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Abstract. Akavia, Gentry, Halevi, and Vald introduced the security no-
tion of function-chosen-plaintext-attack (FuncCPA security) for public-
key encryption schemes. FuncCPA is defined by adding a functional re-
encryption oracle to the IND-CPA game. This notion is crucial for secure
computation applications where the server is allowed to delegate a part
of the computation to the client.
Dodis, Halevi, and Wichs introduced a stronger variant called FuncCPA+.
They showed FuncCPA+ implies FuncCPA and conjectured that FuncCPA+

is strictly stronger than FuncCPA. They left an open problem to clarify
the relationship between these variants.
Contrary to their conjecture, we show that FuncCPA is equivalent to
FuncCPA+. We show it by two proofs with a trade-off between the
number of queries and the number of function inputs. Furthermore, we
show these parameters determine the security levels of FuncCPA and
FuncCPA+.

1 Introduction

Akavia, Gentry, Halevi, and Vald [2] introduced the notion of function-chosen-
plaintext-attack (FuncCPA security) for public-key encryption schemes in the
context of homomorphic encryption. This notion extends IND-CPA security by
adding a functional re-encryption oracle. This oracle takes a function f and a
ciphertext ct as input and returns the encryption of the function applied to the
ciphertext, Enc(pk, f(Dec(sk, ct))), where pk and sk are the public and secret
keys, respectively.

In practice, the oracle represents a situation where the client and server
communicate during secure computation. In applications of secure computation
using homomorphic encryption, the server may query the client for ciphertexts
and receive the result as ciphertext to accelerate the process [9, 1, 3].

Intuitively, a functional re-encryption oracle may be unnecessary, as it simply
outputs a new ciphertext based on a queried ciphertext and a function. The
oracle also seems that any IND-CPA secure public-key encryption scheme should
naturally be a FuncCPA secure scheme. However, Akavia et al. showed an IND-
CPA secure scheme that can be attacked using a functional re-encryption oracle
in [2].
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Dodis, Halevi, and Wichs [5] extended the FuncCPA security from single-
input to multi-input and studied its properties. Furthermore, they introduced
a stronger security notion called FuncCPA+ security. They showed how to con-
struct a FuncCPA+ secure scheme from any IND-CPA secure scheme. FuncCPA+

security is defined by a different experiment compared to FuncCPA security,
distinguishing between an oracle that provides functional re-encryption and one
that always returns a ciphertext of 0.

Dodis et al. defined FuncCPA+ security as stronger FuncCPA security, but
no general difference between these notions has been found. In other words,
no scheme has been discovered that is FuncCPA secure but not FuncCPA+ se-
cure. They also discussed the differences between these security notions and
obtained two results by restricting the types of functions that can be queried to
the functional re-encryption oracle. The first result is obtained when functions
are restricted to identity functions only. In FuncCPA security, this restriction
is referred to as ReEncCPA security, and in FuncCPA+ security, it is referred
to as ReEncCPA+ security. They showed a scheme that is ReEncCPA secure
but not ReEncCPA+ secure. The second result is obtained when functions are
restricted to single-input functions only. In FuncCPA+ security, this restriction
is referred to as 1-FuncCPA+ security. In this case, they showed a scheme that is
1-FuncCPA+ secure but not FuncCPA secure. Although FuncCPA+ security ap-
pears to be a stronger notion than FuncCPA security, their equivalence remains
an open problem.

1.1 Our Contribution

We show that a public-key encryption scheme that is FuncCPA secure is also
FuncCPA+ secure. We summarize the relationships among related security no-
tions in Figure 1.

To investigate in detail, we define the (ℓ, q)-FuncCPA and (ℓ, q)-FuncCPA+

security notions by introducing parameters for the number of function inputs ℓ
and the number of queries q, as specified in Definitions 5 and 7. (ℓ, q)-FuncCPA
security restricts FuncCPA security by allowing the adversary to query the func-
tional re-encryption oracle up to q times for functions with ℓ inputs. Similarly,
(ℓ, q)-FuncCPA+ security restricts FuncCPA+ security with the same parame-
ters. We show the following theorems:

Theorem 1. (ℓ, 2q)-FuncCPA implies (ℓ, q)-FuncCPA+ for any ℓ ≥ 2, q ≥ 1.

Theorem 2. (ℓ+1, q)-FuncCPA implies (ℓ, q)-FuncCPA+ for any ℓ ≥ 1, q ≥ 1.

We also show that there exists a separation between ReEncCPA and FuncCPA
notions by using our theorems.

Corollary 1. There exists a public key encryption scheme that is ReEncCPA
and not FuncCPA.

Proof. If ReEncCPA implies FuncCPA, then from our results, ReEncCPA would
imply ReEncCPA+. This contradicts the separation between ReEncCPA and
ReEncCPA+ by Dodis et al. [5]. ⊓⊔
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By focusing on the number of functional re-encryption oracle queries, we also
discover a problem when the attacker performed two oracle queries in the dis-
cussion by Dodis et al. [5] regarding a scheme that is 1-FuncCPA+ secure but
not FuncCPA secure.

Theorem 3. For any ℓ, ℓ′ ∈ N such that ℓ < ℓ′, if there exists an IND-CCA1 se-
cure public-key encryption scheme, there exists a scheme that is (ℓ, 1)-FuncCPA+

and not (ℓ′, 1)-FuncCPA.

