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Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France,
name.surname@cea.fr

Abstract. In their Eurocrypt’21 seminal paper, Li and Micciancio pre-
sented a passive attack against the CKKS approximate FHE scheme and
introduced the notion of CPAD security. The current status quo is that
this line of attacks does not apply to “exact” FHE. In this paper, we
challenge this status quo by exhibiting a CPAD key recovery attack on
the linearly homomorphic Regev cryptosystem, which easily generalizes
to other xHE schemes such as BFV, BGV and TFHE, showing that these
cryptosystems are not CPAD secure in their basic form. We also show
that existing threshold variants of BFV, BGV and CKKS are particu-
larly exposed to CPAD attackers and would be CPAD-insecure without
proper smudging noise addition after partial decryption. Finally, we suc-
cessfully implement our attack against several mainstream FHE libraries
and discuss a number of natural countermeasures as well as their con-
sequences in terms of FHE practice, security and efficiency. The attack
itself is quite practical as it typically takes less than an hour on an av-
erage laptop PC, requiring a few thousand ciphertexts as well as up to
around a million evaluations/decryptions, to perform a full key recovery.

1 Introduction

Since its inception more than ten years ago, Fully Homomorphic Encryption has
been the subject of a lot of research towards more efficiency and better practical-
ity. From a security perspective, however, FHE still raises a number of questions
and challenges. In particular, all the FHE usable in practice, BFV [9,19], BGV
[10], CKKS [14] and TFHE [15], achieve only CPA-security. Although it is well-
known that malleability is contradictory with CCA2 security, building efficient
FHE constructions achieving some degree of CCA security (e.g. CCA1) remains
a very important open challenge despite recent theoretical advances [26]. Be-
ing stuck at the CPA level, FHE is thus completely insecure (and trivially so)
as soon as the adversary is granted access to a decryption oracle. In this con-
text, Li and Micciancio [23] were the first to study the security of FHE against

⋆ This work was supported by the France 2030 ANR Projects ANR-22-PECY-003
SecureCompute and ANR-23-PECL-0009 TRUSTINCloudS as well as by the Euro-
pean Union’s Horizon Europe Research and Innovation Program ENCRYPT under
Grant Agreement No. 101070670.

⋆⋆ This paper has been published in the proceedings of CRYPTO’24.



2 M. Checri et al.

a slight, seemingly benign extension of CPA security where the adversary is
granted access only to a highly constrained decryption oracle which accepts only
genuine ciphertexts or ciphertexts derived from genuine ciphertexts by means
of genuine homomorphic operations. The intuition is that, given a FHE scheme
E = (KeyGen,Enc,Dec,Eval), if the adversary knows m, f as well as c = Enc(m),
granting her access to Dec(Eval(f, c)) should not raise any issue since she can
compute f(m) by herself and, by definition of FHE,

Dec(Eval(f,Enc(m))) = f(m) (1)

is supposed to hold for all m in the plaintext domain of E . At first glance,
it appears that this constrained oracle does not provide more information to
the adversary than she can compute on herself and, as such, that this CPAD

security is implied by or even equivalent to CPA security. Unfortunately, Li and
Micciancio demonstrated that these intuitions are not true for approximate FHE
schemes such as CKKS, for which it turns out that neither Dec(Enc(m)) = m
nor (1) hold (with high probability) and where the differences Dec(Enc(m))−m
or

Dec(Eval(f,Enc(m))) − f(m)
leak the LWE noises in the ciphertexts, resulting in the ability for the adversary
to easily and practically recover the secret decryption key of the scheme. They
further demonstrated the attack practicality on most mainstream libraries im-
plementing CKKS. To the best of our knowledge, the current consensus in the
state-of-the-art is that this line of attack does not apply to the other schemes
such as BFV, BGV or TFHE which are “marketed” as non-approximate. In
fact, as we shall later see, “non-approximate” does not mean “exact”, and these
schemes, at least in their basic forms, are practically vulnerable to CPAD ad-
versaries.

1.1 Contributions summary

This paper’s contributions are as follows:

– We start by exhibiting a key recovery attack on the Regev scheme and its
simple RLWE variant in the CPAD model. We also experimentally demon-
strate that this attack is practical on several state-of-the-art LWE parameter
sets achieving better than 128 bits security. In a nutshell, our attack consists
in carefully controlling the noise growth in some encryptions of 0, obtained
by repeatedly summing ciphertexts with themselves, in order to probe the
threshold at which decryption errors start occurring. This eventually allows
us to recover the absolute value of the LWE noise present in some cipher-
texts, with a practically large enough probability. We then extend our attack
toolbox with a procedure to test whether two ciphertexts for which the noise
absolute values have been determined, have noises with the same sign. Using
this toolbox, we can eventually generate two linear systems of equations in
Zq with one of the two giving the secret decryption key. In doing the attack,
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we perform only valid requests with respect to the CPAD security game,
which is formally recalled.

– We then port our attack to the BFV, BGV and TFHE schemes and success-
fully apply it to several of the mainstream libraries which implement these
schemes, namely SEAL/BFV, SEAL/BGV, OpenFHE/BFV, OpenFHE/BGV,
Lattigo/BFV including in the threshold setting, and TFHElib. In all these
cases, we successfully perform a full key recovery in a few minutes to a bit
more than an hour, except for TFHElib for which the attack is much faster
due to the smaller parameters usually necessary for TFHE to achieve 128
bits security. Remarkably, HElib/BGV resisted our attack due to its built-in
noise upper bound tracking feature and, most importantly, the fact that its
decryption function generates no output when the noise bound of a cipher-
text exceeds a certain threshold.

– In addition, we take a closer look at multiparty threshold FHE setups for
BFV and BGV, where encryption is performed relative to a global public
key and decryption is done collaboratively by entities which possess only
shares of a global secret decryption key which has to remain unknown to
them. We show that this setup is intrinsically exposed to CPAD adversaries,
allowing any decrypting party to retrieve the global secret key unless either
the underlying FHE scheme achieves CPAD security or a countermeasure
against CPAD attacks is included. We then argue that the noise smudg-
ing technique with proper λ-dependent variance, necessary in the security
proofs for threshold constructions based on BFV or BGV, acts as a natural
countermeasure against such CPAD attacks.

– We discuss several natural and effective countermeasures applicable to dif-
ferent schemes (BFV/BGV vs TFHE), which essentially consist in strategies
to ensure that a CPAD adversary only has neg(λ) probability of observing
exploitable decryption errors. Additionally, we investigate the impact that
these countermeasures have on the choice of parameters for the underly-
ing FHE scheme. As they generally require using “larger” parameters, e.g.
larger ciphertext-modulus (which may also imply using larger dimensions)
for BFV/BGV or larger dimensions and/or tighter decomposition basis and
precisions for TFHE, we also experimentally illustrate the performance im-
pact induced on the homomorphic calculations when these countermeasures
are used to achieve CPAD security.

– As a last contribution, we analyze the consequence of the relationship be-
tween CPAD security and threshold FHE constructions when the CKKS
scheme is used as the underlying FHE scheme. In particular, we show that
in existing constructions, either the CPAD insecurity of CKKS leads to an in-
secure threshold scheme or that decrypted results have to be so flooded with
noise that their precision is jeopardized. This significantly reduces CKKS’s
attractiveness for use in the threshold setting.
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1.2 Paper organization

This paper is organised as follows: we first recall the CPAD security game in
Sect. 2. We then detail in Sect. 3 the principles of our attack starting from
vanilla Regev and its RLWE variant. Sect. 4 then adapts the attack to BFV, BGV
and TFHE and provides experimental results showing the attack practicality on
some of the mainstream libraries implementing them. Lastly, Sect. 5 discusses
the implications of our attack on existing threshold variants of BFV/BGV. We
conclude the paper by a discussion on countermeasures and their implications
in terms of FHE efficiency (Sect. 6).

2 Background on CPAD security

In this section, we recall the CPAD security game [23]. It is a left-or-right game in
which an adversary attempts to recover a random bit with a significant advantage
over guessing.

Given an encryption scheme

E = (KeyGen,Enc,Dec,Eval),

with plaintext domain P and ciphertext domain C, an adversary A and value

λ for the security parameter, the game is parameterized by a bit b∗
$←Ð {0,1},

unknown to A, and an initially empty state S of message-message-ciphertext
triplets:

– Key generation: Run (ek,dk) ← KeyGen(1λ), and give ek to A. Note that
this security game works identically in the non-public key setting, only ek is
not revealed to A.

– Encryption request: WhenA queries (test messages,m0,m1), wherem0,m1 ∈
P, compute c = Encek(mb∗), give c to A and do

S ∶= [S; (m0,m1, c)].

– Evaluation request: When A queries (eval, f, l1, . . . , lK), with K the arity
of function f and ∀i ∶ li ∈ J1, ∣S∣K, compute

m′0 = f(S[l1].m0, . . . , S[lK].m0),

and
m′1 = f(S[l1].m1, . . . , S[lK].m1),

as well as
c′ = Eval(f,S[l1].c, . . . , S[lK].c),

where S[li].e is the element e ∈ {m0,m1, c} of the state S for the li-th request.
Then, we update S with the ∣S∣ + 1 entry (m′0,m′1, c′) as follows:

S ∶= [S; (m′0,m′1, c′)]
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– Decryption request: When A queries (ciphertext, l) (l ∈ J1, ∣S∣K) proceed
as follows: if S[l].m0 ≠ S[l].m1 then return � to A, otherwise return her
Decdk(S[l].c).

