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Abstract. Auditing throughout a fiscal year is integral to organizations with transactional
activity. Organizations transact with each other and record the details for all their economical
activities so that a regulatory committee can verify the lawfulness and legitimacy of their activ-
ity. However, it is computationally infeasible for the committee to perform all necessary checks
for each organization. To overcome this, auditors assist in this process: organizations give access
to all their internal data to their auditors, who then produce reports regarding the consistency
of the organization’s data, alerting the committee to any inconsistencies. Despite this, numerous
issues that result in fines annually revolve around such inconsistencies in bookkeeping across
organizations. Notably, committees wishing to verify the correctness of auditor-provided reports
need to redo all their calculations; a process which is computationally proportional to the num-
ber of organizations. In fact, it becomes prohibitive when considering real-world settings with
thousands of organizations. In this work, we propose two protocols, CLOSC and CLOLC, whose
goals are to enable auditors and a committee to verify the consistency of transactions across
different ledgers. Both protocols ensure that for every transaction recorded in an organization’s
ledger, there exists a dual one in the ledger of another organization while safeguarding against
other potential attacks. Importantly, we minimize the information leakage to auditors and other
organizations and guarantee three crucial security and privacy properties that we propose: (i)
transaction amount privacy, (ii) organization-auditor unlinkability, and (iii) transacting orga-
nizations unlinkability. At the core of our protocols lies a two-tier ledger architecture alongside
a suite of cryptographic tools. To demonstrate the practicality and scalability of our designs, we
provide extensive performance evaluation for both CLOSC and CLOLC. Our numbers are promis-
ing, i.e., all computation and verification times lie in the range of seconds, even for millions of
transactions, while the on-chain storage costs for an auditing epoch are encouraging i.e. in the
range of GB for millions of transactions and thousands of organizations.

1 Introduction

Bookkeeping is an indispensable part of organizations (e.g., businesses, municipalities, banks). One of
the main reasons organizations maintain ledgers with their transactions (to/from other organizations)
is to convince committees (e.g., the Public Company Accounting Oversight Board1 in the United
States of America or the Financial Reporting Council2 in the United Kingdom) about the integrity
and lawfulness of their operations. They periodically produce statements about the integrity and
correctness of their finances, signed by an auditor. The goal of auditors is to ensure that there
are no mistakes or inconsistencies in the organization-reported numbers [HN96]. To that end, they
sign/generate a report on the organization-provided data. Figure 1 showcases a (simplified) flowchart
model of organizations, auditors, and the committee during a financial epoch. Organizations transact
with each other, keep respective records, and disclose them to their auditors at the appropriate time.
The auditors, after examining the provided data, generate and sign a report attesting to the judicious
activity of their client-organization, and send it over to a committee who verifies its content.

Although auditors have access to all organization-reported data and paperwork of their clients,
checking for consistency is prohibitive in terms of human resources and time constraints [Ear15,
HSJ+23]. This is mainly because organizations under audit may record hundreds of transactions
daily. To address this issue, auditors have developed probabilistic processes that check for consistency
between the received data and the actual paperwork, but not for the entirety of the data. This, in
turn, opens up the audit to additional risk. However, it is currently the best tool professionals use to
ensure the audit’s feasibility [ABAAA23].
1https://pcaobus.org 2https://frc.org.uk
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Fig. 1: Entity setting, interactions, and flowchart for current financial auditing. Organization A is
audited by Auditor X and B by Y respectively. Auditors generate reports on data received from their
client-organization that the Committee can later verify.

Established auditing process. Organizations record their transactions in a ledger throughout
the fiscal year, meaning that a ledger is a list of financial transactions an organization holds over
time. At a later point, the auditing period begins, during which auditors sample a percentage of the
total reported transactions and request to examine the corresponding paperwork from their client-
organizations. Upon conducting all relevant checks (e.g., validity of signatures, and consistency of
amounts and timestamps) the auditor includes their findings regarding the auditing output in a report,
which they later sign and make public. After the auditing period, a committee can select to verify the
consistency between the auditor-generated reports and the recorded data of the organizations. For
consistency verifiability purposes, all transactions have to be kept in the ledgers of both transactional
parties. Especially for organization-to-organization (O2O) transactions, each of them needs to register
a transaction that is the dual equivalent of the other.

1.1 The problem we focus on

There are numerous cases annually of organizations misreporting transactions. For example, they
fabricate and report sham transactions, which in turn leads to auditing scandals involving fraud
and fines in the range of millions of USD3 [Nah16a, Nah16b]. In fact, this derives from a crucial
limitation of the existing auditing ecosystem: auditors cannot check if a recorded transaction in their
client’s ledger has a dual counterpart in another organization’s ledger [Hol23]. E.g., an organization
may procure illicit funds and fabricate transaction records, for which no other organization would
have dual transactions to. Despite its importance, to the best of our knowledge, no process exists to
check the duality of transactions between two ledgers where the organizations that maintain them
are examined by separate auditors. Hence, we pose the following question:
Can we ensure that an auditor, who does not have access to internal data of any organization except
of her client-organization, can verify the duality of all O2O transactions of her client?
Limitations of applying existing cryptographic approaches. Before going further, we examine
two ideas utilizing existing techniques to solve this problem at a high level. First, the auditor and the
two transacting parties could engage in a multi-party computation protocol at the time of the audit-
ing. Such an attempt requires the auditor to interact with all organizations its client has transactions
with, introducing a linear communication overhead proportional to the number of organizations and
auditors. Moreover, let’s consider having just two organizations, oi and oj , who initiate a 2-party
computation protocol and agree on a common identifier for a mutual transaction. Upon deal com-
pletion, oj will provide oi with a digest dgsj,z (e.g., a cryptographic accumulator) and a proof that
dgsj,z “contains” the oj-part of the trade, and vice versa, proving the existence of the transactions
in question. However, in reality, organizations do not trust each other, and auditors do not assume
organizations to behave honestly. In fact, interesting questions arise in such scenarios:

1. What happens if oi or oj do not follow the protocol?
2. What happens if oi computes a digest, sends it over to oj with convincing proof, but later on

includes the transaction in its ledger using different data?
3. What happens if oi appends an incorrect proof with its data on their internal ledger?

3 https://corporatefinanceinstitute.com/resources/accounting/top-accounting-scandals/
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Since organizations cannot access the ledger of their trading counterparts, auditors cannot distinguish
even between trivial scenarios e.g., identify which party made mistakes or uploaded inconsistent data.
Requiring auditor collaboration to discover the truth behind inconsistencies is far from a realistic
assumption — both from a performance and a real-world perspective.

Another approach could be the following: Consider two organizations transacting with each other
and recording this transaction on their ledgers. Each of them now can produce and communicate
to the other a zero-knowledge proof (ZKP) about the inclusion of the transaction record in their
respective ledgers. However, this approach works only when assuming that both organizations are
honestly maintaining their ledgers. E.g., a client might generate and provide a ZKP about an O2O
transaction to its counterpart, but later alter its ledger state, before the audit begins. The ZKP
would still verify, as it was honestly generated at the time, but vitally the ledger alteration would be
undetectable. Thus, a notion of ledger-immutability is necessary, on top of such a technique.

There exists an additional limitation in the current auditing ecosystem: committees wishing to
verify process outputs need to re-perform all operations themselves. Specifically, a committee that
attempts to verify all process outputs needs to expend the entirety of the collective effort from all
auditors. Verifying all processes on all ledgers is rendered impractical in this case since the verification
time is linearly proportional to the number of organizations and auditors. Instead, committees perform
checks on a number of reports and thus trust implicitly the remaining ones to be generated honestly.
Various systems utilize techniques such as verifiable computation, secure hardware, or tailored ZKPs
to enable auditing parties to verify function output results in sublinear time, and in Section 2 we
investigate them in more detail. However, in the scope of the cross-ledger transaction consistency for
financial auditing that we examine no such solution exists to date. Therefore, we adjust and pose a
newer version of our previous question:
Can we ensure that an auditor, without access to internal data of any organization except of her
client-organization, 1 can verify the duality of all O2O transactions of her client and 2 produce a
result that a committee can verify without having access to any internal organization data, efficiently?
State-of-the-art. There exist prior works that indirectly provide a solution to part 1 of our problem,
however, they operate in a different model. Specifically, zkLedger [NVV18] and Miniledger [CB21]
consider a scenario where all organizations maintain a single ledger in a distributed manner that
includes all transactions in a hiding manner. Nevertheless, their model does not correspond to the
real-world alternative, where bookkeeping is being done individually by each organization. E.g., a
small enterprise that logs a thousand transactions annually should not need to record any data from
all the remaining transactions of other organizations. Another relevant work to our problem revolves
around cross-chain bridges4. Their core functionality is enabling proof generation of an event that
occurred on one chain to be verified on another. This indeed fits into our problem setting, but most
current bridges567 either suffer from poor performance or rely on central entities. We refer the reader
to Section 2 for a more elaborate comparison between prior works and our solution.
Our results. First, we introduce and formulate the problem of cross-ledger transaction consistency
for financial auditing, including the system and threat models, as well as crucial security goals. We
then propose two protocols, CLOSC (Cross Ledger cOnsistency with Smart Contracts) and CLOLC (Cross
Ledger cOnsistency with Linear Combinations), implement them upon a two-tier ledger/blockchain-
based architecture, and provide extensive evaluation results regarding their performance. Addition-
ally, we formally define three privacy and security properties, namely transaction amount privacy,
organization-auditor unlinkability, and transacting organizations unlinkability, and prove that both
our protocols satisfy them.

