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Abstract. At Eurocrypt’24, Mureau et al. formally defined the Lattice
Isomorphism Problem for module lattices (module-LIP) in a number field
K, and proposed a heuristic randomized algorithm solving module-LIP
for modules of rank 2 in K2 with a totally real number field K, which
runs in classical polynomial time for a large class of modules and a large
class of totally real number field under some reasonable number theo-
retic assumptions. In this paper, by introducing a (pseudo) symplectic
automorphism of the module, we successfully reduce the problem of solv-
ing module-LIP over CM number field to the problem of finding certain
symplectic automorphism. Furthermore, we show that a weak (pseudo)
symplectic automorphism can be computed efficiently, which immedi-
ately turns out to be the desired automorphism when the module is in
a totally real number field. This directly results in a provable determin-
istic polynomial-time algorithm solving module-LIP for rank-2 modules
in K2 where K is a totally real number field, without any assumptions or
restrictions on the modules and the totally real number fields. Moreover,
the weak symplectic automorphism can also be utilized to invalidate
the omSVP assumption employed in HAWK’s forgery security analysis,
although it does not yield any actual attacks against HAWK itself.
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1 Introduction

Lattices are discrete additive subgroups of Rm, which provide rich geometric
structures that can be used to define various computationally hard problems,
such as the famous shortest vector problem (SVP) and the closest vector problem
(CVP). Based on the hardness of these problems or their variants, lots of lattice-
based cryptosystems have been constructed. It is widely believed that lattice-
based cryptosystems are quantum-resistant, and some of them are selected as the
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standard algorithms in NIST’s Post-Quantum Cryptography Standardization
Project.

Lattice Isomorphism Problem (LIP) is another lattice-related computational
problem. Two lattices L1 and L2 are said to be isomorphic if there exists a
bijective orthogonal transformation from L1 to L2. The search version of LIP
refers to the question of finding such orthogonal transformation given the lattice
bases of L1 and L2, and the decision version asks to determine whether the
two given lattices are isomorphic or not. Research on LIP dates back to [20] in
the 1990s, in which the LIP for low-dimensional lattices was considered. In [13],
Haviv and Regev proposed an nO(n)-time algorithm for solving the general LIP,
which remains the fastest known algorithm for LIP. Since then, many more
cryptanalytic works have been proposed [11,6,9,3,7,8,12,16,17,21,5].

Most of these works focus on a special case of LIP, namely, ZLIP, in which
L is the hypercubic lattice Zn, such as [11,4]. Recently, Ducas [5] explored a
reduction from n-dimensional ZLIP to n

2 -dimensional SVP, which means that
ZLIP can be solved with 2n/2 time complexity due to the best provable algorithm
[2] for SVP. A similar algorithmic result can be concluded by employing Bennett
et al.’s reduction [3] from ZSVP to O(1)-uSVP with the well-known reduction
from ZLIP to ZSVP.

To improve the efficiency of LIP-based cryptosystems, an algebraic variant of
LIP, called module-LIP problem, was introduced by Ducas et al. [7], where the
module can be chosen as free module over a CM number field instead of just the
ring of integers. By taking the module M as O2

L where the field L is a cyclotomic
field with conductor being a power of 2, Ducas et al. [7] presented a signature
scheme called HAWK, whose security relies on the hardness of O2

L-LIP problem.
HAWK is now a candidate algorithms in the first round of NIST’s Post-Quantum
Cryptography Standardization Project for additional digital signature proposals.
However, in spite of the additional algebraic structure, we always treat O2

L-LIP
problem as an LIP on non-structured lattices when analyzing the security of
HAWK. Hence, a natural problem is how to solve module-LIP more efficiently
than LIP with its special algebraic structure.

For LIP with algebraic structures, the most well-known algorithm originates
from the work of Gentry and Szydlo [12], which tries to recover the secret key of
NTRUSign [14] by solving some special ZLIP instance with algebraic structure.
Later, Silverberg made [16,17] lots of in-depth analysis of the Gentry-Szydlo
algorithm, and Lenstra and Silverberg [18] generalized it to check isomorphism
of lattices over CM-orders. The essence of these algorithms lies in using sufficient
lattice automorphisms to solve LIP. Note that the automorphisms provided by
the algebraic structure of rank-1 module enable the Gentry-Szydlo algorithm
and its variants to solve the corresponding rank-1 module-LIP problems over
CM number fields.

At Eurocrypt’24, Mureau et al. [19] formalized the framework for module-LIP
using the concept of pseudo-bases, allowing it to be defined on module lattices
over general number fields. Furthermore, as their main technical contribution,
they presented a heuristic algorithm for solving module-LIP when the module
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M ⊂ K2 has rank 2 and when the number field K is a totally real number field.
Roughly speaking, the strategy in [19] mainly utilizes the prime decomposition of
the principal ideal generated by the sum of squares x2+y2 to guess the principal
ideal generated by its factor x+ i · y. To avoid factoring a general integer during
the process of prime ideal factorization, which is still hard on classical computers
by now, the ideals should be selected carefully such that their norms are easy
to be factored under some heuristic assumption. However, guessing the desired
principal ideal by enumerating the possible combinations of prime ideals, still
makes the time complexity of the final algorithm exponential in the number of
distinct prime ideals factors (Theorem 4.6 in [19]). Therefore, the algorithm in
[19] runs in polynomial time under some reasonable heuristic assumptions for
a class of certain module-LIP, which relates to the arithmetic properties of the
module and the field . It should be noted that their algorithm does not impact
the security of HAWK, as pointed out in [19].

1.1 Our Contributions

In this paper, we present a provable deterministic polynomial-time algorithm to
solve O2

L-LIP where L is a CM number field, with the help of a new module
lattice automorphism defined by a symplectic matrix with rank 2. Therefore,
we reduce the problem of solving O2

L-LIP to the problem of finding out the
certain module lattice symplectic automorphism. Although it seems not easy
to find the exact symplectic automorphism in general, we can compute another
weak module lattice symplectic automorphism for O2

L efficiently when L is a
CM number field. Specially, the weak symplectic automorphism will become
a module lattice automorphism immediately when a totally real number field
K is considered, which directly yields a provable deterministic polynomial-time
algorithm solving O2

K-LIP where K is a totally real number field.
Note that the forgery security of HAWK [7] is based on the hardness of the

one more SVP (omSVP), which asks the adversary to find one more short enough
non-trivial element in O2

L that is out of the trivial set {αx}α∈µ(L) where x is a
given short element. However, our weak symplectic automorphism φ, which can
be computed efficiently, will yield another non-trivial short element φ(x) directly,
whose length is as the same as x’s. This invalidates the omSVP assumption
used in HAWK’s forgery security analysis, although it does not yield any actual
attacks against HAWK itself. An easy way to fix this issue is just adjusting the
omSVP assumption by adding the new short elements we find into the trivial
set.

We also generalize the algorithm to solve module-LIP for the rank-2 module
M ⊂ K2 where the number field K is a totally real number field. By introducing
a similar pseudo symplectic automorphism and utilizing eigenspaces to acquire
isomorphism invariants, we have the following theorem.

Theorem 1.1 (informal) Let K be a totally real number field. M ⊆ K2 is an
module lattice of rank 2 with pseudobasis B and pseudo-Gram matrix G. G′ is
the pseudo-Gram matrix of M ′ isomorphic to M . If U is congruence matrices
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between G and G′. Then there is a deterministic polynomial time algorithm to
find U, given a basis of OK, B, and G′.

The main contributions are summarized as below:

– We introduce a new tool called module lattice symplectic automorphism
into designing algorithms solving module-LIP, and reduce the problem solv-
ing module-LIP to finding the certain symplectic automorphism. With this
framework, we propose a provable deterministic polynomial-time algorithm
that solves module-LIP for the rank-2 module M ⊂ K2 where K is a totally
real number field.

– Compared with algorithms in [19], our algorithms are provable deterministic
polynomial-time algorithm while the algorithms in [19] need some heuristic
assumptions. Moreover, our algorithm, that solves module-LIP for the rank-
2 module M in totally real number field, always runs in polynomial time
regardless of the the arithmetic properties of the module, whereas the time
complexity of algorithm in [19] relates to the arithmetic properties.

