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Abstract. Coercion is a challenging and multi-faceted threat that pre-
vents people from expressing their will freely. Similarly, vote-buying does
threaten to undermine the foundation of free democratic elections. These
threats are especially dire for remote electronic voting, which relies on
voters to express their political will freely but happens in an uncontrolled
environment outside the polling station and the protection of the ballot
booth. However, electronic voting in general, both in-booth and remote,
faces a major challenge, namely to ensure that voters can verify that
their intent is captured correctly without providing a receipt of the cast
vote to the coercer or vote buyer.
Even though there are known techniques to resist or partially mitigate
coercion and vote-buying, we explicitly demonstrate that they generally
underestimate the power of malicious actors by not accounting for cur-
rent technological tools that could support coercion and vote-selling.
In this paper, we give several examples of how a coercer can force voters
to comply with his demands or how voters can prove how they voted. To
do so, we use tools like blockchains, delay encryption, privacy-preserving
smart contracts, or trusted hardware. Since some of the successful coer-
cion attacks occur on voting schemes that were supposed/claimed/proven
to be coercion-resistant or receipt-free, the main conclusion of this work
is that the coercion models should be re-evaluated, and new definitions
of coercion and receipt-freeness are necessary. We propose such new def-
initions as part of this paper and investigate their implications.

1 Introduction

Coercion is one of those notions that is easier to understand than formally define,
as it comes in many different shapes and forms. Generally, coercion incorporates
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all kinds of duress that can prevent people from acting freely and expressing
their will. There are possibilities for coercive attacks ranging from persuasion
and blackmail to intimidation and physical threats. Yet, all of them, regardless
of the specifics, have one thing in common: the coercer wants to minimize the
possibility for people to disobey undetectably.

The threat is especially relevant for verifiable voting and dire for remote elec-
tronic voting, which should facilitate voters to express their political will freely,
but happens in an uncontrolled and potentially coercive environment. Hence,
this area offer many distinct proposals for resisting, mitigating, or hampering
the coercion threat - such as multiple voting, simulatable credentials, interac-
tive proofs, etc. All those methods allow voters to appear obedient while casting
their intended vote. The main requirement is that the coercer cannot constantly
control the voter nor intercept information sent over secure channels.

The assumption that a coercer cannot constantly control the voter is nec-
essary for the voter to have a chance to express her own will at some point
during the voting phase. However, new tools like immutable blockchains, delay
functions, time-based encryption, secret-input MPC smart contracts, trusted
hardware, etc., have been developed to enforce certain types of honest behavior
of participants. Our idea in this paper is to demonstrate how such tools in the
hands of a coercer, in turn, can be used to ensure that the coerced voter follows
the instructions of the coercer and cannot evade via anti-coercion strategies.
This means that the coercer does not have to constantly monitor or interact
with a voter, and opens the possibility of powerful coercion attacks where a sin-
gle malicious entity can coerce many voters simultaneously. Going further, these
new tools can also be used by a voter to self-impose certain behaviors to extract
proof of the cast vote, thereby opening the door to efficient vote-selling.

The reason for the hardness of designing coercion-resistant or receipt-free
e-voting protocols lies in the fear of a misbehaving computer undetectably mod-
ifying the voter’s intention. This requires some assurance that the voting device
has not altered a voter’s vote – a check known as cast-as-intended verification
– and is facilitated, e.g., via tracking numbers, return codes, QR codes contain-
ing encryption randomness, zero-knowledge proofs of plaintext correctness or
other techniques. However, the cast-as-intended verification’s output needs to
only convince the voter, not a coercer or a vote-buyer, e.g. by being deniable.
This also means that all current state-of-the-art verifiable e-voting solutions do
not simply provide correctness proof for a final cast vote (e.g., in the form of the
random coins used in generating the ballot) but also a simulation strategy.

Several studies focus on this contradiction and offer potential solutions, see,
e.g., [18] and references therein. However, to our knowledge, no paper has thor-
oughly studied the possibility of the coercer utilizing new cryptographic tools
- blockchain, delay functions, time-lock encryption, etc. - to prevent the voter
from simulating an alternative proof.

To see an example of how a coercer can utilize new tools for forcing voters
to vote for a specific candidate, consider a voting system that relies on so-called
Benaloh challenges [4] for cast-as-intended verification: A voter enters her chosen
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options into their voting device, then the voting device prepares the ballot,
commits to it, and asks the voter whether to cast it or audit it. In case of an audit,
the voting device must reveal the encryption randomness, which allows the voter
to verify the ballot on another device. Otherwise, the vote is submitted without
any verification. The point is that the voter will never hold the randomness
of the submitted ballot (assuming the software does not leak this) and hence
have no direct receipt. Of course, the number of audits before casting should be
unpredictable, otherwise, the voting device would know when to cheat.

Now we show how, with the aid of a blockchain, a remote coercer can al-
ways force voters to cast a ballot for a given option. To do so, the coercer tells
voters to post the ballot’s commitment on the blockchain, e.g., Bitcoin, before
deciding whether to audit or cast the vote. If the next block starts with a bit
0, the voter must press audit and post the corresponding randomness on the
blockchain. Otherwise, the voter casts the ballot. Since the coercer can see ev-
erything posted on the blockchain, he can always check if the voter behaved.
Theoretically, the voter can disobey and commit to a ballot with a different can-
didate from the coercer’s preference. However, with the probability of 1/2, the
disobedience would get caught because the voter can’t show randomness that
corresponds to the committed ballot and encrypts the coercer’s option.

The tools we consider are blockchain technology to enforce order, a non-
malleable commitment of data, and unpredictable randomness. Delay functions
and time-lock encryption, which recently regained popularity, can help the co-
ercer ensure that a voter does not learn a secret until after some time, which can
be used to prevent the simulation of proofs. Privacy-preserving smart contracts,
e.g., MPC-based [3,32], Trusted Execution Environments, and other trusted
hardware can ensure the voter never knows a secret key required for coercion
mitigation. These tools can act in place of the coercer and interact with the
voter during the vote-casting phase, while the coercer or vote-buyer only verifies
all the evidence at the end of the election.

Since the new tools allow an adversary to control the voter without observing
her continuously, coercion can be done at a large scale without substantial costs.
Hence, it is critical to evaluate and discuss these new attack vectors.

1.1 Related Work

Exploiting ballot verification mechanisms for coercion is not new, and we here
present related work. An attack similar to the attack mentioned in the intro-
duction on Benaloh challenges was presented [11], but without using blockchain
technology. As we explain in Section 3.1, the attack in[11] can be mitigated (i.e.,
the voter still can disobey and conceal this fact), whereas ours is not.

An interesting coercion attack utilizing scratch-off cards was proposed in
[22] against the Punchscan [31] two-part ballots. The number revealed after
scratching will force the voter to reveal a certain ballot part - much like the attack
on Benaloh challenges. However, scratch-off cards require a physical delivery and
support only a limited range of options. Thus, it would be infeasible for many
digital ballots. Going further, our attack also works against receipt-freeness, as
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we explain below, whereas for the code sheets this would require a voter to
obliviously create scratch codes on behalf of a vote-buyer, which seems hard to
achieve in practice.

Many voting schemes have been proposed using various blockchain primitives
to achieve different forms of security, perhaps most famously [25] used smart-
contracts to prevent denial-of-service to a decentralized voting scheme, and in
[7] smart contracts were used to disincentivize vote-selling.

On the other hand, many schemes have been proposed that naively imple-
ment blockchain technology and claim security without properly understanding
possible pitfalls and the alignment of incentives [27,28].