CLOSC utilizes smart contracts for storing transaction-related data and proofs from organizations.
For each transaction, both organizations deploy a smart contract and fill in their “half” regarding
the consistency-checking method, to both smart contracts. In this way, both auditors have all the
information needed to verify the consistency between the reported transactions. CLOLC relies on lin-
ear combinations with organizations now maintaining a separate list of transactions for each of their
transaction counterparts. The consistency checking is performed on an “O2O-pair” basis, where each
auditor verifies consistency for each organization their client transacts with individually. To enable
this, the committee assigns and distributes to auditors weights for each individual O2O transaction
for every transacting pair. Then, for each transacting organization, the auditor calculates the linear
4 https://chain.link/education-hub/cross-chain-bridge 5 https://poly.network
6 https://near.org/nbridge 7 https://axelar.network

3

https://chain.link/education-hub/cross-chain-bridge
https://poly.network
https://near.org/nbridge
https://axelar.network


combination of the amounts with the corresponding weights and exchanges the result with the coun-
terpart’s auditor. The committee in both CLOSC and CLOLC essentially performs two types of checks:
(i) consistency between the reported data from an organization and its auditor, and (ii) reported data
from the two auditors. This has a dual purpose: First, when all verifications succeed, this signifies that
consistency exists across all organization ledgers, and second, when a verification is unsuccessful, the
committee needs only to further investigate the particular O2O transacting organization-pair. Impor-
tantly, all checks above are lightweight and do not impose prohibitive overheads for the committee.

We test our system on AWS machines and implement our architecture over Hyperledger Fabric.
To execute an auditing epoch in CLOSC for 1024 organizations, with each of them recording 1M
transactions requires on average ≈ 43 mins per organization, ≈ 18mins per auditor, and ≈ 4secs for
the committee, whereas for the same organizations and total transactions in CLOLC it takes on average
≈ 30mins per organization, ≈ 39mins per auditor, and ≈ 4mins for the committee. We provide an
extensive evaluation of both our proposed solutions in Section 7 and we include a comparison analysis
in terms of protocol computation and storage needs complexity with prior works that have “similar-
enough” auditability goals.
Paper organization. In Section 2 we expand on prior works relevant to our problem and in Section 3
we introduce the background for our system and protocol design. Following, we concretely formulate
the problem we are focusing on in this work in Section 4. Then, we analyze our system architecture
and provide the details of our two protocols (CLOSC and CLOLC) in Section 5, and provide the security
analysis of our solutions, including the definitions of our three newly proposed security properties,
in Section 6. In Section 7 we present the implementation details of our protocols and demonstrate
their performance. Last, we provide a discussion on the limitations and potential future directions in
Section 8, and conclude our work in Section 9.

2 Related Work

The combination of privacy-enhancing and blockchain technologies has been gaining interest, espe-
cially for “traditional” financial applications [BCDF23]. A core property of blockchains is immutabil-
ity and, as a result, multiple researchers have tried to enable/construct blockchain-assisted auditing.
Generally, there seems to be a consensus amongst researchers and industry professionals as to the
anticipation that blockchains are a disrupting force in the auditing ecosystem and that their role will
get increasingly important [AČE+20,RV18,Koz18,DV17,DDM20,AN17,CMM+22], potentially even
shifting the auditing process from backward to forward-looking [BGMS18]. However, as pointed out
in [HSJ+23] the vast majority of blockchain-related works do not look into how to utilize blockchains
and smart contracts to address the challenges revolving around financial auditing, with a small set of
notable exceptions. The authors of [DV17] propose a triple-booking system where a copy of all records
is kept on a blockchain (on top of an existing double-booking protocol). The inclusion of smart con-
tracts in the design of such systems was proposed in [Koz18,RV18]. However, in both [Koz18,RV18]
the access rights/patterns are not clearly outlined and questions arise about how potential leakage
can be used for malicious purposes.
Single-ledger approaches. To enforce that during a transaction no entity expends more than the
total amount of assets they hold, the authors of zkLedger [NVV18] introduced tailored proof of
assets, specifically in a banking setting, similar to our O2O scenario. Importantly, this work uses
zero-knowledge proofs to enable confidential transactions while (i) allowing for regulatory compliance
and auditability and (ii) guaranteeing the condition above without revealing to the other system’s
participants anything about transaction amounts. However, zkLedger has not been implemented on
any blockchain platform and the proposed protocol does seem not scale well with the number of
protocol participating entities. This is mainly due to all participants needing to maintain the same
version of a single ledger in a distributed manner with storage complexity O(nm), where n are the
total banks and m are the total transactions in the system. Additionally, zkLedger cannot support
multiple transactions happening in parallel. This derives from the fact that in order for the ledger to
accept a transaction, it needs to verify the correctness of all appended proofs to it, rendering the cases
where multiple transactions are being submitted concurrently impossible to handle; there needs to be
an ordering protocol. The authors of Miniledger [CB21] overcome the scalability issues by introducing
a pruning technique for the ledger in question. However, Miniledger suffers from other shortcomings
such as large transaction creation time (≈ 5s for a single transaction in a setting with 100 banks) and
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requires both a synchronization and a transaction-ordering protocol, both of which are unrealistic
in real-world scenarios where organizations transact asynchronously with each other daily and in
the thousands totally. More recently, ACA [LHNH23] has been proposed with focus to anonymity,
confidentiality, and auditability of transactions. The authors rely on a conventional blockchain layer
for recording the transactions which are smaller than zkLedger and Miniledger, however the size of
general transactions (≈ 3.8KB) and the verification times (≈ 1.4sec) are prohibitive for settings as
the ones we consider. In Section 7 we demonstrate the end-to-end of an entire auditing epoch in
both CLOSC and CLOLC takes minutes even for millions of transactions, regardless of the number of
organizations participating in our system.
Communication between different blockchains. An emerging research area revolves around
cross-chain bridges, a technique that increases token utility by facilitating cross-chain liquidity be-
tween distinct blockchains. Specifically, they enable users to transform their tokens from one blockchain
to another, usually by burning or locking existing tokens from the original-chain, and minting or un-
locking “new” ones to the target-chain4. Essentially bridges utilize messaging protocols that in theory
can be used to support arbitrary messages across different chains, usually via smart contracts5,6,7.
Recently, zkBridge [XZC+22] has been proposed, a protocol that betters the performance of exist-
ing bridges while achieving higher security standards. The authors utilize zk-SNARKs for generating
proofs for relaying block headers. However, this approach relies on the construction of smart con-
tracts, which is not ideal due to storage and computational costs required. In Section 7 we showcase
the difference in efficiency and scalability between our two protocols. CLOSC relies on smart contracts,
whereas CLOLC on linear combinations, making clear the trade-offs between them.
Other non-blockchain-based systems with auditing capabilities. Recently, a line of works
explores the area of authenticated data structures. Transparency logs are a prominent example when
considering auditing. In these works, the goal of an auditor is to examine digests published by un-
trusted servers to avoid server equivocation (e.g., Merkle2 [HHK+21] and CONIKS [MBB+15]). Other
works revolve around ensuring token liability when transacting across a system. Specifically, the au-
thors of [JC21,RMY+23] approach this problem by requiring entities to publish attestations on their
total liabilities e.g., on public bulletin boards. Their goal is to safeguard against data-leaking attacks
while allowing auditors to verify the validity of statements regarding liabilities. While these works
examine auditability, the view on auditing is through a different lens. First, our system design is more
complex, auditors examine organizations and then a committee verifies the auditor-generated results.
Additionally, our protocols propose an auditing process that revolves around detecting individual
transaction (in)consistency, a considerably more challenging task than, for example, proving the sum
of an organization’s assets.

3 Preliminaries

General Notation. Let E be an elliptic curve defined over a large prime field Fp with G,H ∈ E
as publicly known generators. We denote by x ←$ A the random sampling of the element x from
the domain A, and the set {1, · · · , n} by [n]. We denote by λ a security parameter and by negl[λ] a
negligible function in λ.
Commitment Schemes [KP23]. A commitment scheme consists of a pair of PPT algorithms
(Com.Setup,Com.Commit). The Com.Setup algorithm generates public parameters pp for the scheme,
for security parameter λ: pp← Com.Setup(1λ). The commitment algorithm defines a functionMpp×
Rpp → Cpp, for message space Mpp, for randomness space Rpp, and for commitment space Cpp, deter-
mined by pp. It takes as input a message x and randomness r and outputs c← Com.Commitpp(x; r).
Specifically, a Pedersen commitment of x with randomness r is in the form of cm(x, r) = x ·G+ r ·H.
Pedersen commitments are additively homomorphic, i.e., cm(x1, r1)+cm(x2, r2) = cm(x1+x2, r1+r2),
computationally binding (after committing it is not feasible to “change one’s mind”), and perfectly hid-
ing (they reveal nothing about the committed data). A computationally binding and perfectly hiding
commitment scheme must satisfy the following properties:
• Computationally Binding: It is not easy to find two strings x0 and x1 that map to the same

commitment. More formally, if cm0 ← Com.Commit(x0; r0):

Pr[Adv(cm0)→ (x1, r1) : cm0 = Com.Commit(x1; r1)] ≤ negl[λ].
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• Perfectly Hiding: It is not easy to identify which value was used in the generation of a com-
mitment cm←Com.Commit(·, ·). Formally, ∀ x0,x1 (of the same length), for all non-uniform PPT
adversaries Adv, we have that:

|Pr[Adv(Com.Commit(x0; r0))=1]− Pr[Adv(Com.Commit(x1; r1))=1]| = 0.

