins with probability ϵ.
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Lemma 4. Hybrid 2 and Hybrid 3 are indistinguishable.

Corollary 3. Hybrid 9 and Hybrid 10 are indistinguishable.

Proof. Note that A cannot distinguish Hybrid 2 and Hybrid 3 from the fact that commitments are under
different public key on the grounds that this breaks the key-anonymous property of the commitment scheme.
Let A be an adversary that can distinguish Hybrid 2 and Hybrid 3 with advantage ϵ. We construct an adversary
B that breaks the indistinguishability property of the UPK scheme with probability ϵ.

In order to create B, we define five sub-hybrids. Let h0 be Hybrid 2 and for each i ∈ {1, 2, 3, 4} hi would be
a sub-hybrid where we replace the account acct0, acct1, acct

′
0, acct

′
1 respectively. In hybrid h4 all of the accounts

will be changed, therefore h4 is Hybrid 3. Lets A be an adversary that can distinguish hi from hi+1. Let acctc
be the account that we are replacing in this hybrid. Then:
B gets as input the tuple (acct∗, acctb) from the indistinguishability game and runs as follows:

1. B generates state← Setup(λ).
2. when A uses the ORegister Oracle to create the initial account that share the same secret key with acctc, B

replaces this account with acct∗.
3. when A uses OTrans or OCreateAcct Oracle to create the account acctc, B replaces acctc with acctb.
4. B reply to all other queries in the oracles as in the Hybrid h0.
5. B outputs b′ ← A(state).

We know that A did not query the corrupt oracle on acctc or on any other account that shares the same secret
key with acctc cause it would have immediately lost the anonymity game. Note that if b = 0 then the distribution
of the game is the same as hybrid hi and if b = 1 then the game has the same distribution as hybrid hi+1. Hence
B answer b′ and solves the indistinguishability game with probability ϵ.

Lemma 5. Hybrid 3 and Hybrid 4 are indistinguishable.

Corollary 4. Hybrid 10 and Hybrid 11 are indistinguishable.

Proof. The only difference from this two Hybrids are the randomness to the commitments of the real participants
accounts. Therefore, they produce a computationally indistinguishable distribution, due to the hiding property
if the used commitment scheme.

Corollary 5. Hybrid 4 and Hybrid 5 are indistinguishable.
Hybrid 11 and Hybrid 12 are indistinguishable.
It can be proven the same way as Hybrid 2 and Hybrid 3 are indistinguishable.

Corollary 6. Hybrid 5 and Hybrid 6 are indistinguishable.
Hybrid 12 and Hybrid 13 are indistinguishable.
It can be proven the same way as Hybrid 3 and Hybrid 4 are indistinguishable.

Lemma 6. Hybrid 6 and Hybrid 13 are indistinguishable.

Proof. Hybrid 6 and Hybrid 13 differ to (1) the accounts that are included in P and in A as well as to (2) the bal-
ances that are stored in the real participants’ accounts in the challenge query (accti =∈ {acct0, acct1, acct′0, acct′1}).
Concerning the former (1), in both Hybrids the inputs that A sees is obtained by permuting (Px ∪ Ax) with a
random permutation ψ. But the union of these set in both cases (x = {0, 1}) produces identical distributions.
As a result A cannot distinguish the two Hybrids from (1). The second change (2) produces a computationally
indistinguishable distribution, due to the hiding property of the commitment scheme. Therefore, if A could
distinguish these Hybrids based on (2) then A could break the hiding property of Commit.

Using the above lemmas and the triangle inequality, we prove that there is not a PPT adversary A that can
distinguish Hybrid 0 and Hybrid 7 with more than negligible advantage.

7.2 Theft prevention

Intuitively, we argue that any PPT adversary A capable of winning the theft-prevention game can be used to
break either the unforgeability property of UPK scheme, the binding property of commitment scheme, or the
soundness property of the NIZK proofs.

