
Designated-Verifier zk-SNARKs Made Easy

Chen Li1,2 and Fangguo Zhang1,2 �

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou
510006, China

2 Guangdong Province Key Laboratory of Information Security Technology,
Guangzhou 510006, China

lich368@mail2.sysu.edu.cn, isszhfg@mail.sysu.edu.cn

Abstract. Zero-knowledge succinct non-interactive argument of knowl-
edge (zk-SNARK) is a kind of proof system that enables a prover to
convince a verifier that an NP statement is true efficiently. In the last
decade, various studies made a lot of progress in constructing more
efficient and secure zk-SNARKs. Our research focuses on designated-
verifier zk-SNARKs, where only the verifier knowing some secret veri-
fication state can be convinced by the proof. A natural idea of getting
a designated-verifier zk-SNARK is encrypting a publicly-verifiable zk-
SNARK’s proof via public-key encryption. This is also the core idea be-
hind the well-known transformation proposed by Bitansky et al. in TCC
2013 to obtain designated-verifier zk-SNARKs. However, the transforma-
tion only applies to zk-SNARKs which requires the complicated trusted
setup phase and sticks on storage-expensive common reference strings.
The loss of the secret verification state also makes the proof immediately
lose the designated-verifier property.
To address these issues, we first define “strong designated-verifier” con-
sidering the case where the adversary has access to the secret verifi-
cation state, then propose a construction of strong designated-verifier
zk-SNARKs. The construction inspired by designated verifier signatures
based on two-party ring signatures does not use encryption and can
be applied on any public-verifiable zk-SNARKs to yield a designated-
verifiable variant. We introduce our construction under the circuit sat-
isfiability problem and implement it in Circom, then test it on different
zk-SNARKs, showing the validity of our construction.

Keywords: zero-knowledge proof · SNARKs · designated verifier ·
circuit satisfiability

1 Introduction

A zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK)
for an NP relationR enables a prover to produce a proof π, which convinces a ver-
ifier his knowledge of a secret witness w satisfying an instance u i.e. (u,w) ∈ R.
Also, the proof π must not reveal anything about w (zero-knowledge) and its
length and verification time must be sublinear in the size of u and w (suc-
cinctness). Building efficient and practical zk-SNARKs has become a hotspot

of cryptographic research in recent years and there has been a large number
of constructions from different computational models. Gennaro et al. [24] use a
new characterization of NP relations called Quadratic Span Programs (QSP) to
reduce arithmetic circuits satisfiability problems and constructed a zk-SNARK
where the proof only contains 9 group elements. The QSP characterization is
generalized into Quadratic Arithmetic Programs (QAP) by Parno et al. [38], and
they proposed Pinocchio which significantly reduces setup time, prover time and
proof size and be used in practical applications including the cryptocurrency
Zcash [8] to achieve anonymity and prevent double-spending. Groth16 [29] is a
further optimized construction where the proof size is only 3 group elements and
is easier to verify. These constructions are built upon the classic pre-quantum
discrete logarithm type assumptions and the information-theoretic tool linear
probabilistically-checkable proof (LPCP) where the prover is restricted to com-
pute a linear function of verifier’s queries [13, 31]. A trusted setup phase is also
required in these constructions as the party which runs the setup algorithm has
access to the secret randomness and can forge proofs using them. Recent zk-
SNARKs use different building blocks, such as the ZKBoo series [19, 26] and
Ligero series [2, 12] from MPC-in-the-Head [32], and Aurora [10], Fractal [21],
Spartan [40] and Brakedown [27] from polynomial IOPs. These constructions
target post-quantum security and transparent setup, which means the random-
ness used in the setup phase is public and the deployment in the real world can
be simplified.

Typically, zk-SNARKs are designed in the publicly-verifiable model, which
means the proof can be verified by everyone. Nevertheless, sometimes we only
want the proof only convince a specified group of people. For example, in e-
voting, the voting center needs to prove to the voter that he has indeed cast
his vote, but the proof can also disclose the fact that he has participated in
the vote to others, which impacts anonymity. In business trading, both parties
involved create proof to prove the validity of the transaction, but they might
not wish a third party to be informed of the transaction. Another scenario is
that the proof might be some sort of paid content and the prover just wants
to give paid members access to the proof. For such use cases, an alternative
line of research focusing on designed-verifier zk-SNARKs, where the verifier is
required to hold a secret verification state to verify the proof, has been pro-
posed. Designated-verifier zk-SNARKs can be obtained by transforming exist-
ing publicly-verifiable zk-SNARKs. A natural idea is to enable “access control”
to the proofs via public-key encryption. Campanelli et al. [18] pointed out that
if there exists a publicly-verifiable SNARK (zero-knowledge property is not re-
quired) and a public-key encryption scheme, then a key-less designated-verifier
zk-SNARK can be directly obtained by encrypting the proof with the public
key and treat the secret key as the verification state. However, the key-less
zero-knowledge property mentioned here is weaker than the standard one, as it
requires that the proof reveals nothing about the witness only if the adversary
does not hold the verification state. The adversary’s ability is limited in this
case. Another widely utilized transformation is the efficient compiler proposed

by Bitansky et al. [13] from LPCP-based zk-SNARKs by applying additively
homomorphic encryption on the common reference string (CRS).