Hash Function [Dam89]. A cryptographic hash function H : {0, 1}∗ → {0, 1}λ is pre-image resis-
tant if the probability of reversing the hash output to obtain the underlying pre-image is negligible:
Pr[Adv(y)→ x|y = H(x)] ≤ negl[λ].
Public-Key Encryption (PKE) Scheme. A PKE scheme E consists of a tuple of algorithms
PKE.KeyGen,PKE.Enc,PKE.Dec. Specifically the elliptic curve El-Gamal encryption scheme [Kob87]
is as follows:

• KeyGen(λ)→ (sk, pk). Given the security parameter λ, KeyGen samples a secret key sk ←$ {0, 1}λ,
computes the public key pk = sk ·G. It outputs the key-pair (sk, pk).

• Enc(pk, x; r)→ ctx. To encrypt a value x, the algorithm takes input a randomness r and outputs
the curve point

(
r · G,Px + ·r(sk · G)

)
. Here, Px is a publicly-known mapping of a value x to a

curve point in E.
• Dec(ctx, sk)→ x. To decrypt x from E(pk, x; r), the algorithms computes x := Px + ·r(sk ·G)−

r · sk ·G.

Regarding security, we say a PKE scheme is IND-CPA secure whenever an adversary Adv plays an
indistinguishability game with a challenger C where the former has encryption oracle access and at
some point gives a left-or-right challenge (x0, x1) to C, who depending on a bit b ←$ {0, 1} which it
had picked during setup returns ctb ← PKE.Enc(xb). Finally, Adv outputs a guess b′ on b and wins if
Pr[b = b′] ≥ 1

2 + negl[λ].

Merkle Tree [Mer87]. A Merkle tree (MT ) is a binary tree whose leaf nodes can store any in-
formation and each parent node being calculated as the hash of its children. The time complexity
and the space complexity to find a data entry in a MT with n entries, given its path, is O(log n).
MT s support membership proofs πm ← ProofExists(rootMT , x), proving the inclusion of a leaf node
x to a tree whose root is denoted by rootMT and its root-to-leaf-path by pathleaf . pathleaf com-
prises the siblings of the nodes while traversing from the leaf to rootMT . Additionally, there exists a
leaf-inclusion verification algorithm 0/1←VerifyExists(rootMT , x, πm) that enables a verifier to check
whether a value x resides in the merkle tree MT , given a proof πm and the root rootMT .
Blockchain & Smart contracts. A blockchain is a peer-distributed ledger made secure through
cryptography and incentives. Peers using consensus mechanisms agree upon which information to
store in blocks. Blockchain technology has found other uses apart from cryptocurrency applications,
especially via using smart contracts [Woo14]. A smart contract is a computer program that can be run
in an on-chain manner, has internal states and its own on-chain storage. Uploading data on a smart
contract method requires time to be verified and agreed upon by the blockchain peers. Contrary,
reading data from the contract is almost instantaneous and does not require any form of consensus.

4 Problem Formulation

Below, we formalize the problem we solve in this work, including the system and threat model re-
volving around it, and provide corresponding security goals.

4.1 System model

Our model includes three entity types, namely organizations, auditors, and a committee. Organiza-
tions transact with each other and are responsible to maintain a copy of each and every of their
bipartite O2O transactions in a private ledger, to which only their auditor and the committee are
privy to (if needed). Auditors examine the transaction records of their clients and are responsible to
extract results about their individual economical activity and share them with the committee. The
committee can access organization records and is responsible to verify auditor-provided results.
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4.2 Threat model

First, we assume each organization to be audited by a single auditor, which is in line with current
practices8. Notably, even in cases where the same auditing entity e.g., one of the Big Four (KPMG,
EY, PwC, Delloite) audits different organizations, this does not translate to each individual auditor
having access to all organization data of each of the company’s client. Additionally, we assume no
inter-organization or inter-auditor collusions. Such cases are outside our design rational since they
are impossible to detect macroscopically as described in our system model. E.g., consider a scenario
where two organizations transact with each other but do not log this transaction in either of their
ledgers. To identify such misreported transactions, their auditors or/and the committee need to
perform on-site auditing and compare tangible assets (e.g., monetary or other asset reserves with the
reported ones). While this on-site part is integral in the auditing process as a whole, we solely focus
on the consistency across all organization-reported data. Other than that, we consider all entities
in our system to be malicious, except for the committee, which is trusted. Specifically, on top of
misreporting their transaction activity while trying to avoid detection, organizations wish to extract
information as to the client-relation between other organizations and auditors, infer amounts of any
organization transactions apart from the ones they are privy to, and check whether cross-ledger
transaction consistency holds for other organizations. Adversarial auditors have the same objectives.
Such deviant behaviors/attack goals are not only realistic but can also lead to tangible rewards e.g.,
through insider trading [AKST18].

4.3 Security goals and rationale

Based on the malicious behavior above we determine the security goals that our solutions need
to achieve for cross-ledger transaction consistency. First, our solutions need to provide a notion of
soundness, in the sense that no organization or auditor should be able to misreport data or results and
avoid detection9, in order to prevent fraudulent asset in/deflation e.g., through the inclusion of sham
transactions in their ledger or via generating fake reports [7, 21, 29]. Then, transaction amount privacy
ensures that only an organization and its auditor should have access to raw transaction data of the
former. Financial data is considered to be sensitive and having access unrightfully to an organization’s
data (e.g., by another organization) may lead to market manipulation via insider trading [14], as
mentioned above. Additionally, transacting organizations unlinkability guarantees that only the two
transacting organizations should have knowledge of the fact that there exists transaction activity
between them. Similarly, organization-auditor unlinkability ensures that no other system entity can
infer any organization-auditor bipartite relation, except the ones they are part of.

Although to the best of our knowledge we are the first to consider the transacting organizations and
organization-auditor unlinkability properties, there exist prior works that have built their systems and
architectures in such a way that implicitly achieves comparable notions of security. zkLedger [NVV18]
and Miniledger [CB21] are perfect examples of this: The respective ledger atop which both these
systems are based on essentially satisfies our transacting organizations security property; this can be
derived from transaction amount privacy that the hiding property of the commitments provide in the
system. As for the auditor-organization unlinkability, existing industry standards already safeguard
the confidentiality of the relation between an auditor and its client. Currently, this type of information
might be disclosed after the auditor performs all necessary consistency examinations and produces
its report, usually after the fiscal year concludes [P716].

Last, only auditors and the committee should be able to verify transaction (in)consistency across
ledgers. In the auditors’ case crucially, only for organizations their client is transacting with. Being
able to infer statistical financial data of organizations may untimely lead to investing behaviors that
can affect global markets. Additionally, current techniques require auditors to have access to raw
transactional (and proprietary) data of their clients to carry out respective auditing processes, thus
organizations carefully pick who they give such data access to. However, giving unrestricted auditing
capabilities to other entities apart from the auditors could in fact contribute positively in the financial
auditing ecosystem, rendering the financial activities of organizations even more transparent. We
estimate that achieving such a notion of “public auditability” needs to be coupled with a strong
8 https://www.law.cornell.edu/uscode/text/31/9105 9 Such a property is fairly common in systems
like ours and this is why we do not introduce it as a separate property. They are usually achieved through an
arbiter, which is the committee in our case.
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notion of anonymity as the one presented in [KDP+24]. This is not trivial to achieve, especially
considering all the other challenges financial auditing has regarding accountability and traceability of
the auditing process, and we leave this as future work.

5 Our Solution

Our system design is epoch-based and includes all three entities (i.e., organizations, auditors, and a
committee). We propose two protocols that exist atop a two-tier ledger architecture. In our solutions,
we construct this architecture over blockchains, taking advantage of their immutability to avoid
attacks like the one presented in Section 1. Each organization maintains a “local" ledger, to which we
refer to as localchain—LocalChain for storing information related to its O2O transactions (txOrg).
Additionally, organizations maintain plaintext records of their financial activity offline (e.g., in a
database). The committee maintains two “global" ledgers in the form of blockchains, to which we refer
to as globalchains: one “for organizations”, namely OrgChain, where organizations upload localchain-
related data (dataOrg), and another “for auditors”, namely AudChain, who upload report-related data
(dataAud). Organizations have access to their off-chain ledger, their LocalChain, and the OrgChain,
while auditors have access only to AudChain and their client’s LocalChain. Recall that the auditor
and the committee may access off-chain records if they ask explicitly to examine them to investigate
further potential fraudulent behavior. At a high level, an organization stores hiding versions of its
transactions on its LocalChain and aggregated transaction data on OrgChain, while auditors store
result-related hiding data on AudChain.

5.1 Design rationale

This architecture enables 1 auditors to check the consistency of their clients reported transactional
amounts across other ledgers and 2 the committee to verify (i) the consistency between the data
uploaded between an auditor and its client-organization and (ii) the consistency between the data
uploaded between two auditors whose clients have transacted during the epoch. Figure 2 depicts
the architectural model our protocols operate in, the phases with their respective operations, and
the transitional triggers across phases. Contrary to prior works based on a single-ledger approach
(e.g., [NVV18, CB21, LHNH23]), our two-tier ledger architecture allows organizations to store data
only pertaining to their own transactional activity; reducing considerably the individual storage costs.

