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Abstract. Oblivious Transfer (OT) is a fundamental cryptographic prim-
itive, becoming a crucial component of a practical secure protocol. OT
is typically implemented in software, and one way to accelerate its run-
ning time is by using hardware implementations. However, such imple-
mentations are vulnerable to side-channel attacks (SCAs). On the other
hand, protecting interactive protocols against SCA is highly challenging
because of their longer secrets (which include inputs and randomness),
more complicated design, and running multiple instances. Consequently,
there are no truly practical leakage-resistant OT protocols yet.
In this paper, we introduce two tailored indistinguishability-based se-
curity definitions for leakage-resilient OT, focusing on protecting the
sender’s state. Second, we propose a practical semi-honest secure OT pro-
tocol that achieves these security levels while minimizing the assumptions
on the protocol’s building blocks and the use of a secret state. Finally,
we extend our protocol to support sequential composition and explore
efficiency-security tradeoffs.

1 Introduction

Oblivious Transfer (OT) is a fundamental cryptographic primitive that, in its
simplest form, allows a sender to transmit a set of two messages, (m0,m1), to a
receiver that receives only one, mr, according to its selection bit r. The sender’s
goal is to hide the message that the receiver should not receive, while the re-
ceiver’s goal is to hide r [47, 24]. Its security has been extensively studied in the
presence of semi-honest corrupted adversaries (when the adversary follows the
protocol’s instructions but tries to violate the honest party’s privacy), and ma-
licious adversaries (when the adversary arbitrarily deviates from the protocol’s
execution) [44, 29]. The security of OT as an interactive protocol is typically
formalized in the simulation-based paradigm, where the adversary’s view can
only be simulated from its inputs and outputs [29, 25].

The importance of OT lies in the fact that it is complete for secure computa-
tion [37, 57, 26, 32]. It also has some significant advantages, such as preprocess-
ing [37, 3] (i.e., it can be precomputed in an offline stage before the actual inputs
are known [37, 4]), being amortizable (i.e., we can extend OTs by using a few
expensive OTs to generate a large number of cheap OTs, significantly reducing
the overall cost [37, 31]), and being symmetric [56] (i.e., the roles of sender and
receiver can be switched). On the other hand, it is impossible to build an OT
scheme only from symmetric primitives [30, 4]. As such, OT has been studied



under a variety of hardness assumptions, and its efficiency has been extensively
explored with respect to both semi-honest and malicious attacks [14, 19, 48, 50].

When it comes to practical constructions, most OT implementations have
been software-based, while more and more lower-level primitives implementa-
tions have been shifted toward hardware, making them faster; see, for instance,
[21, 6]. The downside of such implementations is that they can more easily leak
sensitive information using side-channel attacks (SCA). Namely, an adversary
can measure physical quantities such as time, power consumed, and electromag-
netic radiation while running a computation. Using these physical quantities, it
can extract information beyond the intended output [38, 39, 46]. In addition, it
is possible to leak secret information previously stored in the memory even after
the machine has been switched off via the cold boot attacks [28]. Such attacks
are increasingly threatening due to the significant growth of IoTs, connected and
physically accessible devices [40].

From a theoretical standpoint, SCAs are formalized using two classes of at-
tacks [35]: 1) memory leakage, where the adversary obtains a bounded-output
leakage function applied to the secret, e.g., [1]. 2) computation leakage, where
each time a computational step involves a secret, a measurement of that secret
can be made, also known by the “Only Computation Leaks” (OCL) paradigm [42].
The approach also considers leakage from intermediate ephemeral values gener-
ated during computation.

Several types of countermeasures have been considered against such attacks,
working either at the hardware level to reduce the side-channel information
or at the implementation level, exploiting data randomization (e.g., masking)
or shuffling the order of operations. Since all these countermeasures increase
the overheads, a complementary line of leakage-resistant cryptography works
at the design-level (specifying how to use each key, how many times, etc.), in
an attempt to design cryptographic primitives that are inherently more secure
against SCA [23, 42, 59, 45, 2, 9] by limiting the number of times a secret is
used. See [35] for additional citations.

However, when trying to formalize security and protect more involved inter-
active objects, this task becomes more challenging due to 1) longer secrets, 2)
more complicated design involving multiple building blocks, and 3) reusability
of secrets between different building blocks or multiple instances. As such, fewer
examples of concrete leakage-resilient secure protocols are at the design level.

Relevant to our work, in [11], the authors introduced a new security model
for secure computation where the adversary’s view and the bounded leakage
are simulatable by only accessing the adversary’s input and output. They also
built protocols achieving this security definition, using expensive primitives such
as non-committing encryption schemes that allow the generation of equivocal
ciphertexts. In another paper [15], the authors introduced an alternative secu-
rity definition where the adversary’s view and its unbounded leakage should be
simulatable, assuming that each input is encoded leak-free. Even assuming leak-
free pre-processing, secure constructions that consider leakage require the use of
expensive primitives, such as fully homomorphic encryption.



Additional works provide protocols for specific functionalities, such as zero
knowledge and coin tossing [35] with bounded leakage, and oblivious transfer [51],
that provides a leaky OT protocol based on DDH. This protocol aims to protect
the receiver’s input, which is encrypted using a leak-free encryption phase but
does not consider any countermeasures for the sender’s secret state. We point
out that there have also been attempts to secure cryptographic protocols at the
so-called hardware level, protecting the circuit; see, for example, [13].

As it stands today, no practical solutions exist to protect the sender’s state
without using expensive primitives. Moreover, simulation-based security defi-
nitions may be challenging to use as it is not clear how to simulate leakage
attacks considered in practice, such as leakage measurements of power consump-
tion [41, 8], leaving a gap for the construction of practical, efficient OT protocols.

In this paper, we explore the security of oblivious transfer against SCA via
two indistinguishability-based security definitions and provide several practical
constructions that minimize the use of public-key primitives. With the under-
standing that protecting the receiver’s single bit input is harder, we focus on
protecting the sender’s state.

1.1 Our Contribution

We describe our contributions as follows:
1. We give two indistinguishability-based security definitions tailored to OT

in the presence of leakage when the goal is to protect the sender’s pri-
vacy. Our definitions capture the following two scenarios: (1), “intercept-
ing side-channel adversaries” where an outsider eavesdrops on the protocol’s
transcript and learns the sender’s associated computation leakage, and (2)
“corrupted side-channel receivers” where the receiver is (semi-honestly) cor-
rupted, and the adversary additionally learns the sender’s associated com-
putation leakage.

2. We design several OT protocols that satisfy semi-honest simulation-based
security and the two definitions above. As we show, our protocols make
minimal assumptions and minimally use the inputs and ephemeral secrets.

3. We extend the previous protocol to multiple instances to support a sequential
composition. In this composition, the security of any instance relies on the
security of the previous instance. We also discuss variants of our protocols,
trading additional security requirements for efficiency.

1.2 Technical Overview

Modelling security in the presence of leakage. Our security holds in the OCL
paradigm. In this model, only computation leaks information (i.e., information
can be obtained about the bits involved in a computation, and it depends on
the computation being performed) and information leakage is local (i.e., the
information leaked by a computation depends only on the bits accessed by that
computation, and it is independent of what has happened before and what will
happen after [42]). This model makes security easier to prove.



Applying the OCL model to the case of interactive protocols, we divide a
party’s execution of the protocol into rounds and sub-computations. This allows
us to specify which part of the inputs and intermediate values are touched for
each sub-computation. We represent the leakage of a sub-computation obtained
by an adversary by a leakage function, which takes as input the input of that
computation as in [42]. Thus, the leakage of a party’s protocol execution is given
by concatenating all the leakage functions of the sub-computations performed by
that party. Modeling security in the presence of leakage meaningfully requires
restricting the informativeness of the leakage [59, 45, 9]. I.e., for tractability,
we restrict the class of leakage functions to model the limited information an
adversary realistically obtains via side-channel attacks. We apply these restric-
tions meaningfully to each building block in our construction. For instance, with
a block cipher, we might assume the leakage does not fully reveal the secret
states, assuming (the common) Hamming-weight leakage model. Ideally, such
assumptions should undergo rigorous testing in certified evaluation LABs to
validate them, concluding in statistical distances from assumed distributions.

Our security definitions for OT. Our definitions protect the sender’s inputs,
m0 and m1, in the presence of leakage using indistinguishability-based games.
Namely, the adversary provides the sender with two sets of inputs and should
not be able to distinguish which set the sender is using.

We consider two types of adversaries: 1) intercepting side-channel adversaries
where the adversary can only see the transcript of the protocol (i.e., the messages
exchanged by the parties) and, in addition, obtains leakage from the sender’s
secret state; 2) corrupted side-channel receivers where the adversary is stronger
and can also corrupt the receiver. In both cases, the adversary should not be able
to tell which sets of inputs the sender is using, even in the presence of leakage.
We leave open the problem of using our security definitions in the general context
of leakage-resistant interactive objects and secure computations.

πLR-OT, a single instance leakage-resistant protocol. A natural paradigm for de-
signing leakage-resilient OT is to use leakage-resistant building blocks. Thus, we
start with the simplest leakage-resilient object: a leakage-resistant symmetric
encryption scheme (intuitively, the more complex a primitive is, the harder it
is to protect its implementation). That is, the parties share a symmetric key k
(which can be obtained via a key-exchange protocol). Following that, S encrypts
its inputs m0 and m1, obtaining ci = Enck(mi), and sends (c0, c1) using an OT
protocol πOT. By targeting πOT with leakage, the adversary can only recover c0
and c1, which give no information about m0 or m1. Therefore, π

OT does not
need additional protection against side-channel intercepting adversaries.

This, however, is insufficient against an adversary that corrupts the receiver
R because such an adversary would know k. This implies that A can obtain
information about mr̄ via leakage from cr̄.

1. At a high level, to resolve this
challenge, we use two layers of encryption schemes: first, to encrypt two random

1 Recall that in the security definitions of encryption schemes with leakage, we assume
that the adversary knows the challenge ciphertext but has at most some leakage in-



keys k0 and k1 (to get y0 and y1) using the key k, and then to use ki to encrypt the
messagesmi, i.e. ci = Encki,E

(mi). The sender then uses πOT with inputs (y0, y1).
The idea is that for an adversary to learn anything about cr̄, it needs to guess kr̄,
and to do that it needs to entirely learn yr̄ via leakage. Thus, to provide security
against corrupted side-channel receivers, we need to use a leakage-resilient OT
protocol. This may seem like a circular problem: to have a leakage-resistant
πLR-OT, we need a leakage-resistant protocol, πOT. Nevertheless, we require a
weaker πOT guarantee. Namely, instead of requiring the indistinguishability of
its inputs, as we require for πLR-OT, we require unpredictability for a random
input. That is, the corrupted receiver should fully guess yr̄ the sender’s random
input of πOT, which R should not receive. It is an interesting open problem to
explore whether we can eliminate the use of such an OT.

Note that unpredictability for a random input is a weaker assumption than
the indistinguishability of two chosen inputs [42, 7]. Namely, to break the latter,
it is enough to predict one bit of information about yr̄, while the former requires
full recovery of yr̄ [22]. For example, if the implementation of πOT leaks, the exact
Hamming weight of yr̄, π

OT would not provide indistinguishability for selected
inputs but would provide unpredictability for a random input.

According to our leakage model, we divide the sender’s protocol execution
into sub-computations (each involving a single building block, sampling of ran-
domness, or an XOR computation) and identify which secret values can be leaked
for each sub-computation. We require each block to be unpredictable in the pres-
ence of leakage, except for the encryption scheme, for which we require eaves-
dropping security with leakage [45]. However, it is not enough to bind the leakage
functions for each block since different blocks may use the same secret where the
adversary can combine their leakage to retrieve this secret (for example, in our
protocol, the sender obtains the key k via the key-exchange protocol and uses
it twice as a key to encrypt k0 and k1, so an adversary can obtain the left half
of k via leakage of the key-exchange, and the right half from the encryption of
k0 and k1. Although both leakages are not enough to break the unpredictability
of these blocks, an adversary who obtains both can break our scheme). Thus,
we also require that when different blocks use the same secret value, the com-
position of their leakages does not reveal secrets. To minimize the threat of a
side-channel adversary exploiting combined leakages, we design our scheme so
that each secret is used by at most two different primitives (plus possibly the
random sampling and the XOR function), for more details see Sec. 4. We leave
the problem of instantiating these blocks for future work.

Sequential leakage resilient OT. As for multiple instances, πN-LR-OT, we exploit

the fact that in the previous (i− 1)th instance, the sender has two keys, ki−1,0,
ki−1,1, one of which is known to the receiver, ki−1,ri−1

, where ri−1 is the receiver’s

input bit for the (i−1)th instance. To achieve sequential composition, we execute
the first instance as in the πLR-OT protocol. Moreover, we use the sender’s keys

formation about the key, here the adversary knows the key and has some information
about the challenge ciphertext.



for each iteration to encrypt the picked keys for the next one. This introduces
four ciphertexts, yi,00, yi,10, yi,01, yi,11. Similarly to the single instance, the sender
refreshes the keys {ki,j} with F to generate the keys {ki,j,E} which are used to
encrypt the sender’s input to this instance; moreover, the sender and the receiver
perform an OT protocol where the sender’s inputs are ((yi,00, yi,10), (yi,01, yi,11))
and the receiver is ri. We introduce additional variants and improvements in
Sec 6, covering additional composition for multiple instances and more efficient
alternatives based on stronger cryptographic building blocks.

To conclude, the area of leakage-resilient secure computation will continue to
draw attention as the use of hardware becomes more essential for achieving prac-
tical implementations, as recently occurred for zero-knowledge proof systems.

2 Background

Notations. Let [n] = {1, . . . , n}. We use ⊥ to denote the empty string. Let
{0, 1}n be the set of all n-bit long strings and {0, 1}∗ the set of all finite strings
(⊥∈ {0, 1}∗). Let x be a bit. With x̄ we denote the bit x ⊕ 1. Let X be a set.
With dist(X ) we denote the set of the probabilistic distributions over the set X .
By x

$← X we denote that x is picked uniformly at random from the set X .

2.1 Adversaries and Leakage

When we evaluate security, we define the adversary and its abilities [5, 45, 27]:

Definition 1. A (q, t)- (black-box) adversary AO is a probabilistic algorithm with
oracle access to O that makes at most q queries and runs at most in time t.

By y ← AO1,...,On(x), we denote that the adversary A outputs y on input x, with
oracle access to O1, . . . ,On.

Leakage. In the real world, when an adversary interacts with an oracle, it can
also obtain physical information about the oracle’s computations, the so called
leakage [38, 39, 46] is then exploited by side-channel attacks (SCA) to perform
powerful attacks. We model leakage using the leakage function [2, 23].

Definition 2. The leakage of an oracle O is represented by the function

LO : Isec × Ipub ×R → {0, 1}∗,

where Ipub is the set of inputs chosen by the adversary, Isec is the set of secret
inputs (e.g., the secret key 2), and R denotes the set from which the randomness
used in the computation is selected.

2 For example, if the oracle implements an encryption scheme Enck(m), and the adver-
sary plays a CPA-game with leakage, the public input is m, chosen by the adversary,
while the secret input is the key k. Thus, Isec = K, the key-space of the encryption
scheme, while Ipub =M, the message space.



Leaking oracles are denoted with the suffix L; for example, we denote the oracle O
as OL if it leaks [45]. So, when an adversary queries the oracle Ok on input (x), it
receives (y, LO(k;x,R)) where y is the output Ok(x), R is the randomness used in
the computation. The function LO models what a real adversary receives when
performing a side-channel attack on the device performing the cryptographic
computations. If the leakage function of the oracle always returns the empty
string ϵ, we say that the oracle does not leak. An adversary which receives the
leakage is called a side-channel adversary [27]:

Definition 3. Let L be the leakage function of the oracle O (Def. 2). A side-
channel adversary AOL is an adversary which, when it interacts with an oracle
O, receives the outputs and the leakage of O.

Our syntax allows us to separate the process of obtaining the leakage via physi-
cal measurement, which we model by the leakage functions (abstracting its com-
plexity), from the internal computation of the adversary [45]. Clearly, for a given
secret k used by the oracle O, the more evaluations of LO(k; ·, ·), denoted traces
in the SCA community jargon, the easier it is for an adversary to retrieve k [45].

2.2 Leakage-Resilient Symmetric Cryptography

In this section, we introduce the two symmetric primitives we will use in our
protocol: block-ciphers and encryption schemes.

Block-Ciphers. We start by introducing block-ciphers [36], which we will use
to generate pseudo-random strings.

Definition 4. A n-bit block-cipher (BC) F : K×{0, 1}n → {0, 1}n is a family of
permutations Fk : {0, 1}n → {0, 1}n. F : K × {0, 1}n → {0, 1}n is a (q, t, ϵ)-PRF
(Pseudo Random Function) if for any (q, t)-adversary A

|Pr[1← AFk(·)]− Pr[1← Af(·)] ≤ ϵ

where k
$← K, f

$← FUNC (FUNC is the set of the functions {0, 1}n → {0, 1}n).

In some proofs, we will model F as an ideal cipher [17]. This means that F is
seen as a family of |K| independent permutations (for the formal definition:

Definition 5 ([17]). A block-cipher F : K × {0, 1}n is an ideal cipher if it has
been chosen uniformly at random among all block-ciphers with the same input
and output spaces.

As in the random oracle model [36], Fk(x) can only be evaluated by making
a query to the oracle F on the input (k, x), yielding y = Fk(x). Thus, if F has
never been queried on input (k, x), then, y = Fk(x) is random.

We assume that whenever an adversary A interacts with an oracle O that
needs to query the ideal cipher F, then, A can query F too.

Next, we consider the security of the ideal cipher F in the presence of leak-
age. In practice, an adversary attacks an actual implementation of F. To model
the attack, we capture the leakage both in the key-generation, with the leakage



function Lgen(·), and in the actual computation of F, with LF(·; ·). To prevent
leakage functions of the computation y = Fk(x) from giving information about
future (or past) computations, we assume that LF has no access to F and we con-
sider leakage functions of this form: LF(k;x) := (LinF (k;x), LoutF (k; y)), where LinF
leaks information about the input and the key k, and LoutF about the output and
k [59]. Having no oracle access to F, LinF (k;x) cannot compute y. This modeling
captures concrete attacks on actual block cipher implementations [59, 9] that
focus either on the first rounds (so that the leakage can be seen as a function
of the input and the key) [58, 54, 12, 55, 40] or on the last rounds (so that the
leakage can be seen as a function of the key and output) or both [18].

We consider an implementation of F to be secure if, given Lgen(k) and oracle
access to FLk(·), the key cannot be guessed. We give A the ability to output a
set G of qG keys, and A wins if k ∈ G) [9]. If the adversary cannot guess the key
k, due to the ideal cipher model, Fk is a random permutation.

Definition 6. Let F : K×{0, 1}n → {0, 1}n be an ideal cipher and L be a leakage
function. Let k be the key used by F and Lgen(k) be the leakage of its generation,
we say that F is (q, qG, qF, t, ϵ)-unpredictable with leakage L and key-generation
leakage Lgen(·) (q-upL) if for any (q, qF, t)-adversary A,

Pr[k ∈ G | |G| ≤ qG, G ← AFLk(·),F·(·)(Lgen(k)), k
$← K] ≤ ϵ,

where the adversary is granted qF queries to the ideal cipher F (it also chooses
the key in these queries) and q queries to FLk. For the latter queries, on input
x, the adversary gets y = Fk(x), and the leakage (LinF (k;x), LoutF (k; y)).

Encryption schemes. We use encryption schemes to send messages privately.
They consist of three algorithms ENC = (Gen,Enc,Dec), to generate the key k,
to encrypt a message m with the key k, and to decrypt a ciphertext c with the
key, respectively. We use correct encryption schemes, i.e., for all possible k and
m, m = Deck(Enck(m)). We now give the formal syntax.

