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Abstract. In this paper, we formulate a special class of systems of linear
equations over finite fields that appears naturally in the provable security
analysis of several MAC and PRF modes of operation. We derive lower
bounds on the number of solutions for such systems adhering to some
predefined restrictions, and apply these lower bounds to derive tight
PRF security for several constructions. We show security up to 23n/4

queries for the single-keyed variant of the Double-block Hash-then-Sum
(DBHtS) construction, called 1k-DBHtS, under appropriate assumptions
on the underlying hash function. We show that the single-key variants
of PMAC+ and LightMAC+, called 1k-PMAC+ and 1k-LightMAC+ achieve the
required hash function properties, and thus, achieve 3n/4-bit security.
Additionally, we show that the sum of r independent copies of the Even-
Mansour cipher is a secure PRF up to 2

r
r+1n queries.

Keywords: PMAC+, LightMAC+, Sum of Even-Mansour, tight security

1 Introduction

For some k ≥ 2, let Π1, . . . ,Πk denote k mutually independent and uniform
random permutations of {0,1}n, and consider the function F ∶ {0,1}n → {0,1}n
defined by the mapping

F(x) ∶= Π1(x)⊕Π2(x)⊕ . . .⊕Πk(x)

It is well-known [20,23] that F — the well-known sum of k permutations — is
statistically indistinguishable from a length-preserving uniform random function,
provided the permutations are secret and the number of queried points q ≤ 2n−1.
Over the years, several proof techniques [4,32,23,17,21,15,20] have been used to
prove this result, with various degrees of success. In particular, Patarin’s mirror
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theory [36,37], has been the main tool to study the underlying combinatorial
problem.

Suppose k = 2 and the adversary makes q queries to the oracle at hand. Let
Y i
1 ∶= Π1(xi), Y i

2 ∶= Π2(xi), and λi denote the oracle output for any 1 ≤ i ≤ q. A
typical mirror theory based proof studies the system of equations {Y i

1 ⊕Y i
2 = λi}

and aims to count all solutions (yi1, yi2 ∶ i ∈ [q]), such that yib ≠ y
j
b for all i ≠ j. In

a more general setting, one can study a system of bivariate equations endowed
with a partition of the set of variables such that any two variables in the same
partition must be assigned distinct values. We call this structure a constrained
system. It is not difficult to see that for random outputs, the expected number
of solutions is (2n)q × (2n)q/2nq, where (2n)q. Dutta et al. and Cogliati and
Patarin studied [21,15] the problem specific to the sum of permutations and
showed a lower bound close to the expectation, while q ≤ 2n/24 and the solution
space is {0,1}2n, and as a result a good bound on the advantage. Although this
approach works when the permutations are secret, it does not apply directly
when the adversary has oracle access to the permutations.

This is, for instance, the case with the sum of Even-Mansour or SOEM con-
struction [12] defined by the mapping

F(x) ∶= Π1(x⊕K1)⊕Π2(x⊕K2),
where (K1,K2) denotes the key. Since the adversary can now make primitive
queries, certain solutions are forbidden for fresh permutation inputs for any con-
struction query. More specifically, if P1 and P2 denote the set of primitive query
outputs then, for any construction query with fresh inputs to Π1 and Π2, a valid
solution must lie outside (P1 × {0,1}n)∪ ({0,1}n ×P2). As it turns out, existing
mirror theory approaches cannot be extended directly in this general setting. In
fact, the best lower bounds [19,12,29] show that the number of solutions are just
(1 −O(q3/22n))-close to the expectation, provided q ≤ 22n/3.

A similar situation also arises in the secret permutations regime. For in-
stance, all single-keyed attempts at DbHtS-based MACs, like 1k-PMAC+ [19] and
n1kf9 [38] are shown to be secure up to 22n/3 queries. The main bottleneck: a
(possibly) suboptimal lower bound for the number of solutions for the under-
lying constrained system. Several previous works [19,14,29] mention this as the
primary hurdle in improving the security bound for a class of single-keyed con-
structions. This motivates us to study the aforementioned combinatorial problem
in its full generality.

1.1 Related Works
Single-keyed DbHtS. Most common message authentication code (MAC) and
pseudorandom function (PRF) constructions are based on block ciphers. Promi-
nent examples include CBC-MAC [5], PMAC [7], OMAC [26], LightMAC [33] etc. At a
high level, these constructions come under the umbrella of UHF-then-PRF de-
signs, where first a message is compressed to a short string by a universal1 hash
1 A keyed function is called universal, if it is collision-resistant under a uniformly

chosen key.
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function (UHF) and then a block cipher is applied on this string to generate
the tag. As a consequence, a collision on the hash output implies a collision on
the construction output, and vice-versa. In general, this gives a birthday bound
distinguishing attack, which is a problem when the MAC is instantiated with
small block ciphers, like PRESENT [9], LED [24], and GIFT -64 [3].

To go beyond birthday bound, one possible way to improve upon the UHF-
then-PRF design is to double the hash output size, which then renders the
aforementioned collision attack ineffective. One can obviously use a bigger block
cipher to encrypt the hash output. A more prudent and popular approach is
to apply the sum-of-permutations transformation, i.e., each block is encrypted
separately and the resulting pair are XORed to generate the output. Datta et
al. [18] formalized this, naming the design diblock hash-then-sum or DBHtS. They
proved that several constructions, like PolyMAC [8,6,40], SUM-ECBC [41], PMAC+
[42], 3kf9 [43], LightMAC+ [35] etc. follow the DBHtS design paradigm and achieve
2n/3-bit security. In [31], Leurent et al. presented a 3n/4-bit attack against
DBHtS schemes, and later, Kim et al. [30] proved 3n/4-bit security of the above
constructions, closing the gap. Independently, Jha and Nandi also proved [28]
a 3n/4-bit security for the general DBHtS construction with independent hash
functions.

While the DBHtS paradigm is quite popular as it can be very efficient, pro-
vided the underlying hash is efficient and parallelizable, it requires multiple block
cipher keys. Indeed, three keys are required: one each for the two block ciphers
and an independent key for the hash function. On the other hand, having a
single key variant of DBHtS is quite desirable from a practical point of view.
Datta et al. proposed [19] a single-key variant for PMAC+, called the 1k-PMAC+,
and show that this construction is 2n/3-bit secure. In a similar vein, Shen and
Sibleyras proposed a single-keyed variant of 3kf9, called n1kf9, and showed a
similar security bound. However, there is no matching attack, and in fact, these
constructions are believed to have a similar security bound as their original
three-key counterparts.
Sum of Even-Mansour. All the constructions discussed so far are block-cipher
based. In recent years, however, several new constructions have instead employed
cryptographic permutations or to use the theory parlance, a public2 random per-
mutation. SipHash [2] and keyed sponge [1,34] are probably the first two such con-
structions achieving birthday bound security. In [12], Chen et al. first proposed to
use a public random permutation to construct beyond-the-birthday bound PRFs.
In particular, they proposed the sum of Even-Mansour or SOEM2 construction.
The basic idea is to instantiate the block ciphers in the sum of permutations con-
struction with public permutation based block cipher EMΠ(K,m) = Π(K⊕m)⊕K.
Chen et al. showed that the sum of two independent Even-Mansour construc-
tions, SOEM2

Π1,Π2
(K1,K2,m) = EMΠ1(K1,m) ⊕ EMΠ2(K2,m) is a 2n/3-bit secure

PRF. In fact, they showed that the independence of the permutation and keys is
a necessary condition as any weaker assumption would degrade the security to a
birthday-bound. In [39], Sibleyras et al. demonstrated that while independence is
2 The adversary is allowed black-box access to the permutation.
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essential, the post-adding of keys is redundant. Indeed, a similar security bound
is achievable with a more efficient design called the keyed sum of permutations,
KSoPΠ1,Π2(K1,K2,m) = Π1(K1 ⊕m)⊕Π2(K2 ⊕m). In this paper, we use SOEM2

to refer to this slightly modified construction. Since the initial SOEM2 proposal,
several follow up works [10,22,11,39] came up with new variants relaxing certain
conditions, although still within the 2n/3-bit security range.

1.2 Our Contributions

Table 1. Summary of Results. `, s, and n denote the the message length in n-bit
blocks, the counter size in bits, and the block size of the primitive, respectively. The
security bounds denote an upper bound on the number of queries (ignoring any length
factors).

Construction #Keys #Calls Security bound Tightness

DBHtS [18] 3 2+ O(23n/4) [30] ✓ [31]

PMAC+ [42] 3 ` + 2 O(23n/4) [30] ✓ [31]

3kf9 [43] 3 ` + 2 O(23n/4) [30] ✓ [31]

LightMAC+ [35] 3 ` (1 + s
n−s ) + 2 O(23n/4) [30] ✓ [31]

1k-PMAC+ [19] 1 ` + 2 O(22n/3) [19] –

n1kf9 [38] 1 ` + 2 O(22n/3) [38] –

SOEM2 [12,39] 2 2 Õ(22n/3) [12,39] ✓ [12,39]

1k-DBHtS 1 2+ O(23n/4) ✓

1k-PMAC+ 1 ` (1 + 2
n−2 ) + 2 O(23n/4) ✓

1k-LightMAC+ 1 ` (1 + s+2
n−s−2 ) + 2 O(23n/4) ✓

SOEMr r r Õ(2rn/r+1) ✓

Our Contributions are twofold:
1. In section 3, we formalize a general constrained system over any arbitrary

finite field. This of course includes the omnipotent extensions of binary field.
In section 4, we derive a lower bound on the number of solutions for a large
class of constrained systems that encompasses all the known instances in
literature.

2. As an application, we prove tight security bounds for several class of con-
structions:
• Tight bounds for single-keyed DbHtS: In section 5, we define the single-

key variant of DBHtS, called 1k-DBHtS, and prove that it achieves security
up to 23n/4 queries (and the total number of blocks) as long as the hash
function satisfies some properties introduced in section 2.1. This solves
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the open problem posed by Datta et al. in [19]. In section 6, we study
two instances of 1k-DBHtS, namely, the single-keyed variant of 1k-PMAC+
and 1k-LightMAC+. In particular, we show that the corresponding hash
functions, called TPHash and TLightHash achieve the desired proper-
ties, and thus, 1k-PMAC+ and 1k-LightMAC+ achieve security up to 23n/4

queries. Our security bounds are tight in the number of queries as the
Leurent-Nandi-Sibleyras attack [31] on DBHtS also applies to 1k-DBHtS.

• Tight Security of Sum of Even-Mansour: In section 7, for r ≥ 2, we define
the sum of r Even-Mansour ciphers — an extension of the Sibleyras-
Todo [39] variant of the sum of two Even-Mansour construction [12]
by Chen et al. We show that this construction achieves security up to
2

r
r+1n queries, which can be shown to be tight by a simple key recovery

argument [12,39]. This directly generalizes the previous results, both in
terms of design and security.

Table 1 summarizes our results and gives a brief comparison with relevant
existing results.

2 Preliminaries

For any prime power N , FN denotes the finite field of order N . With a slight
abuse of notation, we use ⊕ and ⋅ to denote the addition and multiplication
operations in any finite field, and ⊖ to denote the subtraction operation. For
m,n ∈ N+, Fm

N and Fm×n
N denote the m-dimensional vector space and the set of

all (m × n)-matrices over FN , respectively. For any v ∈ Fm
N , H(v) denotes the

number of non-zero coordinates in v.
For any n ∈ N+, we identify F2n with {0,1}n, the set of all n-bit strings. We

write {0,1}∗ ∶= ∪∞n=0{0,1}n. For any k ≤ n ∈ N+, (n)k ∶= n(n − 1) . . . (n − k + 1)
denotes the falling factorial, and (n)0 = 1 by convention.

Sum Capture: For some k ≥ 2, let α ∈ Fk
N and A,B1,B2, . . . ,Bk ⊆ FN such

that H(α) = k. Define

SCα(A,B) ∶= {b ∈ B1 × . . . × Bk ∶
k

⊕
i=1

αi ⋅ bi ∈ A} , (1)

µα(A,B) ∶= ∣SCα(A,B)∣ , (2)

where B = (Bi1 , . . . ,Bik) denotes an arbitrary ordering of the constituent sets.
For α = (1,1, . . . ,1), µα(A,Bi1 ,Bi2 , . . . ,Bik) = µα(A,Bj1 ,Bj2 , . . . ,Bjk) for any
two permutations (i1 i2 . . . ik) and (j1 j2 . . . jk) of [k]. We drop the mask from
notation whenever α = (1,1, . . . ,1).
For any k ≥ 2 and p ≥ 0, we define

µα(A, p) ∶= max
B1,...,Bk⊆FN

∣Bi∣≤p

µα(A,B), (3)

The following lemma is a restatement of [27, Theorem 2], which in turn is a
simple generalization of a similar result proved for the k = 2 case in [16].
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Lemma 1. For all but (4/N)-fraction of (multi)sets A ⊆ FN such that ∣A∣ = q
and any α ∈ Fk

N with H(α) ≥ 2, we have

µα(A, p) ≤ (
qpk

N
+ 2pk−1

√
ln(N)q) .

Some Useful Results: Let λ = (λ1, . . . , λq) denote a sequence of F2n -valued
random variables. Define

∆ ∶=max
d
∣{i ∈ [q] ∶ λi = d}∣

∇ ∶=max
d≠0
∣{(i, j) ∶ i ≠ j ∈ [q], λi ⊕ λj = d}∣

Proposition 1. For any with replacement sampled λ, E (∆) ≤ 6n⌈q/2n⌉.

Proof. First, assume q ≤ 2n. For any positive integer k ≤ q, we have

Pr (∆ ≥ k) ≤ ∑
x∈F2n

(q
k
) 1

2nk
≤ 2n × (q

k
) 1

2nk
≤ 2n qk

2nkk!
≤ 2n ( qe

k2n
)
k

,

where we use k! ≥ (k/e)k for the last inequality. Then

E (∆) ≤ (k − 1) + qPr (∆ ≥ k) ≤ (k − 1) + q2n ( qe

k2n
)
k

≤ 22n ( qe

k2n
)
k

.

For q ≤ 2n, the result then follows by setting k = 6n. For q > 2n, divide the q
sample into ⌈q/2n⌉ blocks, each of size at most 2n. The result then follows by
exploiting the linearity of expectation. ⊓⊔

Proposition 2. For any without replacement sampled λ, E (∇) ≤ 6n⌈q2/2n⌉.

Proof. First, assume q2 ≤ 2n. For any positive integer k ≤ 2n−1, we have

Pr (∇ ≥ k) ≤ ∑
x∈F∗

2n

(q
2

k
) 2

2nk
≤ 2n × (q

2

k
) 2

2nk
≤ 2n+1 q2k

2nkk!
≤ 2n+1 ( q

2e

k2n
)
k

,

The result now follows by arguing as in the previous Proposition. ⊓⊔

Let ∼ denote an equivalence relation on [q] such that i ∼ j if λi = λj . Let
P = {P1, . . . ,Pc} denote the corresponding partition. Let NI ⊆ [c] denote the set
of indices corresponding to non-singleton blocks. Let νi = ∣Pi∣ for all i ∈ [c], and
νmax =max{νi ∶ i ∈ [c]}.

The following two propositions are a simple restatement of two results
from [28].
Proposition 3 (Lemma 4.3 in [28]). Suppose λ satisfies the condition, for
distinct i, j ∈ [q], Pr (λi = λj) ≤ ε. Then, we have

E(∑
i∈NI

ν2i ) ≤ 2q2ε.
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Proposition 4 (Corollary 4.1 in [28]). Suppose λ satisfies the condition, for
distinct i, j ∈ [q], Pr (λi = λj) ≤ ε. Then,

Pr (νmax ≥ a) ≤
2q2ε

a2
.

Proposition 5. For any real-valued random variable X, we have

E (∣X −E (X)∣) ≤
√
V (X).

Proof. We have

E (∣X −E (X)∣) =
√

E (∣X −E (X)∣)2

≤
√
E ((X −E (X))2) =

√
V (X),

where the inequality also follows from Jensen’s inequality among others. ⊓⊔

2.1 Hash Functions

A (K,{0,1}∗,Y)-keyed function H is the function family {HK ∶ {0,1}∗ → Y}K∈K.
We often call H a diblock hash function, if we can write Y as Z2 for some Z.

For any diblock hash function H, we write (H1
K(m),H2

K(m)) ∶= (z1, z2), where
z1, z2 ∈ Z, whenever HK(m) = y = (z1, z2).

Permutation-based Hash Functions. A (K,{0,1}∗,Y)-hash function is said to
be permutation-based if K ⊆ P (n)r for some r ∈ N. For any such hash function
H, the block function, βH ∶ P (n) × {0,1}∗ → N, is defined by the mapping:

(πr,m)↦ β(πr,m),

where πr = (π1, . . . , πr) and β(πr,m) denotes the minimum number of invoca-
tions3 of π needed to compute Hπ(m).

In this paper, we fix r = 1, and make the following two plausible assumptions
on βH :
1. βH is functionally independent of the permutation, whence we drop the

permutation from the parameters.
2. there exists a constant c ∈ R+ such that for any m ∈ {0,1}∗, βH(m) ∶=

c⌈∣m∣/n⌉. We refer to such an H a rate-c−1 hash function.
Note that, 1 follows from 2. We state it explicitly for brevity.

