
Permutation Superposition Oracles for Quantum Query Lower Bounds

Christian Majenz∗ Giulio Malavolta†‡ Michael Walter§

Abstract

We propose a generalization of Zhandry’s compressed oracle method to random permutations, where
an algorithm can query both the permutation and its inverse. We show how to use the resulting oracle
simulation to bound the success probability of an algorithm for any predicate on input-output pairs,
a key feature of Zhandry’s technique that had hitherto resisted attempts at generalization to random
permutations. One key technical ingredient is to use strictly monotone factorizations to represent the
permutation in the oracle’s database. As an application of our framework, we show that the one-round
sponge construction is unconditionally preimage resistant in the random permutation model. This proves
a conjecture by Unruh.

Contents

1 Introduction 2
1.1 Summary of Contributions . 3
1.2 Key Challenges and Techniques . 4
1.3 Concurrent Independent Work . 7

2 Preliminaries 7

3 Random Permutations 9
3.1 Random Permutations from Independent Transpositions . 9
3.2 Active Transpositions . 10

4 Quantum Random Permutations Oracles 12
4.1 Superposition Permutation Oracle . 12
4.2 Twirled Superposition Permutation Oracle . 13

5 The Fundamental Lemma of the Permutation Oracle 16

6 Bounding the Success Probability for Search 19
6.1 Bounding the Success Probability in the Worst Case . 20
6.2 Bounding the Success Probability in Expectation . 29
6.3 Sparsity Analysis . 34
6.4 Main Theorem . 37

7 Application to One-Round Sponge and Unruh’s Conjecture 37

∗Department of Applied Mathematics and Computer Science, Technical University of Denmark. Email: chmaj@dtu.dk
†Department of Computing Sciences, Bocconi University, Italy. Email: giulio.malavolta@unibocconi.it
‡Max Planck Institute for Security and Privacy, Germany.
§Faculty of Computer Science, Ruhr-Universität Bochum, Germany. Email: michael.walter@rub.de

1

mailto:chmaj@dtu.dk
mailto:giulio.malavolta@unibocconi.it
mailto:michael.walter@rub.de

1 Introduction

The random oracle model [BR93] is a popular heuristic in the analysis of cryptographic protocols, that
abstracts cryptographic objects as random functions and provides oracle access to other algorithms. From
a theoretical standpoint, the random oracle model allows one to prove unconditional statements about
cryptographic protocols, in a clean and well-defined model. On the practical side, the random oracle model
enables efficient cryptographic schemes and essentially every construction (be it a digital signature or a
public-key encryption) used in practice relies, in one way or another, on this heuristic in order to analyze
security.1 When considering security against quantum algorithms, it is natural to extend this model to allow
the algorithms to query the random function on a superposition of inputs. This is commonly referred to
as the quantum random oracle model (QROM) [BDF+11]. However, many of the techniques (and proofs)
developed in the (classical) random oracle model do not immediately carry over to the QROM. To illustrate
the difference, it suffices to note that in the classical settings the reduction can read the queries of the
algorithm, whereas the same action in the QROM may arbitrarily disturb the state of the algorithm.

To cope with this, the community has developed a series of new techniques to analyze quantum algorithm in
these settings. An important method in these settings is the compressed oracle technique [Zha19]. Conceptually,
this technique is the quantum analogue of the classical lazy-sampling method, which allows the reduction to
define the random function only on the inputs queried by the attacker. At a more technical level, the technique
considers a purified version of the random function, that allows the reduction to directly inspect the internal
state of the compressed oracle simulation (the so-called database), in order to gain partial/approximate
knowledge about the queries made by the algorithm. An extremely useful property in this context is that the
compressed oracle simulation stores (a superposition of) a list of input-output pairs, so to learn something
about the value H(x), and whether H(x) is known to the adversary, it is only necessary to inspect one
register. This technique has proven extremely successful in analyzing indifferentiability of cryptographic
schemes [Zha19], security reductions for the Fiat-Shamir transformation [LZ19b, DFMS21, DFMS21] and the
Fujisaki-Okamoto transformation [BHH+19, DFMS21, HHM22], and even new lower bounds on the query
complexity of quantum algorithms [Zha19, LZ19a, CFHL21] and space-time trade-offs [HM23].

The Random Permutation Model. In the random permutation model, algorithms are given oracle
access to a uniformly sampled permutation π ∈ SN , as well as its inverse π−1. This variant of the random
oracle model is motivated by cryptographic schemes, such as the Feistel construction for pseudorandom
permutations [LR88] or the industry-standard SHA-3 hash function [Dwo15], where an attacker has access to
both the permutation and its inverse. When considering quantum attackers, it is therefore equally natural to
assume that such a permutation can be implemented on a quantum computer (as it is publicly known), and
hence queried in superposition. Accordingly, it is natural to model this situation by a quantum-accessible
random permutation oracle, where one considers the unitary2

Uπ |x⟩ |y⟩ = |x⟩ |y ⊕ π(x)⟩

and one gives the adversary query access to Uπ and Uπ−1 . Classically, the random oracle and the random
permutation model are essentially equivalent. This is in stark contrast to the quantum setting where no such
connection is known. So far, it has proven difficult to repeat the success of Zhandry’s compressed oracle
technique for analyzing quantum query access to a uniformly random permutation: Despite several attempts
to come up with a full-fledged compressed permutation oracle [CMSZ19, Unr21, Cza21] the problem is still
open. On the other hand, few existing results rely on a bare-bones, “un-compressed” superposition oracle for
permutations [ABKM22, ABK+, ABPS23], whereas recent works [Ros21, Unr23] have made partial progress
on this problem but without being able to apply the formalism towards new query bounds.

Arguably, the main reason for the lack of progress is, that the compressed oracle technique relies on
the statistical independence of the output values of a random function, but the output values of a random
permutation are, of course, not independent (more discussion on this later). The purpose of this work is to
make progress on this front, and expand our technical toolkit in the analysis of random permutation oracles.

1Note however that the ROM (and QROM) are both fundamentally uninstantiable [CGH04].
2Alternatively, one can consider the in-place permutation V π defined as V π |x⟩ = |π(x)⟩, which is well defined since π is a

bijection, and give the adversary query access to V π and V π−1

= (V π)†. For the purposes of query bounds both models are
equivalent, since either can be simulated using two queries to the other. We discuss this in more detail in Section 4.

2

x3

π
x0

0c

y

π

x1

π

x2

…

Figure 1: The 1-round sponge.

1.1 Summary of Contributions

In this work we propose a new approach to analyze quantumly-accessible permutation and prove query lower
bounds in this setting. Our main ingredient is a new analysis of a representation of a permutation, known as
its strictly monotone factorization, which may be of independent interest. At a technical level, we prove a
series of lemmas that facilitate proofs of query lower bound in the random permutation model. Specifically:

• We present a permutation oracle (Section 4), that is the permutation analogue of Zhandry’s compressed
oracle technique. Our oracle makes crucial use of a particular representation of a permutation, known
as its strictly monotone factorization (Section 3).

• We prove a fundamental lemma for permutation oracles (Section 5), where we describe a procedure to
(approximately) determine whether an input was queried by the adversary, and we give a bound on the
precision of its output.

• We propose a progress measure for permutation oracles (Section 6), that bounds the success probability
of an algorithm after q queries to find an input/output pair that satisfies a given relation.

• We prove, as our main theorem, a general bound (Theorem 6.11) for any adversary to produce an
input-output pair satisfying some relation R, for any R. This bound states the following:

Theorem 1.1 (Informal). Let A be an algorithm with quantum query access to a random permutation π ∈ SN

and its inverse π−1, and let R be a relation. If A makes at most q queries and outputs x, then

Pr[(x, π(x)) ∈ R] ≤ O

(
q3rmax ln(N)

N

)
,

where rmax = max
{
maxx |Rx|,maxy |Rinv

y |
}
, with Rx = {y : (x, y) ∈ R} and Rinv

y = {x : (x, y) ∈ R}.

Illustrating the power of the new approach, we obtain as special cases the pre-image resistance of the
sponge construction for the special case of one absorption round (see Fig. 1), and the double-sided zero-search
conjecture [Unr23]. The former is the problem of finding an x such that π(x∥0c) = y∥0c for some y; it was
the original motivation of our work. Thus (Section 7):

Corollary 1.2 (One-Round Sponge, informal). Let A be an algorithm with quantum query access to a random
permutation π ∈ S{0,1}n and its inverse π−1, let c ∈ [n], and let y ∈ {0, 1}n−c. If A makes at most q queries
and outputs x, then

Pr[∃y′ ∈ {0, 1}c : π(x∥0c) = y∥y′] ≤ O

(
q3n

2min(c,n−c)

)
.

Corollary 1.3 (Double-Sided Zero-Search, informal). Let A be an algorithm with quantum query access to
a random permutation π ∈ S{0,1}n and its inverse π−1 and let c ∈ [n]. If A makes at most q queries and
outputs x, then

Pr[∃y ∈ {0, 1}n−c : π(x∥0c) = y∥0c] ≤ O

(
q3n

2c

)
.

3

1.2 Key Challenges and Techniques

To understand the main challenges of extending Zhandry’s method to permutations, and how we overcome
these to prove our results, it is useful to recall the key properties of the compressed oracle method, and see
why they fail for the case of permutation. The output values of a random function are independent as random
variables. The crucial implication of this fact is that there exists a list of random variables that are

(i) independent, and
(ii) learning one output requires looking at only one of the random variables, and
(iii) each variable stores only information about one output.

It is easy to find a representation of a random permutation as a list of random variables that has some of the
properties, but it is manifestly impossible to find one that has all, as the outputs are not independent. For
instance, by knowing that π(x) = y we can also infer that π(x′) ̸= y, for all x′ ̸= x.

One can therefore parameterize the set of approaches by which of the properties is given up on. In [Unr21],
for example, a formalization using lazy sampling of permutations as partial functions is used, giving up on
independence. In [Ros21], an analysis via the representation theory of the permutation group is conducted,
which yields independent data via the decomposition into irreducible representation and symmetries, but
gives up at least partially on locality.

Random Permutations from Independent Transpositions. Our main idea is to use the well-known
fact that any permutation π ∈ SN admits a unique decomposition

π = (N tN) (N−1 tN−1) · · · (2 t2) (1 t1) (1.1)

where we denote by (k tk) the transposition that sends k to tk and viceversa. If one leaves out trivial
transpositions (i.e., the factors with k = tk), one obtains a so-called strictly monotone factorization of a
permutation. It is well-known that any permutation π ∈ SN has a unique strictly monotone factorization,
with number of terms equal to the Cayley distance between π and the identity permutation, that is, the
minimum number of transpositions (of arbitrary type) in any factorization of π.