Definition 7. An encryption scheme (ENC) scheme is a triple of algorithms
ENC = (Gen,Enc,Dec) where
– The key-generation algorithm Gen picks a key uniformly at random from the

set of keys, KENC.
– The encryption algorithm Enc is a probabilistic algorithm that takes as input

a key k ∈ KENC, and a message m ∈M, and outputs a ciphertext c ∈ C. We
denote this with c← Enck(m).

– The decryption algorithm Dec is a deterministic algorithm that takes as input
a key k ∈ KENC, and a ciphertext c ∈ C, and outputs a message m ∈ M or
⊥ (“invalid”). We denote this with ⊥ /m = Deck(c).

We need correctness, so ∀(k,m) ∈ KENC ×M, m = Deck(Enck(m)).

We use probabilistic encryption schemes (for other syntax, see [43]).
We require that encryption schemes do not reveal any information about the

message they encrypt even in the presence of leakage. To do this, we use the
CPAL-security definition [45], which based on the well-known Chosen-Plaintext
Attacks-security (CPA) [36], and EavL (Eavesdropper security).



Definition 8. Let Π = (Gen,Enc,Dec) be an encryption scheme. Let L be its
leakage function. The encryption scheme Π is (qL, qE , t, ϵ)-CPAL-secure (CPA
with leakage) in the presence of L, if for any (qE , t)-adversary A = (A1,A2)∣∣∣Pr[b = b′ | b′ ← A

EncLk(·)
2 (c∗, ℓ∗, st), (c∗, ℓ∗) = EncLk(mb),

(st,m0,m1)← A
EncLk(·)
1 s.t. |m0| = |m1|, b

$← {0, 1}]− 1

2

∣∣∣ ≤ ϵ

where k ← Gen, A1 is a (q1,E , t1)-adversary, A2 is a (q2,E , t2)-adversary, with
q1,E+q2,E ≤ qE and t1+t2 ≤ t. If qE = 0, we say that Π is (qE , t, ϵ)-EavL-secure
(eavesdropper security with leakage) in the presence of leakage L.

The black-box definitions (CPA and Eav) can be obtained from CPAL and
EavL respectively, by simply removing the leakage. Noteworthy, we have chosen
to use CPAL and not IND-CPAL [2, 20] because in the latter definition A does
not get ℓ∗, the leakage of the challenge ciphertext c∗ computation. Namely, we
need to work with CPAL since we have to consider this leakage in our proof.

2.3 Secure Two-Party Computation

In this section, we discuss secure two-party protocols, following the terminology
of [29]. We consider semi-honest adversaries, that is, adversaries that control one
of the parties. This party follows the protocol exactly, but wants to learn more
information than its intended output of the protocol. Furthermore, we assume
that the adversary is static, i.e., it chooses at the beginning of the computation
of the party it will corrupt (i.e., take control of).

A two-party protocol problem can be defined by specifying a random process
that maps pairs of inputs to pairs of outputs, known as a functionality F . The
input and output spaces of the ith party are denoted as Ii and Oi respectively,
and F can be written as F = (F1,F2) : I1 × I2 → O1 ×O2.

Denoting the input of the first party, P1, by x1, and the input of the second
party, P2, by x2, P1 obtains F1(x

1, x2), while P2 obtains F2(x
1, x2). So we can

also define the functionality using (x1, x2) 7→ (F1(x
1, x2),F2(x

1, x2)). When the
functionality is probabilistic, we denote it as F(x1, x2;R), where R is a uniformly
chosen random tape used in the computation of F .

To define correctness and security we need to introduce the computational
indistinguishability of distributions. We say that two distributions A =
{A(x, n)}x∈{0,1}∗,n∈N and B = {B(x, n)}x∈{0,1}∗,n∈N, are computationally indis-

tinguishable, which we denote byA c≡
ϵ
B if for every non-uniform polynomial-time

algorithm A, there exists a negligible function ϵ(·) s.t. for all x ∈ {0, 1}∗, n ∈ N,
|Pr[1← A(A(x, n))]− Pr[1← A(B(x, n))]| ≤ ϵ(n).

When A has running time bounded by t(n), we say that A c≡
t,ϵ
B.

Let F = (F1,F2) be a probabilistic polynomial-time functionality and π be
a two-party protocol for computing F . The view of the party Pj during the
execution of π with input (x1, x2) and security parameter 1κ is denoted by
viewπ

j (x
1, x2, 1κ) and is equal to (xj , Rj , trans), where Rj is the random tape



used by Pj and trans is the transcript of the execution of the protocol. The
output of party Pj is denoted by outptπj (x

1, x2, 1κ), and the protocol output is

the joint output of the parties, that is (outptπ1 (x
1, x2, 1κ), outptπ2 (x

1, x2, 1κ)).

Definition 9. We say that a protocol π is correct if

{outptπ(x1, x2, 1κ)}x1,x2∈{0,1}∗,κ∈N
c≡ {F(x1, x2)}x1,x2∈{0,1}∗ .

The idea is that a secure protocol is one where the execution of the protocol
does not give any party more information than that party can learn from its in-
puts and outputs. We formalise this using the simulation paradigm. Roughly, we
want the party’s view to be simulatable given its inputs and outputs. Formally,

Definition 10 ([29]). Let F = (F1,F2) be a functionality. We say that π se-
curely computes F in the presence of static semi-honest adversaries if there exist
probabilistic polynomial-time algorithms Sim1 and Sim2 s.t.

{Sim1(1
κ, x1,F1(x

1, x2)),F(x1, x2)}x1,x2,1κ
c≡ {viewπ

1 (x
1, x2, 1κ), outptπ(x1, x2, 1κ)}x1,x2,1κ

{Sim2(1
κ, x2,F2(x

1, x2)),F(x1, x2)}x1,x2,1κ
c≡ {viewπ

2 (x
1, x2, 1κ), outptπ(x1, x2, 1κ)}x1,x2,1κ

with κ in N.

That is, the view of the parties can be simulated by an algorithm that has access
only to the input and the output of the party.

2.4 Security Definition for Deterministic Functionalities

If the functionality F is deterministic, we have a simpler notion of security, be-
cause we can ask separately for the correctness of the protocol and that the
simulator simulates the view in an indistinguishable way (see Def. 11). This
definition is a simplified version of Def. 10 for 2-party protocols, when the func-
tionality the protocol implements is deterministic.

Definition 11 ([29]). Let F = (F1,F2) be a deterministic functionality. We
say that π securely computes F in the presence of static semi-honest adversaries
if π is correct (Def. 9) and there exist PPT algorithms Sim1 and Sim2 s.t.

{Sim1(1
κ, x1,F1(x

1, x2)}x1,x2,1κ
c≡ {viewπ

1 (x
1, x2, 1κ)}x1,x2,1κ

{Sim2(1
κ, x2,F2(x

1, x2)}x1,x2,1κ
c≡ {viewπ

2 (x
1, x2, 1κ)}x1,x2,1κ

with κ in N. If they are computationally indistinguishable except with probability
ϵ, we say that π ϵ-securely computes F .

2.5 Key-Exchange

This functionality aims to provide both parties with a random secret key.

Definition 12. The key-exchange functionality is a two party functionality in
which both parties agree to a random output of a certain length. That is,

FKE : (1λ, 1λ) 7−→ (k, k) with k
$← {0, 1}λ.



The security of a 2-party key-exchange protocol is covered by Def. 10.
Note that usually a key-exchange protocol is used only once to produce a

given key. Thus, a side-channel adversary can only obtain a single leakage (trace
in the jargon). I.e., such a trace is provided from an evaluation of LπKE . Therefore,
owing to the fact that such leakage traces are noisy the adversary should not
retrieve significant key material, i.e., contradicting unpredictability, especially
if πKE is lightly SCA-secured (E.g., constant time and lightly masked and/or
shuffled implementation), since a Single-Trace SCA attack on asymmetric prim-
itives are very challenging [33, 49, 34, 53]. We give the security definition for
key-exchange protocols in the presence of leakage, Def. 20, Sec. 4.2.

2.6 Oblivious Transfer

The 1-out-of-2 oblivious transfer (OT) functionality is a two-party functionality
in which the sender, S, inputs two strings, m0 and m1, with |m0| = |m1|, while
the receiver, R, inputs only one bit, r, and obtains mr without passing any
information about r to the sender and without receiving any information about
mr̄ (r̄ = r ⊕ 1). That is, FOT : ((m0,m1), r) 7−→ (⊥,mr).

We use mr̄ to denote the message that the receiver does not learn. Def. 11
gives the security of a 2-party OT protocol since OT is a deterministic func-
tionality. One of the goals of the paper is to provide security definitions for OT
protocols in the presence of leakage; see Sec. 3.2, Def. 15, and Def. 16.

3 Security Definitions with Leakage

In this section, we present our security model. In Section 3.1, we will describe
the leakage model. Then, in Section 3.2, we will provide the security definitions
in the presence of leakage.

3.1 Computational Model and Leakage

Let π be a 2-party protocol, and let P1 and P2 be the parties executing the
protocol. In this section we specify the different ingredients of a protocol and
computation (i.e., inputs, states, messages, rounds and sub-computations), and
then follow with defining their associated leakages.

Inputs, states and messages. We assume that both parties have many arrays of
memory. Each array contains many cells, and each cell contains a finite string.
We assume that the memory cells can only be written to once and that their
contents can never be erased once they have been written to.

We assume that both parties have an array dedicated to their input. They
also have an array dedicated to the intermediate results. This array, denoted as
the state, is secret, and we denote by stj the state of the party Pj . For each sub-
protocol called, we assume that there is a sub-array of the state array dedicated
to the intermediate computations of the execution of the sub-protocol, and an
array for the inputs of the sub-protocol.



During the execution of a protocol, the parties exchange messages msg1, . . . ,
msgn. Each message is a string. The transcript trans consists of all the messages
exchanged between the parties to the protocol.

Setup sub-protocol. A protocol π may contain a preliminary sub-protocol π.Setup
which takes as input the security parameter 1κ and the randomness R1

set and
R2

set of parties P1 and P2, respectively, and outputs the initial secret state of
each party, denoted by st10 and st20, and the public parameters, pp (e.g. a group
description and a generator). That is, (st10, st

2
0, pp) ← π.Setup(1κ, R1

set, R
2
set).

Looking ahead, since our protocol does not require an initial secret state (i.e.,
st10 = st20 = ϵ), we can assume that all inputs, randomness, and outputs of this
subprotocol are leaked. Namely, Lset(1

κ, R1
set, R

2
set) = (pp, R1

set, R
2
set).

Rounds. A protocol π proceeds through a sequence of nπ rounds of commu-
nication, with only one party speaking in each round. During each round, an

outgoing message, msgi for the ith round, is computed by the next message
function πi for all i = 1, . . . , nπ, taking the public parameters, the party’s se-
cret state and input, and the incoming message, with access to independent
random values for each round. In addition, πi produces a new secret state sti,
which may contain intermediate values obtained within the previous computa-
tions or incoming messages. According to our memory model, stji = stji−1∥st

c,j
i

with stc,ji computed by the next round function (c denotes “computed”). With-
out loss of generality, we assume that P1 speaks first. So, for odd i’s, P1 com-
putes (st1i ,msgi) ← πi(pp, st

1
i−1, x

1, R1
i ,msgi−1), where st1i−1 := st1i−2 , because

in the (i − 1)th round, P1 was idle. (For i = 1, we set msg0 =⊥ since there is
no msg0). Then, P1 sends msgi to P2. Moreover, in even rounds, P2 computes
(st2i ,msgi)← πi(pp, st

2
i−1, x

2, R2
i ,msgi−1),with st2i−1 := st2i−2.

After completing nπ rounds, each party Pj produces its own output by com-

puting yj ← πj
out(pp, st

j
nπ

, xj , Rj
out,msgnπ

), via the output functions πj
out, which

produces the output outptπj (as specified in Sec. 2.3).

Sub-computations decomposition. In order to handle leakage attacks, we decom-
pose the next message function computation into smaller units of computation,
which can be thought of as atomic building blocks. This formalization is inspired
by the atomic model of [10] and captures cryptographic building blocks such as
block ciphers or encryption schemes. In more detail, consider the next message
function πi of the ith round that is performed by Pj :

(stji ,msgi)← πi(pp, st
j
i−1, x

j , Rj
i ,msgi−1).

Next we will break this computation into a sequence of ni sub-computations
denoted by {Compi.i′}i′∈[ni] (the number of sub-computations can be different for
each round). Each such component is considered as an atomic unit, with its own
input and output state. The first sub-computation uses the secret state computed
by the last sub-computation of the (i − 1)th round, i.e., stji.0 := stji−1. Then,
each subsequent sub-computation updates the state accordingly. Without loss
of generality, let us assume that each sub-computation uses its own independent



random tape Rj
i.i′ , and outputs pmsgi.i′ , denoting a share of the ith message,

msgi, which can be empty. That is, for all i′ ∈ [ni],

(stji.i′ , pmsgi.i′)← Compi.i′(pp, st
j
i.i′−1, x

j , Rj
i.i′ ,msgi−1).

The output state of the last sub-computation, stji.ni
, is the output state of the

ith round, stji . The final outgoing message msgi of the ith round is obtained by
concatenating all the shares as follows, msgi := pmsgi.1∥ . . . ∥pmsgi.ni

. where a
share3 may be empty and the final outcome is captured by

pmsgi.ni
= gi(pp, st

j
i.ni−1, x

j , Rj
i.ni−1,msgi−1)

with gi any function.

Handling leakage. We follow the “only computations leaks” (OCL) paradigm
of [42]. That is, we assume that an adversary can only obtain information via
leakage about the elements used for the particular computation. Thus, to rep-
resent the leakage of Pj during the execution of the ith round, we define the

leakage function Lji whose inputs are (pp, stji−1, x
j , Rj

i ,msgi−1); a similar func-

tion Ljout is used to capture the leakage of the output computation. Switch-
ing to the sub-computation level, the leakage obtained during the execution
of the i.i′th computation is captured by the function Li.i′ , whose inputs are
(pp, stji.i′−1, x

j , Rj
i.i′ ,msgi−1). So the total leakage of the ith round played by Pj

is defined by Lji := ({Lji.i′}i′∈[ni]}. The leakage resulting from the entire calcula-
tions performed by Pj is given by the set of leakage functions

Lj := (Lj1, . . . , L
j
nπ

, Ljout) = ({Lj1.i′}i′∈[n1], . . . , {L
j
nπ.i′
}i′∈[nnπ ], L

j
out).

Recall that the inputs of the leakage function Lji are (x
j ,msgi−1, pp, st

j
i.i′−1, R

j
i.i′).

But, according to the “Only Computation Leaks” (OCL) model [42], only the
contents of the input cells that are actually accessed during the computation are
leaked. So, let xj

|i be the part of xj used during the ith round, and xj
|i.i′ be the

part that is used during the i.i′ sub-computation. We can then use xj instead of
xj
|i in Lji , and instead of xj

|i.i′ in Lji.i′ . (For example, the sender in an OT protocol

may not use its input, (m0,m1) in every round. It can also use only m0 or m1

in a sub-computation.)
States are handled similarly to the modeling of the inputs. Specifically, let

stji−1|i be the values of the state memory cells accessed for the computation of the

ith round, and stji.i′−1|i.i′ of the i.i′ computation. We replace stji−1 with stji−1|i

in Lji and stji.i′−1 with stji.i′−1|i.i′ in Lji.i′ , respectively. Finally, we note that our

state model gives the same result as a model when the values carried by memory
cells can be deleted: owing to their deletion, these values cannot be leaked 4. As
stated above, our motivation is a cleaner syntax.

3 Should not be confuse with secret-sharing, here a share merely describe part of the
message

4 In our model, these values are not deleted, but since the corresponding memory cells
are not accessed anymore, they cannot be leaked.



3.2 Security Definitions

In this section, we define security for a protocol that executes N instances of OTs
in the presence of a side-channel adversary. Our goal is to protect the privacy of
the sender. We consider two classes of attacks: (1) intercepting side-channel ad-
versaries, and (2) corrupted receiver side-channel adversaries, as defined below.

Definition 13. An intercepting side-channel adversary (OT-S-LA) against the
sender of an N -OT protocol has access to the protocol transcript and the leakage
of the sender’s execution.

Definition 14. A corrupted receiver side-channel adversary (OT-S-LR) against
the sender of an N -OT protocol, semi-honestly corrupts the receiver at the start
of the execution and has access to the leakage of the sender’s execution.

We provide the security definitions for these two attacks. We assume that the
inputs of all these N instances are chosen at the same time, after the setup phase
of the protocol.

Let M be the input of S and r be the input of R. To simplify the notation
we use Si, Si.i′ , Ri, Ri.i′ , to denote πS

i , π
S
i.i′ , π

R
i , π

R
i.i′ , respectively. Without loss

of generality, we assume that the sender speaks first.

Sender privacy against intercepting adversaries. We provide an indistinguisha-
bility definition, where the adversary cannot distinguish between two pairs of N
inputs of S, even in the presence of leakage from the sender’s computation and
the protocol’s transcript. Our security definition is inspired by CPAL (Def. 8)
definition because it captures the indistinguishability of encrypting two different
messages. We define security in the presence of a strong adversary that knows
all the inputs except for one bit of information: it knows the receiver’s input and
two choices of the sender’s inputs, but it does not know which input is used.
Moreover, as for CPAL, the adversary gets the sender’s leakage. Formally

Definition 15. A 1-out-of-2-OT protocol π with N instances and nπ rounds
whose execution has been divided into the {πi.i′}i.i′∈I computations, is said to
be (t, ϵ)-leakage-resistant for the sender in the presence of an intercepting side-
channel adversary (OT-S-LA) in the presence of leakage L = (Lset, {LSi.i′}i.i′∈I , L

S
out),

if for any t-adversary AL = (AL
1,A

L
2), |Pr[N-OT-S-LACPA

OTL,A
(1κ) = 1]− 1/2| ≤ ϵ,

with the N-OT-S-LAOTL,A(1
κ)-experiment defined in Tab. 1.

Security against corrupt receiver. Now, we consider a stronger adversary that
also (semi-honestly) corrupts the receiver. This gives it access to all the internal
states, randomness, and output of the receiver. Consequently, it can only choose
the sender’s inputs that match the output of the corrupted receiver, i.e. m0

i,ri
=

m1
i,ri
∀i. Formally:



pp← π.Setup(1κ, RS
set, R

R
set) OTL(pp,Mb, r, L):

ℓset := Lset(1
κ, RS

set, R
R
set) M = Mb

(st,M0,M1, r)← AL
1(pp, ℓset) with i = 1

r ∈ {0, 1}N , While i ≤ nπ

M0 = m0
1,0,m

0
1,1, . . . ,m

0
N,0,m

0
N,1 For i′ ∈ [ni] //Sender’s Round

M1 = m1
1,0,m

1
1,1, . . . ,m

1
N,0,m

1
N,1, (pmsgi.i′ , st

S
i.i′)← Si.i′(pp, st

S
i.i′−1,M,RS

i.i′ ,msgi−1)

|m0
i,0| = |m0

i,1| ∀i ∈ [N ], ℓSi.i′ ← LS
i.i′(pp, st

S
i.i′−1|i.i′ ,M|i.i′ , R

S
i.i′ ,msgi−1)

|m0
i,j | = |m1

i,j | ∀i, j ∈ [N ]× {0, 1} msgi = pmsgi.1∥ . . . ∥pmsgi.ni

b
$← {0, 1} i = i+ 1

(trans, ℓS)← OTL(pp,Mb, r, L) For i′ ∈ [ni+1] //Receiver’s Round

b′ ← AL
2(pp, st, trans, ℓ

S) (pmsgi.i′ , st
R
i.i′)← Ri.i′(pp, {stRi.i′−1, r, R

R
i.i′ ,msgi−1)

If b = b′ msgi = pmsgi.1∥ . . . ∥pmsgi.ni

Return 1 i = i+ 1

Return 0 ℓSout = LS
out(pp, st

S
nπ.nnπ

, RS
out,msgnπ

)

trans = (msg1, . . . ,msgnπ
), ℓS = ({ℓSi.i′}i∈I , ℓ

S
out)

Return (trans, ℓS)

Table 1. The N -OT-S-LA experiment.