We remark that the underlying hash functions in almost all the popular
constructions, including LightMAC, PMAC, LightMAC+, PMAC+, 3kf9 etc. are rate-1,
and SUM-ECBC is rate-2−1. Thus, the above assumption is indeed plausible, and
c ≤ 2 in most applications.
3 Note that, there exists a circuit for H such that on every input, H makes (possibly)

a large but bounded number of black-box calls to πr. Thus, βπr,m is well-defined for
any πr and m.
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Coverfree Hash Functions. For any (K,{0,1}∗,Y2)-diblock hash function
H, any r ≥ 3, s ≥ 2, and any m ∶= (m1, . . . ,mq) ∈ ({0,1}∗)q, we define the
following events
COLL1H(m): ∃∗ i, j ∈ [q] such that H1

K (mi) =H1
K (mj);

COLL2H(m): ∃∗ i, j ∈ [q] such that H2
K (mi) =H2

K (mj);
AP1rH(m): ∃∗ i1, . . . , ir ∈ [q] such that

H1
K (mi1) =H1

K (mi2),H2
K (mi2) =H2

K (mi3), . . . ,H1
K (mir−1) =H1

K (mir);
AP2rH(m): ∃∗ i1, . . . , ir ∈ [q] such that

H2
K (mi1) =H2

K (mi2),H1
K (mi2) =H1

K (mi3), . . . ,H2
K (mir−1) =H2

K (mir);
MC1sH(m): ∃∗ i1, . . . , is ∈ [q] such that

H1
K (mi1) =H1

K (mi2) = ⋯ =H1
K (mis);

MC2sH(m): ∃∗ i1, . . . , is ∈ [q] such that
H2

K (mi1) =H2
K (mi2) = ⋯ =H2

K (mis),
COLLH(m): ∃∗ i, j ∈ [q] such that HK(mi) =HK(mj).

where the randomness is induced by K↞ K.

Definition 1. For some ε1, δ ∶ N3 → [0,1] and ε2, ε3 ∶ N4 → [0,1], a
(K,{0,1}∗,Y)-diblock hash function H is said to be an (ε1, ε2, ε3, δ)-Coverfree
Hash or CfH if and only if for any ρ = (q, `, σ) ∈ N3, any m = (m1, . . . ,mq) ∈
({0,1}n`)q containing at most σ blocks, any r ≥ 3, and any s ≥ 2, it satisfies

Pr (COLL1H(m)) ≤ ε1(ρ), Pr (AP1rH(m)) ≤ ε2(ρ, r), Pr (MC1sH(m)) ≤ ε3(ρ, s),

Pr (COLL2H(m)) ≤ ε1(ρ), Pr (AP2rH(m)) ≤ ε2(ρ, r), Pr (MC2sH(m)) ≤ ε3(ρ, s),

and Pr (COLLH(m)) ≤ δ(ρ).

Double-block Hash-then-Sum. Let H be a (K,{0,1}∗,{0,1}2n)-
diblock hash function. The DiBlock Hash-then-Sum construction is a (K ×
P (n)2 ,{0,1}∗,{0,1}n)-keyed function DBHtSH defined by the mapping:

(K,π1, π2,m)↦ π1(H1
K(m))⊕ π2(H2

K(m)) (4)

Several beyond-the-birthday bound MAC constructions, including SUM-
ECBC [41], PMAC+ [42], LightMAC+ [35] etc. follow this paradigm.

2.2 Security Definitions

In this paper, we assume that the distinguisher is non-trivial, i.e. it never makes
a duplicate query, and it never makes a query for which the response is already
known due to some previous query. Let A (q, `, σ, t) be the class of all non-trivial
distinguishers limited to q oracle queries of each of length up to ` blocks and
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a total of σ blocks, and t computations. Any A ∈ A (q, `, σ, t) is referred as a
(q, `, σ, t)-adversary.

In our analyses, especially security proofs, it will be convenient to work in the
information-theoretic setting. Accordingly, we always skip the boilerplate hybrid
steps and often assume that the adversary is computationally unbounded, i.e.,
t = ∞, and deterministic. A computational equivalent of all our security proofs
can be easily obtained by a simple hybrid argument.

The advantage of any adversary A in distinguishing some oracle O1 from
another oracle O0 is defined as

∆O1;O0 (A) ∶= ∣Pr (AO1 = 1) −Pr (AO0 = 1)∣ .

PRF Security: The PRF advantage of distinguisher A against a (K,X ,Y)-
keyed function F instantiated with a key K↞ K is defined as

AdvtprfF (A) =∆F;Γ (A) . (5)

In this paper, we also consider the security model where the distinguisher is given
oracle access to the internal primitives of the construction. More specifically, sup-
pose F is constructed on top of k uniform random permutations Π = (Π1, . . . ,Πk)
of {0,1}n, denoted F[Π]. Then, the PRF advantage of A is defined as

Advtprf
F[Π] (A) =∆(F[Π],Π±);(Γ,Π±) (A) , (6)

where the superscript ± denotes a bidirectional access to Π.

2.3 The Expectation Method

Let A be a computationally unbounded and deterministic distinguisher that tries
to distinguish between two oracles O0 and O1 via black box interaction with one
of them. We denote the query-response tuple of A’s interaction with its oracle
by a transcript ω. This may also include any additional information the oracle
chooses to reveal to the distinguisher at the end of the query-response phase
of the game. We denote by Θre (res. Θid) the random transcript variable when
A interacts with O1 (res. O0). The probability of realizing a given transcript ω
in the security game with an oracle O is known as the interpolation probability
of ω with respect to O. Since A is deterministic, this probability depends only
on the oracle O and the transcript ω. A transcript ω is said to be attainable if
Pr (Θid = ω) > 0.

Lemma 2 (Fine-grained Expectation Method). Let Ω be the set of all
transcripts. For some εbad ≥ 0 and εratio ∶ Ω → R, suppose there is a set Ωbad ⊆ Ω
satisfying the following conditions:
• Pr (Θid ∈ Ωbad) ≤ εbad,
• εratio is non-negative on Ωgood = Ω ∖Ωgood,
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• for any ω ∈ Ωgood, ω is attainable and Pr (Θre = ω)
Pr (Θid = ω)

≥ 1 − εratio(ω).

Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

∆O1;O0 (A) ≤ εbad +EΘid (1goodεratio) ,

where 1good denotes the indicator variable corresponding to Ωgood.

The expectation method due to Hoang and Tessaro [25] is a simple corollary of
the above result, when εratio is non-negative over the entire transcript space.

Corollary 1 (Expectation Method). Suppose there is a non-negative func-
tion εratio ∶ Ω → [0,∞) satisfying the following conditions:
• Pr (Θid ∈ Ωbad) ≤ εbad;

• For any ω ∉ Ωbad, ω is attainable and Pr (Θre = ω)
Pr (Θid = ω)

≥ 1 − εratio(ω).

Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

∆O1;O0 (A) ≤ εbad +EΘid (εratio) .

3 Constrained Systems

System of Linear Equations: Fix some q, r ≤ N . Any system of q linear
equations in r variables, Ax = λ, over FN can be compactly represented by the
augmented matrix A∣λ, where A ∈ Fq×r

N and λ ∈ Fq
N .

System-graph and Components: It would be often convenient to look at a graph-
theoretic representation of the system A∣λ. Formally, to any system A∣λ, we
associate an undirected, labeled, bipartite graph G(A∣λ) = (row(A∣λ), col(A),E)
where row(A∣λ) and col(A) denote the two disjoint sets of vertices, and

E = {({Ai●∣λi,A●j},Aij) ∶ (i, j) ∈ [q] × [r],Ai,j ≠ 0n}

denotes the edge-set. Each edge e = ({Ai●∣λi,A●j},Aij) ∈ E is often written in
a more illustrative notation as Ai●∣λi

Aij A●j or simply i− j ∣ whenever
convenient, where the superscripts − and ∣ are used to differentiate row and
column index, respectively. We call G(A∣λ) a system-graph.

In this context, we say that two rows Ai●∣λi and Ai′●∣λi′ are adjacent, denoted
Ai●∣λi ∼ Ai′●∣λi′ , if and only if there exists an A●j ∈ col(A) such that i− j ∣

i′−.4 The relation ∼ on row(A∣λ) is reflexive and symmetric, but not transitive.
We say that two rows Ai● and Aj● are connected, denoted Ai●∣λi ∼∼ Aj●∣λj ,

if and only if they are connected in G(A∣λ). ∼∼ is an equivalence relation on
4 Any two rows of a matrix are said to be disjoint, if they do not share a common

column index with non-zero entry, and non-disjoint otherwise.
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row(A∣λ), effectively partitioning row(A∣λ) = A1∣λ1⊔⋯⊔Ac∣λc. For each compo-
nent Ai∣λi of A∣λ, let Ai denote the column-reduced form of Ai, which is obtained
by simply dropping all the zero columns from Ai. Then, it is easy to see that the
induced subgraph G[Ai∣λi, col(Ai)] is a component G(A∣λ), and a system-graph
in its own right. As a consequence, with a slight abuse of notations, we also write
Ai∣λi to denote the qi × (r + 1) submatrix (also referred as a component) of A∣λ
corresponding to the equivalence class Ai∣λi = {Aj1●∣λj1 , . . . ,Ajqi●∣λjqi

}, i.e.

Ai∣λi =
⎛
⎜
⎝

Aj1●∣λj1

⋮
Ajqi●∣λjqi

⎞
⎟
⎠
,

where ∑i qi = q. Let ri ∶= ∣col(Ai)∣ and ∑i ri = r. For any i ∈ [c], we say that Ai∣λi

is isolated if qi = 1. By extension, A∣λ is said to be isolated if Ai∣λi is isolated
for all i ∈ [c].

Note that, both ∼ and ∼∼ are independent of λ. Accordingly, we often view
them as relations on row(A).
Definition 2 (Canonical Component Form). Let A1∣λ1 ⊔ . . .⊔Ac∣λc be the
partitioning of row(A∣λ) with respect to ∼∼. The component form (CF) of A∣λ
with respect to an arbitrary ordering (Ai1 ∣λi1 , . . . ,Aic ∣λic) is defined as the block
matrix

CF(A∣λ) ∶=
⎛
⎜⎜⎜
⎝

Ai1 0 ⋯ 0 λi1

0 Ai2 ⋯ 0 λi2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ Aic λic

⎞
⎟⎟⎟
⎠

A∣λ can have several component forms. Unless stated otherwise, we always as-
sume that the system A∣λ is in some component form, for if not, it can be placed
in CF by a swapping of rows and columns.

Definition 3 (Acyclic System). Any system A∣λ is said to be cyclic if and
only if the corresponding system-graph G(A∣λ) is cyclic, and acyclic otherwise.

The following proposition is a trivial consequence of the acyclic nature of the
system-graph.

Proposition 6. Any acyclic system has full row-rank.

See Example 1 for a short explanation on the notations and definitions in-
troduced thus far.
Example 1. Consider the following system of 6 equations in 15 variables over
FN :

A∣λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 α2 α3 0 0 0 0 0 0 0 0 0 0 0 0 λ1

0 0 0 α4 α5 α6 0 0 0 0 0 0 0 0 0 λ2

α7 0 0 0 0 0 0 α8 α9 0 0 0 0 0 0 λ3

0 0 0 0 α10 0 α11 0 0 0 0 α12 0 0 0 λ4

0 0 α13 0 0 0 0 0 0 α14 α15 0 0 0 0 λ5

0 0 0 0 0 0 0 0 0 0 0 0 α16 α17 α18 λ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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for non-zero α1, . . . , α18 ∈ FN . The corresponding system-graph is illustrated in
Figure 1.

A1●∣λ1

A●1

A2●∣λ2 A3●∣λ3 A4●∣λ4 A5●∣λ5 A6●∣λ6

A●2 A●3 A●4 A●5 A●6 A●7 A●8 A●9 A●10 A●11 A●12 A●13 A●14 A●15

Fig. 1. The system-graph corresponding to the system in Example 1. The edge labels
are omitted for readability.

Here,
• A3●∣λ3 ∼ A1●∣λ1 ∼ A5●∣λ5 giving A1∣λ1 = {A1●∣λ1,A3●∣λ3,A5●∣λ5},
• A2●∣λ2 ∼ A4●∣λ4 giving A2∣λ2 = {A2●∣λ2,A4●∣λ4}, and
• A6●∣λ6 ∼ A6●∣λ6 giving A3∣λ3 = {A6●∣λ6},

resulting in the following component form:

⎛
⎜
⎝

A1 0 0 λ1

0 A2 0 λ2

0 0 A3 λ3

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 α2 α3 0 0 0 0 0 0 0 0 0 0 0 0 λ1

α7 0 0 α8 α9 0 0 0 0 0 0 0 0 0 0 λ3

0 0 α13 0 0 α14 α15 0 0 0 0 0 0 0 0 λ5

0 0 0 0 0 0 0 α4 α5 α6 0 0 0 0 0 λ2

0 0 0 0 0 0 0 0 α10 0 α11 α12 0 0 0 λ4

0 0 0 0 0 0 0 0 0 0 0 0 α16 α17 α18 λ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The resulting system CF(A∣λ) is acyclic and same as A∣λ up to a relabeling of
variables and constants. Furthermore, one of the components A3∣λ3 is isolated,
although the overall system itself is non-isolated.

Solutions to a System of Equations: Let η(A∣λ) denote the number of solutions
to the system A∣λ. Throughout we assume that the system is consistent, i.e.,
rank(A∣λ) = rank(A), otherwise η(A∣λ) = 0.

The component form of a system gives a very simple product rule for the
number of solutions:

η(A∣λ) =
c

∏
i=1

η(Ai∣λi), (7)

which stems from the simple observation that any two components are com-
pletely disjoint, i.e., involve distinct variables.

Definition 4 (Constrained System). For any positive integers q, r, t such
that q, t < r, a (q, r, t)-constrained system S = (A∣λ ; P) over FN is the system
A∣λ of q equations in r variables, over FN , endowed with an equivalence relation
P on col(A) resulting in the partition col(A) = P1 ⊔ . . . ⊔ Pt.

The dimension and rank of S, denoted dim(S) and rank(S), are simply the
dimension and rank of A, respectively.
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For what follows, we fix a (q, r, t)-constrained system S = (A∣λ ; P), where A∣λ
is in a component form. Whenever convenient, we drop P from the notation.

Since S is effectively a system of equations, all the notations and notions are
analogously extended unless stated otherwise, except for a minor change in the
definition of the system-graph G(S) associated with S which is now endowed with
an implicit coloring of the vertices col(A) that has a one to one correspondence
with P. More precisely, for any i ∈ [t], any two columns A●j ,A●j′ ∈ Pi share the
same implicit color.

The ordered sequence (S1 ≺ ⋯ ≺ Sc) denotes the component form of S, de-
noted CF(S), where each Si is the (qi, ri, ti)-constrained system (Ai∣λi ; P

(i)),
with P(i) ⊆ P being the equivalence relation on the set col(Ai) ⊆ [r], that parti-
tions col(Ai) into ti subsets P

(i)
1 , . . . ,P

(i)
ti

.
S is said to be:
• a clique iff for all j, j′ ∈ col(A), (j, j′) ∈ P.
• a partite iff for all Ai● ∈ row(A), and for all j, j′ ∈ col(Ai●), (j, j′) ∉ P.

Since P(i) ⊆ P, for brevity we continue to use P instead of P(i) for all i. Wlog
we also assume that S is in component form or simply CF.

See Example 2 for an explanation on the notations and definitions related to
constrained systems.
Example 2. Recall Example 1, and endow the system A∣λ with an implicit equiv-
alence relation P (as evident from the updated system-graph illustrated in Fig-
ure 2), resulting in the partition col(A) = P1⊔P2⊔P3, where Pi = {j ∈ [15] ∶ j ≡ i
(mod 3)} for all i ∈ [3].

A1●∣λ1

A●1

A2●∣λ2 A3●∣λ3 A4●∣λ4 A5●∣λ5 A6●∣λ6

A●2 A●3 A●4 A●5 A●6 A●7 A●8 A●9 A●10 A●11 A●12 A●13 A●14 A●15

Fig. 2. The system-graph corresponding to the constrained system in Example 2. Yet
again the edge labels are omitted for readability.

For the (6,15,3)-constrained system S = (A∣λ ; P), we have
• dim(S) = 6 × 15, rank(S) = 6,
• CF(S) = (S1 ≺ S2 ≺ S3), where Si = (Ai∣λi ; P),
• S3 is isolated, but S is not, and
• S is acyclic and partite.

4 Solutions to a Constrained System
Definition 5 (Solution to a Constrained System). For a family of sets
R = {Ri ⊆ FN}i∈[t], any y = (y1, . . . , yr) ∈ Fr

N is said to be an R-solution for S if
and only if the following conditions are satisfied:
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1. y satisfies the system A∣λ,

2. for any i ∈ [t], and any j ∈ Pi, yj ∉Ri,

3. for any i ∈ [t], and any j ≠ j′ ∈ Pi, yj ≠ yj′ .

In words, all elements inR1, . . . ,Rt are forbidden. In this context,Ri are referred
as forbidden sets. Furthermore any two distinct P-related variables5 must have
distinct values.

Let (S ∣R) denote the R-solution space of S and η(S ∣R) ∶= ∣(S ∣R)∣, the
number of R-solutions of S. The central problem that we study in this work is
to find a good lower bound on η(S ∣R) under some assumptions on A, λ and R.

Fix a (q, r, t)-constrained system S = (A∣λ ; P) and a family of sets R =
{Ri}i∈[t]. Fix a component form (S1 ≺ . . . ≺ Sc) for S. For any (i, j) ∈ [c] × [t],
let r

(j)
i ∶= ∣col(Ai) ∩ Pj ∣, and define r(j) = ∑c

i=1 r
(j)
i .