– We invalidates the omSVP assumption introduced by HAWK to prove its
forgery security. Therefore, necessary adjustment about the omSVP assump-
tion should be made to guarantee the validity of the security proof. We stress
that our results haven’t yielded any actual attack against HAWK.

1.2 Technical Overview

Isomophism and Automorphism. From a geometric perspective, LIP is to
find the unitary matrix O such that OM = M ′ for isomorphic module lattices
M , M ′. In this perspective, we call a unitary matrix A such that AM = M an
automorphism of M . If O is a unitary matrix such that OM = M ′, then the
automorphisms of M ′ all have the form OAO−1, where A is an automorphism
of M . From the Gram matrix perspective, LIP is to find the congruence matrix
U such that U∗GU = G′. In this perspective, we call U such that U∗GU = G
an automorphism of G. If we assume G = B∗B, then the automorphisms of
G all have the form B−1UB, where U is a unitary matrix. There have been
many works showing that automorphisms can play important roles in solving
LIP [12,16,15].

The key to our technique is that, for the module lattice O2
L, we find a lattice

isomorphism that has not been considered before. In particular, if the base field
is also considered to be a totally real number field, this lattice isomorphism will
also be a module lattice isomorphism with more algebraic structures.

Specifically, we will exploit the symplectic property of rank 2 matrices (i.e.
BTJ2B = J2, ∀B ∈ SL2(L)) and its variants to extract automorphism, such as
computing B−1J2B from BTB (See Subsection 3.1).

Analysis of O2
L-LIP. We reduce the problem of solving O2

L-LIP to the prob-
lem of finding out the certain module lattice symplectic automorphism by using



Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms 5

the Lenstra-Silverberg algorithm proposed in [18]. Informally speaking, this al-
gorithm can find an isomorphism between a lattice and its certain canonical
form using specific automorphisms of the lattice. The module lattice O2

L has
the automorphisms {aI2|a ∈ µ(L)} inherently, but these automorphisms are not
enough for Lenstra-Silverberg algorithm. We discovered and carefully demon-
strated that adding the certain module lattice symplectic automorphism to the
above-mentioned automorphisms meets the requirements for the algorithm’s use.

It is worth mentioning that the main theorem in [18] will be used over and
over again as a powerful tool in our technique. However, before us it seems that
people only focused on the original version [12].

As the discussion before, this sympletic automorphism can be computed if the
considered field is a totally real number field. For HAWK, we can obtain a weak
sympletic automorphism, and it will affect the existing omSVP assumptions.
This invalidates the assumption used in their security analysis, although it does
not yield attacks against the construction itself.

Algorithm for rank-2 module-LIP over totally real number field. We
now explain how our algorithm for module-LIP works when the module M ⊂ K2

has rank-2 and when the number field K is a totally real number field. Firstly,
we can still first obtain a pseudo-automorphism of M , which we call pseudo
because it does not preserve M . To be specific, for M ′ = OM where O ∈
U2(KR), we can obtain OJ2O

−1. If we look at the pseudo-automorphism from
the perspective of matrix conjugation, then the eigenspace before conjugating
differs from the eigenspace after conjugating by only one transition matrix for
the same eigenvalue.

From a high level view, a fundamental reason why the module isomorphism
problem for rank 2 is harder than for rank 1 lies in the fact that it is hard
to find rank 1 submodule N ⊆ M , N ′ ⊆ M ′ such that N ′ = ON . The inter-
section of the modules and eigenspaces of pseudo-automorphisms provides the
submodules N,N ′ s.t. N ′ = ON , but previously we only knew automorphisms
of pure quantities, that is, they only have trivial eigenspaces. This new (pseudo)
automorphism fits our requirements nicely. And then rank 1 module-LIP can be
solved by using algorithm in [18]. It should be pointed out that the eigenvalues
and eigenvectors of this automorphism need to be lifted to be considered in OL,
and thus need to be argued more carefully.

In addition, for better intuition, we here give our technical overview from a
geometric point of view. However, the geometric perspective and Gram matrix
perspective can be transformed into each other. For computational reasons, the
actual algorithm will be performed from the Gram matrix perspective. We will
give a sketch of the actual algorithm at the beginning of Section 4.

Roadmap. The rest of the paper is organized as follows. Section 2 provides basic
definitions and preliminaries. In Section 3, we present a provable deterministic
polynomial-time algorithm to solve O2

L-LIP where L is a CM number field, with
the help of a new module lattice symplectic automorphism, and we also show
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how to find a weak module lattice symplectic automorphism efficiently, which
can invalidate the omSVP assumption introduced by HAWK to prove its forgery
security. In Section 4, we present the provable deterministic polynomial-time
algorithm to solve module-LIP for the rank-2 module M ⊂ K2 where the number
field K is a totally real number field. Section 5 concludes the paper shortly.

2 Notations and preliminaries
2.1 Notations

– The Euclidean norm of a ∈ Rn is denoted by ‖a‖. The transpose of A is
denoted by AT , and (A−1)T is abbreviated as A−T . Let GLn(R) and GLn(Z)
be the general linear group of rank n over R and Z respectively.

– We use J2 to represent the matrix
(

0 1
−1 0

)
, JB to represent B−1J2B for

some 2×2 matrix B. We use rIn to represent the matrix diag(r, r, · · · , r), and

sometimes use r to represent rIn in matrix multiplications(such as r
(
x1

x2

)
=(

rx1

rx2

)
). We will also emphasize this point from time to time in the proof.

– For a number field K, the parameter K denotes degree of K, log∆K, and a
basis of OK.

– For x in a number field L, we call x∗ is the complex conjugation of x if
σ(x∗) = σ(x), ∀σ ∈ HomQ(K,C). For matrix H = (hij), let H∗ denote
(h∗

ij)
T and H denote (h∗

ij) if all h∗
ij exist.

– For a ring A in a number field that are closed under complex conjugating ,
the unitary matrices over A is Un(A) := {T ∈ Mn(A)|T ∗T = In}.

– We use µ(F) to denote the roots of unity in the number field F. Note µ(F) ⊂
OF and µ(F) = U1(OF)

– Assume G is an abelian group. For abelian groups A,B equiped a bilin-
ear map φ : A × B → G, we define the group product A · B as the
abelian group generated by {φ(a, b)}. We also usually use a · b to denote
φ(a, b). Further more, if there are canonical bilinear maps respectively be-
tween (A,B), (B,C), (A · B,C), (A,B · C) satisfying associative law i.e.
(a · b) · c = a · (b · c), ∀a ∈ A, b ∈ B, c ∈ C, then the group product also have
associative law, i.e. (A · B) · C = A · (B · C). For example, matrix groups
A ⊆ Kn×m, B ⊆ Km×l, C ⊆ Kl×t or A,B,C are ideals of a ring.

2.2 Lattices
Lattices are discrete additive subgroups of Rm. A lattice is usually defined by a
set of n linearly independent basis vectors b1, b2, . . . , bn ∈ Rm. Any point in the
lattice can be expressed as an integer linear combination of the basis vectors.

A lattice L of rank n and dimension m is a set of points in Rm that can
be expressed as integer combinations of n linearly independent basis vectors
b1, ..., bn. Denote B = (b1, ..., bn) as the basis of the lattice L, and then L =
{Bz : z ∈ Zn}.
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2.3 Number Theory

A number field K is a finite extension of the rational numbers Q. Any such K
is isomorphic to Q[X]/(P ) for an irreducible monic polynomial P . The degree
of P matches the degree of the extension. For any extension K of degree d,
there are exactly d embeddings σ1, ..., σd from K into the complex numbers C.
If an embedding sends K into the real numbers R, it’s called a real embedding.
Otherwise, it’s called complex. If an embedding is not real, it can be paired
with its complex conjugate to give another distinct complex embedding. We
use r1 to denote the count of real embeddings and r2 to denote the count of
complex embeddings up to conjugation. Therefore, the total count of embeddings
is d = r1 +2r2. When all embeddings are real (i.e. r1 = d), we say the extension
K|Q is totally real. Conversely, when all embeddings are complex (i.e. 2r2 = d),
we call it totally imaginary.

CM number field A CM (number) field L is a number field if it’s a quadratic
extension L/K where the base field K is totally real but L is totally imaginary.
There is a complex conjugation in Gal(L/K), i.e ∃τ ∈ Gal(L/K) s.t. ∀x ∈
L, σi(τ(x)) = σi(x). We usually denote τ(x) by x∗.