A useful property of this representation is that the transpositions making up a uniformly random
permutation via the strictly monotone factorization are independent; tk is uniformly chosen from the set
{1, . . . , k}. The main, less easy-to-see, property of this decomposition that we are going to use, is the fact
that we can “track” the set of transpositions that act non-trivially on a given input x (which we refer to as
being active for x). Crucial to our analysis is the fact that, for any given input x, the expected number of
active transpositions is small, i.e., at most about ln(N). To compute the random permutation, only a small
amount of information about non-active transpositions is retrieved, namely that they are not active. On the
other hand, the output sensitively depends on the value tk for an active location k, in the sense that changing
tk to any other value changes the output. This gives us a way to quantify the sparsity of the (quantum
analogue of the) list of transposition that has been read. Although this means we only have an approximate
and relaxed variant of the second property above, we will be able to show that this quantity is small enough
to emulate the functionality of the compressed oracle method for the case of permutations.

The Permutation Oracle. With the above discussion in mind, let us now describe (a simplified version
of) our permutation oracle. The simulation initializes a database of N registers D = D1 . . . DN and the k-th
register Dk is initialized with the state

|+k⟩ =
1√
k

k∑
t=1

|t⟩

which will be interpreted as the uniform superposition over all possible values tk in Eq. (1.1). Since any given
permutation π ∈ SN uniquely determines a basis state |π⟩ = |t1, . . . , tN ⟩, it is easy to see that the initial state
of the database corresponds to a uniform superposition over all possible permutations:

N⊗
k=1

|+k⟩Dk
=

1√
N !

∑
π∈SN

|π⟩D .

4

We can then define the forward query oracle (OSPO
XYD) and the inverse query oracle (OSPO,inv

XYD) provided to the
adversary by their actions of the basis states |x⟩X , |y⟩Y , and |π⟩D as:

OSPO
XYD |x, y, π⟩XYD = |x, y ⊕ π(x), π⟩XYD ,

OSPO,inv
XYD |x, y, π⟩XYD = |x, y ⊕ π−1(x), π⟩XYD .

In other words, the oracles apply a series of transpositions controlled on the current state of the database.

A Fundamental Lemma for Permutation Oracles. What makes the Zhandry’s framework so useful is
the ability to read off the database information about the adversary’s state.3 Thus our next task is to develop
the necessary machinery for doing so. The first step is to prove a fundamental lemma, a statement akin to
the existing bound for random functions [Zha19, CFHL21]. Fix an input x and an output y, simplifying a
bit, the content of the fundamental lemma is the approximate equivalence of the following two experiments:

Exp. I: Read the value π(x) off the database state and accept if π(x) = y, reject otherwise.

Exp. II: Check if the adversary has queried x, and reject if this is not the case. Else proceed as above.

The (approximate) equivalence of these two experiments is useful to implement a somewhat “gentle” measure-
ment on the database state, for a given input x, since if we detect that the adversary never queried x, there
is no need to disturb the state any further.

Of course at this point it is not clear what we exactly mean by “the adversary has queried x”, and so
the next step is to make this notion more precise. We observe that querying the superposition oracle on a
basis state |x⟩ must have a non-trivial effect on database location Dx in the computational basis, since it is
determining the value of the first transposition, which is always active for x. Thus, we can formally define
this quantity via a binary-outcome projective measurement

MDx := {|+x⟩⟨+x|Dx , I − |+x⟩⟨+x|Dx}

and conditioning on the second outcome occurring. As a sanity check, note that if the first outcome is
observed instead, then the database state is in its initial condition. With some routine calculation, we can
then derive a bound

|Pr[Exp. I accepts]− Pr[Exp. II accepts]| ≤
√

1

x

where the term 1/x comes from the non-commutativity of the measurement MDx and the standard basis
measurement used to determine π.

Unfortunately this bound on its own is not very meaningful: To see why, simply take x = 1 where we
obtain a trivial bound. The source of this problem is the asymmetric treatment of different registers in the
representation of the permutation, where lower registers have a much smaller set of possible transpositions.
To deal with this, we introduce our next idea.

Twirling the Oracle. We overcome the challenge by randomizing the order in which we apply the strictly
monotone decomposition. We address this by pre- and post-composing, or “twirling”, the permutation oracle
with two random permutations τ and σ. In other words, we define the twirled version of the permutation
oracle as

OTSPOσ,τ

XYD |x, y, π⟩XYD = |x, y ⊕ τ−1(π(σ(x))), π⟩XYD

OTSPOσ,τ ,inv
XYD |x, y, π⟩XYD = |x, y ⊕ σ−1(π−1(τ(x))), π⟩XYD

for forward and inverse queries, respectively. This yields our final construction, which we call the twirled
superposition permutation oracle. Note that the permutations τ and σ are treated differently than π in the

3Although the analogy with Zahndry’s technique is helpful for understanding our framework, the direct comparison is
somewhat inaccurate. In particular, contrary to Zhandry’s method, we will not attempt to compress the database in any way.
As a consequence of this, our simulation will not be computationally efficient, which is sufficient to prove query lower bounds.
We leave the development for an efficient version of our framework as ground for future work.

5

simulation, since we do not require any special property from their representation and their sole purpose is to
randomize the view of the adversary in the sense that the adversary does not know which inputs correspond
to small values x in the untwirled oracle. Another way to describe the twirled superposition permutation
oracle is that it is constructed based on the strictly monotone factorization in a random order. This technique
renders the permutation actually stored in a quantum register independent from the view of the algorithm
interacting with the twirled superposition permutation oracle.

Equipped with this oracle, our bound obtained in the analysis of the fundamental lemma translates into
an expectation over the random choice of the register x. Considering the square of the difference between the
success probability of the two experiments, and taking the expectation over x, we obtain the bound

1

N

N∑
x=1

1

x
≤ ln(N) + 1

N

using a standard bound on the harmonic sum. Note that the final bound is independent of x.

The Progress Measure. Once we have established a procedure to read information off the database, what
is left to be decided is what we want to read from the database. Due to the challenge described above, we
cannot straightforwardly implement a predicate that checks whether there exist an input-output pair (x, π(x))
that was read by the adversary, such that (x, π(x)) ∈ R, for some relation R. Instead, for a given input x,
our progress measure is defined in terms of the following two-step procedure:

(i) Apply the projective measurementMx defined above, and reject unless the second outcome is obtained
(intuitively, this rejects unless the permutation was queried on input x by the adversary).

(ii) Check if (x, π(x)) indeed satisfies the relation R, which can be implemented by the following predicate:

ΠR,x
D :=

∑
π∈SN :(x,π(x))∈R

|π⟩⟨π|D.

This procedure can be summarized by the following measurement operator:

ER,x
D := ΠR,x

D (I − |+x⟩⟨+x|Dx).

It is easy to bound the progress measure if the adversary makes no query, since the above projection is acting
on a uniform superposition. The challenge, which is the technically most involved part of our work, is to track
the bound on the progress measure as the adversary queries the oracles in the forward and inverse direction. At
a very high-level, we achieve this by splitting the effect of the action of the oracle QSPO

XYD = {OSPO
XYD, O

SPO,inv
XYD }

in two terms ∥∥∥ER,x
D QSPO

XYD |ϕ⟩
∥∥∥− ∥∥∥ER,x

D |ϕ⟩
∥∥∥

≤
∥∥∥ER,x

D QSPO
XYD(I − ER,x

D) |ϕ⟩
∥∥∥

≤
∥∥∥ER,x

D QSPO
XYD(I −ΠR,x

D)(I − |+x⟩⟨+x|Dx) |ϕ⟩
∥∥∥+ ∥∥∥ER,x

D QSPO
XYD|+x⟩⟨+x|Dx |ϕ⟩

∥∥∥
for any state |ϕ⟩. We bound the two summands separately.

The RHS summand is bounded with a delicate analysis on the effect of the query unitary on the joint
database-adversary state. We refer the reader to the technical sections for the calculations and we only
mention here that the bound that one obtains with such analysis will not be sufficient for our main theorem.
Instead, we will once again use the randomization of the register x and the twirling of the permutation π to
transform the worst-case bound in a much sharper average-case bound

1

N

N∑
x=1

∥∥∥ER,x
D QSPO

XYD|+x⟩⟨+x|Dx |ϕ⟩
∥∥∥2 ≤ O

(
q2rmax ln(N)

N2

)
where rmax is the maximum number of y such that (x, y) ∈ R, for all x. We can then turn this inequality
back to a worst-case bound over x with a pidgeonhole argument, at the cost of losing a factor N in the bound.
Fortunately, the resulting term is still small enough to obtain a good bound. Next, we deal with the LHS
summand of the above bound.

6

Sparsity Analysis. To bound the LHS of the summand, let us first manipulate the expression∥∥∥ER,x
D QSPO

XYD(I −ΠR,x
D)(I − |+x⟩⟨+x|Dx) |ϕ⟩

∥∥∥ =
∥∥∥ER,x

D (I −ΠR,x
D)QSPO

XYD(I − |+x⟩⟨+x|Dx) |ϕ⟩
∥∥∥

≤
∥∥∥ER,x

D (I −ΠR,x
D)QSPO

XYD

∥∥∥ · ∥(I − |+x⟩⟨+x|Dx) |ϕ⟩∥

=
∥∥∥ER,x

D (I −ΠR,x
D)

∥∥∥ · ∥(I − |+x⟩⟨+x|Dx) |ϕ⟩∥

≤
√

rmax

x
∥(I − |+x⟩⟨+x|Dx) |ϕ⟩∥

where the first inequality follows by the submultiplicativity of the operator norm and the second inequality is
obtained by observing that∥∥∥ER,x

D (I −ΠR,x
D)

∥∥∥ =
∥∥∥ΠR,x

D (I − |+x⟩⟨+x|Dx
)(I −ΠR,x

D)
∥∥∥ =

∥∥∥ΠR,x
D |+x⟩⟨+x|Dx

(I −ΠR,x
D)

∥∥∥ ≤ ∥∥∥ΠR,x
D |+x⟩⟨+x|Dx

∥∥∥
which can be bound to

√
rmax/x using the same argument as in the fundamental lemma. Thus, bounding this

term boils down to bounding the amount of locations read by the adversary, i.e., the number of active registers
in the database. Once again, the number of active locations on the initial state of the database is zero, so
bounding this term involves analyzing the effect of the query unitary QXYD on the joint database-adversary
state. A delicate analysis leads to a bound of

1

N

N∑
x=1

|R|
x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥2 ≤ O

(
q3rmax ln(N)

N2

)
in expectation over x, which we can once again turn into a worst-case bound on every x at the cost of an
extra 1/N factor. We refer the reader to the technical sections for more details.