– Guessing stage: After polynomially many interleaved encryption, evaluation
and decryption requests, A outputs (guess, b). The outcome of the game is
determined as follows: if b = b∗ then A wins the game. Otherwise, A looses
the game.

A number of points should be emphasized with respect to the above game.
First, the decryption oracle accepts only ciphertexts from the game state which
are necessarily well-formed. That is, it accepts only ciphertexts either produced
by an encryption oracle via an encryption request or derived by the evalua-
tion oracle via an evaluation request, so derived by correctly applying homo-
morphic operators to well-formed ciphertexts. As such, the above game does
not capture any CCA aspects. Second, when S[l].m0 = S[l].m1 it is important
that the decryption oracle returns Decdk(S[l].c) and not S[l].m0 or S[l].m1.
For exact FHE, this has no impact since Decdk(S[l].c) = S[l].m0 = S[l].m1.
And in this case, A learns nothing she does not already know, so CPAD secu-
rity coincides with CPA security. However, for approximate or non-exact FHE,
even when S[l].m0 = S[l].m1, we may have that Decdk(S[l].c) ≠ S[l].m0 and
Decdk(S[l].c) ≠ S[l].m1. Thus, for approximate or non-exact FHE, the decryp-
tion oracle grants A access to information she cannot compute on her own,
resulting or not in a guessing advantage depending on whether or not the cryp-
tosystem at hand is CPAD secure. As a last remark, let us also emphasize that,
in the above game, A has control on the homomorphic calculations that are
performed as f is included in the evaluation request.

3 A CPAD key recovery attack on Regev

In this section, after recalling the specification of the Regev cryptosystem, we
describe how a CPAD attacker can retrieve the absolute value of the LWE noise
in some ciphertexts and then find ciphertexts with noises of the same sign. After
enough such ciphertexts have been obtained, the adversary is then able to recover
the scheme secret key by solving two linear systems.

3.1 The Regev cryptosystem

We first start by considering the simple Regev cryptosystem [28]. Without loss
of generality, we describe only the symmetric variant, which is parametrized
by a dimension n, an integer q and a probability distribution χσ on Zq with
standard deviation σ. Plaintexts are elements of Zt, with t = 2, and ciphertexts
are elements of Zn

q ×Zq. These notations will be used consistently throughout the
paper. The scheme is then defined as follows:

– KeyGen: pick a secret key s ∈ Zn
q uniformly at random.
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– Enc: given a plaintext m ∈ Z2, pick a ∈ Zn
q uniformly at random, pick e in Zq

according to χσ, and return (a, b) with b = ⟨a, s⟩ + ⌊ q
2
⌋m + e.

– Dec: given a ciphertext c = (a, b), return ⌈ 2
q
(b − ⟨a, s⟩)⌋ mod 2.

For this cryptosystem, ciphertexts such that

q

4
≤ b − ⟨a, s⟩ < 3q

4

decrypt to 1. Other ciphertexts decrypt to 0. It is well-known that the Regev
cryptosystem is additively homomorphic as given two ciphertexts (a, b) and
(a′, b′) of messages m and m′, the ciphertext (a + a′, b + b′) is an encryption
of m +m′, provided the total error absolute value is bounded by q/4.

3.2 Extracting the noise amplitude of a given ciphertext

In this section, we show how to determine the absolute value of the noise of an
encryption of 0 by means only of valid CPAD security game requests. Given a
ciphertext c, we denote by idx(c), its index in the game state S. Note that A
can mirror state S on her side.

Extracting the additive depth k. The first step consists in asking for an
encryption of 0 via a request of the form (test messages,0,0). A then gets
c0 = (a, ⟨a, s⟩ + e), e being of course unknown to her. By means of CPAD game
requests of the form (eval, sum, idx(cl), idx(cl)) for l ∈ J0, k − 1K, A can obtain
ciphertexts cl+1 = cl + cl for l ∈ J0, k − 1K, and decrypt them via CPAD game
request of the form (ciphertext, idx(cl)). In particular,

ck = (2ka, ⟨2ka, s⟩ + 2ke). (2)

A then stops:

– either when ck−1 decrypts to 0 and ck decrypts to 1, in which case she can
conclude that

q

2k+2
≤ ∣e∣ < q

2k+1
, (3)

– or when ck still decrypts to 0 with 2k ≥ q
4
. In this latter case, she can

conclude that ∣e∣ = e = 0 and gets one linear equation in s. The probability
of this happening depends on the initial noise distribution.

Note that unless c0 is identified as noise free, given 1 ≤ α < q
4
such that α =

∑⌈log2(α)⌉
k=0 αk2

k, via one or more CPAD game (eval, sum, . . .) requests , A obtains
ciphertext

c(α) ∶= ∑
k∶αk=1

ck,

so that
c(α) = (αa, ⟨αa, s⟩ + αe).
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The parameter α∗. The adversary can start a dichotomic search1 for the value
α∗ such that c(α∗) duly decrypts to 0 while c(α∗+1) decrypts to 1 and conclude
that

q

4(α∗ + 1)
≤ ∣e∣ < q

4α∗
. (4)

Determination of ∣e∣. It follows that ∣e∣ is uniquely determined when

⌈ q

4(α∗ + 1)
⌉ = ⌊ q

4α∗
⌋ (5)

and this occurs (Sect. A) when

∣e∣ <
√
q

2
. (6)

or, more generally, when ∣e∣ <
√

q
2t

(for t ≥ 2). So, at this point, the bottom
line is whether or not this is likely to occur often enough to lead to a practical
attack, considering commonly used FHE parameters. For example, for TFHE,
q = 232 and σ = 217 are often used for binary plaintexts. Then, ciphertexts with
noise below

√
q/4 = 215 will have their noise completely determined. A rough

calculation tells us that this will be the case for around 20% of the ciphertexts.
This order of magnitude is consistent with the experiments in Table 1. For BFV
and BGV, the tendency generally is to use quite large moduli, e.g. 2200, and
small standard deviations, e.g. σ = 3.2. With this kind of parameters, condition
(6) is satisfied with overwhelming probability. Note that condition (6) plays no
role in the concrete attack, only condition (5) does.

Finally, let us emphasize again that all the decrypted values used in this
section are obtained by means of CPAD game requests of the form

(ciphertext, idx(c(α)))
as all involved ciphertexts are by construction registered in the game state S.
The magnitude of the noise in our original ciphertext c0 is then determined, when
the above procedure succeeds, by means only of valid CPAD game requests.

3.3 Identifying ciphertexts with noise of equal sign

We now consider two ciphertexts c0 and c′0 for which ∣e∣ > 0 and ∣e′∣ > 0 (as
well as α∗ and α′

∗
) have been determined following the previous section. Now,

when α∗∣e∣+α′∗∣e′∣ ≥ q
4
, A obtains ciphertext c(α∗)+c(α′∗) via a CPAD game eval

request, similarly to the previous section. If this latter ciphertext decrypts to
1, she can conclude that e and e′ have the same sign, since α∗e and α′

∗
e′ have

added up over q
4
. Otherwise, when 0 is obtained as a decryption, α′

∗
e′ partially

cancelled α∗e and the resulting noise magnitude remained below q
4
.

1 Note that such kind of dichotomic approaches has already been used in the context
of a CCA1 attack against the Gentry-Halevi scheme in [24] (Sect. 4).
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3.4 Finalizing key recovery

Using the techniques in the two previous sections, A can now proceed as fol-
lows, starting from an initial encryption of 0, c0, obtained by means of a CPAD

game test messages request, for which ∣e∣ > 0 is exactly determined (following
Sect. 3.2). She then looks for a second encryption of 0, c′0 such that ∣e′∣ is deter-
mined and checks if c′0’s noise e′ has the same noise sign as c0’s noise e, as in
Sect. 3.3. Note that ciphertexts identified as noise-free during the procedure in
Sect. 3.2 are always kept at this stage. If not, A discards c′0 and restarts, oth-
erwise she keeps c′0. A then repeats this procedure until she gets n ciphertexts
c1, . . . , cn with known noise magnitudes ∣e1∣, . . . , ∣en∣ determined as in Sect. 3.2,
and same noise signs (that is, either ei = ∣ei∣ for each i or ei = −∣ei∣ for each i).
Then, there only remains to solve the two linear systems

⟨a1, s⟩ = b1 + ∣e1∣
. . . = . . .

⟨an, s⟩ = bn + ∣en∣

and

⟨a1, s⟩ = b1 − ∣e1∣
. . . = . . .

⟨an, s⟩ = bn − ∣en∣,

getting two candidate values for the secret key s. She can then determine which
of these two solutions is the correct key by asking a few more encryptions of 0 and
attempting to decrypt them with both candidate secret keys, with the correct
one always leading to correct decryptions. Once the correct key is identified, A
trivially wins the CPAD game by decrypting the outcome of a single request of
the form (test messages,0,1).

Note that, when the probability for χσ to generate a noiseless LWE pair is
large enough, the attack can be carried out by considering only ciphertexts for
which the procedure in Sect. 3.2 determines that ∣e∣ = 0. In this case, although
the adversary has to examine more ciphertexts, only one linear system needs to
be solved as each noiseless encryption of 0 directly gives a linear equation in the
key.