In order to win the theft-prevention game, A should submit a transaction tx that either increases the total
balance of the corrupted users, decreases the balance of honest users, or does not maintain preservation of
value. This can happen in the following ways: The first way is if the adversary is able to transfer some amount
from a honest user’s account. However, this means that A can compute the sk of the honest account, thus the
unforgeability property of the UPK scheme is violated. Secondly, if A manages to transfer more coins than the
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corrupted account holds. But in order for such a transaction to be valid, the adversary should either be able to
make a zk-proof that violates the soundness property, or to compute an opening to a commitment with balance
different from the real one, hence breaking the binding property of the commitment scheme. The third way
is by creating a transaction that breaks preservation of value, but in order for such a transaction to be valid,
A should again be able to construct an unsound zk-proof or break the binding property of the commitment
scheme.

Theorem 2. AQQUA satisfies theft prevention, as defined in Definition 2.

Proof. Assume that there exists a PPT A that wins the theft prevention game of Game 1.4 with non-negligible
probability. Using the notation of the game, we have that A outputted a valid transaction tx that verifies and
that results in one of the three winning conditions of the game being satisfied.

We have that tx = (inputs, outputs, π), where π is a ZK-proof for the relation R(x,w) as defined in Figure 2,
with x = (inputs, outputs) and w = (sk, bl, out, in, #  »vbl,

#     »vout,
#  »vin,

#»r , ψ, I∗S , I
∗
R , I

∗
A).

From the soundness property of the NIZK argument of the Trans algorithm, we can extract a witness

w∗ = (sk∗, bl∗, · · · ,
#  »

v∗′bl, · · · ,
#»

r∗, · · · ) such that R(x,w∗) = 1.

Let acct ∈ inputs be the account such that VerifyKP(sk∗, acct.pk) = 1. We divide into two cases.

1. It holds that sk∗ ∈ honest. In this case, we construct an adversary B that breaks the unforgeability property
of the UPK scheme with non-negligible probability.

The reduction works as follows. The adversary B takes as input a public key pk∗. It also keeps a directed
tree with root (pk∗, 1) and whose nodes will be tuples of the form (pk, r). The tree will be updated so that
for every edge of the form ((pk1, ·), (pk2, r2)) it will hold that VerifyUpdate(pk2, pk1, r2) = 1.

B answers to A’s oracle queries as follows.

• When A queries the ORegister oracle and this query results in the Register algorithm to generate sk∗, B
replaces userInfo.pk0 with pk∗, and when NewAcct is called in the procedure, B gives as input pk∗. The
adversary B stores the public key of the newly created account and the randomness used as a child of
(pk∗, 1) in the tree. For the rest of the ORegister queries, B answers honestly.

• When A queries the OCreateAcct oracle for an account whose public key pk is contained in a leaf of
the tree, B answers honestly and adds a child to the leaf, composed of the updated public key of the
updated account and the randomness used.

• When A queries the OTrans oracle, the adversary B acts as follows.

∗ If the public keys of the accounts in S are contained in leaves of the tree, B creates an outputs set
and creates a simulated proof for the transaction. B also updates the tree by creating new children
containing the updates of the public keys and the randomness.

∗ If there exist public keys of accounts in the anonymity set that are contained in leaves of the tree,
B creates new children containing the updates of the public keys and the randomness.

• When A queries the OApplyTrans with a transaction whose inputs contain a leaf of the tree, B uses the
proof contained in the transaction to extract the witness. Then, B creates new children for the updates
of the public keys, storing also the randomness of the witness.

• For the rest of the oracle queries, B answers honestly.

Finally, when A outputs the transaction tx of the theft prevention game, B finds the acct ∈ inputs for
which VerifyKP(sk∗, acct.pk) = 1, and finds the leaf (pk, r) of the tree for which acct.pk = pk. Let r′ be the
multiplication of all randomnesses stored in the path from that leaf to the root. B returns (pk, r′).

If A wins the theft prevention game, we have that VerifyKP(pk, sk∗) = 1 and VerifyUpdate(pk, pk∗, r′) = 1.
Since A can win with non-negligible probability, B breaks unforgeability with non-negligible probability.