IND-CCA1

FuncCPA+

FuncCPA

IND-CPA

ReEncCPA+

ReEncCPA

Theorem 1

Corollary 1

Fig. 1. FuncCPA and related security notions. A → B represents that a scheme sat-
isfying A also satisfies B. A ↛ B represents that there exists a scheme that satisfy A
but does not satisfy B. Black arrows indicate known results. Red arrows indicate our
results.

1.2 Technical Overview

Proof of the FuncCPA implies FuncCPA+ We show that when a public-
key encryption scheme satisfies FuncCPA security, it also satisfies FuncCPA+

security in Theorem 1 and 2.
For this proof, we construct an algorithm that reduces FuncCPA+ security to

FuncCPA security. To simulate the adversary for FuncCPA+ security, we need to
switch between the functional re-encryption oracle and the zero-encryption oracle
based on a randomly chosen b by the challenger. First, we send messages m0 = 0
and m1 = 1 to the challenger and receive the challenge ciphertext ct∗ = Enc(mb).
Next, we introduce a two-input function g(x1, x2). This function g returns x1

when x2 is 0, and returns 0 when x2 is 1. We appropriately respond to the
adversary’s oracle query using the challenge ciphertext ct∗ and the function g
through two oracle queries. As the first query, we forward the adversary’s oracle
query, consisting of a sequence of ciphertexts ct1, . . . , ctℓ, and a function f , to the
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challenger and receive the response ct′. We query ct′, ct∗, g as the second. As a
result, we receive ct′′ = Enc(pk, g(Dec(sk, ct′), b)) and use this as the response for
the adversary’s oracle query. This approach allows us to correctly switch between
the functional re-encryption oracle and the zero-encryption oracle based on the
challenger’s random b. Thus, with this constructed reduction algorithm, we can
show our result.

Separations by the Number of Queries We reconsider the relationship
between 1-FuncCPA+ security and FuncCPA security as discussed in the paper
by Dodis et al. [5] in Section 4. They claimed the following difference between
FuncCPA security and FuncCPA+ security:

If CCA secure encryption schemes exist, then a 1-FuncCPA+ secure en-
cryption scheme is not FuncCPA secure.

However, upon examining their proof with a focus on the number of functional
re-encryption queries, we identify a subtle issue.

To address this, we introduce a parameterized version of FuncCPA security,
which clarifies the number of queries, and we attempt to correct Dodis et al.’s
proof. Nevertheless, we cannot perfect the correction, so we slightly modified
their claim to obtain a similar result. Additionally, they assumed IND-CCA2
security, but we show a similar result under the weaker assumption of IND-
CCA1 security. We show the result below:

Theorem 3. For any ℓ, ℓ′ ∈ N such that ℓ < ℓ′, if there exists an IND-CCA1 se-
cure public-key encryption scheme, there exists a scheme that is (ℓ, 1)-FuncCPA+

secure and not (ℓ′, 1)-FuncCPA secure.

We consider their proof focusing on the number of functional re-encryption
queries. They constructed a public-key encryption scheme with certain features
from an IND-CCA2 secure scheme to show their claim. Here is a brief introduc-
tion to their constructed scheme. The key generation algorithm runs the IND-
CCA2 secure key generation algorithm to obtain public key pk and secret key
sk. It then selects two random strings r, s ∈ {0, 1}λ and includes them as part of
the secret key. Additionally, the public key includes the result y = OWF(r⊕ s),
where the two random strings r and s are XORed and then applied to a one-
way function OWF . The encryption algorithm checks if the result of applying
a one-way function to the message m matches part of the previously generated
public key y. If it matches, return the message. Otherwise, encrypte the message
as usual. The decryption algorithm takes the ciphertext (n, ct) as input. This
algorithm changes behavior based on the number n. If n = 1, it returns r, which
is part of the secret key. If n = 2, it returns s, which is also part of the secret
key. Otherwise, it performs the decryption as usual.

They claimed that this public-key encryption scheme is 1-FuncCPA+ by con-
sidering a sequence of q hybrids. For the i-th hybrid, the responses to the first
i − 1 queries are a ciphertext of 0, and the responses from the i-th query on-
ward are from the functional re-encryption oracle. Indeed, the 0-th hybrid cor-
responds to 1-FuncCPA+ security with b = 0, and the q-th hybrid corresponds
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to 1-FuncCPA+ security with b = 1. They claimed that the i-th and i + 1-th
hybrids are indistinguishable in two steps:

– The i-th query not being decrypted to r ⊕ s reduces to the one-wayness of
OWF .

– The indistinguishability of the i-th and i+1-th hybrids reduces to IND-CCA2
security.

Their encryption algorithm has the property of returning the message m
as is when OWF(m) matches OWF(r ⊕ s). Therefore, it must be shown that
the i-th query being decrypted to r ⊕ s is negligible. However, we consider this
reduction to the one-wayness of OWF to be insufficient. A 1-FuncCPA+ security
adversary can obtain the ciphertexts of r and s through two oracle queries due
to the decryption algorithm’s properties. These must satisfy the relationship
y = OWF(r ⊕ s). Simply reducing to one-wayness does not easily provide such
r and s to the reduction algorithm.