1.1 The “LIPs to Designated-Verifier zk-SNARKs” compiler

At a very high level, Bitansky’s compiler is performed in the following way. A
two-message linear interactive proof (LIP) is constructed from LPCP first. In this
case, the prover’s proof is a linear combination of elements in the CRS generated
during the zk-SNARK’s trusted setup phase. To make it designated-verifier, the
compiler involves a cryptographic primitive called linear-only encryption which
only supports linear homomorphism. Now the trusted setup phase additionally
generates a keypair for the encryption, encrypts the CRS and sets the secret
key as an extra verification state. The prover runs the LIP’s prover algorithm
and invokes the homomorphic add on the encrypted CRS to output the proof.
Then, the verifier decrypts the proof and decides whether to accept or reject
it by running the LIP’s verifier algorithm. Candidate encryption schemes that
can be used in this compiler include variants of Paillier [37], Elgamal [23] and
Benaloh [11] encryption, which all satisfy the homomorphism property.

This provides a general template for constructing Designated-Verifier zk-
SNARKs and is used as a general blueprint in many related studies. Boneh et
al. [14] improved the compilation by constructing from LPCP directly to get
rid of the communication complexity and soundness penalty introduced in the
LIP construction, and using a linear-only encryption scheme based on LWE
to obtain a Designated-Verifier zk-SNARK. Their subsequent work [15] gives a
lattice-based Designated-Verifier zk-SNARK with quasi-optimal prover complex-
ity. Gennaro et al. [25] and Ishal et al. [33]’s work make further improvements in
efficiency. There are also relevant works for pre-quantum zk-SNARKs, recently
Zhu et al. [45] substituted pairing checks with Σ-protocols in the CRS con-
sistency verification of an improved variant Groth16 which satisfies subversion
zero-knowledge, making it compatible with the compiler.

The compiler only applies to zk-SNARKs where the CRS is required for
each statement to be proved. As a result, the resulting Designated-Verifier zk-
SNARKs have to stick on the trusted setup from a trusted party for each state-
ment to ensure the secret randomness, which could be used to forge valid proofs
and often referred to as “toxic waste” for this reason, is erased after publishing
the CRS. However, such a trustworthy third party barely exists in the real world.
While the ideal trusted third party can be substituted with secure multi-party
computation [9,16,17], this is still an expensive and verbose procedure and might
be vulnerable to subversion. To resolve this issue, a large number of zk-SNARKs
with transparent setup instead of the trusted setup phase has been proposed in
recent years [2, 6, 7, 10, 21, 27, 40, 43]. Unfortunately, the previously mentioned
compiler does not apply to any of them because the prover is not restricted
to computing linear functions (of the CRS) in these zk-SNARKs. Therefore we
cannot construct Designated-Verifier zk-SNARKs from them.

Another drawback to the encryption-based construction is that it is not se-
cure against stronger adversaries. Consider an adversary that performs an at-

tack on the designated verifier and successfully steals the secret key (or is made
public by the verifier himself). In these situations, previously created proofs im-
mediately lost the designated-verifier property. Therefore, we need to consider
stronger security notions of Designated-Verifier zk-SNARKs which can resist
such attacks.

After discussing these prior works, we can form our research question: Is
there such a method of constructing Designated-Verifier zk-SNARKs other than
encryption, which can be applied to as many existing zk-SNARKs as possible,
whether they are pre-quantum or post-quantum, require trusted setup or trans-
parent, and which also makes the designated-verifier property more difficult to
break?

1.2 Our Contributions

In this paper, we focus on constructing Designated-Verifier zk-SNARKs in an
easier and more generic way which also satisfies stronger security notions. We
believe that our work can indicate a new direction in the study of zk-SNARKs.

We present several contributions to address the above research question:

1. We give a more formal and stronger simulation-based definition of Designated-
Verifier zk-SNARKs inspired by designated verifier signatures proposed by
Chaum [20] and Jakobsson et al. [34] for the first time since the proof in zk-
SNARKs can be considered as a “signature” for knowing the secret witness
satisfying the given instance. We call this definition “stronger” because we
give the adversary access to the verification state in the definition.

2. We propose a new construction of Designated-Verifier zk-SNARKs which
satisfies the stronger definition above. The construction is inspired by two-
party ring signatures, which is also a way to construct designated verifier
signatures [4, 39]. It requires the verifier to hold a statement indicating his
identity, and then the prover composes this circuit with what he wants to
prove into a new instance and uses a zk-SNARK to create the proof of the
new instance as usual. The construction does not use encryption and has no
additional requirements for the underlying zk-SNARK, therefore we consider
our construction to be easier and more generic.

3. We implement our construction in Circom [5], a programming language for
building circuits, then tests with two state-of-the-art zk-SNARKs: Groth16
[29] and Aurora [10], which indicates that our construction can be applied
to zk-SNARKs either requires a trusted setup or transparent, pre-quantum
or post-quantum. We also evaluate the proof size, prover time and verifier
time for the prover’s circuit in different sizes and using our construction or
not, then analyze the potential additional overhead of our construction.

2 Preliminaries

We recall the definition of zk-SNARKs here.

Definition 1 (zk-SNARKs). A zero-knowledge succinct non-interactive argu-
ment of knowledge (zk-SNARK) is a tuple of PPT algorithms

∏
= (Setup,Prove,Verify)

such that:

– Setup(1λ,R) → (crs, st, td) On input an NP relation R over public parame-
ters, outputs a common reference string (CRS) crs, the corresponding veri-
fication state st and a simulation trapdoor td.

– Prove(crs, u, w)→ π On input an instance u and the prover’s secret witness
w, outputs a proof π.

– Verify(crs, st, u, π)→ {0, 1} On input an instance u, a proof π and the veri-
fication state st, returns 1 if the proof is accepted and 0 otherwise.