2. It holds that sk∗ ∈ corrupt.

Assume w.l.o.g. that the transaction tx that A outputs is the first transaction that results in winning the
game (that is, there is no transaction submitted to OApplyTrans oracle prior to this point that would result
in A winning).

Since A wins the game, we have that the sum of the openings of the committed balances of all the accounts
(stored in the bookkeeping) of inputs is different from those of outputs.

From the soundness property of the NIZK argument of the Trans algorithm, we have that for every sender
account acct′ of outputs, VerifyAcct(acct′, sk∗, bl∗ + v′∗bl, ·, ·) = 1.

Since VerifyAcct returns 1, and also
∑

v′∗bl∈
# »

v′∗bl
v′∗bl = 0, and since A wins the game, there exists an account

acct ∈ outputs for which acct.combl has two different openings: one resulting from the bookkeeping, and
one derived from the extracted witness (one of the values of the form bl∗ + v′∗bl for some sender account).
This trivially breaks the binding property of the commitment scheme.
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7.3 Audit soundness

Intuitively, we argue that any PPT adversary A capable of winning the audit soundness game can be used to
break either the binding property of commitment scheme or the soundness property of the NIZK proofs.

In order to win the the audit soundness game, A should either create a valid zero-knowledge proof without
knowing the corresponding witness, or hide some of their accounts from the AA. However, the former attack
violates the soundness property of the zero-knowledge proof. The latter requires the A to be able to open their
commitment #accs to a different value, but this breaks again the binding property of the commitment scheme.

Theorem 3. AQQUA satisfies audit soundness, as of Definition 3

Proof. Assume that there exist a PPT A that wins the audit soundness game of Game 1.5 with non-negligible
probability. Using the notation of the game, we have that A outputted a proof π = (π1, π2) that verifies but A
is not compliant with the specified policy.
A choose a policy f with its auxiliary parameters aux, an initial public key pk0 and two snapshots from

the blockchain state1, state2. Then A constructs π = (π1, π2) which as defined in Figure 5 is a ZK-proof for

the relations R1(x,w), with x = (pk0, {#accsj , #accsj , {acctji}
#accsj
i=1 }2j=1) and w = (sk) and R2(x,w), with

x = ({acct1i}
#accsj
i=1 , {acct2i}

#accsj
i=1 , v , aux) and w = (sk, v), where v, aux are values that depend on the policy.

From the soundness property of the NIZK argument of the π1, we can extract a witness w∗ = sk∗ such
that R1(x,w

∗) = 1. We have that every pk ∈ {pk0} ∪ {acctji.pk}
#accsj
i=1 , VerifyKP(sk∗, pk). Therefore similarly to

theft-prevention proof we can prove that if sk∗ ∈ honest then A can be used to break the unforgeability property
of UPK scheme. Else if sk∗ ∈ corrupt then since A wins the game, we have that the opening to the commitment
of #accs is different from the one that resulting from bookkeeping. This trivially breaks the binding property
of the commitment scheme.

From the soundness property of the NIZK argument of the π2, we can extract a witness w∗ = v∗ such that
R1(x,w

∗) = 1. Again since A wince the game the sum of the openings of the commited value of all the accounts
that belongs to A is different from the one that resulting from bookkeeping, so this breaks the binding property
of the commitment scheme.

8 Conclusion and Future Work

We presented AQQUA, a decentralized private and auditable payment system. Our accounts extend Quisquis
accounts in order to record (in hidden form) the total influx and outflux. While we introduce two authorities in
AQQUA, it remains decentralized since the RA and AA do not intervene in the normal flow of transactions. A
major direction for possible future research involves strengthening the privacy provided by AQQUA even more.
Firstly, the fact that the audit proofs leak account information between the audit states could be addressed.
Secondly, another direction could be to convert audit proofs to be designated-verifier [12]. As a result, the AA

will be able to simulate them, and thus it will be the only entity convinced about the audit results. This may
increase the privacy of the participants, but it will interfere with the trust dynamics of the system. As a result,
further research is needed for this integration.
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