Definition 16. A 1-out-of-2-OT protocol π with N instances and nπ rounds
whose execution has been divided into the {πi.i′}i.i′∈I computations, is said to
be (t, ϵ)-leakage-resistant for the sender in the presence of a corrupt receiver side-
channel adversary (OT-S-LR) in the presence of leakage L = (Lset, {LSi.i′}i.i′∈I , L

S
out),

if for any t-adversary AL = (AL
1,A

L
2),

|Pr[N-OT-S-LRCPA
OTL,A(1

κ) = 1]− 1/2| ≤ ϵ,

with the N-OT-S-LROTL,A(1
κ)-experiment defined in Tab. 2.

4 A Leakage-Resilient Single OT Protocol

In this section, we will describe a single OT protocol and its security in the
presence of leakage. We have already given an overview in Sec. 1.2, and here
we provide its simulation-based (black-box) security without leakage in Sec. 4.1,
and its security in the presence of leakage in Sec. 4.2.

4.1 Black-Box Simulation-Based Security

In this section, we introduce our protocol and then prove its simulation-based se-
curity (Def. 11) in the standard setting (that is, black-box, i.e., without leakage).
We first list its building blocks and their (black-box) security properties:
i a key-exchange protocol πKE (Def. 12 and Def. 10),
ii a PRF F (Def. 4),
iii an Eav-secure encryption scheme ENC (Def. 7 and Def. 8),
iv an oblivious transfer protocol πOT(Sec. 2.6 and Def. 11).



pp← π.Setup(1κ, RS
set, R

R
set) OTL-Rc(pp,Mb, r, L):

ℓset := Lset(1
κ, RS

set, R
R
set) M = Mb

(st,M0,M1, r)← AL
1(pp, (ℓset, , R

R
set)) i = 1

with r ∈ {0, 1}N , While i ≤ nπ

M0 = m0
1,0,m

0
1,1, . . . ,m

0
N,0,m

0
N,1 For i′ ∈ [ni] //Sender’s Round

M1 = m1
1,0,m

1
1,1, . . . ,m

1
N,0,m

1
N,1, (pmsgi.i′ , st

S
i.i′)← Si.i′(pp, st

S
i.i′−1,M,RS

i.i′ ,msgi−1)

|m0
i,0| = |m0

i,1|, m0
i,ri = m1

i,ri ∀i ∈ [N ], ℓSi.i′ ← LS
i.i′(pp, st

S
i.i′−1|i.i′ ,M|i.i′ , R

S
i.i′ ,msgi−1)

|m0
i,j | = |m1

i,j | ∀i, j ∈ [N ]× {0, 1} msgi = pmsgi.1∥ . . . ∥pmsgi.ni

b
$← {0, 1} i = i+ 1

(trans, ℓS,MR, RR, stRfin)← For i′ ∈ [ni+1] //Receiver’s Round

OTL-Rc(pp,Mb, r, L) (pmsgi.i′ , st
R
i.i′)← Ri.i′(pp, {stRi.i′−1, r, R

R
i.i′ ,msgi−1)

b′ ← AL
2(pp, st, (trans, ℓ

S,MR, RR, stRfin)) msgi = pmsgi.1∥ . . . ∥pmsgi.ni

If b = b′ i = i+ 1

Return 1 MR = πR
out(pp, st

R
nπ.nnπ

, RR
out,msgnπ

), stRfin := stRnπ.nnπ

Return 0 ℓSout = LS
out(pp, st

S
nπ.nnπ

, RS
out,msgnπ

)

trans = (msg1, . . . ,msgnπ
), ℓ = ({ℓSi.i′}i∈I , ℓ

S
out)

RR = ({RR
i.i′}i∈[nπ ],i′∈[ni], R

R
out)

Return (trans, ℓS,MR, RR, stRfin)

Table 2. TheN -OT-S-LR experiment. OTL-Rc stands for OTL with the receiver
corrupted. Changes from Tab. 1 are highlighted.

πLR-OT proceeds as follows: 1) First, the sender and the receiver execute πKE

to both get k. Next 2a), S picks two random keys k0, k1, 2b) encrypts them with
k to get y0, y1, where yi = Fk(Pi)⊕ ki and Pi is a public value (Pi ̸= Pj). Then
2c), S refreshes its keys by generating ki,E ’s, where ki,E = Fki(P2) and P2 is a
public constant, and 2d) uses these keys to encrypt mi, i.e., ci = Encki,E

(mi).
S 2e) sends these ciphertexts to R in the clear. Finally 3), S and R execute πOT

where S inputs (y0, y1) and R inputs r. The complete details can be found in
Alg. 1 . The protocol’s correctness follows from the correctness of its underlying
building blocks.

Theorem 1. Let πKE be a (t1, ϵKE)-secure key-exchange protocol (Def. 10), let
F be a (1, t2, ϵPRF)-PRF (Def. 4), let ENC be a (t3, ϵEav)-eavesdropper-secure en-
cryption scheme (Def. 8), and let πOT be a protocol that (t4, ϵOT)-securely com-
putes the OT functionality (Def. 11,Sec. 2.6), then, the πLR-OT protocol defined
in Alg. 1, (t, ϵ)-securely computes the OT functionality with

ϵ ≤ ϵKE + ϵOT + ϵPRF + ϵEav,

provided that |m0|, |m1| ≤ B bits, where t1 = t+tOT+4tF+2tEnc, t2 = t+tSim,KE+
tSim,OT + 4tF + 2tEnc, t3 = t + tSim,KE + tSim,OT + 2tF + tEnc, t4 = t + tSim,KE +
tSim,OT + 2tF + tEnc, tSim,KE is the time needed to simulate the πKE protocol, tOT

to execute the πOT protocol, tSim,OT to simulate the πOT protocol, tF to execute
F, and tEnc to encrypt with Enc a message of at most B bits.

Intuitively, if the sender is (semi-honestly) corrupted, it will only see mes-
sages exchanged computed by the πKE and πOT protocols. Using the simulators



for these two protocols, we simulate the sender’s view. A (semi-honest) cor-
rupted receiver receives, in addition to the messages exchanged by the πKE and
πOT protocols, the ciphertexts c0, c1. Again, we use the simulators for these two
protocols. To simulate πOT, the simulator can honestly compute yr picking a
random kr and computing yr = Fk(Pr)⊕ kr. Then, it computes kr,E and, thus,
cr, correctly. The simulator replaces the ciphertext cr̄ (the encryption of mr̄,
i.e., the message R does not receive) with the encryption of an arbitrary message
(since ENC is Eav-secure and kr̄,E is a random key because F is a PRF and yr̄ is
never seen by the receiver). Now, we give the complete statement (Thm. 1) with
the quantitative bounds and the proof.

Proof. We start by building the simulator for the sender, SimS and by proving
that the view given by SimS is (t, ϵ)-computationally indistinguishable from the
real view. Then, we build SimR, and we prove that it is a (t, ϵ)-simulator.

Notations. Let M = (m0,m1) be the input of the sender and r be the input of
the receiver.

Since πKE is (t1, ϵKE)-secure, there are two simulators SimKE
S , SimKE

R s.t. the

joint distribution of the (viewπKE

S (1κ, nENC), k
′) [resp. (viewπKE

R (1κ, nENC), k
′)], where

k′ is the output of the πKE-protocol, is ϵKE-computationally indistinguishable

from (SimKE
S (1κ, nENC, k), k) [resp. (SimKE

R (1κ, nEnc, k), k)] with k
$← {0, 1}nENC .

Similarly, since πOT is (t4, ϵOT)-secure, there are two simulators SimOT
S , SimOT

R

s.t. viewπOT

S (1κ, (m0,m1),⊥) [resp. (viewπOT

R (1κ, r,mr)] is ϵOT-computationally in-
distinguishable from (SimOT

S (1κ, (x0, x1),⊥) [resp. SimOT
R (1κ, r, xr)].

Sender (semi-honestly) corrupted.

We simulate the sender’s view with SimS(1
κ, (m0,m1),⊥). It works like this:

– Setup-phase: SimS(1
κ) chooses nENC, F, ENC, and three different strings

in {0, 1}nENC : P0, P1, and P2. Then it runs SimKE.Setup
S (1κ, nENC) obtaining

(ppKE, viewπKE.Setup
S ), and SimOT.Setup

S (1κ) obtaining (ppOT, viewπOT.Setup
S ), re-

spectively. SimS defines

viewSetup
S := ((ppKE, ppOT, nENC,F), view

πKE.Setup
S , viewπOT.Setup

S ).

– Key-exchange phase: SimS picks k
$← {0, 1}nENC and runs SimKE

S (1κ, ppKE, k)
obtaining viewKE.KE

S .

– Sender’s phase: Using S’random tape, SimS can pick correctly k0, k1
$←

{0, 1}nENC . Then, it computes (y0, y1) as in Alg 1, yi = Fk(Pi)⊕ ki.
– Send key-phase: SimS computes viewOT

S := SimOT.OT
S (1κ, ppOT, (y0, y1),⊥).

– Simulator output: At the end, SimS outputs viewSim
S where

viewSim
S := (viewSetup

S , viewKE.KE
S , viewOT

S ).

Hybrids. To prove that the simulator SimS outputs a view that is indistinguish-
able from the real execution of the protocol, we introduce three different view
distributions.

– Let H0
S(1

κ,M, r) be S’s view distribution of the real execution of πLR-OT.



– We modify the previous view distribution, obtaining the view distribution
H1

S(1
κ,M, r) by simulating the execution of the key-exchange protocol, using

SimKE
S , instead of having the real execution. We use SimKE

S (1κ, nENC, pp
KE, k),

where 1κ is the security parameter, , nENC obtained as in the real execution

of the protocol and k
$← {0, 1}nENC (πKE is a key-exchange protocol (Def. 12),

that is, it implements the functionality k
$← {0, 1}nENC).

– We modify the previous view distribution, obtaining the view distribution
H2

S (1
κ,M, r) by simulating the execution of the OT protocol, using

SimOT
S (1κ, ppOT, (y0, y1),⊥), instead of having the real execution. SimS can

compute y0 and y1 correctly: accessing the random tape of S, SimS can pick

k0, k1
$← {0, 1}nENC correctly and compute yi = Fk(Pi)⊕ ki.

Indistinguishability of the hybrids. Now, we show that each view distribu-
tion is computationally indistinguishable from the next.

Since πKE is a (t1, ϵKE)-secure key-exchange protocol, then

|Pr[1← A(H0
S (1

κ,M, r))]− Pr[1← A(H1
S (1

κ,M, r))]| ≤ ϵKE.

Since πOT is a (t4, ϵOT)-secure OT protocol, and y0 and y1 are computed as
in the correct execution of πLR-OT, then

|Pr[1← A(H1
S(1

κ,M, r))]− Pr[1← A(H2
S (1

κ,M, r))]| ≤ ϵOT.

This concludes the proof since H2
S (1

κ,M, r) is the distribution of the views
simulated by SimS. Thus, the real view distribution, H0

S (1
κ,M, r), and the sim-

ulated one, H2
S (1

κ,M, r) are (t, ϵ′)-computationally indistinguishable, since

|Pr[1← A(H0
S (1

κ,M, r))]− Pr[1← A(H2
S(1

κ,M, r))]| ≤ ϵKE + ϵOT = ϵ′ ≤ ϵ.

Adversaries used in the hybrids’ transitions. To finish the proof for the sender’s
corrupted case, we have to explicitly describe the adversaries used in the reduc-
tion between the hybrids:

– The t′1-adversary B against the πKE: B has to distinguish whether it
interacts with an oracle providing a real execution of πKE or a simulated
one.
At the start of the game, B receives 1κ from A. It chooses nENC,F,ENC, P0, P1, P2

as in the setup phase 1) and πOT. Then, it runs its oracle on input 1κ receiv-
ing the public parameters ppKE, the output k0 and the view viewKE

S . B splits it

into viewKE.Setup
S and viewKE.KE

S . After that, B run the OT.Setup sub-protocol

on input (1κ, nENC), obtaining ppOT and the viewπOT.Setup

S , and it sets

viewSetup
S := ((ppKE, ppOT, nENC,F), view

KE.Setup
S , viewπOT.Setup

S ),

which it sends to A. When A outputs (M, r), B picks k0, k1
$← {0, 1}nENC ,

computes z0 = Fk(P0), z1 = Fk(P1), y0 = z0 ⊕ k0, y1 = z1 ⊕ k1. Finally, B
executes the OT.OT sub-protocol where the public parameters are ppOT, the
sender has input (y0, y1), and the receiver has input r, obtaining the view
viewOT

S . In the end, since there is no output, B answers A the view

viewS = (viewKE
S , viewOT

S ).



When A outputs its bit b, B sees it, and B outputs as its output bit. B runs
in time t+ tOT + 2tF = t′1 ≤ t1.

If the oracle B interacts with, outputs a real execution of πOT, B returns the
H0

S -view to A, otherwise the H1
S -view.

– The t′4-adversary C against the πOT:
C has to distinguish whether it interacts with an oracle providing a real
execution of πOT or a simulated one.
At the start of the game, C receives 1κ from A. It chooses nENC,F,ENC, P0, P1, P2

as in the setup phase 1) and πOT. Then, it runs SimKE
S (1κ) obtaining the pub-

lic parameters ppKE, and the view viewKE.Setup
S and it calls its oracle on input

1κ to obtain ppOT and the viewπOT.Setup

S . C sets

viewSetup
S := ((ppKE, ppOT, nENC,F), view

KE.Setup
S , viewπOT.Setup

S ),

which it sends to A. When A outputs (M, r), C picks k0
$← and running

SimKE.KE
S (ppKE, k0) obtaining viewKE

S . Then, C picks k0, k1
$← {0, 1}nENC , com-

putes z0 = Fk(P0), z1 = Fk(P1), y0 = z0⊕k0, y1 = z1⊕k1. Finally, C queries
its oracle on input (ppOT, (y0, y1)), obtaining the view viewOT

S . At the end, C
answers A the view

viewS = (viewKE
S , viewOT

S ).

When A outputs its bit b, C sees it, and C outputs as its output bit. C runs
in time t+ tSim,KE + 2tF = t′4 ≤ t4.

If the oracle C interacts with, outputs a real execution of πOT, C returns the
H1

S -view to A, otherwise the H2
S -view.

Receiver (semi-honestly) corrupted.

We simulate the receiver’s view with SimR(1
κ, r,mr). It works like this:

– Setup-phase: SimR(1
κ) chooses nENC, F, ENC, and three different strings

in {0, 1}nENC : P0, P1, and P2. Then it runs SimKE.Setup
R (1κ, nENC) obtaining

(ppKE, viewπKE.Setup
R ), and SimOT.Setup

R (1κ) obtaining (ppOT, viewπOT.Setup
R ), re-

spectively. SimR defines

viewSetup
R := ((ppKE, ppOT, nENC,F), view

πKE.Setup
R , viewπOT.Setup

R ).

– Key-exchange phase: SimR picks k
$← {0, 1}nENC and runs SimKE

R (1κ, ppKE, k)
obtaining viewKE.KE

R .

– Sender’s phase: SimR picks kr, kr̄,E
$← {0, 1}nENC , and an arbitrary message

m̃r̄ (for example, m̃r̄
$← {0, 1}|mr|). It computes yr = Fk(Pr) ⊕ kr, kr,E =

Fkr (P2), cr = Enckr,E
(mr), cr̄ = Enckr̄,E

(m̃r̄).

– Send key-phase: SimR computes viewOT
R := SimOT.OT

R (1κ, ppOT, r, yr).
– Simulator output: At the end, SimR outputs

viewSim
R := (viewSetup

R , viewKE.KE
R , c0, c1, view

OT
R ).



Hybrids. To prove that the simulator SimR outputs a view that is indistin-
guishable from the real execution of the protocol, we introduce five different
view distributions.

– Let H0
R(1

κ,M, r) be R’s view distribution of the real execution of πLR-OT.
– We modify the previous view distribution, obtaining the view distribution

H1
R(1

κ,M, r) by simulating the execution of the key-exchange protocol, using

SimKE
R , instead of having the real execution. We use SimKE

R (1κ, nENC, k), where
1κ is the security parameter, , nENC obtained as in the real execution of the

protocol and k
$← {0, 1}nENC (πKE is a key-exchange protocol (Def. 12), that

is, it implements the functionality k
$← {0, 1}nENC).

– We modify the previous view distribution, obtaining the view distribution
H2

R(1
κ,M, r) by simulating the execution of the OT protocol, using SimOT

R ,

instead of having the real execution. We use SimOT
R (1κ, r, yr), where 1

κ is the

security parameter, yr = Fk(Pr)⊕ kr, with kr
$← {0, 1}nENC .

– We modify the previous view distribution obtaining the view distribution

H3
R(1

κ,M, r) by picking kr̄,E
$← {0, 1}nENC , instead of computing kr̄,E =

Fkr̄ (P2).
– We modify the previous view distribution obtaining the view distribution

H4
R(1

κ,M, r) by computing cr̄ = Enckr̄,E
(m̃r̄), where m̃r̄ is an arbitrary

message (for example, m̃r̄
$← {0, 1}|mr|).

Indistinguishability of the hybrids. Now, we show that each view distribu-
tion is computationally indistinguishable from the next.

Since πKE is a (t1, ϵKE)-secure key-exchange protocol, then

|Pr[1← A(H0
R(1

κ,M, r))]− Pr[1← A(H1
R(1

κ,M, r))]| ≤ ϵKE.

Since πOT is a (t4, ϵOT)-secure OT protocol, SimR picks kr with the same dis-
tribution as in the original protocol and computes yr as in the correct execution
of πLR-OT, then

|Pr[1← A(H1
R(1

κ,M, r))]− Pr[1← A(H2
R(1

κ,M, r))]| ≤ ϵOT.

Since F is a (1, t2, ϵPRF)-PRF and kr̄ is picked randomly and it is secret for
the receiver, then

|Pr[1← A(H2
R(1

κ,M, r))]− Pr[1← A(H3
R(1

κ,M, r))]| ≤ ϵPRF.

Since ENC is a (t3, ϵEav)-Eav-secure encryption scheme and kr̄,E is picked
randomly, and it is secret for the receiver, then

|Pr[1← A(H3
R(1

κ,M, r))]− Pr[1← A(H4
R(1

κ,M, r))]| ≤ ϵEav.

This concludes the proof since H4
R(1

κ,M, r) is the distribution of the views
simulated by SimR. Thus, the real view distribution, H0

R(1
κ,M, r), and the sim-

ulated one, H4
R(1

κ,M, r) are (t, ϵ)-computationally indistinguishable, since

|Pr[1← A(H0
R(1

κ,M, r))]−Pr[1← A(H4
R(1

κ,M, r))]| ≤ ϵKE+ϵOT+ϵPRF+ϵEav = ϵ.