We will often use the following basic property which is easily verifiable using
Definition 5.

Fact 1 For any (q, r, t)-system S and any R′ = (R′1, . . . ,R′t), where R′i ⊆Ri for
all i ∈ [t], η(S ∣R) ≤ η(S ∣R′).

Without loss of generality, we assume ∣Ri∣ = si ≤ s for some s < N , or else,
(S ∣R) = ∅. Then, under the assumption that λ is uniform at random, one would
expect that the number of R-solutions for S is approximately

E (S ∣R) ∶= ∏
t
j=1(N − si)r(j)

Nq
(8)

Of course, the assumption and the expression are both quite speculative at a
first glance. However, as we show later, η(S ∣R) is very close to E (S ∣R) for a
large class of constrained systems. Indeed, for certain binary matrices A and
R = ∅ case, Cogliati et al. prove [13] exactly this result. We aim to prove it in a
more general setting where R may not be empty.

While tackling the problem in its full generality is an interesting and tech-
nically challenging endeavor, it might not captivate the general cryptography
community. Instead, we focus on a specific class of constrained systems that
includes, among other things, known instances in symmetric cryptography, par-
ticularly those discussed in this paper.

Definition 6 (Weight). The weight of any A ∈ Fq×r
N is defined as

H(A) ∶=min{H(v) ∶ v ∈ rowsp+(A)},

where rowsp+(A) ∶= {a1A1● ⊕ ⋯ ⊕ aqAq● ∶ ∀(a1, . . . , aq) ≠ 0} and H(v) denotes
the number of non-zero coordinates in v.
5 The equivalence relation P on col(A) can be equivalently defined over the set of

variables {x1, . . . , xr}.
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We have the following fact that relates the weight of a matrix (and its compo-
nents) with its row rank.

Proposition 7. Suppose A ∈ Fq×r
N has H(A) = k > 0. Then,

(1) A has full row rank.
(2) for every r′ ≥ r − k + 1 and 1 ≤ i1 < ⋯ < ir′ ≤ r, the matrix A′ = (A●i1 ∣⋯∣A●ir′ )

has full row rank, where A●i denotes the i-th column of A viewed as a q-
dimensional vector.

(3) r − k + 1 ≥ q.

Proof. (1) follows from the definition. For (2), suppose to the contrary that
A′ does not have full rank. Then, we must have 0 ∈ rowsp+(A′). Specifically,
one can find (a1, . . . , aq) ≠ 0 ∈ Fq

2, such that a1A
′
1● ⊕ ⋯ ⊕ aqA

′
q● = 0. Then,

v = a1A1● ⊕⋯ ⊕ aqAq● ∈ rowsp+(A), and H(v) ≤ r − r′ ≤ k − 1. Thus, H(A) < k,
which is a contradiction. Finally, (3) follows from (2). ⊓⊔

Looking ahead momentarily the higher the weight of a system, the closer our
bound to E (S ∣R), and point (2) and (3) of Proposition 7 play a crucial role
towards establishing this fact. The following definition and subsequent results
provide an easy-to-check condition for determining the weight of a matrix.

Definition 7 (Regularity). Any A ∈ Fq×r
N is said to be k-regular if and only if

H(Ai●) = k, for all i ∈ [q].

Note that, the above definition can be equivalently formulated as row(A∣λ) is
regular6 in G(A∣λ). The following propositions show that acyclic and highly
regular systems have high weight.

Proposition 8. For any k ≥ 2, any k-regular and acyclic A ∈ Fq×r
N has H(A) = k.

Proof. The result is trivial for q = 1. Assume for contradiction that H(A) < k for
some q ≥ 2. Then, for some 2 ≤ l ≤ q, there exists a sequence of rows Ai1●, . . . ,Ail●
and a sequence of non-zero field elements a1, . . . , al, such that v = a1Ai1● ⊕ . . .⊕
alAil● has H(v) < k. Since, A is acyclic, one can always find two distinct rows
Aia● and Aib● such that there exists at most one Aic● ∈ {Ai1●, . . . ,Ail●} ∖ Aia●
and one Aid● ∈ {Ai1●, . . . ,Ail●} ∖ Aib● such that Aia● ∼ Aic● and Aib● ∼ Aid●,
respectively. For if not, then due to the finiteness of l, the matrix

⎛
⎜
⎝

Ai1●
⋮

Ail●

⎞
⎟
⎠

is cyclic which contradicts the acyclic nature of A. Then, using the k-regularity
of A, at least k − 1 ≥ 1 non-zero columns in each of Aia● and Aib● have a single
non-zero entry. Therefore, these columns contribute non-zero coordinates to v.
Thus, H(v) ≥ 2k − 2 which is at least k for k ≥ 2. ⊓⊔
6 A vertex set is said to be regular if all the constituent vertices have the same degree.
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Proposition 9. For any q ≥ 2 and any k ≥ 3, let A ∈ Fq×r
N be acyclic and k-

regular. Then, for any 1 ≤ i1 < . . . < ik ≤ r, the matrix A′ = A ∖ {A●i1 , . . . ,A●ik}
has:

rank(A′) =
⎧⎪⎪⎨⎪⎪⎩

q − 1 if {i1, . . . , ik} = col(Aj●) for some j ∈ [q],
q otherwise.

Proof. First consider the case: {i1, . . . , ik} = col(Aj●) for some j ∈ [q], i.e., all
the non-zero columns of Aj● are deleted, and hence Aj● can be dropped without
affecting the rank of A′. Thus, rank(A′) ≤ q−1. Furthermore, since the system is
acyclic and A is k-regular, A′ must be acyclic and at least (k−1)-regular. Then,
using Proposition 8, we have H(A′) ≥ k − 1 ≥ 2, and thus using Proposition 7,
rank(A′) = q − 1.

Now suppose {i1, . . . , ik} ≠ col(Aj●) for all j ∈ [q]. Thus, A′ has q non-zero
rows. Assume towards a contradiction that rank(A′) < q. Then one can find a
sequence of distinct rows A′j1●,A

′
j2●, . . . ,A

′
jl● ∈ row(A

′) and a sequence of non-
zero coefficients a1, a2, . . . , al such that v = a1A′j1● ⊕ . . .⊕ alA

′
jl● = 0. Let

A′′ =
⎛
⎜⎜⎜
⎝

Aj1●
Aj2●
⋮

Ajl●

⎞
⎟⎟⎟
⎠

We claim that the number of columns in A′′ with a single non-zero entry in each
of these columns is at least 2k − 2. Indeed, in the worst case, all the rows are
connected to each other. So after a relabeling of rows one can find a sequence
Aj′1● ∼ Aj′2● ∼ . . . ∼ Aj′

l′●
for some l′ ≤ l. Since A′′ is acyclic and k-regular, Aj′1●

and Aj′
l′●

contribute at least k − 1 columns each with a single non-zero entry.
Now, even if one deletes k columns from A′′, there are still at least k − 2 ≥ 1
columns that contribute non-zero entries in any linear combination, including
v = a1A′j1● ⊕ . . .⊕ alA

′
jl●. Therefore, v ≠ 0, contradicting rank(A′) < q. ⊓⊔

Column-Uniform System: Any k-regular system S = (A∣λ ; P) is said to be
column-uniform system, if there exists a unique sequence (or set) of non-zero
coefficients αS = (α1, . . . , αk ∶ αi) such that:
1. for each column j, there exists a unique α(j) ∶= αl for some l ∈ [k], such that

for all row i of A the following condition holds:

Aij =
⎧⎪⎪⎨⎪⎪⎩

α(j) if Aij ≠ 0,
0 otherwise.

2. for all i ∈ [q], the i-th equation in S is of the form α1xj1 ⊕⋯ ⊕ αkxjk = λi,
where {j1, . . . , jk} = col(Ai●).

3. for k ≥ 2, if j1, j2 ∈ Pl then α(j1) = α(j2).
While the above definition looks quite artificial, it is remarkably satisfied by
most of the known instances of constrained systems in symmetric-key literature,
including, for instance, the sum of k permutations and DBHtS.
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In this paper, we focus on lower bounding η(S ∣R) for column-uniform, acyclic
and k-regular (or k-CAR) system S = (A∣λ ; P).
Additional Notations and Conventions: Without loss of generality assume a
component form (S1 ≺ . . . ≺ Sc), such that all the isolated components appear
before the non-isolated ones. Let NI(S) denote the set of indices of all the non-
isolated components, ξS ∶= max{ri ∶ i ∈ [c]}, ∆S ∶= maxd ∣{i ∈ [q] ∶ λi = d}∣, and
for any i ∈ [c], let:
• S≤i denote the system (S1 ≺ . . . ≺ Si),
• y≤i denote the solution of the sub-system S≤i,
• P and F define families of set indexed by j ∈ [t] such that

Pj(y≤i) ∶= {yk ∈ y≤i ∶ k ∈ Pj} and Fj(y≤i) ∶=Rj ⊔Pj(y≤i).

Let ∣Pj(y≤i)∣ ∶= r
(j)
≤i and ∣Fj(y≤i)∣ = f

(j)
≤i ∶= sj + r

(j)
≤i .

Extending the notation for i = 0, let y≤0 denote any empty sequence, and thus,
Pj(y≤0) = ∅ and Fj(y≤0) =Rj . In addition, for the sake of convenience, we also
assume that 0 ∈Rj for all j ∈ [t]. Note that, r(j)≤i and hence f

(j)
≤i are independent

of the actual elements in Pj(y≤i) and Fj(y≤i), respectively. In particular, we
have r

(j)
≤i ≤ q, as each equation can have at most one variable in Pj , and thus,

f
(j)
≤i ≤ sj + q ≤ s + q.

4.1 The Case of CAR Partite System

For any t-CAR and partite (t-CARP) (q, r, t)-system S, we have the obvious7

bijective map αj z→ Pj . With this in mind, we define three families of sets R̂,
P̂ and F̂ indexed by j ∈ [t] such that

R̂j ∶= αj ⋅Rj

P̂j(y≤i) ∶= {αj ⋅ yk ∈ y≤i ∶ k ∈ Pj}
F̂j(y≤i) ∶= R̂j ⊔ P̂j(y≤i).

It is obvious that ∣R̂j ∣ = sj , ∣P̂j(y≤i)∣ = r
(j)
≤i and ∣F̂j(y≤i)∣ = f

(j)
≤i .

Theorem 1 (Partite Bound). Let t ≥ 2, and R be a family of sets. For any
(q, r, t)-constrained system S which is t-CARP and satisfies ξS(s + q) ≤ N/2, we
have η(S ∣R) ≥ (1 − ε)E (S ∣R), where

ε ≤ 2µαS(λ,R)
N t−1 + 2q∆S

N t−1 +
6q(s + q)t

N t
+ ∑

i∈NI(S)
(2r

t
i(s + q)t
N t

+ εodd(q, r, s, t)) ,

where

εodd(q, r, s, t) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+q)t−1
Nt−1 for odd t,

0 for even t.

7 This is made obvious by a (possible) relabeling of coefficient indices.
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A proof of this result is derived in two stages. First, in Lemma 4, we derive an
initial bound that would be useful when the local8 error terms can be shown to
be sufficiently small in expectation for a random constrained system. We then
go on to derive a bound on the global error term which completes the proof of
the aforementioned theorem.

Consider the i-th component Si = (Ai∣λi ; P). Since S is in CF, col(Ai) = {r≤(i−1)+
1, . . . , r≤(i−1) + t}, where r≤(i−1) = r1 + . . .+ ri−1. For brevity, we ignore the r≤(i−1)
shift in indexing.

Now, towards a proof of Theorem 1, observe that

η(S≤i ∣R) = ∑
y≤(i−1)

η(Si ∣F(y≤(i−1))), (9)

For a fixed y≤(i−1), the set of R-solutions to Si is given by

(Si ∣F) ∶= {y = (y1, . . . , yri) ∈ F(1) × . . . ×F (ri) ∶ Aiy = λi},

where, for all j ∈ [ri], F(j) ∶= Fk(y≤i−1) for a unique k ∈ [t]. Let f(j) = ∣F(j)∣, and
thus f(j) = f (k)≤(i−1) for a unique k ∈ [t]. Let A∅ ∶= {y ∈ Fri

N ∶ Aiy = λi}. Moreover,
for each j ∈ [ri], we define

A{j} ∶= A∅⋂(Fj−1
N ×F(j) × Ft−j

N ).

Then, we have

(Si ∣F) = A∅ ∖
⎛
⎝ ⋃
j∈col(Ai)

A{j}
⎞
⎠
.

For any non-empty J ⊆ col(Ai), let AJ ∶= ∩j∈JA{j}. Using the principal of
inclusion-exclusion, we have

η(Si ∣F) = ∣A∅∣ −
RRRRRRRRRRR

⎛
⎝ ⋃j∈[ri]

A{j}
⎞
⎠

RRRRRRRRRRR
= ∑
J ⊆[ri]

(−1)∣J ∣∣AJ ∣ (10)

Now, ∣A∅∣ = Nri−qi follows from elementary linear algebra; In fact, by virtue
of S being an acyclic and t-regular system, Proposition 8 and 7 allows for an
analogous argument to prevail for any AJ with ∣J ∣ ≤ t−1. In particular, for any
J = {l1, . . . , l∣J ∣}, and any yJ = (yl1 , . . . , yl∣J ∣) ∈ F(l1) × . . . × F(l∣J ∣), we obtain
an equation in exactly ri − ∣J ∣ ≥ ri − t + 1 ≥ qi variables, which has exactly
Nri−∣J ∣−qi solutions. There are exactly f(J ) = f(l1) . . . f(l∣J ∣) such yJ . Thus, we
have ∣AJ ∣ = f(J ) ⋅N t−∣J ∣−qi for all J ⊂ [t].

8 The adjective “local” here corresponds to individual components.
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Crude Bound: Digressing a little, from (10) and the above discussion, we have

Nri−qi − ri(s + q)Nri−qi−1 ≤ η(Si ∣F) ≤ Nri−qi

for any acyclic system S where we use the fact f(j) ≤ (s+ q) for all j ∈ [ri]. This
along with (9) gives the following crude bound.

Fact 2 For any acyclic (q, r, t)-system and any R = (R1, . . . ,Rt), we have

Nri−qi−1 (N − ri(s + q))η(S≤(i−1) ∣R) ≤ η(S≤i ∣R) ≤ Nri−qiη(S≤(i−1) ∣R) (11)

Now coming back to (10) for a proof of Theorem 1, we study the right hand side
separately for isolated and non-isolated components, starting with an isolated
component.

Lemma 3. Suppose Si is isolated. Then, for any y≤(i−1) ∈ (S≤(i−1) ∣R), we have

η(Si ∣F) ≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
1 + (−1)t 2

N t−1

⎛
⎜
⎝
µαS(λi,F) −

f
([t])
≤(i−1)

N

⎞
⎟
⎠

⎞
⎟
⎠
,

where f
([t])
≤(i−1) = f

(1)
≤(i−1) ⋅ . . . ⋅ f

(t)
≤(i−1).

Proof. Since Si is t-regular, partite and isolated, ri = t and qi = 1. Then, recall
from (10) and the subsequent discussion

η(Si ∣F) = ∑
J ⊆[t]

(−1)∣J ∣∣AJ ∣

= ∑
J ⊂[t]

(−1)∣J ∣f(J )N t−∣J ∣−1 + (−1)tµαS(λi,F)

= 1

N

⎛
⎝ ∑J ⊂[t]

(−1)∣J ∣f(J )N t−∣J ∣ + f([t]) − f([t]) + (−1)tNµαS(λi,F)
⎞
⎠

= 1

N

⎛
⎝

t

∏
j=1
(N − f(j)) + (−1)tN (µαS(λi,F) −

f([t])

N
)
⎞
⎠

= 1

N

⎛
⎜
⎝

t

∏
j=1
(N − f

(j)
≤(i−1)) + (−1)

tN
⎛
⎜
⎝
µαS(λi,F) −

f
([t])
≤(i−1)

N

⎞
⎟
⎠

⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
1 + (−1)t N

∏t
j=1(N − f

(j)
≤(i−1))

⎛
⎜
⎝
µαS(λi,F) −

f
([t])
≤(i−1)

N

⎞
⎟
⎠

⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
1 + (−1)t 2

N t−1

⎛
⎜
⎝
µαS(λi,F) −

f
([t])
≤(i−1)

N

⎞
⎟
⎠

⎞
⎟
⎠
, (12)

where the second equality is due to (2), the fifth equality is from a simple re-
labeling, and the last inequality follows from the fact that f

(j)
≤(i−1) ≤ (s + q) and

t(s + q) ≤ ξS(s + q) ≤ N/2. ⊓⊔
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Now, on to a lower bound on η(S≤i ∣R) for isolated Si.

Lemma 4. Suppose Si is isolated. Then, we have

η(S≤i ∣R) ≥
∏t

j=1(N − f
(j)
≤(i−1))

N
(1 − 2µαS(λi,R)

N t−1 − 2∆S

N t−1 −
6(s + q)t

N t
)η(S≤(i−1) ∣R).