We argue that a more detailed discussion is necessary on this reduction.
Therefore, we fix the number of queries an adversary makes to 1 for this discus-
sion. By fixing it to 1, the reduction algorithm returns either the ciphertext of r
or the ciphertext of s, and it can be reduced to the one-wayness of OWF . We
present Theorem 3 and discuss the case where the number of queries is extended
to an arbitrary q in Section 4.4.

1.3 Related Work

Nuida [8] discussed the case of querying invalid ciphertexts in the context of
FuncCPA security. Depending on how to handle invalid ciphertexts, they propose
funcCPA† security and funcCPA†† security.

As with FuncCPA, several security notions have been proposed in the context
of homomorphic encryption.

Li and Micciancio [6] considered that for approximate homomorphic encryp-
tion schemes of CKKS [4], satisfying IND-CPA security alone is insufficient to
prevent attacks. They propose IND-CPAD security for such encryption schemes.
Furthermore, they conduct a more detailed discussion by parameterizing the
number of queries for IND-CPAD security.

Mark Manulis and Jérôme Nguyen [7] discussed how fully homomorphic en-
cryption (FHE) schemes achieve security beyond IND-CCA1. They proposed
vCCA security and showed that this security is the strongest among several
existing security achievable by FHE. Furthermore, they presented a general
construction method that transforms any IND-CPA secure FHE scheme into
a vCCA secure scheme.

2 Preliminaries

Notations. For a positive integer n, [n] represents the set {1, . . . , n}. For a finite
set X, x $←− X denotes sampling an element x uniformly at random from X. For
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an algorithm A, y ← A(x) indicates that A outputs y given input x. λ denotes
the security parameter. Probabilistic polynomial time is denoted by PPT. A
function f(λ) is negligible with respect to λ if it converges faster than 1

λc for all
constants c > 0, and is denoted as f(λ) = negl(λ).

2.1 Public-Key Encryption

Definition 1. A public-key encryption scheme E over the message space M is
a tuple of three PPT algorithms (Gen,Enc,Dec) as follows:

– (pk, sk)← Gen(1λ): The key generation algorithm takes a security parame-
ter 1λ as input, and outputs a pair of public and secret keys (pk, sk).

– ct ← Enc(pk,m): The encryption algorithm takes a public key pk and a
message m ∈M as input, and outputs a ciphertext ct.

– m′ ← Dec(sk, ct): The decryption algorithm takes a secret key sk and a
ciphertext ct as input, and outputs a message m′ ∈M∪ {⊥}.

Correctness: A public-key encryption scheme E = (Gen,Enc,Dec) is correct if
for any m ∈M,

Pr
[
(pk, sk)← Gen(1λ), ct← Enc(pk,m) : Dec(sk, ct) = m

]
= 1

holds.

Definition 2 (IND-CPA/IND-CCA1/IND-CCA2 Security). Let E be
a public-key encryption scheme over the message space M. We say that E is
atk secure for security notion atk ∈ {IND-CPA, IND-CCA1, IND-CCA2} if for
any PPT adversary A has the success probability of the following experiment
is negligible. The atk indistinguishability experiment EXPatk

A,E(λ) is defined as
follows:

1. Gen(1λ) is run to obtain a key-pair (pk, sk).
2. The adversary A is given the public key pk and access to the oracle O1.
3. A outputs a pair of messages m0,m1 ∈M, where |m0| = |m1|.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext ct∗ ← Enc(pk,mb) is

computed and given to A. We call ct∗ the challenge ciphertext.
5. A have access to the oracle O2.
6. A outputs a bit b′ ∈ {0, 1}. The experiment outputs is defined as 1 if b = b′,

and 0 otherwise.

For IND-CPA security, the oracles O1 and O2 always return ⊥. For IND-CCA1
security, O1(ct) = Dec(sk, ct) is decryption oracle and O2 always returns ⊥.
For IND-CCA2 security, O1(ct) = Dec(sk, ct) is decryption oracle and O2 is the
same as O1, except it returns ⊥ on the challenge cipher ct∗ from the indistin-
guishability experiment.
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2.2 Homomorphic Encryption

We use an additively homomorphic public-key encryption scheme in Section 4.4.

Definition 3. A homomorphic public-key encryption scheme E over the mes-
sage spaceM is a tuple of four PPT algorithms (Gen,Enc,Dec,Eval) as follows:

– (Gen,Enc,Dec): Same as in Definition 1.
– ĉ← Eval(pk, C, ct1, ct2, . . . , ctℓ): The evaluation algorithm takes a public key

pk, a circuit C :Mℓ →M, and a sequence of ciphertexts ct1, ct2, . . . , ctℓ as
input, and outputs a ciphertext ĉ.

2.3 FuncCPA Security

Akavia, Gentry, Halevi, and Vald [2] introduced FuncCPA security as a notion
for public-key encryption schemes. They formulated this security definition by
adding a functional re-encryption oracle to the IND-CPA security game.