Adversaries used in the hybrids’ transitions. To finish the proof for the
receiver’s corrupted case, we have to explicitly describe the adversaries used in
the reduction between the hybrids:



– The t1-adversary B against the πKE: B has to distinguish whether it
interacts with an oracle providing a real execution of πKE or a simulated
one.
At the start of the game, B receives 1κ from A. It chooses nENC,F,ENC, P0, P1, P2

as in the setup phase 1) and πOT. Then, it runs its oracle on input 1κ receiv-
ing the public parameters ppKE, the output k0 and the view viewKE

R . B splits it

into viewKE.Setup
R and viewKE.KE

R . After that, B run the OT.Setup sub-protocol

obtaining ppOT and the viewπOT.Setup

R on input (1κ, nENC) and it sets

viewSetup
R := ((ppKE, ppOT, nENC,F), view

KE.Setup
R , viewπOT.Setup

R ),

which it sends to A. When A outputs (M, r), B picks k0, k1
$← {0, 1}nENC , com-

putes z0 = Fk(P0), z1 = Fk(P1), y0 = z0⊕k0, y1 = z1⊕k1. Moreover, B com-
putes k0,E = Fk0(P2), k1,E = Fk1(P2), and the ciphertexts c0 = Enck0,E

(m0),
and c1 = Enck1,E

(m1). Finally, B executes the OT.OT sub-protocol where
the sender has input (y0, y1), and the receiver has input r, obtaining the
view viewOT

R . At the end, B answers A the view

viewR = (viewKE
R , (c0, c1), view

OT
R ).

When A outputs its bit b, B sees it, and B outputs as its output bit. B runs
in time t+ tOT + 4tF + 2tEnc ≤ t1.

If the oracle B interacts with, outputs a real execution of πKE, B returns the
H0

R-view to A, otherwise the H1
R-view.

– The t4-adversary C against the πOT: C has to distinguish whether it
interacts with an oracle providing a real execution of πOT or a simulated
one.
At the start of the game, C receives 1κ from A. It chooses nENC,F,ENC, P0, P1, P2

as in the setup phase 1). Then, it runs SimKE
R (1κ), receiving the public pa-

rameters ppKE, the output k0 and the view viewKE
R . C splits it into viewKE.Setup

R

and viewKE.KE
R . After that, C calls its oracle on input (1κ, nENC), obtaining

ppOT and the viewπOT.Setup

R , and it sets

viewSetup
R := ((ppKE, ppOT, nENC,F), view

KE.Setup
R , viewπOT.Setup

R ),

which it sends to A. When A outputs (M, r), C picks k0, k1
$← {0, 1}nENC , com-

putes z0 = Fk(P0), z1 = Fk(P1), y0 = z0⊕k0, y1 = z1⊕k1. Moreover, C com-
putes k0,E = Fk0(P2), k1,E = Fk1(P2), and the ciphertexts c0 = Enck0,E

(m0),
and c1 = Enck1,E

(m1). Finally, C calls its oracle on input (ppOT, r, yr), ob-

taining the view viewOT
R . At the end, C answers A the view

viewR = (viewKE
R , (c0, c1), view

OT
R ).

When A outputs its bit b, C sees it, and C outputs as its output bit. C runs
in time t+ tSim,KE + 4tF + 2tEnc ≤ t4.

If the oracle C interacts with, outputs a real execution of πOT, C returns the
H1

R-view to A, otherwise the H2
R-view.



– The (1, t2)-adversary D against the PRF F: D has to distinguish whether
it interacts with an oracle outputting random values or with one using Fkr̄

.
At the start of the game, D receives 1κ from A. It chooses nENC,ENC, P0, P1, P2

as in the setup phase 1). Then, it runs SimKE
R (1κ), receiving the public param-

eters ppKE, the output k0 and the view viewKE
R . D splits it into viewKE.Setup

R

and viewKE.KE
R . After that, D it runs SimOT.Setup

R (1κ, nENC), obtaining ppOT

and the viewπOT.Setup

R , and it sets

viewSetup
R := ((ppKE, ppOT, nENC,F), view

KE.Setup
R , viewπOT.Setup

R ),

which it sends to A. When A outputs (M, r), D picks kr
$← {0, 1}nENC , com-

putes zr = Fk(Pr), yr = zr ⊕ kr. Moreover, D computes kr,E = Fkr
(P2), and

calls its oracle on input P2 obtaining kr̄,E . It also computes the ciphertexts
c0 = Enck0,E

(m0), and c1 = Enck1,E
(m1). Finally, D calls its oracle on input

(ppOT, r, yr), obtaining the view viewOT
R . At the end, D answers A the view

viewR = (viewKE
R , (c0, c1), view

OT
R ).

When A outputs its bit b, D sees it, and D outputs as its output bit. D runs
in time t+ tSim,KE + tSim,OT + tF + 2tEnc ≤ t2 and does one query to F.

If the oracle D interacts with, outputs a real execution of F, D returns the
H2

R-view to A, otherwise the H3
R-view (because kr̄ is a random value).

– The t3-adversary E against the Eav-secure encryption scheme ENC:
E has to distinguish whether it receives the encryption of mr̄ or of a random
message m̃r̄.
At the start of the game, E receives 1κ from A. It chooses nENC,F, P0, P1, P2

as in the setup phase 1). Then, it runs SimKE
R (1κ), receiving the public param-

eters ppKE, the output k0 and the view viewKE
R . E splits it into viewKE.Setup

R

and viewKE.KE
R . After that, D it runs SimOT.Setup

R (1κ, nENC), obtaining ppOT

and the viewπOT.Setup

R , and it sets

viewSetup
R := ((ppKE, ppOT, nENC,F), view

KE.Setup
R , viewπOT.Setup

R ),

which it sends to A. When A outputs (M, r), E picks kr
$← {0, 1}nENC , com-

putes zr = Fk(Pr), yr = zr ⊕ kr. Moreover, E computes kr,E = Fkr
(P2).

It also computes the ciphertext cr = Enckr,E
(mr). Then, it calls its oracle

on input (mr̄, m̃r̄), obtaining cr̄, with . Finally, D calls its oracle on input
(ppOT, r, yr), obtaining the view viewOT

R . At the end, E answers A the view

viewR = (viewKE
R , (c0, c1), view

OT
R ).

When A outputs its bit b, E sees it, and E outputs as its output bit. E runs
in time t+ tSim,KE + tSim,OT + 2tF + tEnc ≤ t3 and does one query to F.

If the oracle E interacts with, outputs the encryption of mr̄, E returns the
H3

R-view to A, otherwise the H4
R-view since kr̄,E is random.



Algorithm 1 Our πLR-OT protocol for a single OT instance.

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has a couple of strings M := (m0,m1), with |m0| = |m1|; R has a bit r
– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, three different strings P0, P1, P2 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– Main phase: πLR-OT.OT(pp):
1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k0, k1
$← {0, 1}nENC

(b) S computes z0 = Fk(P0), y0 = z0 ⊕ k0, z1 = Fk(P1), y1 = z1 ⊕ k1,
(c) S computes k0,E = Fk0(P2), k1,E = Fk1(P2),
(d) S computes c0 = Enck0,E (m0), c1 = Enck1,E (m1)
(e) S sends c0, c1 to R

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y0, y1) and
R’s r

4. Receiver’s phase:
R computes kR = Fk(Pr)⊕ yr, kR,E = FkR(P2),
R computes m = DeckR,E (cr)

– Output: S: nothing; R: m

4.2 Security against Side-Channel Adversaries

We next consider security against side-channel adversaries. We start by imposing
additional security requirements on the underlying building blocks. However, we
emphasize that it is insufficient to model the security of each building block sep-
arately in the presence of leakage because an adversary can combine the leakage
obtained from different building blocks using the same secret. For example, in
the πLR-OT protocol, the key k is obtained through the πKE protocol and then
used as a key by F. The following example illustrates the risks of combining
leakages: Suppose that the πKE leakage allows the adversary to recover all the
even bits of the key, while the F leakage allows the adversary to recover all the
odd bits. The key remains unpredictable with either leakage, but an adversary
can recover the key with both. Therefore, we identify and model these leakage
threats for composed sub-computations and design πLR-OT while minimizing the
usage of the same secret value. In particular, we use the encryption scheme twice,
each time with a different key ki,E , and F at most twice with the same key.



Security against intercepting side-channel adversaries:
Similarly to the natural paradigm discussed in Sec. 1.2, we require no leakage
protection for the underlying πOT, because the receiver is not corrupted. We
will start by discussing how to enhance the building blocks and internal sub-
computations against leakage (Steps denote listed steps in Alg. 1, App. A):
1. πKE (Step 1): We require unpredictability (Def. 20) in the presence of leakage.
2. F (Steps 2b, 2c): We require unpredictability (Def. 6 where F is an ideal

cipher).
3. $-random sampling algorithm (Step 2a): We require unpredictability (Def. 17).
4. ⊕-XOR (Step 2b): We require unpredictability with a known output (Def. 18).
5. ENC (Step 2d): We require EavL security (Def. 8).
6. πOT (Step 3): We require no security in the presence of leakage. That is, the

leakage function may reveal the sender’s input, y0, and y1.
We give the security definitions for our building blocks when they have not

already been defined in the literature:

Unpredictability with leakage for random samplings This definition captures the
fact that a SCA-adversary should not guess the output of a random sampling,
even if it gets the leakage of the random sampling.

Definition 17. Let $ be the random sampling, and L$(x) be the leakage when
the value picked is x. We say that the implementation of the random sampling
is (qG, t, ϵ)-unpredictable with leakage L$ if for any t-adversary A,

Pr[k ∈ G | |G| ≤ qG, G ← AL$(k)), (k, L$(k))
$← {0, 1}n] ≤ ϵ,

Unpredictability with Leakage for the ⊕ function. With this definition, we want
to capture the fact that a SCA-adversary cannot guess the inputs of the XOR
function, even if it gets the leakage. We consider two cases: one in which, in
addition to the leakage, the adversary obtains the output of the XOR function,
and the other in which it chooses one of the inputs of the XOR function (it has
to guess the other). This is the definition when the adversary gets the output of
the XOR function:

Definition 18. Let ⊕ be the XOR function and L⊕(·, ·) be the leakage function
of its implementation. We say that the implementation of the XOR function is
(qG, t, ϵ)-unpredictable with leakage L⊕ with known output if for any t-adversary
A,

Pr[k ∈ G | |G| ≤ qG, G ← A(y, L⊕(z, k)), y = z ⊕ k, z, k
$← {0, 1}n] ≤ ϵ.

This situation happens in the OT-S-LA case, since the adversary knows yi
via leakage (yi = zi ⊕ ki, with zi being random as it is the output of Fk(Pi), for
a random k).

Now, we give the security definition when the adversary chooses one of the
inputs of the XOR function:

Definition 19. Let ⊕ be the XOR function and L⊕(·, ·) be the leakage function
of its implementation. We say that the implementation of the XOR function is



(qG, t, ϵ)-unpredictable with leakage L⊕ for chosen input if for any t-adversary
A = (A1,A2),

Pr[k ∈ G | |G| ≤ qG, G ← A2(st, L⊕(z, k)), y = z ⊕ k,

k
$← {0, 1}n, (st, z)← A1] ≤ ϵ.

This situation happens in the OT-S-LR case, since the adversary knows zi
(yi = zi ⊕ ki) since the receiver knows k and zi is the output of Fk(Pi).

Unpredictability with leakage for key-exchange protocols. In this definition we
capture the fact that a SCA-adversary cannot guess the key output by a key-
exchange protocol, even if it gets the leakage from the execution of the key-
exchange protocol by one party. For ease of reading, we use the more compact
notation LKE(k) to denote the leakage of the key-exchange protocol with input
(1κ) and randomness R when it outputs k.

Definition 20. Let πKE be a key-exchange protocol with output in {0, 1}n, and
LKE(·) a leakage function. We say that the implementation of πKE is (qG, ϵ)-
unpredictable with leakage LKE if for any t-adversary A,

Pr[k ∈ G | |G| ≤ qG, G ← A(ppKE, transKE, L
1
KE(k)),

(k, ppKE, transKE, LKE(k))← πKEL(1κ, n)] ≤ ϵ.

Building blocks using the same secret Next, we identify the building blocks and
sub-computations that use the same secret value:
1. πKE and F: πKE generates k (Step 1), while F uses k as a key (Step 2b);
2. $, ⊕, and F: $ generates ki (Step 2a), ⊕ computes zi ⊕ ki (Step 2b), and F

uses ki as a key (Step 2c);
3. F and ENC: F generates ki,E as an output (Step 2c), and Enc uses as its key

(Step 2d).
We provide new security definitions that capture these compositions and

are inspired by q-upL (Def. 6), and EavL (Def. 8). We also discuss why these
compositions can be considered minimal.

(1) πKE and F. In our protocol, the sender executes πKE to generate k, and then
calls Fk(·). Our security requirement is that the adversary cannot guess k even
if it has the transcript and the leakage within protocol πKE that generates k,
and then an oracle access to FLk(·). This means that not only do we want both
the implementations of πKE and F to be unpredictable with leakage, but their
composition must also be unpredictable. We cannot avoid using a key-exchange
protocol because we need to establish a joint secret state, which must be used in
the protocol by another cryptographic primitive. Moreover, a symmetric block-
cipher is the simplest primitive that can be combined in terms of computation
complexity (and therefore its associated leakage as well5). In this sense, this
composition is minimal. Furthermore, an implementation idea to protect such a
composition is to use masking: πKE could output shares of the key that could

5 It is well known that computation with asymmetric primitives leaks far more on
each secret-bit of (say) the key as compared to symmetric primitives.



be used directly by the implementation of F. Our starting point is the q-upL
definition (Def. 6) where we replace the random sampling of the key with the
key-exchange protocol so that the adversary gets the transcript of πKE and the
leakage of the sender executing it. Formally,

Definition 21. Let πKE be a key-exchange protocol with output in {0, 1}n, and
LKE(·) be a leakage function. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an ideal
cipher and LF be a leakage function (Sec. 2.2). Let πKE generate the key k used
by oracle FL. We say that the implementation of the composed computation of
πKE and F on k is (q, qG, qF, t, ϵ)-unpredictable with leakage (LKE, LF), denoted
as q-upL-KE, if for any (q, qF, t)-adversary A,

Pr[k ∈ G | |G| ≤ qG, G ← AFLk(·),F·(·)(ppKE, transKE, L
1
KE(k)),

(k, ppKE, transKE, LKE(k))← πKEL(1κ, n)] ≤ ϵ,

with qF and the oracle FL defined as in Def. 6.

This formalization forces the adversary first to receive the leakage from πKE

and then query FLk as required by πLR-OT. Looking ahead, our theorem requires
q = 2.

(2) $, ⊕ and F. In our protocol, S picks ki, computes yi = zi ⊕ ki, where zi a
random value (since it is the output of an ideal cipher), and uses it once as a
key of F. We need to encrypt the key of F, and we do this in the simplest way:
XORing it with a random value. Note that the XOR function is the simplest
function regarding computational cost (and leakage). Moreover, we can easily
and cheaply protect it with masking owing to its linearity and, therefore, the
linear cost of masking it [16, 52]). We believe this requirement is minimal because
we are using a secret that may or may not be known to the receiver (it depends
on the receiver’s input). Thus, we have its generation (random sampling), its
use (as a key for F), and its encryption (XORing with a random value). In every
case, we have used the simplest possible functions. As before, our starting point
is the q-upL definition6, where we add the random sampling leakage and the
output of the XOR of k with a random value, z. Finally, we give the leakage of
the generation of z, LoutF (k′; z). Since z is obtained as the output of F, according
to [9], we give to the adversary LoutF (k′; z) for a key k′ chosen by the adversary.
The adversarial choice of k′ models the fact that k′ (k in Alg. 1) is picked
independently of the three components we combine here, so we consider the
worst possible scenario: k′ known and chosen by the adversary. Formally,

Definition 22. Let $ be the random sampling, ⊕ be the XOR function, and
L$(x) and L⊕(x, y) be the leakage of their respective implementations. Let F :
{0, 1}n × {0, 1}n → {0, 1}n be an ideal cipher and LF a leakage function. Let $
generate k, used by the oracle FL. Let k be XORed to a random value z obtained
by F. We say that the implementation of the composition of the random sampling,

6 We are also inspired by the definition of security in the presence of leakage of the
XOR of a pseudorandom value with a message block [9], where we give the leakage
of the generation of the random block.



the XOR and F is (q, qG, qF, t, ϵ)-unpredictable with leakage (L$, L⊕, LF), denoted
as q-upL-$XORL, if for any (q, qF, t)-adversary A,

Pr[k ∈ G | |G| ≤ qG, G ← A
FLk(·),F·(·)
2 (st, L$(k), y, L⊕(z, k), L

out
F (k′; z)),

y = z ⊕ k, (k, L$(k))
$← {0, 1}n, z $← {0, 1}n, (st, k′)← A

F·(·)
1 ] ≤ ϵ,

with qF and the oracle FL defined as in Def. 6.

Looking ahead, we will use this security definition twice: once to require that k0
is not guessed and once for k1. This formalization is coherent with the πLR-OT

flow. In our case, q = 1 or 2.

(3) F and ENC. In contrast to the previous two compositions, we move to a defi-
nition of indistinguishability. The reason is that we are combining an encryption
scheme with its key generation (where we generate the key using F, which is a
simple cryptographic primitive). Therefore, we require that even if the adversary
gets the key-generation leakage of ENC, it cannot distinguish the encryption of
two messages. So we simply modify Def. 8 by adding the key-generation leakage
LoutF (k′i; ki,E) for a k′i chosen by the adversary. Formally,

Definition 23. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an ideal cipher and LF be
a leakage function. Let ENC be an encryption scheme (Def. 7) and LEnc be the
leakage function of its encryption algorithm. Let F generate the key of ENC. The
implementation of the composition is (qL, qE , qF, t, ϵ)-CPAL-GenFL-secure in the
presence of leakage when the key picked via FL, if for any (qE , qF, t)-adversary
A = (A0,A1,A2)∣∣∣Pr[b = b′ | b′ ← A

EncLk(·),F·(·)
2 (c∗, ℓ∗, st), (c∗, ℓ∗) = EncLk(mb),

(st,m0,m1)← A
EncLk(·),F·(·)
1 (st, LoutF (k′; k)) s.t. |m0| = |m1|,

b
$← {0, 1}, k $← {0, 1}n, (st, k′)← A

F·(·)
0 ]− 1

2

∣∣∣ ≤ ϵ

If qE = 0, we say that Π is (qE , t, ϵ)-Eav-GenFL-secure.

Since ki,E = Fki
(P2) can be seen as a refreshed key of ENC, if ENC is a EavL-

secure scheme that uses F to refresh its key, then ENC is a EavL-GenFL-secure
encryption scheme for free [45, 9].

OT-S-LA-security of πLR-OT. We are ready to state and prove the OT-S-LA-
security of πLR-OT,

Theorem 2. Let F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC be an ideal blockci-
pher. Let F be (2, qI + 2, qI + 2, t1, ϵ2-upL-KE)-2-upL-KE-secure with the key gen-
erated by πKE, and be (1, qI + 2, qI + 2, t2, ϵ1-upL-$XORL)-1-upL-$XORL-secure
with the key randomly sampled and XORed to a random value. Let ENC be
(qI+3, t3, ϵEavL-GenFL)-EavL-GenFL with the key picked via F, then, for any (qF, t)
adversary A = (AF

1,A
F
2)-adversary, π

LR-OT is (qF, t, ϵ)-OT-S-LA secure, with

ϵ ≤ ϵ2-upL-KE + 2(ϵ1-upL-$XORL + 2ϵEavL-GenFL).

t1 = t+ tOT + 2tEnc, t2 = t+ tKE + tOT + 2tEnc, t3 = t+ tKE + tOT + tEnc.



Proof Idea: Our adversary has to distinguish whether the sender is sending
(m0

0,m
0
1) or (m

1
0,m

1
1) (Def. 15). Roughly speaking, if the adversary cannot guess

k (2-upL-KE), both z0 and z1 remain random.7 Thus, an adversary that knows
y0 and y1, cannot guess the keys ki’s (1-upL-$XORL), so, the keys ki,E ’s re-
main random. Relying on the EavL-GenFL-security of ENC, an adversary cannot
distinguish whether ci is an encryption of m0

i or m1
i .

Proof. The proof is inspired by those in the same model for F in [9].