Trusted hardware has also been suggested to ensure cast-as-intended veri-
fiability for voting schemes. Quite independently, we here demonstrate that it
can be a tool for coercion in normal voting schemes. However, we point out that
there is a quite different alignment of trust assumptions. Generally, we would like
not to trust the vendor’s hardware for cast-as-intended verifiability. The reason
is that (according to the consensus in the e-voting community) trust should be
avoided for verifiability. For example, the vendor could be hacked to leak the
secret keys used in the trusted hardware, and the election result could then be
manipulated. On the other hand, a voter coerced via trusted hardware could
use the secret key to evade the coercion, but it would be hard for the vendor
to assess such a situation and it hence unlike to provide the secret key to the
voter. An interesting perspective is presented in [35] where the trusted hardware
is used to achieve coercion-resistance.

Also note that parallel to our contribution is a blog post on vote buying in
special DAOs [1] using SGX.

Finally, we note that we only consider coercion- and vote-buying rising from
the vote-casting procedure. There has recently been improvements on the state-
of-the-art for definitions of covering the full election, especially coercion attacks
during the tally phase of JCJ [15]. See also [20] for recent definitions of receipt-
freeness. However, this is out of scope for this paper.

1.2 Contribution and Organization of the Paper

We study unexplored coercion and vote-buying attacks based on new cryp-
tographic primitives such as blockchain, delay function, time-lock encryption,
privacy-preserving smart contracts, trusted hardware, etc. We give examples of
new tools usage by showing how they help the coercer to force voters to comply or
the voter to obtain a (probabilistic) receipt for vote selling. We will also present
some attacks inspired by these, which will work even without these tools. Our
last contribution will be the proposal of new security definitions for coercion-
resistance and receipt-freeness that take into account the possibility that both
the coercer and the voter can use such new tools.

We start by stating our model and trust assumptions in Section 2. First, we
describe and list expectations for the new tools available to the coercer in Section
2.3 and categorize the coercion attack types in Section 2.4. Then, in Section
3, we proceed with attacks on the known e-voting verification methods and
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schemes. In Section 4, we explain why deniable re-voting or vote updates could
be analysed in our framework, or needs trust for cast-as-intended verifiability.
Section 5 contains new security definitions for the notions of coercion-resistance
and receipt-freeness, and some relations between them. Finally, in Section 6, we
summarize our observations and we briefly state some impossibility results we
encountered and should be considered in future work.

2 Voter and Adversary Model

2.1 Parties

The parties involved in our protocol are the following:

EA: Denotes the election authority. It is trusted for privacy and hence for coercion-
resistance, but the trust is usually distributed among several parties. For our
purpose, it is sufficient to consider a single authority. It should not be trusted
for verifiability, as discussed in the introduction.

BB: Denotes the bulletin board. It is used to collect ballots and verifiably derive
the tally result.

V: Denotes voter. We are only concerned about the verifiability and coercion-
resistance of the vote-casting procedure; thus, we consider only a single voter.
There are privacy, coercion, and verifiability threats arising from the broader
election process involving all voters, but this is out of the scope of this paper.

C: Denotes the adversary against coercion-resistance.
Aver Denotes the adversary against verifiability.
VD: Denotes the voting device. It helps the voter to prepare the ballot and sends

it to BB. It is assumed to be corrupted by Aver but not colluding with C.

2.2 Voter Computation and Communication Model

In our model, we consider a voter without any pre-shared with EA knowledge
except public election parameters available on BB. We assume C can observe the
ballot that V sends to EA, e.g., because it is directly published on BB.

We here do not consider a bound on the voter’s computational ability except
being PPT. Of course, this is not a realistic model, but it rather models a voter
having access to a device that might leak random coins, etc., which the voter
can give to C or a vote buyer.

We will assume that C is not present during the vote casting, but can give
instructions before and get information after the session to verify if the voter
followed instructions.

2.3 The Coercer’s Toolbox

We consider different cryptographic means that the coercer or vote buyer can
use to control the voter without being present in the vote-casting situation. We
assume the voter wants to vote for CandV and the coercer expects CandC .
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– Instr: Instructions that C gives to V before voting. We assume V already
knows the preferred candidate of C, but Instr will provide more details.

– CC: Chain of commitments. The committed values are add-only and im-
mutable. This can be done, for example, via a blockchain or a hardware
device that stores input from the voters.

– CC-PRF: Chain of commitments with (pseudo-)random output between com-
mitments. One example could be Bitcoin, with the hash pointers treated as
pseudorandom output. Another option is a hardware device taking inputs xi

and returning yi = H(xi||yi−1||sk), where H is a cryptographic hash function,
and sk is a secret key only known to C. Knowing the last output and inputs,
C can verify the entire transcript without asking the hardware token back.

– Timed-CC, Timed-CC-PRF: Timed chain of commitments without/with pseudo-
random output. Similar to CC and CC-PRF, but also commitments are time-
stamped. A blockchain or a hardware token with timings would suffice.

– Timed-Enc: Timed release of secrets. It can be done via Time-Lock-Puzzles
[33], Delay Encryption [9], Homomorphic Time-Lock Puzzles [24], etc.

– Token: Tamper-proof hardware token. It gets inputs from the voter and can
give outputs, record timings, store secret values known only by the coercer,
and generate public keys while keeping private keys safe in the module. The
coercer can ask the voter for the full transcript of inputs and outputs from
the device and verify everything without receiving the token back. This can
be done, via a Trusted Platform Module (available on most modern laptops,
PCs, and smartphones), a Trusted Execution Environment, general trusted
hardware, or privacy-preserving smart contracts (e.g., MPC-based versions).

2.4 Coercion Attack-Types

We also classify different types of attacks according to their severity and difficulty

– Attack:Precision: An attack we can carry out with a probability that can be
made close to 1.

– Attack:Probabilistic: An attack where the coercer has a certain probability to
carry it out, but this probability is not close to 1.

– Attack:Complex: An attack where the coercer has to estimate a bound on
the computational power of V, e.g., for the delay time in the primitives in
Timed-Enc or the number of devices that V has.

2.5 Security Properties

We informally define, below, the properties of cast-as-intended verifiability, coercion-
resistance, and receipt-freeness.

Cast-as-Intended Verifiability (CAI) A precise game-based definition of CAI
verifiability can be found in [34], and is included in Appendix A for completeness.
The idea of the definition is that the voter V interacts with the adversary A
that fully controls the voter’s voting device, VD, to create a ballot. The voter
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can verify the submitted ballots, proofs on the bulletin board, etc. using some
trusted device or via a proxy verifier. If the verification fails, the game will be
abandoned. The adversary wins if the cast ballot, accepted by the voter, is not
in the image of the voting algorithm using the intended vote, i.e. the ballot has
been invalidated or is for another candidate.

Coercion-Resistance for the Vote-Casting Phase A formal game-based defini-
tion can be found in [18]. The point of this definition is to consider coercion-
resistance limited to the vote-casting phase. This gives a lighter definition than
full coercion-resistance which has to consider possible coercion threats during
the tally phase and in particular, unavoidably, from the tally result. Basically,
a protocol is then coercion-resistant if the coercer cannot distinguish a world
where the voter follows the instructions of the coercer and honestly outputs its
view of the communication with the voting device VD from a world where the
voter casts a ballot according to her own choice and simulates the view.

Receipt-Freeness Finally, receipt-freeness can be defined via a game where for
any voter algorithm voting for a candidate A and outputting its view, there exists
a simulator voting for candidate B with a simulated view, and any adversarial
algorithm (vote buyer) cannot distinguish the two worlds. Note that contrary
to coercion-resistance, the vote buyer does not issue instructions directly to the
voter before the election. However, he might publicly commit to the preferred
candidate and (maybe) some specific conditions the ballot must have.