3.5 First experimental results

Table 1 provides some statistics for a number of representative LWE parameter
sets. These statistics have been obtained with a preliminary Python implemen-
tation of the attack on Regev. In the table, n, q, σ are the LWE parameters,
λ the security level estimated with the lattice-estimator2, P is the proportion of

2 https://github.com/malb/lattice-estimator

https://github.com/malb/lattice-estimator
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ciphertexts for which ∣e∣ was determined following Sect. 3.2, P0 the proportion
of ciphertexts for which it was determined that ∣e∣ = 0, the other columns re-
spectively provide the number of encryption, evaluation and decryption requests
done to achieve secret key recovery. Following these preliminary results, we are
now ready to attempt to implement the attack against real-world libraries. We
do so in Sect. 4.

n q σ λ P P0 # enc # eval # dec

636 232 217 97 0.235 ≈ 0 5358 150437 150437
1024 232 217 175 0.226 ≈ 0 8427 236324 236324
8192 2240 3.19 82 ≈ 1 0.13 14593 6512218 6512218
16384 2240 3.19 218 ≈ 1 0.16 29016 12924174 12924174

Table 1. Statistics obtained by a proof-of-concept implementation of the attack in
Sect. 3. The security level λ is estimated using the lattice-estimator. Note that for the
last two rows, we are always able to determine ∣e∣, hence P ≈ 1, since condition (6) is
satisfied with overwhelming probability.

3.6 Adaptation to RLWE

Let us consider an elementary RLWE variant of Regev working over Rq =
Zq[X]/(Xn + 1) [25].
Encryption: given m0, . . . ,mn−1 ∈ Zn

2 return (a, b) where b = a ⋅ s + ⌊ q
2
⌋m + e

where m(X) = ∑n−1
i=0 miX

i.

Decryption: given (a, b), return ⌈ 2
q
(b − a ⋅ s)⌋ mod 2 where the rounding is

performed coefficient-wise.
Essentially, this RLWE variant consists in grouping n LWE pairs in a single

ciphertext, since the i-th (i ∈ J0, n − 1K) coefficient of polynomial b is

i

∑
j=0

ai−jsj −
n−1

∑
j=i+1

ai+n−jsj + ⌊
q

2
⌋mi + ei. (7)

As such, our attack on Regev is straightforward to adapt to this RLWE set-
ting by focusing on a single arbitrarily chosen coefficient, say i, of the involved
polynomial. For example, illustrating this for the first steps of the attack, the ad-
versary starts by asking for an encryption of the null polynomial 0 via a request
of the form (test messages,0,0). A then gets c0 = (a, a ⋅s+e), the polynomial e
being of course unknown to her. Similarly to the LWE case, by means of CPAD

game requests of the form (eval, sum, idx(cl), idx(cl)) for l ∈ J0, k − 1K, A can
obtain ciphertexts cl+1 = cl + cl for l ∈ J0, k − 1K, with

ck = (2ka,2ka ⋅ s + 2ke).

She stops:
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– either when ck−1 decrypts to a polynomial whose i-th coefficient is 0 and ck
decrypts to a polynomial whose i-th coefficient is 1 (ignoring the values of
coefficients j ≠ i in the decrypted polynomials), in which case A can conclude
that

q

2k+2
≤ ∣ei∣ <

q

2k+1
,

– or when ck still decrypts to a polynomial whose i-th coefficient is 0 with
2k ≥ q

4
, in which case she can conclude that ∣ei∣ = ei = 0 and straightaway

obtain one linear equation in s following (7):

i

∑
j=0

ai−jsj −
n−1

∑
j=i+1

ai+n−jsj = 0.

The rest of the attack works similarly to the LWE case. A performs RLWE
CPAD game requests until she gets n ciphertexts c(1), . . . , c(n) with known noise

magnitudes ∣e(1)i ∣, . . . , ∣e
(n)
i ∣ and same noise signs in the i-th coefficient of their

noise polynomials. She can then post-process these ciphertexts on her own to
extract and solve the two linear systems (κ ∈ {0,1}),

i

∑
j=0

a
(1)
i−jsj −

n−1

∑
j=i+1

a
(1)
i+n−jsj = bi + (−1)κ∣e(1)i ∣

. . .
i

∑
j=0

a
(n)
i−j sj −

n−1

∑
j=i+1

a
(n)
i+n−jsj = bi + (−1)κ∣e(n)i ∣

with one of them giving s.
For simplicity’s sake, we have described the most direct adaptation of our

CPAD attack on Regev to RLWE. Even though it is already highly practical
in this form, there are a number of simple ways in which it can be optimized.
In particular, the adversary may wish to exploit all the coefficients in a given
RLWE ciphertext in an attempt to extract more than one linear equation for a
given ciphertext. Indeed, given an RLWE encryption of the null polynomial (a, a⋅
s + e), the above noise absolute value determination procedure can be repeated
independently for each coefficient index i of the right-hand side polynomial of the
RLWE pair, yielding, when condition (5) holds for this index, ∣ei∣. To determine
whether the noises ei and ej for two coefficients i ≠ j, for which ∣ei∣ and ∣ej ∣ have
been determined, have the same sign, A can employ the same technique as in
Sect. 3.3 after a cyclic rotation of the coefficient obtained by a multiplication
with the polynomial Xj−i (depending on the chosen plaintext encoding).

4 Adaptation to mainstream FHE and libraries

In this section, we show that BFV, BGV and TFHE are variants of either Regev
or its simple RLWE variant that we described in the previous section and, as
such, vulnerable to the CPAD attack path which we have discussed. For each
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of these cryptosystems, we provide experimental results obtained when imple-
menting the attack on some of the mainstream libraries which support it. For
all these cryptosystems, we only provide the minimum details required to un-
derstand the present paper and refer the reader to the cited references for their
full specifications.

4.1 BFV

With BFV[9,19], to encrypt a polynomial message m with the public key pk =
(p0, p1) = ([−(a ⋅ sk + e)]q , a) ∈ Rq

2, one must sample r
$←Ð R2, e0, e1

$←Ð χσ and

return c = ([∆ ⋅m + p0 ⋅ r + e0]q , [p1 ⋅ r + e1]q), where ∆ = ⌊ q
t
⌋. An encryption of

0 is then c = (c0, c1) = ([p0 ⋅ r + e0]q , [p1 ⋅ r + e1]q). Thus, modulo q we have

c0 = −(a ⋅ sk + e) ⋅ r + e0
= −(a ⋅ r) ⋅ sk + e ⋅ r + e0 + e1 ⋅ sk − e1 ⋅ sk
= −c1 ⋅ sk + (e ⋅ r + e0 + e1 ⋅ sk)

Therefore, consistently with Sect. 3.6, a BFV ciphertext is an RLWE ciphertext
such that b′ = a′ ⋅ sk + e′, where b′ = c0, a

′ = −c1 and e′ = e ⋅ r + e0 + e1 ⋅ sk. As
discussed in Sect. 3.6, if we only target one coefficient of the polynomial c0, we
obtain an LWE instance and can proceed with the attack as defined on Regev.

SEAL The SEAL3 library implements the BGV, BFV and CKKS schemes, allow-
ing us to choose default security settings of 128, 192 or 256 bits. So, we first took
a shot at the BFV cryptosystem with parameters giving a security of 128 or 256
bits. To carry out the attack, we need to access the plaintext polynomial’s coef-
ficients after decryption, which is easily done with this library as it overloads the
[ ] operator in C++. The practical attack follows exactly the theoretical pattern:
we try to recover the noise of ciphertexts of 0, which can be done when condition
∣e∣ <

√
q
2t

(cf (6)) is verified. This condition is almost always satisfied with the
default BFV parameters in SEAL, which uses a q that is very large compared to
the noise deviation for fresh ciphertexts. For example, 109 bits for n = 4096 and
128-bit security and a standard deviation of the Gaussian used to generate the
noise equal to σ = 3.2. When carrying out the attack, we thus systematically find
the absolute value of the noise of the ciphertexts of interest with the dichotomic
procedure in Sect. 3.2. To check this, we instrumented the library to display the
true noise of the ciphertexts. Of course, this instrumentation is not used for the
attack itself.

As an example, we ran the attack with parameters n = 4096, log2(q) = 58,
σ = 3.2, giving a security of 227 bits according to the lattice-estimator. For this
set of parameters, we systematically recovered the absolute value of the noise,
enabling us to generate the n linear equations required for key recovery in about
1 m 20 s. The number of calls to the encryption oracle was 7393, and the number

3 https://github.com/microsoft/SEAL version 4.1 [2]

https://github.com/microsoft/SEAL
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of calls to both the evaluation and decryption oracles was 664138. These and
other results can be found in Table 2.

OpenFHE In order to compare the libraries, we also attempted the attack on
BFV as implemented in OpenFHE4 with the default parameters given for 128-
and 256-bit security. As described previously, we need to recover the coefficients
of the plaintext polynomial after decryption.

OpenFHE offers several plaintext encoding methods. To perform the attack,
we chose the simplest path, which consists in using the most direct encoding,
namely COEF PACKED ENCODING, in which messages are directly put into the
plaintext polynomial coefficients, similarly to Sect. 3.6. After decryption, the
resulting plaintext is represented as a NativePoly, and we only have to extract
the coefficient of interest. Note that the attack can be adapted to the other
encoding modes available in OpenFHE. As for SEAL, we also instrumented the
library so as to check that the correct noises were duly recovered.