Definition 4 (FuncCPA Security). Let E be a public-key encryption scheme
with message space M and a family of functions F = {f : (M∪ {⊥})ℓ →M |
ℓ ∈ N}. We say that a scheme E is FuncCPA secure with respect to F if for all
PPT adversaries A there exists a negligible function negl(·) such that:

Pr[EXPFuncCPA
A,E,F (λ) = 1] =

1

2
+ negl(λ)

where the FuncCPA indistinguishability experiment EXPFuncCPA
A,E,F (λ) is defined as

follows:

1. Gen(1λ) is run to obtain a key-pair (pk, sk)
2. The adversary A is given pk and access to a functional re-encryption oracle
O defined as:
– The oracle O is given a function f ∈ F and ciphertexts ct1, ct2, . . . , ctℓ,

where ℓ is the number of the function inputs. Then the oracle computes
mi ← Dec(sk, cti) for i = 1, . . . , ℓ, m′ ← f(m1, . . . ,mℓ), and c′ ←
Enc(pk,m′), and return c′.

3. A outputs a pair of messages m0,m1 ∈M where |m0| = |m1|.
4. A random bit b ∈ {0, 1} is chosen, and the challenge ciphertext ct∗ ←

Dec(pk,mb) is computed and given to A.
5. A can access the oracle O.
6. The adversary A outputs a bit b′ ∈ {0, 1}. The experiment’s output is defined

as 1 if b = b′, and 0 otherwise.

When omitting the function family F , all functions specified as a circuit are
assumed to be included.

To conduct a more detailed analysis, we introduce parameters for the number
of function inputs ℓ and the number of queries q and refer to (ℓ, q)-FuncCPA
security. The number of function inputs ℓ specifies the number of inputs included
in the function family. The number of queries q specifies the number of times the
adversary accesses the functional re-encryption oracle during the experiment.
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Definition 5 ((ℓ, q)-FuncCPA Security). Let ℓ, q ∈ N be two positive in-
tegers. We say that public-key encryption scheme E with message space M is
(ℓ, q)-FuncCPA secure with respect to F = {f : (M∪ {⊥})ℓ → M} if for all
PPT adversaries A with up to q oracle queries during the experiment, there
exists a negligible function negl(·) such that:

Pr[EXP
(ℓ,q)-FuncCPA
A,E,F (λ) = 1] =

1

2
+ negl(λ)

where the (ℓ, q)-FuncCPA indistinguishability experiment EXP
(ℓ,q)-FuncCPA
A,E,F (λ)

is defined as the same as the FuncCPA indistinguishability experiment
EXPFuncCPA

A,E,F (λ). Similar to FuncCPA security, when the function family F is
omitted, it is assumed to include any ℓ-input function.

2.4 FuncCPA+ Security

Dodis, Halevi, and Wichs [5] introduced FuncCPA+ security for public-key en-
cryption schemes. They defined FuncCPA+ security by an experiment that dis-
tinguishes between an oracle providing functional re-encryption and an oracle
always returning a ciphertext of 0.

Definition 6 (FuncCPA+ Security). Let E be a public-key encryption
scheme with message spaceM and a family of functions F = {f : (M∪{⊥})ℓ →
M | ℓ ∈ N}. We say that a scheme E is FuncCPA+ secure with respect to F if
for all PPT adversaries A there exists a negligible function negl(·) such that:

Pr[EXPFuncCPA+

A,E,F (λ) = 1] =
1

2
+ negl(λ)

where the FuncCPA+ indistinguishability experiment EXPFuncCPA+

A,E,F (λ) is defined
as follows:

1. Gen(1λ) is run to obtain a key-pair (pk, sk) and a random bit b ∈ {0, 1} is
chosen.

2. The adversary A is given pk and access to functional re-encryption oracle
Ob defined as:
– The oracle Ob is given a function f ∈ F and ciphertexts ct1, ct2, . . . , ctℓ,

where ℓ is the number of the function f input. Then the oracle computes
mi ← Dec(sk, cti) for i = 1, . . . , ℓ, m′ ← f(m1, . . . ,mℓ), and responds
with c′ ← Enc(pk,m′) if b = 1, and c′ ← Enc(pk, 0) if b = 0.

3. A outputs a bit b′ ∈ {0, 1}. The experiment’s output is defined as 1 if b = b′,
and 0 otherwise.

When omitting the function family F , all functions specified as a circuit are
assumed to be included.

Similar to FuncCPA security, we introduced parameters for the number of
function inputs and the number of queries to conduct a more detailed analysis
of FuncCPA+.
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Definition 7 ((ℓ, q)-FuncCPA+ Security). Let ℓ, q ∈ N be positive inte-
gers. We say that a public-key encryption scheme E with message space M is
(ℓ, q)-FuncCPA+ secure with respect to F = {f : (M ∪ {⊥})ℓ → M} if for
all PPT adversaries A with up to q oracle queries during the experiment, there
exists a negligible function negl(·) such that:

Pr[EXP
(ℓ,q)-FuncCPA+

A,E,F (λ) = 1] =
1

2
+ negl(λ)

where the (ℓ, q)-FuncCPA+ indistinguishability experiment EXP
(ℓ,q)-FuncCPA+

A,E,F (λ)

is defined as the same as the FuncCPA+ indistinguishability experiment
EXPFuncCPA+

A,E,F (λ). When we omit the function family F , it is assumed to in-
clude any ℓ-input function.

3 FuncCPA Implies FuncCPA+

In this section, we prove that if a public-key encryption scheme is FuncCPA
secure, it is also FuncCPA+ secure. We perform a detailed analysis by parame-
terizing the number of queries and function inputs. As a result, we obtain two
interesting theorems. In Theorem 1, it is necessary to make two queries from the
FuncCPA secure adversary for each query from the FuncCPA+ secure adversary.
As another approach, Theorem 2 shows a case where the number of queries re-
mains the same, although the number of function inputs increases by one. We
infer a slight difference in the relationship between the FuncCPA security and
FuncCPA+ security from these theorems.