In Section 5, we will propose precise game-based definitions for these two
notions. The new tools (in particular blockchains or time-lock encryption) are
modeled as oracles accessible to the parties. Coercion-resistance can be defined
in different forms depending on the type of instructions the coercer has to give
to the voter. Importantly, the new tools will give rise to novel relations between
security properties. As an example, whereas coercion-resistance always implies
receipt-freeness, however, with access to timed commitments we can also relate
receipt-freeness to a weaker form of coercion-resistance (Theorem 1 below).

3 Attacks

We investigate how a coercer can use the above tools to attack some CAI mecha-
nisms in the e-voting literature. The attack impact varies from completely break-
ing privacy to computationally penalizing voters for using disobedience strate-
gies. The attacks are categorized based on the type and the coercer’s tools.

3.1 Benaloh Challenges

As mentioned in the introduction, the Benaloh challenges are a perfect example
to demonstrate the different coercer tools and estimate how easily a coercer
can attack multiple voters. Below, in Figure 1, we give a simplified graphic
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V VD

choose Cand

Cand

r R← R

c = Enc(Cand, r, pk)

Π = Prove(c, r)

(c,Π)

audit or cast

if audit then

r

Verify c = Enc(Cand, r, pk)

if cast then

VD 7→ EA : (c,Π)

Fig. 1. A simplified diagram of a Banaloh challenges verification mechanism.
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description of the protocol. It aims to facilitate understanding of the attacks we
propose. For a detailed description please refer to [2,30].

Whereas Benaloh challenges were never claimed to be coercion-resistant5

these attacks were not considered earlier. Even further, it is generally believed
that Helios is receipt-free if the software does not leak the random coins, see e.g.
page 3 of [10], which could e.g. be enforced using a hardware root of trust.

(Attack:Complex; Instr) An attack fitting our narratives was proposed for a polling
booth- Helios [11]. We believe it would work for remote voting: C tells the voter
to vote only if the receipt hash h fulfills some predicate P (h) (e.g., the number
of leading null bits which happens with some probability p) and audit otherwise.
Then C demands to see all audited receipts and random coins. The attack can
be avoided but requires double effort: the voter first uses the coercer’s choice to
obtain verification data, then (instead of casting the vote when receipt permits
it) switches to the preferred option and re-runs the voting process until receipt
allows vote-casting. Of course, all audit material corresponding to the voter’s
choice must be destroyed.

(Attack:Precision; Instr,CC-PRF) The coercer instructs the voter to use the CandC ,
then add a commitment to the ballot that the voting device shows to CC-PRF and
only cast if the CC-PRF output starts with 1 (alternatively: 0 or more complex
predicate). The expectation is that the voter cannot predict when the CC-PRF
will allow casting the ballot; thus, she does not know when it’s safe to misbehave
and use her preference. The coercer can always check that the commitment of
the casting vote was added to the CC-PRF and resulted in the output indicating
the case. Therefore, the voter has a high risk of being caught in the case of
disobedience. In case of just checking the first bit this probability is p = 1/2,
but the coercer can increase this to a general probability p the cost of the voter
having to do 1/(1− p) vote cast attempts on average.

Note that a voter with a CC-PRF, e.g. access to Bitcoin, also can use this to
get a receipt of the vote, i.e. Helios is not receipt-free even with trusted software.

On a high level, the first previous attack (suggested in [11]) looks very similar
to the second one (proposed by ourselves), with the only distinction being the
use of blockchain. However, we claim this is not the case. To see why, one should
observe that in the polling-booth-Helios the voter receives an electronic hash of
her receipt as a commitment from the machine. This commitment is not publicly
posted or stored anywhere. It is given to the voter in the privacy of the voting
booth. Therefore, a realistic coercer (i.e. one who cannot compute the exact
amount of time spent by the voter during vote casting) would have no way of
knowing exactly how many hash commitments the voter received and would not
notice if a few were not used. Thus, the voter can destroy receipts indicating
audit and only show the coercer the receipt that allows casting. Unfortunately,
omitting some of the receipts would be impossible with the blockchain attack as
it is specifically designed to preserve the immutability of records.

5 An early version of Helios had a “coerce-me” button to point to the danger of
coercion in remote e-voting which handed out the random coin.
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3.2 STAR-Vote

For CAI verification, STAR-Vote [5] offers a novel variant of Benaloh’s challenge:
the voter either deposits the ballot in the ballot box or not. First, the voter
makes selections on a terminal, which prints the paper ballot in human-readable
form with a random serial number and a corresponding receipt that the voter
might take home. The voting terminal also sends the encrypted vote and the
corresponding receipt to the judge station and publishes the commitment to the
ballot on a publicly accessible bulletin board. If the voter chooses to cast the
vote, she takes the paper ballot to the ballot scanner, which reads the ballot’s
serial number and marks it as complete. If the voter decides to spoil the vote, she
should return to a poll worker, who scans the vote and indicates it is spoiled. Such
a vote would be decrypted as such during the tally. The verification mechanism
works like the original Benaloh challenge: the voting terminal commits to the
ballot before it knows whether the voter decides to cast or spoil it. However, the
procedure itself is adapted to a polling place voting.

(Attack:Probabilistic; Instr) The coercer tells the voter to cast their ballot only
if the printed receipt starts with some predicate, say a bit ’0’. Otherwise, the
voter must spoil the vote and give the receipt to the coercer. For our example,
the chance of an audit is 1/2, but it can vary depending on the complexity of the
predicate. Regardless, the voter cannot predict when the vote-casting happens
and thus must take a risk or obey. However, if the voter disobeys and the receipt
indicates spoiling the ballot, the coercer can trivially detect misbehavior by
checking the decrypted spoiled ballot.

3.3 Belenios-CaI

Belenios [14] is built upon the Helios and recently obtained CAI verifiability [13].
After the voter selects a vote v, she receives two random integers a and b such
that b = v + a(modµ) for some positive µ larger than the biggest possible v.
Then, the ballot is formed as three ciphertexts encrypting values v, a, and b,
plus a zero-knowledge proof that b = v+a(modµ). After that, the voting device
commits to the ballot and asks the voter to choose if the ciphertext encrypting b
or a should be opened. The selected ciphertext is publicly opened. To modify v
and create a convincing zero-knowledge proof, one has to change both v and one
of the values a or b; therefore, the voter will detect it with probability 1/2. Below,
in Figure 2, we give a simplified graphic description of the protocol. It aims to
facilitate understanding of the attacks we propose. For a detailed description
please refer to [13].

We stress that, as far as we know, BeleniosCAI has never claimed to enjoy
receipt-freeness. It only highlights that revealing only one of two values does not
affect the privacy of the vote but says nothing about vote-selling or coercion.
Mostly, this is because the Belenios voting family defines receipt-freeness in the
strong sense, where the voter can forcefully extract randomness from the voting
device to facilitate vote-selling. However, in our model, we trust VD.
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V VD

choose Cand

Cand

r, s0, r0, r1,
R← R

s1 = (Cand− s) mod k

c = Enc(Cand, r, pk)

c0 = Enc(s0, r0, pk)

c1 = Enc(s1, r1, pk)

π ← {Dec(c) = Dec(c0 · c1)}
σ ← Sign(c, c0, c1; sk)

VD 7→ BB : (c, c1, c2, π, σ)

(c, c1, c2, s0, s1)

Verify Cand = s0 + s1 mod k

Verify (c, c1, c2) ∈ BB
choose α ∈ {0, 1}

α

VD 7→ BB : (sα, rα)

Verify sα

Fig. 2. A simplified diagram of the BeleniosCAI verification mechanism.
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(Attack:Probabilistic; Instr,CC-PRF) The coercer C instructs the voter V to use
the v = CandC , commit all values generated by VD to CC-PRF, and choose be-
tween a or b based on the CC-PRF’s output. Theoretically, voter can receive
(cv, ca, cb, a, b) corresponding to Cand, then set b∗ = (CandC − a) and post
(cv, ca, cb, a, b∗) on the CC-PRF. However, if the output of the CC-PRF indicates
to open cb, then the coercer would notice the disobedience. Again this attack
can also means there is no receipt-freeness for a voter with access to CC-PRF.