We refer to our different ledger tiers (local and global) as chains, since (i) we need a notion of
ledger immutability in our system design and (ii) we implement them later as blockchains. However,
we stress that these ledgers are not explicitly blockchains and our system is ledger-agnostic at its core.
In fact, any immutable ledger may be used in our design. By combining the ledger immutability of our
two-tier architecture with cryptographic components, we can guarantee the three security properties
mentioned above. More specifically, in both our solutions we employ hiding techniques for dataOrg to
ensure transaction amount privacy and ensure that no entity except for the Committee can associate
the economic activity of any organization to another. Last, by uploading dataAud in a hiding manner,
no other entity except for the committee can infer relations between organizations and auditors.

5.2 Phases

Each epoch is comprised of four phases, namely (i) Initialization (IN ), (ii) Transaction recording
(T R), (iii) Consistency examination (CE), and (iv) Result verification (RV). In the initialization
phase the committee performs the necessary setup operations and distributes information to the
other entities accordingly. During transaction recording, organizations record data about their O2O
transactions to their LocalChain, and the OrgChain. During the consistency examination phase
auditors first perform computations on their clients data and extract results which they upload on the
AudChain. Afterwards, they compare their results against those from the respective auditors of their
clients’ transacting counterparts, which are already uploaded on AudChain. Finally, the committee
during result verification collects data from OrgChain and AudChain, and conducts checks as to the
consistency of the reported/uploaded data. Upon identifying any inconsistencies, the committee may
investigate further the ledgers of the suspicious organizations and/or the results produced by their
auditors, and potentially assign penalties.
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Fig. 2: Our architectural two-tier ledger design and access rights of the entities involved, alongside
the protocol phases with respective operations and triggers.

5.3 Protocol preliminaries

Let [n] be the index set of the organizations, m the maximum transactions that can be recorded
in an epoch, by a single organization, and [l] the index set of the Auditors. Therefore, let On =
{oi}i∈[n] denote the set of organizations, Al = {az}z∈[l] the set of auditors, and Com the committee.
Let Li denote the respective LocalChain of oi, Lo the OrgChain, and La the AudChain. Let Op
=

〈
Setup, RecordTx, AppendLocal, GenerateDigest, CheckConsistency, ProduceReport, AppendGlobal,

VerifyReport
〉

be the list of allowed operations. Then, the tuple
〈
Oi,Al, Com, {Li}i∈[n],Lo,La,Op

〉
can describe fully both our protocols. Below, we explain the operations at a high level and provide in
Subsections 5.4 and 5.5 our proposed protocols’ specifics. In the detailed description of our protocols,
for readability purposes we break down all operations to specific steps.

• Setup(On,Al, t): Com generates the public parameters pp, blinding identifiers Lido,b (for organiza-
tions) and Lida,b (for auditors), and other protocol-specific parameters psp for epoch t.

• RecordTx(Sender,Receiver,Value): oi invokes this operation to record a transaction dataLocal of
Value from a Sender or to a Receiver, where {Sender, Receiver} ∈ On and Sender ̸= Receiver.

• AppendLocal(tx,Li): oi invokes this operation to append a hiding version txh of a transaction tx
to its ledger Li.

• GenerateDigest(t,Li): oi invokes this operation to generate a “digest” dataOrg of the state of its
ledger Li for epoch t.

• CheckConsistency(Li,La): az checks whether forall transactions ∈ Li there exists a transaction
in the ledger of another oj ∈ On and produces a Result.

• ProduceReport(t,Li,dataOrgi): ai invokes this operation to produce a “report” dataAud about the
consistency between the data on its client’s ledger Li, dataLocali with dataOrgi for epoch t.

• AppendGlobal(data⋆,L ⋆): oi invokes this operation to append data⋆=dataOrg to L ⋆ = Lo or az
to append result-related data data⋆=dataAud to L ⋆ = La.

• VerifyResult
(
Lo,La,(idαz

,dataAud)
)
: Com invokes this operation to verify the consistency of dataAud

(generated from az) with Lo and La.

5.4 CLOSC (Cross Ledger cOnsistency with Smart Contracts)

Our first protocol utilizes smart contracts as the name indicates. In more details, in addition to an
organization (i) maintaining a copy of all its transactions offline in a local ledger/database and (ii)
computing and uploading a hiding copy of each such transaction to its LocalChain, now it needs to
(iii) maintain a tree structure MTt whose leaves correspond to hiding transactions, (iv) upload the
root of the tree rootMTt to OrgChain, and (v) upload a smart contract on its LocalChain for every
transaction. Below we explain both at a high level and explicitely the details of CLOSC.
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Fig. 3: CLOSC core components and interactions. Each organization stores transactions in a Merkle
Tree, then deploys a smart contract where it adds all transaction-related data of a transaction stored
as a commitment at the leaf level of the Merkle tree, and uploads the smart contract address to a
bulletin board. The other transacting organization performs equivalent steps and uploads their own
transaction-related records also to the latter’s smart contract.

Let txS,R =
〈
Sender, Receiver, Amount, nonce, timestamp

〉
describe a transaction tuple, where

nonce is an O2O-specific transaction unique random identifier. Then, hiding commitments of the form
cmtimestamp

nonce = gAmount ·hH(timestamp,nonce), are stored at the MTt leaf-level, with the sole exception of the
utmost left leaf that is equaly to the merkle tree root of the previous epoch. The non-leaf nodes of the
tree are calculated as follows: nodei = H

(
nodelc||noderc

)
; essentially the hash of the concatenation

of the node’s left and right children (denoted by lc and rc respectively) also depicted in Figure 3.
Importantly, for incoming transactions, we consider Amount to be positive, and negative otherwise.
Now recall that an auditor should, ideally, be able to verify that: For every organization-related
transaction txi,j included in its client’s ledger Li there exists a dual transaction in Lj , crucially,
without having access to Lj . We enable auditors to verify this via the following:

When oj transacts with oi the latter deploys a smart contract on Li and whitelists oj to be able
to submit data to it, and oj operates similarly. These smart contracts will store the committed
transactions alongside the proofs that the financial transactions corresponding to the deal have been
included to the respective trees whose roots are uploaded to Lo.

With this design oi can deploy the contract, communicate its “address” to oj , upload its data and
proof there, and await for its counterpart to upload the other half. The smart contract will store the
two instances of {cmtx, rootMTt , πExists}, with the latter proving that cmtx is in the tree whose root is
rootMTt . The only potential problem here is that oj may never submit its half of the deal and claim
not knowing the address. To solve this “plausible deniability" problem, we employ a bulletin board,
maintained by the committee. In fact, organizations publish the addresses of their smart contracts
there to ensure that any organization can use them. Notably, only the committee can erase information
stored on the bulletin board at the end of each epoch to keep storage use low. At the same time this
construction ensures that no organization can deny knowing where to upload their data.

Now, only the duality has yet to be shown. For this we require oi to commit to the amount xi,j,k (for
transaction with nonce k) in the form of gxi,j,k . In CLOSC, cmtx = cmtimestamp

j,i,k = gxi,j,k ·hH(timestamp,j,k).
To ensure cross-ledger transaction consistency, both auditors have to verify the 2 uploaded proofs
stored inside each of their client’s smart contracts. We implicitly assume that the two transacting
organizations have agreed on a common and unique (timestamp,nonce) pair ahead of time. Last, to
assist the committee with the result verification, the auditors utilize a MergeProofs algorithm that
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Protocol
(
i, j, z ∈ [n]; k ∈ [m], epoch = t, timestamp = tstp

)
IN .1) Generate raz,i ←$ Zp Committee
IN .2) Distribute IDA = {graz,i }z
T R.1) Store Ltxi = {Sender,Receiver, xi,j,k, k, tstp}j,k off-chain
T R.2) cmtstp

j,k = gxi,j,k · hH(tstp,j,k)

T R.3) Upload Lcmi = {cmtstp
j,k }j,k to LocalChain

T R.4) Create MTt
i, with rootMTt

i
Organization

T R.5) Upload rootMTt
i

to OrgChain
T R.6) πm

j,k ← ProveExists(xi,j,k, rootMTt
i
)

T R.7) Deploy SCi,j,k on LocalChain (1stpart)

T R.8) Store {cmtstp
j,k , rootMTt

i
, πm

j,k} in SCi,j,k and SCj,i,k (2ndpart)
CE .1) bi,j,k ←VerifyExists(cmtstp

i,j,k, rootMTt
i
, πm

i,j,k), ∀SCi,j,k

CE .2) bj,i,k ←VerifyExists(cmtstp
j,i,k, rootMTt

i
, πm

j,i,k)
CE .3) B =

∏(n,m)

(j,k)=(1,1) bi,j,k · bj,i,k, if B = 0 alert Com

CE .4) Check
∏m

k=1 cmtstp
i,j,k · cm

tstp
j,i,k · h

−H(tstp,j,k)−H(tstp,i,k) ?
= 1

CE .5) cmt
i,j = g

raz,i ·
∏m

k=1cm
tstp
i,j,k Auditor

CE .6) πm′
i,j ←MergeProofs

(
{πm

i,j,k}k
)
,
{
H(πm′

i,j )
}
j

CE .7) Upload
{
cmt

i,j ,H(πm′
i,j )

}
j

to AudChain

CE .8) Forward {Lcmi,j}k = {cmtstp
i,j,k}k and {πm′

i,j }j to Com

RV.1) {cmtstp
i,j,k}k = Lcmi,j Committee

RV.2) b′i,j ←VerifyExists(Lcmi,j , rootMTt
i
, πm′

i,j )

RV.3) Check B′ =
∏(n,n)

(i,j)=(1,1) b
′
i,j · bj,i

?
= 0

RV.4) Check
∏n

i=1

∏n
j=1 cmt

i,j · cmt
j,i

?
= g

raz,i · graz,j

LocalChain: Lcm = {Lcmi}j,k, Lsc = {SCi,j,k}j,k
OrgChain: {rootMTt

i
}i

AudChain:
{
cmt

i,j ,H(πm′
i,j )

}
i,j

Fig. 4: CLOSC phase and on-chain storage analysis. Regarding operations, Setup:IN ,
RecordTx:T R.1, 2, AppendLocal:T R.3, 7, 8, GenerateDigest:T R.4, 6, CheckConsistency:CE .1-6, 8,
AppendGlobal:T R.5, CE .7, VerifyResult:RV.1-4.
combines the individual proofs received from their clients into a single one, that they later on pass
to the committee. Figure 4 showcases the protocol details including the on-chain storage, where i, j
refer to organizations, k to transaction nonces, and z to auditors.