Theorem 1. (ℓ, 2q)-FuncCPA imples (ℓ, q)-FuncCPA+ for any ℓ ≥ 2, q ≥ 1

Proof. Let A be an adversary against E for (ℓ, q)-FuncCPA+ security and CH be
an challenger for (ℓ, 2q)-FuncCPA security. We construct a reduction algorithm
B to attack (ℓ, 2q)-FuncCPA security of E as bellow.

1. CH runs and (pk, sk)← Gen(1λ), then passes pk to B.
2. B sends messages m0 = 0,m1 = 1 to CH.
3. CH samples a random bit b $←− {0, 1} and computes the challenge ciphertext

ct∗ ← Enc(pk,mb), then passes it to B.
4. B runs A with pk as input.
5. B receives an functional re-encryption oracle query (ct1, . . . , ctℓ, f) from A.

(a) B queries CH with (ct1, . . . , ctℓ, f).
(b) CH sends ct′ ← Enc(pk, f(Dec(sk, ct1), . . . ,Dec(sk, ctℓ))) back to B.
(c) B constructs a function g as

g(x1, x2) =

{
x1 if x2 = 1
0 if x2 = 0

and queries CH with (ct′, ct∗, g).
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(d) CH sends back ct← Enc(pk, g(Dec(sk, ct′),Dec(sk, ct∗))) to B.
(e) B sends ct to A.

6. The output b′ from A is used as B’s output.

We confirm that the reduction algorithm B successfully emulates the challenger
in the (ℓ, q)-FuncCPA+ experiment. First, consider the case where the challenger
CH samples b = 0. In this case, the challenge ciphertext ct∗ is the encryption
of 0. The reduction algorithm B sends the oracle query (ct1, . . . , ctℓ, f) from
the adversay A directly to the challenger CH. The challenger CH computes as
follows:

mi = Dec(sk, cti) (i = 1, . . . , ℓ)

ct′ ← Enc(pk, f(m1, . . . ,mℓ)).

The reduction algorithm B receives ct′. Then, B sends the second oracle query
(ct′, ct∗, g). The challenger computes as follows:

pt1 = Dec(sk, ct′) = f(m1, . . . ,mℓ)

pt2 = Dec(sk, ct∗) = 0

ct← Enc(pk, g(pt1, pt2)) = Enc(pk, 0).

Indeed, when b = 0, it outputs the encryption of 0. Finally, the reduction algo-
rithm B sends ct to the adversary A. This behavior is identical to that of the
(ℓ, q)-FuncCPA+ experiment challenger when b = 0.

Next, we consider the case where b = 1. In this case, the challenge ciphertext
ct∗ is the encryption of 1. Similarly, the reduction algorithm B performs two
oracle queries. As a result, ct← Enc(pk, f(m1, . . . ,mℓ)) is sent to the adversay
A. Indeed, when b = 1, it sends the result of the functional re-encryption oracle
to the adversary A. This behavior is identical to that of the (ℓ, q)-FuncCPA+

experiment challenger when b = 1. Therefore, the reduction algorithm B behaves
in the same manner as the challenger for the adversary A in the (ℓ, q)-FuncCPA+

experiment.
We evaluate the experiment probability of the adversary A as follows:

Pr[EXP
(ℓ,q)-FuncCPA+

A,E,F (λ) = 1] =
1

2
Pr[0← A | b = 0] +

1

2
Pr[1← A | b = 1].

The reduction algorithm B simulates the challenger in the (ℓ, q)-FuncCPA+ ex-
periment for the adversary A. Since the reduction algorithm B’s output matches
the adversary A’s output,

Pr[0← A | b = 0] = Pr[0← B | b = 0], Pr[1← A | b = 1] = Pr[1← B | b = 1].

Therefore, we obtain that:

Pr[EXP
(ℓ,q)-FuncCPA+

A,E,F (λ) = 1] =
1

2
Pr[0← A | b = 0] +

1

2
Pr[1← A | b = 1]

=
1

2
Pr[0← B | b = 0] +

1

2
Pr[1← B | b = 1]

= Pr[EXP
(ℓ,2q)-FuncCPA
B,E,F (λ) = 1].
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Since we know the scheme E satisfies (ℓ, 2q)-FuncCPA security. As a result, we
obtain that:

Pr[EXP
(ℓ,q)-FuncCPA+

A,E,F (λ) = 1] =
1

2
+ negl(λ).

⊓⊔

Theorem 1 requires twice the number of queries to answer the functional re-
encryption oracle query from the adversary for (ℓ, q)-FuncCPA+ security. By
merging these two queries into a single query, we obtain another reduction algo-
rithm, which is stated in Theorem 2.

Theorem 2. (ℓ+ 1, q)-FuncCPA imples (ℓ, q)-FuncCPA+ for any ℓ ≥ 1, q ≥ 1.

Proof. Modify the oracle query in Theorem 1 as follows:

5. B receives an oracle query (ct1, . . . , ctℓ, f) from A. For the function f , we
construct the function g as

g(x1, . . . , xℓ+1) =

{
f(x1, . . . , xℓ) if xℓ+1 = 1
0 if xℓ+1 = 0.