Putting Things Together. Overall, the above analysis allow us to bound, via our progress measure, how
the success probability of the predicate ER,x evolves as the adversary performs more queries. The final but
crucial observation is that if x is the output of the algorithm A, the measurement ER,x accepts precisely
if Exp. II accepts. Applying the fundamental lemma to this bound, we obtain a bound on the acceptance
probability of Exp. I (as defined above), which is the quantity that we are interested in.

This outline ignores many subtle aspects of the proof, but it contains the main ideas. Putting the bounds
on the two main terms together, we obtain Theorem 1.1 and hence Corollaries 1.2 and 1.3.

1.3 Concurrent Independent Work

A recent manuscript by Carolan and Poremba [CP24], developed concurrently and independently from our
work, also shows a proof for the double-sided zero-search conjecture of Unruh and the one-wayness of the
one-round sponge. The techniques used to prove the bound are quite different and their work achieves the
result using a worst-case to average-case reduction for random permutation, then appealing to known bounds.
The advantage of their approach is that the bound obtained is tight. In contrast, our paper proposes a
new framework to analyze permutation oracles and a theorem that applies to arbitrary relations on (single)
input-output pairs, promising opportunities for generalization.

2 Preliminaries

We abbreviate [N] := {1, 2, . . . , N}. For convenience, we assume that N = 2n, so we can identify [N] ∼= {0, 1}n
and use ⊕ to mean bitwise addition. For a set S, a probability distribution µ and a (classical or quantum)
algorithm A, we write x ← S, x ← D, and x ← A for sampling a uniformly random element x from S,
sampling x according to the distribution D, or running an algorithm A to produce an output x. If the output
is quantum, we usually use upper-case letters, following our conventions for quantum registers discussed
below.

7

Combinatorics. We will also use the fact that for the harmonic numbers

HN :=

N∑
k=1

1

k
, (2.1)

the quantity HN − lnN is monotonically decreasing with N . In particular, it holds that

HN ≤ ln(N) + 1 (2.2)

for every N ≥ 1.

Quantum Information. Here we provide some preliminary background on quantum mechanics and
quantum information. For more in-depth accounts we refer the reader to [NC00, Wat18].

We will label quantum systems by A,B,X, Y, etc. Any quantum system A is characterized by a Hilbert
space HA. When HA = CΣA for some finite set ΣA, we call A a quantum register. This means that HA has an
orthonormal standard basis |a⟩ labeled by the elements a ∈ ΣA. When Σ = [N], we can identify H = CN with
its standard basis |a⟩ for a ∈ ZN . If we have quantum system composed of two registers, say A and B, then the
corresponding Hilbert space is the tensor product of the individual Hilbert spaces HAB = HA ⊗HB

∼= CΣAB ,
with ΣAB = ΣA × ΣB labeling the standard product basis. Accordingly, we may think of the composite
system AB = (A,B) as a register, and similarly for any collection S of registers.

States of a quantum system are given by density operators, that is, positive semi-definite operators of trace
one. We call a state pure if this operator is a rank-one orthogonal projector, i.e., equal to |ϕ⟩⟨ϕ|, where |ϕ⟩ is
a unit vector. We will often identify pure states with unit vectors. The trace distance between two states ρ
and τ , denoted by Td(ρ, τ) is defined as

Td(ρ, τ) =
1

2
∥ρ− τ∥1 =

1

2
tr

(√
(ρ− τ)†(ρ− τ)

)
.

The operational meaning of the trace distance is that 1
2(1 + Td(ρ, τ)) is the maximal probability that two

states ρ and τ can be distinguished by any (possibly unbounded) quantum channel, when given one or the
other with equal probability.

There are two basic kinds of quantum operations. The first is to apply unitary operators, or unitaries.
If U is a unitary on H and we apply it to a state ρ, the result is UρU †, which is again a state. We denote
by U(H) the group of unitary operators on H, and abbreviate U(N) = U(CN). The second is to measure
the quantum state. We will only require projective measurements, which are given by a family of orthogonal
projections {Pω}ω∈Ω, labeled by some finite index set Ω, such that

∑
ω∈Ω Pω = I. If one applies such a

measurement to a system in state ρ, then the probability of seeing outcome ω ∈ Ω is pω = tr(Pωρ), in which
case the state changes to PωρPω/pω. If {Pa} = {|a⟩⟨a|} consists of the projections onto the standard basis of
some register, this is called a standard basis measurement.

We will use subscripts to denote the corresponding quantum system or tensor factors, e.g., ρAB denotes a
density operator on HAB = HA ⊗HB, and ρAB = |Ψ⟩⟨Ψ|AB in the case of a pure state, with |Ψ⟩AB ∈ HAB.
Similarly, we write UA in the case of a unitary on HA. In particular, IA denotes the identity operator on HA.

For unitaries and measurement operators (but never for states), it will be useful to identify operators on
some Hilbert space with operators on some any other Hilbert space which includes the former as a tensor
factor, by tensoring with the identity operator. For example, we will often abbreviate the operator UA ⊗ IB
on HAB simply by UA if no confusion can arise. This is useful if we want to quantum operations to a subset
of registers. For example, if UA is a unitary and ρAB a state, then UAρABU

†
A = (UA ⊗ IB)ρAB(U

†
A ⊗ IB) is

the result of applying the unitary UA to the first register A when the overall system starts out in state ρAB,
and similarly for measurements.

We also recall the gentle measurement lemma [Wil19, Lemma 9.4.2].

Fact 2.1 (Gentle measurement). Let ρ be a quantum state, and let {P, I − P} be any projective measurement
with two outcomes. If tr(Pρ) ≥ 1− δ, the post-measurement state ρ′ := PρP/ tr(Pρ) satisfies

Td(ρ, ρ′) ≤
√
δ.

8

Quantum Algorithms. In this work we consider the query complexity of algorithms with quantum access
to oracles. An oracle is modeled by one or more unitaries O operating on an input/output register Z and
possibly some internal register D (which will always be initialized explicitly). A quantum algorithm A making
queries to this oracle has, without loss of generality, two registers – the oracle’s input/output register Z and
an internal work register A. It takes the following form: First, the algorithm’s registers are initialized in the
initial state |0⟩AZ . Then the algorithm alternatingly applies oracle-independent unitaries and query unitaries:

U
(q)
AZOZDU

(q−1)
AZ OZD . . . U

(1)
AZOZDU

(0)
AZ (2.3)

Note that A can be given access to any oracle with input/output register Z. Finally, some (sub)registers
might be measured or returned directly to obtain the classical and quantum outcomes of the algorithm. We
write AO for such an application of a query algorithm to an oracle O. In the above situation, we say that the
algorithm makes q queries to the oracle. Thus we only consider the query complexity of an algorithm, but not
the time complexity of the unitaries U (k). In other words, these unitaries need not be efficient. In particular,
any advice state can be placed in the adversary’s quantum memory by using the first unitary U (0).

3 Random Permutations

We denote by SN the permutation group on N elements, that is, the group of bijections of [N]. We have
a chain of subgroups S1 ⊂ S2 ⊂ · · · ⊂ SN , where for each j ∈ [N−1] we think of Sj as those permutations
in Sj+1 that fix the element j+1. For k, l ∈ [N], we denote by τ = (k l) the transposition that sends τ(k) = l
and τ(l) = k. It will be convenient to allow k = l, in which case (k l) = (k k) is the identity permutation.

3.1 Random Permutations from Independent Transpositions

The starting point for our work is the following representation of permutations.

Lemma 3.1. For any π ∈ SN , there exist unique numbers tk ∈ [k] for k ∈ [N] such that

π = (N tN) (N−1 tN−1) · · · (2 t2) (1 t1) . (3.1)

While we always have t1 = 1, it is useful to include this term to obtain simpler formulas below.

Proof. Any permutation π ∈ SN has a unique decomposition of the form

π = (N t)σ, (3.2)

where t ∈ [N] and σ ∈ SN−1. Indeed, for (3.2) to hold we must have t = π(N) and hence σ = (N t)π,
but these formulas always define a valid decomposition of the form of Eq. (3.2). The lemma follows by
induction.

If one leaves out trivial transpositions in Eq. (3.1) (i.e., the factors with k = tk), one obtains a so-called
strictly monotone factorization. It is well-known that any permutation π ∈ SN has a unique strictly monotone
factorization, with number of terms equal to the Cayley distance between π to the identity permutation, that
is, the minimum number of transpositions (of arbitrary type) in any factorization of π.

Corollary 3.2. A random permutation π ∈ SN is uniformly random if and only if the numbers tk ∈ [k]
for k ∈ [N] in Eq. (3.1) are independent and uniformly random.

Given a permutation in the form of Eq. (3.1), it is easy to compute the inverse:

π−1 = (1 t1) (2 t2) · · · (N−1 tN−1) (N tN) . (3.3)

Note however that this decomposition is in general not of the form of Eq. (3.1). It will also be convenient to
introduce the following notation:

π>k = (N tN) (N−1 tN−1) · · · (k + 1 tk+1) ,

π<k = (k − 1 tk−1) · · · (2 t2) (1 t1) .
(3.4)

9

Note that π = π>k (k tk)π<k and π−1 = (π<k)
−1 (k tk) (π>k)

−1. We use the convention that the subset-
of-transpositions subscripts take precedence before other operations modifying a permutation, e.g. π−1<k :=

(π<k)
−1.

The following lemma will be useful in Section 6.2.

Lemma 3.3. Let π ∈ SN be uniformly random and k ∈ [N].

(i) If ξ ∈ Sk is uniformly random and independent from π, then π>kξ is uniformly random in SN .
(ii) If ξ ∈ Sk is uniformly random and independent from π, then ξπ>k is uniformly random in SN .
(iii) For every ℓ ∈ {k + 1, . . . , N}, it holds that Pr(π>k(k) = ℓ) = 1

N .

Proof. (i) This is clear from Corollary 3.2.
(ii) Using the notation of Eq. (3.4), we have

ξπ>k = ξ (N tN) ξ−1ξ (N−1 tN−1) ξ
−1 · · · ξ (k + 1 tk+1) ξ

−1ξ

= (N ξ(tN)) (N−1 ξ(tN−1)) · · · (k + 1 ξ(tk+1)) ξ,

where we used that ξ ∈ Sk and hence it fixes k + 1, . . . , N , Now, the tℓ ∈ [ℓ] for ℓ > k are uniformly
random and independent from ξ, so the same is true for the ξ(tℓ) ∈ [ℓ] for ℓ > k. Thus we see that the
distribution of ξπ>k is the same as the distribution of π>kξ, and the claim follows from part (i).

(iii) This follows from the preceding:

Pr(π>k(k) = ℓ) = Pr((ξπ>k)(k) = ℓ) =
1

N
.

with ξ as in part (ii).