5.5 CLOLC (Cross Ledger cOnsistency with Linear Combinations)

This construction lies on linear combinations. Specifically, we aim to exploit the fact that it is infeasible
to generate two set of values that, combined with a vector of secret-random “weights”, results in the
same weighted sum evaluation. To this end, the committee during initialization samples random
values for each potential transaction to be made within the epoch and shares them to the respective
auditors. Contrary to CLOSC, organizations now do not need to maintain a tree structure or deploy
smart contracts. Instead, to record their transaction, they need to upload to their LocalChain lists of
commitments for each transaction they make during the epoch and the (homomorphic) product of all
commitments per transacting organization on the OrgChain. Importantly, each organization “masks”
this product by multiplying it with a hash of its own unique identifier, assisting in guaranteeing that
no other OrgChain participants can identify transacting organization pairs.

The consistency examination phase is comprised of two parts in CLOLC. First, the auditors cal-
culate a weighted sum of the transaction amounts (at the exponent) with the committee-generated
values (during the initialization phase) through homomorphic multiplications. Afterwards, each au-
ditor uploads these products to the AudChain alongside specific identifiers, from where the respective
auditor of the transacting organization can retrieve all matching products, using the corresponding
common identifiers. Auditors can then use these product pairs to verify the consistency between the
reported data from their client organizations and their respective {organization, auditor} pair. Upon
identifying an inconsistency, the auditor can approach the committee, who can then investigate fur-
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Protocol
(
i, j, z ∈ [n]; k ∈ [m]

)
IN .1) {ri,j,k}i,j,k

$←− Zp, ri,j,k = rj,i,k Committee
IN .2) {idi}i∈[n]

$←− Zp, {idz}z∈[l]
$←− Zp

IN .3) skcom, {ski}i∈[n]
$←− Zp, pkcom = gskcom , pki = gski

IN .4) Publish pkcom, {pki}i
IN .5) Forward {ri,j,k}i,j,k, {ski}i to Auditor z

T R.1) com(xi,j,k)=gxi,j,k · hρi,j,k , {ρi,j,k}i,j,k
$←− Zp Organization

T R.2) Ai,j =
∏m

k=1 com(xi,j,k) = g
∑m

k=1 xi,j,k · h
∑m

k=1 ρi,j,k

T R.3) Upload Ltxi,j =
{
com(xi,j,k)

}
k

to LocalChain
T R.4) Upload

{
H(idi) ·Ai,j

}
j

to OrgChain
CE .1) Read from LocalChain Ltxi,j
CE .2) {resi,j}j =

{∏m
k=1

(
com(xi,j,k)

ri,j,k
)}

j
=

{
g
∑m

k=1 xi,j,k·ri,j,k · h
∑m

k=1 ρi,j,k·ri,j,k
}

j

CE .3) Bi,j = hri,j,f , ri,j,f = −
∑m

k=1 ρi,j,k · ri,j,k
CE .4) Read from OrgChain

{
Yi,j = H(idi) ·Ai,j

}
j

CE .5)
{
Ai,j = Yi,j · H(idi)−1

}
j

and Ci,j = res−1
i,j ·Ai,j Auditor

CE .6) {Di,j}j = {g−
∑m

k=1 xi,j,k · h
∑m

k=1 ρi,j,k·ri,j,k−
∑m

k=1 ρi,j,k}j (1stpart)
CE .7) ct(resi,j)← Enc(pkj , resi,j), ct(Bi,j)← Enc(pkj , hri,j,f )
CE .8) ct(Ci,j)← Enc(pkcom, resi,j ·Ai,j), ct

(
H(idz) ·Di,j

)
← Enc

(
pkcom,H(idz) ·Di,j

)
CE .9) Upload to AudChain: Lresi =

{
H
(
idi||

∑m
k=1 ri,j,k

)
, ct

(
resi,j

)
, ct

(
Bi,j

)
, ct

(
Ci,j

)
, ct

(
H(idz) ·Di,j

)}
j

CE .10) H
(
idi||

∑m
k=1 ri,j,k

)
, ∀j ∈ [n]

CE .11) Retrieve and decrypt from AudChain {res′i,j , B′
i,j}j (2ndpart)

CE .12) Check res′i,j ·B′
i,j, · resi,j ·Bi,j

?
= 1, ∀j ∈ [n]

RV.1) Read {H(idi) ·Ai,j}j from OrgChain Committee

RV.2) Read from AudChain and decrypt
{
ct
(
Bi,j

)
, ct

(
Ci,j

)
, ct

(
H(idz) ·Di,j

)}
i,j

RV.3) Check ∀ (i, z): H(idi) ·Ai,j ·Bi,j · H(idz) ·Di,j
?
= H(idi) · H(idz)

RV.4) Check ∀ (z, z′): H(idz) ·Di,j · Ci,j · H(idz′) ·D′
i,j · C′

i,j
?
= H(idz) · H(idz′)

Localchain: Ltxi,j =
{
com(xi,j,k)

}
k
= {gxi,j,k · hρi,j,k}i,j,k

OrgChain:
{{
H(idi) · g

∑m
k=1 xi,j,k · h

∑m
k=1 ρi,j,k

}
j

}
i

AudChain: Lresi,j =
{{
H(idi ·

∑m
k=1 ri,j,k), ctpkj (resi,j), ctpkj (h

ri,j,f )
}
j

}
i{

H(idz) · h
∑m

k=1 −ρi,j,k·ri,j,k , g−
∑m

k=1 xi,j,k · h
∑m

k=1 ρi,j,k·ri,j,k−
∑m

k=1 ρi,j,k
}
(i,j)

{g
∑m

k=1 xi,j,k·ri,j,k−
∑m

k=1 xi,j,k · h
∑m

k=1 ρi,j,k·ri,j,k−
∑m

k=1 ρi,j,k}(i,j)
{g−

∑m
k=1 xi,j,k · h

∑m
k=1 ρi,j,k·ri,j,k−

∑m
k=1 ρi,j,k}(i,j)

Fig. 5: CLOLC phase and on-chain storage analysis. X ′ denotes a retrieved/decrypted value X, gener-
ated by other auditors or organizations. Regarding operations, Setup:IN , RecordTx:T R.1, Append-
Local:T R.3, GenerateDigest:T R.2, CheckConsistency:CE .1-7, 9, 10, AppendGlobal:T R.4, CE .8, VerifyRe-
sult:RV.1-4.

ther. Having the auditors upload their results in a hiding manner assists in guaranteeing that no other
auditor can “mix and match” reports on AudChain to identify organization-auditor pairs.

The committee verifies results by accessing only OrgChain and AudChain, meaning it requires no
access to any of the underlying localchain commitments, unless it specifically asks for them, e.g., to
cross-check any data regarding an auditor-reported potential inconsistency. We enable the committee
to carry out result verification checks by ensuring that (i) the data organizations upload to OrgChain
are consistent with the data their auditor uploads to AudChain and (ii) the data auditors upload
to AudChain are consistent with each other. Importantly, we tie each auditor-generated commitment
sum with the unique identifier of said auditor so as to avoid possible brute-force matching attacks,
since these commitments (cmt

i,j) are uploaded on AudChain. Importantly, the linear combination with
random values is what on one side assists the auditors in their duties but at the same time hides the
transactional amounts from other participants. The infeasibility of reversing these linear combinations
resides at the heart of this protocol, which has been used previously in other application contexts
as well e.g., for oblivious linear-function evaluation [BCGI18], or function secret sharing [BGI15].
Figure 5 showcases the CLOLC protocol phases in detail alongside which elements are stored on-chain.
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5.6 Protocol Considerations