To run the attack on BFV with the OpenFHE library, we choose parameters
generated by default by the library, providing a security of 256 bits. For this
security, we have to choose an n at least equal to 16384. So we choose n = 16384,
and the library then uses as default parameters a q such that log2(q) = 120 and
σ = 3.19. As with SEAL, with this set of parameters, we systematically recover the
absolute value of the noise. For a security of 256 bits, the attack takes about 1 h
15 m 30 s. This relatively large time, compared to SEAL, is mostly attributable
to the comparatively larger dimension used in the parameter set. As for the
number of calls to the oracles, there are around 32700 for the encryption oracle
and around 6630736 for the evaluation and decryption oracles. These results are
available in Table 2.

Lattigo We also implemented our attack targeting the Lattigo library (version
5). We tested it on several sets of parameters, ensuring security from 95 to 217
bits according to the lattice-estimator.

Unlike the OpenFHE library, Lattigo5 does not propose several encoding
types. It uses batching by default and transforms the plaintext polynomial using
an INTT. To remain within the boundaries of a CPAD attack, we duly used the
encoding function provided by Lattigo prior to encryption, as well as the de-
coding function following each decryption. For BFV, Lattigo decryption is done
via calls to functions Decrypt which removes a ⋅ s, and then Decode which scales,
rounds and performs a NTT to recover the plaintext polynomial. Hence, in order
to recover the coefficients to which the attack is applied, we had to post-process
the Decrypt/Decode output by an inverse NTT, as would have been done by a
real attacker.

We first ran the attack on “small” parameters, referred to as PN11QP54 and
PN12QP101pq in version 4 of the library, and still supported in the latest version

4 https://github.com/openfheorg/openfhe-development version 1.1.2 [4]
5 https://github.com/tuneinsight/lattigo version 5 [1]

https://github.com/openfheorg/openfhe-development
https://github.com/tuneinsight/lattigo
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5. These parameters are given for 128 bits of security, but achieve around 100 bits
of security according to the latest lattice-estimator. For these, we systematically
found the absolute value of the noise. For example, for n = 2048, log2(q) = 54
and σ = 3.2, the attack runs in less than 50 s and finds the 2048 linear equations
in 4086 calls to the encryption oracle, and 274638 calls to the evaluation and
decryption oracles.

However, when we tried to carry out our attack with larger parameters, we
could not determine the exact error, but we did find an interval containing two
possible absolute values for the error. After investigation, we attribute this to
slight inaccuracies in the decryption function when using large parameters. Al-
though we were not able to exactly pinpoint the root cause of this behavior in the
library, we were able to reproduce that behaviour within an independent Python
script in which down scaling was done using Decimal rather than Fraction. This
slightly disrupted our attack as condition (5) was never satisfied, leading to two
distinct values, with only one of them giving the absolute noise of the ciphertext.
Still, we experimentally noticed that when the ciphertext had a negative noise,
the absolute value of this noise was equal to the left-hand bound, and that when
the ciphertext had a positive noise, this noise was equal to the right-hand bound.
Having noticed that this phenomenon occurred systematically, we adapted our
attack without deviation from the CPAD context. The CPAD requests to the
oracles remain identical. The only difference for the attacker, who remains pas-
sive, is in the post-processing. The attacker constructs two systems of linear
equations, the first with all noises assumed to be negative, taking the left-hand
bound of (5) as the absolute value of the error, and the second with all noises
assumed to be positive, taking the right-hand bound of (5). With this slight
adaptation, we still determine the n equations needed to find the secret key.
Of course, in a real-world attack, the adversary can invest (as we did) as much
time as needed in reverse engineering of the target library in order to adapt to
its peculiarities. For example, we eventually were able to run our attack against
parameter set n = 4096, log2(q) = 60 and σ = 3.2, which achieves a security of
217 bits according to the lattice-estimator. This last set of parameters allows us
to find the desired set of linear equations in less than 1 m 30 s. For this set, the
number of calls to the encryption oracle is 7983, and the number of calls to the
decryption oracle is 326947.

Finally, the Lattigo library also supports threshold schemes. In this case, an
additional so-called smudging noise is added during the multi-party decryption
process. Depending on its deviation, σsmg, this noise may or may not prevent our
attack. Still, when its deviation is set to 0, an option which is offered by older
versions of the library (up to version 4), the attack works without modifications.
When that noise standard deviation is small, e.g. using the default σsmg = 3.2
in version 5 of the library, we have still been able to perform the attack without
modifications. However, in this latter case, we experimentally observed that con-
dition (5) is not always satisfied but always yields the correct value of ∣e∣ when
it is. For example, for parameters n = 4096, log2(q) = 101, σ = 3.2, σsmg = 3.2

and 5 parties (thus leading to an additional noise of deviation 3.2
√
5), the at-
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tack examines 11595 (vs 9814 in the single key case, hence without smudging)
ciphertexts, performs 1137984 (vs 1071497) calls to the evaluation/decryption
oracle and an overall time of 18 m 20 s (vs 6 m 40 s). The latter cost difference
is imputable to both the larger number of ciphertexts examined as well as the
fact that collaborative decryption is more expensive than single-key decryption.

When σsmg is a large constant but smaller than a certain λ-dependent bound,
e.g. σsmg = 230 as suggested in examples provided within the library, we are still
able to perform a slower variant of the attack via the identification of 0-noise
LWE pairs (see Sect. 3.4). However, when σsmg is a carefully chosen λ-dependent
constant, then the attack is prevented. We further discuss these two cases in full
detail in Sect. 5, which is dedicated to threshold variants of BFV and BGV
following the Lattigo blueprint.

Returning to OpenFHE, we have also obtained similar results on its BFV
threshold implementation. When the default minimal smudging noise is used,
our attack works without any modification although it has, as above, to examine
more ciphertexts. When the smudging noise standard deviation is set to a large
(λ-independent) constant fixed by the library (NOISE FLOODING MULTIPARTY
option on) we can still perform a slower attack variant by identifying 0-noise
LWE pairs as above.

4.2 BGV

For BGV[10], we remark that since the attack requires only homomorphic addi-
tions, level switchings can be ignored.

In BGV, to encrypt m ∈ Rp, one must sample u
$←Ð Rp and e1, e2

$←Ð χσ then
create a level-L BGV ciphertext c = (u ⋅ pkL,0 +m + p ⋅ e0, u ⋅ pkL,1 + p ⋅ e1), where
the public key at level L is pkL = (pkL,0,pkL,1) = (aL ⋅ skL + p ⋅ eL,−aL). A level-ℓ

encryption of 0 is c = (c0, c1) = (u ⋅ pkℓ,0 +m + p ⋅ e0, u ⋅ pkℓ,1 + p ⋅ e1). Then,

−c0 = −(aℓ ⋅ skℓ + p ⋅ eℓ) ⋅ u + p ⋅ e0
= −(aℓ ⋅ u) ⋅ skℓ + p ⋅ eℓ ⋅ u + p ⋅ e0 + p ⋅ e1 ⋅ skℓ − p ⋅ e1 ⋅ skℓ
= c1 ⋅ skℓ − (p ⋅ eℓ ⋅ u + p ⋅ e0 + p ⋅ e1 ⋅ skℓ)

Thus, consistently with Sect. 3.6, a BGV ciphertext is an RLWE ciphertext such
that b′ = a′ ⋅ sk + e′, where b′ = −c0, a′ = c1 and e′ = p ⋅ eℓ ⋅ u + p ⋅ e0 + p ⋅ e1 ⋅ skℓ. As
for the BFV case, we can focus on only one coefficient of c0 to obtain an LWE
instance and go back to the Regev case.

SEAL Again, we targeted the SEAL library to perform the attack on BGV,
using a set of default parameters giving 256-bit security according to the li-
brary. Without surprise, the attack on BGV works similarly to that on the BFV
cryptosystem for that library (see Sect. 4.1).

With the parameters n = 4096, log2(q) = 58, σ = 3.2 (227 bits of security
according to the lattice-estimator), we always find the absolute value of the noise
of a ciphertext of interest. We generated the 4096 linear equations in less than a
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minute, calling the encryption oracle 8183 times and the evaluation and decryp-
tion oracles 661647 times. These results and others are provided in Table 2.

OpenFHE The attack on the OpenFHE implementation of BGV works similarly
to that of BFV. The main difference is that a CryptoContextBGVRNS context
is generated instead of a CryptoContextBFVRNS context. The polynomial coeffi-
cients are recovered in the same way as for BFV. After decryption, we get the
NativePoly from the decrypted plaintext and extract the coefficient of interest.
We carried out this attack on parameters achieving 128-bit and 256-bit security.
As with BFV, we systematically found the noise’s absolute value and were thus
able to recover the linear equations required for the attack.

As an example, we used the parameters generated by default by the library:
n = 16384, log2(q) = 120 and σ = 3.19. With these parameters, we systematically
found the absolute value of the noise and thus carried out the attack in approx-
imately 1 h 8 m 50 s. The number of calls to the evaluation and decryption
oracles is 3475514 while that of the encryption oracle is 32779. We present these
results and others in Table 2.