3.4 Themis

Closely related to BeleniosCAI is the in-person voting scheme Themis [6], which
uses the same idea of splitting the candidate number v, which is always odd,
into randoms a and b, ensuring that v = a + b mod 2n (n is the number of
candidates) and verifying the encryption of one of the numbers. However, the
voter gets this splitting on a printed ballot and chooses which side to audit.

(Attack:Probabilistic; Instr) Assume the voter can compute a boolean function f
in the head. The voter in the booth computes f(a, b) in the head and audits
the left or right side according to the value. For example, assume that f = 0
indicates opening a while f = 1 says audit b. If the voter votes for v = CandV
and gets a and b such that v ≡ a+b but then claims to have selected v∗ = CandC ,
she needs to fake a and make sure that f(a, v∗ − b) = 0 or fake b and ensure
that f(v∗ − b, b) = 1. If f is random, then it can happen with probability 1/4.
It might not be high, but it is an interesting observation and could be enough
to have a monetary incentive for a vote buyer.

(Attack:Probabilistic; Instr) A better and easier attack is as follows. The possi-
bilities for a and b such that a+ b = v mod 2n are depending on v. Consider a
simple case of n = 2 candidates (e.g., “A” and “B”) with assigned numbers 1
and 3. Then for the candidate A the possible codes are (0, 1) and (2, 3), and for
B – (0, 3) and (2, 1). If the coercer demands the audited number to be 0 or 1,
voting for B always allows compliance with the demand. However, voting for A
would result in (a, b) = (0, 1) only in 1/2 of cases. Thus, if the voter votes for A,
the coercer will find out with the probability of 1/2. Note that the attack can
scale to more candidates if the coercer demands computing numbers modulo 4.

3.5 Proof of Correct (Re-)Encryption

Voting schemes often offer the voter a proof of correct encryption or re-encryption
(of the ciphertext that contains the chosen option) as a CAI verification method.
Of course, such proof should be interactive, or else the coercer can demand
to see it. Moreover, the proof should have full zero-knowledge and not merely
honest-verifier zero-knowledge if one wants to avoid coercion. Below, we present
and attack three different proposals for verification based on (re-)encryption
correctness.
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3.5.1 Commitment to the Challenge. A paper [19] analyzes a Σ-protocol
for proving encryption correctness with a commitment to a challenge and con-
cludes it’s both coercion-resistant and CAI. However, we will show how such a
scheme can be attacked using new coercion tools.

Below, in Figure 3, we give a simplified graphic description of the protocol.
It aims to facilitate understanding of the attacks we propose.

V VD

e, r̂ R← Zq

Z = ge · hr̂

Z,Cand

if Cand is not valid,

then abort and set bVD = 0

r, t R← Zq

C = (c1, c2) = (gr,m · pkr)
a = (A1, A2) = (gt, pkt)

(C, a)

e, r̂

if e, r̂ /∈ Zq or Z ̸= ge · hr̂

then abort and set bVD = 0

z = t+ e · rmod q

z

Verify gz = A1 · ce1

and pkz = A2 ·
(c2
m

)e

Fig. 3. A simplified diagram of the verification mechanism based on the Commitment
to the Challenge.

The public parameters of the election system must contain elements (q,G, g, h)
such that G = ⟨g⟩ = ⟨h⟩ has prime order q. To commit to the challenge, the per-
fectly hiding Pedersen commitment scheme [29] is used. In Step 1, voter samples
e, r̂ R← Zq, computes Z = ge·hr̂ and sends (Z,Cand) to VD. In Step 2, VD samples

r, t R← Zq, computes C = (c1, c2) = (gr,Cand · pkr) and a = (A1, A2) = (gt, pkt),
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so that values (C, a) are sent back to V. In Step 3, V replies with (e, r̂). Finally,
VD checks that Z = ge · hr̂, computes z = t+ e · rmod q and sends z to V, who
can verify that both gz = A1 · ce1 and pkz = A2 ·

(
c2

Cand

)e
hold.

(Attack:Complex; Instr,Timed-CC-PRF,Timed-Enc) Shortly before the voting phase,
the coercer C gives the voter V commitments Z = gehr̂ and the corresponding
openings under delay encryption X = Delay(r̂||e), which can be opened only
after time T . The voter is ordered to commit to the ciphertext C = (c1, c2) and
the first move of the sigma protocol a = (A1, A2) using timed commitment chain
of the coercer’s choice Timed-CC before time T . We note that to prevent pre-
computation by the voter, the coercer could use timed encryption like [16] to
release the puzzle at a precise time.

One can consider a modified protocol (with five rounds, started by VD)
where (i) the generator h for Pedersen commitments is not fixed in the public
parameters, but instead chosen by VD in step 1 of the protocol, and (ii) the
commitment sent by V in step 2 is defined as Z = gr̂ · he instead. This is
actually the specific instantiation of the protocol proposed in the Appendix of
[26], discussed in the upcoming Section 3.5.3. The coercion strategy based on
combining a blockchain and a delay function does not seem to work against this
protocol modification.

3.5.2 Designated Verifier Proof. Another way to construct an interactive
full zero-knowledge proof of encryption correctness proposed in [19] is to use a
(possibly non-interactive) OR proof “statement is true or I know the solution
x (also known as trapdoor) of a hard problem y” combined with a proof of the
trapdoor x knowledge. Note that proving x knowledge is critical because, other-
wise, a coercer can force V to use a value y without revealing the corresponding
solution x. Moreover, this proof cannot be non-interactive because the coercer
might instruct the voter to use a pre-made proof otherwise.

The final protocol is roughly the following: in Step 1, V samples x, t R← Zq,
computes Y = gx, T = gt and sends the pair (Y, T ) to VD. In Step 2, VD
samples and sends a challenge e R← Zq. In Step 3, V computes and sends the
answer s = t+ x · emod q, which is used by VD to check the correctness of this
interactive proof: gs = T ·Y e. If so, VD finishes the protocol by computing a non-
interactive zero-knowledge OR proof, as described in the previous paragraphs.

(Attack:Complex; Instr,Timed-CC-PRF,Timed-Enc) The coercer gives the voter
y,Delay(x), a,Delay(s), where Delay is a homomorphic function that allows re-
covering the hidden secret in time T . Then, he instructs the voter to vote for
CandC , use y and a in the non-interactive proof, and return with the OR-proof
until TC < 2T . An obeying voter can finish the proof π1 by combining puzzles
and obtaining a puzzle for Delay(s+ex) = Delay(z), which can be opened in time
≈ T . However, a disobeying voter who selected Cand ̸= CandC has to compute
another OR-proof to avoid being caught by the coercer, which requires knowing
both x and s hidden by the delay function. Hence, cheating requires opening two
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values hidden by the delay function Delay instead of just one (as it was for an
obedient voter). Assuming the voter has only one device, she would need time
TV ≈ 2T to compute both z and x, which would not fit the time frame TC that
the coercer demanded.