Canonical embedding We call this map σ : x ∈ K 7→ (σ1(x), . . . , σd(x))
T ∈

Cd canonical embedding of number field K. We will often identify K with the
image underlying its canonical embedding, then OK is a lattice. But note that
we are not representing elements in K using the canonical embedding.

The norm map defined over K is NK(z) =
∏

i σi(z). Similarly, the trace map
is TrK(z) =

∑
i σi(z). Regard z ∈ K as Q-linear map mz : x ∈ K 7→ zx ∈ K,

then we have NK(z) = det(mz) and TrK(z) = Tr(mz). Especially, if z ∈ K, then
NK(z), TrK(z) belong to Q. When there is no ambiguity, we drop the subscript.

The R-algebra KR := K⊗QR is a real vector space of dimension d. If write K
as Q[X]/(P ), then we can use R[X]/(P ) to denote K⊗QR. To keep the discussion
concise, this paper will not delve deeply into the discussion about KR.

Rings of integer Let OK denote the ring of integers of a number field K. OK
is a free Z-module of rank d. The discriminant of K, denoted ∆K, is defined
as (det(σi(αj))i,j)

2 ∈ Z, where (αj)1≤j≤d is any basis of OK. Specifically, there
exists some absolute constant c > 1 such that ∆K ≥ cd for all number fields K.
In particular, we always have d = poly(log∆K).

When K is a totally real number field and L = K[X]/(X2+1), Mureau et.al.
showed log∆L = poly(log∆K) and the following lemma in [19, Section 2.2].

Lemma 2.1 ([19, Lemma 2.6]) Let K be a totally real number field and L :=
K[X]/(X2 +1). There exists a polynomial time algorithm A that, given as input
a Z-basis BK of OK , computes a Z-basis BL of OL.

Lemma 2.2 Let L be a CM number field with degree n. Then ∀x ∈ OL \ {0},
we have: TrL(x∗x) ≥ n, and TrL(x∗x) = n iff x is a root of unity.
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Proof. Note ∀1 ≤ i ≤ n, σi(x
∗x) = (σi(x))

∗σi(x) = |σi(x)|2 ≥ 0. So TrL(x∗x) =∑n
i=1 σi(x

∗x) ≥ n(
∏n

i=1 |σi(x
∗x)|)1/n = n(N (x∗x))1/n ≥ n. The last inequality

holds for ∀r ∈ OL, N (r) ≥ 1. This means TrL(x∗x) = n iff all the equals are
taken iff |σi(x)| = 1 for all 1 ≤ i ≤ n iff1 x is a root of unity. ut

Ideals. An (fractional) ideal I is an finitely generated additive subgroup of K
such that x · I ⊆ I for all x ∈ OK. Principal ideal is an ideal generated by
a single element a ∈ K i.e. aOK. The product of two ideals I and J is their
group product i.e. IJ = {

∑
i xiyi|xi ∈ I, yi ∈ J }. An ideal I has the form

1
d · a, where d ∈ OK \ {0}, a ⊂ OK. Then we can define the algebraic norm
N (I) := ♯(OK/a)/♯(OK/(dOK)).

Modules. Assume K is a number field. An OK module M is a subset of Kℓ

of the form b1I1 + + brIr, where the Ii’s are non-zero fractional ideals of K
and (b1, ..., br) are K-linearly independent vectors of Kℓ, for some ℓ > 0. We call
B = (B, (Ii)1≤i≤r) a pseudo-basis for M , where B is the matrix whose columns
are the bi. The integer r is called the rank of the module. When r = ℓ, we say
that the module has full rank.

2.4 Module-LIP

Definition 2.1 Let B = (B, (Ii)1≤i≤ℓ) be a pseudo-basis of a rank-ℓ module
M in Kk

R. The pseudo-Gram matrix associated with B is denoted by G :=
(G, (Ii)1≤i≤ℓ), where G = B∗B.

Definition 2.2 Let G = (G, (Ii)1≤i≤ℓ) and G′ = (G′, (Ji)1≤i≤ℓ) be two pseudo-
Gram matrices (with G and G′ in H>0

ℓ (KR)). They are said to be congruent if
there exists U = (ui,j)1≤i,j≤ℓ ∈ GLℓ(K) such that G′ = U∗GU and ui,j ∈ IiJ−1

j ,
vi,j ∈ JiI−1

j , where V = (vi,j)1≤i,j≤ℓ := U−1. Such U is called a congruence
matrix between G and G′. This defines an equivalence relation ∼ on the set of
pseudo-Gram matrices.

In [19] Guilhem Mureau et al. proposed three equivalent definitions of iso-
morphism between module lattices, and we only elaborate here the one we will
use.

Definition 2.3 Let M,M ′ ⊂ Kℓ
R be two modules of rank ℓ with respective

pseudo-bases B = (B, (Ii)1≤i≤ℓ) and B′ = (B′, (Ji)1≤i≤ℓ). Let G (resp. G′)
be the pseudo-Gram matrix associated with B (resp. B′). We say that M,M ′ are
isomorphic as module lattices if G and G′ are congruent.

Definition 2.4 (module-LIPB
K) For B a pseudo-basis of a module lattice M ⊂

Kℓ
R with associated pseudo-Gram matrix G, the (worst-case) search module lattice

1 This is a basic result in number theory. One can find a argument in [19, Lemma
2.14].
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Isomorphism Problem with parameter K and B, denoted by module-LIPB
K, is,

given as input any pseudo-Gram matrix G′ ∼ G (see Definition 2.2), to find a
congruence matrix between G and G′.

2.5 Algorithmic consideration

Representation of ideals and modules Assume BOK is a basis of OK. We
represent elements in K (resp. KR) by their coordinates in the basis BOK , which
is a vector in Qd (resp. Rd). For x ∈ K represented by the vector (x1, . . . , xd)

T ∈
Qd, we define size(x) :=

∑
i size(xi), where size(a/b) := dlog2 |a|e + dlog2 |b|e

for a, b ∈ Z coprime. As is customary, we assume that in this paper the BOK is
always an LLL-reduced basis of OK, meaning that σ(BOK) forms an LLL-reduced
basis of OK. This choice is made to ensure that the coefficients of αiαj under
BOK representation do not blow up. In fact, σ(BOK) being LLL-reduced implies
that for any integral x ∈ OK, size(x) = poly(d, ‖σ(x)‖).Inversely, ‖σ(x)‖ ≤∑

i |xi| · ‖σ(αi)‖ ≤ d3/2 · 2d · (∆1/d
K ) ·maxi |xi| since λd(OK) ≤

√
d · (∆1/d

K ). This
implies that the arithmetic operations on elements in OK are in polynomial time.
And then the arithmetic operations on elements in K are in polynomial time.
A fractional ideal I is represented by a Z-basis (y1, ..., yd) of the ideal, such that
(σ(yi))1≤i≤d is an LLL-reduced basis of σ(I). In particular, we have ‖σ(yi)‖ ≤
2d · λd(I) ≤

√
d · 2d ·∆3/(2d)

K · N (I)1/d. We define size(I) :=
∑

i size(yi).

Lemma 2.3 ([19, Lemma 2.9]) Let B = (B, (Ii)1≤i≤r) be a pseudo-basis of
a rank r module M in Kℓ. Then, one can compute in polynomial time a basis
C ∈ Cdℓ×dr of σ(M) such that the column vectors ci of C satisfy ‖ci‖ ≤

√
d · 2d ·

(∆
3/(2d)
K ) ·max1≤j≤r ‖σ(bj)‖ · N (Ij)1/d, where bj is the j-th column of B.

Basic algorithms

Lemma 2.4 ([10, Lemma 2.8]) With the representation of ideals as described
above, one can sum up two ideals I and J in time poly(size(I), size(J )), multiply
two ideals I and J in time poly(size(I), size(J ),log∆K), inverse an ideal I in
time poly(size(I), log∆K).

As a generalization of the product of ideals, when the bilinear map between two
abelian groups satisfies that it runs in polynomial time in the input size and
outputs a lattice vector of polynomial size in the input size, we can compute the
group product of these two abelian groups with the Z-basis of them as input in
polynomial time.

The following lemma guarantees that the computation of roots of unity in a
given field is efficient.