The reduction algorithm B query the challenger CH with (ct1, . . . , ctℓ, ct
∗, g).

The challenger CH calculates ct′ ← Enc(pk, g(Dec(sk, ct1), . . . ,Dec(sk, ctℓ),
Dec(sk, ct∗))) and sends ct′ back to the reduction algorithm B. The reduction
algorithm B sends ct′ to the adversary A.

⊓⊔

4 FuncCPA Security Separations

In this section, we discuss the separation between FuncCPA security and
FuncCPA+ security. Dodis et al. also discussed the separation between FuncCPA
security and FuncCPA+ [5] security. However, we notice some subtle points in
their claim. Although we cannot fully correct their discussion, we can obtain
similar results using parameters such as the number of queries and function
inputs. Additionally, we can weaken the assumption in their claim. Their discus-
sion required IND-CCA2 security, but our results show that IND-CCA1 security
is sufficient.

In Section 4.1, we describe the discussion by Dodis et al. and the subtle
points. We present our results and corrections in Sections 4.2 and 4.3.

4.1 1-FuncCPA+ security and FuncCPA security

Dodis et al. discussed the relationship between FuncCPA security and 1-
FuncCPA+ security [5]. They claimed the following.

“If CCA secure encryption schemes exist, then there exists a 1-FuncCPA+

secure encryption scheme which is not FuncCPA secure.”
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“1-FuncCPA+” includes any single-input function family and allows an arbitrary
number of queries within FuncCPA+. “CCA secure” refers to the IND-CCA2
security.

Carefully observing this proof, we notice the following facts within it.

– In their proof, there is an issue with queries made more than twice.
– We can construct a sequence of hybrid games in IND-CCA1, not IND-CCA2.

To explain their issue in detail, we present the public-key encryption scheme En
using an IND-CCA2 secure scheme E .

Construction of En: Let E be a IND-CCA2 secure public-key encryption scheme
with message space M and OWF (·) be a one-way function.

– Genn: Given 1λ, output (pkn, skn) computed as follows. Let (pk, sk) ←
Gen(1λ) , sample n random strings r1, . . . , rn ← {0, 1}λ, and y ←
OWF (⊕n

i=1ri). Then, output pkn = (pk, y) and skn = (sk, r1, . . . , rn).
– Encn: Given pkn = (pk, y) and m ∈ M, if y = OWF (m) then output m,

else output (0,Enc(pk,m)).
– Decn: Given skn = (sk, r1, . . . , rn) and a ciphertext (tag, c), if tag = 0 then

output Dec(sk, c), else output rtag.

A key characteristic of this encryption scheme En is the ri values generated
by Genn. Dodis et al. use E2 (the case where n = 2) to discuss their claim.
They implicitly proved their claim for a single query, assuming the adversary
could not obtain all ri values. However, multiple queries can be made in reality,
allowing an adversary to obtain all ri values with just two queries. Thus, their
proof must be revised, and we attempt to revise the discussion. Although we
could not achieve a perfect revision, by using parameterized FuncCPA security
and FuncCPA+ security, we can reach a similar theorem as follows:

Theorem 3. For any ℓ, ℓ′ ∈ N such that ℓ < ℓ′, if there exists an IND-CCA1 se-
cure public-key encryption scheme, there exists a scheme that is (ℓ, 1)-FuncCPA+

secure and not (ℓ′, 1)-FuncCPA secure.

If Dodis et al. implicitly proved it with one query, they discuss the separation of
(1,1)-FuncCPA+ and (2,1)-FuncCPA, and our theorem also indicates the same
result as theirs.

Our main difference from their proof lies in the number of queries. Using
the query count parameter, we resolve the issues in their proof. Additionally, we
can show that the public-key encryption scheme is only IND-CCA1 secure, not
IND-CCA2 secure. We prove Theorem 3 by Sections 4.2 and 4.3. In Section 4.4,
we also consider the case where the parameter number of queries is two or more.

4.2 En is (ℓ, 1)-FuncCPA+ secure

For simplicity, we prove that a public-key encryption scheme En is (ℓ, q)-
FuncCPA+ secure instead of (ℓ, 1)-FuncCPA+ security using several lemmas.
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Theorem 4. For any n, ℓ, q ∈ N such that ℓq < n, if an IND-CCA1 secure
public-key encryption scheme E exists, there also exists a scheme En that is
(ℓ, q)-FuncCPA+ secure.

Proof. When ℓq < n, we construct from an IND-CCA1 secure E = (Gen,Enc,
Dec) according to the method for constructing En = (Genn,Encn,Decn) given
in Section 4.1 and prove that this En is (ℓ, q)-FuncCPA+ secure. To achieve this,
we define a sequence of hybrid games: Game 0, Game 0’, Game 1, Game 2.i for
i = 0, . . . , q and Game 3.

Game 0. This is the (ℓ, q)-FuncCPA+ secure game of En when b = 1. In con-
crete, the game proceeds as follows:

– CH generates (pk, sk) ← Gen(1λ), samples ri
$←− {0, 1}λ for i = 1, . . . , n,

set x = ⊕n
i=1ri and computes y ← OWF(x). Then CH sends (pk, y) to the

adversary A for (ℓ, q)-FuncCPA+ security.
– When CH receives a query ((tag1, ct1), . . . , (tagℓ, ctℓ), f), it decrypts all

the ciphertexts to (m1, . . . ,mℓ) according to Decn and computes m =
f(m1, . . . ,mℓ).