HElib To the best of our knowledge, HElib6 is the only library that performs
noise level monitoring and in fact blocks decryption (i.e., returns �) when the
estimated noise level is deemed too large to result in a correct decryption.

Specifically, upon decrypting a Ctxt with the function SecKey::Decrypt(), the
function Ctxt::isCorrect() compares the Ctxt’s noise level estimate noiseBound
against its ciphertext modulus. If Ctxt::isCorrect() returns false, SecKey::Decrypt()
exits with a warning and without running the decryption algorithm.

To work in this context, our attack would require to generate ciphertexts
which actually fail to correctly decrypt before they are flagged by Ctxt::isCorrect().
But the parameters in HElib have been chosen so that this happens with a very
small probability which does not depend on λ. The implication is that one can-
not determine the (additive) depth k on ciphertexts, as in (3), let alone the
value of α∗ defined in (4). As a result, HElib prevents us from extracting even
the magnitude of the noise e in the initial ciphertext.

In conclusion, thanks to this mechanism HElib appears to be the only library
that is immune to our attack in its present form. This hints at a possible counter-
measure to mitigate the attack by monitoring noise deviations in ciphertexts and
choosing instance parameters rendering the probability of incorrect decryption
negligible in the security parameter λ, rather than a very small λ-independent
probability as presently done in the library. This will be further discussed in
Sect. 6.

We note however that, while the exact determination of ∣e∣ seems out of
reach against HElib, the possibility remains open to reduce the range of possible
values for ∣e∣ and thus effectively reduce the security level. This deserves further
investigations.

6 https://github.com/homenc/HElib version 2.2.0

https://github.com/homenc/HElib
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4.3 TFHE

The TFHE encryption scheme was proposed in 2016 [15] and updated in [17].
It introduces the TLWE problem as an adaptation of the LWE problem to the
Torus T = R/Z, and specifies the most efficient bootstrapping operation in the
literature [5].

TFHE relies on three structures to encrypt plaintexts defined over T, Tn[X]
or Z[X]/(Xn + 1). In this work, we are only interested in TLWE samples that
serve for encrypting messages in T. A pair (a, b) is a valid TLWE sample if

a
$←Ð Tn and b ∈ T satisfies b = ⟨a, s⟩ + e, where s

$←Ð Bn is the secret key, and

e
(0,σ2

)←ÐÐÐ T is a Gaussian noise. Then, (a, b) is a fresh encryption of 0.
LetM ⊂ T be the discrete message space7. To encrypt a message m ∈M ⊂ T,

we add (0,m) to a fresh TLWE sample (a, b), to obtain the ciphertext c =
(a, b+m). In the following, we refer to an encryption of m with the secret key s
as a TLWE ciphertext noted JmK = c ∈ TLWEs(m).

To decrypt a sample c ∈ TLWEs(m), we compute its phase ϕ(c) = b− ⟨a, s⟩ =
m + e. Then, we round it to the nearest element ofM.

We note that TFHE is an adaptation of the Regev encryption scheme to T,
and so it is an additive homomorphic encryption scheme. That is, if we add c1 ∈
TLWEs(m1) to c2 ∈ TLWEs(m2), we get c ∈ TLWEs(m1 +m2).

TFHElib TFHElib8 is an open source library providing the original TFHE im-
plementation. It supports two discretizations for T either on 32 or 64 bits9.
That is, in practice, a TLWE sample corresponds to a Regev encryption with
q = 232 (or q = 264). TFHElib allows adding ciphertexts without bootstrapping.
So, it provides the elementary operations for implementing the attack described
in Sect. 3. Indeed, we implemented this attack targeting TFHElib, with various
typical parameter sets, and we succeeded, in less than 1 second, in finding the
number of linear equations required for key recovery (as described in Table 2).
Note that the attack runs much faster for TFHElib since TFHE usually requires
relatively small dimensions (typically below 1024) and moduli (e.g. 232) which fit
in native machine words to achieve above 128 bits security. This is in opposition
to the typical parameters in the BFV/BGV realm, which lead to much larger
dimensions (e.g. 16384) and moduli over more than 100 bits.

Lastly, let us emphasize that the attack also works “as is” against the TFHE-rs
library [3] when the public “unchecked addition” function (allowing homomor-
phic addition without bootstrapping or noise-level checking) is used.

7 In practice, to encrypt a message m ∈ Zt, we encode it in T as m
t

then we add it to
a fresh TLWE sample as: (a, b + m

t
). That is,M = {0, 1

t
,⋯, t−1

t
}.

8 https://tfhe.github.io/tfhe/ [16]
9 The 64-bit implementation of TFHE is less maintained when compared to the 32-
bit one. So, when we refer to TFHElib in this paper, we will be referring to 32-bit
implementation.

https://tfhe.github.io/tfhe/
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4.4 Additional comments on Table 2

Looking at the overall experimental results in Table 2, one may notice that the
time necessary to carry out the attack does not clearly correlate with the security
level of the various schemes. We explain this phenomenon as follows.

The attack time primarily depends on the dimension (or polynomial degree)
n, which determines the number of linear equations required to recover the se-
cret key. Also, both n and the ciphertext modulus size log2(q) have an impact
on the cost of encryptions/decryptions and on the unitary cost and number of
homomorphic additions to perform the attack. The relationship between secu-
rity level λ, n and q is not linear. As a rule of thumb, to maintain a given λ,
increasing q requires increasing n. However, n increases following powers of 2 in
all the libraries implementing BFV/BGV. We think that this non-linear rela-
tionship explains why the correlation between the attack time and λ is not easy
to interpret.

Note that the attack time also depends on the encryption noise standard
deviation, since a larger deviation requires analyzing more ciphertexts (as dis-
cussed towards the end of Sect. 3.2). This observation only concerns TFHElib,
as the other libraries are implementing BFV/BGV with an identical standard
deviation of 3.2.

5 Remarks on threshold homomorphic encryption

One of the existing multi-user approaches is the Threshold (also called Multi-
Party) Homomorphic Encryption [7]. It allows users to encrypt their data using
a joint public key, constructed from their individual public keys. The decryption
phase is collaborative, such that no user holds the associated global private key.
In this setting, no user should be able to extract information on another user’s
or the joint private key from the public or shared knowledge (i.e. the joint public
key or even the encrypted messages under this joint key).

Thus, in a threshold approach, users can encrypt their data using this joint
public key and perform collaborative decryption without knowledge of the global
secret key. Now, if the underlying scheme is CPAD insecure, an adversary may
be able to retrieve the decryption key from the knowledge of several triplets
{m,c,Dec(c)}, where c is an encryption of m. In the collaborative threshold
decryption setup, each user is first given the ciphertext c to decrypt. This ci-
phertext is encrypted under the global secret key that he or she does not know.
At the end of the collaborative decryption protocol, each user is granted access
to Dec(c). Assuming the messages are also known, every user is clearly in the
position of a CPAD attacker on the global secret key. Therefore, either CPAD se-
curity or a countermeasure against CPAD attacks is a must-have in the threshold
setting.
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5.1 The case of Lattigo’s blueprint

Now, we illustrate this with the K-out-of-K threshold scheme from [27] based
on core RLWE-based homomorphic encryption and which serves as a basis for
the Lattigo library. Our notations for the rest of this section are the ones of [27].

Let CRS be the uniform distribution in Rq, i.e., elements sampled from this
distribution are uniformly distributed and the same for all K parties Pi, i ∈
J1,KK. In addition with the usual public parameters for RLWE, this multi-user
scheme requires a public polynomial p1 with coefficients sampled from the CRS
[11].

The resulting scheme is then specified by a tuple MBFV = (EncKeyGen,
RelinKeyGen, KeySwitch, PubKeySwitch) that extends the BFV scheme with the
following machinery:

– EncKeyGen(sk1, . . . , skK) constructs a collective encryption key from individ-
ual secret keys;

– RelinKeyGen(sk1, . . . , skK) constructs a collective relinearization key from in-
dividual secret keys;

– KeySwitch(ct, sk′1, . . . , sk
′

K , sk1, . . . , skK) re-encrypts a ciphertext ct from a
collective public key EncKeyGen(sk1, . . . , skK) to a collective public key
EncKeyGen(sk′1, . . . , sk

′

K) using private knowledge;
– PubKeySwitch(ct,pk′, sk1, . . . , skK) re-encrypts a ciphertext ct from a collec-

tive public key EncKeyGen(sk1, . . . , skK) to another public key pk′, using only
public knowledge.

The protocol then runs as follows. Each party Pi constructs its individual
public key p0,i ∶= −p1ski + ei from its individual private key ski. The joint public

key EncKeyGen(sk1, . . . , skK) is then (p0, p1) with p0 = ∑K
j=1 p0,j . We do not

detail how the joint re-linearization key is constructed as our attacks require
only homomorphic additions.