Lemma 2.5 ([19, Corollary 2.11]) Let K be a degree d number field. Then,
K has at most 2d2 roots of unity, and there exists a polynomial-time algorithm
that, given a basis of the ring of integers OK, computes the roots of unity in K.
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Lenstra-Silverberg Algorithm Gentry and Szydlo initially proposed an al-
gorithm in [12] to recover x from x∗x and xR (where R is a certain type of
polynomial ring). Later, Lenstra and Silverberg extended this in [16,17,18]. We
describe here the main theorem presented in [18], which will be used later in
Section 3 and Section 4.

Definition 2.5 An order is a commutative ring of which the additive group is
isomorphic to Zn for some n ∈ Z≥0. A CM-order A is an order such that:
1. A has no non-zero nilpotent elements.
2. A is equipped with an conjugate automorphism x 7→ x of A such that φ(x) =

φ(x) for all x ∈ A and all ring homomorphisms φ : A → C.

Definition 2.6 Let A be a CM-order. A lattice L is an A-lattice if it’s given
an A-module structure with the property that for all a ∈ A and x, y ∈ L one has
〈ax, y〉 = 〈x, ay〉.
An example of an A-lattice is the A-module A itself, with inner product 〈a, b〉 =
Tr(ab); here Tr : A → Z is the trace function of A as a Z-algebra. This A-lattice
is called the standard A-lattice.

In algorithms, we can represent an order by a system (bijk)
n
i,j,k=1 of integers

with the property that, for some Z-basis α1, ..., αn of the order, one has αiαj =∑n
k=1 bijkαk for all 1 ≤ i, j ≤ n. In other words, for Z-basis α1, ..., αn of the

order, we specify the order by matrix representation of mαi
under the basis

α1, ..., αn, where mαi means the action of multiplying αi. A lattice is specified
by the Gram matrix of a Z-basis b1, ..., bm. An A-lattice is specified as a lattice
and a system of nm2 integer coefficients that express αibj on b1, ..., bm, where
the (αi)

n
i=1 and (bj)

m
j=1 are as above.

Definition 2.7 An A-isomorphism f : L → M of A-lattices is an isomorphism
of A-modules with 〈f(x), f(y)〉 = 〈x, y〉 for all x, y ∈ L.
One can see that if there is an A-isomorphism between an A-lattice L and A-
module M which is also a lattice, then M is also an A-lattice.

Theorem 2.1 ([18, Theorem 1.5]) There is a deterministic polynomial-time
algorithm that, given a CM-order A and an A-lattice L, decides whether or
not L is A-isomorphic with the standard A-lattice, and if so, computes such an
A-isomorphism.

3 Solving O2
L-LIP with module symplectic automorphism

In this section, we focus on the O2
L-LIP, in which B is taken to be (I2, (OL)) in

module-LIPB
L , and L is a CM number field.

We firstly present a deterministic polynomial-time algorithm solving O2
L-

LIP with the help of certain module lattice automorphism of O2
L. It seems not

easy to find such a module lattice automorphsim, but we can compute another
weak module lattice automorphism. This weak module lattice automorphism will
invalidate the omSVP assumption used in the security analysis of HAWK.
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3.1 An algorithm for O2
L-LIP with automorphism of O2

L

In this subsection, we will mainly give a direct application of the Lenstra-
Silverberg algorithm on O2

L-LIP as Theorem 3.1. Essentially, this provides a
reduction from O2

L-LIP to finding certain module lattice automorphisms of O2
L.

Recall J2 :=

(
0 1
−1 0

)
.

Theorem 3.1 Let L be a CM number field with degree 2d and B ∈ GL2(OL).
There is a deterministic polynomial-time algorithm that, given a basis of OL,
B∗B, and B−1J2B, outputs U2(OL)B.

Lemma 3.1 Let L be a CM number field with degree 2d. Then

U2(OL) = {
(
ξ1 0
0 ξ2

)
|ξ1, ξ2 ∈ µ(L)}

⋃
{
(
0 ξ1
ξ2 0

)
|ξ1, ξ2 ∈ µ(L)}.

Furthermore, ♯(U2(OL)) ≤ 2♯(µ(L))2 ≤ 128d4.

Proof. Assume U =

(
a b
c d

)
∈ U2(OL), then 2d = TrL(1) = TrL(a∗a + b∗b) =

TrL(a∗a)+TrL(b∗b). By Lemma 2.2, one of a or b is zero, and the other is a root
of unity. Do same discussion for c, d, one of c or d is zero, and the other is a root
of unity. Similarity, one of a or c is zero, and the other is a root of unity. ut

Lemma 3.2 Use the notation in Theorem 3.1. Denote B−1J2B by JB, OL by
R. Take H := 〈JB〉 = {I2, JB ,−I2,−JB}. Then we can define modified group
ring R 〈H〉 := R[H]/ 〈I2 + (−I2)〉 = R · I2 + R · JB. Denote I2 by e, JB by σ,
R 〈H〉 by R̃.Then R̃ is a CM-order. We usually use ae+bσ to denote the element
in R̃, where a, b ∈ R. And then Tr(ae+ bσ) is just 2TrL(a).

Proof. R,H is communicative, so R 〈H〉 is communicative and the additive group
is isomorphic to Z4d.

Assume ae+ bσ is nilpotent in R̃, in which a, b ∈ R. Then (ae+ bσ)m = 0 for
some m ∈ Z+. Consider (bx+a)m, x2+1 ∈ R[x]. Then ∃r(x) ∈ R[x] s.t. deg(r) ≤
1, and (bx + a)m − r(x) ∈

〈
x2 + 1

〉
. Assume r(x) = cx + d, then we have

(ae+ bσ)m− (cσ+de) = 0 for σ2+ e = 0. Therefore, cσ+de = 0 and this means
c = d = 0. If bx+ a 6= 0 then r(x) 6= 0 since x2 +1 doesn’t divide (bx+ a)m. It’s
a contradiction. So bσ + ae = 0.

The conjugate automorphsim is ae + bσ 7→ a∗e − b∗σ. Then ∀φ : R̃ → C,
φ(ae) = φ(ae) since R is a CM-order and its conjugate automorphism is the
complex conjugation. And φ(σ)2 = φ(σ2) = −1 ⇒ φ(σ) ∈ {±i} ⇒ φ(σ) =

−φ(σ) = φ(σ). So φ(r) = φ(r) for all r ∈ R̃.
Thus R̃ is a CM-order. Note R̃ = Re ⊕ Rσ and Re, Rσ are invariant under

ae ⇒ Tr(ae) = Tr(ae|Re) + Tr(ae|Rσ) = 2TrR(a) = 2TrL(a). Here TrR means
trace on R. Similarly, since bσ(Re) ⊆ Rσ, bσ(Rσ) ⊆ Re, Tr(bσ) = 0. ut
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Proof (proof of Theorem 3.1). Use the setting in Lemma 3.2. We take M := O2
L

with the inner product 〈, 〉M : (x, y) ∈ M2 7→ 2TrL(x∗B∗By) ∈ Z. R̃ acts on M

as (ae+bσ,m) ∈ R̃×M 7→ a·m+b·σ ·m(matrix multiplication). It makes M a R̃-
module (Note that the commutativity between rI2 and σ matrices multiplication
is utilized here to ensure the associativity of the ring operation.)

Assume e1 = B−1

(
1
0

)
= e · e1, e2 = B−1

(
0
−1

)
= σ · e1 ∈ M . Define

f : r ∈ R̃ 7→ r · e1. Then we have ∀a1e+ b1σ, a2e+ b2σ ∈ R̃,

1

2
〈f(a1e+ b1σ), f(a2e+ b2σ)〉M

=TrL((a1 · e1 + b1 · e2)∗B∗B(a2 · e1 + b2 · e2))

=TrL
(
(a∗1, −b∗1)(B

∗)−1B∗BB−1

(
a2
−b2

))
=TrL

(
(a∗1, −b∗1)

(
a2
−b2

))
=TrL(a∗1a2 + b∗1b2)

=
1

2
Tr((a∗1a2 + b∗1b2)e+ (a∗1b2 − b∗1a2)σ)

=
1

2
Tr

(
(a1e+ b1σ)(a2e+ b2σ)

)
=
1

2
〈a1e+ b1σ, a2e+ b2σ〉 .