Since our system model includes multiple types of entities, we need to examine the robustness of our
proposed approaches against a set of variables. While we present our solutions above assuming all
organizations participate in our system honestly and in their entirety, there are multiple real-world
scenarios where this is not the case and below we analyze such cases. Specifically, below we focus on 1
the synchronization requirements of our protocols regarding their epochs and 2 the relaxation of the
percentage of participating organizations in our proposed solutions. Regarding malicious behaviors
we provide the security analysis in, the following, Section 6.
1 A valid concern in systems operating in epochs and involving numerous organizations and auditors

revolves around the strictness of the respective deadlines and how are errors in synchronization
handled. We note that our two protocols have different behaviors regarding epoch deadlines and
synchronization. In CLOSC, for a pair of auditors to be able to check the consistency of records across
the reported data from their two client-organizations, the only requirement is that both Merkle trees
need to be finalized and their corresponding roots uploaded on the OrgChain. This is in line with
current practices where organizations need to submit their reports by the end of the fiscal year in
their respective environment they operate in. In cases of differences in these deadlines the checks can
be carried out at the latest deadline available, however, we argue that this is not a considerable caveat,
especially considering the time-efficiency of the consistency examination and result verification phases
in CLOSC. Contrary, in CLOLC the only requirement revolves around a mutually agreed-upon deadline
between each two transacting organizations. For example, the auditor of organization A may be able
to execute the consistency examination for organization B at time tAB , and for organization C at
time tAC , with tAB ̸= tAC . The same restrictions apply for the committee as well; however, both
auditors now need to have performed their examinations before a specific deadline t′.
2 Another concern of large scale systems, like the one we consider, has to do with tolerating entities

dropping in and out of the protocols across epochs. Regarding the functionality of the auditing pro-
cess when a subset of all system-wide organizations does not participate, specifically in our proposed
solutions, we make an important observation. First, neither CLOSC nor CLOLC have an “all or noth-
ing” requirement, meaning that the crucial phases of consistency examination and result verification
can essentially be executed correctly regardless of how many organizations choose to record their
transactions in our proposed manners. The only obvious relaxation in such cases, however, is that
transaction consistency and result verification can be conducted only amongst the organizations that
opt to participate in all phases of our protocols. This indicates that auditors and the committee can
utilize a hybrid approach: First, they can utilize both our protocols for all organization-transacting
pairs participating in them. Furthermore, they can use traditional methods that, however, currently
do not provide our proposed security properties (which are outlined below).

6 Security Analysis

We aim to design security properties that safeguard our protocols against the various adversarial
behaviours of the entities involved in our system design. To this end we introduce three security
game-based definitions, as described at a high level in 4.3 and provide proofs about how our con-
structions satisfy them under various security assumptions regarding the underlying cryptographic
components of our designs. We remind the reader here that, depending on the property, we consider
organizations and auditors to assume the role of the adversary, who may also choose to corrupt a
set of organizations and auditors. All our properties have game-based definitions and our first one
revolves around transaction amount privacy. The adversary in this game should not be able to dis-
tinguish between two transaction vectors between two organizations that are not corrupted. Next,
we present organization-auditor unlinkability. The adversary here selects two distinct non-corrupted
organizations and auditors and the challenger “matches” them arbitrarily. The adversary should not
be able to distinguish which organization is paired with which auditor. Last, we describe the notion
of transacting organizations unlinkability. Similarly to the previous property, the adversary selects
four distinct organizations and the challenger pairs them arbitrarily. The goal of the adversary is to
identify these pairs. Notably, in all above properties the unlinkability or the privacy hold regarding
external parties. Recall that the committee may have plaintext access upon submitting such a request,
and each auditor has access to all localchain data of its client. To the best of our knowledge, we are
the first to define formally system-wide security properties for financial auditing processes.
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Definition 1 (Transaction Amount Privacy). Let GPriv be the following game between PPT
adversary A and challenger C:

– Initialization: A specifies parameters n, l, λ. The challenger C runs the initialization phase to
register n organizations and l auditors, such that the organization set for GPriv for epoch t is
Ot = {o1, · · · , on}, the auditor set is At = {a1, · · · , al}, and samples a bit b←$ {0, 1}.

– Corruption queries: When Adv issues such a query, it specifies a set of organizations Oc ⊆ Ot and
a set of auditors Ac ⊆ At, and C ∀oi ∈ Oc and ∀ai ∈ Ac provides all respective private information
to Adv.

– Challenge: Adv picks two organizations oi1 , oi2 /∈ Oc, the total number of transactions z for the epoch
between them, and provides C with two transaction vectors (tx0, tx1), where tx0 = {x0

i1,i2,z
}z∈[k]

and tx1 = {x1
i1,i2,z

}z∈[k], and
∑

x0
i1,i2,k

=
∑

x1
i1,i2,k

. C executes the epoch using the transaction
vector txb for the (oi1 , oi2) pair and ∀oi /∈ Oc + {oi1 , oi2}, ∀ai /∈ Ac, it samples random amounts
and computes all necessary encryptions, commitments, and hashes using the information for all
participating organizations. Then, C and forwards all information to be uploaded on OrgChain and
AudChain to Adv.

– Finalization: Adv sends b′ ∈ {0, 1} to C.
Adv wins in the game if b′ = b and we remark that a naive adversary, by sampling randomly b′ has
probability of winning equal to 1

2 . We denote the advantage that Adv has of winning as AdvPriv(Adv)
and we say a protocol Π has transaction amount privacy if for any PPT Adv, AdvPriv(Adv) =
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| ≤ negl[λ].

Definition 2 (Organization-Auditor Unlinkability). Let GOAU be the next game between PPT
adversary A and challenger C:

– Initialization: A specifies parameters n, l, λ. The challenger C samples a bit b ←$ {0, 1} and runs
the initialization phase to register n organizations and l auditors, such that the organization set for
GOAU for epoch t is Ot = {o1, · · · , on} and the auditor set is At = {a1, · · · , al}.

– Corruption queries: When Adv issues such a query, it specifies a set of organizations Oc ⊆ Ot and
a set of auditors Ac ⊆ At, and C ∀oi ∈ Oc and ∀ai ∈ Ac provides all respective private information
to Adv.

– Challenge: Adv selects two organizations oi0 , oi1 /∈ Oc, and two auditors a0, a1 /∈ Ac. C “matches”
oi with a|b−i|, i ∈ {0, 1}. The challenger ∀oi /∈ Oc samples random transactions for the in-between
them pairs and computes all necessary information. Last, C forwards all data to be uploaded on the
Orgchain and Audchain to Adv.

– Finalization: Adv sends b′ ∈ {0, 1} to C.
Adv wins in the game if b′ = b and we remark that a naive adversary, by sampling randomly b′ has
probability of winning equal to 1

2 . We denote the advantage that Adv has of winning as AdvOAU (Adv)
and we say a protocol Π has organization-auditor unlinkability if for any PPT adversary Adv,
AdvOAU (Adv) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| ≤ negl[λ].

Definition 3 (Transacting Organizations Unlinkability). Let GOOU be the next game between
PPT adversary A and challenger C:

– Initialization: A specifies parameters n, l, λ. The challenger C runs the initialization phase to
register n organizations and l auditors, such that the organization set for GOOU for epoch t is
Ot = {o1, · · · , on} and the auditor set is At = {a1, · · · , al}, and samples two bits b, b⋆ ←$ {0, 1}.

– Corruption queries: When Adv issues such a query, it specifies a set of organizations Oc ⊆ Ot and
a set of auditors Ac ⊆ At, and C ∀oi ∈ Oc and ∀ai ∈ Ac provides all respective private information
to Adv.

– Challenge: Adv specifies four organizations oi1 , oi2 , oi3 , oi4 /∈ Oc. The challenger ∀oi /∈ Oc +
{oi1 , oi2 , oi3 , oi4} samples random transactions for the in-between them pairs and computes all nec-
essary information. It does the same for (o†, onc)pairs, where o† ∈ {oi1 , oi2 , oi3 , oi4} and onc ∈
Ot −Oc − {oi1 , oi2 , oi3 , oi4}. Now if b = 0, C samples and records a list of transaction for the pair
(oi1 , oi2). Otherwise, if b⋆ = 0 C, samples and records a list of transaction for the pair (oi1 , oi3),
otherwise for the pair (oi1 , oi4). Last, C forwards all data to be uploaded on Orgchain and Audchain
to Adv.

– Finalization: Adv sends two bits b′, b⋆
′ ∈ {0, 1} to C.
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Adv wins in the game if b′ = b and b⋆
′
= b⋆ and we remark that a naive adversary, by sampling

randomly b′ has probability of winning equal to 1
4 . We denote the advantage that Adv has of winning

as AdvOOU (Adv) and we say a protocol Π has transacting organizations unlinkability if for any PPT
adversary Adv, AdvOOU (Adv) = |Pr[b′ = 1∧ b⋆′

= 1|b = 1∧ b⋆ = 1]−Pr[b′ = 1∧ b⋆ = 1|b = 0∧ b⋆′
=

0]| ≤ negl[λ].

Remark: We will rely on the hiding property of our proposed commitment scheme to prove that CLOSC
satisfies all three properties above and following we derive that cm is a perfectly hiding commitment
scheme in the random oracle model. In fact, assuming that the output distribution of H is random,
which we achieve by modeling H as a random oracle, cm is perfectly hiding as it degenerates to
standard Pedersen commitments.

Theorem 1 Assuming that cm is a perfectly hiding commitment scheme in the random oracle model
(ROM), CLOSC satisfies Transaction Amount Privacy as per Definition 1.