– If y = OWF(m) return m.
– Otherwise return (0,Enc(pk,m)) to A.
– Finally, A outputs b′.

Game 1. This game is almost the same as Game 0, except that the challenger
CH does not check y = OWF(m) and never returns m to the adversary A.

Lemma 1. There exists a negligible function negl(·) such that

|Pr[A outputs 1 in Game 0]− Pr[A outputs 1 in Game 1]| = negl(λ).

Proof. We define an event Bad as follows:

Bad. Let A be an adversary against (ℓ, q)-FuncCPA security with the query
(ct1, . . . , ctℓ, f), where f(Decn(sk

n, ct1), . . . ,Decn(sk
n, ctℓ)) equals y, which is

part of the public key of En.
Then from the definition of Bad,

Pr[A outputs 1 ∧ ¬Bad in Game 0] = Pr[A outputs 1 ∧ ¬Bad in Game 1]

holds. Thus, it is sufficient to show that Pr[Bad in Game 0] = negl(λ). We
analyze this probability of the Bad event in the following modified game.
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Game 0’ This game is almost the same as Game 0 except that, CH samples
x← {0, 1}λ, instead of x = ⊕n

i=1ri. Since ℓq < n, there exists an i such that the
attacker A does not receive the ciphertext of ri. Because ri is chosen uniformly at
random, we consider x uniformly random from B’s perspective due to x = ⊕n

i=1ri.
Thus, Game 0 and Game 0’ are perfectly indistinguishable. In particular,

Pr[Bad in Game 0] = Pr[Bad in Game 0’].
Finally, we show Pr[Bad in Game 0’] = negl(λ) by reduction to one-

wayness of OWF . Specifically, we construct a reduction algorithm B as follows:

1. CH performs x
$←− {0, 1}λ and computes y = OWF(x).

2. CH gives y to B.
3. B executes (pk, sk) ← Gen(1λ). Then, B performs ri

$←− {0, 1}λ for i =
1, . . . , n. It sets pkn = (pk, y) and skn = (sk, r1, . . . , rn).

4. B gives pkn to A.
5. B receives the oracle query

(
(tag1, ct1), . . . , (tagℓ, ctℓ), f

)
from A.

(a) For i = 1, . . . , ℓ, if tagi = 0, set mi = Dec(sk, cti); else set mi = rtagi .
(b) Sets x = f(m1, . . . ,mℓ).
(c) If y = OWF(x), outputs x; else returns

(
0,Enc(x)

)
to A.

6. When B receives the output from A, it outputs ⊥.
⊓⊔

Next, we define hybrid games in Game 2.i for i = 0, . . . , q. Note that
Game 2.0 is precisely the same as Game 1.

Game 2.i Up to the (i − 1)-th time, respond with functional re-encryption
oracle; from the i-th time onward, respond with zero encryption oracle.

Lemma 2. Assume E satisfies IND-CCA1 secure, then for all i = 0, . . . , q − 1,

|Pr[A outputs 1 in Game 2.i]− Pr[A outputs 1 in Game 2.(i+1)]| = negl(λ)

holds.

Proof. We construct a reduction algorithm B, which plays the IND-CCA1 secu-
rity experiment of E . As an adversary A against (ℓ, q)-FuncCPA+ security, we
define the reduction algorithm B against IND-CCA1 security as follows:

1. CH executes (pk, sk)← Gen(1λ).
2. CH passes pk to B.
3. B samples ri

$←− {0, 1}λ for i = 1, . . . , n. Let x = ⊕n
i=1ri, and calculate

y = OWF(x). It sets pkn = (pk, y) and skn = (⊥, r1, . . . , rn).
4. B passes pkn to A.
5. B processes the functional re-encryption oracle queries from A as follows

until the (i− 1)-th query:
(a) Let the oracle query be

(
(tag1, ct1), . . . , (tagℓ, ctℓ), f

)
.

(b) For j = 1, . . . , ℓ, if tagj = 0, query CH with ctj .
i. CH executes m← Dec(sk, ctj) for B’s query ctj and returns m.
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ii. B sets the response m from CH as mj .
(c) If tagj ̸= 0, set mj = rtagj .

(d) B returns
(
0,Enc

(
pk, f(m1, . . . ,mℓ)

))
to A.

6. B receives the i-th oracle query
(
(tag1, ct1), . . . , (tagℓ, ctℓ), f

)
from A.

(a) For j = 1, . . . , ℓ, if tagj = 0, query CH with ctj .
i. CH executes m← Dec(sk, ctj) for B’s query ctj and returns m.
ii. B sets the response m from CH as mj .

(b) If tagj ̸= 0, set mj = rtagj .
(c) Set pt0 = f(m1, . . . ,mℓ) and pt1 = 0, then send them to CH.
(d) CH samples b

$←− {0, 1} and calculates ct∗ = Enc(pk, ptb).
(e) B returns (0, ct∗) to A.

7. B responds to subsequent oracle queries from A with
(
0,Enc(pk, 0)

)
.

⊓⊔

Finally, we undo the change from Game 0 to Game 1.