Obviously f is homomorphism of R̃-module. Note f(ae+ bσ) = a · e1 + b · e2 =

B−1

(
a
−b

)
. f is injective since f(ae + bσ) = 0 ⇒ B−1

(
a
−b

)
= 0 ⇒

(
a
−b

)
=

0 ⇒ a = b = 0. f is surjective since ∀v ∈ M , assume Bv =

(
a
−b

)
∈ O2

L, then

f(ae+ bσ) = B−1

(
a
−b

)
= v.

In conclusion, we obtain M is A-isomorphic with the standard A-lattice, and
then is a A-lattice. Using the polynomial-time algorithm in Theorem 2.1, we
can get an A-isomorphsim ϕ between the standard A-lattice and M . Assume
ϕ(e) = B−1

(
a1
b1

)
for some a, b ∈ R. Then TrL(a∗1a1 + b∗1b1) =

1
2 〈ϕ(e), ϕ(e)〉M =

1
2 〈e, e〉 = n. By Lemma 2.2, we have a1 ∈ µ(R), b1 = 0 or b1 ∈ µ(R), a1 = 0.

Assume ϕ(σ) = B−1

(
a2
b2

)
. Similarly, we obtain a2 ∈ µ(R), b2 = 0 or b2 ∈

µ(R), a2 = 0. Note M = Rϕ(e)
⊕

Rϕ(σ), so a1, a2 are not both 0. This means
(ϕ(e)|ϕ(σ)) ∈ B−1U2(OL)(by Lemma 3.1). Then we compute (ϕ(e)|ϕ(σ))·U2(OL) =
B−1(µ(A) · v)U2(OL) in polynomial time since ♯(U2(OL)) ≤ 128d4. ut
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3.2 New pseudo lattice automorphisms of rank 2 Module lattices
over a CM number field

A very simple but important lemma is given below. It’s actually the symplectic
property of the 2× 2 matrix.

Lemma 3.3 ∀U ∈ GL2(K), UTJ2U = det(U) · J2.

Proof. Assume U =

(
a b
c d

)
, then

UTJ2U =

(
a c
b d

)(
0 1
−1 0

)(
a b
c d

)
=

(
0 ad− bc

−(ad− bc) 0

)
= det(U) · J2.

ut

Proposition 3.1 Let K be a number field, B ∈ GL2(K), and r ∈ K. Given as
input a basis of OK, G = BTB, and det(B), we can compute JB := B−1J2B
and mr := B−1(rI2)B in the time of polynomial of the input size.

Proof. We claim that

JB = (det(B)I2) ·G−1 · J2 and mr = (rI2),

and then the time to compute JB and mr is polynomial.
It is obvious that rI2 = B−1(rI2)B since rI2 is in center of M2(K), and we

also have

(det(B)I2) ·G−1 · J2
=(det(B)I2)B

−1(BT )−1J2B
−1B

=B−1(det(B)I2)
(
(B−1)TJ2B

−1
)
B

=B−1(det(B)I2)(det(B
−1))J2B

=B−1J2B,

where the third equality holds by Lemma 3.3. ut

Lemma 3.4 Let L be a CM number field. Define t∗ :

(
x
y

)
∈ L2 7→

(
x∗

y∗

)
∈ L2.

It’s an Q linear map. We claim that ∀U ∈ GL2(L), U∗J2t∗U = det(U)∗ · J2t∗.

Proof. Note ∀B ∈ M2(L), t∗ ◦ B = (B∗)T ◦ t∗ as Q linear map. Assume U =(
a b
c d

)
, then U∗J2t∗U =

(
a∗ c∗

b∗ d∗

)(
0 1
−1 0

)(
a∗ b∗

c∗ d∗

)
t∗ =

(
0 (ad− bc)∗

−(ad− bc)∗ 0

)
t∗ =

det(U)∗ · J2t∗. ut

Proposition 3.2 Let L be a CM number field, B ∈ GL2(L), and r ∈ L. Given
as input a basis of OL, G = B∗B, and det(B), we can compute B−1J2t∗B and
mr := B−1(rI2)B in the time of polynomial of the input size.
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Proof. The computation of mr is same as Proposition 3.1. Similarly we claim
B−1J2t∗B = (det(B)∗I2) ·G−1 · J2t∗, and then the time to compute B−1J2t∗B
is polynomial.

(det(B)∗I2) ·G−1 · J2t∗
=(det(B)∗I2)B

−1(B∗)−1J2t∗2B
−1B

=B−1(det(B)∗I2)
(
(B−1)∗J2t∗B

−1
)
B

=B−1(det(B)∗I2)(det(B
−1)∗)J2t∗B

=B−1J2t∗B,

where the third equality holds by Lemma 3.4. ut

Remark 1. We call it pseudo automorphism since: it holds the inner product
induced by G = B∗B, but it’s not always a module automorphism.

3.3 Impact of additional automorphism on HAWK

In this section, we will show the impact of additional automorphism on HAWK
[7]. HAWK2 is one of the brightest prospects at round one of the NIST for
additional digital signatures [1]. HAWK is defined over a degree n, which is a
power of two (equal to 256, 512 or 1024). A HAWK private key is a randomly
generated basis for the lattice Z2n, consisting of four polynomials f, g, F,G ∈
Rn = Z[X]/(Xn + 1), where f and g have small coefficients and together they
satisfy the NTRU equation

fG− gF = 1 ( mod Xn + 1)

The lattice secret basis B is
(
f F
g G

)
and the public key is

Q = B∗B =

(
f∗f + g∗g f∗F + g∗G
F ∗f +G∗g F ∗F +G∗G

)
In order to provide formal justification for the strong unforgeability under

chosen message attack of HAWK, they formally introduce omSVP and they pro-
vide reductions in the (quantum) random oracle model from HAWK to omSVP3,
i.e., If there exists an adversary A against the (Q)ROM-SUF-CMA game of
HAWK, then there exists an adversary B against the SAMPLE game in Fig-
ure 1. The omSVP is defined as follows.

Definition 3.1 (Average case omSVP [7]). An average case omSVP instance
is the pair ac-omSVP = (Init, samp). On input 1n, Init returns a form Q

2 see https://hawk-sign,info
3 See chapter 6 of the HAWK specification document for details.
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sampled from some distribution over Hℓn(Kn), the roots of unity µ(Kn) for Kn,
a length bound Ln, and a Gaussian parameter σn. On input Q, samp returns
a sample from DQ,σn . The adversary in Figure 1 wins whenever it can utilize
the form Q and the samples it receives from samp to produce a non-trivial new
element of Oℓ

K that is sufficiently short.

SAMPLEac-omSVP,A (1n)
1: L ← {0}
2: (Q,µ(K), L, σ)← Init(1n)
3: x⋆ ← Asamp(Q)(Q)
4: return J‖x⋆‖Q ≤ L ∧ x⋆ /∈ Lsamples K

samp(Q)
1: x← DQ,σ

2: Lsamples ← Lsamples ∪ {αx}α∈µ(K)

3: return x

Fig. 1. The SAMPLE game

Here the ” non-trivial new ” depends on the definition of Lsamples in samp(Q)
in the SAMPLE game. In the SAMPLE game of HAWK, Q = B∗B, we can
think that the sample x we get has the form x = B−1

(
x1

x2

)
and ‖

(
x1

x2

)
‖ < L.

However, Proposition 3.2 tell us that in addition to {αx}α∈µ(K), there is another
type of trivial new vector that we can obtain efficiently. More specifically, we
can compute the automorphism B−1J2t∗B by Proposition 3.2 and for a given
sample x = B−1

(
x1

x2

)
, Applying this automorphism to x we will obtain an

element x⋆ = B−1J2t∗B · B−1

(
x1

x2

)
= B−1

(
x∗
2

−x∗
1

)
in Figure 1. Note that

‖x⋆‖ = ‖x‖ < L and x⋆ 6∈ {αx}α∈µ(K), thus the {αx⋆}α∈µ(K) are non-trivial new
elements. In the case of HAWK, µ(K) = {Xi : i = 0, . . . , 2n−1}, combined with
automorphism B−1J2t∗B, we get a subgroup G of Aut(Q) and G is isomorphic
to the dihedral group D2n

4. At present, it seems that this automorphism has
little impact on HAWK, but whether this automorphism will have a greater
impact on HAWK requires further research in the future.