A possible modification is for VD to choose and send the generator g in step
1 of the protocol instead of using a fixed g. With this modification, it would even
be possible that the zero-knowledge proof of knowledge π1 of trapdoor x such
that y = gx was computed non-interactively by V, which would send y, π1 and
voting option Cand in step 2, leaving the NIZK OR proof, computed by VD, for
the last step 3. Once again, we do not know how a coercer could use blockchains
and delay functions to coerce a voter in this modified protocol.

3.5.3 Proof of Correct Re-Randomization of a Ciphertext. Muller and
Truderung in [26] propose a re-encryption-based protocol similar to the previous
two constructions. The difference is that the zero-knowledge proof is not for
proving that a ciphertext C decrypts to a voting option Cand, but for proving
that a ciphertext C′ is a correct re-randomization of another ciphertext C. All
new coercion attacks we discuss on the two solutions employing commitments
and OR proofs also apply to this protocol.

3.6 Civitas

Civitas [12] is a modification of the JCJ electronic voting protocol proposed
by Juels, Catalano, and Jakobsson [21]. They are considered two of the voting
schemes enjoying the strongest level of coercion-resistance. The coercion-evading
strategy is based on the fact that a voter can compute and show fake credentials
to the coercer, whereas he uses real credentials for the desired vote casting. One
of the novelties of Civitas compared to JCJ is how these credentials are generated
in a registration phase. Fake and real credentials are indistinguishable because
real credentials are computed using a designated verifier technique, which takes
as input an ElGamal public designation key KVE

of the voter (different from
the voter’s registration key used, among others, for authentication purposes).
The voter can use the secret key kVE

to compute the (indistinguishable from
real) fake credentials. However, if a coercer can force a voter to use a specific
public key KVE

without knowing the matching secret trapdoor kVE
, then the

voter cannot resist coercion.
The situation is similar to the one in Section 3.5.2: even a modification of

Civitas where the voter is requested to prove, in zero-knowledge, that he knows
the trapdoor kVE

could be vulnerable to new coercion tools based on blockchains,
homomorphic delay functions, and tamper-proof tokens. Moreover, these attacks
do not seem to contradict Trust Assumption 1 of Civitas: The adversary cannot
simulate a voter during Registration. On the one hand, the attacks we propose
are off-line: the coercer gives KVE

to the voter before Registration starts. On the
other hand, coercion involves only the designation keys and not the registration
keys (which are the focus of all the discussion about this Assumption 1 in [12]).
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3.7 Voting Based on Trusted Computing

Smart and Ritter proposed a coercion-resistant protocol [35] based on trusted
computations (specifically, the TPM and Direct Anonymous Attestation proto-
col). It consists of three phases: registration, where the voter has to prove their
identity in person; joining, where the voter uses a trusted TPM to receive a
certificate confirming eligibility; and signing, where the trusted TPM signs the
vote. The authorities re-encrypt the ballot before publishing and send the voter
a designated proof of re-encryption. If the voter is coerced and does not want
to send the coercer’s ballot, she can send a different ballot instead and use her
designated key to simulate the re-encryption proof for the coercer.

(Attack:Complex; Instr,Timed-CC-PRF,Timed-Enc) As a part of the protocol, the
voter (not a trusted TPM!) is supposed to generate a fresh Elgamal key pair
(sv, hv = gsv ), which is her designated key. Without sv, the voter cannot simulate
a re-encryption proof, which is why it is a crucial component of the coercion-
resistance strategy. However, with the new tools, the coercer can give the voter
a pre-generated pair (Delay(sv), hv), hidden by the delay function Delay that
cannot be opened before time T , and demand the re-encryption proof before
time T . The voter will have no choice but to obey.

A similar attack applies to a version of BeleniosRF [10] where voters generate
their signing keys and register the public part with the registrar. As a side obser-
vation, we think an untrusted election authority generating public parameters
pp can undetectably modify ballots of this particular version of BeleniosRF.6

4 Deniable Vote Updates and Re-Voting

Many schemes achieve receipt-freeness or some level of coercion-resistance using
deniable re-voting or vote updates, e.g., re-randomization as in Belenios-RF [10].

We now note that most systems either can be analysed in our setting or will
have CaI verifiability based on the assumption that a secret key, e.g. a signing
kay, is not being leaked to Aver or using some trusted party. To see why, suppose
that the voting device VD generates ballot b while a public bulletin board BB
posts ballot b′. If b is identical to b′, then we are in our setting. Alternatively,
if b is different from b′, the voter needs to be able to verify her vote somehow.
She can do it either by a) being able to link the public ballot on BB to the
ballot from VD, which basically would bring us back to our situation in terms
of coercion-resistance because we can consider b′ to be the ballot produced by V
and VD. Or b) the voter cannot relate b and b′, but then VD and EA can cheat
and change b′ to another contain another vote, unless V knows some secret that
prevents them from this, or alternatively we trust some party.

6 A dishonest election authority, instead of selecting z randomly from G1, sets z = gv1
for some v in Setup(1λ, 1k). Now, the re-randomization server can compute Xv

1 =
(gx1 )

v = (gv1 )
x = zx = Y (i.e., the voter’s private signing key) and sign any ballot.
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One might also suggest that we should allow unobservable re-voting to pre-
vent coercion attacks. This basically corresponds to the analysis above with b′

being empty and hence relies on trust or a secret key.

5 New Security Definitions

The attacks presented in this paper have demonstrated that it is necessary to
make a more general definition of receipt-freeness and coercion-resistance for
the vote-casting phase to take into account the new tools for coercers and vote-
buyers. We will first give a game-based definition without the new tools and then
introduce these as oracles that can be used by the coercer and voter. A formal
definition of cast-as-intended verifiability can be found in App. A.

5.1 Vote Casting Phase Coercion-Resistance

We consider Coercion-Resistance for the Vote Casting Phase, VC-CR, which is a
necessary condition for achieving coercion-resistance for the full voting system
considering vote submissions from all voters and information leaks from the tally.

In the definition, the coercer, A, can give instructions, Instr, to the voter
before vote-casting. Vote-casting is done using a vote-device VD. To be general,
this is modeled as an oracle OstateVDVD with a state stateVD which is updated
during the interaction between the voter and device. We assume that the in-

struction Instr uniquely defines an algorithm VOstateVDVD
Instr which models what the

voter does when completely following the instructions of the adversary. The ad-
versary has to distinguish the output from this compared to the case where the
voter casts her own vote using some coercion-evasion strategy, denoted V, which
we will assume is public, normally given as part of the voting scheme. In both
cases, the voter can output a message msg to the coercer, which can include the
(faked) View between the voter and the voting device plus auxiliary information
such as random coins used by the voter.

We have kept Instr and msg very abstract here since they can depend on
the voting protocol and values obtained when accessing the new tools. When
proving security for a specific protocol and attacker model they can be made
more specific to facilitate easier proofs.

As mentioned above the coercer will get access to the ballot ballot produced
by VD in the end. We get this ballot from the final state of VD using the algo-
rithm Vote. Finally, we extract the underlying vote enclosed in the ballot using
the algorithm Extract. We use this to ensure that the voter following the coercion-
evasion strategy really casts the preferred vote VoteV , and we require that the
voter following instructions casts the coercer’s choice Votecoerc, i.e., we do not
consider randomisation attacks or forced abstention. The latter is impossible to
protect against when the coercer sees the output ballot. The ballot randomisa-
tion attacks are interesting but outside the scope of this paper, however, they
could be modelled using a similar type of definition where Votecoerc ̸= VoteV up
to a bounded probability.
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ExpVC-CR,bA,V (λ)

1 : (sk, pk)← Setup(λ)

2 : stateVD ← empty

3 : (Instr, stateA)← A1(pk,VoteV ,VoteC)

4 : if b = 0

5 : msg← VOstateVDVD(pk, Instr,VoteV)

6 : ballot← Vote(stateVD)

7 : Promise Extract(ballot, sk) = VoteV

8 : if b = 1

9 : msg← VOstateVDVD
Instr (pk)

10 : ballot← Vote(stateVD)

11 : Require Extract(ballot, sk) = VoteC

12 : b′ ← A2(pk,msg, ballot, stateA,VoteV ,VoteC)

13 : return b′ = b

OstateVDVD(m)

1 : (stateVD,mout)← VoteDev(pk, stateVD,m)

2 : return mout

Fig. 4. The experiment for Coercion-Resistance for the Vote Casting Phase, VC-CR.