To perform a collaborative key switch KeySwitch(ct, sk′1, . . . , sk
′

K , sk1, . . . , skK)
on a ciphertext (recall Sect. 4.1)

ct = (c0, c1) = (∆ ⋅m + p0 ⋅ r + e0, p1 ⋅ r + e1),

each party Pi (owner of the secret keys si ∶= ski and s′i ∶= sk′i) picks a smudging
noise ei and discloses

hi ∶= (si − s′i)c1 + ei
to the other parties. The smudging noise is sampled from a discrete Gaussian
distribution with (very large λ-dependent) variance σ2

smg = 2λσ2
ct, where σ

2
ct is the

ciphertext noise variance (which has to be monitored during FHE evaluations)
and λ is, as usual, the target security level. The output re-encrypted ciphertext
ct′ ∶= (c0 +∑K

j=1 hj , c1) can then be computed by any party.
Now, observe that the key switching protocol KeySwitch with private inputs

(si,0) (that is, s′i = 0 for all party i) is actually a collaborative decryption pro-
tocol. To perform this collaborative decryption, each party Pi picks a smudging



20 M. Checri et al.

noise ei as above and discloses hi ∶= sic1 + ei to the other parties. The plaintext
is then obtained by each party by computing c0 +∑K

j=1 hj .

Note that this collective decryption is actually equivalent to a decryption
under the key s ∶= ∑K

j=1 si, which is not known by any unique party. Hence,

each party is actually a potential CPAD attacker on s. Indeed, each party can
obtain ciphertexts by performing encryption with the joint public key, evaluation
requests on these ciphertexts, and collaborative decryption requests on them,
which is equivalent to decryption requests under the associated global private
key s that she does not know.

As discussed, the smudging technique, as introduced by Asharov et al. [8],
consists in flooding the partial decryptions with a fresh noise term of large λ-
dependent variance. This technique is necessary in the security proofs for these
threshold schemes. However, identifying concrete attack paths that would be
mitigated by smudging was left as an open problem in [27]. From the smudging
lemma [8], Mouchet et al. show (proof of Lemma 3 of [27]) that when esmg is
indeed picked from a discrete Gaussian distribution of variance σ2

smg = 2λσ2
ct,

the distribution of ect + esmg, where ect is the ciphertext noise, is statistically
indistinguishable from the one of esmg. Getting back to the attack in Sect. 3, and
stated in LWE terms for simplicity sake, this means that ciphertext ck (recall
equation (2)) flooded with smudging noise i.e.,

c
(smg)
k = (2ka, ⟨2ka, s⟩ + 2ke + esmg), (8)

where σsmg = 2kσ
√
K2

λ
2 and σct = 2kσ, is indistinguishable from ciphertext

(2ka, ⟨2ka, s⟩ + esmg),

and, hence, that no information can be extracted on e from c
(smg)
k with more

than neg(λ) advantage.
The smudging technique is then an efficient countermeasure, without which

the above threshold scheme would be vulnerable to our attack, as long as the
base FHE scheme is not CPAD secure. Hence, smudging noise addition with the
proper σct and λ-dependent standard deviation should be used in a systematic
way, and not be made optional by any library implementing the threshold homo-
morphic encryption scheme specified in [27]. For instance, as discussed in Sect. 4,
the Lattigo library (version 5) uses a minimum value for σsmg of 3.2, indepen-
dently of σct and λ, which is not sufficient to prevent our attack. Even when
a large, yet λ-independent, deviation smudging noise is used (e.g. σsmg = 230

is suggested in parameter set examples for Lattigo) it is not enough to prevent
CPAD attacks as ours. In that case, we can still exploit the fact that it remains
possible to identify LWE pairs with 0-noise, therefore yielding linear equations in
the key (as discussed in Sect. 3.2, 3.4 and 3.6 for RLWE where each coefficients
of the b polynomial are considered independently). Indeed, when ck, as defined
in (2), still decrypts to 0 when 2k ≥ q

2t
, the adversary can conclude that its noise

e = 0. Now, when a ck with e = 0 is smudged as in (8) but with a noise esmg with
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a λ-independent deviation, the probability that c
(smg)
k does not decrypt to 0,

P (∣esmg∣ ≥
q

2t
) ,

is independent of k and depends solely on σsmg. The probability of this happening

is then bounded by ( 2tσsmg

q
)
2
. For example, with typical Lattigo parameters

log2(q) = 101, t = 65537 and σsmg = 230, this occurs with a probability less than
3.08 ⋅ 10−33. Also, since the typical initial ciphertext noise deviation is σ = 3.2,
0 values are generated quite often for the noise. We have been able to confirm
this experimentally with the Lattigo library by being able to duly identify the
13 RLWE ciphertexts with 0 noise in their first coefficient over 600 generated
ciphertexts. Of course such an attack will have to examine many more ciphertexts
(around 50 times more), even though it would remain totally practical.

5.2 Other threshold schemes

There also exists variants of the scheme in [27] with a fixed parameter T < K,
in which any T parties among the K ones are enough to perform a collaborative
decryption. In such variants, the individual keys are constructed by means of
Shamir’s secret sharing, and the collective key is still a linear combination of
them, constructed from a Lagrange interpolation polynomial. Hence, the con-
ditions of the previous section are still met, and any one of the T decrypting
parties is still a potential CPAD adversary.

To the best of our knowledge, all the existing threshold constructions from
HE schemes based on LWE and its variants are analogous to this one, with a
collective decryption protocol equivalent to a simple decryption under an alge-
braic sum of individual private keys in some ring structure, making each party
a CPAD attacker in a similar way. Hence, existing threshold schemes over BFV,
BGV and CKKS may be insecure if no smudging is applied, due to the CPAD

insecurity of these schemes.

6 Attack mitigation strategies

In this section, we investigate a number of natural countermeasures.

6.1 Monitor&Block

The Monitor&Block mechanism introduced in HElib for reliable decryption, as
described in Sect. 4.2, hints at a possible countermeasure for BFV/BGV imple-
mentations. Let us define the noise deviation budget, denoted B, as the standard
deviation in ciphertexts obtained after a target algorithm has been executed over
fresh ciphertexts. We then wish to choose the cryptosystem parameters such that
a ciphertext with noise deviation B has probability neg(λ) to generate a decryp-
tion error. Then, ciphertext noise standard deviation must be monitored by the
homomorphic operator implementation10 and the decryption function has to

10 By opposition to HElib which monitors upper bounds satisfied with high probability.
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provide no output for ciphertexts with noise deviation beyond the noise budget
B. Note that noise deviation monitoring and blocked decryption thus become
part of the cryptosystem specification and, as such, a CPAD attacker cannot
work around them. This has implications on the choice for the modulus q as we
then want that (Sect. B)

q

2t
≥ 2λ

2 B. (9)

Hence, this has implications on the choice of n and on the efficiency of the
unitary homomorphic operations. Let us give a coarse idea for the cost of this
countermeasure for BFV. For example taking t = 65537, n = 16384, σ = 3.2 and
λ ≥ 128 for a multiplicative depth of 4 leads to a bound B ≈ 1.53 ⋅ 1068 (see
Sect. B), thus, following (9), requiring a 289-bits q. When asked for parameters
for multiplicative depth 4, OpenFHE however chooses a 240 bits q. Note that
switching from a 240 to a 289 bits modulus does not require to increase n beyond
16384 to remain above 128 bits security. Still this modulus increase is far from
computationally free as it increases the homomorphic multiplication cost from
24.6 ms to 33.4 ms leading to 35% increase (the cost of noise deviation monitoring
being negligible). Table 3 provides more illustrative insights at the cost of this
countermeasure for OpenFHE/BFV.

d log2(q) n log2(q) n ratio

1 120 8192 131 8192 1,09
2 180 8192 181 8192 1,00
3 180 8192 237 16384 2,96
4 240 16384 289 16384 1,35
5 240 16384 341 16384 1,68
6 300 16384 392 16384 1,46
7 300 16384 444 16384 1,66
8 360 16384 516 32768 3,37
9 360 16384 570 32768 3,93
10 420 16384 624 32768 3,65

Table 3. Illustration of the performance cost of the Monitor&Block countermeasure for
OpenFHE/BFV. Column d incidates the target multiplicative depth. The left log2(q)
and n columns indicate the parameters chosen by OpenFHE for 128 bits security (t =
65537). The right log2(q) and n columns indicate the parameters required to ensure 128
bits security and a 2−128 probability of incorrect decryption when depth d is reached
(following the estimates in Sect. B). The last column indicates the resulting measured
performance cost ratio over 10000 BFV multiplications.

6.2 Bootstrapping

Another natural strategy is to bootstrap after each homomorphic operation, in-
cluding additions, which is unusual except for TFHE. Since bootstrapping resets
the noise variance to a preset value, decryption errors cannot occur anymore and
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the scheme becomes exact with probability 1−neg(λ), as long as the bootstrap-
ping itself has a probability of error in neg(λ). In this case, CPA security and
CPAD security are known to be equivalent [23]. Using systematic bootstrapping
as a countermeasure also has efficiency implications as an efficient bootstrapping
procedure is not always known for a given FHE scheme and, even when it does
(e.g. for TFHE), the current trend in the FHE community is to try to avoid
doing it too often. Also a tendency in the parameters usually used in TFHE-
related papers is to have a probability of error independent of λ. Nevertheless,
modifying the scheme parameters to go from a probability of error of, say, 2−80

to 2−128 (using the parameters from Sect. C) has a non-negligible impact on
the bootstrapping time which increases from 40 to 60 ms (i.e. a 50% increase
in computational burden). It is also interesting to note that bootstrapping may
result in security improvements, even though it is usually considered as a (slight)
weakness due to the circular security assumption.