It is worth noting that omSVP and forging signatures on Hawk are not com-
pletely equivalent. Intuitively even if one can find an x⋆ that wins the SAMPLE
game, one must also find a message and salt that hashes into a particular coset
to make this a successful signature forgery. For more information see HAWK [7].

What’s more, Theorem 3.1 tells us that in secret key recovery of HAWK, given
Q = B∗B, if we can find B−1J2B, then we can get the secret key B efficiently by
Theorem 3.1, or equivalently, we have the following corollary, namely, if we have
additional information BTB, then we can find the secret key B. This provide
new perspectives for cryptanalysis of HAWK.

4 D2n refers to the symmetries of the 2n-gon, a group of order 4n
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Corollary 3.1 Let L be a CM number field and B ∈ GL2(OL). There is a
deterministic polynomial-time algorithm that, given a basis of OL, B∗B, and
BTB, computes U2(OL)B.

Proof. Recall t∗ :

(
x
y

)
∈ L2 7→

(
x∗

y∗

)
∈ L2 and t∗ ◦ B = (B∗)T ◦ t∗ as Q

linear map. We can compute (BTB)−1(B∗B)T t∗ as Q-linear map. Then note
(BTB)−1(B∗B)T t∗ = B−1(B∗)T t∗ = B−1t∗B. By [19, Theorem 2.15] or Propo-
sition 4.1, we can find det(B) from det(G) in polynomial time. Using Propo-
sition 3.2, then we can compute B−1J2t∗B. In conclusion, we can compute
B−1t∗B ·B−1J2t∗B = B−1J2B in polynomial time. Then we use Theorem 3.1.

ut

4 An algorithm for module-LIP in rank 2 over totally
real number fields

In this section, let K be a totally real number field and L = K[X]/(X2 + 1).
By Lemma 2.1 and the discussion of size, we can always assume that the input
parameter K and the input parameter L are equivalent. We can think of X as
the imaginary unit ı, but sometime we use X again. We’ll use this notation a
lot.

In last section, all operations performed on L in Corollary 3.1 can be directly
applied to K, then we can directly obtain a algorithm for solving O2

K-LIP. This is
a deterministic polynomial-time algorithm for O2

K-LIP, where K is a totally real
number field. In contrast, the result in [19] only offers a heuristic polynomial-time
algorithm for it.

In this section, with different approach and more elaborate processing, we
present a deterministic polynomial-time algorithm for the module-LIP of rank 2
over a totally real number field as this following theorem.

Theorem 4.1 Let K be a totally real number field and L = K[X]/(X2 + 1).
M ⊆ K2 is an module lattice of rank 2 with pseudobasis parameter B. Algorithm 7
takes as input parameter K, B, and G′ an instance of module-LIPB

K, runs in
the polynomial time in the size if the input and finds all congruence matrices
between G and G′.

Our algorithm is roughly divided into three steps. Firstly, we extract a ’au-
tomorphism’ of G′ from the information of parameters B and G′, denoted by
JBU = (BU)−1J2(BU). Secondly, we identify the intersection of the eigenspace
of this automorphism and the direct product of ideals in G, showing that it
differs from the eigenspace of J2 intersected with the lattice defined by B only
by a factor of BU . This intersection is essentially a rank 1 module lattice, and
with the BU factor accounted for, we can easily compute a pseudo-basis for it.
Finally, we multiply the lattice obtained from the intersection by the inverse
of the ideal derived from the previously computed pseudo-basis, resulting in a
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cyclic module lattice OL ·v. Again, we will also obtain the value BUv. So we can
use the Lenstra-Silverberg algorithm to recover v from OL · v, in the sense of a
difference of one root of unity. With BUv and v known, we can easily recover
BU .

We use ConjOfJ, EigenSubLat and UseLS to denote the algorithm repre-
sented by these three steps respectively, then we can informally describe the
algorithm flow as follows.(The names of these algorithms mean conjugation of
J2, sublattice composed by eigenvector, using Lenstra-Silverberg algorithm.)

Algorithm 1: FindU(Informal)
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i).

Ensure: A congruence matrix U between G(the pseudo-Gram matrix associated
with B) and G′.

1: ±JBU ← ConjOfJ(B,K,G′)
2: (IB, vB, (BU)−1IBvB)← EigenSubLat(JBU ,B,K,G′)
3: µ(L) · (BU)−1vB ← UseLS(IB, vB, (BU)−1IBvB,B,K,G′)
4: BU ← (vB|vB)((BU)−1vB|(BU)−1vB)

−1

5: U ← B−1BU
6: return U .

4.1 Application of Lenstra-Silverberg algorithm

First we use the Theorem 2.1 (Lenstra-Silverberg algorithm) to give two spe-
cific algorithms, which will play an important role in the subsequent proofs.
The first algorithm in the proposition is just Theorem 2.15 in [19], while the
second algorithm can be seen as a high-dimensional generalization of the first
algorithm. It is worth noting that the two algorithms in Proposition 4.1 are ac-
tually algorithms for solving rank-1 module-LIP in K and K2, respectively. We
can generalize them into a unified form for solving rank-1 module-LIP, but we
have chosen this current representation for easier understanding. So far, it seems
that only the first algorithm has received attention, both in terms of applications
and implementations.

Proposition 4.1 Let F be a CM-field or a totally real number field with degree
n. Let A be the ring of integers of F. [18, Examples 3.7(i)(ii))] showed that A is a
CM-order. The conjugate automorphsim is just the complex conjugation x 7→ x∗,
and the trace function is just TrF.

1. For α ∈ F, there is a deterministic polynomial-time algorithm LS1 that, given
A, αA and α∗α, then we can find αµ(A) in polynomial time, where µ(A)
means roots of unity in A.
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2. For v =

(
v1
v2

)
∈ F2 and B ∈ GL2(F), there is a deterministic polynomial-

time algorithm LS2 that, given A, B∗B, v∗v = v1v
∗
1 + v2v

∗
2 , and B−1(A · v) ,

then we can find B−1(µ(A) · v) in polynomial time, where µ(A) means roots
of unity in A.

Proof. 1. Let M = αA. It’s an (fractional) ideal of A, so is an A-module. Define
the inner product in M as 〈, 〉M : (x, y) ∈ M2 7→ TrF( x∗y

α∗α ) ∈ TrF(A) ⊆ Z.
Then M is a integral lattice. Consider f : a ∈ A 7→ αa ∈ M . Obviously it’s
an isomophsim of A-module, and one can see 〈f(x), f(y)〉M = 〈x, y〉 for all
x, y ∈ A by the definition of 〈, 〉M . So f is an A-isomorphsim, and M is an
A-lattice isomorphic to standard A-lattice.
Using the polynomial-time algorithm in Theorem 2.1, we can get an A-
isomorphsim ϕ between the standard A-lattice and M . Assume ϕ(1) = α · a
for some a ∈ A. Then TrF(aa∗) = 〈ϕ(1), ϕ(1)〉M = 〈1, 1〉 = n. By Lemma 2.2,
we have a ∈ µ(A). Then we compute ϕ(1) ·µ(A) = αµ(A) in polynomial time
since ♯(µ(A)) ≤ 2n2.

2. Let M = B−1(A·v) = A·(B−1v). It’s an A-module. Define the inner product
in M as 〈, 〉M : (x, y) ∈ M2 7→ TrF(x

∗(B∗B)y
v∗v ) ∈ TrF(A) ⊆ Z. Then M is a

integral lattice.
Consider f : a ∈ A 7→ B−1(av) = a(B−1v) ∈ M . Obviously it’s an isomoph-
sim of A-module, and one can see 〈f(x), f(y)〉M = 〈x, y〉 for all x, y ∈ A
by the definition of 〈, 〉M . So f is an A-isomorphsim, and M is an A-lattice
isomorphic to standard A-lattice.
Using the polynomial-time algorithm in Theorem 2.1, we can get an A-
isomorphsim ϕ between the standard A-lattice and M . Assume ϕ(1) =
B−1(av) for some a ∈ A. Then TrF(aa∗) = 〈ϕ(1), ϕ(1)〉M = 〈1, 1〉 = n. By
Lemma 2.2, we have a ∈ µ(A). Then we compute µ(A) ·ϕ(1) = B−1(µ(A) ·v)
in polynomial time since ♯(µ(A)) ≤ 2n2. ut

Algorithm 2: LS1(informal)
Require: OF; lattice αOF for some α ∈ F;α∗α
Ensure: αµ(OF).
1: 〈, 〉M ← ((x, y) ∈ (αOF)

2 7→ TrF( x∗y
α∗α ))

2: M ← (αOF, 〈, 〉M )
3: W ← LS(OF,M)
4: return W .