Proof. The adversary in Gpriv gains information either via corruption or challenge queries. Specifi-
cally in CLOSC, all b-related information the adversary sees is: (i) the Merkle tree root, (ii) the list of
transaction amount commitments, and (iii) the membership proofs; all of which are cm commitments
or hash outputs. We prove that CLOSC satisfies transaction amount privacy through contraposition.
Now, we consider an adversary Advpriv that can break the privacy game Gpriv and we build an adver-
sary Adv′ that breaks the hiding property of our commitment scheme by distinguishing between two
commitment vectors with non-negligible probability. Adv′ performs the initialization phase of CLOSC
and when Advpriv issues corruption queries Adv′ responds by forwarding all respective private infor-
mation to Advpriv. Now, when Advpriv provides a challenge query by submitting transaction vectors
{tx0, tx1} to Adv′, the latter forwards individually the commitments to its challenger, who responds
with transaction commitments cmb

z. Upon collecting all commitments, Adv′ forms the committed
transaction vector cmb, generates the Merkle tree with root rootMT t , for epoch t, and the respective
membership proofs {πm

z }z∈[k], and forwards all this information to Advpriv. Assuming Advpriv has
non-negligible advantage in winning in Gpriv, Adv′ has equal non-negligible advantage in winning in
the commitment hiding game, which contradicts our initial assumption.

Theorem 2 Assuming com generates and distributes IDA correctly, CLOSC satisfies Organization-
Auditor Unlinkability as per Definition 2.

Proof. We observe that the sole element uploaded in either OrgChain or Audchain that can reveal the
client-relation between organizations and auditors hides inside cmt

i,j , and specifically in the identifier
grαz,i . Now, since the random identifiers IDA are sampled from scratch every epoch, even if the list
of underlying transactions commitments is compromised, no organization or auditor can extract any
of the two challenge organization-auditor relation. Importantly, this holds even in case the adversary
has corrupted all organizations the challenge organizations are transacting with.

Theorem 3 Assuming that cm is a perfectly hiding commitment, CLOSC satisfies Transacting Orga-
nizations Unlinkability as per Definition 3.

Proof. The “link” between transacting organizations exists in the underlying transacting amounts
that are inside the commitments and additionally in the total sum which is committed inside cmt

i,j .
Similarly to the proof of Theorem 1 no PPT adversary can win in GOOU unless it can break the hiding
property of cm.

Theorem 4 Assuming at cm is a perfectly hiding commitment scheme and the encryption scheme is
IND-CPA secure, CLOLC satisfies Transaction Amount Privacy as per Definition 1 in the ROM.

Proof. We prove this property through a series of hybrid indistinguishability games. We start from
G0priv signifying the privacy game when the challenger bit b = 0 and we progress through a series of
hybrid games to G1priv, when b = 1. We introduce a hybrid gameHk⋆

priv, where we change the list of com-
mitted transaction amount plaintexts from {x0

1, · · · , x0
k⋆−1, x

1
k⋆ , · · · , x1

k} to {x0
1, · · · , x0

k⋆ , x1
k⋆+1, · · · , x1

k}
and we change the ciphertext generation accordingly. This indistinguishability transformation reduces
to the IND-CPA security property of the underlying encryption scheme and via these two transforma-
tions we get that Hk⋆

priv ≈ H
k⋆+1
priv , and by making subsequent changes from G0priv = H0

priv ≈ H1
priv ≈

· · · ≈ Hn
priv = G1priv .
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Theorem 5 Assuming that H is pre-image resistant and the underlying encryption scheme is IND-
CPA secure, CLOLC satisfies Organization-Auditor Unlinkability as per Definition 2 in the ROM.

Proof. We observe that all information uploaded on AudChain is either ciphertexts or the output of
a hash function, modeled as a random oracle. Additionally, on OrgChain products of commitments
with hash outputs are stored. All this data cannot be used to reveal the client-relation between
organizations and auditors unless (i) the pre-image resistance of the hash or (ii) the security of the
underlying scheme is compromised.

Theorem 6 Assuming that H is pre-image resistant and cm is a perfectly hiding commitment scheme,
CLOLC satisfies Transacting Organizations Unlinkability as per Definition 3 in the ROM.

Proof. We observe that the link between transacting organizations potentially exists in the total sum
which is committed inside Ai,j . Similarly to the proof of Theorem 5 no PPT adversary can win in
GOOU unless it can break first the pre-image resistance property of H or the hiding property of cm.

7 Implementation & Experimental Evaluation

We develop working prototypes of both our cross-ledger consistency checking protocols and measure
their performance against different choice of parameters regarding the number of organizations, au-
ditors, and transactions during an epoch. We implement our two-tier blockchain architecture over
Hyperledger Fabric10 and all off-chain components using Golang 1.20.5. We use the stable 2.5.1
HLFabric version with the Raft consensus algorithm with three orderers for all blockchains. All off-
chain computations in CLOSC and CLOLC are implemented over the Edwards25519 Elliptic Curve (EC),
and specifically we utilize the EC Library of11. Below we report on the performance of each individual
component of our prototype and we have made both the implementation and the experimental evalu-
ation results available online12. All off-chain components evaluation and blockchain experiments were
conducted on an 8-core AWS EC2 instance (m5n.2xlarge) running Ubuntu 20.04, with 32GB RAM
and 50GB storage. For LocalChain experiments, we consider having 2 peer nodes (for the organiza-
tion and the auditor) in the network whereas for OrgChain and AudChain we utilized 8 peer nodes.
All nodes, including peers and orderers, are tested as Docker containers within the same network, on
a single EC2 instance. We conduct our experiments for a varying number of organizations and our
numbers are taken as a mean of 10 runs with standard deviation of < 5%. Last, we assume that each
organization has a unique auditor, which is in fact the worst-case scenario from the implementation
perspective. We use a publicly available MT library13 and to further improve the our protocols’ per-
formance we configure our chaincodes to accept batch transaction submitting. Specifically, we bundle
5K transactions together and upload them via a single invoke request.

7.1 Performance evaluation of CLOSC

We measure all time and space requirements of our proposed solution. Recall that this is a smart
contract based approach, where each transaction is stored doubly in two smart contracts in addition to
a Merkle tree. Below we analyze the performance of each protocol phase. The initialization takes ≈ 1s
for 1024 organizations, scaling linearly with their number. During transaction recording, computing
1M transaction commitments takes ≈ 7mins while uploading them to the respective LocalChain
takes an extra ≈ 8mins. The resulting on-chain storage for 1M transaction commitments is 432MB
and reading all this data requires ≈ 1min. Generating a MT with depth 20 (for ≈ 1M commitments),
whose leaves are the commitments above, along with all individual membership proofs takes ≈ 2s.
Last, deploying SCi,j,k and uploading the triple {cmtimestamp

j,k , rootMTt
i
, πm

j,k} on it takes ≈ 64s, and
for 1M transactions the total on-chain storage overhead is 515GB per LocalChain. Auditors or the
committee wishing to read all this data can do so in ≈ 16s. As for consistency examination, verifying
1M membership proofs and computing cmt

i,j and πm′

i,j takes ≈ 28s, while computing the merged proof
takes ≈ 2.1s. Uploading 256 {cmt

i,j ,H(πm′

i,j )} tuples on Audchain takes ≈ 2.3s and requires 556KB.
Finally, the committee can perform the result verification phase for 1M transactions in ≈ 4s, for a
Merkle tree of depth 20.
10 https://www.hyperledger.org/use/fabric 11 https://github.com/dedis/kyber
12 https://github.com/ac83ae/auti 13 https://github.com/txaty/go-merkletree
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(a) Total transactions in CLOLC for a variant number
of organizations and settings (X : Y signifies that
X% of the total organizations are transacting with
the Y% of the rest, with 1024 O2O txs per pair).

(b) E2E time across all different phases for
CLOSC(SC) and CLOLC(LC), for different number of
transactions (10K, 100K, and 1M).

Fig. 6: Scalability behavior of CLOSC and CLOLC in terms of total transactions and time depending on
different number of transacting pairs and the amount of their bipartite pairwise transactions.

7.2 Performance evaluation of CLOLC

Following, we present the respective time and space requirements of our second solution. Recall that
this approach is based on checking the consistency per transacting organization pairs and we make the
“worst-case assumption” that all organizations will transact with all others. In such a case we report
that for 256 organizations the initialization phase takes ≈ 154s, for 1024 maximum transactions per
organization pair. We observe that in CLOLC each organization’s computational expenses grow linearly
with the number of its total transactions and thus, for example, a case where 2 organizations sign 100
transactions with each other is equivalent to a case where 4 organizations sign 25 transactions with
each other, from a system design perspective. Notably, this holds especially during the initialization
phase, where the committee needs to generate a unique identifier for each different transaction the
system can support. Therefore, we pick several different settings where, instead of assuming solely
that all organizations transact with each other, we explore other, more realistic cases. Figure 6a
depicts the total number of transactions per number of organizations in different settings CLOLC can
support per epoch, with 1024 O2O transactions per organization pair. Before going any further, we
remark here that we do not provide a similar analysis for CLOSC, since its cost of IN is not affected
by such metrics.