3.2 Active Transpositions

In the following we characterize the transpositions that, in the above decomposition of a permutation, are
relevant to determine the action of the permutation on a given element. The results of this section will not
be needed to prove our main theorem, but we include them here for the purpose of building up an intuition.

Given a permutation π ∈ SN , consider its unique decomposition as in Lemma 3.1:

π = (N tN) (N−1 tN−1) · · · (2 t2) (1 t1) ,

When does a given transposition (k tk) impact the computation of π(x) for some given x ∈ [N]? To study
this we introduce the following definitions:

Definition 3.4 (Active sets). Given a permutation π ∈ SN and x, k ∈ [N], we say k is active for π and x
if π<k(x) ∈ {k, tk}. Similarly, for y ∈ [N] we say that k is inverse-active for π and y if (π>k)

−1(y) ∈ {k, tk}.4
We denote by A(π, x), Ainv(π, y) ⊆ [N] the set of active and inverse-active k, respectively, defined as above.

If k is active for π and x then changing tk to any other value will lead to a different π(x). Similarly, if k
is inverse-active for π and y then changing tk (in the decomposition of π) to any other value will lead to a
different π−1(y). (The converses of these statements are in general not true.) Note that π<k(x) = k if and
only if x = k, since π<k ∈ Sk−1.

It is clear that the action of a permutation or its inverse on some element only depends on the corresponding
active set:

Lemma 3.5. Let π ∈ SN be a permutation. For any x ∈ [N], let A(π, x) = {k1 < · · · < kℓ} denote the active
locations, sorted in increasing order. Then we have:

π(x) = (kℓ tkℓ)
(
kℓ−1 tkℓ−1

)
· · · (k2 tk2) (k1 tk1) (x).

Similarly, if y ∈ [N] and Ainv(π, y) = {k1 < · · · < kℓ} are the corresponding inverse-active locations, then:

π−1(y) = (k1 tk1) (k2 tk2) · · ·
(
kℓ−1 tkℓ−1

)
(kℓ tkℓ) (y).

4Note that this is in general not equivalent to saying that k is active for π−1 and y, as the latter would refer to the
decomposition of π−1 in the form of Eq. (3.1), rather than to Eq. (3.3).

10

We now show that the event that k is active for a random permutation (and fixed x) is independent of
the numbers t1, . . . , tk−1, and compute the probability with which this happens:

Lemma 3.6. Let x ∈ [N]. Then, for a uniformly random π ∈ SN , we have:

Pr(k ∈ A(π, x) | t1, . . . , tk−1) =


1
k if x < k,
1 if x = k,
0 if x > k,

hence this is also equal to Pr(k ∈ A(π, x)). In particular, the events k ∈ A(π, x) for k ∈ [N] are independent.

Proof. Recall that k ∈ A(π, x) means that π<k(x) ∈ {k, tk}. For x < k, we have π<k(x) ∈ [k − 1], hence the
event π<k(x) ∈ {k, tk} is equivalent to π<k(x) = tk. For a uniformly random π, the numbers t1, t2, . . . , tk are
independent and uniformly random (by Corollary 3.2). Hence tk ∈ [k] is uniformly random given t1, . . . , tk−1.
As π<k(x) ∈ [k − 1] only depends on the latter, it follows that it coincides with tk with probability 1

k .
For x ≥ k we have π<k(x) = x, hence the event π<k(x) ∈ {k, tk} is equivalent to x = k.

Next we are going to bound the expected number of active locations for a random choice of the permutation.

Lemma 3.7. Let x ∈ [N]. Then, for a uniformly random π ∈ SN , we have: E|A(π, x)| ≤ 1 + ln(N/x).

Proof. Recall that we denote by Hn =
∑n

k=1
1
k the harmonic numbers. Then, using Lemma 3.6, we have

E|A(π, x)| = 1 +
N∑

k=x+1

1

k
= 1 +HN −Hx ≤ 1 + lnN − lnx.

where the inequality holds as Hn − lnn is monotonically decreasing with n. This completes the proof.

We also provide a bound on the expected number of inverse-active locations. Since this is not the same as
the expected number of active locations for the inverse, the bound differs from Lemma 3.7.

Lemma 3.8. Let y ∈ [N]. Then, for a uniformly random π ∈ SN , we have: E|Ainv(π, y)| ≤ 1 + 2y−2
N < 3.

Proof. Suppose first that there is some k ∈ [N] such that tk = y. Let k∗ ∈ [N] denote the largest
such k. Since tk∗ ∈ [k∗], we clearly must have k∗ ≥ y. Then we have (π>k)

−1(y) = y /∈ {k, tk} for
all k > k∗, (π>k∗)

−1(y) = y = tk∗ , and (π>k)
−1(y) = k∗ /∈ {k, tk} for all k < k∗. Together, we see

that Ainv(π, y) = {k∗}. On the other hand, if tk ̸= y for all k ∈ [N] then (π>k)
−1(y) = y for all k ≥ y and

hence Ainv(π, y) = {y} ∪Ainv(π<y, ty). Combining the above observations, we find that

E|Ainv(π, y)| = 1 + Pr(ty ̸= y, . . . , tN ̸= y) E
[
Ainv(π<y, ty) | ty ̸= y, . . . , tN ̸= y

]
= 1 +

y − 1

N
E
[
Ainv(π<y, ty) | ty ̸= y

]
= 1 +

1

N

y−1∑
z=1

E
[
Ainv(π<y, z)

]
,

where we first used that π<y is independent from ty, . . . , tN , and the last step holds because ty is uniformly
random in [y − 1] conditional on ty ̸= y. Since π<y is uniformly random in Sy−1, we obtain the following
recurrence for e(N, y) := Eπ←SN

|Ainv(π, y)|:

e(N, y) = 1 +
1

N

y−1∑
z=1

e(y − 1, z) = 1 +
1

N
f(y − 1), (3.5)

where we introduced the notation f(n) :=
∑n

y=1 e(n, y), with f(0) = 0, which in turn satisfies the recurrence

f(n) =
n∑

y=1

(
1 +

1

n
f(y − 1)

)
= n+

1

n

n−1∑
k=0

f(k)

for all n > 0. It is easy to see that f(n) ≤ 2n for all n ≥ 0 by using induction. Indeed, this is clearly true
for n = 0, and if it holds that f(k) ≤ 2k for all k < n then also f(n) ≤ n+ 1

n

∑n−1
k=0 2k = n+ n − 1 ≤ 2n.

Using this estimate in Eq. (3.5) we obtain the desired result:

E|Ainv(π, y)| = e(N, y) = 1 +
1

N
f(y − 1) ≤ 1 +

2y − 2

N
.

11

4 Quantum Random Permutations Oracles

The decomposition of a random permutation introduced in Section 3.1 provides a way of sampling a random
permutation by sampling many independent and smaller random data, namely the individual transpositions
that make up the permutation (Corollary 3.2). Importantly, typical input-output pairs of the random
permutation only depend on a few of them (Lemmas 3.7 and 3.8). In this section we will use this idea to
construct an oracle that exactly simulate a quantum-accessible random permutation, but has an internal
state that can be used to analyze quantum query algorithms. We first introduce some notation. Given any
permutation π ∈ SN , we denote by Uπ the corresponding permutation operator on CN ⊗CN , that is,

Uπ |x, y⟩ = |x, y ⊕ π(x)⟩ ∀x, y ∈ [N].

This defines a unitary representation of SN on CN ⊗CN .

Definition 4.1 (Quantum-accessible random permutation). A quantum-accessible random permutation
consists of query access to Uπ and to Uπ−1 , for a permutation π ∈ SN chosen uniformly at random.

When A is a query algorithm that gets query access to two oracles that act on CN ⊗CN and π ∈ SN is a
permutation, we write AUπ ,Uπ−1

to indicate that we use the unitaries Uπ and Uπ−1 as the two oracles.
Above we defined Uπ by the usual formula for a quantum oracle corresponding to a Boolean function, but

because π is a bijection we could also instead work with oracles that modify their input in-place, that is,

V π |x⟩ = |π(x)⟩ ∀x ∈ [N].

However, to prove a query lower bound we will be able to consider either type of oracles. This is because the
standard and the in-place variants can simulate each other at the cost of doubling the number of queries, if
one is given access to the permutation as well as its inverse: it holds that

Uπ
XY = V π−1

X CNOTX→Y V π
X ,

Uπ−1

XY = V π
X CNOTX→Y V π−1

X ,

as well as
V π
X |0⟩Y = Uπ−1

XY SWAPX↔Y Uπ
XY |0⟩Y ,

V π−1

X |0⟩Y = Uπ
XY SWAPX↔Y Uπ−1

XY |0⟩Y .

4.1 Superposition Permutation Oracle

We first construct a superposition oracle for random permutations. Like those for random functions, it is
obtained by replacing the random (classical) choice of permutation by a uniform (quantum) superposition.
Our oracle is specified by an internal quantum state space, an initial state, query unitaries (one for the
random permutation and one for its inverse), and a recovery routine. The query unitaries will be constructed
by applying the transpositions (k tk) in the right order, with each tj obtained from the internal state of the
oracle. Generalizing the approach of [CFHL21], we propose the following definition.

Definition 4.2 (Superposition permutation oracle). The superposition permutation oracle (SPO) is defined
as follows:

• The state space, called the database, consists of N registers, D = D1 · · ·DN with the k-th register Dk

having dimension k and computational basis |1⟩ , . . . , |k⟩. Any permutation π ∈ SN , determines a basis
state |π⟩D = |t1, . . . , tN ⟩D, where the numbers tk ∈ [k] are chosen as in Eq. (3.1).

• The initialization routine InitSPOD initializes each register in a uniform superposition over the basis states.
That is, the initial state of the database is

|ΦSPO⟩D =
1√
N !

∑
π∈SN

|π⟩D =
N⊗
k=1

|+k⟩Dk
, where |+k⟩Dk

=
1√
k

k∑
t=1

|t⟩Dk
.

12

• There are two query unitaries, OSPO
XYD and OSPO,inv

XYD , that define the two interfaces available to the query
algorithm and that simulate oracles for a random permutation and its inverse. They are defined as
follows: For all x, y ∈ [N] and π ∈ SN ,

OSPO
XYD |x, y, π⟩XYD = |x, y ⊕ π(x), π⟩XYD ,

OSPO,inv
XYD |x, y, π⟩XYD = |x, y ⊕ π−1(x), π⟩XYD .

• The recovery routine RecSPOD simplify measures all registers D1, . . . , DN in the computational basis to
obtain tk ∈ [k] for k ∈ [N]. It outputs the corresponding permutation according to Eq. (3.1).