Hybrids. We use a sequence of Hybrids, Hybrid 0, . . . , and Hybrid 8, with an
adversary A. Let Ei be the event that the adversary A outputs 1 at the end of
Hybrid i.
– Hybrid 0: It is the OT-S-LA Hybrid where A is playing against πLR-OT,

where the bit picked is 0.
– Hybrid 1: It is Hybrid 0, where we replace z0, z1 with random values, and

the leakage of F accordingly.
– Hybrid 2: It is Hybrid 1, where we replace y0, k0,E with two random values

and their leakage accordingly.
– Hybrid 3: It is Hybrid 2, where we replace y1, k1,E with two random values

and their leakage accordingly.
– Hybrid 4: It is Hybrid 3, where we replace c0 with Enck0,E

(m1
0) (that is,

instead of encrypting m0
0, we encrypt m1

0), and its leakage accordingly.
– Hybrid 5: It is Hybrid 4, where we replace c1 with Enck1,E

(m1
1) (that is,

instead of encrypting m0
1, we encrypt m1

1), and its leakage accordingly.
– Hybrid 6 (Complementing 3): It is Hybrid 5, where we replace y1 and

k1,E with the correct values and the leakage accordingly.
– Hybrid 7 (Complementing 2): It is Hybrid 6, where we replace y0 and

k0,E with the correct values and the leakage accordingly.
– Hybrid 8 (Complementing 1): It is Hybrid 7, where we replace z0, z1

with the correct values, and the leakage accordingly.

Indistinguishability of Hybrids. Each of the previous Hybrids is indistin-
guishable from the following, as we now prove:
– From Hybrid 0 to 1: We observe the two Hybrids are the same except

if the adversary A does a query to F with the key k because it would cause
the loss of randomness of the ys [59]. Thus,

|Pr[E0]− Pr[E1]| ≤ ϵ2-upL-KE

– From Hybrid 1 to 2: We observe the two Hybrids are the same except if
the adversary A does a query to F with the key k0 because it would cause
the loss of randomness of y0 or k0,E . Thus,

|Pr[E1]− Pr[E2]| ≤ ϵ1-upL-$XORL

– From Hybrid 2 to 3: We observe the two Hybrids are the same except if
the adversary A does a query to F with the key k1 because it would cause
the loss of randomness of y1 or k1,E . Thus,

|Pr[E2]− Pr[E3]| ≤ ϵ1-upL-$XORL

7 If k is unpredictable, then passing through an ideal cipher gives random outputs.



– From Hybrid 3 to 4: Since ENC is (q3,F, t3, ϵEavL-GenFL) and the result of
Lemma 1

|Pr[E3]− Pr[E4]| ≤ 2ϵEavL-GenFL

– From Hybrid 4 to 5: Similarly, as before

|Pr[E4]− Pr[E5]| ≤ 2ϵEavL-GenFL

– From Hybrid 5 to 8: It is the indistinguishability of Hybrids 0, 1, 2, and
3 done in the opposite order. Thus,

|Pr[E5]− Pr[E8]| ≤ ϵ2-upL-KE + 2ϵ1-upL-$XORL

Now, we observe that Hybrid 0 is the OT-S-LA game where the bit picked
is 0, while Hybrid 8 is the OT-S-LA game where the bit is picked 1. Thus,

|Pr[E0]− Pr[E8]| ≤ 4ϵEavL-GenFL + 4ϵ1-upL-$XORL + 2ϵ2-upL-KE.

Using Lemma 1

|Pr[A wins]−1/2| ≤ 1/2(Pr[E0]−Pr[E8]) ≤ ϵ2-upL-KE+2ϵ1-upL-$XORL+2ϵEavL-GenFL.

Adversaries used in the hybrids’ transitions. To finish the proof, we have
to explicitly describe the adversaries used in the reduction between the hybrids:

– The (2, qG, q1,F , t1)-2-upL-KE-adversary B against the composition of
πKE and F: B has to guess the key k produced by πKE and used twice by F.
At the start of the game, B has oracle access to F and receives 1κ from A. It
chooses nENC,ENC, P0, P1, P2 as in the setup phase 1) and πOT. Then, B ob-
tains ppKE, the transaction transKE.Setup, and the leakage ℓSKE.Setup(1

κ) from its

oracle. After that, B run the πOT.Setup sub-protocol on input (1κ, nENC), ob-

taining ppOT, the transaction transπ
OT.Setup(1κ, nENC) and the leakage ℓSOT.Setup.

It sets

transSetup := ((ppKE, ppOT, nENC,F), trans
KE.Setup, transπ

OT.Setup),

and the leakage ℓSSetup := (ℓSKE.Setup, ℓ
S
OT.Setup),

which it sends to A.
When A outputs (M, r), B obtains from its oracle the leakage ℓSKE(k), and the

transaction transKE. Then, it picks k0, k1
$← {0, 1}nENC , collecting the leakages

L$(k0), and L$(k1). After that, B calls its oracle FLk on input P0 and P1, ob-
taining z0, z1, and the leakages LF(k;P0), and LF(k;P1). Then, it computes
y0 = z0⊕k0, y1 = z1⊕k1, and collects the leakages L⊕(z0, k0) and L⊕(z1, k1).
Moreover, B calls the ideal cipher on input (k0, P2) and (k1, P2), obtaining
the encryption keys k0,E , k1,E , and the leakages LF(k0;P2), LF(k1;P2), re-
spectively. After that, it computes the ciphertexts c0 = Enck0,E

(m0
0), and

c1 = Enck1,E
(m0

1) and their respective leakages LEnc(k0,E ;m
0
0) LEnc(k1,E ;m

0
1).

Finally, B executes the πOT.OT sub-protocol where the sender has input
(y0, y1), and the receiver has input r, obtaining the transaction transOT

S and
the leakage ℓSOT.OT((y0, y1), r). At the end, B answers A the transaction

trans = (transKE, (c0, c1), trans
OT), and the leakage

ℓS = (ℓSKE(k), L$(k0), L$(k1), LF(k;P0), LF(k;P1), L⊕(z0, k0), L⊕(z1, k1),

LF(k0;P2), LF(k1;P2), LEnc(k0,E ;m
0
0), LEnc(k1,E ;m

0
1), ℓ

S
OT.OT((y0, y1), r)).



When A does one of its qI ideal queries to its oracle, B does the same query.
When A outputs its bit b, B outputs all the keys it has used in an oracle
queries to F. These are at most qI + 2. B runs in time t + tOT + 2tEnc ≤ t1,
does qI + 2 ideal queries.

If the adversary has not queried F with k, we can replace z0 and z1 with
random values.

– The (1, qI + 2, qI + 2, t2)-1-upL-$XORL-adversary C against the com-
position of $, ⊕ and F: C has to guess the key k0 randomly picked, used
once by F and XORed once to a random value.
At the start of the game, C has oracle access to F and receives 1κ from A.
It chooses nENC,ENC, P0, P1, P2 as in the setup phase 1) and πOT. Then, C
performs πKE.Setup(1κ), obtaining ppKE, the transaction transKE.Setup, and the
leakage ℓSKE.Setup(1

κ). After that, C run the πOT.Setup(1κ, nENC) sub-protocol

on input (1κ, nENC), obtaining ppOT, the transaction transπ
OT.Setup(1κ, nENC)

and the leakage ℓSOT.Setup. It sets

transSetup := ((ppKE, ppOT, nENC,F), trans
KE.Setup, transπ

OT.Setup),

and the leakage ℓSSetup := (ℓSKE.Setup, ℓ
S
OT.Setup),

which it sends to A.
When A outputs (M, r), C runs πKE.KE(ppKE), obtaining k, the leakage ℓ

S
KE(k),

and the transaction transKE. C outputs k and obtains (L$(k0), y0, L⊕(z0, k0), L
out
F (k0; z0)).

It computes LinF (k;P0), and its sets LF(k;P0) := (LinF (k;P0), L
out
F (k0; z0)).

Then, it picks k1
$← {0, 1}nENC , collecting the leakage L$(k1). After that, C

calls F on input (k, P1), obtaining z1, and the leakage LF(k;P1). Then, it
computes y1 = z1 ⊕ k1, and collects the leakage L⊕(z1, k1). After that it
calls its oracle FLk on input (P2), obtaining the encryption key k0,E , and
the leakages LF(P2; k0). Moreover, C calls F on input (k1, P2), obtaining the
encryption key k1,E , and the leakage LF(P2; k1). After that, it computes the
ciphertexts c0 = Enck0,E

(m0
0), and c1 = Enck1,E

(m0
1) and their respective

leakages LEnc(m
0
0; k0,E) LEnc(m

0
1; k1,E). Finally, C executes the OT.OT sub-

protocol where the sender has input (y0, y1), and the receiver has input r,
obtaining the transaction transOT

S and the leakage ℓSOT.OT((y0, y1), r). At the
end, C answers A the transaction

trans = (transKE, (c0, c1), trans
OT), and the leakage

ℓS = (ℓSKE(k), L$(k0), L$(k1), LF(k;P0), LF(k;P1), L⊕(z0, k0), L⊕(z1, k1),

LF(k0;P2), LF(k1;P2), LEnc(k0,E ;m
0
0), LEnc(m1; k1,E), ℓ

S
OT.OT((y0, y1), r)).

When A does one of its qI ideal queries to its oracle, C does the same query.
When A outputs its bit b, C outputs all the keys it has used in an oracle
queries to F. These are at most qI + 2. C runs in time t + tOT + 2tEnc ≤ t2,
does qI + 2 ideal queries and one to Fk0

.

If the adversary has not queried F with k0, we can replace k0,E a with random
value.



– We can use the same adversary replacing k0 with k1, y0 with y1, etc to prove
that if the adversary has not queried F with k1, we can replace k1,E a with
random value.

– The (qI + 3, t3)-EavL-GenFL-adversary D against the composition of
ENC and F: D has to guess if Enck0,E

has encrypted m0
0 or m1

0, with k0,E
obtained by F.
At the start of the game, D has oracle access to F and receives 1κ from A.
It chooses nENC,ENC, P0, P1, P2 as in the setup phase 1) and πOT. Then, C
performs πKE.Setup(1κ), obtaining ppKE, the transaction transKE.Setup, and the
leakage ℓSKE.Setup(1

κ). After that, D run the πOT.Setup(1κ, nENC) sub-protocol

on input (1κ, nENC), obtaining ppOT, the transaction transπ
OT.Setup(1κ, nENC)

and the leakage ℓSOT.Setup. It sets

transSetup := ((ppKE, ppOT, nENC,F), trans
KE.Setup, transπ

OT.Setup),

and the leakage ℓSSetup := (ℓSKE.Setup, ℓ
S
OT.Setup),

which it sends to A.
When A outputs (M, r), D runs πKE.KE(ppKE), obtaining k, the leakage

ℓSKE(k), and the transaction transKE. Then, it picks k0, k1
$← {0, 1}nENC ,

collecting the leakages L$(k0), and L$(k1). After that, D calls F on input
(k, P0), and (k, P1), obtaining z0, and, z1, and the leakages LF(k;P0), and
LF(k;P1). Then, it computes y0 = z0 ⊕ k0, y1 = z1 ⊕ k1, and collects the
leakages L⊕(z0, k0) and L⊕(z1, k1). Then D outputs k0 and she obtains the
leakage LoutF (k0; k0,E). It computes LinF (k0;P2) and she sets LF(k0;P2) :=
(LinF (k0;P2), L

out
F (k0; k0,E)) After having received this, D outputs (m0

0,m
1
0),

and she obtains c∗0 and the leakage ℓ∗. Moreover, D calls the ideal cipher on
input (k1, P2), obtaining the encryption key k1,E , and the leakage LF(k1;P2).
After that, it computes the ciphertext c1 = Enck1,E

(m0
1) and the leakage

LEnc(m
0
1; k1,E). Finally, D executes the OT.OT sub-protocol where the sender

has input (y0, y1), and the receiver has input r, obtaining the transaction
transOT

S and the leakage ℓSOT.OT((y0, y1), r). At the end, D answers A the
transaction

trans = (transKE, (c∗0, c1), trans
OT), and the leakage

ℓS = (ℓSKE(k), L$(k0), L$(k1), LF(k;P0), LF(k;P1), L⊕(z0, k0), L⊕(z1, k1),

LF(k0;P2), LF(k1;P2), ℓ
∗, LEnc(m1; k1,E), ℓ

S
OT.OT((y0, y1), r)).

When A does one of its qI ideal queries to its oracle, D does the same query.
When A outputs its bit b, D output this as its output bit. These are at most
qI + 3 queries to F, since when A does an ideal cipher query, D does the
same. D runs in time t+ tKE + tOT + tEnc ≤ t2.

If the bit b the game has picked is 0 D simulates correctly Hybrid 4, otherwise
5.

– We can use the same adversary replacing k0,E with k1,E , c
∗
0 with c∗1, etc to

prove that the encryption of m0
1 and m1

1 are indistinguishable.



⊓⊔
In the previous proof, we have used the following well-known lemma:

Lemma 1. Let ENC be a (ϵ)-CPA encryption scheme. Then

|Pr[1← ACPA0
ENC ]− Pr[1← ACPA1

ENC ]| ≤ 2ϵ,

where with b′ ← ACPAb
ENC we denote that A outputs b′ at the end of the CPA game,

where the encryption scheme is ENC and the bit picked is b.

Proof.
Pr[A wins] = (1− Pr[1← ACPA0

ENC ]) Pr[b = 0] + Pr[1← ACPA1
ENC ] Pr[b = 1] =

1/2 + 1/2(Pr[1← ACPA1
ENC ]− Pr[1← ACPA0

ENC ]).

But |1/2 + 1/2(Pr[1← ACPA1
ENC ]− Pr[1← ACPA0

ENC ]− 1/2| ≤ ϵ.

Thus 1/2|Pr[1← ACPA1
ENC ]− Pr[1← ACPA0

ENC | ≤ ϵ,

Thus |Pr[1← ACPA1
ENC ]− Pr[1← ACPA0

ENC | ≤ 2ϵ.
⊓⊔

Security against corrupted side-channel receivers:
We continue with a corrupted side-channel receiver. The main difference with
respect to an intercepting side-channel adversary is that when the adversary can
corrupt the receiver, it knows the key k. Thus, we must require stronger security
properties from the underlying πOT protocol. In more detail, the differences
between the security level of the underlying building blocks for OT-S-LR and
OT-S-LA are as follows (Steps denote listed steps in Alg. 1, App. A):
– πKE (Step 1): Since the receiver is corrupted, the adversary already knows

the key k. Therefore, we require no security.
– ⊕ function (Step 2b): we require unpredictability (Def. 19). Unlike the pre-

vious setting, the adversary knows one of the inputs, namely, zr̄. We require
the output and the remaining input to remain unpredictable.

– πOT (Step 3): we require unpredictability of the sender’s random input, which
the receiver should not learn.

Now, we define unpredictability for πOT:
In this definition, we capture the situation where a (semi-)honestly corrupted

receiver has to guess the sender’s input yr̄, which it did not receive. We assume
that this input is random. We require that the receiver cannot guess yr̄ even if
it receives the sender’s leakage.

Definition 24. Let πOT be an OT protocol, and LSOT(·, ·) be the leakage of its im-
plementation. We say that the implementation of πOT is (qG, t, ϵ)-unpredictable
in the presence of leakage for a random input for a (semi)-honestly corrupted
receiver, denoted as OT-OT-upL if for any t-adversary A = (A1,A2),

Pr[yr̄ ∈ G | |G| ≤ qG, G ← A2(st, pp
OT, transOT, L

S
OT(y0, y1, r), st

R
fin, R

R),

(ppOT, transOT, L
S
OT(y0, y1, r)← πOTL(1κ(y0, y1), r),

yr ← y, yr̄
$← {0, 1}n, (st, r, y)← A1] ≤ ϵ,

where stRfin is the final state of the receiver (see Sec. 3.1), and RR is the ran-

domness used by the receiver to execute πOT.



We recall that we only need πOT to be unpredictable, and we use it to build
πLR-OT which provides stronger indistinguishability security (Def. 16). We ob-
serve that guessing yr̄ is equivalent to guess kr̄ since yr̄ = zr̄⊕kr̄ (and zr̄ = Fk(Pr̄)
with Pr̄ public and k known to the adversary). We therefore consider the follow-
ing additional composition to be secure:
– $, ⊕, F, and OT: $ generates kr̄ (Step 2a), ⊕ computes zr̄ ⊕ kr̄ (Step 2b),

F uses kr̄ as a key (Step 2c), πOT uses yr̄ as input the receiver should not
receive (Step 3).

Therefore, we need an additional security definition:

For $, ⊕, F and πOT. In our protocol, the sender picks kr̄, computes yr̄ = zr̄⊕kr̄,
where zr̄ is chosen by the adversary in the security definition below, uses it as the
key for F and then uses yr̄ as the sender’s input for πOT that the receiver should
not receive. We require that kr̄ and yr̄ are unpredictable (note that learning one
is equivalent to learning the other as yr̄ = kr̄⊕zr̄). As before, we are interested in
the security of the composition of these four sub-computations since they are all
related to kr̄ or yr̄. This compilation captures a secret that is being sent via an OT
protocol. To generate this secret, we use two simple functions: random sampling
and an XOR function, both of which are easy to protect against leakage. Similar
to what was shown before, we can randomly sample shares of the key rather than
using it directly to protect the implementation of F. Moreover, protecting the
XOR function is trivial if the masking is additive 8. For these reasons, we expect
that the additional leakage of $, ⊕, and F will not help guess the sender’s input
of πOT. As before, we start from the q-upL definition, giving to the adversary the
leakage of the random sampling, the leakage of the XOR, and the transcription
and the leakage of the πOT protocol. Similarly to Def. 22, we allow the adversary
to choose the input known to the adversary, that is z, the value XORed to the
key, and all the other inputs of the OT protocol, yr and r. Formally,

Definition 25. Let πOT be an OT protocol, $ be the random sampling, ⊕ be
the XOR function, and LSOT(·, ·), L$(x), and L⊕(x, y) be the leakage of their
respective implementations. Let F : {0, 1}n×{0, 1}n → {0, 1}n be an ideal cipher
and LF be its leakage function. Let $ generate k, which is the key used by the
oracle FL. Let k be XORed to an adversarial chosen value z, obtaining y =
(x ⊕ k). Let y be the yr̄ input of the πOT protocol with r and yr chosen by the
adversary. We say that the implementation of the composition of the random
sampling, the XOR, πOT, and F is (q, qG, qF, t, ϵ)-unpredictable in the presence of
leakage L$(x), L⊕(x, y), LF(·; ·), LSOT(·, ·) with πOT using a random input, denoted
as q-upL-$XORL-OT, if for any (q, qF, t)-adversary A = (A1,A2),

Pr[k ∈ G | |G| ≤ qG, G ← A
FLk(·),F·(·)
2 (st, L$(k), L⊕(z, k), pp

OT, transOT, L
S
OT(y0, y1, r)),

(ppOT, transOT, L
S
OT(y0, y1, r)← πOTL(1κ(y0, y1), r),

yr ← y, yr̄ = z ⊕ k, (k, L$(k))
$← {0, 1}n (st, z, r, y)← A

F·(·)
1 ] ≤ ϵ,

with qF and the oracle F defined as in Def. 6.

8 It is enough to XOR z with one share and keep all other shares to have an additive
output sharing.



In our case q = 1. Note that differently from the previous case (Def. 22) zr̄ is
here known by the adversary (which knows k and Pr̄), but not yr̄.