Game 3 This game is the same as Game 2.q, except that now the challenger
checks y = OWF(m) and returns m to A. Note that, this game is exactly the
same as (ℓ, q)-FuncCPA+ security game of En when b = 0.

Lemma 3. There exists a negligible function negl(·) such that

|Pr[A outputs 1 in Game 2.q]− Pr[A outputs 1 in Game 3]| = negl(λ).

Proof. The proof is almost identical to that of Lemma 1. ⊓⊔

To put the above lemma together, we obtain,

|Pr[A outputs 1 in Game 0]− Pr[A outputs 1 in Game 3]| = negl(λ).

Therefore En satisfies (ℓ, q)-FuncCPA+ security. ⊓⊔

4.3 En is not (ℓ, 1)-FuncCPA secure

We prove that En is not (ℓ, 1)-FuncCPA secure.

Theorem 5. For any n, ℓ ∈ N such that n ≤ ℓ. If an IND-CCA1 secure public-
key encryption scheme E exists, then the scheme En is not (ℓ, 1)-FuncCPA secure.

Proof. We construct from an IND-CCA1 secure scheme E = (Gen,Enc,Dec)
according to the method for constructing En = (Genn,Encn,Decn) given in
Section 4.2. We also construct an adversary A against (ℓ, 1)-FuncCPA for the
public-key encryption scheme En.

1. CH executes (pkn, skn)← Genn(1
λ).

2. A receives pkn = (pk, y) from CH.
3. A makes an oracle query to CH.

(a) Define the function f(x1, . . . , xℓ) = ⊕ℓ
i=1xi.
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(b) Send
(
(1, 0λ), . . . , (ℓ, 0λ), f

)
to CH.

(c) Receive the response x from CH.
4. A send m0 = 0 and m1 = x to CH.
5. CH randomly selects b

$←− {0, 1} and sends c∗ ← Encn(pk
n,mb) to A.

6. A receives c∗.
7. A outputs 1 if c∗ matches x, and 0 otherwise.

The response to the oracle query is a ciphertext representing the XOR of
r1, . . . , rℓ. Since Encn returns the plaintext if it matches the image of y, x rep-
resents the XOR of r1, . . . , rℓ. CH encrypts either x or 0 based on b. From Enc′,
c∗ is either the plaintext x or a ciphertext of 0. Thus, if c∗ matches x, b is 1;
otherwise, b is 0. ⊓⊔

4.4 Regarding the query count q ≥ 2.

We consider the case where the number of queries is q ≥ 2. We can obtain a
similar result to Theorem 5 by considering E as an IND-CCA1 homomorphic
public-key encryption.

Theorem 6. For any n, ℓ, q ∈ N such that q ≥ 2, n ≤ ℓq − 1. If an IND-CCA1
secure public-key encryption scheme E exists, then the scheme En is not (ℓ, q)-
FuncCPA secure.

Proof. We construct from an IND-CCA1 secure scheme E = (Gen,Enc,Dec)
according to the method for constructing En = (Genn,Encn,Decn) given in
Section 4.2. We also construct an adversary A against (ℓ, q)-FuncCPA for the
public-key encryption scheme En.

1. CH executes (pkn, skn)← Genn(1
λ).

2. A receives pk′ = (pk, y) from CH.
3. A makes a total of q − 1 oracle queries to CH.

(a) Define the function f(x1, . . . , xℓ) = ⊕ℓ
i=1xi.

(b) For the i-th oracle query, i ∈ [q−1], send
(
((i−1)ℓ+1, 0λ), . . . , (iℓ, 0λ), f

)
to CH.

(c) Receive the response (0, cti) from CH.
4. A perform XOR operations on ct1, . . . , ctq−1 using homomorphic operations,

and let the result be ct.
5. For the final oracle query, A send

(
(0, ct), ((q−1)ℓ+1, 0λ), . . . , (qℓ−1, 0λ), f

)
and let the result be x.

6. A send m0 = 0 and m1 = x to CH.
7. CH samples b

$←− {0, 1} and sends c∗ ← Encn(pk
n,mb) to A.

8. A receives c∗.
9. A outputs 1 if c∗ matches x, and 0 otherwise.

The adversary A obtains ciphertexts that represent the XOR of r1, . . . , rℓ(q−1)

from the first q−1 oracle queries and homomorphic operations. The response to
the final oracle query is a ciphertext representing the XOR of r1, . . . , rℓq−1. Since
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Encn returns the plaintext if it matches the image of y, x represents the XOR
of r1, . . . , rℓq−1. CH encrypts either x or 0 based on b. From Encn, c∗ is either
the plaintext x or a ciphertext of 0. Thus, if c∗ matches x, b is 1; otherwise,
b is 0. ⊓⊔

Using Theorem 4 from Section 4.2 and the previously mentioned Theorem
6, we can derive Theorem 3 in a form corresponding to a general number of
queries q.

Theorem 7. For any ℓ, ℓ′, q, q′ ∈ N such that (q′ = 1, ℓq < ℓ′) or (q′ ≥ 2, ℓq <
n ≤ ℓ′q′ − 1). If an IND-CCA1 secure public-key encryption scheme exists, then
there exists a scheme that is (ℓ, q)-FuncCPA+ secure and not (ℓ′, q′)-FuncCPA
secure.
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