When A is a query algorithm that gets query access to two oracles acting on two N -dimensional register X
and Y , and if D is the database register of a superposition permutation oracle, we write ASPOD to indicate
that we use the interfaces OSPO

XYD and OSPO,inv
XYD , respectively, to implement the two types of oracles queries. It

is straightforward to verify that the SPO then exactly simulates a quantum-accessible random permutation.

Lemma 4.3. Let A be a query algorithm that gets query access to two oracles that act on CN ⊗CN . Then
the joint state of the classical random variable π and the quantum register B is the same for the following two
experiments:

(i) Sample π ← SN uniformly at random and run B ← AUπ ,Uπ−1

.
(ii) Run InitSPOD , then B ← ASPOD , and finally π ← RecSPOD .

Proof. We show that both experiments give rise to the same joint state as the following:

(iii) Run InitSPOD , then π ← RecSPOD , and finally B ← ASPOD .

Indeed, (i) and (iii) are equivalent by Corollary 3.2 and the fact that measuring a uniform superposition
yields a uniformly random sample, while (iii) and (ii) are equivalent because measuring in the computational
basis commutes with unitaries that are controlled on this basis.

A consequence of Lemma 3.1 is that π(x) = π≥x(x), so in particular π(x) does not depend on tx′ for
x′ < x. For the SPO, this means that when a query is made with input x, the registers Dx′ for x′ < x are not
used, i.e., the query operator acts as the identity on them.

Lemma 4.4. The SPO query operator fulfils the equation

OSPO
XYD |x⟩X |y⟩Y |π≥x⟩D≥x

= |x⟩X |y ⊕ π≥(x)⟩Y |π≥x⟩D≥x
⊗ ID<x .

Proof. This follows directly from Definition 4.2 and Lemma 3.1.

4.2 Twirled Superposition Permutation Oracle

Just like is the case for Zhandry’s compressed oracle for random functions, we would like to be able to inspect
the internal state of the oracle (that is, the database) to gain partial, approximate knowledge about the
queries made by the algorithm. However, there are two important caveats in the permutation case.

First, Zhandry’s compressed oracle satisfies the extremely useful property that the compressed oracle stores
(superpositions of) input-output pairs. This means that in order to learn something about the value H(x) of
the random function H at some point x ∈ [N], and whether this value is known to the adversary, it is only
necessary to measure one register. In contrast, we represent permutations as a product of transpositions and
hence the database of our permutation oracle stores the analogous information in a less localized fashion. If
we want to determine the value π(x) of the random permutation π at some point x ∈ [N], in general we may
need to inspect all registers Dk for k ≥ x. On the other hand, recall that for any fixed x, typically only Õ(1)
permutations are active and suffice to determine π(x) (see Lemmas 3.5, 3.7 and 3.8).

Second, Zhandry’s compressed oracle has the desirable feature that one can “jointly measure” whether a
query algorithm has accessed a register and what function value it holds, with only a small error. In our permu-
tation oracle the analogous procedure is to apply the binary measurementMk := {I−|+k⟩⟨+k|Dk

, |+k⟩⟨+k|Dk
}

to learn whether the k-th transposition has been accessed and, if so, measure in the computational basis to

13

learn what its value is. However, since the size of the support of the uniform superposition |+k⟩Dk
depends

on k, the error in this “joint measurement” depends on k. For example, suppose an algorithm managed
through some combination of queries and measurements to learn tk with certainty for some particular k ∈ [N].
Then, conditional on this event, the database register Dk is in state |tk⟩. Applying the measurementMk in
this state will, however, return outcome |+k⟩Dk

with probability |⟨+k|tk⟩|2 = 1
k , which need not be small!

Both challenges can be addressed by pre- and post-composing, or “twirling”, the SPO with two random
permutations. This yields our final construction, which we call the twirled superposition permutation oracle.
For convenience we first define a version where the twirls are fixed.

Definition 4.5 (Twirled superposition permutation oracle). For any two fixed permutations σ, τ ∈ SN , the
(σ, τ)-twirled superposition permutation oracle (TSPOσ,τ) is defined as follows:

• The state space consists of the same database D as the superposition permutation oracle.

• The initialization routine is the same as for the superposition permutation oracle and hence we will
continue to denote it by InitSPOD .

• There are two query unitaries, OTSPOσ,τ

XYD and OTSPOσ,τ ,inv
XYD , that define the two interfaces available to the

query algorithm and that simulate oracles for a random permutation and its inverse. They are defined
as follows. For all x, y ∈ [N] and π ∈ SN

OTSPOσ,τ

XYD |x, y, π⟩XYD = |x, y ⊕ τ−1(π(σ(x))), π⟩XYD ,

OTSPOσ,τ ,inv
XYD |x, y, π⟩XYD = |x, y ⊕ σ−1(π−1(τ(x))), π⟩XYD .

where X and Y are the N -dimensional target register of the oracles.

• The recovery routine RecTSPO
σ,τ

D first applies the recovery routine RecSPO to obtain a permutation π ∈ SN ,
and then returns τ−1πσ.

When A is a query algorithm that gets query access to two oracles acting on two N -dimensional register X
and Y , and if D is the database register of a superposition permutation oracle, we write ATSPOσ,τ

D to indicate
that we use the interfaces OTSPOσ,τ

XYD and OTSPOσ,τ ,inv
XYD , respectively, to implement the two types of oracles

queries.
It is easy to see that the twirled superposition permutation oracles exactly simulate the ordinary one

(whether the twirls are fixed or randomly sampled). Hence it also exactly simulates a quantum-accessible
random permutation.

Lemma 4.6. Let A be a query algorithm that gets query access to two oracles that act on two N -dimensional
registers, and let σ0, τ0 ∈ SN be fixed permutations. Then the joint classical-quantum state of the random
variable π and the register B is the same for the following three experiments:

(i) Run InitSPOD , then B ← ASPOD , and finally π ← RecSPOD .
(ii) Run InitSPOD , then B ← ATSPO

σ0,τ0
D , and finally π ← RecTSPO

σ0,τ0

D .
(iii) Sample σ ← SN and τ ← SN , run InitSPOD , then B ← ATSPOσ,τ

D , and finally π ← RecTSPO
σ,τ

D .

Moreover, in part (iii), σ, τ , and (π,B) are independent, and the three permutations σ, τ, π are independent
and uniformly distributed.

Proof. It suffices to argue that (i) and (ii) result in the same joint state. By using Lemma 4.3 twice, we see
that it suffices to compare the following two experiments:

(i’) Sample π ← SN uniformly at random and run B ← AUπ ,Uπ−1

.

(ii’) Sample π ← SN uniformly at random, run B ← AUτ−1
0 UπUσ0 ,Uσ−1

0 Uπ−1
Uτ0 = AUτ−1

0 πσ0 ,U(τ−1
0 πσ0)

−1

, and
update π ← σ−10 πσ0.

These are indeed equivalent, since if π ∈ SN is uniformly random then so is τ−10 πσ0, for fixed σ0, τ0 ∈ SN .

14

It will be convenient to relate the twirled superposition oracle to the untwirled one by viewing the twirling
as an action on the database D. To this end, define the left and right actions of SN on D as

Lτ |π⟩ = |τπ⟩ ,
Rσ |π⟩ = |πσ−1⟩ .

Then we have the following lemma, which states that the superposition oracle can be expressed in terms of
the untwirled one, sandwiched by a basis change implemented by the operators Lτ and Rσ as defined above.

Lemma 4.7. For all σ, τ ∈ SN , it holds that

OTSPOσ,τ

XYD =
(
Lτ
DR

σ
D

)
OSPO

XYD

(
Lτ−1

D Rσ−1

D

)
,

OTSPOσ,τ ,inv
XYD =

(
Lτ
DR

σ
D

)
OSPO,inv

XYD

(
Lτ−1

D Rσ−1

D

)
.

Proof. For all π ∈ SN and x, y ∈ [N], we have(
Lτ
DR

σ
D

)
OSPO

XYD

(
Lτ−1

D Rσ−1

D

)
|x, y, π⟩ =

(
Lτ
DR

σ
D

)
OSPO

XYD |x, y, τ−1πσ⟩
=
(
Lτ
DR

σ
D

)
|x, y ⊕ τ−1πσ(x), τ−1πσ⟩

= |x, y ⊕ τ−1(π(σ(x))), π⟩ = OTSPOσ,τ

XYD |x, y, π⟩ ,

which establishes the first equation. The second one is proved in the same way.

Clearly, these two operations commute with each other, and they leave the initial state |ΦSPO⟩D of the
oracle invariant:

Lσ |ΦSPO⟩ = Rσ |ΦSPO⟩D = |ΦSPO⟩D . (4.1)

Thus we obtain the following lemma that allows us to compare the behavior of an algorithm when using
either the twirled or the ordinary oracle, strengthening Lemma 4.6.

Lemma 4.8. Let A be a unitary query algorithm on registers AXY , where X and Y are N -dimensional
registers, that gets query access to two oracles that each act on XY . For every σ, τ ∈ SN , let |ϕσ,τ ⟩AXYD be
the joint state of algorithm and oracle defined by running InitSPOD and then ATSPOσ,τ

D . Moreover, let |ϕ⟩AXYD

denote the joint state of algorithm and oracle defined by running InitSPOD and then ASPOD . Then,

|ϕσ,τ ⟩AXYD = Lτ
DR

σ
D |ϕ⟩AXYD .

Proof. Without loss of generality, the quantum query algorithm takes the form (cf. Eq. (2.3))

U
(q)
AXY Q

(q)
XYDU

(q−1)
AXY Q

(q−1)
XYD . . . U

(1)
AXY Q

(1)
XYDU

(0)
AXY ,

where each Q
(j)
XYD is either a forward or an inverse query, and is applied to the initial state |0⟩AXY ⊗ |ΦSPO⟩D.

When expressing the twirled oracles in terms of the ordinary ones using Lemma 4.7, we see that the
“twirls” Lτ

DR
σ
D and Lτ−1

D Rσ−1

D in-between any pair of queries cancel (note that they commute with the
unitaries U

(j)
AXY). Moreover, by Eq. (4.1) the initial twirl leaves the initial state |ΦSPO⟩D of the database

invariant. Accordingly, the output state in the two scenarios only differs by an application of Lτ
DR

σ
D, as

claimed.

Lemma 4.7 simulates queries to the twirled superposition oracle (for known σ and τ) by a single query to
the ordinary one but requires access to the database. This can also be achieved by acting on the input/output
registers X and Y , but in this case more than one query is required. The following lemma shows that an
algorithm can always be converted into a “standard form” such that an analogous replacement is possible, at
the cost of doubling the number of queries, which will be useful in Section 6.