OT-S-LR-security of πLR-OT. Now, we can finally state and prove the OT-S-LR-
security of πLR-OT:

Theorem 3. Let F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC be an ideal blockci-
pher. Let F be (1, qG, q1,F , t1, ϵ1-upL-$XORL-OT) -1-upL-secure with the key ran-
domly sampled and XORed to a random value and πOT sending the XOR. Let
ENC be (q3,F, t3, ϵEavL-GenFL)-EavL-GenFL with the key is picked via F, then, for
any (qF, t) adversary A = (AF

1,A
F
2)-adversary, π

LR-OT is (qF, t, ϵ)-OT-S-LR se-
cure, with

ϵ ≤ ϵ1-upL-$XORL-OT + ϵEavL-GenFL

where t1 = t+ tOT+2tEnc, t2 = t+ tOT+2tEnc, t3 = t+ tOT+ tEnc, q1,F = 2+ qF,
q2,F = 1 + qF, and q3,F = qF.

Proof Idea: Our adversary has to distinguish whether the sender is sending
(m0

0,m
0
1) or (m

1
0,m

1
1), with m0

r = m1
r (Def. 16). Roughly speaking, if the adver-

sary cannot guess kr̄ (1-upL-$XORL-OT), the key kr̄,E remains random. Relying
on the EavL-GenFL-security of ENC, an adversary cannot distinguish whether cr̄
is an encryption of m0

r̄ or m1
r̄.

Proof. The proof is inspired by those in the same model for F in [9].

Hybrids. We use a sequence of Hybrids, Hybrid 0, . . . , Hybrid 3 where an
adversary A is playing. Let Ei be the event that the adversary A outputs 1 at
the end of Hybrid i.
– Hybrid 0: It is the OT-S-LR Hybrid where A is playing against πLR-OT,

where the bit picked is 0.
– Hybrid 1: It is Hybrid 2, where we replace yr̄, kr̄,E with two random values

and their leakage accordingly.
– Hybrid 2: It is Hybrid 1, where we replace cr̄ with Enckr̄,E

(m1
r̄) (that is,

instead of encrypting m0
r̄, we encrypt m1

r̄), and its leakage accordingly.
– Hybrid 3: It is Hybrid 2, where we replace yr̄ and kr̄,E with the correct

values, and the leakage accordingly.

Indistinguishability of Hybrids. Each of the previous Hybrids is indistin-
guishable from the following, as we now prove:
– From Hybrid 0 to 1: We observe the two Hybrids are the same except if

the adversary A does a query to F with the key kr̄ because it would cause
the loss of randomness of kr̄,E . Thus,

|Pr[E0]− Pr[E1]| ≤ ϵ1-upL-$XORL-OT

– From Hybrid 1 to 2: Since ENC is (q3,F, t3, ϵEavL-GenFL) and the result of
Lemma 1

|Pr[E1]− Pr[E2]| ≤ 2ϵEavL-GenFL



– From Hybrid 2 to 3: It is the transition between Hybrids 0 and 1 done in
the opposite order. Thus,

|Pr[E2]− Pr[E3]| ≤ ϵ1-upL-$XORL-OT

Now, we observe that Hybrid 0 is the OT-S-LR game where the bit picked
is 0, while Hybrid 3 is the OT-S-LR game where the bit is picked 1. Thus,

|Pr[E0]− Pr[E3]| ≤ 2ϵEavL-GenFL + 2ϵ1-upL-$XORL-OT.

Using Lemma 1

|Pr[A wins]− 1/2| ≤ 1/2(Pr[E0]− Pr[E3]) ≤ ϵ1-upL-$XORL-OT + ϵEavL-GenFL.

⊓⊔

5 A Leakage-Resilient Sequential OT

In this section, we discuss how to extend the previous construction in the case
of multiple instances of OT. We work with a sequential composition because it
allows us to use the previous instance’s keys to encrypt the new instance’s keys
(thus avoiding using the key exchange protocol for all instances except for the
first one). Note that in each iteration, the sender knows two keys ki−1,0, ki−1,1,
while the receiver only knows ki−1,ri−1 (where ri−1 unknown to the sender).
Thus, S needs to encrypt ki,0 and ki,1 under both keys ki−1,0, ki−1,1. Parallel
execution would prevent this, as discussed in the next section.

For the first OT instance the πLR-OT protocol is used as is, whereas for the
ith instances, i > 1 the πLR-OT protocol is used with the following differences:
– Step 1 is skipped (S and R do not execute πKE).
– Step 2b is changed: S first refreshes the keys ki−1,0 and ki−1,1 by generat-

ing ki−1,0,S , and ki−1,1,S , where ki−1,j,S = Fki
(P3), and P3 a public con-

stant. Furthermore, S encrypts both ki,0 and ki,1 keys with both ki−1,0,S

and ki−1,1,S to get yi,00, yi,01, yi,10, yi,11, where yi,jj′ = Fki−1,j,S
(Pj′)⊕ ki,j′ .

– In Step 3, the sender’s inputs for πLR-OT are ((yi,00, yi,10), (yi,01, yi,11)).
– In Step 4, the receiver computes kR,i−1,S = FkR,i

(P3), and kR,i = yi,ri−1ri ⊕
FkR,i−1,S

(Pri).
The full details of πN-LR-OT are given in Alg. 2.
As per our modifications, we are using the same building blocks as for πLR-OT.
The protocol’s correctness follows from the correctness of its underlying

building blocks.

5.1 Black-Box Simulation-Based Security

Essentially, for simulation-based security, we only have to consider that each key
ki,j is used twice as a key of F instead of once, and that there are more keys
produced and used by F. We now give the formal result:

Theorem 4. Let πKE be a (t1, ϵKE)-secure key-exchange protocol (Def. 10), let F
be a (2, t2, ϵPRF)-PRF (Def. 4), let ENC be a (t3, ϵEav)-eavesdropper-secure encryp-
tion scheme (Def. 8), and let πOT be a protocol that (t4, ϵOT)-securely computes



Algorithm 2 Our N-OT protocol πN-LR-OT = (πN-LR-OT.Setup, πN-LR-OT.OT).

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has n-couples of strings M := ((m1,0,m1,1), ..., (mN,0,mN,1)) with
|mi,0| = |mi,1| ∀i ∈ [N ]; R has a string r = (r1, ..., rN ) ∈ {0, 1}N

– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, four different strings P0, P1, P2, P3 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– πLR-OT.OT(pp):
– First OT instance:

1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k1,0, k1,1
$← {0, 1}nENC

(b) S computes z1,0 = Fk(P0), y1,0 = z1,0 ⊕ k1,0, z1,1 = Fk(P1), y1,1 =
z1,1 ⊕ k1,1,

(c) S computes k1,0,E = Fk1,0(P2), k1,1,E = Fk1,1(P2),
(d) S computes c1,0 = Enck1,0,E (m1,0), c1,1 = Enck1,1,E (m1,1)
(e) S sends c1,0, c1,1 to R

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y1,0, y1,1)
and R’s r1

4. Receiver’s phase:
R computes kR,1 = Fk(Pr)⊕ y1,r1 , kR,1,E = FkR,1(P2),
R computes m1 = DeckR,1,E (c1,r1)

– Remaining OT instances: For i = 2, . . . , N
1. Sender’s phase:

(a) S picks ki,0, ki,1
$← {0, 1}nENC

(b) S computes ki−1,0,S = Fki−1,0(P3), ki−1,1,S = Fki−1,1(P3), computes
zi,00 = Fki−1,0,S (P0), yi,00 = zi,00 ⊕ ki,0, zi,01 = Fki−1,0,S (P1),
yi,01 = zi,01 ⊕ ki,1, zi,10 = Fki−1,1,S (P0), yi,10 = zi,10 ⊕ ki,0,
zi,11 = Fki−1,1,S (P1), yi,11 = zi,11 ⊕ ki,11

(c) S computes ki,0,E = Fki,0(P2), ki,1,E = Fki,1(P2),
(d) S computes ci,0 = Encki,0,E (mi,0), ci,1 = Encki,1,E (mi,1)
(e) S sends ci,0, ci,1 to R

2. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input
((yi,00, yi,10), (yi,01, yi,11) and R’s ri

3. Receiver’s phase:
R computes kR,i−1,S = FkR,i−1(P3), kR,i = FkR,i−1,S (Pri)⊕ yi,ri−1ri , kR,i,E =

FkR,i(P2),
R computes mi = DeckR,i,E (ci,ri)

– Output: S: nothing; R: MR = (m1, ...,mN )



the OT functionality (Def. 11,Sec. 2.6), then, the πN-LR-OT protocol defined in
Alg. 2, (t, ϵ)-securely computes the OT functionality with

ϵ ≤ ϵKE +N(ϵOT + 2ϵPRF + ϵEav),

provided that |m0|, |m1| ≤ B bits, where t1 = t + N(tOT + 4tF + 2tEnc), t2 =
t+ tSim,KE +N(tSim,OT + 2tF + 2tEnc), t3 = t+ tSim,KE +N(tSim,OT + 2tF + tEnc),
t4 = t + tSim,KE + N(tOT + 4tF + 2tEnc), tSim,KE is the time needed to simulate
the πKE protocol, tOT to execute the πOT protocol, tSim,OT to simulate the πOT

protocol, tF to execute F, and tEnc to encrypt with Enc a message of at most B
bits.

Proof. We start by building the simulator for the sender, SimS and by proving
that the view given by SimS is (t, ϵ)-computationally indistinguishable from the
real view. Then, we build SimR, and we prove that it is a (t, ϵ)-simulator.

Notations. Let M = ((m1,0,m1,1), . . . , (mN,0,mN,1) be the input of the sender
and r = (r1, . . . , rn) be the input of the receiver. Let Mr = (m1,r1 , . . . ,mN,rN )
be the receiver’s output.

Since πKE is (t1, ϵKE)-secure, there are two simulators SimKE
S , SimKE

R s.t. the

joint distribution of the (viewπKE

S (1κ, nENC), k
′) [resp. (viewπKE

R (1κ, nENC), k
′)], where

k′ is the output of the πKE-protocol, is ϵKE-computationally indistinguishable

from (SimKE
S (1κ, nENC, k), k) [resp. (SimKE

R (1κ, nEnc, k), k)] with k
$← {0, 1}nENC .

Similarly, since πOT is (t4, ϵOT)-secure, there are two simulators SimOT
S , SimOT

R

s.t. viewπOT

S (1κ, (m0,m1),⊥) [resp. (viewπOT

R (1κ, r,mr)] is ϵOT-computationally in-
distinguishable from (SimOT

S (1κ, (x0, x1),⊥) [resp. SimOT
R (1κ, r, xr)].

Sender (semi-honestly) corrupted.
We simulate the sender’s view with SimS(1

κ,M,⊥). It works like this:
– Setup-phase: SimS(1

κ) chooses nENC, F, ENC, and four different strings in

{0, 1}nENC : P0, P1, P2, and P3. Then it runs SimKE.Setup
S (1κ, nENC) obtain-

ing (ppKE, viewπKE.Setup
S ), and SimOT.Setup

S (1κ) obtaining (ppOT, viewπOT.Setup
S ),

respectively. SimS defines

viewSetup
S := ((ppKE, ppOT, nENC,F), view

πKE.Setup
S , viewπOT.Setup

S ).

– First OT instance:
• Key-exchange phase: SimS picks k

$← {0, 1}nENC and runs SimKE
S (1κ, ppKE, k)

obtaining viewKE.KE
S .

• Sender’s phase:Using S’random tape, SimS can pick correctly k1,0, k1,1
$←

{0, 1}nENC . Then, it computes (y1,0, y1,1) as in Alg 2, y1,i = Fk(Pi)⊕ k1,i.
• Send key-phase: SimS computes
viewOT,1

S := SimOT.OT
S (1κ, ppOT, (y1,0, y1,1),⊥).

– Remaining OT instance: For j = 2, . . . , N

• Sender’s phase:Using S’random tape, SimS can pick correctly kj,0, kj,1
$←

{0, 1}nENC . Then, it computes kj−1,i,S = Fkj−1,i(P3), (yj,00yj,10, yj,01, yj,11)
as in Alg 2, yj,i′i = Fkj−1,i′,S (Pi)⊕ kj,i.

• Send key-phase: SimS computes
viewOT,j

S := SimOT.OT
S (1κ, ppOT, ((yj,00, yj,10), (yj,01, yj,11)),⊥).



– Simulator output: At the end, SimS outputs viewSim
S where

viewSim
S := (viewSetup

S , viewKE.KE
S , viewOT,1

S , . . . , viewOT,N
S ).

Hybrids. To prove that the simulator SimS outputs a view that is indistinguish-
able from the real execution of the protocol, we introduce three different view
distributions.
– Let H0

S (1
κ,M, r) be S’s view distribution of the real execution of πLR-OT.

– We modify the previous view distribution obtaining the view distribution
H1

S(1
κ,M, r) by simulating the execution of the key-exchange protocol, using

SimKE
S , instead of having the real execution. We use SimKE

S (1κ, nENC, pp
KE, k),

where 1κ is the security parameter, , nENC obtained as in the real execution

of the protocol and k
$← {0, 1}nENC (πKE is a key-exchange protocol (Def. 12),

that is, it implements the functionality k
$← {0, 1}nENC).

– We modify the previous view distribution obtaining the view distribution
H2

S(1
κ,M, r) by simulating the execution of the OT protocol in the first

instance, using SimOT
S (1κ, ppOT, (y1,0, y1,1),⊥), instead of having the real

execution. SimS can compute y1,0 and y1,1 correctly: accessing the ran-

dom tape of S, SimS can pick k1,0, k1,1
$← {0, 1}nENC correctly and compute

y1,i = Fk(Pi)⊕ k1,i.
– We have a sequence of view distributions H3

S (1
κ,M, r), . . . HN+1

S (1κ,M, r).

We modify the previous view distribution, Hj
S(1

κ,M, r), obtaining the view

distribution Hj+1
S (1κ,M, r) by simulating the execution of the OT proto-

col in the jth instance, using SimOT
S (1κ, ppOT, ((yj,00, yj,10), (yj,01, yj,11)),⊥),

instead of having the real execution. SimS can compute yj,i′i correctly, for

i, i′ ∈ {0, 1}: accessing the random tape of S, SimS can pick kj,0, kj,1
$←

{0, 1}nENC correctly and compute yj,i′i = Fkj−1,i′,S (Pi)⊕kj,i, with kj−1,i′,S =
Fj−1,i′(P3).

Indistinguishability of the hybrids. Now, we show that each view distribu-
tion is computationally indistinguishable from the next.

Since πKE is a (t1, ϵKE)-secure key-exchange protocol, then

|Pr[1← A(H0
S (1

κ,M, r))]− Pr[1← A(H1
S (1

κ,M, r))]| ≤ ϵKE.

Since πOT is a (t4, ϵOT)-secure OT protocol, and y1,0 and y1,1 are computed
as in the correct execution of πLR-OT, then

|Pr[1← A(H1
S (1

κ,M, r))]− Pr[1← A(H2
S (1

κ,M, r))]| ≤ ϵOT.

Since πOT is a (t4, ϵOT)-secure OT protocol, and yj,00, yj,10, yj,01 and yj,11 are
computed as in the correct execution of πLR-OT, then

|Pr[1← A(Hj
S(1

κ,M, r))]− Pr[1← A(Hj+1
S (1κ,M, r))]| ≤ ϵOT.

This concludes the proof sinceHN+1
S (1κ,M, r) is the distribution of the views

simulated by SimS. Thus, the real view distribution, H0
S (1

κ,M, r), and the sim-
ulated one, HN+1

S (1κ,M, r) are (t, ϵ′)-computationally indistinguishable, since

|Pr[1← A(H0
S (1

κ,M, r))]−Pr[1← A(HN+1
S (1κ,M, r))]| ≤ ϵKE+NϵOT = ϵ′ ≤ ϵ.

Receiver (semi-honestly) corrupted.
We simulate the receiver’s view with SimR(1

κ, r,Mr). It works like this:



– Setup-phase: SimR(1
κ) chooses nENC, F, ENC, and four different strings in

{0, 1}nENC : P0, P1, P2, and P3. Then it runs SimKE.Setup
R (1κ, nENC) obtain-

ing (ppKE, viewπKE.Setup
R ), and SimOT.Setup

R (1κ) obtaining (ppOT, viewπOT.Setup
R ),

respectively. SimR defines

viewSetup
R := ((ppKE, ppOT, nENC,F), view

πKE.Setup
R , viewπOT.Setup

R ).

– First OT instance:
• Key-exchange phase: SimR picks k

$← {0, 1}nENC and runs SimKE
R (1κ, ppKE, k)

obtaining viewKE.KE
R .

• Sender’s phase: SimR picks k1,r1 , k1,r̄1,E
$← {0, 1}nENC , and an arbitrary

message m̃1,r̄1 (for example, m̃1,r̄1
$← {0, 1}|m1,r1

|). It computes y1,r1 =
Fk(Pr1) ⊕ k1,r1 , k1,r1,E = Fk1,r1

(P2), c1,r1 = Enck1,r1,E
(m1,r1), c1,r̄1 =

Enck1,r̄1,E
(m̃1,r̄1).

• Send key-phase: SimR computes viewOT,1
R := SimOT.OT

R (1κ, ppOT, r1, y1,r1).
– Remaining OT instance: For j = 2, . . . , N

• Sender’s phase: SimR picks kj,rj , kj,r̄j ,E , yj,r̄j−1rj
$← {0, 1}nENC , and an

arbitrary message m̃j,r̄j (for example, m̃j,r̄j
$← {0, 1}|mj,rj

|). It computes
yj,rj−1rj = Fkj−1,rj−1,S

(Prj ) ⊕ kj,rj , with kj−1,rj−1,S = Fkj−1,rj−1
(P3),

kj,rj ,E = Fkj,rj
(P2), cj,rj = Enckj,rj ,E

(mj,rj ), cj,r̄j = Enckj,r̄j ,E
(m̃j,r̄j ).

• Send key-phase: SimR computes
viewOT,j

R := SimOT.OT
R (1κ, ppOT, rj , (yj,0rj ,yj,1rj

).

– Simulator output: At the end, SimR outputs

viewSim
R := (viewSetup

R , viewKE.KE
R , c1,0, c1,1, view

OT,1
R , . . . , cN,0, cN,1, view

OT,N
R ).

Hybrids. To prove that the simulator SimR outputs a view that is indistin-
guishable from the real execution of the protocol, we introduce five different
view distributions.

– Let H0
R(1

κ,M, r) be R’s view distribution of the real execution of πLR-OT.

– We modify the previous view distribution obtaining the view distribution
H0,1

R (1κ,M, r) by simulating the execution of the key-exchange protocol,

using SimKE
R , instead of having the real execution. We use SimKE

R (1κ, nENC, k),
where 1κ is the security parameter, , nENC obtained as in the real execution

of the protocol and k
$← {0, 1}nENC (πKE is a key-exchange protocol (Def. 12),

that is, it implements the functionality k
$← {0, 1}nENC).

– We modify the previous view distribution obtaining the view distribution
H0,2

R (1κ,M, r) by simulating the execution of the OT protocol, using SimOT
R ,

instead of having the real execution. We use SimOT
R (1κ, r1, y1,r1), where 1

κ is

the security parameter, y1,r1 = Fk(Pr1)⊕ k1,r1 , with k1,r1
$← {0, 1}nENC .

– We modify the previous view distribution obtaining the view distribution

H0,3
R (1κ,M, r) by picking k1,r̄1,E , k1,r̄1,S

$← {0, 1}nENC , instead of computing
k1,r̄1,E = Fk1,r̄1

(P2), and k1,r̄1,S = Fk1,r̄1
(P3).



– We modify the previous view distribution obtaining the view distribution
H0,4

R (1κ,M, r) := H1
R(1

κ,M, r) by computing c1,r̄1 = Enck1,r̄1,E
(m̃1,r̄1), where

m̃1,r̄1 is an arbitrary message (for example, m̃1,r̄1
$← {0, 1}|m1,r1

|).
– Then, we have a sequence of view distributions

H1,1
R (1κ,M, r), . . . ,H1,4

R (1κ,M, r), . . . HN−1,1
R (1κ,M, r), . . . ,HN−1,4

R (1κ,M, r)

with Hj
R(1

κ,M, r) := Hj,4
R (1κ,M, r).