4.2 Find JBU

Using the Proposition 3.1, we only need to know det(BU) to obtain JBU using G′.
We have known B and thus det(B). It remains to find det(U). This can be done
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Algorithm 3: LS2(informal)
Require: OF; lattice B−1(OF · v) for some v ∈ F2;v∗v,B∗B
Ensure: B−1(µ(OF) · v).
1: 〈, 〉M ← ((x, y) ∈ (B−1(OF · v))2 7→ TrF(x

∗(B∗B)y
v∗v ))

2: M ← (B−1(OF · v), 〈, 〉M )
3: W ← LS(OF,M)
4: return W .

by Gentry’s algorithm i.e. LS1. To do so, we first need to extract det(U)·OK from
(Ii) and (Ji), which is not unexpected since U actually gives an isomorphism
from

⊕
Ii to

⊕
Ji.

Lemma 4.1 According to the setting provided in Definition 2.2. We have det(U)·
OK =

∏ℓ
k=1 Ik

∏ℓ
k=1 J

−1
k .

Proof. For any permutation σ ∈ Sℓ,
∏ℓ

k=1 ukσ(k) ∈
∏ℓ

k=1 IkJ
−1
σ(k) =

∏ℓ
k=1 Ik

∏ℓ
k=1 J

−1
k .

By the definition of determinant, det(U) ∈
∏ℓ

k=1 Ik
∏ℓ

k=1 J
−1
k i.e. det(U) ·OK ⊆∏ℓ

k=1 Ik
∏ℓ

k=1 J
−1
k . Symmetrically, we have det(V ) · OK ⊆

∏ℓ
k=1 Jk

∏ℓ
k=1 I

−1
k .

Note that det(V ) = det(U)−1, so det(U) · OK =
∏ℓ

k=1 Ik
∏ℓ

k=1 J
−1
k . ut

Proposition 4.2 According to the setting provided in Theorem 4.1. U is a
congruence matrix. There is a deterministic polynomial-time algorithm that,
given parameter B, K, G′, computes ±JBU .

Proof. We show Algorithm 4 satisfies the requirements.
Correctness: Step 1 is right by Lemma 4.1. Step 2 is right since det(G′) =
det(UTBTBU) = det(UT ) det(BT ) det(B) det(U) = det(B)2 det(U)2. Step 3 is
right by Proposition 4.1.
Complexity: At Step 1, both ideals’ multiplication and inversion run in polyno-
mial time. At Step 2, both elements’ multiplication and inversion run in poly-
nomial time. Step 3 also runs in polynomial time by Proposition 4.1. ut

Remark 2. Here, Algorithm LS1 can be replaced by an algorithm for computing
square roots over algebraic number fields.

Remark 3. If we consider B as a matrix over KR, where det(U) is still an element
of K, we can therefore obtain an approximate value of det(U)2 by calculating
det(G′)
det(B)2 , and then recover the exact value of det(U)2.

4.3 Find sub module lattice composed by eigenvectors of JBU

For the remainder of this section, we need to transfer the whole setting from K
to L, since the eigenvalues ±ı of J2 are not in K. Specifically, we will consider
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Algorithm 4: ConjOfJ
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i).

Ensure: ±JBU for a congruence matrix U between G(the pseudo-Gram matrix
associated with B) and G′.

1: det(U) · OK ←
∏l

k=1 Ik
∏l

k=1 J
−1
k

2: det(U)2 ← det(G′)
det(B)2

3: W1 ← LS1(K, det(U) · OK, det(U)2)
4: W2 ← det(B) ·W1 ·G′−1 · J2

5: return W2.

(B, (IiOL)) instead of (B, (Ii)), (G′, (JiOL)) instead of (G′, (Ji)). We can com-
pute IiOL by calculating

∑d
j=1 yijOL, where {yij} are a LLL-reduced Z-basis

for Ii. It can be done in time poly(size(Ii), log∆L). We do the same thing for
Ji. So we can assume we input (B, (IiOL)), (G

′, (JiOL)) when we input B,G′.
The following lemma tells us that the congruence matrix U does not change.

Lemma 4.2 According to the setting provided in Definition 2.2. Define I ′
k :=

Ik · OL, J ′
k := Jk · OL 1 ≤ k ≤ ℓ. Then U(

⊕ℓ
k=1 J ′

k) =
⊕l

k=1 I ′
k. Here, the term

”direct sum” refers to the Cartesian product.

Proof. Assume ei ∈ Lℓ� and its i-th component is 1, while the rest are 0.
Then

⊕ℓ
k=1 I ′

k =
∑ℓ

k=1 OL · Ik · ek = OL
∑ℓ

k=1 Ik · ek = OL
⊕ℓ

k=1 Ik.(Note
that the products here can all be viewed as group products of Abelian groups,
and it is easy to verify the second equality sign from the point of view of
Abelian groups.) Similarly,

⊕ℓ
k=1 J ′

k = OL
⊕ℓ

k=1 Jk. Since U and elements in
OL commute under matrix multiplication, it’s enough to show U(

⊕ℓ
k=1 Jk) =⊕ℓ

k=1 Ik. In the setting in Definition 2.2, U = (uij) and uij ∈ Ii · J−1
j . So

∀v ∈
⊕ℓ

k=1 Jk, Uv’s i-th component is in Ii i.e. Uv ∈
⊕ℓ

k=1 Ik. This means
U(

⊕ℓ
k=1 Jk) ⊆

⊕ℓ
k=1 Ik. Symmetrically, we have U−1(

⊕ℓ
k=1 Ik) ⊆

⊕ℓ
k=1 Jk.

Thus U(
⊕ℓ

k=1 Jk) =
⊕ℓ

k=1 Ik. ut

Remark 4. Lemma 4.2 essentially states the following: if (B, (Ii)i) and (B′, (Ji)i)
are two pseudo-bases of the same module lattice M ⊂ Kℓ, then (B, (IiOL)i) and
(B′, (JiOL)i) are two pseudo-bases of the same module lattice OLM ⊂ Lℓ.

In the following we show by computation the intersection of the eigenspace
of J2 with the module lattice defined by B. And then consider the analogue after
conjugating.

Definition 4.1 Let K be a totally real number field and L = K[X]/(X2+1). For

parameter B and K, assume B =

(
a c
b d

)
∈ K2×2. Define IB := (b− ıa)I1OL ∩

(ıc− d)I2OL, and vB := 1
b−ıa

(
a
b

)
+ 1

ıc−d

(
c
d

)
. We can see IB is an (fractional)
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ideal of OL, vB ∈ L2, and IB, vB, I−1
B can all be computed in polynomial time

with inputs of the parameters B,K.

Lemma 4.3 According to the setting provided in Theorem 4.1. U is a con-
gruence matrix. Denote BU by B̃. Assume JB̃ = B̃−1J2B̃ and mı = ıI2 =

B̃−1ıI2B̃. Then ker(J2 − ıI2) ∩B(I1OL
⊕

I2OL) = IB · vB and ker(JB̃ −mı) ∩
(J1OL

⊕
J2OL) = B̃−1(IB · vB).

Proof. Firstly,

ker(J2 − ıI2) ∩B(I1OL ⊕ I2OL)

={r1
(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL, J2(r1

(
a
b

)
+ r2

(
c
d

)
) = ı(r1

(
a
b

)
+ r2

(
c
d

)
)}

={r1
(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL,

(
r1b+ r2d
−r1a− r2c

)
=

(
ı(r1a+ r2c)
ı(r1b+ r2d)

)
}

={r1
(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL, r1b+ r2d = ı(r1a+ r2c)}

={r1
(
a
b

)
+ r2

(
c
d

)
|rj ∈ IjOL, r1(b− ıa) = r2(ıc− d)}

={ r

b− ıa

(
a
b

)
+

r

ıc− d

(
c
d

)
|r ∈ (b− ıa)I1OL ∩ (ıc− d)I2OL}

=(b− ıa)I1OL ∩ (ıc− d)I2OL · { 1

b− ıa

(
a
b

)
+

1

ıc− d

(
c
d

)
}

=IB · vB.