Lemma 4.9. Let A be a unitary query algorithm on registers AXY , where X and Y are N -dimensional
registers, that gets query access to two oracles that each act on XY . Then there exists a unitary query
algorithm C on registers BXY , with B = AZ and Z an N -dimensional register, that gets query access to four
oracles acting on XY such that, for every σ, τ ∈ SN (and for any initial state of the database register D), the
following three experiments result in the same state of the registers BXYD:

15

(i) Run ATSPOσ,τ
D and initialize the register Z in state |0⟩Z .

(ii) Run BTSPO
σ,τ
D , where the query algorithm B gets access to two oracles on XY and is defined as follows:

BOXY ,Oinv
XY := COXY , OXY , Oinv

XY , Oinv
XY .

(iii) Run BSPOD
σ,τ , where the query algorithm Bσ,τ gets access to two oracles on XY and is defined as follows:

BOXY ,Oinv
XY

σ,τ := C(V σ−1

X V τ−1

Y OXY V σ
X), (V σ−1

X OXY V σ
XV τ

Y), (V τ−1

X V σ−1

Y Oinv
XY V τ

X), (V τ−1

X Oinv
XY V τ

XV σ
Y)

Moreover, if A makes in total q oracle queries then C (and hence B and Bσ,τ) makes in total 2q oracle queries.

Proof. Note that

OTSPOσ,τ

XYD |0⟩Z = SWAPY↔Z OTSPOσ,τ

XYD CNOTY→Z OTSPOσ,τ

XYD SWAPY↔Z |0⟩Z
= SWAPY↔Z

(
V σ−1

X OSPO
XYDV

σ
XV τ

Y

)
CNOTY→Z

(
V σ−1

X V τ−1

Y OSPO
XYDV

σ
X

)
SWAPY↔Z |0⟩Z

and

OTSPOσ,τ ,inv
XYD |0⟩Z = SWAPY↔Z OTSPOσ,τ ,inv

XYD CNOTY→Z OTSPOσ,τ ,inv
XYD SWAPY↔Z |0⟩Z

= SWAPY↔Z

(
V τ−1

X OSPO,inv
XYD V τ

XV σ
Y

)
CNOTY→Z

(
V τ−1

X V σ−1

Y OSPO,inv
XYD V τ

X

)
SWAPY↔Z |0⟩Z

Thus we see that if we define the query algorithm C as follows,

COXY ,O′
XY ,Oinv

XY ,O′inv
XY :=

A(SWAPY ↔Z O′
XY CNOTY →Z OXY SWAPY ↔Z), (SWAPY ↔Z O′inv

XY CNOTY →Z Oinv
XY SWAPY ↔Z) |0⟩Z ,

then the claim follows.

5 The Fundamental Lemma of the Permutation Oracle

We know from the preceding section that the superposition permutation oracles exactly simulate a quantum-
accessible permutation, with the permutation being obtained by measuring the database in the computational
basis. However, to learn about queries made by the adversary, we wish to also measure whether database
registers are in the uniform superposition states. The following result, which we call the Fundamental Lemma,
shows that this only slightly changes the statistics. It resembles [CFHL21, Corollary 4.2] which goes back to
Zhandry, but our result applies to random permutations rather than random functions. We state and prove it
for arbitrary relations involving a single input-output pair.

Lemma 5.1 (Fundamental Lemma of the Permutation Oracle). Let R ⊆ [N]× [N] be a relation. Let A be
a quantum algorithm that gets query access to two oracles that each act on CN ⊗CN , and which returns a
pair (x, y) ∈ [N]× [N]. We consider the following two experiments:

(i) Sample π ← SN uniformly at random, and run (x, y)← AUπ ,Uπ−1

.
If π(x) = y and (x, y) ∈ R then return 1. Otherwise return 0.

(ii) Sample σ ← SN and τ ← SN , run InitSPOD , and then (x, y)← ATSPOσ,τ
D . Next, apply to register Dσ(x)

the projective measurement {|+σ(x)⟩⟨+σ(x)|, I − |+σ(x)⟩⟨+σ(x)|}. If the second outcome is observed,
run π ← RecTSPO

σ,τ

D . If π(x) = y and (x, y) ∈ R, return 1. In all other cases, return 0.

Let p(i), p(ii) denote the probability that first or second experiment returns 1, respectively. Then:

√
p(i) ≤

√
p(ii) +

√
ln(N) + 1

N
.

16

Thus, if we want to upper bound the probability that the algorithm learned a pair (x, y) such that π(x) = y
satisfying some relation R, then we can just imagine first measuring whether Dσ(x) is not |+σ(x)⟩, without
significantly increasing the error – we will see that this typically yields a quantity that is easier to upper
bound. This bound is essentially identical to the one known for random functions, except for the extra term
ln(N) + 1, which is due to the varying dimensions of the database registers.

The idea of the proof is to recall that, by Lemmas 4.3 and 4.6, the first experiment is exactly simulated
by the following:

(i’) Sample σ ← SN and τ ← SN , run InitSPOD , and then (x, y)← ATSPOσ,τ
D . Measure the entire database in

the computational basis and interpret the outcome as a permutation π ∈ SN . If π(σ(x)) = τ(y) and
(x, y) ∈ R, then return 1. Otherwise return 0.

For comparison, expanding the definition of the recovery routine RecTSPO
σ,τ

D , the second experiment can be
written as follows:

(ii’) Sample σ ← SN and τ ← SN , run InitSPOD , and then (x, y)← ATSPOσ,τ
D . Next, apply to register Dσ(x) the

projective measurement {|+σ(x)⟩⟨+σ(x)|, I−|+σ(x)⟩⟨+σ(x)|}. If the second outcome is observed, measure
the entire database in the computational basis and interpret the outcome as a permutation π ∈ SN . If
π(σ(x)) = τ(y) and (x, y) ∈ R, then return 1. In all other cases, return 0.

Note that (i’) and (ii’) only differ in that the latter contains the additional measurement of the register Dσ(x)

and subsequent check that the desired (second) outcome occurred. To prove the fundamental lemma, we
therefore need to argue that this “postselection” does not impact the probability of acceptance much. We first
state and prove a technical lemma that contains the core argument, and then use it establish Lemma 5.1.

Lemma 5.2. Let x ∈ [N] and Y ⊆ [N]. Then it holds that:∥∥∥∥∥∥
∑

π∈SN :π(x)∈Y

|π⟩⟨π|D −
∑

π∈SN :π(x)∈Y

|π⟩⟨π|D(I − |+x⟩⟨+x|Dx)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

π∈SN :π(x)∈Y

|π⟩⟨π|D |+x⟩Dx

∥∥∥∥∥∥ ≤
√
|Y |
x

.

Proof. The first equality is clear. Now, for any operator X the operator norm can be computed as ∥X∥ =
max∥ϕ∥=1∥X |ϕ⟩∥. Thus there exists a vector |∆⟩ ∈ HDxc

=
⊗n

k=1:k ̸=xHDk
such that∥∥∥∥∥∥

∑
π∈SN :π(x)∈Y

|π⟩⟨π|D |+x⟩Dx

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

π∈SN :π(x)∈Y

|π⟩⟨π|D
(
|+x⟩Dx

⊗ |∆⟩Dxc

)∥∥∥∥∥∥
2

=
∑

π∈SN :π(x)∈Y

∣∣∣⟨π|D (|+x⟩Dx
⊗ |∆⟩Dxc

)∣∣∣2.
This can be upper bounded by

Pr
(
π(x) ∈ Y | tx ← [x], (t1, . . . , tx−1, tx+1, . . . , tN)← Q

)
,

where the permutation π ∈ SN is defined in terms of the numbers t1, . . . , tN via Eq. (3.1), and where Q is
some probability distribution on

∏n
k=1:k ̸=x[k] (namely the distribution obtained by measuring |∆⟩Dxc

in the
standard basis). Now,

π(x) ∈ Y ⇔ (N tN) (N−1 tN−1) · · · (2 t2) (1 t1) (x) ∈ Y ⇔ π>x(tx) ∈ Y ⇔ tx ∈ π−1>x(Y),

where we recall the notation π>x = (N tN) (N−1 tN−1) · · · (x+ 1 tx+1). Thus, whatever π>x, there are at
most |Y | choices of tx ∈ [x] such that π(x) ∈ Y . Since π>x and tx are independent and the latter is chosen
uniformly at random in [x], we have

Pr
(
π(x) ∈ Y

∣∣ tx ← [x], (t1, . . . , tx−1, tx+1, . . . , tN)← Q
)
≤ |Y |

x
.

This concludes the proof.

17

We now prove the fundamental lemma.

Proof of Lemma 5.1. As discussed it suffices to compare the two experiments (i’) and (ii’). Let p(σ, τ, x, y)
denote the joint distribution of the uniformly random choices of σ, τ ∈ SN and the output (x, y) of ATSPOσ,τ

D

and choose, for each σ, τ, x, y, a purification |∆(σ, τ, x, y)⟩DE of the corresponding state of the database.
Then:

p(i’) =
∑

σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y) p(i’)(σ, τ, x, y) and p(ii’) =
∑

σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y) p(ii’)(σ, τ, x, y),

where

p(i’)(σ, τ, x, y) :=

∥∥∥∥∥∥
∑

π∈SN :π(σ(x))=τ(y)

|π⟩⟨π|D |∆(σ, τ, x, y)⟩DE

∥∥∥∥∥∥
2

,

p(ii’)(σ, τ, x, y) :=

∥∥∥∥∥∥
∑

π∈SN :π(σ(x))=τ(y)

|π⟩⟨π|D
(
I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
|∆(σ, τ, x, y)⟩DE

∥∥∥∥∥∥
2

.

Using Lemma 5.2 (with Y = {τ(y)}) and the Cauchy-Schwarz inequality, it follows that

p(i’) ≤
∑

σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)

(√
p(ii’)(σ, τ, x, y) +

√
1

σ(x)

)2

= p(ii’) + 2
∑

σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)
√

p(ii’)(σ, τ, x, y)

√
1

σ(x)
+

∑
σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)
1

σ(x)

≤ p(ii’) + 2
√
p(ii’)

√√√√ ∑
σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)
1

σ(x)
+

∑
σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)
1

σ(x)
.

Thus,

√
p(i’) ≤

√
p(ii’) +

√√√√ ∑
σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)
1

σ(x)
.

Finally, we note that as a consequence of Lemma 4.6, σ, τ , and (x, y) are independent with respect to the
distribution p(σ, τ, x, y). Thus,

∑
σ,τ∈SN ,(x,y)∈R

p(σ, τ, x, y)
1

σ(x)
≤ 1

N

N∑
k=1

1

k
≤ ln(N) + 1

N
.

In order to apply the fundamental lemma, it is useful to upper bound the probability p(ii) in way that
only refers to the state of the database. This is achieved by the following lemma.