Proof. From (9) and Lemma 3, we have

η(S≤i ∣R) = ∑
y≤(i−1)

η(Si ∣F(y≤(i−1)))

≥ ∑
y≤(i−1)

∏t
j=1(N − f

(j)
≤(i−1))

N

⎛
⎜
⎝
1 + (−1)t 2

N t−1

⎛
⎜
⎝
µαS(λi,F) −

f
([t])
≤(i−1)

N

⎞
⎟
⎠

⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
η(S≤(i−1) ∣R) −

2f
([t])
≤(i−1)

N t
η(S≤(i−1) ∣R) −

2

N t−1 ∑
y≤(i−1)

µαS(λi,F)
⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
η(S≤(i−1) ∣R) −

2f
([t])
≤(i−1)

N t
η(S≤(i−1) ∣R) −

2

N t−1 ∑
y≤(i−1)

µαS(λi,F)
⎞
⎟
⎠

(13)

Claim. We claim

∑
y≤(i−1)

µαS(λi,F) ≤ (µαS(λi,R) +∆S +
2(s + q)t

N
)η(S≤(i−1) ∣R)

Proof. We have

∑
y≤(i−1)

µαS(λi,F) = ∑
y≤(i−1)

∑
I⊆[t]

µ(λi, P̂I , R̂[t]∖I)

= ∑
I⊆[t]

∑
y≤(i−1)

µ(λi, P̂I , R̂[t]∖I)

where P̂I = P̂j1 × . . .×P̂jm and R̂[t]∖I = R̂k1 × . . .×R̂km′ for every I = {j1, . . . , jm}
and [t] ∖ I = {k1, . . . , km′}. For brevity we simply write I = [m]. Consider the
following two cases:
• Case A: I = ∅. In this case the definition straightaway gives

∑
y≤(i−1)

µ(λi, R̂[t]) = µαS(λi,R) × η(S≤(i−1) ∣R).

We remark that for i = 1 this is the only possible case.
• Case B: I ≠ ∅ ⊆ [t]. Fix some (at−m+1, . . . , at) ∈ R̂[t]∖I and define a⊕ ∶=

at−m+1 ⊕ . . . ⊕ at, with a⊕ = 0 whenever I = [t]. Fix some (yl1 , . . . , ylm) ∈
P̂1 × . . . × P̂m. Then, we have

∑
y≤(i−1)

µ(λi, yl1 , . . . , ylm , at−m+1, . . . , at) = ∑
y≤(i−1)

µ(λi ⊖ a⊕, yl1 , . . . , ylm) (14)
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Thus, we want to count the number of solutions for S≤(i−1) that additionally
satisfies the equation αl1 ⋅xl1 ⊕ . . .⊕ αlm ⋅xlm = λi ⊖ a⊕.
Let S′≤(i−1) = S≤(i−1) ∪{αl1 ⋅xl1 ⊕ . . .⊕αlm ⋅xlm = λi⊖a⊕} be the constrained
system S≤(i−1) extended with the additional equation αl1 ⋅xl1⊕. . .⊕αlm ⋅xlm =
λi ⊖ a⊕. Then, by definition, we have

∑
y≤(i−1)

µ(λi ⊖ a⊕, yl1 , . . . , ylm) = η(S′≤(i−1) ∣R).

Let A′≤(i−1) denote the corresponding coefficient matrix. We can have two
cases based on the rank of A′≤(i−1):
● Case B1: A′≤(i−1) has full row rank. Suppose lm ∈ colAj

for some j ≤ (i−1)
and let S≤(i−1)∖j denote the constrained system that excludes Sj . Then,
using the fact that A′≤(i−1) is full rank, we have

η(S′≤(i−1) ∣R) ≤ N t−2 × η(S≤(i−1)∖j ∣R),

and further, using the crude bound (11), we have η(S≤(i−1) ∣R) ≥ (N t−1−
t(s + q)N t−2) × η(S≤(i−1)∖j ∣R) holds as S≤(i−1) is acyclic and t-regular.
Thus,

η(S′≤(i−1) ∣R) ≤
2

N
η(S≤(i−1) ∣R),

where we use the fact that t(s+ q) ≤ N/2. There are at most ( t
m
) choices

for I and for each such choice there are at most qmst−m choices for
(l1, . . . , lm, at−m+1, . . . , at), which finally gives

∑
I⊆[t]

∑
y≤(i−1)

µ(λi, P̂I , R̂[t]∖I) ≤
2(s + q)t

N
η(S≤(i−1) ∣R).

● Case B2: A′≤(i−1) does not have full row rank. This case is only possible
if the additional equation is defined by the equations in S≤(i−1). Since
S≤(i−1) is isolated, this case is only possible if the additional equation is
redundant, i.e., I = [t], {l1, . . . , lt} = col(Aj) for some j ≤ (i − 1), and
λj = λi. Since there is only one choice for I, and at most ∆S choices for
j, the number of solutions in this case is bounded by ∆Sη(S≤(i−1) ∣R).

The claim then follows by combining the bounds in all cases, and the lemma
follows by substituting the claimed bound in (13). ⊓⊔

Now on to non-isolated components.
Lemma 5. Suppose Si is non-isolated. Then, we have

η(Si ∣F) ≥
∏t

j=1(N − f
(j)
≤(i−1))

r
(j)
i

Nqi
(1 − 2rti(s + q)t

N t
− εodd(q, r, s, t)) ,

where

εodd(q, r, s, t) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+q)t−1
Nt−1 for odd t,

0 for even t.



22 B. Cogliati, J. Ethan, A. Jha, M. Nandi and A. Saha

Proof. Recall from (10) that

η(Si ∣F) = ∑
J ⊆[ri]

(−1)∣J ∣∣AJ ∣.

First consider the even t case, where using Bonferroni’s inequality, we have

η(Si ∣F) ≥ ∑
J ⊆[ri]
∣J ∣≤t−1

(−1)∣J ∣∣AJ ∣

≥ ∑
J ⊆[ri]
∣J ∣≤t−1

(−1)∣J ∣f(J )Nri−∣J ∣−qi

≥ 1

Nqi

⎛
⎜⎜⎜
⎝
∑
J ⊆[ri]
∣J ∣≤t

(−1)∣J ∣f(J )Nri−∣J ∣ − ∑
J ′⊆[ri]
∣J ′∣=t

f(J ′)N
ri−t
⎞
⎟⎟⎟
⎠

≥ 1

Nqi

⎛
⎝

ri

∏
j=1
(N − f(j)) − rti(s + q)tNri−t⎞

⎠

≥
∏ri

j=1(N − f(j))
Nqi

(1 − 2rti(s + q)t
N t

) , (15)

where the last inequality follows from the fact that f(j) ≤ (s + q) for any j and
ri(s + q) ≤ ξS(s + q) ≤ N/2.

As for the odd t case, using Bonferroni’s inequality, we have

η(Ψi ∣F) ≥ ∑
J ⊆[ri]
∣J ∣≤t

(−1)∣J ∣∣AJ ∣

≥ ∑
J ⊆[ri]
∣J ∣<t

(−1)∣J ∣fJNri−∣J ∣−qi − ∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣

≥ 1

Nqi

⎛
⎜⎜⎜
⎝
∑
J ⊆[ri]
∣J ∣<t

(−1)∣J ∣fJNri−∣J ∣ −Nqi ∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣
⎞
⎟⎟⎟
⎠

≥ 1

Nqi

⎛
⎜⎜⎜
⎝

ri

∏
j=1
(N − f(j)) −Nqi ∑

J ⊆[ri]
∣J ∣=t

∣AJ ∣
⎞
⎟⎟⎟
⎠

≥
∏ri

j=1(N − f(j))
Nqi

⎛
⎜⎜⎜
⎝
1 − 2

Nri−qi ∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣
⎞
⎟⎟⎟
⎠

(16)
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Claim. We claim

∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣ ≤ qi(s + q)t−1Nri−t−qi+1 + rti(s + q)tNri−t−qi .

Proof. Let J = {l1, . . . , lt} and suppose S′i denote the updated system after the
removal of these t columns from Si. Using Proposition 9, we have two cases:
• Case A: J = col(Aj●) for some Aj● ∈ row(Ai). From Proposition 9 we know

that rank(S′i) = qi − 1. Thus, we have

∑
J =col(Aj●)
Aj●∈row(Ai)

∣AJ ∣ ≤ qi(s + q)t−1Nri−t−qi+1.

• Case B: J ≠ col(Aj●) for all Aj● ∈ row(Ai). From Proposition 9 we know that
rank(S′i) = qi. Thus, we have

∑
J ≠col(Aj●)

∣AJ ∣ ≤ rti(s + q)tNri−t−qi .

This proves the claim. ⊓⊔

The result follows by substituting the claimed bound in (16) by realizing that

ri

∏
j=1
(N − f(j)) =

t

∏
k=1
(N − fk

≤(i−1))r
(k)
i ⊓⊔

Since the bound in Lemma 5 is independent of y≤(i−1), we have the following
corollary.

Corollary 2. Suppose Si is non-isolated. Then, we have

η(S≤i ∣R) ≥
∏t

j=1(N − f
(j)
≤(i−1))

r
(j)
i

Nqi
(1 − 2rti(s + q)t

N t
− εodd(qi, ri, s, t))η(S≤(i−1) ∣R),

where

εodd(q, r, s, t) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+q)t−1
Nt−1 for odd t,

0 for even t.

Theorem 1 now follows from the appropriate recursive application of
Lemma 4 and Corollary 2 for all i from c down to 1, carefully accumulating
the bound for non-isolated components.

A Better Bound for 2-Regular Systems. For the special case of 2-regular
systems, we provide a finer version of Lemma 4, and hence, a finer version of
Theorem 1. Let

∇R̂ ∶=max
d≠0
∣{(x1, x2) ∈ (R̂1 × R̂2) ∶ x1 ⊕ x2 = d}∣ .
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Lemma 6. Suppose Si is 2-CARP. Then, we have

η(S≤i ∣R) ≥
∏2

j=1(N − f
(j)
≤(i−1))

N
(1 − ε)η(S≤(i−1) ∣R),

where

ε ≤ 2

N
∣µαS(λi,R) −

∣R1 ×R2∣
N

∣ +
12(s + q)(∆S +∇R̂)

N2
+ 24(s + q)3

N3

A proof of this lemma is provided in Appendix A.

Corollary 3. Suppose S is 2-CARP. Then, we have η(S ∣R) ≥ (1 − ε)E (S ∣R),
where

ε ≤ 2

N
∑

i∉NI(S)

2

N
∣µαS(λi,R) −

∣R1 ×R2∣
N

∣+
12q(s + q)(∆S +∇R̂)

N2
+24q(s + q)3

N3
+2(s + q)2

N2 ∑
j∈NI(S)

r2j .

4.2 The Case of CAR Clique System

Towards a variation of Theorem 1, suppose S is column-uniform, acyclic, k-
regular (k-CARC) for some k ≥ 2, and clique. Thus, t = 1 in this case.

A system S is said to be trivial if and only if there exists v ∈ rowsp+(A) such
that

H(v) = 2 and (v∣0) ∈ rowsp+(A∣λ),
and non-trivial otherwise. For all trivial systems, η(S ∣R) = 0 can be trivially 0
for certain fields, such as the characteristic 2 fields with binary matrices. Accord-
ingly, we assume that the system is non-trivial. Beyond this obvious limitation,
the case of clique systems is quite similar to the partite case.

Indeed we reuse the same notations and arguments to a large extent. First,
we redefine

E (S ∣R) ∶= (N − s)r
Nq

Next, suppose S denote an arbitrary partite version of S. Set R1 = ⋯ = Rk,
s1 = . . . = sk, and reuse the definitions of A∅ and A{j} for any j ∈ col(Ai).
Furthermore, for each j1 ≠ j2 ∈ col(Ai), let

EQj1,j2 ∶= {y = (y1, . . . , yri) ∈ Fri
N ∶ Aiy = λi ∧ yj1 = yj2}.

Then, for any i ∈ [q], we have

(Si ∣F) = A∅ ∖
⎛
⎝
(

ri

⋃
j=1
A{j}) ∪

⎛
⎝ ⋃
j1<j2∈col(Ai)

EQj1,j2

⎞
⎠
⎞
⎠
,

More importantly,

η(Si ∣F) = ∣A∅∣ − ∣
ri

⋃
j=1
A{j}∣ −

RRRRRRRRRRRR
⋃

j1<j2∈col(Ai)
EQj1,j2

RRRRRRRRRRRR
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= η(Si ∣F) −
RRRRRRRRRRRR

⋃
j1<j2∈col(Ai)

EQj1,j2

RRRRRRRRRRRR
≥ η(Si ∣F) − (

ri
2
)Nri−1−qi

where the inequality follows from the fact that ∣EQj1,j2 ∣ ≤ Nri−1−qi as H(A) ≥
k ≥ 2. This gives the following clique counterparts for the results derived in the
partite case.

Lemma 7. Suppose Si is isolated and non-trivial. Then, for any y≤(i−1) ∈
(S≤(i−1) ∣R), we have

η(Si ∣F) ≥
(N − f≤(i−1))k

N

⎛
⎝
1 + (−1)k 2

Nk−1
⎛
⎝
µαS(λi,F) −

fk
≤(i−1)

N

⎞
⎠
− k2

N

⎞
⎠
.

Lemma 8. Suppose Si is isolated and non-trivial. Then, we have

η(S≤i ∣R) ≥
(N − f≤(i−1))k

N
(1 − 2µαS(λi,R)

Nk−1 − 2∆S

Nk−1 −
6(s + kq)k

Nk
− k2

N
) .

Lemma 9. Suppose Si is non-isolated and non-trivial. Then, we have

η(Si ∣F) ≥
(N − f≤(i−1))ri

Nqi
(1 − 2rki (s + kq)k

Nk
− εodd(q, r, s) −

r2i
N
) ,

where

εodd(q, r, s) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+kq)k−1
Nk−1 for odd k,

0 for even k.

Corollary 4. Suppose Si is non-isolated and non-trivial. Then, we have

η(S≤i ∣R) ≥
(N − f≤(i−1))ri

Nqi
(1 − 2rki (s + kq)k

Nk
− εodd(q, r, s) −

r2i
N
)η(S≤(i−1) ∣R),

where

εodd(q, r, s) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+kq)k−1
Nk−1 for odd k,

0 for even k.

Theorem 2 (Clique Bound). Let k ≥ 2 and R be a family of sets. For any
(q, r,1)-constrained system S which is non-trivial, k-CARC and which satisfies
ξS(q + s) ≤ N/2, we have η(S ∣R) ≥ (1 − ε)E (S ∣R), where

ε ≤ 2µαS(λ,R)
Nk−1 +2q∆S

Nk−1+
6q(s + kq)k

Nk
+2qk

2

N
+ ∑
i∈NI(S)

(2r
k
i (s + kq)k

Nk
+ qi(s + kq)k−1

Nk−1 + r2i
N
) .
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A Better Bound for 2-Regular Systems. As in the case of partite systems,
we provide a refined bound for 2-regular systems. Let

∇R̂ ∶=max
d≠0
∣{x1, x2 ∈ R̂ ∶ x1 ⊕ x2 = d}∣ .

Lemma 10. Suppose Si is 2-CARC. Then, we have

η(S≤i ∣R) ≥
∏2

j=1(N − f
(j)
≤(i−1))

N
(1 − ε)η(S≤(i−1) ∣R),

where

ε ≤ 2

N
∣µαS(λi,R) −

∣R∣2
N
∣ +

12(s + 2q)(∆S +∇R̂)
N2

+ 24(s + 2q)3
N3

+ 4

N

Corollary 5. Suppose S is 2-CARC. Then, we have η(S ∣R) ≥ (1 − ε)E (S ∣R),
where

ε ≤ 4q

N
+ 2

N
∑

i∉NI(S)
∣µαS(λi,R) −

∣R∣2
N
∣+

12q(s + 2q)(∆S +∇R̂)
N2

+24q(s + 2q)3
N3

+(2(s + 2q)2
N2

+ 1

N
) ∑

j∈NI(S)
r2j .

5 Single-keyed Double-block Hash-then-Sum

Let π be a permutation of {0,1}n. We define three injective functions π0, π1, π2 ∶
{0,1}n−2 → {0,1}n as follows:

π0(⋅) ∶= π(00∥⋅) π1(⋅) ∶= π(01∥⋅) π2(⋅) ∶= π(10∥⋅)

For 0 ≤ j ≤ 2, we define Ij (n) ∶= {πj ∶ π ∈ P (n)}.

Definition 8 (Single-keyed Permutation-based DBHtS). For some permu-
tation π of {0,1}n and a permutation-based rate-c−1 diblock hash function
H ∶ I0 (n) × {0,1}∗ → {0,1}n−2 × {0,1}n−2, we define the single-keyed DBHtS,
denoted 1k-DBHtSπ,H construction by the mapping:

m↦ π1(Hπ0(m))⊕ π2(Hπ0(m)). (17)

The construction is illustrated in Fig. 3.

We drop the parameters π and H whenever they are clear from the context.
We reemphasize here that the π0,π1,π2 are all domain-separated versions of the
same permutation π.
The following theorem shows that 1k-DBHtS is a secure PRF up to σ ≤ 23n/4,
assuming appropriate bounds for the hash function. We remark that it might
be possible to improve some of the constants slightly. However, the bound is
asymptotically tight in terms of number of queries due to an attack by Leurent
et al. [31] on the general DBHtS construction.



Restricted Solutions to Constrained Systems and their Applications 27

Hπ0

π1

π2

m ⊕⊕⊕ t

x1

x2

y1

y2

Fig. 3. The 1k-DBHtSπ,H construction.