And satisfies the following properties:

– Completeness: An honest prover with the true witness of the instance
should convince an honest verifier. Formally, for all λ ∈ N:

Pr

Verify(crs, st, u, π) = 1

∣∣∣∣∣∣
(crs, st, td)← Setup(1λ,R)

(u,w) ∈ R
π ← Prove(crs, u, w)

 = 1 (1)

– Knowledge soundness: For any PPT adversary, it is difficult to create a
valid proof π without holding a valid witness. Formally, for any adversary A
with auxiliary inputs z, there exists a PPT extractor E such that:

Pr

Verify(crs, st, u, π) = 1
∧(u,w) /∈ R

∣∣∣∣∣∣
(crs, st, td)← Setup(1λ,R)

(u, π)← A(crs, z)
w ← E(crs, st, u, z)

 = negl(λ) (2)

– Zero-knowledge: There exists an efficient simulator SimZK that can output
a simulated proof π′ with the simulation trapdoor td instead of the witness.
The simulated proof π′ is also valid and indistinguishable from the real proof
π, which means that nothing about the witness is leaked. Formally, for all
PPT distinguisher DistZK:

Pr


Verify(crs, st, u, π) = 1
∧DistZK(crs, st, u, π) = r

∣∣∣∣∣∣∣∣∣∣∣

(crs, st, td)← Setup(1λ,R)
(u,w) ∈ R
r

R←− {0, 1}

π ←

{
Prove(crs, u, w) r = 0

SimZK(crs, td, u) r = 1

 ≤
1

2
+ negl(λ)

(3)
– Succinctness: The proof π must be small and easy to verify. The size of

the proof π and the verifier’s time to check it is at most polylogarithmic in
the size of the instance u and the witness w [41].

Remark 1 (Transparent zk-SNARKs [6]). A zk-SNARK is transparent if the ran-
domness used by Setup and Verify is public. Other zk-SNARKs that do not satisfy

this property commonly notate Setup as the “trusted setup phase”, since the non-
public randomness (also known as “toxic waste”) must be kept secret from the
prover and can be used to forge proofs if leaked or not properly destroyed after-
ward.

Remark 2 (Publicly-Verifiable and Designated-Verifier zk-SNARKs [13, 14, 33,
36]). A zk-SNARK is publicly-verifiable if Verify only depends on the public crs.
Otherwise, if Setup also outputs a verification state st which is used for Verify, and
the security holds only if st remains secret against adversaries (only the holder
of st can verify proofs), then we call such type of zk-SNARKs designated-verifier.

The above definition is for zk-SNARKs for arbitrary NP relations. In this
paper, we discuss zk-SNARKs under boolean circuit satisfiability (C-SAT) prob-
lems at first, as our construction is more convenient to state in terms of C-SAT,
and C-SAT is NP-Complete so it can be reduced from any other NP problems
in polynomial time.

Definition 2 (Boolean Circuit Satisfiability Problem). The C-SAT prob-
lem of a boolean circuit C : {0, 1}n → {0, 1} is defined by the relation R =
{(a1, · · · , an) ∈ {0, 1}n : C(a1, · · · , an) = 1}.

3 A stronger definition of Designated-Verifier zk-SNARKs

Recall the definition of designated-verifier zk-SNARKs from above, the designated-
verifier property depends on the secrecy of st. If the secrecy is lost, the previously
created proofs immediately lose the designated-verifier property. This can hap-
pen in reality, as the verifier may accidentally leak st to an adversary: losing
the storage device, man-in-the-middle attack on the network, or an even more
extreme situation such as being forced to hand over st by threats.

Another scenario is that the verifier can share his authority of verifying the
proof with others by giving st, or even just making the proof public to make it
public-verifiable. Of course, it does not require the prover’s consent.

For these situations, we need a stronger designated-verifier property which
makes it impossible for the verifier to transfer his authority of verifying the proof,
either by force or out of choice.

In the study of cryptology, there exists a cryptographic primitive named
designated verifier signatures, proposed by Chaum [20] and Jakobsson et al. [34]
independently. Notice that we can treat zk-SNARK proofs as a “signature” for
the message “the prover knows a secret witness satisfying the given instance”,
which can be verified with the proof as the prover’s “public key”. So we can
borrow the relevant definitions of designated verifier signatures to designated-
verifier zk-SNARKs. This is the starting point of our research.

Jakobsson et al. gives the threat and trust model of designated verifier proofs
in [34]. They figuratively name the two previously mentioned scenarios as “the
demon attack” (taking total command of the verifier) and “the suicide attack”
(transferring the verifier’s identity to the adversary and then self-destructing).

More importantly, they use indistinguishability to define the designated-verifier
property. We modify the definition slightly to make it adapt to zk-SNARK’s
definition.

Definition 3 (Strong Designated-Verifier zk-SNARKs). A zk-SNARK∏
= (Setup,Prove,Verify) is strong designated-verifier if there exists an efficient

simulator SimDV that can output a simulated proof π′ with the verification state st
instead of the witness. The simulated proof π′ is also valid and indistinguishable
from the real proof π. Formally, for all PPT distinguisher DistDV:

Pr


DistDV(crs, st, u, π) = r

∧(
r = 0 ∧ Verify(crs, st, u, π) = 1

∨r = 1

)
∣∣∣∣∣∣∣∣∣∣∣

(crs, st, td)← Setup(1λ,R)
(u,w) ∈ R
r

R←− {0, 1}

π ←

{
Prove(crs, u, w) r = 0

SimDV(crs, st, u) r = 1

 ≤
1

2
+negl(λ)

(4)

Notice that this definition is very similar to the zero-knowledge property. The
difference is that SimZK uses the simulation trapdoor td, which is hold neither
by the prover nor the verifier. Some literature may refer the process of using the
trapdoor as “rewinding”. This can only happen in the ideal world. However, the
verifier can run SimDV with the verification state st in his hand indeed in the
real world.