At a high level, we chose the following 5 representative settings: (i) each organization transacts
with all others, (ii) organizations are operating in fully connected transaction pair islands, (iii) each
organization transacts with the same (smaller) portion of the others, (iv) fewer organizations transact
with more of the rest, while most organizations transact with a small portion of the total organiza-
tions, and (v) each organization transact with the same (small) portion of the rest. Importantly, we
observe that the initialization costs scale linearly with the number of maximum transactions, which
results to the following: Having 256 organizations, each conducting 1024 transactions with all other
organizations (≈ 33, 5M txs in total) is approximately equivalent to having a setting with 100K or-
ganizations, where on average each organization transacts with 20 others and sign a total of 33 txs
over the epoch. This is a rather realistic scenario, especially when epochs have short duration e.g.,
a week or a month. Next, transaction recording has both off-chain and on-chain parts. Generating
1M committed transactions take ≈ 402s, while accumulating them in Ai,j takes ≈ 1s. Uploading
this list of committed transactions on LocalChain takes ≈ 544s and requires 767MB, while fetch-
ing it takes ≈ 28s. As for OrgChain, things are similar. Uploading 1M accumulated values takes
≈ 835s and 436MB, while reading all these values takes ≈ 36s. During consistency examination,
generating combined all {resi,j , Bi,j , Ci,j , Di,j} takes ≈ 690ms and encrypting ≈ 1.4ms, for 1024
underlying transactions. Uploading 1M such encrypted tuples takes ≈ 39mins and 2GB, while re-
trieving, decrypting and checking the consistency takes ≈ 0.5s per transacting O2O pair. Last, for
result verification, Com conducts both checks in ≈ 2s.
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Protocol IN T R CE RV

CLOSC 52ms 103.2s + 299.8s 8.7s + 212.2s 3.6s
CLOLC 153.6s 105.5s + 134.9s 12.8s + 7.6s 12.3s + 8.2s

(a) Computational times per phase per organization and epoch.

Protocol LocalChain OrgChain AudChain

CLOSC 704MB 543KB 42.6MB
CLOLC 201MB 28.9MB 134MB

(b) Blockchain storage needs per organization and epoch.

Table 1: Computational times (off-chain + on-chain) and blockchain storage needs of CLOSC and
CLOLC per epoch for 256 organizations, 1024 max transactions per epoch and organization pair, for a
total of 33, 423, 360 max total transactions per epoch.

Protocol IN T R CE RV Storage

ZkLedger [NVV18] O(n) O(nm) O(nm) — O(n2m)

Miniledger [CB21] O(n) O(nm) O(nm) — O(n2m)⋆

ACA [LHNH23] O(n) O(nm) O(nm) — O(nm)

CLOSC O(n2) O(nm+mlogm) O(nm) O(n2) O(n2m)

CLOLC O(n2m) O(nm) O(n) O(n2) O(n2 + nm)

Table 2: Protocol phase complexity and ledger storage asymptotics of CLOSC and CLOLC against
other works with similar potential capabilities across comparable phases of our protocols. n and m
respectively denote the total number of organizations and transactions per auditing epoch.
⋆: Miniledger has a pruning technique to regularly minimize the size of the ledger.

7.3 Comparing the two protocols

Tables 1a & 1b, show that overall there is no clear “better” solution and we observe a trade-off in our
designs as for the required time, communication, and on-chain storage. CLOSC has a faster initialization
phase, requiring also less communication. Contrary, during transaction recording CLOLC outperforms
significantly CLOSC, as the latter requires a separate smart contract per recorded transaction. The
performance is reversed once again during consistency examination. As CLOLC splits this phase into
two parts, it takes more time to produce the auditor results including all auxiliary elements the
committee needs for the next phase, however, in CLOSC the auditor forwards the vector of transactions
to the committee. Last, during result verification both our protocols are very efficient allowing our
designs to scale regardless of the number of organizations, auditors, or total transactions. In Figure 6b
we depict the performance of CLOSC and CLOLC across all phases, for different amount of supported
transactions per epoch. The performance of both our protocols is linearly affected by the number of
total transactions per auditing epoch. This can offer a point of flexibility depending on the number of
organizations and the frequency of their transaction rates and their auditors’ consistency examination
responsibilities. The time required is calculated as the necessary time for one of each entities to execute
all operations during each phase (e.g., how long it take for an organization to perform the transaction
recording phase). Last, the storage required for both our solutions is not prohibitive, considering also
that after the auditing epoch ends there is no need to keep all the uploaded data in any data structure
as a whole. For historicity, maintaining a small digest (e.g., a hash output) of the ledgers might suffice
to enable post-hoc verification.

7.4 Comparing with other works

To the best of our knowledge there exists no other implemented system that concretely supports
auditing protocols for cross-ledger transactions consistency. Nevertheless, there exist approaches that
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could serve similar purposes if adjusted appropriately. E.g., the authors of [NVV18,CB21,LHNH23]
designed systems close to our design in some aspects regarding auditability/verifiability but they are
based on different setups, including solely users and auditors. We provide a comparative analysis in
terms of computation and storage asymptotics between our protocols and these works for a single
epoch in Table 2.

Notably, CLOSC and CLOLC have higher initialization (IN ) complexity because more parameters
need to be generated in order to speedup the consistency examination (CE) and result verification
(RV) phases of our protocols. Regarding transaction recording (T R) and considering that [NVV18,
CB21,LHNH23] employ a single-ledger approach, in ACA the transacting entity posts a single transac-
tion pertaining solely to the transfer of its funds, while in zkLedger and Miniledger it also computes
and uploads “dummy” transactions for the rest. In CLOSC the dominant term corresponds to the
creation of the smart contracts, following by the Merkle tree creation time, whereas in CLOLC organi-
zations create a linear combination of their records per transaction pair. During auditing, all proposed
solutions parse through the ledger transaction records, except for CLOLC, where organizations have
reported a digest of their entire records, rendering the consistency examination faster. Last, prior
works do not consider an RV phase. In both CLOSC and CLOLC the committee performs only multipli-
cations and hashing operations during this protocol phase, introducing a negligible overhead in the
total required computational time as shown in Table 1a.

Regarding storage requirements, the single-ledger approaches record each and every transaction
in the ledger, and all participants need to store the whole ledger. To combat growing ledger-storing
costs, Miniledger employs a pruning technique, rendering the storage required ultimately less than in
zkLedger and ACA. However, this pruning is not instantaneous and needs to be verified by all other
participants. An important diversification in our designs is the following: Even though at a system
level the storage is similar in terms of complexity to prior approaches, each organization only records
their own activity, leading to significantly less storage requirements individually as shown in Table 1b.
Additionally, after RV concludes only a small digest might be needed to remain from each ledger for
historicity purposes, as mentioned above. Overall, the costs in CLOSC and CLOLC are comparable or
lower than the other works whilst not only guaranteeing our three proposed security properties but
also operating in a more relaxed security setting.

8 Discussion

On protocol generalization and limitations. Cross-ledger transaction consistency is an important check
auditors can use to detect fraudulent behavior of their client-organizations e.g., reported sham transac-
tions or inflated assets. We believe that our protocols can be further augmented to facilitate execution
and verification of other popular financial auditing processes e.g., 4-way matching14. A possible di-
rection to enable such a process could be for every organization to utilize the same specific SNARK
construction that would take as input the four transaction commitments that satisfy the 4-way match-
ing relation and output a proof about their consistency. Based on current practices we expect such
an addition to behave similarly (from a computation perspective) to our proposed solutions. Last,
we believe that incorporating atomic cross-chain exchange techniques like the ones in [NRVN22] on
top of our auditability protocols may result in a system with even further capabilities. However, this
remains challenging as the entity setting is different and additional processes will need to be designed.
As for limitations, in CLOSC the committee currently needs to receive all commitments to be able to
verify the auditor-generated results and in CLOLC it needs to generate a randomness per transaction
per epoch during the initialization; recall that this is essentially a trade-off that allows auditors to
perform the consistency examination phase more efficiently. Even though these limitations are not
prohibitive in terms of performance as demonstrated in our previous evaluation, we leave improving
and uplifting our protocols from these restrictions as future work.
On the inclusion of blockchains in our designs. Arguably, our architecture does not need to rely on
blockchains, however, a two-level generic ledger approach is not sufficient either. Blockchains are
immutable, rendering attack scenarios such as the one outlined in Section 1 impossible. Furthermore,
we believe that building our system atop a blockchain with smart contract capabilities architecture
will enable the inclusion of more auditing processes in the future. However, space and monetary costs
are the main concerns when deploying blockchain systems. In our case, after epochs are concluded, the
14 https://www.dataserv.com/blog/difference-between-2-3-4-way/
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relevant data stored in all blockchains can be deleted, since it will not be used in any of the following
epochs and no need on-chain asset transferring is executed either. Last, based on the above discussion
and since the problem we are focusing on requires different entities to have access to different data, we
observe that a permissioned network fits best our design. Nevertheless,we identify that designing our
system atop a permissionless architecture while maintaining our three proposed security properties
is challenging. Opening the system to arbitrary participation may lead to novel confidentiality and
privacy attacks, and we leave this as a future research direction.

9 Conclusion

In this work we proposed CLOSC and CLOLC, the first two protocols attempting to tackle our newly
defined problem of cross-ledger transaction consistency in the context of financial auditing. Both are
built atop a two-tier blockchain architecture and CLOSC utilizes smart contracts while CLOLC linear
combinations to achieve the consistency examination and verification. Moreover, we proved that both
our protocols satisfy three crucial security and privacy properties. Finally, both our protocols scale
well with the number of organizations, auditors, and transactions per epoch. We demonstrated this
via extensive experimentation that showed both our solutions to be practical, deployable in real-
world settings including hundreds of organizations and auditors, and millions of total transactions
per auditing epoch.
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