Lemma 5.3. Let R ⊆ [N] × [N] be a relation. Let A be a quantum algorithm that gets query access to
two oracles that each act on CN ⊗ CN , and which returns a pair (x, y) ∈ [N] × [N]. For σ, τ ∈ SN , let
|ϕσ,τ ⟩ denote a purification of the state of the database after running InitSPOD and then ATSPOσ,τ

D . Then, the
quantity p(ii) in Lemma 5.1 can be upper bounded as

p(ii) ≤ E
σ,τ←SN

∑
(x,y)∈R

∑
π∈SN s.th.

τ−1(π(σ(x)))=y

∥∥∥⟨π|D (I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
|ϕσ,τ ⟩

∥∥∥2.

18

Proof. Without loss of generality we can assume that A is a unitary query algorithm on registers AXY such
that the classical outcomes x and y can be obtained by measuring the X and Y registers. For every σ, τ ∈ SN ,
let |ϕσ,τ ⟩AXYD be the joint state of algorithm and oracle defined by running InitSPOD and then ATSPOσ,τ

D . Then:

p(ii) = E
σ,τ←SN

∑
(x,y)∈R

∑
π∈SN s.th.

τ−1(π(σ(x)))=y

∥∥∥⟨π|D (I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
⟨xy|XY |ϕ

σ,τ ⟩AXYD

∥∥∥2.
Because the projection ⟨xy| commutes with the operators on D and never increases the norm, we can upper
bound the above as

p(ii) ≤ E
σ,τ←SN

∑
(x,y)∈R

∑
π∈SN s.th.

τ−1(π(σ(x)))=y

∥∥∥⟨π|D (I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
|ϕσ,τ ⟩AXYD

∥∥∥2.
Since this expression only depends on the reduced state on D, the claim follows.

6 Bounding the Success Probability for Search

In this section we generalize Zhandry’s compressed oracle technique [Zha19] to the case of random permutations,
but using our (twirled) permutation oracle. The high-level strategy for proving such theorems is as follows:
For the compressed oracle for a random function H, it can be approximately determined whether a certain
input x has been queried, and if so whether x, together with the corresponding function output y = H(x),
fulfils a certain relation. This test is performed by a measurement acting on the database register Dx only.
For different inputs x, these tests commute, and hence there exists a projective measurement answering the
question whether there exists an input x such that the described test would trigger. The probability that this
measurement outputs yes after q queries then serves as a convenient progress measure. This is reminiscent to
the progress measures used in the so-called “hybrid method” that was introduced earlier to prove the query
lower bound for the unstructured search problem [BBBV97].

We would like to generalize this technique to the case of random permutations. We follow a similar
strategy, and begin by devising a generalization of the test for a single input. To test whether a certain
input x has been queried in forward direction or output in an inverse query, and if so, whether, together with
the corresponding function output y = π(x), it fulfils a certain relation R ⊆ [N]× [N], we define the following
operators:

ΠR,x
D :=

∑
π∈SN :π(x)∈Rx

|π⟩⟨π|D, ER,x
D := ΠR,x

D (I − |+x⟩⟨+x|Dx).

where we have defined Rx := {y ∈ [N] : (x, y) ∈ R}. For later use, we also set Rinv
y := {x ∈ [N] : (x, y) ∈ R}

and

rmax := max

{
max
x∈[N]

|Rx|, max
y∈[N]

|Rinv
y |
}
.

Unfortunately, the operators ER,x for different x do not commute, so we cannot simply use these to
construct a measurement answering the existence question. Instead, we will check whether a random x has
this property. To lift the worst-case bounds established in the previous section to the average case, we further
consider running the query algorithm with the twirled permutation oracle for uniformly random σ, τ ∈ SN .
Because the permutation in the database is now twirled as compared to the action of the oracle, we must also
consider the twirled relation Rσ,τ that is defined as follows in terms of R:

(x, y) ∈ Rσ,τ :⇐⇒ (σ−1(x), τ−1(y)) ∈ R. (6.1)

Thus we are led to consider the following natural progress measure:

E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2,
19

where |ϕσ,τ ⟩ denotes the joint state of (a unitary realization of) the algorithm and database obtained by
running the algorithm with the twirled permutation oracle TSPOσ,τ . Remarkably, this progress measure not
only has an intuitive operational interpretation, but it is also directly related to the upper bound furnished
by the fundamental lemma (cf. Lemma 5.3):

Lemma 6.1. For any relation R ⊆ [N]× [N], it holds that

N E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2 = E
σ,τ←SN

∑
(x,y)∈R

∑
π∈SN s.th.

τ−1(π(σ(x)))=y

∥∥∥⟨π|D (I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
|ϕσ,τ ⟩

∥∥∥2.
Proof. We calculate:

E
σ,τ←SN

∑
(x,y)∈R

∑
π∈SN s.th.

τ−1(π(σ(x)))=y

∥∥∥⟨π|D (I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
|ϕσ,τ ⟩

∥∥∥2

= E
σ,τ←SN

N∑
x=1

∑
π∈SN s.th.

(σ(x),π(σ(x)))∈Rσ,τ

∥∥∥⟨π|D (I − |+σ(x)⟩⟨+σ(x)|Dσ(x)

)
|ϕσ,τ ⟩

∥∥∥2

= E
σ,τ←SN

N∑
x=1

∑
π∈SN s.th.

(x,π(x))∈Rσ,τ

∥⟨π|D (I − |+x⟩⟨+x|Dx) |ϕσ,τ ⟩∥2

= N E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2.
We can now summarize the plan for the remainder of this section:

(i) We bound the effect of a single query on any fixed location x of the database in Section 6.1.
(ii) We derive a bound on the success probability of the adversary in Section 6.2, but in expectation over

the random choice of the database location and the choice of the twirling.
(iii) We bound the (weighted) average probability that a database register is no longer in the uniform state,

which is necessary to complete the proof, in Section 6.3.
(iv) We combine (ii) and (iii) with the fundamental lemma to obtain our main theorem in Section 6.4.

6.1 Bounding the Success Probability in the Worst Case

We start with a useful lemma that follows readily from Lemma 5.2.

Lemma 6.2. Let QSPO
XYD ∈ {OSPO

XYD, O
SPO,inv
XYD }, and x ∈ [N]. Then:

(i)
∥∥ER,x

D QSPO
XYD

(
I −ΠR,x

D

)∥∥ ≤√ |Rx|
x .

(ii)
∥∥ER,x

D QSPO
XYD |ϕ⟩

∥∥− ∥∥ER,x
D |ϕ⟩

∥∥ ≤√ |Rx|
x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥+ ∥∥ER,x

D QSPO
XYD|+x⟩⟨+x|Dx |ϕ⟩

∥∥ for any
pure state |ϕ⟩AXYD.

(iii)
∥∥ER,x

D QSPO,z
Y D |+x⟩⟨+x|Dx

∥∥ ≤ 2

√
|Rx|
x for all z ∈ [N], where QSPO,z

Y D := ⟨z|X QSPO
XYD |z⟩X .

Proof. (i) Since QSPO
XYD is a unitary controlled on register D, it commutes with computational basis projections,

and hence with ΠR,x
D . Therefore, and using unitary invariance, we obtain∥∥∥ER,x

D QSPO
XYD

(
I −ΠR,x

D

)∥∥∥ =
∥∥∥ER,x

D

(
I −ΠR,x

D

)
QSPO

XYD

∥∥∥
=
∥∥∥ΠR,x

D

(
I − |+x⟩⟨+x|Dx

)(
I −ΠR,x

D

)∥∥∥
=
∥∥∥ΠR,x

D |+x⟩⟨+x|Dx

(
I −ΠR,x

D

)∥∥∥
20

≤
∥∥∥ΠR,x

D |+x⟩Dx

∥∥∥ ≤√ |Rx|
x

.

The last inequality holds due to Lemma 5.2.
(ii) Since

ER,x
D QSPO

XYD |ϕ⟩ = ER,x
D QSPO

XYDE
R,x
D |ϕ⟩+ ER,x

D QSPO
XYD

(
I − ER,x

D

)
|ϕ⟩ ,

and ∥ER,x
D QSPO

XYDE
R,x
D |ϕ⟩∥ ≤ ∥ER,x

D |ϕ⟩∥, we have, by the triangle inequality,∥∥∥ER,x
D QSPO

XYD |ϕ⟩
∥∥∥− ∥∥∥ER,x

D |ϕ⟩
∥∥∥ ≤ ∥∥∥ER,x

D QSPO
XYD

(
I − ER,x

D

)
|ϕ⟩
∥∥∥.

Since I − ER,x
D = (I −ΠR,x

D)(I − |+x⟩⟨+x|Dx) + |+x⟩⟨+x|Dx , we can bound the right-hand side by∥∥∥ER,x
D QSPO

XYD

(
I − ER,x

D

)
|ϕ⟩
∥∥∥

≤
∥∥∥ER,x

D QSPO
XYD(I −ΠR,x

D)(I − |+x⟩⟨+x|Dx) |ϕ⟩
∥∥∥+ ∥∥∥ER,x

D QSPO
XYD|+x⟩⟨+x|Dx |ϕ⟩

∥∥∥
≤
√
|Rx|
x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥+ ∥∥∥ER,x

D QSPO
XYD|+x⟩⟨+x|Dx |ϕ⟩

∥∥∥,
using another triangle inequality and, in the last step, part (i).

(iii) We can proceed similarly as in part (i):∥∥∥ER,x
D QSPO,z

Y D |+x⟩⟨+x|Dx

∥∥∥ =
∥∥∥ΠR,x

D (I − |+x⟩⟨+x|Dx)Q
SPO,z
Y D |+x⟩⟨+x|Dx

∥∥∥
≤
∥∥∥ΠR,x

D QSPO,z
Y D |+x⟩⟨+x|Dx

∥∥∥+ ∥∥∥ΠR,x
D |+x⟩⟨+x|DxQ

SPO,z
Y D |+x⟩⟨+x|Dx

∥∥∥
=
∥∥∥QSPO,z

Y D ΠR,x
D |+x⟩⟨+x|Dx

∥∥∥+ ∥∥∥ΠR,x
D |+x⟩⟨+x|DxQ

SPO,z
Y D |+x⟩⟨+x|Dx

∥∥∥
≤ 2∥ΠR,x

D |+x⟩Dx
∥ ≤ 2

√
|Rx|
x

.

We now bound the effect of a single forward query on the probability amplitude.