In the other words, given a proof π outputs from a designated-verifier zk-
SNARK, we want that the adversary learns nothing about whether π is produced
by the prover or the verifier (however, he can still verify the validity of π).
Thus, the verifier can never convince the adversary that π is produced by the
prover instead of the verifier himself [39]. Moreover, we give the access to the
adversary to the verification state st. This is a stronger attack model then the
previous definition, therefore we name the new definition as “strong designated-
verifier”. We also notice that this definition guarantees a property similar with
the forward secrecy in key agreement protocols, as the leak of st cannot damage
the designated-verifier property of proofs created before the leak. Of course, the
leaked st should not be used to create new proofs in the future.

However, Bitansky’s compiler [13] does not satisfy this stronger definition,
as the distinguisher can be easily built with access to st = (sk, s) where in the
context of zk-SNARKs sk is the secret key used to encrypt the CRS and s is the
zk-SNARK’s secret verification state (see construction 6.1 in the paper for de-
tails). The distinguisher first decrypts the proof π using sk then verifies it using
the zk-SNARK’s Verify algorithm. If the proof is a valid ciphertext of the chosen
linear-only encryption scheme and it can pass the verification after decryption,
then the probability that the proof is created by the prover, not simulated by
the simulator, is overwhelming since the linear-only encryption’s linear-only ho-
momorphism property and zk-SNARK’s knowledge soundness property makes
it almost impossible for anyone who does not hold the witness w to forge the
(encrypted) proof and fool the distinguisher. In short, anyone with access to st

will be convinced that the proof is indeed created by the prover with a valid
witness, which does not correspond to the designated verifier property.

4 Generic Construction of (Strong) Designated-Verifier
zk-SNARKs

In this section, we describe our new construction of designated-verifier zk-SNARKs.
The new construction satisfies the previously defined stronger security notions.
It is also a more generic construction, as it can be applied to any existing zk-
SNARKs, whether it is pre-quantum or post-quantum, requires trusted setup
or transparent, for free and without little extra cost for running time and proof
size.

Recall that the definition of strong designated-verifier zk-SNARKs is derived
from designated verifier signatures. Designated verifier signatures can be con-
structed with other basic cryptographic tools, such as undeniable signatures [34],
ring signatures [4,39], key distribution mechanisms [44], key encapsulation mech-
anisms [28] and so on. We mainly pay attention to ring signature-based construc-
tions. In ring signature schemes, several members form a ring and all ring mem-
bers’ public keys are used for signing and verifying. Of course, the signer’s secret
key is also required for signing. Due to the ring signature scheme’s anonymity
property, it is difficult to know who generated the signature among all possible
ring members.

Now consider the special case where there are only two ring members named
Alice and Bob. If Alice creates a ring signature, of course, it can be verified by
Bob and any other verifier. The difference is that for Bob since the signature is
not created by himself, he can definitely confirm that the signature is created
by Alice. But for other verifiers, the signature will not be able to convince them
since Bob could also be the signer (or to say the signatures created by Alice and
Bob are indistinguishable) in their view. In this two-party case, Bob becomes a
designated verifier. And since the ring cannot be changed after Alice creates the
signature, Bob cannot transfer the identity of the designated verifier to someone
else.

Similarly, we can also form a “ring” with the prover and the verifier for
designated-verifier zk-SNARKs. Usually, the relation to be proved is public.
Therefore we can use the relations and the circuits behind them to play the role
of public keys. While the prover holding a circuit CP that he wants to prove
its satisfiability, the verifier is also required to hold a circuit CV that only he
knows a secret witness such that the circuit can be satisfied, which indicates his
identity. To make the proof designated-verifier, what needs to be proved turns
into “the statement the prover wants to prove to the verifier ∨ knowing some
secret the verifier holds”, or the satisfiability of the circuit CP ∨CV . This gives a
feature similar to two-party ring signatures: both the prover and the designated
verifier can create indistinguishable and valid proofs that can pass the verifica-
tion. However, only the designated verifier can be convinced that the proof is
created by the prover because it is not created by himself.

g3

g6

g4

g5

w0

w1

w2

w3

CP (w) = (w0 ∨ w1) ∧ (w2 ∨ w3)

CV (w) = w1 ∨ (w2 ∧ w3)

g1

g2

Input bits and logic gates’ outputs
w g1 g2 g3 g4 g5 g6

(1, 0, 1, 0) 1 1 1 0 0 1
(0, 0, 1, 1) 0 1 0 1 1 1

Fig. 1. A tiny example of the composed circuit from CP and CV with different input
sizes in our construction. The table on the right gives two inputs that satisfy CP and CV

respectively, both of them also satisfy the composed circuit. Due to the zero-knowledge
property of zk-SNARKs, the proof created from these two inputs is indistinguishable.
Therefore, if you are a third party other than the prover and the designated verifier
and received valid proof of this circuit, you cannot exclude the possibility that it was
created by the verifier himself.