Theorem 3. Let c, q, `, σ ≥ 0 satisfying q, ` ≤ σ and σ = cσ + 2q ≤ 2n−3. Suppose
H ∶ I0 (n) × {0,1}∗ → {0,1}2n−4 is a ratec−1 (ε1, ε2, ε3, δ)-CFH. Then, for ρ =
(q, `, σ) and ρ′ = (2, `,2`), the PRF advantage of any ρ-distinguisher A against
1k-DBHtSΠ,H satisfies

Advtprf1k-DBHtSΠ,H
(A) ≤ ε1 + ε2,

where

ε1 ∶= 2ε2(ρ,4) + δ(ρ) + q + 2ε1(ρ) + ε2(ρ,3)
2n

+ 2ε3 (ρ,2n/4σ) .

ε2 ∶=
16q2σ2ε1(ρ′)

22n
+ 8q2ε1(ρ′)

2n
+ qσ

2
3n−4

2

+ 120qσ3

23n
+ 6q

2n
.

Proof. Without loss of generality assume that A is deterministic. Let
• Mi ∶= (Mi

1, . . . ,M
i
`i
), denote the i-th query of the distinguisher, containing

`i ≤ ` blocks.
• Ti, denote the i-th response of the oracle.

In addition, the oracle releases additional information to the distinguisher, once
the distinguisher is done querying the oracle, but before it outputs its decision
bit.
In the real world, the oracle releases:
• Xi ∶= (Xi

1,X
i
2) =HΠ0(Mi), the (2n−2)-bit internal hash output, or finalization

input corresponding to the i-th query.
• Yi ∶= (Yi

1,Y
i
2) = (Π1(Xi

1),Π2(Xi
2)), the 2n-bit finalization output correspond-

ing to the i-th query.
• R, the set of all image points sampled during the computation of HΠ0(Mi)

for all i ∈ [q]. Since H is a rate-c−1 hash function, ∣R∣ = cσ for M.
Thus, the full real world transcript can be described as

Θre ∶= ((Mi,Ti,Xi,Yi ∶ i ∈ [q]),R).

In the ideal world, the oracle first samples a dummy random permutation Π′,
and then computes Xi ∶=HΠ′0

(Mi) for all i ∈ [q]. In other words, Xi is generated
faithfully for all i ∈ [q]. Note that, R can be derived here as well, as the ideal
oracle is faithfully generating the hash outputs.
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Sampling Y in the ideal world: The sampling mechanism for Yi is on the
other hand a bit more sophisticated. The goal is to sample Yi’s in such a way
that

(Xi
1 = Xj

1 ⇐⇒ Yi
1 = Yj

1), (Xi
2 = Xj

2 ⇐⇒ Yi
2 = Yj

2),
is satisfied for all i ≠ j ∈ [q]. We refer to this predicate as the permutation
compatibility or PC condition.

For any i ∈ [q], let (i)1 ∶= min{j < i ∶ Xi
1 = X

j
1} and (i)2 ∶= min{j < i ∶ Xi

2 =
Xj
2}. Let r = ∣{(i)1, (i)2 ∶ i ∈ [q]}∣. Consider the 2-regular and binary, (q, r,1)-

constrained system S ∶= {Y(i)11 ⊕Y
(i)2
2 = Ti ∶ i ∈ [q]}.

Any R-solution for S satisfies the PC condition, apart from fully defining Y.
As long as the system is acyclic and non-trivial, we can use the results developed
in the previous section. Keeping this in mind, we now define some bad predicates
on the partial transcript ((Mi,Ti,Xi ∶ i ∈ [q]),R):

A1 ∶ ∃∗i, j, k, l ∈ [q], Xi
1 = Xj

1 ∧Xj
2 = Xk

2 ∧Xk
1 = Xl

1.

A2 ∶ ∃∗i, j ∈ [q], Xi
1 = Xj

1 ∧Ti ⊕Tj = 0n.
A3 ∶ ∃∗k ≥ 2n−2/(cσ + 2q), i1, . . . , ik ∈ [q], Xi1

1 = X
i2
1 = . . . = X

ik
1 .

B1 ∶ ∃∗i, j, k, l ∈ [q], Xi
2 = Xj

2 ∧Xj
1 = Xk

1 ∧Xk
2 = Xl

2.

B2 ∶ ∃∗i, j ∈ [q], Xi
2 = Xj

2 ∧Ti ⊕Tj = 0n.
B3 ∶ ∃∗k ≥ 2n−2/(cσ + 2q), i1, . . . , ik ∈ [q], Xi1

2 = X
i2
2 = . . . = X

ik
2 .

C ∶ ∃∗i ∈ [q], Ti = 0n.
D ∶ ∃∗i, j ∈ [q], Xi

1 = Xj
1 ∧Xi

2 = Xj
2.

E ∶ ∃∗i, j, k ∈ [q], Xi
1 = Xj

1 ∧Xj
2 = Xk

2 ∧Ti ⊕Tj ⊕Tk = 0n.

Define Cyclic ∶= A1∨B1∨D, Trivial ∶= A2∨B2∨C∧E, and Giant ∶= A3∨B3. It is not
difficult to see that as long as Cyclic, Trivial, and Giant are false, S is acyclic and
non-trivial, and satisfies χS(cσ + 2q) ≤ 2n−1 for (cσ + 2q) < 23n/4. For notational
convenience, let s = cσ.
Sampling Y: Onwards we describe the sampling of Y conditioned on the fact
that ¬(Cyclic∨Trivial∨Giant) holds. Let CF(S) = (S1 ≺ . . . ≺ Sc) such that all the
isolated components appear before the non-isolated ones. Let NI(S) denote the
set of all non-isoltaed components. We define Y ↞ (S ∣R). This concludes the
sampling in the ideal world, and finally the ideal world transcript is given by

Θid ∶= ((Mi,Ti,Xi,Yi ∶ i ∈ [q]),R).

where the PC condition is satisfied as long as ¬(Cyclic ∨ Trivial ∨ Giant) holds;
otherwise the transcript is defined arbitrarily.

(Bad) Transcript Definition and Analysis: The set of transcripts Ω
is the set of all tuples ω = ((mi, ti, xi, yi ∶ i ∈ [q]),R), where mi ∈ {0,1}∗, ti ∈
{0,1}n, xi ∈ {0,1}2n−2, yi ∈ {0,1}2n and R ⊆ ({0,1}n)cσ, where σ = ∑q

i=1⌈∣mi∣/n⌉.
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A transcript ω is said to be bad, i.e., ω ∈ Ωbad if and only if it satisfies
Cyclic ∨Trivial ∨Giant, and good otherwise.

Lemma 11. Suppose H is an (ε1, ε2, ε3, δ)-coverfree hash function. Then

Pr (Θid ∈ Ωbad) ≤ 2ε2(ρ,4) + δ(ρ) + q + 2ε1(ρ) + ε2(ρ,3)
2n

+ 2ε3 (ρ,
2n−2

cσ + 2q
) .

Proof. Let s′ = 2n−2/(cσ + 2q). We have

Pr (Θid ∈ Ωbad) = Pr (Cyclic ∨Trivial ∨Giant)
≤ Pr (Cyclic) +Pr (Trivial) +Pr (Giant)
≤ Pr (A1) +Pr (B1) +Pr (D) +Pr (A2) +Pr (B2) +Pr (C) +Pr (E) +Pr (A3) +Pr (B3)

≤ Pr (AP14H(M)) +Pr (AP24H(M)) +Pr (COLLH(M)) +
Pr (COLL1H(M))

2n

+ Pr (COLL2H(M))
2n

+ q

2n
+
Pr (AP13H(M))

2n
+Pr (MC1s

′

H(M)) +Pr (MC2s
′

H(M))

≤ 2ε2(ρ,4) + δ + q + 2ε1(ρ) + ε2(ρ,3)
2n

+ 2ε3(ρ, s′),

where the the first three (in)equalities follow from the definition and a trivial
application of union bound, the fourth inequality just maps the bad predicates
to corresponding coverfree hash events, and finally the fifth inequality follows
from the coverfree bound of H. ⊓⊔

Good Transcript Analysis: Fix a good transcript ω ∈ Ωgood. We will recycle
notations from the sampling phase.

In the real world, Π is sampled exactly s+r times (∣R∣ = s and ∣{(i)1, (i)2 ∶ i ∈
[q]}∣ = r). Thus, we have

Pr (Θre = ω) =
1

(2n)s+r
(18)

In the ideal world, first T is sampled uniformly from a set of size 2nq, followed
by R which is sampled faithfully via Π. Finally, Y is sampled uniformly from
(S ∣R). Using Corollary 5, we have

Pr (Θid = ω) =
1

2nq
× 1

(2n)s
× 1

η(S ∣R)

= 1

2nq
× 1

(2n)s
× 1

(1 − ε)E (S ∣R) (19)

where

ε ≤ 4q

2n
+ 2

2n
∑

i∉NI(S)
∣µ(T(i),R) − ∣R∣

2

2n
∣ +

12q(s + 2q)(∆S +∇R̂)
22n

+ 24q(s + 2q)3
23n

+ (2(s + 2q)2
22n

+ 1

2n
) ∑

j∈NI(S)
r2j .
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Then, on dividing (18) by (19), we have

Pr (Θre = ω)
Pr (Θid = ω)

≥ (1 − ε) . (20)

To apply Corollary 1, we have to compute the following expectations

µ ∶= E
⎛
⎝
2

2n
∑

i∉NI(S)
∣µ(T(i),R) − ∣R∣

2

N
∣
⎞
⎠

ν ∶= (2(s + 2q)2
22n

+ 1

2n
)E
⎛
⎝ ∑j∈NI(S)

r2j
⎞
⎠

δ ∶= E (∆S)
γ ∶= E (∇R)

Using Proposition 1 and 2 and s + 2q ≤ 2n, we have δ ≤ 6n and γ ≤ 7nq2/2n.
Let ∼1 (res. ∼2) be equivalence relations on [q], such that i ∼1 j (res. i ∼2 j)

if and only if Xi
1 = X

j
1 (res. Xi

2 = X
j
2). Let C11 , . . . ,C1t1 and C21 , . . . ,C2t2 denote the

non-singleton equivalence classes of [q] with respect to ∼1 and ∼2, respectively.
For i ∈ [t1] and j ∈ [t2], let mc(1)i = ∣C1i ∣ and mc

(2)
j = ∣C2j ∣.

ν = (2(s + 2q)2
22n

+ 1

2n
)E
⎛
⎝ ∑i′∈NI(S)

r2i′
⎞
⎠

≤ (2(s + 2q)2
22n

+ 1

2n
) × 2

⎛
⎝

t1

∑
j=1

E (mc(1)j ) +
t2

∑
j′=1

E (mc(2)j′ )
⎞
⎠

≤ 16q2(s + 2q)2ε1(2, `,2`)
22n

+ 8q2ε1(2, `,2`)
2n

. (21)

Using Proposition 5, we have

µ = E
⎛
⎝
2

2n
∑

i∉NI(S)
∣µ(T(i),R) − ∣R∣

2

N
∣
⎞
⎠

= 2

2n
∑

i∉NI(S)
E(∣µ(T(i),R) − ∣R∣

2

N
∣)

≤ 2

2n
∑

i∉NI(S)

√
V (µ(T(i),R)) + 2

2n
∑

i∉NI(S)
∣E (µ(T(i),R)) − s2

N
∣ , (22)

We claim:

∣E (µ(T(i),R)) − s2

2n
∣ ≤ 3s

2n
(23)

√
V (µ(T(i),R)) ≤

√
2s

2n/2
+ 4s2

23n/2
(24)

A proof of this claim is given in Appendix B. Theorem 3 then follows from
Lemma 11 and (21)-(24). ⊓⊔
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6 Instantiations of Cover-free Hash functions

For a diblock hash function H ∶ I0 (n) × {0,1}∗ → {0,1}n × {0,1}n we can con-
struct the truncated diblock hash TH ∶ I0 (n) × {0,1}∗ → {0,1}n−2 × {0,1}n−2
as TH(x) ∶= (Trunc(H1(x)),Trunc(H2(x))), where Trunc ∶ {0,1}n → {0,1}n−2
truncates the first two bits of its n-bit input.

Now let us define the functions PHash ∶ I0 (n) × {0,1}∗ → {0,1}n × {0,1}n
and LightHash ∶ I0 (n) × {0,1}∗ → {0,1}n × {0,1}n, as follows:

PHashΠ0 LightHashΠ0

Input: m =m[1]∥⋯∥m[k] ∈ ({0,1}n−2)k Input: m =m[1]∥⋯∥m[k] ∈ ({0,1}n−s)k
∆0 ← Trunc(Π0(0)) for i ∈ [k],
∆1 ← Trunc(Π0(1)) Z[i]← Π0(⟨i⟩s−2∥m[i])
for i ∈ [k], x[1]← Z[1]⊕Z[2]⊕⋯⊕Z[k]

W [i]←m[i]⊕ 2i ⋅∆0 ⊕ 22i ⋅∆1 x[2]← 2k−1 ⋅Z[1]⊕ 2k−2 ⋅Z[2]⋯⊕Z[k]
Z[i]← Π0(W [i]) return x ∶= (x[1]∥x[2])

x[1]← Z[1]⊕Z[2]⋯⊕Z[k]

x[2]← Z[1]⊕ 2 ⋅Z[2]⋯⊕ 2k−1 ⋅Z[k]
return x ∶= (x[1]∥x[2])

Two instances of CfHs will be the truncated versions of the above hash func-
tions, TPHash and TLightHash, respectively.

6.1 Affine bad events.

For a diblock hash function H, any x = (x1, . . . , xq) ∈ (X )q, and c, c1, c2, c3 ∈
{0,1}2, we define:

COLLc1,c2H (x) ∶ ∃∗ i, j ∈ [q] such that HK(xi)⊕HK(xj) = (c1∥0n−2, c2∥0n−2)

COLL1cH(x) ∶ ∃∗ i, j ∈ [q] such that H1
K(xi)⊕H1

K(xj) = c∥0n−2.

COLL2cH(x) ∶ ∃∗ i, j ∈ [q] such that H2
K(xi)⊕H2

K(xj) = c∥0n−2.

AP1c1,c2,c3H (x) ∶ ∃∗ i, j, k, l ∈ [q] such that

H1
K(xi)⊕H1

K(xj) = c1∥0n−2 ∧H2
K(xj)⊕H2

K(xk) = c2∥0n−2

∧H1
K(xk)⊕H1

K(xl) = c3∥0n−2.

AP2c1,c2,c3H (x) ∶ ∃∗ i, j, k, l ∈ [q] such that

H2
K(xi)⊕H2

K(xj) = c1∥0n−2 ∧H1
K(xj)⊕H1

K(xk) = c2∥0n−2

∧H2
K(xk)⊕H2

K(xl) = c3∥0n−2.
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AP2c1,c2H (x) ∶ ∃∗ i, j, k ∈ [q] such that

H2
K(xi)⊕H2

K(xj) = c1∥0n−2 ∧H1
K(xj)⊕H1

K(xk) = c2∥0n−2

One can readily check that

COLL1TH(x) = ⋁
c∈{0,1}2

COLL1cH(x) COLL2TH(x) = ⋁
c∈{0,1}2

COLL2cH(x)

AP14TH(x) = ⋁
(c1,c2,c3)
∈({0,1}2)3

AP1c1,c2,c3H (x) AP24TH(x) = ⋁
(c1,c2,c3)
∈({0,1}2)3

AP2c1,c2,c3H (x)

COLLTH(x) = ⋁
(c1,c2)
∈({0,1}2)2

COLLc1,c2H (x) AP13TH(x) = ⋁
(c1,c2)
∈({0,1}2)3

AP1c1,c2,c3H (x)

(25)

6.2 TPHash

m[1]

⊕⊕⊕2 ⋅D0

⊕⊕⊕22 ⋅D1

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

20

0n

0n

X[1]

Y [1]

m[2]

⊕⊕⊕22 ⋅D0

⊕⊕⊕24 ⋅D1

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

21

X[2]

Y [2]

m[`]

⊕⊕⊕2` ⋅D0

⊕⊕⊕22` ⋅D1

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

2`−1

X[`]

Y [`]

⋯

⋯

Π1

Π2

⊕⊕⊕ t

Fig. 4. 1k-PMAC+

Our bad event analysis heavily depends on the one presented in [30]. We
tailor their bounds according to our needs while highlighting the main aspects
of similarity and departure between their results and ours.

Similar to the PMAC+ analysis in [30] we define analogous auxiliary events as
follows: Let the i-th message be mi =mi[1]∥⋯∥mi[`i] ∈ ({0,1}n−2)`i , i ∈ [q]. For
i ≠ j ∈ [q], let ` = min{`i, `j} and `′ = max{`i, `j}, then we can define the index
set for which mi[k] ≠mj[k] as

Iij ∶= {k ∈ [`] ∶mi[k] ≠mj[k]} ⊔ [` + 1..`′]
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We define the following random variables: D0 ∶= Trunc(Π0(0)), D1 ∶=
Trunc(Π0(1)), and Wi =Wi[1]∥⋯∥Wi[`i], where Wi[k] =mi[k]⊕2k ⋅D0⊕22k ⋅D1.
We further define the random index sets where Wi and Wj collide as follows:

Icol = {(i, j) ∈ ([q])2 ∶ ∃∗k, k′ such that Wi[k] =Wj[k′]}
Jcol = {(i, j) ∈ ([q])2 ∶min{Iij} ≤ `i and ∃k such that Wi[min{Iij}] =Wj[k]}

Then the auxiliary events are:
Aux1 : D0 = 0 ∨D1 = 0
Aux2 : ∃i ∈ [q],∃∗k, k′ such that Wi[k] =Wi[k′].
Aux3 : ∃i ∈ [q], k ∈ [`i] such that Wi[k] ∈ {0,1,Π−10 (0)}.
Aux4 : ∣Icol∣ > q′, where q′ = q/2n/4.
Aux5 : ∣Jcol∣ > σ′ where σ′ = `q.
and let Aux = ⋁i∈[5]Auxi.