6.3 Monitor&Smudge

As discussed in Sect. 5, for threshold schemes, we have shown that they are
inherently subject to CPAD adversaries. The very large λ-dependent variance
smudging noise, which also depends on the ciphertext noise deviation, added on
each partial decryption acts as an effective countermeasure against our attack.
As a consequence, noise smudging must not be optional in FHE threshold scheme
implementations. Unfortunately, this also has consequences on the performance
of the FHE operators as, when smudging noise is added, one then has to use large
enough moduli to ensure reliable decryption. Typically, given a noise deviation
budget B (still defined as the standard deviation of the noise after a target
algorithm has been executed on a fresh ciphertext, or an upper bound for it),
and following the K-out-of-K decryption procedure of Sect. 5 for e.g. BFV, final
ciphertexts include a noise with variance

B2(1 +K2λ), (10)

where K is the number of decrypting parties. It follows that q has to be (con-
servatively) chosen such that11

q ≥ 2tB
√
1 +K2λ√
ϵ

in order to achieve a probability of erroneous decryption of ϵ. Table 4 experi-
mentally illustrates the additional cost of using the larger moduli for a range of
multiplicative depths, a number of decrypting parties K = 5 and ϵ = 2−40. When
smudging is used, ϵ is fixed based on reliability considerations and does not have
to be dependent on λ since the smudging noise variance already depends on it.
Note that the number of decrypting parties only has a relatively marginal impact

11 This bound is straightforward to derive from Chebychev inequality analogously to
Sect. B. Other less conservative bounds can be obtained.
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on the modulus choice, at least in the small values regime, e.g. a few tens of par-
ties. Lastly, we remark that adding smudging noise before decryption can also
serve as a countermeasure to CPAD attacks in the single-key setup. Comparing
the “ratio” columns of Tables 3 and 4 however suggests that in the single key
setting the Monitor&Block countermeasure is less costly than Monitor&Smudge.

d log2(q) n log2(q) n ratio

1 120 8192 153 8192 1,28
2 180 8192 202 8192 1,12
3 180 8192 258 16384 3,22
4 240 16384 310 16384 1,45
5 240 16384 362 16384 1,79
6 300 16384 414 16384 1,55
7 300 16384 483 32768 3,99
8 360 16384 537 32768 3,70
9 360 16384 591 32768 4,30
10 420 16384 645 32768 3,95

Table 4. Illustration of the performance cost of the Monitor&Smudge countermeasure
for OpenFHE/BFV and K-out-of-K decryption, with K = 5. The probability of decryp-
tion error ϵ is fixed here to 2−40. Column d incidates the target multiplicative depth.
The left log2(q) and n columns indicate the parameters chosen by OpenFHE for 128
bits security (t = 65537). The right log2(q) and n columns indicate the parameters re-
quired to ensure 128 bits security and to be able to decrypt with a ϵ = 2−40 probability

of error when depth d is reached and appropriate smudging noise of st. dev. Bk

√
K2

λ
2

has been added. The last column indicates the resulting measured performance cost
ratio over 10000 BFV multiplications.

As a side remark, this CPAD sensitivity diminishes the interest of using
CKKS in the threshold setting, at least when following the blueprint in [27].
Indeed, since CKKS is CPAD insecure, without smudging, the resulting thresh-
old scheme is not secure (allowing decrypting parties to recover the global key
via a CPAD attack). When smudging is used, the resulting large-variance noise
added on each partial decryption is most likely to jeopardize the precision of the
post-decryption results. Indeed, stated in LWE terms for simplicity sake, CKKS
encryption (at least in its basic form) does not apply any scaling to the message
i.e., generates ciphertext (a, ⟨a, s⟩+m+e) rather than (a, ⟨a, s⟩+⌊ q

2t
⌋m+e) in the

other schemes. As a consequence, CKKS decryption function does not remove the
noise term present in the ciphertexts12. Hence, when the Monitor&Smudge coun-
termeasure is applied, the decryption function outputs the associated message
flooded by a noise of standard deviation in O(2λ

2 ) following (10). For instance,

12 This has desirable consequences. In particular, as it allows to use smaller parameters,
this is one of the reasons why CKKS is very competitive in terms of performances.
On the dark side however, this is also the very reason why CKKS was the first
scheme deemed CPAD insecure as the decryption by definition leaks the LWE noise.
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on 64 bits cleartext data, the presence of such a large noise would render the
FHE computations results unexploitable.

7 Discussion on recent related works

7.1 Concurrent CPAD attacks on exact FHE schemes

Cheon et al. [13] is an independent parallel work which explores CPAD attack
strategies on “exact” FHE schemes as we do in this paper. This work and ours
were released almost simultaneously in preprint form on the IACR ePrint archive
[12,13]. Yet, despite a few overlapping ideas, the two approaches have significant
differences and, we think, are complementary. More precisely, they propose three
attacks:

– Under the assumption that ∆ = q/t = 2k, they propose to attack RLWE
(BFV/BGV) by repeatedly adding k times an encryption of 0 to itself,
thus getting a ciphertext of the form (a, a.s+2ke) which decryption directly
yields e (since ⌊2ke/∆⌉ = e). This however only works if the plaintext mod-
ulus t is such that ∣ei∣ < t for all i, a condition depending on both t and the
encryption noise standard deviation σ. When this occurs with large enough
probability, they succeed in retrieving the whole polynomial e and the secret
key by just solving the linear system obtained from a single ciphertext. How-
ever, if t = 2 or if small values of t are used (as it is the case for example for
TFHE), the attack would not work. In comparison, our approach imposes
no conditions on t nor on σ, the only trade-off being that two RLWE cipher-
texts and two linear systems are required to recover the key. Finally, they
do not generalize their attack when ∆ is not a power of two. In that latter
case, it would become closer to ours and would require to sum the ck’s (as
we define them in Sect. 3.2) for the binary decomposition of ∆ to obtain a
ciphertext having noise polynomial ∆e, i.e. of the form (a, a.s +∆e), which
decrypts to e (still, provided ∣ei∣ < t for all i). In that sense, our attack is
more generally applicable, at the cost of a limited overhead.

– For TFHE, they propose an attack which focuses on the bootstrapping error
probability. However, as it stands, their attack is impractical on realistic
parameters, as it requires about 280 bootstrappings. On the other hand,
our attack on TFHE is practical and efficient, especially since we have the
smallest timings for TFHE. Unlike them, we however target the “Regev
basis” of TFHE and circumvent bootstrapping (as existing libraries allow).

– Additionally, they describe a nice theoretical non-key recovery attack, closely
linked to the CPAD game. The idea of the attack, assuming t = 2, is to get
an encryption of the challenge bit b∗ (i.e. c∗ = Enc(b∗)), and then multiply
it by an encryption of 0 (c0) to produce a ciphertext cmul. Regardless of the
value of b∗, cmul is supposed to be an encryption of 0 and is thus accepted
by the CPAD decryption oracle. Then, if c0 fails to decrypt correctly, the
decryption of cmul reveals b∗. They then discuss strategies to achieve this
with non-negligible advantage.
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In terms of experimental results, they performed simulations on one typical
parameter set for OpenFHE and one for TFHE-rs. Our work, in comparison,
provides extensive experimental validation across almost all mainstream libraries
and initiate the discussion towards concrete countermeasures.

7.2 Application-aware homomorphic encryption

Following this paper attacks, that of Cheon et al. [13] discussed in the preceed-
ing section as well as another recent set of attacks on the CKKS implementation
of OpenFHE [21], Alexandru et al. [6] have proposed a new weaker variant of
CPAD security, termed application-aware security. In essence, this new definition
acknowledges that for non-approximate non-exact FHE schemes, CPAD security
should be defined relative to a circuit class and a noise estimation strategy, rather
than absolutely. With respect to that new security notion, the cryptosystem pa-
rameters should then be set relative to these, and the homomorphic evaluations
should (somehow) be limited to the functions or circuits in the class. For exam-
ple, with respect to our attack, they argue that circuit C1, which adds n different
variables, is not the same as circuit C2, which adds n times the same variable (al-
though the former can do the latter task). They indeed consider that, although
the two circuits have the same worst-case noise behavior, their behaviors differ
with respect to an average-case noise estimation strategy13. So the bottom-line
in their argument is that when one chooses its FHE parameters to achieve cor-
rectness (hence CPAD security) relatively to C1 and the average-case estimation
(ACE) strategy, then (C1,ACE)-CPAD security is achieved, and an attack exe-
cuting C2 therefore falls out-of-scope of that restricted security notion, although
it remains a legitimate (absolute) CPAD attack. Similarly, when the worst-case
noise estimation (WCE) strategy is considered, our attack would imply chaining
more additions than allowed by the initial FHE parameters choice for C1 and
C2 i.e., executing a circuit C3 with a larger (additive-)depth than C2. Again,
although it still is a valid (absolute) CPAD attack, our attack would not be a
valid application-aware ({C1,C2},WCE)-CPAD one.

For non-approximate schemes, allowable functions or circuits can be defined
by a noise standard deviation budget, which should not be exceeded. However,
for approximate schemes (which are out of the scope of our paper), the issue of
meaningfully defining application-aware security is much more subtle, and the
majority of [6] is devoted to tackling this. Additionally, the application-aware
framework is not relevant for “true” FHE when the parameters are so chosen
that bootstrapping errors occur only with a probability negligible in the security
parameter.