In the context of zk-SNARKs, the input is usually divided into two parts u
(instance) and w (witness), where u denotes the public input and w denotes the
private input that only the prover knows but does not want to reveal. Since we
are describing the construction under boolean circuits, and CP and CV share the
same input in the composed circuit CP ∨CV , we treat u as a part of the circuit
and omit it for simplicity. Without loss of generality, we assume that the input
sizes of CP and CV are the same. In cases where the input sizes are different, the
circuit with a smaller input size can be padded by adding additional variables
without any wire connections.

Now we can formally propose this designated-verifier zk-SNARK construc-
tion. Different from the previous definition of zk-SNARK (Definition 1), there
is an extra procedure for assigning the designated verifier.

Construction 1 (Designated-Verifier zk-SNARKs from Arbitrary zk-
SNARKs). Let RP and RV be two C-SAT relations of boolean circuits CP :
{0, 1}n → {0, 1} and CV : {0, 1}n → {0, 1}, where the prover has wP ∈ RP which
satisfies CP . CV can be used to check the verifier’s identity and the verifier is
assumed to hold wV ∈ RV which satisfies CV . Let (Setup,Prove,Verify) be a zk-
SNARK. A designated-verifier zk-SNARK (AssignDV, SetupDV,ProveDV,VerifyDV)
can be obtained as follows:

– AssignDV(RP ,RV)→R Outputs a new relation R = {w ∈ {0, 1}n : CP (w)∨
CV (w) = 1} for the subsequent steps of the designated-verifier zk-SNARK.

– SetupDV(1λ,R)→ (crs, st, td) Works as Setup in the usual way. wV is treated
as a part of st.

– ProveDV(crs, u, wP) → π Works as Prove in the usual way. The proof is
different from the one created under RP .

– VerifyDV(crs, st, u, π)→ {0, 1} Works as Verify in the usual way.

Theorem 1. (AssignDV, SetupDV,ProveDV,VerifyDV) from Construction 1 is a
strong designated-verifier zk-SNARK.

Proof. Completeness, knowledge soundness, zero-knowledge and succinctness di-
rectly follow from the corresponding properties of the underlying zk-SNARK.

For the strong designated-verifier property, since the verifier is assumed to
hold wV ∈ RV which satisfies CV , wV should also satisfy CP ∨ CV and he can
do what the prover does in ProveDV to simulate a valid proof. Due to the zero-
knowledge property of the underlying zk-SNARK, both the proofs generated by
Prove(crs, u, wP) and Prove(crs, u, wV) are indistinguishable from the simulated
proofs generated by the simulator SimZK with the simulation trapdoor td, thus it
is also difficult to distinguish between these two types of proofs. ⊓⊔

Our construction is based on boolean circuits in the form {0, 1}n → {0, 1}.
However, most currently existing zk-SNARKs and relevant toolchains are con-
structed targeting the satisfiability of arithmetic circuits like Fn → Fm. As the
arithmetic circuit satisfiability problem is also NP-complete, it is certainly feasi-
ble to reduce other NP problems to arithmetic circuits. This also includes boolean
circuit satisfiability problems (adding additional constraints like x(x− 1) = 0 to
ensure that variables must only be 0 or 1 and emulating logical gates with addi-
tions and multiplications). But this wastes log2|F| − 1 bits for each element in F
and results in greater communication cost. The reduction of the whole problem
can also be a bit expensive sometimes. For example, for problems like factorizing
a large number, it would be simpler to instantiate it using an arithmetic circuit
instead of a boolean circuit. Therefore, it is also necessary to consider how to
implement the above construction under arithmetic circuits. For arithmetic cir-
cuits C̃P : Fn → FmP and C̃V : Fn → FmV (without loss of generality we can
still assume that the input size is the same), the new relation to be proved now
becomes something like {w ∈ Fn : (C̃P (w) = p) ∨ (C̃V (w) = v) = 1} where
p ∈ FmP , v ∈ FmV are the expected outputs of C̃P and C̃V . The construction
consists of two parts: the equality testing and the OR relation, both can be im-
plemented with a small number of additions and multiplications emulating the
logical gates:

– Checking two variables’ equality a = b is equal to check a− b = 0. To check
whether a variable x is zero or not, we need an auxiliary variable xinv which
is assumed to be the inverse of x (or 0 only if x = 0) and an additional
constraint x(1− (x · xinv)) = 0 to ensure that. z(x) = 1− x · xinv gives the
boolean result: if x = 0 then it outputs 1, otherwise 0. [42]

– Two arrays’ equality (a1, · · · , am) = (b1, · · · , bm) is given by checking whether∏m
i=1 z(ai − bi) = 1.

– For two boolean variables a, b in an arithmetic circuit, a ∨ b = 1 is equal to
the constraint a+ b− a · b = 1.

5 Concrete Implementation and Evaluation

We show a concrete implementation of our construction in Circom [5], an in-
dustrial and constraint-based language for building arithmetic circuits. Circom
also comes with a compiler that compiles the code into corresponding rank-1
constraint system (R1CS) constraints and a program in C++ or WebAssem-
bly for witness computation. An R1CS constraint is an equation of the form
A · (1, w) ◦B · (1, w) = C · (1, w), which can represent several multiplication and
addition gates in an arithmetic circuit.