Lemma 12. For m = (mi ∶ i ∈ [q]) and c, c1, c2, c3 ∈ {0,1}2,

Pr (COLLc1,c2PHashΠ0
(m) ∧ ¬Aux) ≤ 4`q2

22n

Pr (AP1c1,c2,c3PHashΠ0
(m) ∧ ¬Aux) ≤ 2σ′

2

22n
+ 4q′

2n
+ 2

2n
+ 2
√
2q2

23n/2
+ 8q′q2

22n
+ 96q2

22n
+ 8q4

23n

Proof Sketch: First we note that, the following pairs of events, the left defined in
[30] and the right defined in this paper, are equivalent in the single-key scenario:

Bad1 ≡ COLL0,0PHashΠ0
(m), Bad2 ≡ AP10,0,0PHashΠ0

(m)

Analogous to Eq. (10) and (11) of [30], we can write, for any c ∈ {0,1}2,

PHash1
Π0
(mi)⊕ PHash1

Π0
(mj) = c∥0n−2 ⇐⇒ A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = c∥0n−2

PHash2
Π0
(mi)⊕ PHash2

Π0
(mj) = c∥0n−2 ⇐⇒ B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = c∥0n−2

where, for (i, j) ∈ ([q])2, {W[1], . . . ,W[t]} ∶= {Wi[1], . . . ,Wi[`i]} ∪
{Wj[1], . . . ,Wj[`j]}, and for k ∈ [t], Z[k] ∶= Π0(W[k]).

Thus, borrowing from the analysis of [30], each of the events in the statement
of this lemma can be written as an event that a system of equations AZ = c
holds, where Z is a vector with k-th component Z[k], and c depends on the
indices c, c1, c2, c3 of the corresponding event. If c /∈ C(A), then this system of
equations will hold with 0 probability. If c ∈ C(A) then the probability that this
system of equations holds, depends on the rank of A and not on c. So we have
that

Pr (COLLc1,c2PHashΠ0
(m) ∧ ¬Aux) ≤ Pr (COLL0,0PHashΠ0

(m) ∧ ¬Aux) = Pr (Bad1 ∧ ¬Aux)

Pr (AP1c1,c2,c3PHashΠ0
(m) ∧ ¬Aux) ≤ Pr (AP10,0,0PHashΠ0

(m) ∧ ¬Aux) = Pr (Bad2 ∧ ¬Aux)

Thus we can use the bounds on the corresponding bad events from [30] to get
our result. ⊓⊔
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The probability analysis of the events AP2c1,c2,c3PHashΠ0
(m) and AP1c1,c2PHashΠ0

(m)
are similar to the analysis of the events AP1c1,c2,c3PHashΠ0

(m) and COLLc1,c2PHashΠ0
(m),

respectively.

Lemma 13. For ` ≤ 2n−2, m ≠m′ ∈ ({0,1}n−2)≤`, and c ∈ {0,1}2, we have

Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2) ≤ 26`

2n

Pr (PHash2
Π0
(m)⊕ PHash2

Π0
(m′) = c∥0n−2) ≤ 26`

2n

Proof. Let m ∈ ({0,1}n−2)` and m′ ∈ ({0,1}n−2)`′ . Note that the claim is trivial
` = 1 and we ignore this case.

Let i be the maximum block-index where m and m′ are distinct, precisely,

i = { `, if ` > `′
max{j ≤ ` ∶m[j] ≠m′[j]}, if ` = `′

Consider the random variables:

D0 = trunc(Π(0)), D1 = trunc(Π(1)),
W[i] =m[i]⊕ 2i ⋅D0 ⊕ 22i ⋅D1, Z[i] = Π0(W[i]), i ∈ [`]
W′[i] =m′[i]⊕ 2i ⋅D0 ⊕ 22i ⋅D1, Z′[i] ∶= Π0(W′[i]), i ∈ [`′]

Let us define the following events:

E1 ∶D0 = 0
E2 ∶ ⋁

j∈[`]
(W[j] = 0 ∨W[j] = 1) ∨ ⋁

j∈[`′]
(W′[j] = 0 ∨W′[j] = 1)

E3 ∶ ⋁
j∈[`]
j≠i

(W[i] =W[j]) ∨ ⋁
j∈[`′]
(W[i] =W′[j])

Note that Pr (c ⋅ Trunc(Π(a)) = b) = 4/2n for any a ∈ {0,1}n and b, c ∈ {0,1}n−2
with c ≠ 0. Hence, for any a1, . . . , ar ∈ {0,1}n and b, c1, . . . , cr ∈ {0,1}n−2 with
cr ≠ 0, we have

Pr (c1 ⋅ Trunc(Π(a1))⊕⋯⊕ cr ⋅ Trunc(Π(ar)) = b)
= ∑

b′1,...,b
′
r1

∈{0,1}n
all distinct

Pr (Trunc(Π(ar)) = b′)Pr (Π(ai) = b′i ∀i ∈ [r − 1])

≤ 4

2n − r + 1

where bi = trunc(b′i) and b′ = c−1r ⋅ (b⊕ c1 ⋅ b1 ⊕⋯⊕ cr−1 ⋅ br−1). Similarly for any
a1, . . . , ar ∈ {0,1}n and b, c1, . . . , cr ∈ {0,1}n−2 with at least one ci ≠ 0, we have

Pr (c1 ⋅Π(a1)⊕⋯⊕ cr ⋅Π(ar) = b) ≤
1

2n − r + 1
. (26)



Restricted Solutions to Constrained Systems and their Applications 35

This implies Pr (E1) = Pr (trunc(Π(0)) = 0) = 4/2n, Pr (E2 ∣ Ec
1) ≤ 4` ⋅ 4/2n, and

Pr (E3 ∣ Ec
1 ∧ Ec

2) ≤ (2` − 1) ⋅ 4/2n.
Now the event PHash1

Π0
(m) ⊕ PHash1

Π0
(m′) = c∥0n−2, is equivalent to Z[1] ⊕

⋯⊕ Z[`]⊕ Z′[1]⊕⋯⊕ Z′[`′] = c∥0n−2. Of course, if any two Z-random variables
are identically equal then they cancel out. However, conditional on Ec

1 ∧ Ec
2 ∧ Ec

3

we have Z[i] ≠ Z[j],Z′[j′] for any j ∈ [m]∖{i}, j′ ∈ [m′] and Z[i] ≠ 0,Π(0),Π(1).
Hence from Eq. (26), we have

Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2 ∣ Ec

1 ∧ Ec
2 ∧ Ec

3)

≤ 1

2n − (m − 1) −m′ − 2
≤ 1

2n − 2`
≤ 2/2n

assuming ` ≤ 2n−2.
Since for any two events A and B, we have Pr (A) = Pr (A ∧B) + Pr (A ∧Bc)

and Pr (A ∧B) ≤ Pr (A) and Pr (A ∧B) ≤ Pr (A ∣ B), we have

Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2)

≤ Pr (E1) + Pr (E2 ∣ Ec
1) + Pr (E3 ∣ Ec

1 ∧ Ec
2)

+ Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2 ∣ Ec

1 ∧ Ec
2 ∧ Ec

3)

≤ 4

2n
+ 16`

2n
+ 8` − 4

2n
+ 2

2n
≤ 26`

2n

Same argument shows that Pr (PHash2
Π0
(m)⊕ PHash2

Π0
(m′) = c∥0n−2) ≤ 26`/2n.

Corollary 6.

Pr (COLL1cPHashΠ0
(m)) ≤ 13`q2

2n
Pr (COLL2cPHashΠ0

(m)) ≤ 13`q2

2n

Pr (MC1sTPHashΠ0
(m)) ≤ 52`q2

s2 ⋅ 2n Pr (MC2sTPHashΠ0
(m)) ≤ 52`q2

s2 ⋅ 2n

The Corollary 6 follows from Lemma 13 and Proposition 4.
Finally, we bound the auxilliary events

Lemma 14. We have

Pr (Aux1 ∨Aux3) ≤
3`q

2n − 2
+ 2

2n
Pr (Aux2) ≤

`2q

2n+1

Pr (Aux4) ≤
`2q2

q′ ⋅ 2n Pr (Aux5) ≤
`q2

σ′ ⋅ 2n

Combining these bounds we have

Pr (Aux) ≤ (`
2 + 8`)q
2n+1

+ `2q2

q′ ⋅ 2n + `q2

σ′ ⋅ 2n

Combining Eq. (25), Lemma 12, Corollary 6 and Lemma 14 we have the
following result:
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Lemma 15. TPHashΠ0 is a (ε1, ε2, ε3, δ)-CfH where

ε1(ρ) =
26`q2

2n
, ε2(ρ,3) =

16`q2

22n
, ε3(ρ, s) =

52`q2

s2 ⋅ 2n , δ(ρ) = 16`q2

22n

ε2(ρ,4) = 8 ⋅ (
2σ′

2

22n
+ 4q′

2n
+ 2

2n
+ 2
√
2q2

23n/2
+ 8q′q2

22n
+ 96q2

22n
+ 8q4

23n
)

6.3 TLightHash.

⟨1⟩s−2∥m[1]

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

2`−1

0n

0n

Z[1]

⟨2⟩s−2∥m[2]

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

2`−2

Z[2]

⟨`⟩s−2∥m[`]

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

20

Z[`]

⋯

⋯

Π1

Π2

⊕⊕⊕ t

Fig. 5. 1k-LightMAC+

As before, we let the i-th message be mi =mi[1]∥⋯∥mi[`i] ∈ ({0,1}n−s)`i , i ∈
[q]. Note that, mi[k] ≠mj[k] ⇐⇒ Zi[k] ≠ Zj[k] for any k ∈ [max{`i, `j}], where
Zi[k] ∶= Π0(⟨k⟩s−2∥mi[k]). Moreover, Zi[k] ≠ Zj[k′] for any k ≠ k′, i, j ∈ [q]. Let
us fix (i, j) ∈ ([q])2, define {Z[1], . . . ,Z[t]} ∶= {Zi[k] ∶ k ∈ [`i]}∪{Zj[k] ∶ k ∈ [`j]}
and partition [t] ∶= Iij ⊔ Iij ⊔ Iij , where

Iij ∶= {k ∈ [t] ∶ Z[k] = Z
i[k′] ≠ Zj[k′], k′ ∈ [max{`i, `j}]}

Iij ∶= {k ∈ [t] ∶ Z[k] = Z
i[k′] = Zj[k′], k′ ∈ [max{`i, `j}]}

Iij ∶= {k ∈ [t] ∶ Z[k] = Z
j[k′] ≠ Zi[k′], k′ ∈ [max{`i, `j}]}

Then we have

LightHash1
Π0
(mi)⊕ LightHash1

Π0
(mj) = c∥0n−2

⇐⇒ A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = c∥0n−2

LightHash2
Π0
(mi)⊕ LightHash2

Π0
(mj) = c∥0n−2

⇐⇒ B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = c∥0n−2

where
• Ak = 1 for k ∈ Iij ⊔ Iij , Ak = 0, otherwise.
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• Bk = 2β for some β, if k ∈ Iij ⊔ Iij , otherwise Bk = 2β ⊕ 2γ for some β, γ.
Due to this similarity with PHash, the argument given in Lemma 12 also holds
here, giving us

Pr (COLLc1,c2LightHashΠ0

(m)) ≤ Pr (COLL0,0LightHashΠ0

(m))

Pr (AP1c1,c2,c3LightHashΠ0

(m)) ≤ Pr (AP10,0,0LightHashΠ0

(m))

Pr (AP2c1,c2,c3LightHashΠ0

(m)) ≤ Pr (AP20,0,0LightHashΠ0

(m))

Lemma 16. Assume ` ≤ 2n/4. Then in the ideal world,

Pr (COLL0,0LightHashΠ0

(m)) ≤ 2q2

22n

Proof. We fix (i, j) ∈ ([q])2 as above, thus fixing {Z[1], . . . ,Z[t]} and partition-
ing [t] = Iij ⊔ Iij ⊔ Iij . We can make the following observations about the index
sets:
• Iij ⊔ Iij ≠ ∅ since otherwise mi and mj will not be distinct.
• ∣Iij ⊔ Iij ∣ ≥ 2 because otherwise LightHash1

Π0
(mi) ≠ LightHash1

Π0
(mj).

If we consider the system of linear equations representing the
events LightHash1

Π0
(mi) = LightHash1

Π0
(mj) and LightHash2

Π0
(mi) =

LightHash2
Π0
(mj), respectively:

A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = 0n

B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = 0n

then the above observations about the index sets imply that there are two distinct
indices k, k′ ∈ Iij ⊔ Iij such that Ak = Ak′ = 1 and Bk = 2β , Bk′ = 2γ for distinct
β and γ. This implies that the above system of linear equations has rank 2, and
hence will be satisfied with probability (2n)t−2/(2n)t = 1/(2n − t+2)(2n − t+1) ≤
(2n − 2` + 2)(2n − 2` + 1) ≤ 4/22n for ` ≤ 2n/4. Since there are q(q − 1)/2 tuples
(i, j) ∈ ([q])2, we have our result.

Lemma 17. Assume that ` ≤ 2n/8. Then in the ideal world, one has,

Pr (AP10,0,0LightHashΠ0

(m)) ≤ q4

3 ⋅ 23n + q2

2 ⋅ 23n/2 +
2

2n
+ 96q2

22n

Proof. Let us fix (i, j, r, s) ∈ ([q])4. We want to find the probability of the event

E(i, j, r, s) ∶ (LightHash1
Π0
(mi) = LightHash1

Π0
(mj))

∧ (LightHash2
Π0
(mj) = LightHash2

Π0
(mr))

∧ (LightHash1
Π0
(mr) = LightHash1

Π0
(ms))

Let {Z[1], . . . ,Z[t]} = {Zi[k] ∶ k ∈ [`i]} ∪ {Zj[k] ∶ k ∈ [`j]} ∪ {Zr[k] ∶ k ∈ [`r]} ∪
{Zs[k] ∶ k ∈ [`s]}. Also let us partition [t] in three ways as [t] = Iij⊔Iij⊔Iij⊔Iij =
Ijr ⊔ Ijr ⊔ Ijr ⊔ Ijr = Irs ⊔ Irs ⊔ Irs ⊔ Irs where

Iij ∶= {k ∶ Z[k] = Z
i[k′] ≠ Zj[k′], k′ ∈ [max{`i, `j , `r, `s}]}
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Iij ∶= {k ∶ Z[k] = Z
j[k′] ≠ Zi[k′], k′ ∈ [max{`i, `j , `r, `s}]}

Iij ∶= {k ∶ Z[k] = Z
i[k′] = Zj[k′], k′ ∈ [max{`i, `j , `r, `s}]}

Iij ∶= {k ∶ Z[k] ≠ Zi[k′],Z[k] ≠ Zj[k′], k′ ∈ [max{`i, `j , `r, `s}]}

and the rest of the index sets are defined analogously.
Then the above event can be represented by the following system of equations

A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = 0n

B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = 0n

C1 ⋅ Z[1]⊕⋯⊕Ct ⋅ Z[t] = 0n

where
• Ak = 1 if k ∈ Iij ⊔ Iij , and Ak = 0 otherwise.
• Bk = 2β for some β if k ∈ Ijr ⊔ Ijr, Bk = 2β ⊕ 2γ for some β, γ if k ∈ Ijr, and

Bk = 0 otherwise.
• Ck = 1 if k ∈ Irs ⊔ Irs, and Ck = 0 otherwise.