That being said, one of the drawbacks of the application-aware approach
is that the burden of enforcing the above constraints lies, so far, solely on the

13 Indeed, the average-case estimation strategy assumes independence of the input
ciphertext noises resulting in a standard deviation estimation of

√
nσ for the noise

in the output ciphertext for C1 and of nσ for C2 (assuming fresh ciphertexts with
initial noise deviation of σ as inputs). Because the worst-case estimation strategy
does not make this independence assumption, nσ is obtained for both circuits.
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library user’s shoulders (following [12,13,21], reference [4] was also updated in
that sense with a novel section, Sect. 2.6.1 on p. 11). Yet, for example when
the average-case noise estimation strategy is used, it is presently unclear how
to automatically enforce the application-aware security paradigm (for instance,
our Monitor&Block countermeasure, Sect. 6.1, nicely fits in the application-
aware framework but relative to the worst-case estimation strategy). Per se,
the application-aware FHE approach acknowledges the issues created by our
attacks but only provide guidelines for users in order to mitigate them. It is an
interesting line of research to attempt to improve on this first approach towards
more robust and automated mitigation approaches, in particular for the average-
case noise estimation strategy which leads to smaller parameters and, hence,
better performances of FHE operators than the worst-case one.

8 Conclusion

First, let us recall that the FHE schemes which are studied in this paper are all
proven secure with respect to the CPA security game in which the adversary has
no access to a decryption oracle. It is well known, that all the schemes considered
in this paper are trivially insecure with respect to the CCA(1) security game.
The CPAD security game with respect to which we define our attack grants the
adversary access to a (very constrained) decryption oracle and, as such, grants
him or her more power than allowed by the CPA game. As a consequence, there
is no contradiction between the CPA security of the schemes considered in this
paper and the existence of the attacks that we present.

However, the attacks presented in this paper demonstrate that, contrary to
the present state-of-the-art informal status quo, the community working on non-
approximate FHE schemes i.e., schemes for which the decryption function in-
cludes a mechanism to remove the ciphertext noise, cannot escape taking CPAD

security into account. Furthermore, CPAD decryption oracles occur naturally in
usual application scenarios for FHE. Consider for example a FHE aggregation
server involved in a Federated Training protocol for a machine learning model
(e.g., [20]) which will eventually be publicly released: the server is then granted
access to both the encryptions of the model parameters and, after public release,
the associated decrypted values. Another example can be a client-server appli-
cation where the client behaviour may betray decryption errors. Additionally, as
we discussed, a CPAD decryption oracle also appears naturally in the threshold
variants of FHE schemes which are very important in FHE practice as soon as
multiple parties are involved.

Lastly, in the case of the non-approximate FHE schemes considered in this
paper, we have shown that there exists a number of natural and simple counter-
measures which allow to mitigate CPAD attacks. These countermeasures essen-
tially consist in ensuring that the adversary has neg(λ) probability of observing
exploitable decryption errors. In such a case, the equivalence between CPA and
CPAD security [23] applies. However, these countermeasures have an impact on
the parameters of the underlying FHE scheme and, as a result, a negative im-



28 M. Checri et al.

pact on the FHE calculation performances. For each countermeasure, we have
given an idea of that performance impact illustrating the fact that, in qualita-
tive terms, it is not negligible but not prohibitive. Indeed, we observed typical
computational cost increases between 50% and 100%. When a larger ciphertext
modulus is needed and in order to remain above 128 bits security, n may increase
to the next power of 2. In such situations, we observed, in the worst case, an
increase of the computational cost of 400%.

We have provided a first set of countermeasures as well as coarse estimates for
their impact on schemes parameters and performances. In terms of perspectives,
additional work is required to possibly propose more lightweight countermeasures
(e.g., requiring for example non systematic bootstrapping for TFHE) and refine
and optimize the parameter setting procedures to reduce as much as possible
the extra performance cost imputable to CPAD security in the case of non-
approximate FHE.
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A Threshold for exact noise determination

Let T = q
4
and consider a ciphertext with noise ∣e∣. Following Sect. 3.2 we have

α∗ = ⌊ T
∣e∣
⌋ and α∗ + 1 = ⌊ T

∣e∣
+ 1⌋. Condition (4) and (5) can then be respectively

rewritten as
T

⌊ T
∣e∣
+ 1⌋

≤ ∣e∣ < T

⌊ T
∣e∣
⌋
.

and ⎡⎢⎢⎢⎢⎢⎢

T

⌊ T
∣e∣
+ 1⌋

⎤⎥⎥⎥⎥⎥⎥
=
⎢⎢⎢⎢⎢⎢⎣

T

⌊ T
∣e∣
⌋

⎥⎥⎥⎥⎥⎥⎦
. (11)

We are now looking under which condition on ∣e∣ the RHS of the above equation
is actually equal to ∣e∣. Assume T = k∣e∣ + r with 0 ≤ r < ∣e∣, then T

∣e∣
= k + r

∣e∣
and

⌊ T
∣e∣
⌋ = k. Then,

T

⌊ T
∣e∣
⌋
= k∣e∣ + r

k
= ∣e∣ + r

k
.
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It follows that ⎢⎢⎢⎢⎢⎢⎣

T

⌊ T
∣e∣
⌋

⎥⎥⎥⎥⎥⎥⎦
= ∣e∣

if and only if r
k
< 1 i.e. r < k. Since r < ∣e∣ this is true when ∣e∣ < k and since

k = ⌊ T
∣e∣
⌋, this is guaranteed to happen when ∣e∣ < ⌊ T

∣e∣
⌋ i.e. when ∣e∣ <

√
T (indeed,

we then have T
∣e∣
= ⌊ T

∣e∣
⌋ + z = ∣e∣ + z′ + z for some positive z ≥ 0, z′ > 0, so that

T > ∣e∣2).
As this is a conservative bound on ∣e∣, the LHS of Eq. (11) can be used to

identify the cases slightly above that bound for which the noise can also be
exactly determined.

B BFV module dimensioning for 2λ CPAD security

Bound (9) is straightforward to derive from the Chebyshev inequality. Indeed, we
want P (∣e∣ ≥ q

2t
) ≤ 2−λ where e has mean 0 and standard deviation B. Chebyshev

bound tells us that P (∣X ∣ ≥ kσ) ≤ 1
k2 , so P (∣e∣ ≥ q

2tB
B) ≤ 4t2B2

q2
. Hence we want

that 4t2B2

q2
= 2−λ leading to q = 2tB2

λ
2 .

For simplicity sake, in order to order to coarsely estimate the noise standard
deviation budget required by a given algorithm, we focus only on the multiplica-
tive depth. In BFV, the multiplication operator increases the noise deviation ap-

proximately by a factor of 2tn2∣∣sk∣∣ [19,22], so, replacing ∣∣sk∣∣ by E[∣∣sk∣∣] =
√

2
3
n,

we get a noise deviation around

Bk ≈ σ
⎛
⎝

√
8

3
tn

5
2
⎞
⎠

k

,

where σ is the initial noise deviation used for encryption, after chaining k ho-
momorphic multiplications. Hence, following bound (9), to achieve a probability
of incorrect decryption below 2−λ we can choose

q ≥ 2t2λ
2 σ
⎛
⎝

√
8

3
tn

5
2
⎞
⎠

k

. (12)

As an example, if we consider a multiplicative depth of k = 4, t = 65537, n =
16384, σ = 3.2 and λ = 128, the above formula tells us that log2(q) should be
around 289.

C Examples of TFHE bootstrapping parameters

In this section we compare two illustrative parameter sets for TFHE (with binary
plaintext) which respectively achieve 280 and 2128 bootstrapping error probabil-
ity with λ = 128. We remind that in practice, we discretize the Torus either on
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32 or 64 bits. That is, TLWE or TRLWE samples will correspond to Regev LWE
or RLWE ciphertexts with q = 232 or q = 264. In Table 5, we refer to our chosen
discretization of the Torus with the parameter 1/q.

In Table 5, n denotes the TLWE sample dimension and σTLWE is the stan-
dard deviation of the Gaussian noise. Meanwhile, N and σTRLWE are respec-
tively the cyclotomic polynomial degree and the standard deviation used for
TRLWE noise sampling. In practice, σTLWE and σTRLWE are scaled by q. Also,
bKS and lKS are the decomposition basis and precision required for key switch-
ing during a bootstrapping. Finally, bBS and lBS are the decomposition basis
and precision required for gadget matrix decomposition and external products
computation within blind rotation during a bootstrapping. Note that the most
time-consuming building block of TFHE bootstrapping is the blind rotation, and
its runtime is quasi-linear in N and linear in n and lBS [17,18].

For generating the parameters in Table 5, we assume that we will be running
several consecutive bootstrapping in practice as in Clet et al., [18]. That is, the
bootstrapping probability of error will depend partially on the variance of the
output of the first bootstrapping.

ϵ λ n 1/q σTLWE N σTRLWE lKS bKS lBS bBS Boot. time (ms)

2−80 128 700 2−32 1.9 ⋅ 10−5 1024 5.6 ⋅ 10−8 1 1024 2 256 41.86

2−128 128 700 2−32 1.9 ⋅ 10−5 1024 5.6 ⋅ 10−8 1 1024 3 64 60.44
Table 5. Example of TFHE parameters achieving ϵ probability of bootstrapping error.
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