We use abbreviations for the constraints in the game code on the vote choices
using Require · which stands for ‘ if not · then Stopwith⊥ ’ and Promise · which
stands for ‘ if not · then Stopwith⊤ ’.

Definition 1 (Vote Casting Phase Coercion-Resistance). The protocol
Vote enjoys Coercion-Resistance for the Vote Casting Phase, VC-CR, if there
exists a PPT voter algorithm V such that for all vote choices VoteV ̸= VoteC and
for any polynomial-time adversary A we have that

Advvc-crA (λ) =

∣∣∣∣Pr[ExpVC-CR,0A,V (λ)
]
− Pr

[
ExpVC-CR,1A,V (λ)

]∣∣∣∣
is a negligible function of the security parameter λ.

In the definition of VC-CR we state that there exists an overall voter coercion-
evasion algorithm V that works for all coercers (by taking as input the coercer’s
instructions). A natural alternative is a definition that turns the ∃∀ into a ∀∃ by
saying that for all coercer algorithms A there exists a voter mitigation strategy
V. Indeed, this is weaker since it would be implied by VC-CR. Hence, we denote
it weak coercion-resistance Weak-VC-CR and will keep VC-CR as our preferred
definition. This is because the usability is much better if there exists a general
public coercion-evasion strategy, whereas for Weak-VC-CR it is not clear how the
voter can effectively find the correct strategy, and might even need knowledge
about the coercer’s intention.

We can also consider other natural variations of the definition

– Minimal Instructions, VC-CR(Min-Instr): Here the coercer just needs to out-
put the desired vote VoteC as instruction.
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– Known coerced vote, VC-CR(Known-Vote): Note that Votecoerc is not explic-
itly given to the voter algorithm V to model that the voter might just get
some instructions without knowing what the desired vote of the coercer is.
A weaker definition can be made where Votecoerc is known to the voter.

– No secret in instruction, VC-CR(No-Secret-in-Instr): In this case it is not
necessary for the coercer to keep secrets from the coerced voter. We model
this as A1 being a deterministic algorithm using some random tape r and
which is included as part of the instructions Instr together with the algorithm
A1. In this case stateA used by A2 can just be Instr.

– No secret for classifier, VC-CR(No-Secret-in-Classifier): We can make a weaker
definition where the coercer does not need to remember a secret used in the
instructions to classify whether the coerced voter follows instructions or not.
We model this by not giving the stateA to the algorithm A2 where adversary
decides which world he is in, but only the instructions Instr. This means the
verification could be done by any party just knowing the instructions from
the coercer. We denote this VC-CR(No-Secret-in-Classifier), and clearly VC-CR
implies VC-CR(No-Secret-in-Classifier).

– We can go further and also remove Instr from the distinguisher A2 to achieve
an even weaker definition. We denote this VC-CR(Minimal-Classifier)

– Note that we have given the coercer access to both the coercer’s choice
of vote, and the desired vote of the voter in order to make sure that the
definition is not too weak in the sense that we would not want coercion-
resistance to rely on the coercer not being able to guess or somehow know
VoteV . A weaker version of the definitions above can be made where the
adversary does not have access to VoteV . We denote this with Unknown-Intent

– Finally, we note that we can combine the above definitions. E.g. we can have
VC-CR(Known-Vote,No-Secret-in-Instr,Minimal-Classifier) for the case where
the voter knows the coercer’s vote choice, there are no secrets in the instruc-
tion, and no secret or instructions used in the classifier.

As we have seen in the first part of this paper (attacks), the coercer might
force the voter to use some cryptographic means for controlling the voter’s be-
havior without being present during the voting. For example, the coercer might
ask the voter to commit values on the blockchain or utilize TPM for keypair gen-
eration. Thus, definitions for coercion-resistance (and for receipt-freeness) must
consider this possibility. The way of doing this is by slightly modifying all the
security games as follows: both the coercer and the voter will have access to
some subset O of the family of oracles listed in the following sub-section.

5.1.1 Oracles for the Coercer’s Toolbox

– OClock - an oracle that upon RequestTime gives the value of the global
time clock [8,17]. No one can alter the global time. In practice this could e.g.
be instantiated from blockchains, see for instance [23].

– OCC - an oracle that captures an append-only immutable chain of com-
mitments. It starts with an empty list List0 and supports two functions
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Commit(x) and Return. The function Commit(x), upon being called an
i-th time with the input x, appends x to the list Listi ← Listi−1∪{x}. The
function Return, upon being called an i-th time, returns the list Listi. No
one can remove or modify the value from the internal state after it has been
committed. In practice, it can be realized with a blockchain.

– OCC-PRF - an oracle that captures an append-only immutable chain of com-
mitments with the possibility to request pseudo-random values. In other
words, it supports not only Commit(x) and Return as OCC, but also a
function PRF, which upon being called an i-th time, derives and outputs a
pseudorandom value yi from the internal state of the oracle Listi. No one
can remove or modify the value from the internal state after it has been
committed, nor obtain the pseudorandom value different from the derived
from the internal state value.

– OTimed-CC - is an oracle that captures an append-only immutable chain of
commitments with time stamps. In other words, it supports Return func-
tion as OCC and a function TimedCommit(x), upon being called an i-th
time with the input x, calls the function RequestTime of OClock oracle to
get timestamp t and then calls Commit({x||t}) of the OCC oracle. No one
can remove or modify the value from the internal state after it has been
committed or alter the timestamp.

– OTimed-CC-PRF: - is an oracle that captures an append-only immutable chain
of commitments with time stamps with the possibility to request pseudo-
random values. In other words, it supports not only TimedCommit(x) and
Return as OTimed-CC, but also a function PRF, which upon being called an
i-th time, derives and outputs a pseudorandom value yi from the internal
state of the oracle Listi. No one can remove or modify the value from the
internal state after it has been committed, nor obtain the pseudorandom
value different from the derived from the internal state value.

– OTimed-Enc - an oracle that captures functionalities of secure storage that does
not release the secret until time T (according to oracle OClock) has passed.
It supports function Delay(x, T ), which takes as input secret x and desired
time T and outputs a puzzle Z. No one can open Z until RequestTime
from OClock returns time, which is greater or equal to T .

– OToken - an oracle that captures functionalities of tamper-proof secret stor-
age and outputs the result of a pre-defined cryptographic operation. It
supports two functions: Init(x) and EvaluateFunction(F ). The function
Init(x) can only be run once; it receives the input x and, if and only if
the initial state is empty, initializes the internal state with x. The func-
tion EvaluateFunction(F ) receives a one-way function F as an input and
outputs the F (x). No one can access the state or alter it after it is set.

– OTPM - an oracle that captures functionalities of a trusted platform module.
The exact interface depends on the particular emulated module, but it is
expected to run any coercer’s program without leaking an internal secret.
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5.1.2 Implications and Separations between Different CR Notions
On the one hand, we can now state some simple reductions between these defi-
nitions, considering access to the same subset of oracles.