Assume that C̃P and C̃V are declared using the following template:

template CircuitP(inLength, outLength) {
signal input in[inLength];
signal output out[outLength];

// Constraints of the circuit
}

template CircuitV(inLength, outLength) {
signal input in[inLength];
signal output out[outLength];

// Constraints of the circuit
}

Then we can construct the composed circuit in the following way:

// Use the IsEqual() template from the builtin Circomlib to
// test equality of two arrays
template IsEqualArray(length) {

signal input in[2][length];
signal output out;
component eq[length];
signal temp[length + 1];
temp[0] <== 1;
for (var i = 0; i < length; i++) {

eq[i] = IsEqual();
eq[i].in[0] <== in[0][i];
eq[i].in[1] <== in[1][i];
temp[i + 1] <== temp[i] * eq[i].out;

}
out <== temp[length];

}

template DVComposed(inLengthP, outLengthP, inLengthV, outLengthV) {
// The larger of the input sizes of CircuitP and CircuitV

signal input in[inLengthP > inLengthV ? inLengthP : inLengthV];
// Public expected output of CircuitP and CircuitV
signal input expectP[outLengthP];
signal input expectV[outLengthV];

// The two circuits share the same private input
component circuitP = CircuitP(inLengthP, outLengthP);
component circuitV = CircuitV(inLengthV, outLengthV);
for (var i = 0; i < inLengthP; i++) {

circuitP.in[i] <== in[i];
}
for (var i = 0; i < inLengthV; i++) {

circuitV.in[i] <== in[i];
}

// Check if the output is the expected output
component eqP = IsEqualArray(outLengthP);
component eqV = IsEqualArray(outLengthV);
for (var i = 0; i < outLengthP; i++) {

eqP.in[0][i] <== circuitP.out[i];
eqP.in[1][i] <== expectP[i];

}
for (var i = 0; i < outLengthV; i++) {

eqV.in[0][i] <== circuitV.out[i];
eqV.in[1][i] <== expectV[i];

}
// The final OR gate
eqP.out + eqV.out - eqP.out * eqV.out === 1;

}

component main { public [expectP, expectV] } = DVComposed(...);

In practice, there is no unique way to construct C̃V . A feasible choice is
the procedure of deriving the public key from a secret key of some public-key
cryptosystem since a trusted public key of a particular person can be easily
obtained from Public Key Infrastructures (PKI) in practice. We can demonstrate
a simple example here, such as building a wrapper C̃V of the ECDSAPrivToPub
component from [1] to check ECDSA keypairs over secp256k1 curve3:

template CircuitV(inLength, outLength) {
signal input in[4];
signal output out[8];

3 The secret key is a 256-bit integer, the (uncompressed) public key is a point on
the curve and the x and y coordinates are also 256-bit integers. These integers are
represented using four 64-bit integers in the circuit.

component c = ECDSAPrivToPub(64, 4);

for (var i = 0; i < 4; i++) {
c.privkey[i] <== in[i];

}
for (var i = 0; i < 2; i++) {

for (var j = 0; j < 4; j++) {
c.pubkey[i][j] ==> out[i * 4 + j];

}
}

}

Assuming we have fetched the public key of the designated verifier from PKI4,
we can use it as a part of the public input of the composed circuit. The other
part of the input is the expected output of C̃P .

[
...,
"0xb9d3d296e43ff8e2", "0xce906d62615e2afc",
"0xcf8561a3467ae190", "0xd5f103d0e369611b",
"0xee9fb3b2b5d3bef4", "0xf8b75367a2bef8ee",
"0x9a63e7e77f6bf6d4", "0xfb549ab9c5d25362"

]

For the designated verifier, he should hold the corresponding secret key, so it
is possible for him to give the composed circuit the following private input with
his secret key and create valid proofs without knowing any inputs satisfying C̃P :

{
"in": [

"0x71834475041066ec", "0x877e87fa54d39daa",
"0x18ac73a985b5566d", "0x1b6b2d957e7b346b",
...

],
"expectP": [...],
"expectV": [

"0xb9d3d296e43ff8e2", "0xce906d62615e2afc",
"0xcf8561a3467ae190", "0xd5f103d0e369611b",
"0xee9fb3b2b5d3bef4", "0xf8b75367a2bef8ee",
"0x9a63e7e77f6bf6d4", "0xfb549ab9c5d25362"

]
}

4 The keypair in this example is taken from the first set of test vec-
tors from https://github.com/someone42/hardware-bitcoin-wallet/blob/master/
test_vectors/keypairs.txt.

https://github.com/someone42/hardware-bitcoin-wallet/blob/master/test_vectors/keypairs.txt
https://github.com/someone42/hardware-bitcoin-wallet/blob/master/test_vectors/keypairs.txt

To verify the validity of our construction, we compiled the composed circuit
with composite C̃P of different number of constraints and the same ECDSA
keypair checking C̃V which contains about 95000 ≈ 216.54 R1CS constraints5,
then prepared two sets of inputs that can satisfy C̃P and C̃V respectively and
created proofs and witnesses of the composed circuit with these inputs, checking
whether both of them are valid proofs. For the zk-SNARK’s choice, We used the
implementation of Groth16 [29] in snarkjs [30] for its popularity and first-class
support for R1CS instances compiled from Circom. To check our construction
is applied to transparent and post-quantum zk-SNARKs, we additionally chose
a state-of-the-art protocol Aurora [10] in this field and ran the libiop [35] im-
plementation with the same R1CS instances and inputs over the same BN128
prime field.

We keep records of the proof size, prover time and verifier time with and
without using the designated-verifier construction we proposed to measure its
extra overhead. The experiments are run on an Arch Linux virtual machine with
16 Intel Xeon w5-2465X CPU cores and 32 GB memory assigned.

Number of R1CS
constraints in C̃P

Without DV With DV
P. time P. time

216 2.45s 6.56s +167.6%

217 3.63s 7.16s +97.1%

218 5.90s 9.39s +59.2%

219 11.76s 15.24s +29.6%

220 22.85s 24.86s +8.8%

Table 1. Evaluation results of Groth16.