• We modify the previous view distribution, Hj−1
R (1κ,M, r), obtaining the

view distribution Hj,1
R (1κ,M, r) by picking yj,r̄j−1rj

$← {0, 1}nENC instead

of computing it as Fkj−1,r̄j
,S(Prj )⊕ kj,rj , with kj,rj

$← {0, 1}nENC .

• We modify the previous view distribution obtaining the view distribution
Hj−1,2

R (1κ,M, r) by simulating the execution of the OT protocol, using

SimOT
R , instead of having the real execution. We use SimOT

R (1κ, rj , (yj,0rj , yj,1rj )),
where 1κ is the security parameter, yj,rj−1rj = Fkj−1,rj−1,S

(Prj ) ⊕ kj,rj ,

with kj,rj
$← {0, 1}nENC .

• We modify the previous view distribution obtaining the view distribu-

tion Hj−1,3
R (1κ,M, r) by picking kj,r̄j ,E , kj,r̄j ,S

$← {0, 1}nENC , instead of
computing kj,r̄j ,E = Fkj,r̄j

(P2), and kj,r̄j ,S = Fkj,r̄j
(P3).

• We modify the previous view distribution obtaining the view distribution
Hj−1,4

R (1κ,M, r) := Hj
R(1

κ,M, r) by computing cj,r̄j = Enckj,r̄j ,E
(m̃j,r̄j ),

where m̃j,r̄j is an arbitrary message (for example, m̃j,r̄j
$← {0, 1}|mj,rj

|).

Indistinguishability of the hybrids. Now, we show that each view distribu-
tion is computationally indistinguishable from the next.

Since πKE is a (t1, ϵKE)-secure key-exchange protocol, then

|Pr[1← A(H0
R(1

κ,M, r))]− Pr[1← A(H0,1
R (1κ,M, r))]| ≤ ϵKE.

Since πOT is a (t4, ϵOT)-secure OT protocol, SimR picks k1,r1 with the same
distribution as in the original protocol and computes y1,r1 as in the correct
execution of πLR-OT, then

|Pr[1← A(H0,1
R (1κ,M, r))]− Pr[1← A(H0,2

R (1κ,M, r))]| ≤ ϵOT.
Since F is a (2, t2, ϵPRF)-PRF and k1,r̄1 is picked randomly and it is secret for

the receiver, then

|Pr[1← A(H0,2
R (1κ,M, r))]− Pr[1← A(H0,3

R (1κ,M, r))]| ≤ ϵPRF.
Since ENC is a (t3, ϵEav)-Eav-secure encryption scheme and k1,r̄1,E is picked

randomly and it is secret for the receiver, then

|Pr[1← A(H0,3
R (1κ,M, r))]− Pr[1← A(H0,4

R (1κ,M, r))]| ≤ ϵEav.

Now, for all the hybridsH1,1
R (1κ,M, r), . . . ,H1,4

R (1κ,M, r), . . . HN,1
R (1κ,M, r),

. . . , HN,4
R (1κ,M, r) with Hj

R(1
κ,M, r) := Hj−1,4

R (1κ,M, r), we can do the tran-
sitions as follows:

Since F is a (2, t2, ϵPRF)-PRF and yj,r̄j−1rj = zj,r̄j−1rj ⊕ kj,rj with zj,r̄j−1rj =
Fkj−1,r̄j−1,S

(Prj ) and kj−1,r̄j−1,S is randomly picked (see the change between the

view distribution Hj−2,2
R (1κ,M, r) and the view distribution Hj−2,3

R (1κ,M, r) is
picked randomly and it is secret for the receiver, then

|Pr[1← A(Hj−1
R (1κ,M, r))]− Pr[1← A(Hj−1,1

R (1κ,M, r))]| ≤ ϵPRF.



Since πOT is a (t4, ϵOT)-secure OT protocol, SimR picks kj,rj with the same
distribution as in the original protocol and computes yj,rj−1rj as in the correct
execution of πLR-OT, and yj,r̄j−1rj is indistinguishable from the real one, then

|Pr[1← A(Hj−1,1
R (1κ,M, r))]− Pr[1← A(Hj−1,2

R (1κ,M, r))]| ≤ ϵOT.

Since F is a (2, t2, ϵPRF)-PRF and kj,r̄j is picked randomly and it is secret for
the receiver, then

|Pr[1← A(Hj−1,2
R (1κ,M, r))]− Pr[1← A(Hj−1,3

R (1κ,M, r))]| ≤ ϵPRF.

Since ENC is a (t3, ϵEav)-Eav-secure encryption scheme and kj,r̄j ,E is picked
randomly and it is secret for the receiver, then

|Pr[1← A(Hj−1,3
R (1κ,M, r))]− Pr[1← A(Hj−1,4

R (1κ,M, r))]| ≤ ϵEav.

This concludes the proof since HN
R (1κ,M, r) is the distribution of the views

simulated by SimR. Thus, the real view distribution, H0
R(1

κ,M, r), and the sim-
ulated one, HN

R (1κ,M, r) are (t, ϵ)-computationally indistinguishable, since

|Pr[1← A(H0
R(1

κ,M, r))]− Pr[1← A(HN
R (1κ,M, r))]| ≤

ϵKE +NϵOT + (2N − 1)ϵPRF +NϵEav ≤ ϵKE +N(ϵOT + 2ϵPRF + ϵEav) = ϵ.

5.2 OT-S-LA -Security of πN-LR-OT

The proof against intercepting adversaries is slightly modified. First, we use two
extra keys ki−1,j,S where these keys are obtained as an output of F, ki−1,j,S =
Fki1,k

(P3), and are only used twice as the keys for F, zi,jj′ = Fki−1,j,S
(Pj′) (Step

2b). This re-keying scenario has been extensively treated in the literature [59,
45, 9]. Also, in Step 2b, ki,j is the input of two different XOR functions instead
of one (for i > 2). Being the XOR the easiest function to protect against leakage,
we believe that this is not a problem.

Now, we will give the details:
First, we have to adapt the composition definition for F, $, and ⊕ function

(Def. 22) to the case where 2 ⊕ functions are computed:

Definition 26. Let $ be the random sampling, ⊕ be the XOR function, and
L$(x) and L⊕(x, y) be the leakage of their respective implementations. Let F :
{0, 1}n × {0, 1}n → {0, 1}n be an ideal cipher and LF a leakage function. Let
$ generate k, used by the oracle FL. Let k be XORed to a random value z ob-
tained by F. We say that the implementation of the composition of the random
sampling, two XOR functions and F is (q, qG, qF, t, ϵ)-unpredictable with leakage
(L$, L⊕, LF), denoted as q-upL-$XOR2L, if for any (q, qF, t)-adversary A,

Pr[k ∈ G | |G| ≤ qG,

G ← A
FLk(·),F·(·)
2 (st, L$(k), y0, L⊕(z0, k), L

out
F (k′0; z0), y1, L⊕(z1, k), L

out
F (k′1; z1)),

y0 = z0 ⊕ k, y1 = z1 ⊕ k, (k, L$(k))
$← {0, 1}n, z0, z1

$← {0, 1}n,

(st, k′0, k
′
1)← A

F·(·)
1 ] ≤ ϵ,

with qF and the oracle FL defined as in Def. 6.

Looking ahead, we will use this security definition twice: once to require that k0
is not guessed and once for k1. This formalization is coherent with the πLR-OT

flow. In our case, q = 1 or 2.



Theorem 5. Let F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC be an ideal block-
cipher. Let F be (2, qG, q1,F , t1, ϵ2-upL-KE)-2-upL-KE-secure with the key gen-
erated by πKE, (2, qG, q

′
1,F , t

′
1, ϵ2-upL)-2-upL unpredictable with leakage, and be

(2, qG, q2,F , t2, ϵ2-upL-$XORL)-2-upL-$XORL-secure, and (2, qG, q2,F , t2, ϵ2-upL-$XORL)-
2-upL-$XOR2L-secure with the key randomly sampled and XORed to a random
value. Let ENC be (q3,F, t3, ϵEavL-GenFL)-EavL-GenFL with the key picked via F,
then, for any (qF, t) adversary A = (AF

1,A
F
2)-adversary, πN-LR-OT is (qF, t, ϵ)-

OT-S-LA secure, with

ϵ ≤ ϵ2-upL-KE + 2ϵ2-upL-$XORL + 2NϵEavL-GenFL

+2(N − 1)(ϵ2-upL + ϵ2-upL-$XOR2L)

t1 = t+N(tOT +2tF +2tEnc)+ 4(N − 1)tF, t
′
1 = t+ tKE +N(tOT +2tF +2tEnc)+

(4N − 2)tF, t2 = t+N(tOT + 2tF + 2tEnc) + (4N − 2)tF, t3 = t+N(tOT + 2tF) +
(N − 1)(2tF + tEnc), q1,F = 2 + qF, q2,F = 1 + qF, and q3,F = qF.

Proof. The proof is inspired by those in the same model for F in [9].

Hybrids. We use a sequence of Hybrids, Hybrid 0, Hybrid 01, . . . Hybrid 08

where an adversary A is playing. Let Ei be the event that the adversary A
outputs 1 at the end of Hybrid i.
– Hybrid 0: It is the OT-S-LA Hybrid where A is playing against πLR-OT,

where the bit picked is 0.
– Hybrid 01: It is Hybrid 0, where we replace z1,0, z1,1 with random values,

and the leakage of F accordingly.
– Hybrid 02: It is Hybrid 01, where we replace y1,0, k1,0,E , k1,0,S with three

random values and their leakage accordingly.
– Hybrid 03: It is Hybrid 02, where we replace y1,1, k1,1,E , k1,1,S with three

random values and their leakage accordingly.
– Hybrid 04: It is Hybrid 03, where we replace c1,0 with Enck1,0,E

(m1
1,0) (that

is, instead of encrypting m0
1,0, we encrypt m

1
1,0), and its leakage accordingly.

– Hybrid 05: It is Hybrid 04, where we replace c1,1 with Enck1,1,E
(m1

1,1) (that
is, instead of encrypting m0

1,1, we encrypt m
1
1,1), and its leakage accordingly.

– Hybrid 06 (Complementing 03): It is Hybrid 05, where we replace y1,1,
k1,1,E , and k1,1,S with the correct values, and the leakage accordingly.

– Hybrid 07 (Complementing 02): It is Hybrid 06, where we replace y1,0,
k1,0,E , and k1,0,S with the correct values, and the leakage accordingly.

– Hybrid 08 (Complementing 1): It is Hybrid 07, where we replace z1,0,
z1,1 with the correct values, and the leakage accordingly.
We call Hybrid 1, Hybrid 08.

– Then, we have a sequence of Hybrids, Hybrid 11, . . . Hybrid 110, Hybrid
21, . . ., Hybrid N10:
• Hybrid i1: It is Hybrid i, where we replace zi,00, zi,01 with random

values, and the leakage of F accordingly.
• Hybrid i2: It is Hybrid ii, where we replace zi,10, zi,11 with random

values, and the leakage of F accordingly.
• Hybrid i3: It is Hybrid i2, where we replace yi,00, yi,10, ki,0,E , ki,0,S with

four random values and their leakage accordingly.



• Hybrid i4: It is Hybrid i3, where we replace yi,01, yi,11, ki,1,E , ki,1,S with
four random values and their leakage accordingly.

• Hybrid i5: It is Hybrid i4, where we replace ci,0 with Encki,0,E
(m1

i,0)

(that is, instead of encrypting m0
i,0, we encrypt m1

i,0), and its leakage
accordingly.

• Hybrid i6: It is Hybrid 05, where we replace ci,1 with Encki,1,E
(m1

i,1)

(that is, instead of encrypting m0
i,1, we encrypt m1

i,1), and its leakage
accordingly.

• Hybrid i7 (Complementing i4): It is Hybrid i5, where we replace
yi,10,yi,11, ki,1,E , and ki,1,S with the correct values, and the leakage ac-
cordingly.

• Hybrid i8 (Complementing i3): It is Hybrid i7, where we replace
yi,00, yi,01, ki,0,E , and ki,0,S with the correct values, and the leakage
accordingly.

• Hybrid i9 (Complementing i2): It is Hybrid i8, where we replace
zi,10, zi,11 with the correct values, and the leakage accordingly.

• Hybrid i10 (Complementing i1): It is Hybrid i9, where we replace
zi,00, zi,01 with the correct values, and the leakage accordingly.
We call Hybrid i+ 1, Hybrid i10.

Indistinguishability of Hybrids. Each of the previous Hybrids is indistin-
guishable from the following as we now prove:
– From Hybrid 0 to 01: We observe the two Hybrids are the same except

if the adversary A does a query to F with the key k because it would cause
the loss of randomness of y1,0, and y1,1 [59]. Thus,

|Pr[E0]− Pr[E01 ]| ≤ ϵ2-upL-KE.

– From Hybrid 01 to 02: We observe the two Hybrids are the same except if
the adversary A does a query to F with the key k1,0 because it would cause
the loss of randomness of y1,0 or k1,0,E or k1,0,S . Thus,

|Pr[E01 ]− Pr[E02 ]| ≤ ϵ2-upL-$XORL.

– From Hybrid 02 to 03: We observe the two Hybrids are the same except if
the adversary A does a query to F with the key k1,1 because it would cause
the loss of randomness of y1,1 or k1,1,E or k1,1,S . Thus,

|Pr[E02 ]− Pr[E03 ]| ≤ ϵ2-upL-$XORL.

– From Hybrid 03 to 04: Since ENC is (q3,F, t3, ϵEavL-GenFL) and the result of
Lemma 1

|Pr[E3]− Pr[E4]| ≤ 2ϵEavL-GenFL.

– From Hybrid 04 to 05: Similarly, as before

|Pr[E4]− Pr[E5]| ≤ 2ϵEavL-GenFL.

– From Hybrid 05 to 08: It is the indistinguishiability of Hybrids 0, 01, 02,
and 03 done in the opposite order. Thus,

|Pr[E05 ]− Pr[E08 ]| ≤ ϵ2-upL-KE + 2ϵ2-upL-$XORL.

– For i = 1, . . . , N − 1



• From Hybrid i to i1: We observe the two Hybrids are the same except
if the adversary A does a query to F with the key ki−1,0,S because it would
cause the loss of randomness of yi,00, and yi,01 [59]. Thus,

|Pr[Ei0 ]− Pr[Ei1 ]| ≤ ϵ2-upL.

• From Hybrid i1 to i2: We observe the two Hybrids are the same
except if the adversary A does a query to F with the key ki−1,1,S because
it would cause the loss of randomness of yi,10, and yi,11 [59]. Thus,

|Pr[Ei1 ]− Pr[Ei2 ]| ≤ ϵ2-upL.

• From Hybrid i2 to i3: We observe the two Hybrids are the same except
if the adversary A does a query to F with the key ki,0 because it would
cause the loss of randomness of yi,00, yi,10 or ki,0,E or ki,0,S . Thus,

|Pr[Ei2 ]− Pr[Ei3 ]| ≤ ϵ2-upL-$XOR2L.

• From Hybrid i3 to i4: We observe the two Hybrids are the same except
if the adversary A does a query to F with the key ki,1 because it would
cause the loss of randomness of yi,01, yi,11 or ki,1,E or ki,1,S . Thus,

|Pr[Ei2 ]− Pr[Ei3 ]| ≤ ϵ2-upL-$XOR2L.

• From Hybrid i4 to i5: Since ENC is (q3,F, t3, ϵEavL-GenFL) and the result
of Lemma 1

|Pr[Ei4 ]− Pr[Ei5 ]| ≤ 2ϵEavL-GenFL.

• From Hybrid i5 to i6: Similarly, as before

|Pr[Ei5 ]− Pr[Ei6 ]| ≤ 2ϵEavL-GenFL.

• From Hybrid i6 to i10: It is the indistinguishiability of Hybrids i, i1,
i2, i3 and i4 done in the opposite order. Thus,

|Pr[Ei5 ]− Pr[Ei10 ]| ≤ 2(2-upL+ 2ϵ2-upL-$XOR2L).

Now, we observe that Hybrid 0 is the OT-S-LA game where the bit picked
is 0, while Hybrid N is the OT-S-LA game where the bit is picked 1. Thus,

|Pr[E0]− Pr[EN ]| ≤
4NϵEavL-GenFL + 4(N − 1)ϵ2-upL-$XOR2L + 4(N − 1)ϵ2-upL + 4ϵ2-upL-$XORL + 2ϵ2-upL-KE.

Using Lemma 1

|Pr[A wins]− 1/2| ≤ 1/2(Pr[E0]− Pr[EN ]) ≤
ϵ2-upL-KE + 2ϵ2-upL-$XORL + 2NϵEavL-GenFL + 2(N − 1)[ϵ2-upL + ϵ2-upL-$XOR2L].

⊓⊔

5.3 OT-S-LR -Security of πN-LR-OT

The proof for corrupted adversaries relies, in addition to the previous modifica-
tions, on the fact that yi,r̄i−1ri , being equal to Fki−1,r̄i−1,S

(Pri) ⊕ ki,ri , gives no
information to the receiver, since it should not be able to guess ki−1,r̄i−1,S . We
now give the details.

First, we have to adapt the composition definition for F, $, ⊕ function, and
OT (Def. 25) to the case where 2 ⊕ functions are computed:



Definition 27. Let πOT be an OT protocol, $ be the random sampling, ⊕ be
the XOR function, and LSOT(·, ·), L$(x), and L⊕(x, y) be the leakage of their
respective implementations. Let F : {0, 1}n×{0, 1}n → {0, 1}n be an ideal cipher
and LF be its leakage function. Let $ generate k, which is the key used by the
oracle FL. Let k be XORed to an adversarial chosen value z, obtaining y =
(x ⊕ k). Let y be the yr̄ input of the πOT protocol with r and yr chosen by the
adversary. We say that the implementation of the composition of the random
sampling, the XOR, πOT, and F is (q, qG, qF, t, ϵ)-unpredictable in the presence of
leakage L$(x), L⊕(x, y), LF(·; ·), LSOT(·, ·) with πOT using a random input, denoted
as q-upL-$XOR2L-OT, if for any (q, qF, t)-adversary A = (A1,A2),

Pr[k ∈ G | |G| ≤ qG,

G ← A
FLk(·),F·(·)
2 [st, L$(k), L⊕(z0, k), L⊕(z1, k),

ppOT, transOT, L
S
OT((y00, y10), (y01, y11), r)],

(ppOT, transOT, L
S
OT((y00, y10), (y01, y10), r)← πOTL(1κ((y00, y10), (y01, y10), r),

y0r ← y0, y1r ← y1, y0r̄ = z0 ⊕ k, y1r̄ = z1 ⊕ k (k, L$(k))
$← {0, 1}n,

(st, z0, z1, r, y0, y1)← A
F·(·)
1 ] ≤ ϵ,

with qF and the oracle F defined as in Def. 6.

In our case q = 1.

Theorem 6. Let F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC be an ideal block-
cipher, and (2, qG, q1,F , t1, ϵ2-upL)-2-upL unpredictable with leakage, Let F be
(2, qG, q1,F , t1, ϵ2-upL-$XORL-OT) -2-upL-secure, and F be (2, qG, q1,F , t1, ϵ2-upL-$XOR2L-OT)
-2-upL-secure, with the key randomly sampled and XORed to a random value and
πOT sending the XOR. Let ENC be (q3,F, t3, ϵEavL-GenFL)-EavL-GenFL with the key
is picked via F, then, for any (qF, t) adversary A = (AF

1,A
F
2)-adversary, π

N-LR-OT

is (qF, t, ϵ)-OT-S-LR secure, with

ϵ ≤ ϵ2-upL-$XORL-OT +N(ϵ2-upL + ϵEavL-GenFL) + (N − 1)(ϵ2-upL + ϵ2-upL-$XOR2L-OT)

with t1 = t+ tKE +N(tOT +2tF +2tEnc)+ (4N − 2)tF, t2 = t+N(tOT +2tF +
2tEnc) + (4N − 2)tF, t3 = t+N(tOT + 2tF) + (N − 1)(2tF + tEnc), q1,F = 2 + qF,
q2,F = 1 + qF, and q3,F = qF.