– VC-CR implies VC-CR(Known-Vote) which, in turn, implies VC-CR(Min-Instr)
– VC-CR implies VC-CR(No-Secret-in-Classifier) which, in turn, implies respec-

tively VC-CR(No-Secret-in-Instr) and VC-CR(Minimal-Classifier) both of which
finally implies VC-CR(Min-Instr).

Comment 1 If a voting protocol fulfils cast-as-intended verifiability as in Def.
3, and we only have a small number of candidate choices, one might presume
that VC-CR(Known-Vote) implies VC-CR, since one could use the cast-as-intended
verification mechanism to discover the vote the coercer wants. Unfortunately,
cast-as-intended only ensures that a voter following protocol instructions enjoys
verifiability. However, a coercer might issue instructions which prevents the co-
erced voter from verifying her vote without the coercer detecting this.

On the other hand, some protocols can be used to show that there are strict
separations among (some of) the CR notions defined in Section 5.1.

– Both VC-CR(Min-Instr) ⇏ VC-CR(No-Secret-in-Instr) and the statement
VC-CR(Min-Instr) ⇏ VC-CR(Known-Vote) can be proven by considering the
interactive 4-rounds protocol where (1) V sends the chosen vote, (2) VD
encrypts the vote in ciphertext C and sends the first message a of a Sigma
protocol to prove that C encrypts the chosen vote, (3) V sends a challenge
c for this Sigma protocol, (4) VD sends the last message z of the Sigma
protocol.
This protocol enjoys VC-CR(Min-Instr), but as long as the coercer can use as
Instr not only its chosen voting option, but also the fact that the challenge c
is a deterministic function of the first message a, that is c = f(a), it is not
known how a voter can cheat such a coercer.

– VC-CR(No-Secret-in-Classifier) ⇏ VC-CR can be proven with a protocol where
(1) V sends the chosen vote and a public key pk′ different to the public key
pk of the election, (2) VD encrypts twice the vote, once with pk and one with
pk′, and adds a non-interactive zero-knowledge proof that the two ciphertexts
encrypt the same plaintext.
A coercer who forgets the secrets used in the instructions can be cheated by
the voter, who can present two ciphertexts of the same voting option (the
one chosen by the voter, instead of the one chosen by the coercer). However,
if the coerced remembers the secret key sk′, it cannot cheated in this way
(and in no way) because it can use sk′ to check that one of the ciphertexts
encrypts its chosen option.

5.2 Receipt-Freeness

We can now define receipt-freeness at vote-casting time, in contrast to other
definitions of receipt-freeness which are more global and take into account all
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ExpVC-RF,bA,V,Sim(λ)

1 : (sk, pk)← Setup(λ)

2 : stateVD ← empty

3 : if b = 0

4 : msg← VOstateVDVD(pk,Votesell)

5 : ballot← Vote(stateVD)

6 : Require Extract(ballot, sk) = Votesell

7 : if b = 1

8 : msg← Sim
OstateVDVD
V (pk,Voteown,Votesell)

9 : ballot← Vote(stateVD)

10 : Promise Extract(ballot, sk) = Voteown

11 : b′ ← A(pk,msg, ballot,Voteown,Votesell)

12 : return b′ = b

Fig. 5. The experiment for Receipt-Freeness for the Vote Casting Phase, VC-RF. For
VC-RF the randomness in parenthesis (rand) is not shared between the voter algorithm
V and simulator Sim whereas for VC-RF-Rand it is.

the phases of a voting system (see for instance [20]). The point of our defini-
tion is that for any (malicious) voter algorithm V trying to obtain a receipt in
the form of some information msg for her vote Votesell, there exists a simulator
that casts a vote for another choice Voteown but gives information msg which
is indistinguishable from the claimed receipt. It models that the voter tries to
cheat a coercer or vote buyer by voting for another vote option. In principle,
the simulator could have access to both the algorithm V and to the random
tape rand used. This is because the voter and the simulator are essentially the
same person and cannot hide information it uses from itself (which would make
it easier to obtain a receipt). As an example, if the voter creates a designated
verifier key and claims to delete it, the adversary cannot be sure whether the
voter still knows it and uses it to create a fake proof.

Definition 2 (Vote Casting Phase Receipt-Freness). The protocol Vote
enjoys Receipt-Freeness for the Vote Casting Phase, VC-RF, if there exists a
simulator Sim such that for all vote choices Votesell ̸= Voteown, for all PPT
algorithms V (corresponding to a malicious voter trying to obtain an receipt)
and for all polynomial-time adversaries A we have that

Advvc-rfA (λ) =

∣∣∣∣Pr[ExpVC-RF,0A,V (λ)
]
− Pr

[
ExpVC-RF,1A,V (λ)

]∣∣∣∣
is a negligible function of the security parameter λ.

Again we can define a weaker variant, denoted Weak-VC-RF , as for coercion-
resistance, which involves the same security experiment, but has an ∀∃ definition,
i.e. of the form: for all PPT algorithms V there exists a simulator Sim.
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In most cases receipt-freeness can be achieved without the simulator having
access to the random tape of the voter since we can achieve a computational
indistinguishability without it. We hence defined VC-RF without access to the
randomness, but an alternative definition VC-RF-Rand can be defined where the
simulator has access to the random tape of the voter. VC-RF clearly implies
VC-RF-Rand since the simulator in the latter has more information.

Note that we have also given the attacker access to Voteown when trying to
distinguish, similar to our coercion definition. This models that the vote-buyer
might know this choice. In case of high-entropy vote choices and where the vote
buyer might have less knowledge about the vote seller this could be changed.

Finally, we here present a theorem and informal proof to demonstrate the
usefulness of the different definitions.

Theorem 1. Receipt-freeness VC-RF implies the constrained coercion-resistance
VC-CR(Known-Vote,No-Secret-in-Instr,Minimal-Classifier) and with access to a timed
commitment oracle OTimed-CC (see Sec. 5.1.1) they are equivalent.

The proof follows by relating the simulator, Sim, in VC-RF to the coercion-
mitigation algorithm V in VC-CR, and correspondingly relate the voter algorithm
V in VC-RF to VInstr in VC-CR. The constrained form of VC-CR ensures that this
mapping can be done and the advantages will be the same in the two experi-
ments. We need the timed commitment oracle since in the coercion game, the
adversary gives instructions before voting. However, in the vote-seller experiment
the output message is produced after voting which could allow the vote-seller to
choose a favourable coercion instruction after voting which fits with the view of
the voter interaction.

Proof (sketch). As a first step, we rewrite the receipt-freeness experiment by
swapping b = 0, 1, renaming Votesell as VoteC and Voteown as VoteV . We also de-
note the malicious voter algorithm as VRF . This gives the hybrid Exphybrid0,bA,VRF ,Sim(λ)
shown in Fig. 6. For comparison, the experiment for the coercion-resistance

Exp
VC-CR(Known-Vote,No-Secret-in-Instr,Minimal-Classifier),b
A,V (λ) is displayed as well where it

is made explicit that the Instr contains A1, its random coins, the coercer’s vote
choice and some auxiliary data aux.