Number of R1CS
constraints in C̃P

Without DV With DV
P. size P. time V. time P. size P. time V. time

216 132 KB 26.80s 0.56s 156 KB +17.9% 111.85s +317.4% 2.34s +319.4%

217 143 KB 55.50s 1.16s 156 KB +9.1% 112.10s +102.0% 2.36s +103.6%

218 156 KB 112.42s 2.27s 167 KB +7.4% 233.08s +107.3% 4.51s +98.4%

219 167 KB 236.52s 4.80s 181 KB +8.4% 482.78s +104.1% 8.95s +86.6%

220 181 KB 551.56s 9.30s 196 KB +7.8% 1003.36s +81.9% 17.85s +91.9%

Table 2. Evaluation results of Aurora.

We only compare the prover time for Groth16. This is because the proof size
is constant, and though the verifier time is linear to the size of private and pub-
lic inputs there is almost no difference since the verification is fast enough. The
5 Constructions for deriving public keys in other widely used cryptosystems like RSA

and Ed25519 also exist [3, 22], but not selected in evaluation because of the huge
constraint number over 500000.

prover time is linear to the size of the R1CS instance, and since our construction
composes C̃P and C̃V into a new circuit, the increase in prover time depends
largely on the size of C̃V . In the experiment, the selected C̃V with 216.54 con-
straints will introduce a fixed 2-4s overhead to the prover time. For a small C̃P

with 216 constraints, the increase is about 216.54−16 ≈ 145% of the prover time
without using the designated-verifier construction. But for an intermediate-sized
C̃P with over 220 constraints, the increase is relatively negligible.

Aurora requires that the number of constraints must be a power of 2. For the
C̃P with 216 constraints, the new composed circuit will contain 216 + 216.54 ≈
217.30 constraints and then be padded to 218. Thus the proof size, prover time
and verifier time are the same as creating a proof for a C̃P with 218 constraints
without using the designated-verifier construction. An Aurora proof has size
O(log2 n), can be created in O(n logn) time and verified in O(n) time where
n is the number of constraints. Therefore, if composing C̃V causes an increase
in ⌈log2 n⌉, the proof size will increase slightly and the prover time and verifier
time will be doubled. Otherwise, there is no additional overhead.

6 Conclusion

We define Strong Designated-Verifier zk-SNARKs and then propose a new con-
struction to fix the defect of existing designated-verifier’s definition that the
verifier may lose control of the secret verification state or make it public on his
own, which breaks the designated-verifier property. The new construction, in-
spired by designated-verifier signatures based on two-party ring signatures, uses
an additional circuit to validate the verifier’s identity and composes it by the
OR relation with the circuit that the prover wants to prove its satisfiability to
ensure that anyone except the verifier cannot be convinced by the proof.

Our construction is more generic and easier than existing constructions since
there is no need for special encryption to keep the proof designated verifier and
our construction can be applied to any existing zk-SNARKs, especially for those
more advanced zk-SNARKs that do not require the trusted setup phase and
satisfy post-quantum security.

Due to the introduction of the additional circuit for the verifier’s identity,
the size of the statement to be proved becomes larger and the proof size, prover
time and verifier time may increase. But this varies depending on the underlying
zk-SNARK used. Regardless, choosing a smaller circuit can always reduce this
extra overhead. This leaves room for improvement by relying on a simpler way
to validate the verifier’s identity.

References

1. 0xPARC: circom-ecdsa: Big integer arithmetic and secp256k1 ECC operations in
circom (2024), https://github.com/0xPARC/circom-ecdsa

https://github.com/0xPARC/circom-ecdsa

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight
sublinear arguments without a trusted setup. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2087–2104.
CCS ’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3133956.3134104

3. zkp application: circom-rsa-verify: Zero knowledge proof for RSA (2024), https:
//github.com/zkp-application/circom-rsa-verify

4. Au, M.H., Susilo, W.: Two-party (blind) ring signatures and their applications.
In: Huang, X., Zhou, J. (eds.) Information Security Practice and Experience. pp.
403–417. Springer International Publishing, Cham (2014)

5. Bellés-Muñoz, M., Isabel, M., Muñoz-Tapia, J.L., Rubio, A., Baylina, J.: Circom:
A circuit description language for building zero-knowledge applications. IEEE
Transactions on Dependable and Secure Computing 20(6), 4733–4751 (2023).
https://doi.org/10.1109/TDSC.2022.3232813

6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046 (2018), https://eprint.iacr.org/2018/046

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
– CRYPTO 2019. pp. 701–732. Springer International Publishing, Cham (2019)

8. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474 (2014). https://doi.org/10.1109/
SP.2014.36

9. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium
on Security and Privacy. pp. 287–304 (2015). https://doi.org/10.1109/SP.2015.25

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2019. pp. 103–128. Springer International
Publishing, Cham (2019)

11. Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the workshop on
selected areas of cryptography. pp. 120–128 (1994)

12. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang,
Y.: Ligero++: A new optimized sublinear IOP. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2025–2038.
CCS ’20, Association for Computing Machinery, New York, NY, USA (2020). https:
//doi.org/10.1145/3372297.3417893

13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) Theory of
Cryptography. pp. 315–333. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

14. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their applica-
tion to more efficient obfuscation. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in
Cryptology – EUROCRYPT 2017. pp. 247–277. Springer International Publishing,
Cham (2017)

15. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptol-
ogy – EUROCRYPT 2018. pp. 222–255. Springer International Publishing, Cham
(2018)

https://doi.org/10.1145/3133956.3134104
https://github.com/zkp-application/circom-rsa-verify
https://github.com/zkp-application/circom-rsa-verify
https://doi.org/10.1109/TDSC.2022.3232813
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2015.25
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/3372297.3417893

16. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In: Zohar, A., Eyal, I., Teague, V.,
Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) Financial Cryptography and
Data Security. pp. 64–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2019)

17. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive, Paper
2017/1050 (2017), https://eprint.iacr.org/2017/1050

18. Campanelli, M., Khoshakhlagh, H.: Succinct publicly-certifiable proofs. In: Ad-
hikari, A., Küsters, R., Preneel, B. (eds.) Progress in Cryptology – INDOCRYPT
2021. pp. 607–631. Springer International Publishing, Cham (2021)

19. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1825–1842. CCS ’17, Association
for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/
3133956.3133997

20. Chaum, D.: Private signature and proof systems, US Patent 5,493,614 (1996)
21. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive

proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology –
EUROCRYPT 2020. pp. 769–793. Springer International Publishing, Cham (2020)

22. Electron-Labs: ed25519-circom: Ed25519 implementation in circom (2024), https:
//github.com/Electron-Labs/ed25519-circom

23. Elgamal, T.: A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985).
https://doi.org/10.1109/TIT.1985.1057074

24. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. pp. 626–645. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

25. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from
square span programs. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. pp. 556–573. CCS ’18, Association
for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/
3243734.3243845

26. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster Zero-Knowledge for boolean
circuits. In: 25th USENIX Security Symposium (USENIX Security 16). pp. 1069–
1083. USENIX Association, Austin, TX (Aug 2016), https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/giacomelli

27. Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: Linear-time
and field-agnostic SNARKs for R1CS. In: Handschuh, H., Lysyanskaya, A. (eds.)
Advances in Cryptology – CRYPTO 2023. pp. 193–226. Springer Nature Switzer-
land, Cham (2023)

28. Gong, B., Au, M.H., Xue, H.: Constructing strong designated verifier signa-
tures from key encapsulation mechanisms. In: 2019 18th IEEE International
Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). pp. 586–593 (2019). https://doi.org/10.1109/TrustCom/
BigDataSE.2019.00084

29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 305–326.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

https://eprint.iacr.org/2017/1050
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://github.com/Electron-Labs/ed25519-circom
https://github.com/Electron-Labs/ed25519-circom
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1145/3243734.3243845
https://doi.org/10.1145/3243734.3243845
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00084
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00084

30. iden3: snarkjs: zkSNARK implementation in JavaScript & WASM (2024), https:
//github.com/iden3/snarkjs

31. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short
PCPs. In: Twenty-Second Annual IEEE Conference on Computational Complexity
(CCC’07). pp. 278–291 (2007). https://doi.org/10.1109/CCC.2007.10

32. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing. pp. 21–30. STOC ’07, Association for Computing
Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1250790.1250794

33. Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-verifier
zkSNARKs from lattices. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. pp. 212–234. CCS ’21, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460120.3484572

34. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) Advances in Cryptology — EUROCRYPT ’96.
pp. 143–154. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

35. scipr lab: libiop: C++ library for IOP-based zkSNARKs (2024), https://github.
com/scipr-lab/libiop

36. Nitulescu, A.: zk-SNARKs: a gentle introduction (2020), https://www.di.ens.fr/
~nitulesc/files/Survey-SNARKs.pdf

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99. pp. 223–
238. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

38. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. Commun. ACM 59(2), 103–112 (jan 2016). https://doi.org/10.
1145/2856449

39. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: Lim, J.I., Lee, D.H. (eds.) Information Security and Cryp-
tology - ICISC 2003. pp. 40–54. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004)

40. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020.
pp. 704–737. Springer International Publishing, Cham (2020)

41. Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct ar-
guments. Cryptology ePrint Archive, Paper 2023/552 (2023), https://eprint.iacr.
org/2023/552

42. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.:
Taking Proof-Based verified computation a few steps closer to practicality.
In: 21st USENIX Security Symposium (USENIX Security 12). pp. 253–268.
USENIX Association, Bellevue, WA (2012), https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/setty

43. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy (SP). pp. 926–943 (2018). https://doi.org/10.1109/SP.2018.00060

44. Yang, F.Y., Liao, C.M.: A provably secure and efficient strong designated verifier
signature scheme. In: International Journal of Network Security. vol. 10, pp. 220–
224 (2010)

45. Zhu, X., Song, X., Deng, Y.: Fast and designated-verifier friendly zkSNARKs in the
BPK model. Cryptology ePrint Archive, Paper 2023/1806 (2023), https://eprint.
iacr.org/2023/1806

https://github.com/iden3/snarkjs
https://github.com/iden3/snarkjs
https://doi.org/10.1109/CCC.2007.10
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/3460120.3484572
https://doi.org/10.1145/3460120.3484572
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://doi.org/10.1145/2856449
https://doi.org/10.1145/2856449
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/setty
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/setty
https://doi.org/10.1109/SP.2018.00060
https://eprint.iacr.org/2023/1806
https://eprint.iacr.org/2023/1806

	Designated-Verifier zk-SNARKs Made Easy
	Introduction
	The "LIPs to Designated-Verifier zk-SNARKs" compiler
	Our Contributions

	Preliminaries
	A stronger definition of Designated-Verifier zk-SNARKs
	Generic Construction of (Strong) Designated-Verifier zk-SNARKs
	Concrete Implementation and Evaluation
	Conclusion