Proof. The proof is inspired by those in the same model for F in [9].

Hybrids. We use a sequence of Hybrids, Hybrid 0, . . . , Hybrid 3 where an
adversary A is playing. Let Ei be the event that the adversary A outputs 1 at
the end of Hybrid i.
– Hybrid 0: It is the OT-S-LR Hybrid where A is playing against πLR-OT,

where the bit picked is 0.
– Hybrid 01: It is Hybrid 0, where we replace y1,r̄1 , k1,r̄1,E , k1,r̄1,S with three

random values and their leakage accordingly.
– Hybrid 02: It is Hybrid 01, where we replace c1,r̄1 with Enck1,r̄1,E

(m1
1,r̄1)

(that is, instead of encrypting m0
1,r̄1 , we encrypt m1

1,r̄1), and its leakage
accordingly.



– Hybrid 03: It is Hybrid 02, where we replace y1,r̄1 , k1,r̄1,E and k1,r̄1,S with
the correct values, and the leakage accordingly.

– Then, we have a sequence of Hybrids, Hybrid 11, . . .Hybrid 15, Hybrid 21, . . .,
Hybrid N5:
• Hybrid i1: It is Hybrid i, where we replace zi,r̄i−10, zi,r̄i−11 with two

random values and their leakage accordingly.
• Hybrid i2: It is Hybrid i1, where we replace yi,0r̄i , yi,1r̄i , ki,r̄i,E , ki,r̄i,S

with four random values and their leakage accordingly.
• Hybrid i3: It is Hybrid i2, where we replace ci,r̄i with Encki,r̄i,E

(m1
i,r̄i

)

(that is, instead of encrypting m0
i,r̄i

, we encrypt m1
i,r̄i

), and its leakage
accordingly.

• Hybrid i4: It is Hybrid i3, where we replace yi,0r̄i , yi,1r̄i , ki,r̄i,E and
ki,r̄i,S with the correct values, and the leakage accordingly.

• Hybrid i5: It is Hybrid i4, where we replace zi,r̄i−10, zi,r̄i−11 w wzi,r̄i−10, zi,r̄i−11

with the correct values, and the leakage accordingly.
We call Hybrid i4, Hybrid i+ 1.

Indistinguishability of Hybrids. Each of the previous Hybrids is indistin-
guishable from the following as we now prove:
– From Hybrid 0 to 01: We observe the two Hybrids are the same except if

the adversary A does a query to F with the key k1,r̄1 because it would cause
the loss of randomness of k1,r̄1,E , and k1,r̄1,S . Thus,

|Pr[E0]− Pr[E01 ]| ≤ ϵ2-upL-$XORL-OT.

– From Hybrid 01 to 02: Since ENC is (q3,F, t3, ϵEavL-GenFL) and the result of
Lemma 1

|Pr[E01 ]− Pr[E02 ]| ≤ 2ϵEavL-GenFL.

– From Hybrid 02 to 03: It is the transition between Hybrids 0 and 01 done
in the opposite order. Thus,

|Pr[E02 ]− Pr[E03 ]| ≤ ϵ2-upL-$XORL-OT.

– For i = 1, . . . N − 1
• From Hybrid 0 to 01: We observe the two Hybrids are the same except
if the adversary A does a query to F with the key ki−1,r̄i−1,S because it
would cause the loss of randomness of zi,r̄i−10, and zi,r̄i−11. Thus,

|Pr[Ei]− Pr[Ei1 ]| ≤ ϵ2-upL.

• From Hybrid i1 to i2: We observe the two Hybrids are the same except
if the adversary A does a query to F with the key ki,r̄i because it would
cause the loss of randomness of yi,0r̄i , yi,1r̄i , ki,r̄i,E , and ki,r̄i,S . Thus,

|Pr[Ei1 ]− Pr[Ei2 ]| ≤ ϵ2-upL-$XOR2L-OT.

• From Hybrid i2 to i3: Since ENC is (q3,F, t3, ϵEavL-GenFL) and the result
of Lemma 1

|Pr[Ei2 ]− Pr[Ei3 ]| ≤ 2ϵEavL-GenFL.

• From Hybrid i3 to i5: They are the transitions between Hybrids i and
i1, and between i1 and i2, done in the opposite order. Thus,

|Pr[Ei3 ]− Pr[Ei5 ]| ≤ ϵ2-upL-$XOR2L-OT + ϵ2-upL.



Now, we observe that Hybrid 0 is the OT-S-LR game where the bit picked
is 0, while Hybrid N is the OT-S-LR game where the bit is picked 1. Thus,
|Pr[E0]−Pr[EN ]| ≤ 2NϵEavL-GenFL+2ϵ2-upL-$XORL-OT+2(N−1)(ϵ2-upL-$XOR2L-OT+ϵ2-upL).

Using Lemma 1
|Pr[A wins]− 1/2| ≤ 1/2(Pr[E0]− Pr[EN ]) ≤

ϵ2-upL-$XORL-OT +NϵEavL-GenFL + (N − 1)(ϵ2-upL-$XOR2L-OT + ϵ2-upL).

⊓⊔

6 Variants

In this section, we briefly discuss variants of our protocols that require stronger
security requirements but achieve better efficiency and additional properties.
1. No refresh: We avoid Step 2c (and Step 1c for πN-LR-OT), and use k0, k1

as keys for ENC (in πLR-OT, Step 2d), and ki,j as keys for ENC (in πN-LR-OT,
Step 1d). We describe these changes in the single instance protocol, πLR-OTf

(Alg. 3), and in the sequential protocol, πN-LR-OTf (Alg. 4). This requires
relying on a more aggressive hypothesis about the following combination
because the same key is involved in the random sampling, the XOR function,
the F computation, the OT computation, and the Enc computation. That is,
we have to combine Def 22 and Def. 23 for intercepting adversaries, and
Def 25 and Def. 23 for corrupted receivers. This change can yield a faster
protocol but requires using the keys more times.

2. Using the inverse of F: we can skip the use of the ⊕ in step 2b by com-
puting y0 = Fk(k0) and y1 = Fk(k1), instead of yi = Fk(Pi)⊕ ki for π

LR-OT.
Thus, in Def. 22 we have to replace the leakage L⊕(zi, ki) by the leakage
LF(k; ki). We describe these changes in the single instance protocol (Alg. 5),
and in the sequential protocol (Alg. 6). We consider this option essentially
equivalent in terms of efficiency and security and as a flavor that allows
flexibility in implementation.

3. Tree composition of multiple instances: the idea is to generate the keys
ki,j,S in Step 1f, instead of Step 2b. In particular, ki,j is used to generate

two different keys, k2i,j,S and k2i+1,S . This way, the 2ith and the (2i+ 1)th

instances can be run in parallel (Alg. 7). This requires more evaluations of F,
but it allows the protocol to be executed in O(log(N)) rounds, thus trading
additional calls F with a reduced number of rounds.

4. Parallel composition of multiple instances: Here we use k to encrypt
all keys ki,j , thus, we can execute all instances in parallel. (Alg. 8). Since k
is used 2N times by F, we must assume that F is leak-free. This construction
requires a stronger hypothesis on the block-cipher in the presence of leakage,
where the main added value is a faster scheme with high performance.
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A Algorithms

Algorithm 3 Our πLR-OTf protocol for a single OT instance. With respect to
the πOT protocol, we have skipped Step 2c.

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has a couple of strings M := (m0,m1), with |m0| = |m1|; R has a bit r
– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, two different strings P0, P1 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– Main phase: πLR-OTf .OT(pp):
1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k0, k1
$← {0, 1}nENC

(b) S computes z0 = Fk(P0), y0 = z0 ⊕ k0, z1 = Fk(P1), y1 = z1 ⊕ k1,
(c) S computes c0 = Enck0(m0), c1 = Enck1(m1)
(d) S sends c0, c1 to R

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y0, y1) and
R’s r

4. Receiver’s phase:
R computes kR = Fk(Pr)⊕ yr,
R computes m = DeckR(cr)

– Output: S: nothing; R: m



Algorithm 4 Our N-OT protocol πN-LR-OTf = (πN-LR-OT.Setup, πN-LR-OTf .OT).
With respect to πN-LR-OT we skip step 2c for the first OT instance, and step 2d)
in all other instances. Moreover, in all other instances in step 2b) we skip the
computation of ki,j,S .

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has n-couples of strings M := ((m1,0,m1,1), ..., (mN,0,mN,1)) with
|mi,0| = |mi,1| ∀i ∈ [N ]; R has a string r = (r1, ..., rN ) ∈ {0, 1}N

– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, four different strings P0, P1, P2, P3 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– πLR-OT.OT(pp):
– First OT instance:

1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k1,0, k1,1
$← {0, 1}nENC

(b) S computes z1,0 = Fk(P0), y1,0 = z1,0 ⊕ k1,0, z1,1 = Fk(P1), y1,1 =
z1,1 ⊕ k1,1,

(c) S computes c1,0 = Enck1,0(m1,0), c1,1 = Enck1,1(m1,1)
(d) S sends c1,0, c1,1 to R

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y1,0, y1,1)
and R’s r1

4. Receiver’s phase:
R computes kR,1 = Fk(Pr)⊕ y1,r1
R computes m1 = DeckR,1(c1,r1)

– Remaining OT instances: For i = 2, . . . , N
1. Sender’s phase:

(a) S picks ki,0, ki,1
$← {0, 1}nENC

(b) S computes zi,00 = Fki−1,0(P2), yi,00 = zi,00 ⊕ ki,0, zi,01 = Fki−1,0(P3),
yi,01 = zi,01 ⊕ ki,1, zi,10 = Fki−1,1(P2), yi,10 = zi,10 ⊕ ki,0, zi,11 =
Fki−1,1(P3), yi,11 = zi,11 ⊕ ki,11

(c) S computes ci,0 = Encki,0(mi,0), ci,1 = Encki,1(mi,1)
(d) S sends ci,0, ci,1 to R

2. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input
((yi,00, yi,10), (yi,01, yi,11) and R’s ri

3. Receiver’s phase:
R computes kR,i = FkR,i−1(P2+ri)⊕ yi,ri−1ri

R computes mi = DeckR,i(ci,ri)
– Output: S: nothing; R: MR = (m1, ...,mN )



Algorithm 5 Our πLR-OTinv protocol for a single OT instance. With respect to
πLR-OT, we have modified Step 2b.

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has a couple of strings M := (m0,m1), with |m0| = |m1|; R has a bit r
– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, three different strings P0, P1, P2 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– Main phase: πLR-OTinv.OT(pp):
1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k0, k1
$← {0, 1}nENC

(b) S computes y0 = Fk(k0), y1 = Fk(k1),
(c) S computes k0,E = Fk0(P2), k1,E = Fk1(P2),
(d) S computes c0 = Enck0,E (m0), c1 = Enck1,E (m1)
(e) S sends c0, c1 to R

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y0, y1) and
R’s r

4. Receiver’s phase:
R computes kR = F−1

k (yr), kR,E = FkR(P2),
R computes m = DeckR,E (cr)

– Output: S: nothing; R: m



Algorithm 6 Our N-OT protocol πN-LR-OTinv =
(πN-LR-OT.Setup, πN-LR-OTinv.OT). With respect to πN-LR-OT, we have modified
Step 2b for the first instance and Step 1b for all other instances

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has n-couples of strings M := ((m1,0,m1,1), ..., (mN,0,mN,1)) with
|mi,0| = |mi,1| ∀i ∈ [N ]; R has a string r = (r1, ..., rN ) ∈ {0, 1}N

– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, four different strings P0, P1, P2, P3 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– πN-LR-OTinv.OT(pp):
– First OT instance:

1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k1,0, k1,1
$← {0, 1}nENC

(b) S computes y1,0 = Fk(k1,0), y1,1 = Fk(k1,1),
(c) S computes k1,0,E = Fk1,0(P2), k1,1,E = Fk1,1(P2),
(d) S computes c1,0 = Enck1,0,E (m1,0), c1,1 = Enck1,1,E (m1,1)
(e) S sends c1,0, c1,1 to R

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y1,0, y1,1)
and R’s r1

4. Receiver’s phase:
R computes kR,1 = F−1

k (y1,r), kR,1,E = FkR,1(P2),
R computes m1 = DeckR,1,E (c1,r1)

– Remaining OT instances: For i = 2, . . . , N
1. Sender’s phase:

(a) S picks ki,0, ki,1
$← {0, 1}nENC

(b) S computes ki−1,0,S = Fki−1,0(P3), ki−1,1,S = Fki−1,1(P3), computes
yi,00 = Fki−1,0,S (ki,0), yi,01 = Fki−1,0,S (ki,1), yi,10 = Fki−1,1,S (ki,0),
yi,11 = Fki−1,1,S (ki,1)

(c) S computes ki,0,E = Fki,0(P2), ki,1,E = Fki,1(P2),
(d) S computes ci,0 = Encki,0,E (mi,0), ci,1 = Encki,1,E (mi,1)
(e) S sends ci,0, ci,1 to R

2. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input
((yi,00, yi,10), (yi,01, yi,11) and R’s ri

3. Receiver’s phase:
R computes kR,i−1,S = FkR,i−1(P3), kR,i = F−1

kR,i−1,S
(yi,ri−1ri), kR,i,E =

FkR,i(P2),
R computes mi = DeckR,i,E (ci,ri)

– Output: S: nothing; R: MR = (m1, ...,mN )



Algorithm 7 Our N-OT protocol πN-LR-OTtree =
(πN-LR-OT.Setup, πN-LR-OTtree.OT). With respect to πN-LR-OT, we have added
Step 2f for the first instance and Step 1f for all other instances. In this phase,
we compute the sending keys for two instances.

– Building blocks: As for πN-LR-OT.
– Input: S has n-couples of strings M := ((m1,0,m1,1), ..., (mN,0,mN,1)) with
|mi,0| = |mi,1| ∀i ∈ [N ]; R has a string r = (r1, ..., rN ) ∈ {0, 1}N

– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: As for πN-LR-OT.
– πN-LR-OTtree.OT(pp):
– First OT instance:

1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. Sender’s phase:

(a) S picks k1,0, k1,1
$← {0, 1}nENC

(b) S computes z1,0 = Fk(P0), y1,0 = z1,0 ⊕ k1,0, z1,1 = Fk(P1), y1,1 =
z1,1 ⊕ k1,1,

(c) S computes k1,0,E = Fk1,0(P2), k1,1,E = Fk1,1(P2),
(d) S computes c1,0 = Enck1,0,E (m1,0), c1,1 = Enck1,1,E (m1,1)
(e) S sends c1,0, c1,1 to R
(f) S computes k1,0,Ref = Fk1,0(P3), k1,1,Ref = Fk1,1(P3). S computes

k2,0,S = Fk1,0,Ref (P0), k2,1,S = Fk1,1,Ref (P0), k3,0,S = Fk1,0,Ref (P1),
k3,1,S = Fk1,1,Ref (P1).

3. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (y1,0, y1,1)
and R’s r1

4. Receiver’s phase:
R computes kR,1 = Fk(Pr)⊕ y1,r1 , kR,1,E = FkR,1(P2),
R computes m1 = DeckR,1,E (c1,r1)
R computes kR,1,Ref = FkR,1(P3), kR,2,S = FkR,1,Ref (P0), kR,3,S =

FkR,1,Ref (P1).
– Remaining OT instances: For i = 2, . . . , N

1. Sender’s phase:

(a) S picks ki,0, ki,1
$← {0, 1}nENC

(b) S computes zi,00 = Fki,0,S (P0), yi,00 = zi,00 ⊕ ki,0, zi,01 = Fki,0,S (P1),
yi,01 = zi,01 ⊕ ki,1, zi,10 = Fki,1,S (P0), yi,10 = zi,10 ⊕ ki,0, zi,11 =
Fki,1,S (P1), yi,11 = zi,11 ⊕ ki,11

(c) S computes ki,0,E = Fki,0(P2), ki,1,E = Fki,1(P2),
(d) S computes ci,0 = Encki,0,E (mi,0), ci,1 = Encki,1,E (mi,1)
(e) S sends ci,0, ci,1 to R
(f) S computes ki,0,Ref = Fki,0(P3), ki,1,Ref = Fki,1(P3). S computes

k2i,0,S = Fki,0,Ref (P0), k2i,1,S = Fki,1,Ref (P0), k2i+1,0,S = Fki,0,Ref (P1),
k2i+1,1,S = Fki,1,Ref (P1).

2. Send-key phase: S and R execute πOT.OT(ppOT) with S’s input
((yi,00, yi,10), (yi,01, yi,11) and R’s ri

3. Receiver’s phase:
R computes kR,i = FkR,i,S (Pri)⊕ yi,ri−1ri , kR,i,E = FkR,i(P2),
R computes mi = DeckR,i,E (ci,ri)
R computes kR,i,Ref = FkR,i(P3), kR,2i,S = FkR,i,Ref (P0), kR,2i+1,S =

FkR,i,Ref (P1).
– Output: S: nothing; R: MR = (m1, ...,mN )



Algorithm 8 Our N-OT protocol πN-LR-OTpar =
(πN-LR-OT.Setup, πN-LR-OTpar.OT). With respect to πN-LR-OT, we use k to
encrypt all ephemeral keys ki,j . (With i∥j we denote the string obtained writing
the number i as a nENC − 1 bit long string, and appending the bit j)

– Building blocks:
1. πKE = (πKE.Setup, πKE.KE), a key-exchange protocol,
2. F, a block-cipher,
3. ENC = (Gen,Enc,Dec), an EavL-secure encryption scheme,
4. πOT = (πOT.Setup, πOT.OT), an OT protocol.

– Input: S has n-couples of strings M := ((m1,0,m1,1), ..., (mN,0,mN,1)) with
|mi,0| = |mi,1| ∀i ∈ [N ]; R has a string r = (r1, ..., rN ) ∈ {0, 1}N

– Auxiliary input: 1κ the security parameter (shared by both S and R)
– Setup phase: πLR-OT.Setup(1κ) does:

1. From 1κ choose nENC, a BC F : {0, 1}nENC × {0, 1}nENC → {0, 1}nENC , an EavL-
secure encryption scheme ENC, a string P2 ∈ {0, 1}nENC .

2. ppKE ← πKE.Setup(1κ, nENC),
3. ppOT ← πOT.Setup(1κ)
4. Return pp = (ppKE, ppOT, nENC,F,ENC, P0, P1, P2)

– πLR-OT.OT(pp):
1. Key-exchange phase: S and R execute πKE.KE(ppKE) to both obtain k
2. For i = 1, . . . , N

i Sender’s phase:

(a) S picks ki,0, ki,1
$← {0, 1}nENC

(b) S computes zi,0 = Fk(i∥0), yi,0 = zi,0 ⊕ ki,0, zi,1 = Fk(i∥1), yi,1 =
zi,1 ⊕ ki,1,

(c) S computes ki,0,E = Fki,0(P2), ki,1,E = Fki,1(P2),
(d) S computes ci,0 = Encki,0,E (mi,0), ci,1 = Encki,1,E (mi,1)
(e) S sends ci,0, ci,1 to R

ii Send-key phase: S and R execute πOT.OT(ppOT) with S’s input (yi,0, yi,1)
and R’s ri

iii Receiver’s phase:
R computes kR,i = Fk(i∥ri)⊕ yi,ri , kR,i,E = FkR,i(P2),
R computes mi = DeckR,i,E (ci,ri)

– Output: S: nothing; R: MR = (m1, ...,mN )
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