As observed in the proof of Lemma 16, ∣Iij ⊔ Iij ∣ ≥ 2 and ∣Irs ⊔ Irs∣ ≥ 2. Let us
call the coefficient matrix of the above system of equations M (i,j,r,s), its first
row as A(i,j,r,s), second row as B(i,j,r,s) and third row as C(i,j,r,s). Let us write
([q])4 as union of three index sets, ([q])4 = J1 ⊔ J2 ⊔ J3, where Ji are defined as
follows:

J1 ∶= {(i, j, r, s) ∶ rank(M (i,j,r,s)) = 3}
J2 ∶= {(i, j, r, s) ∶ A(i,j,r,s) = C(i,j,r,s)}}
J2 ∶= {(i, j, r, s) ∶ B(i,j,r,s) = c1A(i,j,r,s) ⊕ c2C

(i,j,r,s) for c1, c2 ≠ 0}

For (i, j, r, s) ∈ J1, the probability of the Z-variables satisfying the system of
equations is (2n)t−3/(2n)t ≤ 8/23n for ` ≤ 2n/8, since t ≤ 4`. Thus we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J1
E(i, j, r, s)

⎤⎥⎥⎥⎥⎦
≤ q4

3 ⋅ 23n (27)

Now let us define the equivalence relation over ([q])2 as (i, j) ∼ (r, s)
if Iij ⊔ Iij = Irs ⊔ Irs. If (i, j) ∼ (r, s), then A(i,j,r,s) = C(i,j,r,s), which
implies LightHash1

Π0
(mi) = LightHash1

Π0
(mj) ⇐⇒ LightHash1

Π0
(mr) =

LightHash1
Π0
(ms). Suppose the above relations partitions ([q])2 into c equiva-

lence classes ([q])2 = C1 ⊔ ⋯ ⊔ Cc. For a = 1, . . . , c, consider the events Ea that
LightHash1

Π0
(mi) = LightHash1

Π0
(mj) for every (i, j) ∈ Ca. Thus from Eq. (26)

we have that
Pr[Ea] ≤

1

2n − 2` + 1

since ∣Iij ⊔ Iij ∣ ≤ 2` for all (i, j) ∈ Ca. Now we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J2
E(i, j, r, s)

⎤⎥⎥⎥⎥⎦
= Pr

⎡⎢⎢⎢⎢⎣
⋁

a∈[c]
⋁

(i,j),(r,s)∈Ca

E(i, j, r, s)
⎤⎥⎥⎥⎥⎦
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≤
c

∑
a=1

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j),(r,s)∈Ca

E(i, j, r, s)
⎤⎥⎥⎥⎥⎦

=
c

∑
a=1

Pr[Ea] ⋅ Pr
⎛
⎝ ⋁
(i,j),(r,s)∈Ca

LightHash2
Π0
(mj) = LightHash2

Π0
(mr)

RRRRRRRRRRR
Ea

⎞
⎠

≤
c

∑
a=1

1

2n − 2` + 1
⋅min{ ∣Ca∣2

2(2n − 2` + 1) ,1}

where the last inequality follows from Eq. (26) and the facts that A(i,j,r,s) and
B(i,j,r,s) are linearly independent, and that ∣Ijr ⊔Ijr ⊔Ijr ∣ ≤ 2` for all (j, r) ∈ Ca.
Note that 1/(2n − 2` + 1) ≤ 2/2n for ` ≤ 2n/8. Subject to the condition that
∑c

a=1 ∣Ca∣ = (q2), the sum ∑c
a=1min{∣Ca∣2/(2(2n − 2` + 1)),1} is maximized when

c = ⌊(q
2
)/2n/2⌋ + 1, ∣Ca∣ = 2n/2 for a ∈ [c − 1] and ∣Cc∣ = (q2) − (c − 1)2n/2, in which

case we have
a

∑
c=1

2

2n
⋅min{∣Ca∣2

2n
,1} ≤ q2

2 ⋅ 23n/2 +
2

2n
.

Thus we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J1
E(i, j, r, s)

⎤⎥⎥⎥⎥⎦
≤ q2

2 ⋅ 23n/2 +
2

2n
(28)

Finally we consider (i, j, r, s) ∈ J3. In this case B(i,j,r,s) = c1A
(i,j,r,s) +

c2C
(i,j,r,s). This linear dependence implies the following:

• c1 = 2β and c2 = 2γ for some β, γ.
• (Iij ⊔ Iij)△ (Irs ⊔ Irs) = Ijr ⊔ Ijr.9 Also Bk, k ∈ Ijr are all distinct, and

similarly, Bk, k ∈ Ijr are all distinct
• (Iij⊔Iij)∩(Irs⊔Irs) = Ijr. From the definition of the index sets, this reduces

to Iij∩Irs = Ijr. If for k ∈ Ijr, Z[k] = Zj[k′] = Zr[k′], then Bk = 2`j−k
′+2`r−k′ .

Since 2a + 2b = 2c + 2d implies either (a, b) = (c, d) or (a, b) = (d, c), and since
in this case for every k ∈ Ijr, Bk = 2β + 2γ , we have ∣Ijr ∣ = 1.

Thus the following assumptions made in proof of Lemma 4 of [30] holds true:
• B(i,j,r,s) does not contain the same entry more than twice.
• B(i,j,r,s) contains at least two different non-zero entries.
• Each of A(i,j,r,s) and C(i,j,r,s) contains at least three ones.

The rest of the analysis is exactly the one presented in the proof of Lemma 4 of
[30], except the ignorable fact that the coefficient of Zj[k′] is 2`j−k

′
(instead of

2k
′

as in the [30]), which however makes no changes in the argument presented.
Thus following the proof of Lemma 4 of [30], we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J3
(i, j, r, s)

⎤⎥⎥⎥⎥⎦
≤ 24q2

(2n − 4` + 1)(2n − 4` + 2) ≤
96q2

22n
(29)

for ` ≤ 2n/8.
Combining Eqs. (27), (28) and (29) we have our result.

9 For two sets A,B, we denote their symmetric difference as A△B ∶= (A∖B)∪(B∖A)
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The probability analysis of the events AP2c1,c2,c3LightHashΠ0

(m) and
AP1c1,c2LightHashΠ0

(m) are similar to the analysis of the events AP1c1,c2,c3LightHashΠ0

(m)
and COLLc1,c2LightHashΠ0

(m), respectively, and we get the same probability bounds.
The exact same arguments given to prove Lemma 13 can be used to prove

the following statement, keeping in mind that we do not need to consider the
events E1 and E2, described in the proof of Lemma 13, for LightHash:

Lemma 18. For ` ≤ 2n−2, m ≠m′ ∈ ({0,1}n−2)≤`, and c ∈ {0,1}2, we have

Pr (LightHash1
Π0
(m)⊕ LightHash1

Π0
(m′) = c∥0n−2) ≤ 8`

2n

Pr (LightHash2
Π0
(m)⊕ LightHash2

Π0
(m′) = c∥0n−2) ≤ 8`

2n

Corollary 7.

Pr (COLL1cLightHashΠ0
(m)) ≤ 4`q2

2n
Pr (COLL2cLightHashΠ0

(m)) ≤ 4`q2

2n

Pr (MC1TLightHashΠ0
(m)) ≤ 16`q2

s2 ⋅ 2n Pr (MC2TLightHashΠ0
(m)) ≤ 16`q2

s2 ⋅ 2n

Thus we get our desired result:

Lemma 19. TLightHashΠ0
is a (ε1, ε2, ε3, δ)-CfH, where

ε1(ρ) =
8`q2

2n
, ε2(ρ,3) =

8`q2

22n
, ε3(ρ, s) =

16`q2

s2 ⋅ 2n , δ(ρ) = 8q2

22n

ε2(ρ,4) = 8 ⋅ (
q4

3 ⋅ 23n + q2

2 ⋅ 23n/2 +
2

2n
+ 96q2

22n
)

6.4 Instantiating 1k-DBHtS

For any π ∈ P (n), we define

1k-PMAC+π ∶= 1k-DBHtSπ,TPHash 1k-LightMAC+π ∶= 1k-DBHtSπ,TLightHash

Using Lemma 15 and 19 in Theorem 3 we have:

Corollary 8. Let c, q, `, σ ≥ 0 satisfying q, ` ≤ σ and σ = σ + 2q ≤ 2n−3. Then,
for ρ = (q, `, σ) and ρ′ = (2, `,2`), the PRF advantage of any ρ-distinguisher A
against 1k-PMAC+Π satisfies

Advtprf1k-PMAC+Π
(A) ≤ 39q

2n
+ 64q

25n/4
+16`q

2

23n
+q

2(32`2 + 260` + 1536)
22n

+qσ
3 + 2080`q2σ2

23n
+128q

3

29n/4
+ 96qσ
23n/2

Corollary 9. Let c, q, `, σ ≥ 0 satisfying q, ` ≤ σ and σ = σ + 2q ≤ 2n−3. Then,
for ρ = (q, `, σ) and ρ′ = (2, `,2`), the PRF advantage of any ρ-distinguisher A
against 1k-LightMAC+Π satisfies

Advtprf1k-LightMAC+Π
(A) ≤ 39q

2n
+ 1560q2

22n
+ 80q2`

22n
+ 126qσ3

23n
+ 160`q2σ2

23n
+ 16qσ

23n/2
.
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7 PRF Security of Sum of r Even-Mansour

For any r ≥ 2 , let (π1, . . . , πr)↞ P (n)r be a tuple of r permutations of {0,1}n
and let (K1, . . . ,Kr) ∈ ({0,1}n)r be a r-tuple of n-bit strings.

One-round Even-Mansour construction is a keyed permutation of {0,1}n de-
fined by the mapping

xz→ π1(x⊕K1)⊕K1,

where K1 denotes the key.

π1 π2 ⋯ πr

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕K1 K2 Kr

m

⊕⊕⊕

t

x1 x2 xr

y1

y2

yr

Fig. 6. The π-SOEMr construction instantiated with key K = (K1, . . . ,Kr).

The r-sum of Even-Mansour construction, π-SOEMr is a length-preserving
keyed function of {0,1}n defined by the mapping

mz→
r

⊕
i=1

πi(m⊕Ki),

where K = (K1, . . . ,Kr) denotes the key. See Figure 6 for a pictorial illustration.
Notice that we skipped the post-permutation key masking. This is motivated by
a similar simplification [39] by Sibleyras and Todo who studied the r = 2 case.
Thus, we study the same problem for any arbitrary r ≥ 2.

Theorem 4. Fix some r ≥ 2, q + p ≤ 2
r

r+1n−log2(n), and Π = (Π1, . . . ,Πr) ↞
P (n)r. For any (q, p)-distinguisher A we have

Advtprf
Π-SOEMr (A) ≤ 4

2n
+ 16nq(2p)r−2

2n(r−1)
+
10
√
nq(2p + 2q)r−1

2n(r−1)
+ 10q(2p + 2q)r

2nr
.

Proof. For the purpose of this proof let FK(⋅) = Π-SOEMr
K(⋅), and let Γ↞ {0,1}n.

A’s goal is to distinguish between the real oracle (FK,Π±) and the ideal oracle
(Γ,Π±), where FK and Γ are referred as the construction oracle and Π± is referred
as the primitive oracle.
Fix a (q, p)-distinguisher A. Let
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• (Mi,Ti) denote the i-th query-response tuple corresponding to the construc-
tion oracle. Let M ∶= {Mi ∶ i ∈ [q]} and T ∶= {Ti ∶ i ∈ [q]}.

• (Ui
j ,V

i
j) denote the i-th query-response tuple corresponding to the permu-

tation Πj . Unless stated otherwise, we assume that all these queries are
in the forward direction. Let Uj ∶= {Ui

j ∶ i ∈ [p]}, Vj ∶= {Vi
j ∶ i ∈ [p]},

U ∶= (U1, . . . ,Ur), and V ∶= (V1, . . . ,Vr).
• (Xi

j ,Y
i
j) denote the input-output tuple to the j-th permutation, for all j ∈ [r],

within the i-th construction query in the real world, i.e., Xi
j = Mi ⊕ Kj . Let

Xi ∶= (Xi
j ∶ j ∈ [r]) and Yi ∶= (Yi

j ∶ j ∈ [r]). Let X ∶= {Xi ∶ i ∈ [q]} and
Y ∶= {Yi ∶ i ∈ [q]}.

We study a modified game where the real oracle releases (X,Y) to A once the
query-response phase is over, but before A outputs. This obviously does not
decrease A’s advantage.

Ideal World Transcript Extension: Naturally, in the ideal world, the sampling
is extended to generate this additional information. We have

SC(T,V) = {(Ti,Vj1
1 ,Vj2

2 , . . . ,Vjr
r ) ∈ T ×V ∶

r

⊕
k=1

Vjk
k = T

i}

µ(T,V) = ∣SC(T,V)∣

Further due to the increasing nature of µ(T, ⋅), µ(T,V) ≤ µ(T, p + q). We define
the predicate

LSC(T, p + q) ∶ (µ(T, p + q) > q(p + q)r
2n

+ 2(p + q)r−1√nq)

The subsequent two-step sampling mechanism for (X,Y) in the ideal world is
defined under the condition that ¬LSC(T, p + q) holds:
1. In the first step, a dummy key tuple is sampled uniformly at random, i.e.,

K ↞ ({0,1}n)r, which determines Xi
j ∶= Mi ⊕ Kj . Consider the following

predicates:

KG(M,U,K) ∶ ∃ i ∈ [q], j1, . . . , jr ∈ [p] such that (∀k ∈ [r], Xi
k = Ujk

k )
SC(M,T,U,V,K) ∶ ∃ (i, j1, j2, . . . , jr) ∈ SC(T,V), k ∈ [r], such that

(Xi
k ≠ Ujk

k ) and (∀k′ ≠ k, Xi
k′ = U

jk′
k′ )

Going forward we assume that ¬(KG(M,U,K)∨SC(M,T,U,V,K)) holds. For
each i ∈ [q]:
(a) if there exists j ∈ [p] and k ∈ [r], such that Xi

k = U
j
k, then define Yi

k ∶= V
j
k;

(b) let Ii = {j ∈ [r] ∶ Xi
j ∉ Uj} to be the set of permutation indices with fresh

input for the i-th construction query.
(c) let ∼ be a relation on [q] defined as: i1 ∼ i2 ⇐⇒ Ii1 = Ii2 . Clearly, ∼ is

an equivalence relation. Let Q(1)(0) ⊔ . . .Q(r)(0) ⊔Q(1) ⊔ . . .⊔Q(c) denote the
corresponding partitioning of [q], where Q(j)(0) = {i ∈ [q] ∶ Ii = {j}}. Let
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∣Q(j)(0)∣ = q
(j)
0 , q0 ∶= ∑j∈[r] q

(j)
0 and ∣Q(i)∣ = qi. Then q0 +∑i∈[c] qi = q. Also,

note that, c ≤ ∑r−1
j=2 (rj) ≤ 2

r.
(d) for all j ∈ [r] and i ∈ Q(j)(0), define Yi

j ∶= ⊕l∈[r]∖jY
i
l ⊕Ti and

Y(0) = {Yi
j ⊕l∈[r]∖j Y

i
l ⊕Ti ∶ j ∈ [r], i ∈ Q(j)(0)}.

This concludes the first step. We encourage the readers to verify that at the
end of this step Yi

j is undefined for exactly the indices in Ii and ∣Ii∣ ≥ 2.
Furthermore, due to ¬(KG(MU,K)∨SC(M,T,U,V,K)), the partially defined
(X,Y) is permutation-consistent.
Constrained system formulation: For each i ∈ [c], let J(i) = {j1, . . . , jti}
denote the set of permutation indices with fresh input for the i-th equivalence
class Q(i). Let ri = qiti.
Then, for each i ∈ [c], we obtain a (qi, ri, ti)-constrained system S(i):

S(i) =
⎧⎪⎪⎨⎪⎪⎩
⊕

k∈J(i)
Yj
k = T

j ⊕
k′∈[r]∖J(i)

Yj
k′

⎫⎪⎪⎬⎪⎪⎭j∈Q(i)

which is binary, acyclic, partite, isolate and ti-regular.
2. In the second step, we sample a solution for each of the c constrained systems.

First fix any arbitrary ordering of S(1), . . . ,S(c). Now, for the i-th system:
• let R(j)≤(i−1) = Vj ∪ {Yk

j ∶ k ∈ Q(j)(0)}∪ {Y
k
j ∶ k ∈ Q(1) ⊔ . . .⊔Q(i−1)}, for all

j ∈ [r], and let ∣R(j)≤(i−1)∣ = r
(j)
≤(i−1) ≤ (p + q),

• let R≤(i−1) = (R(j)≤(i−1) ∶ j ∈ [r]) and R̂≤(i−1) = (R(j)≤(i−1) ∶ j ∈ J(i)),
• let T(i) = (Tk ∶ k ∈ Q(i)) and T̂(i) = (Tk⊕j∈[r]∖J(i) Y

k
j ∶ k ∈ Q(i)).

Then, ∣T(i)∣, ∣T̂(i)∣ ≤ qi.
• let Y(i) = {Yk

j ∶ k ∈ Q(i), j ∈ J(i)}. Then, ∣Y(i)∣ = ri.
We sample Y(i)↞ (S(i) ∣ R̂≤(i−1)), where using Theorem 1, we have

η(S(i) ∣ R̂≤(i−1)) ≥
∏j∈J(i)(2

n − r
(j)
≤(i−1))qi

2nqi
(1 − ε(i)) (30)

ε(i) ≤
2µ(T̂(i), R̂≤(i−1))

2n(ti−1)
+ 2qi∆S(i)

2n(ti−1)
+ 6qi(p + q)ti

2nti
(31)

Since the solution for each system is sampled in a consistent manner given a
consistent solution for the previous system, the cumulative sampling is also
permutation-compatible. This completes the second step.

At this stage the full transcript in the ideal world, i.e., Θid = (M,T,U,V,K,Y) is
fully determined.
Some Notations on Transcripts: For any wo ∈ {re, id}, and Θwo =
(M,T,U,V,K,Y), let:
• Θkeywo denote the restriction of Θwo to the key K,
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• Θconwo denote the restriction of Θwo to the construction query-response tuple
(M,T),

• Θprimwo denote the restriction of Θwo to the key (U,V),
• Θintwo denote the restriction of Θwo to the construction-specific primitive query-

response (X,Y).

Bad Transcript Definition and Analysis: A transcript ω =
(M,T,U,V,K,Y ) ∈ Ω is said to be bad if and only if LSC(T, p+q)∨KG(M,U,K)∨
SC(M,T,U,V,K) holds.

Lemma 20.

Pr (Θid ∈ Ωbad) ≤
4

2n
+
2
√
nq(p + q)r−1

2n(r−1)
+ 2q(p + q)r

2nr

Proof. We have

Pr (Θid ∈ Ωbad) = Pr (LSC(T, p + q) ∨KG(M,U,K) ∨ SC(M,T,U,V,K))
≤ Pr (LSC(T, p + q)) +Pr (KG(M,U,K)) + Pr (SC(M,T,U,V,K) ∣ ¬LSC(T, p + q))

≤ 4

2n
+ qpr

2nr
+ q(p + q)r

2nr
+
2(p + q)r−1√nq

2n(r−1)
,

where the first term on the right hand side corresponds to Pr (LSC(T, p + q))
and follows from Lemma 1, the second term corresponds to Pr (KG(M,U,K))
and follows from the uniformity of K. The last two terms correspond to
Pr (SC(M,T,U,V,K) ∣ ¬LSC(T, p + q)). To argue this, first notice that given
¬LSC(T, p + q), we have

µ(T,V) ≤ q(p + q)r
2n

+ 2(p + q)r−1√nq.