And then

ker(JB̃ −mı) ∩ (J1OL ⊕ J2OL)

=ker(B̃−1(J2 − ıI2)B̃) ∩ (J1OL ⊕ J2OL)

=B̃−1(ker(J2 − ıI2) ∩ B̃(J1OL ⊕ J2OL))

=B̃−1(ker(J2 − ıI2) ∩B(I1OL ⊕ I2OL))(use Lemma 4.2)

=B̃−1(IB · vB)(by above).

ut

The following lemma guarantees that we can compute the intersection above
efficiently (without knowing B̃). In fact, the integer version of intersection is
already well known, we just need to modify it slightly.

Lemma 4.4 Let L be a number field with degree n, and BOL be a basis of OL.
Then for A ∈ L2×2 and a lattice L ⊆ L2, there is a deterministic polynomial-time
algorithm that, given BOL , A, and a basis BL of L, outputs ker(A) ∩ L.
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Proof. Assume rank(L) = r. Note that ker(A)∩L = BL(ker(A ·BL)∩Zr). Since
A · BL ∈ L2×r, we can compute some U ∈ Q2n×r in polynomial time such that
A ·BL =

(
BOL 0
0 BOL

)
U . Then ker(A) ∩ L = BL(ker(U) ∩ Zr), and ker(U) ∩ Zr

can be computed by using Hermit Normal Form (or Smith Normal Form) in
polynomial time. ut

Combining the lemmas and definitions in this subsection, we can directly
obtain the following proposition.

Proposition 4.3 According to the setting provided in Theorem 4.1. U is a
congruence matrix. There is a deterministic polynomial-time Algorithm 5 that,
given JBU and parameters B, K, G′, output the ideal IB, the vector vB, and
the rank 1 module lattice (BU)−1IBvB.

Remark 5. Here we have computed a concrete pseudo-basis of IBvB directly. In
fact, if we first figure out IBvB by finding ker(J2 − ıI2)∩B(I1OL ⊕I2OL), and
then find any pseudo-basis of IBvB, it will not affect the following operations.
From this point of view it is better to generalize our algorithm to the case on
KR (in this case our IB is not a fractional ideal of OK).

Algorithm 5: EigenSubLat
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i). JBU for a congruence matrix U between G(the pseudo-Gram

matrix associated with B) and G′. Write B =

(
a c
b d

)
.

Ensure: IB, vB, (BU)−1IBvB.
1: IB ← (b− ıa)I1OL ∩ (ıc− d)I2OL

2: vB ← 1
b−ıa

(
a
b

)
+ 1

ıc−d

(
c
d

)
3: (BU)−1IBvB ← ker(JBU −mı) ∩ (J1OL ⊕ J2OL)
4: return IB, vB, (BU)−1IBvB.

4.4 Use Lenstra-Silverberg algorithm.

In the last subsection we ended up with a rank 1 module lattice. Just turn it
into a cyclic module and we can use the Proposition 4.1.

Proposition 4.4 According to the setting provided in Theorem 4.1. U is a
congruence matrix. There is a deterministic polynomial-time Algorithm 6 that,
given IB, vB, (BU)−1IBvB and parameters B, K, G′, output µ(L) · (BU)−1vB,
where µ(L) is the roots of unity contained in L.



Cryptanalysis of Rank-2 Module-LIP with Symplectic Automorphisms 23

Algorithm 6: UseLS
Require: Parameters B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i). The ideal IB, vector vB. The rank 1 module lattice
(BU)−1IBvB for a congruence matrix U between G(the pseudo-Gram matrix
associated with B) and G′.

Ensure: µ(L) · (BU)−1vB.
1: L ← I−1

B (BU)−1IBvB(regard r ∈ I−1
B as rI2)

2: ω ← v∗BvB
3: W ← LS2(L, G′, ω,L)
4: return W .

Proof. Denote BU by B̃ and (BU)−1IBvB by L′.
Correctness: We have L = I−1

B · (B̃)−1IBvB = B̃−1I−1
B · IB ·vB = B̃−1(OL ·vB).

By Proposition 4.1, we can use L, G′ = B̃∗B̃, L = B̃−1(OL · vB), ω = v∗BvB to
find B̃−1µ(L) · vB.
Complexity: On Step 1, one can compute I−1

B π1(L′) firstly, where π1 is the pro-
jection of vectors onto their first component (WLOG, we can assume π1(L′) 6=
{0} i.e. π1(B̃

−1vB) 6= 0). Note π1(L′) is fractional ideal of OL.(we have shown
L′ = IB(B̃−1vB), then π1(L′) = IBπ1(B̃

−1vB).) So it’s a product of fraction

ideals and can be computed in polynomial time. Then take one vector
(
x0

y0

)
of the reduced basis of L′ and consider embedding ι : x1 ∈ I−1

B π1(L′) 7→(
x1

x1(x
−1
0 y0)

)
∈ L2. We have ι(I−1

B π1(L′)) = L′.(L′ = IB(B̃−1vB) ⇒ ∀
(
x
y

)
∈

L′, x−1y is a constant.) Therefore the image of a basis of I−1
B π1(L′) under ι is

a basis of L′ and can be computed in polynomial time. So step 7 runs in poly-
nomial time. Step 2 is just conjugation and matrix multiplication. Step 3 runs
in polynomial time by Proposition 4.1. ut

Remark 6. If the reader can accept the language of group products, then Step 1
is just a group product that corresponds matrix multiplications as the bilinear
map and lattice vectors in L2 as output.

4.5 The algorithm

Proof (proof of Theorem 4.1). Correctness: Denote BU by B̃. Assume U is a
congruence matrix U between G and G′. By Proposition 4.2 we can assume σ =
(B̃)−1J2(B̃) after step 3. This time we have (I, v,L′) is just (IB, vB, (B̃)−1IBvB)
by Proposition 4.3. Next, by Proposition 4.4 we have W = B̃−1µ(L) · vB, where
µ(L) is the roots of unity contained in L.
Then we assume w = B̃−1v after Step 6. In this time, w = B̃−1v = B̃−1v =
B̃−1v (note B̃ ∈ K2×2) and v, v are L-linear independent (note 〈v, v〉 = 0). So
(w|w) = B̃−1(v|v) and then D = B̃. Finally, we get V = B−1B̃ = U .
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Algorithm 7: FindU
Require: Parameter B = (B, (Ii)i) and K. An module-LIPB

K instance
G′ = (G′, (Ji)i).

Ensure: A congruence matrix U between G(the pseudo-Gram matrix associated
with B) and G′.

1: P ← ConjOfJ(B,K,G′)
2: S ← ∅
3: for σ ∈ P do
4: (I, v,L′)← EigenSubLat(σ,B,K,G′))
5: W ← UseLS(I, v,L′,B,K,G′)
6: for w ∈W do
7: D ← (v|v)(w|w)−1

8: V ← B−1D
9: if V is a congruence matrix between G and G′ then

10: S ← S ∪ {V }
11: end if
12: end for
13: end for
14: return S.

Complexity: We can compute matrix products and inverses over K(resp. L) in
polynomial time. By Proposition 4.2, 4.3, 4.4, Step 1, 4, 5 all run in polynomial
time of size(B,K,G′). And ♯(P ) = 2, ♯(W ) = ♯(U2(OL)) are in poly(degree(K)).
In summary, the whole algorithm runs in polynomial time. ut

Remark 7. We could do argument similar to the proof of Corollary 3.1 to show
that: under the additional condition that a hint B̃T B̃ is given, Theorem 4.1 still
holds for CM number fields.

5 Conclusion

In this paper, we introduce a new tool called (pseudo) symplectic automorphism
of the module, with which we can solve O2

L-LIP efficiently for a CM number
field L. Although we do not know how to find such automorphism efficiently in
general, a weak one can always be computed in polynomial time, which is enough
to invalidate the omSVP assumptions utilized in HAWK’s security proof and
directly results in a provable deterministic polynomial-time algorithm solving
module-LIP for rank-2 modules in K2 where K is a totally real number field.
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