We will first prove that the coercion-resistance variant implies receipt-freeness.
Accordingly, we assume there exists an attack on Exphybrid0,bA,VRF ,Sim(λ). Now for the
coercion-resistance we assume a given coercion-mitigation algorithm, V, and a
given key setup. For simplicity, we assume V always produces a correct ballot
for VoteV as demanded by the promise statement. We can now feed this as the
public key setup and simulator, SimVRF

, into the attacker on the hybrid VC-RF.
Here VRF and VoteC in Sim are given to V by embedding them into Instr. Now
we get a distinguisher algorithm A whose output we will use as the output of
A2. We will assume that the attack also outputs the algorithm VRF . We then
define A1 to output VoteC and the description of VRF . No randomness is needed
for this and hence does not have to be output. Now V and Sim are equivalent in
the two games, and VRF can also be used in the VC-CR game as VInstr includ-
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Exphybrid0,bA,VRF ,Sim(λ)

1 : (sk, pk)← Setup(λ)

2 : stateVD ← empty

3 : if b = 0

4 : msg← Sim
OstateVDVD
VRF

(pk,VoteV ,VoteC)

5 : ballot← Vote(stateVD)

6 : Promise Extract(ballot, sk) = VoteV

7 : if b = 1

8 : msg← VOstateVDVD
RF (pk,VoteC)

9 : ballot← Vote(stateVD)

10 : Require Extract(ballot, sk) = VoteC

11 : b′ ← A(pk,msg, ballot,VoteV ,VoteC)

12 : return b′ = b

Exp
VC-CR(Known-Vote,No-Secret-in-Instr,Minimal-Classifier),b
A,V (λ)

1 : (sk, pk)← Setup(λ)

2 : stateVD ← empty

3 : Instr = (rand,A1,VoteC , aux)

← A1(pk,VoteV ,VoteC, rand)

4 : if b = 0

5 : msg← VOstateVDVD(pk, Instr,VoteV)

6 : ballot← Vote(stateVD)

7 : Promise Extract(ballot, sk) = VoteV

8 : if b = 1

9 : msg← VOstateVDVD
Instr (pk)

10 : ballot← Vote(stateVD)

11 : Require Extract(ballot, sk) = VoteC

12 : b′ ← A2(pk,msg, ballot,VoteV ,VoteC)

13 : return b′ = b

Fig. 6. The hybrid experiment Exphybrid0A,VInstr,Sim
together with the variant of VC-CR.

ing knowledge of VoteC , consistent with how Sim was defined. Thus, we have
constructed an adversary with the same advantage as for VC-RF.

We now prove that receipt-freeness implies the constrained coercion-resistance
using a timed commitment oracle. Thus, we assume that we have an attack on
the constrained VC-CR definition (this also holds if this also has access to the
timed commitment oracle). From the VC-RF experiment we can then get a key
setup and choose a general simulator, SimVRF

. The simulator fulfills the form
for V in VC-CR since VoteC is included in Instr and we use VInstr as the VRF

input to SimVRF
. Hence we can get Instr from A1 and thus VInstr, which has a

non-negligible advantage in winning the VC-CR game when using the output of
A2. We can now let VRF be VInstr and for the distinguisher A we use the output
of A2. However, to be able to win the game on the VC-CR side we extend VRF to
start by using the timed commitment oracle and commit to Instr which includes
A1, rand. We will assume that it is clear that this happens before voting as in
the VC-CR definition, e.g. by doing this early enough. Finally, A2 will also check
that the commitment has been made, to enforce that Sim also calls VRF to do
this, otherwise it is clear that b = 0. If this test passes, it uses the output from
A2. The winning probability is going to be the same even though Sim is itself
creating the instructions and hence knows all secrets there in contrast to the
general VC-CR definition. This is the reason we use the No-Secret-in-Instr where
the simulator V also gets access to A1 and its random tape and hence could have
created Instr itself. ⊓⊔
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VC-CR

Weak-VC-CR

VC-CR(Known-Vote) VC-CR(No-Secret-in-Classifier)

VC-CR(No-Secret-in-Instr) VC-CR(Minimal-Classifier)

VC-CR(Known-Vote,No-Secret-in-Instr,Minimal-Classifier)VC-RF

VC-CR(Min-Instr)

Weak-VC-RF

With Timed-CC

With TPM

Fig. 7. Implications between the new security definitions

We also conjecture that VC-RF implies VC-CR(Known-Vote) with access to the
trusted hardware module OTPM, since the vote seller can commit to a coercion
instruction, let the module output the coercer instructions and in the end output
all secrets to the distinguisher including an attestation of what it was running.

In Fig. 7 we present the relations between the security definitions in a dia-
gram.

6 Conclusion and Future Work

We studied previously unexplored coercion and vote-selling attacks based on
new cryptographic primitives such as blockchains, delay functions, time-lock
encryption, etc. Our investigation showed many examples of how the coercer
can force voters to comply with his demands by relying on those new tools. We
described some of the possible attacks and sketched others. Since some successful
coercion attacks occur on voting schemes that were supposed/claimed/proved to
be coercion resistance or receipt-free, the main conclusion of the first part of the
work was that the coercion models should be re-evaluated, and new definitions
were required. Such definitions, that are presented in Section 5, lead to some
interesting lines of future work; we list below three impossibility results that (we
believe) could be proved to hold in our setting (this is ongoing work).
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1) We cannot have receipt-free voting without a trusted VD in our model.
This is because the voter could otherwise prove how the output ballot (which
can be seen by the adversary in our model) was created. We thus need VD to
generate the ballot obliviously to the voter.

2) If the coercer C directly interacts with a voter during vote casting in a
system satisfying CAI then it cannot be coercion-resistant. This is because C can
use CAI to verify the cast vote with the voter acting as a proxy. If the voter could
cheat the attacker here, then the voting device could use the voter’s strategy to
cheat the voter and break CAI verifiability.

3) No scheme can be coercion-resistant if the coercer uses Token. This follows
from the result above since the coercer can simply let the Token simulate the
direct interaction.
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A Cast-as-Intended Verifiability

We here recall the definition of cast-as-intended from [34]. Here, the voter V
interacts with the adversary A completely controlling the voting device, VD, to
create a ballot. The voter can use T V, which stands for Trusted Verification and
can verify the submitted ballots, proofs on the bulletin board etc. In [34], T V
was given as a trusted device, but here it could also be a proxy verifier, etc.
If the verification fails, the game will be abandoned. Vote stands for the vote
casting algorithm, and the adversary wins if the cast ballot is not in the image
of the vote algorithm using the intended vote.

Definition 3 (Cast-as-intended). Let V, T V, Vote, and A be proba-
bilistic polynomial-time algorithms, κ and κ̂ be security parameters, and
ExpCaIA,V,T V,Vote(κ, κ̂) be the experiment in Fig. 8.
We say V, T V,Vote satisfies δ(κ̂)-cast-as-intended, if for all probabilistic
polynomial-time adversaries A, there exists a function δ and for all security pa-
rameters κ and κ̂, we have Succ(ExpCaIA,V,T V,Vote(κ, κ̂)) ≤ negl(κ̂)+δ(κ̂)+negl(κ).

ExpCaIA,V,T V,Vote(κ, κ̂)

1 : (pk, v,nc, state)← A(κ, κ̂)

2 : ballot← VT V(pk,nc,κ),VD(v, κ̂)

3 : return ∀r . ballot ̸= Vote[pk, v,nc, κ; r]

4 : ∧ ballot ̸= ⊥ ∧ 1 ≤ v ≤ nc

OstateVD(m)

1 : (state,mout)← A(pk, state,m)

2 : return mout

Fig. 8. The experiment for Cast-as-Intended, CaI.

To make precise what T V checks in this paper, we will denote the verification
algorithm by Verify and the voters view by View. Then T V runs Verify(View, b,BB)
and the experiments aborts if this checks fails.
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In most protocols, Verify would be split into two parts. Firstly, a private part
is used by the voter to run a private (cast-as-intended) verification VerifyV(View, b),
which takes the whole View into account but does not access BB. Secondly, a pub-
lic part (ballot correctness and recorded-as-cast verification) Verifypub(Viewpub,BB)
which takes a subset, or function, of View into account and compares it with data
on BB. The latter is often hiding the actual vote choice to allow proxy verifica-
tion, and the former is kept as simple as possible to increase usability.
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