For each choice of k ∈ [r], the predicate ∀k′ ≠ k, Xi
k′ = U

jk′
k′ is satisfied with at

most 2−n(r−1) probability. Now, we get the desired terms using union bound. ⊓⊔

Good Transcript Analysis: Let ω = (M,T,U,V,K,Y ) be a good transcript.
Since the transcript is good, ¬(LSC(T, p+q)∨KG(M,U,K)∨SC(M,T,U,V,K))
holds.

Before moving forward, recall the notations introduced while discussing the
sampling in the ideal world. We assume analogous notations for any arbitrary
transcript.

We also ignore the probability computation of obvious events, such as: the
message tuple being realized.
Real World: In the real world, we have

Pr (Θre = ω) = Pr (Θkeyre =K,Θprimre = (U,V ),Θintre = (X,Y ),Θconre = (M,T ))
= Pr (Θkeyre =K) ×Pr (Θprimre = (U,V )) × Pr (Θintre = (X,Y ) ∣ Θkeyre ,Θprimre )
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= 1

2nr
× 1

(2n)rp
× Pr (Θintre = (X,Y ) ∣ Θkeyre ,Θprimre ) ,

where the first term on the right hand side follows from the uniformity of K, the
second term follows from the uniformity of Π = (Π1, . . . ,Πr).

As for the last term, consider the partition imposed by ∼ in an arbitrary
order, and also the associated notations introduced earlier. Then, conditioned
on (Θkeyre ,Θprimre ), we have

Pr (Θintre = (X,Y ) ∣ Θkeyre ,Θprimre ) =
r

∏
j=1

1

(2n − p)
q
(j)
0

× ∏
i∈[c]

j′∈J(i)

1

(2n − r
(j′)
≤(i−1))qi

.

Indeed, the first product term corresponds to the query indices with exactly
one fresh primitive input, i.e. the ones in Q(j)(0) for some j ∈ [r], and the sec-
ond product correspond to the query indices with at least two fresh primitive
inputs, computed using a simple application of chain rule over the partitions
Q(1), . . . ,Q(c). By combining everything, we have

Pr (Θre = ω) =
1

2nr
× 1

(2n)rp
×

r

∏
j=1

1

(2n − p)
q
(j)
0

× ∏
i∈[c]

j′∈J(i)

1

(2n − r
(j′)
≤(i−1))qi

, (32)

Ideal World: In the ideal world, we have

Pr (Θid = ω) = Pr (Θkeyid =K,Θprimid = (U,V ),Θintid = (X,Y ),Θconid = (M,T ))

= Pr (Θkeyid =K) ×Pr (Θconid = (M,T )) ×Pr (Θprimid = (U,V ))

× Pr (Θintid = (X,Y ) ∣ Θkeyid ,Θprimid ,Θconid )

= 1

2nr
× 1

2nq
× 1

(2n)rp
× Pr (Θintid = (X,Y ) ∣ Θkeyid ,Θprimid ,Θconid )

= 1

2nr
× 1

2nq
× 1

(2n)rp
× ∏

i∈[c]
Pr (Y

(i)
= Y (i) ∣ R̂≤(i−1))

= 1

2nr
× 1

2nq
× 1

(2n)rp
× ∏

i∈[c]

1

η(S(i) ∣ R̂≤(i−1))

where the first three terms are obvious. The fourth term corresponds to the
indices in Q(i) for all i ∈ [c]. Further, using (30), we have

Pr (Θid = ω) ≥
1

2nr
× 1

2nq
× 1

(2n)rp
× ∏

i∈[c]
j′∈[r]

2nqi

(1 − ε(i)) (2n − r
(j′)
≤(i−1))qi

= 1

2nr
× 1

2nq0
× 1

(2n)rp
× ∏

i∈[c]
j′∈[r]

1

(1 − ε(i)) (2n − r
(j′)
≤(i−1))qi

, (33)
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where the equality follows from the fact that q = q0∑i∈[c] qi.
The Ratio: On dividing (32) by (33), we have

Pr (Θre = ω)
Pr (Θid = ω)

≥ ∏
i∈[c]
(1 − ε(i)) (34)

≥ 1 − ∑
i∈[c]

ε(i)

≥ 1 − ∑
i∈[c]

⎛
⎝
2µ(T̂(i), R̂≤(i−1))

2n(ti−1)
+ 2qi∆S(i)

2n(ti−1)
+ 6qi(p + q)ti

2nti

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
εratio(ω)

. (35)

Now, we have

E (1goodεratio) = ∑
i∈[c]

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(ti−1)

⎞
⎠
+ ∑

i∈[c]

2E (qi)E (∆S(i))
2n(ti−1)

+ ∑
i∈[c]

6E (qi) (p + q)ti
2nti

(36)

≤ ∑
i∈[c]

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(ti−1)

⎞
⎠
+ 16nq(2p)r−2

2n(r−1)
+ 6q(2(p + q))r

2nr

(37)

where the first equality follows from linearity of expectation and the fact that
E (χR) ≤ E (R) for any non-negative random variable R and indicator random
variable χ. The second/third term in the second inequality follows from E (qi) ≤
qpr−ti/2n(r−ti) ≤ q(p + q)r−ti/2n(r−ti), ti ≥ 2, c ≤ 2r. Additionally, due to the
uniformity of T and q < 2n, E (∆S(i)) ≤ 4n. Now, for the first term, when ti = r,
we have

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(r−1)

⎞
⎠
≤ 2µ(T,V)

2n(r−1)

≤ 2µr(T, p + q)
2n(r−1)

≤ 2q(p + q)r
2nr

+
4
√
nq(p + q)r−1

2n(r−1)
, (38)

where the last inequality follows from 1good(Θid) = 1. For, ti < r, let J(i) =
{j1, . . . , jti}, [r] ∖J(i) = {j′1, . . . , j′r−ti}, and

KSC(i) ∶= {(Ti′ ,Vk1

j′1
, . . . ,V

kr−ti
j′r−ti

,ZJ(i)) ∈ SC(T,V[r]∖J(i) ,R
(J(i))
≤(i−1)) ∶ Xi′

j′
l
= Ukl

j′
l
}

Then, ∣KSC(i)∣ = µ(T̂(i), R̂≤(i−1)), and thus

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(ti−1)

⎞
⎠
≤ 2

2n(ti−1)
E (1good(Θid)∣KSC(i)∣)
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≤ 2

2n(ti−1)
× µr(T, p + q)

2n(r−ti)

≤ 2q(p + q)r
2nr

+
4
√
nq(p + q)r−1

2n(r−1)
(39)

where the second inequality follows from the uniformity of K, and the last in-
equality follows from 1good(Θid) = 1. Using (38) and (39) in (37), we have

E (1goodεratio) ≤
16nq(2p)r−2

2n(r−1)
+
8
√
nq(2(p + q))r−1

2n(r−1)
+ 8q(2(p + q))r

2nr
(40)

Finally, using the fine-grained variant of the Expectation method (see
Lemma 2) along with Lemma 20 and (40), we have

Advtprf
Π-SOEMr (A) ≤ 4

2n
+ 16nq(2p)r−2

2n(r−1)
+
10
√
nq(2p + 2q)r−1

2n(r−1)
+ 10q(2p + 2q)r

2nr
,

which completes the proof. ⊓⊔
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Claim. We claim

ε(λi, R̂1, P̂2) ≤ (
2(s + q)

N
(∆S +∇R̂) +

4(s + q)q2
N2

)η(S≤(i−1) ∣R)

ε(λi, P̂1, R̂2) ≤ (
2(s + q)

N
(∆S +∇R̂) +

4(s + q)q2
N2

)η(S≤(i−1) ∣R)

ε(λi, P̂1, P̂2) ≤ (
2q∆S

S
+ 4q3

N2
)η(S≤(i−1) ∣R)

Proof. Let x1
k,x

2
k denote the variables corresponding to the k-th equations. Anal-

ogously, for k ≤ (i − 1), we write y1k, y
2
k to denote the solution assigned to the

variables corresponding to the k-th equation. Let

M1 ∶= {(x, j) ∈R1 × [i − 1] ∶ λj ≠ λi, λi ⊖ α1 ⋅ x ∉ R̂2, λj ⊖λi ⊕ α1 ⋅ x ∉ R̂1}
M2 ∶= {(j, x) ∈ [i − 1] ×R2 ∶ λj ≠ λi, λi ⊖ α2 ⋅ x ∉ R̂1, λj ⊖λi ⊕ α2 ⋅ x ∉ R̂2}
M3 ∶= {(j, j′) ∈ [i − 1]2 ∶ λj ,λj′ ≠ λi}

Then, it is easy to see that

(i −∆S)(s1 − 2∇R̂) ≤ ∣M1∣ ≤ is1
(i −∆S)(s2 − 2∇R̂) ≤ ∣M2∣ ≤ is2
(i −∆S)(i −∆S − 1) ≤ ∣M3∣ ≤ i2

We prove the first and third inequality. As for the second inequality, it can be
argued in a similar fashion as the first one.
First consider

ε(λi, R̂1, P̂2) ≤
s1(i − 1)

N
η(S≤(i−1) ∣R) − ∑

y≤(i−1)

µ(λi, R̂1, P̂2)
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≤ s1(i − 1)
N

η(S≤(i−1) ∣R) − ∑
y≤(i−1)

∑
(x,j)∈M1
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∑
y≤(i−1)

µ(λi, α1 ⋅ x,α2 ⋅ y2j )

Thus, we have to count the number of solutions y≤(i−1) that additionally satisfies
α1 ⋅ x ⊕ α2 ⋅ y2j = λi for all valid (x, j). Let S≤(i−1)∖{j} denote the system that
excludes Sj . Then, the second summand on the right hand side can be rewritten
as

∑
(x,j)∈M1

∑
y≤(i−1)

µ(λi, α1 ⋅ x,α2 ⋅ y2j ) = ∑
(x,j)∈M1

η(S≤(i−1)∖{j} ∣R′(x, j)),

where R′(x, j) ∶= (R′1(x, j),R′2(x, j)), R′1(x, j) ∶= R1 ∪ {λj⊖λi⊕α1⋅x
α1

}, and

R′2(x, j) ∶=R2 ∪ {λi⊖α1⋅x
α2

}. Using Fact 1, it is obvious that

η(S≤(i−1)∖{j} ∣R′(x, j)) ≤ η(S≤(i−1)∖{j} ∣R),

since (S≤(i−1)∖{j} ∣R′(x, j)) ⊆ (S≤(i−1)∖{j} ∣R).
Now, a solution in (S≤(i−1)∖{j} ∣R) is not in (S≤(i−1)∖{j} ∣R′(x, j)) if and only

if there exists a k ∈ [i − 1] ∖ {j} such that y1k =
λj⊖λi⊕α1⋅x

α1
or y2k = λi⊖α1⋅x

α2
.

Using Fact 2, such solutions are at most 2η(S≤(i−1)∖{j,k} ∣R) for each k, where
S≤(i−1)∖{j,k} denote the system excluding Sj and Sk. Thus, we have

η(S≤(i−1)∖{j} ∣R′(x, j)) ≥ η(S≤(i−1)∖{j} ∣R) − 2 ∑
k∈[i−1]∖{j}

η(S≤(i−1)∖{j,k} ∣R)

≥ η(S≤(i−1)∖{j} ∣R) − 2 ∑
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N − 2s − 2(i − 1)

≥
η(S≤(i−1) ∣R)

N
(1 − 2i

N − 2s − 2(i − 1)) ,

where the second and third inequalities follow from Fact 2, and s1 + s2 ≤ 2s.
Finally, using 2(s + i − 1) ≤ 2n−1, we have
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N
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∣M1∣
N
(1 − 4i

N
)η(S≤(i−1) ∣R)

≤ (s + q

N
(∆S + 2∇R̂) +

4(s + q)q2
N2

)η(S≤(i−1) ∣R), (42)

and similarly,

ε(λi, P̂1, R̂2) ≤ (
s + q

N
(∆S + 2∇R̂) +

4(s + q)q2
N2

)η(S≤(i−1) ∣R). (43)
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Now, consider

ε(λi, P̂1, P̂2) ≤
(i − 1)2

N
η(S≤(i−1) ∣R) − ∑

y≤(i−1)

µ(λi, P̂1, P̂2)

≤ (i − 1)2
N

η(S≤(i−1) ∣R) − ∑
y≤(i−1)

∑
(j,j′)∈M3

µ(λi, α1 ⋅ y1j , α2 ⋅ y2j′)

= (i − 1)2
N

η(S≤(i−1) ∣R) − ∑
(j,j′)∈M3

∑
y≤(i−1)

µ(λi, α1 ⋅ y1j , α2 ⋅ y2j′)

We want to count the number of solutions y≤(i−1) that additionally satisfies
α1 ⋅ y1j ⊕ α2 ⋅ y2j′ = λi for all valid (j, j′). Let S≤(i−1)∪{j−j′} denote the system
S≤(i−1) ∪ {α1 ⋅ x1

j ⊕ α2 ⋅ x2
j′ = λi}. Then, we can rewrite the second summand on

the right hand side as

∑
(j,j′)∈M3

∑
y≤(i−1)

µ(λi, α1 ⋅ y1j , α2 ⋅ y2j′) = ∑
(j,j′)∈M3

η(S≤(i−1)∪{j−j′} ∣R).

Let S≤(i−1)∖{j′} denote the system after excluding Sj′ ∪ {α1 ⋅ x1
j ⊕ α2 ⋅ x2

j′ = λi}.
Then, it is obvious that

η(S≤(i−1)∪{j−j′} ∣R) ≤ η(S≤(i−1)∖{j′} ∣R)

Now, a solution in (S≤(i−1)∪{j−j′} ∣R) is not in (S≤(i−1)∖{j′} ∣R) if and only if

there exists a k ∈ [i − 1] ∖ {j′} such that y2k =
λi⊖α1⋅y1

j

α2
or y1k =

λj′⊖λi⊕α1⋅y1
j

α1
. Such

solutions are at most 2η(S≤(i−1)∖{j′,k} ∣R) for each k, where S≤(i−1)∖{j′,k} denote
the system excluding Sj′ and Sk. Thus, we have

η(S≤(i−1)∪{j−j′} ∣R) ≥ η(S≤(i−1)∖{j′} ∣R) − 2 ∑
k∈[i−1]∖{j′}

η(S≤(i−1)∖{j′,k} ∣R)

≥ η(S≤(i−1)∖{j′} ∣R) − 2 ∑
k∈[i−1]∖{j′}

η(S≤(i−1)∖{j′} ∣R)
N − 2s − 2(i − 1)

≥
η(S≤(i−1) ∣R)

N
(1 − 2i

N − 2s − 2(i − 1)) ,

where the second and third inequalities follow from Fact 2, and s1 + s2 ≤ 2s.
Finally, we have

ε(λi,P1,P2) ≤
(i − 1)2

N
η(S≤(i−1) ∣R) −

∣M3∣
N
(1 − 4i

N
)η(S≤(i−1) ∣R)

≤ (2q∆S

N
+ 4q3

N2
)η(S≤(i−1) ∣R) (44)

Lemma 6 now follows by combining (41) with (42)-(44). ⊓⊔
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B Residual Calculations

We aim to show:

∣E (µ(T(i),R)) − s2

2n
∣ ≤ 3s

2n
(45)

√
V (µ(T(i),R)) ≤

√
2s

2n/2
+ 4s2

23n/2
(46)

First consider ∣E (µ(T(i),R)) − s2

2n
∣. We need both lower and upper bounds on

E (µ(T(i),R)). Let I = {i1, . . . , is} be an arbitrary indexing of R.
For all j, j′ ∈ I, let 1j,j′ denote the indicator random variable corresponding

to the event Aj ⊕ Bj′ = T(i), where Aj ,Bj′ ∈R. Then, we have

E (µ(T(i),R)) = ∑
j≠j′∈I

Pr (1j,j′) =
s(s − 1)
2n − 1

, (47)

since for any pair of (j, j′), Pr (1j,j′) = 1/(2n − 1) and there are at most s(s − 1)
such pairs. (45) now follows easily.

Now, consider the second claim. We have to compute the variance of µ(T(i),R).
First, using the above formulation, we have

V (µ(T(i),R)) = V
⎛
⎝ ∑j,j′∈I

1j,j′
⎞
⎠

= ∑
j,j′∈I

V (1j,j′) + ∑
j1,j2,j3,j4∈I
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4)

≤ ∑
j,j′∈I

E (1j,j′) + ∑
j1,j2,j3,j4∈I
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4)

≤ E (µ(T(i),R)) + ∑
j1,j2,j3,j4∈I
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) (48)

All that remains is to bound the covariances for every choice of (j1, j2) ≠ (j3, j4).
First, we have

V (1j1,j2 ,1j3,j4) = Pr (1j1,j2 ,1j3,j4) −Pr (1j1,j2)Pr (1j3,j4)

It is easy to see that Pr (1j1,j2 ,1j3,j4) ≤ 1/(2n − 1)(2n − 3), and thus

∑
j1,j2,j3,j4∈I
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤ s4 (
1

(2n − 1)(2n − 3) −
1

(2n − 1)2 ) ≤
16s4

23n
. (49)

(46) now follows by taking square root on both sides of (48) after appropriate
substitutions from (47) and (49).
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