Lemma 6.3 (Forward query). For any pure state |ϕ⟩AXYD such that ∥⟨π|D |ϕ⟩AXYD∥2 = 1
N ! for all π ∈ SN ,

and for any x ∈ [N], we have

∥∥∥ER,x
D OSPO

XYD |ϕ⟩
∥∥∥− ∥∥∥ER,x

D |ϕ⟩
∥∥∥ ≤√ |Rx|

x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥+ 2

√
ζ|ϕ⟩,x

where |ϕx⟩AYD := ⟨x|X |ϕ⟩AXYD and

ζ|ϕ⟩,x :=
|Rx|
x
∥|ϕx⟩∥2 +

|Rx|
x2N

+
1

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2
Proof. By Lemma 6.2 (ii), we have

∥∥∥ER,x
D OSPO

XYD |ϕ⟩
∥∥∥− ∥∥ER,x

D |ϕ⟩
∥∥ ≤√ |Rx|

x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥+ ∥∥ER,x

D OSPO
XYD|+x⟩⟨+x|Dx |ϕ⟩

∥∥, (6.2)

To upper bound the right-hand side norm, we compute its square as follows:∥∥∥ER,x
D OSPO

XYD|+x⟩⟨+x|Dx |ϕ⟩
∥∥∥2 = ∑

z∈[N]

∥∥∥⟨z|X ER,x
D OSPO

XYD|+x⟩⟨+x|Dx |ϕ⟩
∥∥∥2 = ∑

z∈[N]

∥∥∥ER,x
D OSPO,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2,

where we defined OSPO,z
Y D := ⟨z|X OSPO

XYD |z⟩X . We analyze the summands and distinguish three cases:

21

(i) For z > x, OSPO,z
Y D acts trivially on Dx by Lemma 4.4, and hence commutes with |+x⟩⟨+x|Dx .

As ER,x
D |+x⟩⟨+x|Dx = 0, we see that the corresponding summands vanish.

(ii) For z = x, then we have the following bound from Lemma 6.2 (iii):∥∥∥ER,x
D OSPO,x

Y D |+x⟩⟨+x|Dx |ϕx⟩
∥∥∥2 ≤ 4

|Rx|
x
∥|ϕx⟩∥2.

(iii) For z < x, the argument is more involved. We begin by computing the action of OSPO,z
Y D on computational

basis states. For π ∈ SN , let us write π = π>x (x t)π<x as in Section 3.2, with t ∈ [x], and define πxc :=
π>xπ<x. We may identify πxc with the indices tk for k ≠ x; accordingly we shall write |π⟩D =
|t⟩Dx

|πxc⟩Dxc
. Note that if π<x(z) = t then π(z) = π>x(x), while otherwise π(z) = πxc(z). Thus, for

every π ∈ SN and y ∈ [N], we have

OSPO,z
Y D |y, π⟩Y D = OSPO,z

Y D |y, t, πxc⟩Y DxDxc
=

{
|y ⊕ π>x(x), t, πxc⟩Y DxDxc

if π<x(z) = t,

|y ⊕ πxc(z), t, πxc⟩Y DxDxc
otherwise.

It follows that

OSPO,z
Y D |y⟩Y |+x⟩Dx

|πxc⟩Dxc
= |y ⊕ πxc(z)⟩Y |+x⟩Dx

|πxc⟩Dxc

+
1√
x

(
|y ⊕ π>x(x)⟩Y − |y ⊕ πxc(z)⟩Y

)
|π<x(z)⟩Dx

|πxc⟩Dxc
,

hence (
I − |+x⟩⟨+x|Dx

)
OSPO,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

=
1√
x

(
|y ⊕ π>x(x)⟩Y − |y ⊕ πxc(z)⟩Y

)
⊗
(
|π<x(z)⟩Dx

− 1√
x
|+x⟩Dx

)
⊗ |πxc⟩Dxc

and finally

ER,x
D OSPO,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

=
1√
x

(
|y ⊕ π>x(x)⟩Y − |y ⊕ πxc(z)⟩Y

)
⊗
(
1πxc (z)∈Rx

|π<x(z)⟩Dx
− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

= M
(z)
Y Dxc

 1√
x
|y⟩Y ⊗

(
1πxc (z)∈Rx

|π<x(z)⟩Dx
− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

,

where the operator M (z)
Y Dxc

is defined by M
(z)
Y Dxc

|y⟩Y |πxc⟩Dxc
= (|y ⊕ π>x(x)⟩Y − |y ⊕ πxc(z)⟩Y) |πxc⟩Dxc

and has operator norm ≤
√
2. Thus:

ER,x
D OSPO,z

Y D |+x⟩Dx
|πxc⟩Dxc

= M
(z)
Y Dxc

1√
x

(
1πxc (z)∈Rx

|π<x(z)⟩Dx
− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
|πxc⟩Dxc

.

We can now bound the desired norm:∥∥∥ER,x
D OSPO,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2

=
∥∥∥ER,x

D OSPO,z
Y D |+x⟩⟨+x|Dx

∑
πxc

|πxc⟩⟨πxc |Dxc
|ϕz⟩

∥∥∥2
=
∥∥∥∑
πxc

ER,x
D OSPO,z

Y D |+x⟩Dx
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

=
∥∥∥M (z)

Y Dxc

∑
πxc

1√
x

(
1πxc (z)∈Rx

|π<x(z)⟩Dx
− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

22

≤ 2

x

∑
πxc

∥∥∥(1πxc (z)∈Rx
|π<x(z)⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⟨+x|Dx

⟨πxc |Dxc
|ϕz⟩

∥∥∥2
≤ 4

x

∑
πxc

(
1πxc (z)∈Rx

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2 + 1

x2

∥∥∥ ∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx
⟨+x|Dx

⟨πxc |Dxc
|ϕz⟩

∥∥∥2)

=
4

x

∑
πxc :πxc (z)∈Rx

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2 + 4

x3

∑
πxc

∑
t∈[x]∩π−1

>x(Rx)

∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥2

≤ 4

x

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x3

∑
πxc

∑
t∈[x]∩π−1

>x(Rx)

∥∥⟨πxc |Dxc
|ϕz⟩

∥∥2.
Here the first inequality follows from the bound on the operator norm of M (z)

Y Dxc
, and the fact that all

πxc are orthogonal, the second inequality follows by Cauchy-Schwarz, and the last inequality follows by
the fact that |+x⟩ is a unit vector. It follows that

x−1∑
z=1

∥∥∥ER,x
D OSPO,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2

≤ 4

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x3

x−1∑
z=1

∑
πxc

∑
t∈[x]∩π−1

>x(Rx)

∥∥⟨πxc |Dxc
|ϕz⟩

∥∥2
≤ 4

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x3

∑
πxc

∑
t∈[x]∩π−1

>x(Rx)

∥∥⟨πxc |Dxc
|ϕ⟩
∥∥2

=
4

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x2

∑
πxc

∑
t∈[x]∩π−1

>x(Rx)

1

N !
,

where we used that ∥⟨π|D |ϕ⟩∥2 =
1
N ! for all π ∈ SN and hence ∥⟨πxc |Dxc

|ϕ⟩∥2 = x
N ! . Since∑

πxc

∑
t∈[x]∩π−1

>x(Rx)

1

N !
=

1

N !

∑
π∈SN :π(x)∈Rx

1 = Pr
(
π(x) ∈ Rx | π ← SN

)
≤ |Rx|

N
,

we find that
x−1∑
z=1

∥∥∥ER,x
D OSPO,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2 ≤ 4

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x2
|Rx|
N

.

Altogether, we obtain the following bound for the right-hand side term in Eq. (6.2):

∥∥∥ER,x
D OSPO

XYD|+x⟩⟨+x|Dx |ϕ⟩
∥∥∥ ≤

√√√√4
|Rx|
x
∥|ϕx⟩∥2 +

4

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x2
|Rx|
N

= 2

√√√√ |Rx|
x
∥|ϕx⟩∥2 +

|Rx|
x2N

+
1

x

x−1∑
z=1

∑
πxc :πxc (z)∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2
and the lemma follows.

Next, we now bound the effect of an inverse query on the probability amplitude.

Lemma 6.4 (Inverse query). For any pure state |ϕ⟩AXYD such that ∥⟨π|D |ϕ⟩AXYD∥2 = 1
N ! , and for

any x ∈ [N], we have∥∥∥ER,x
D OSPO,inv

XYD |ϕ⟩
∥∥∥− ∥∥∥ER,x

D |ϕ⟩
∥∥∥ ≤√ |Rx|

x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥+ 4

√
ζ inv|ϕ⟩,x,

23

where |ϕx⟩AYD := ⟨x|X |ϕ⟩AXYD and

ζ inv|ϕ⟩,x :=
|Rx|
x
∥|ϕx⟩∥2 +

|Rx|
x2N

+
1

x

∑
z∈Rx

∑
πxc :π

−1
>x(z)<x

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

+
1

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(Rx)|
∥∥∥⟨πxc |Dxc

|ϕz⟩
∥∥∥2

Proof. By Lemma 6.2 (ii), we have

∥∥∥ER,x
D OSPO,inv

XYD |ϕ⟩
∥∥∥− ∥∥∥ER,x

D |ϕ⟩
∥∥∥ ≤√ |Rx|

x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ⟩
∥∥+ ∥∥∥ER,x

D OSPO,inv
XYD |+x⟩⟨+x|Dx |ϕ⟩

∥∥∥, (6.3)

and we need to bound the right-hand side term, which we can rewrite as∥∥∥ER,x
D OSPO,inv

XYD |+x⟩⟨+x|Dx |ϕ⟩
∥∥∥2 = ∑

z∈[N]

∥∥∥ER,x
D OSPO,inv,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2,

where OSPO,inv,z
Y D := ⟨z|X OSPO,inv

XYD |z⟩X . We analyze the the right-hand side summands and distinguish three
cases:

(i) For z = x, we have the following bound from Lemma 6.2 (iii):∥∥∥ER,x
D OSPO,inv,z

Y D |+x⟩⟨+x|Dx |ϕx⟩
∥∥∥2 ≤ 4

|Rx|
x
∥|ϕx⟩∥2.

(ii) For z < x, we proceed similarly as in the corresponding case of Lemma 6.3. For π ∈ SN , let us again
write π = π>x (x t)π<x as in Section 3.2, with t ∈ [x], define πxc := π>xπ<x, identify πxc with the
indices tk for k ̸= x, and write |π⟩D = |t⟩Dx

|πxc⟩Dxc
. Let

Sx,z :=
{
πxc : π−1>x(z) ≤ x

}
=
{
πxc : π−1>x(z) < x

}
=
{
πxc : π−1>x(z) = z

}
=
{
πxc : tw ̸= z ∀w > x

}
.

If πxc ̸∈ Sx,z, then π−1(z) = z for any choice of t. Hence OSPO,inv,z
Y D acts trivially on Dx and we have

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

= ER,x
D |+x⟩Dx

OSPO,inv,z
Y D |πxc⟩Dxc

= 0. (6.4)

Now suppose that πxc ∈ Sx,z. Then,

OSPO,inv,z
Y D |y, t, πxc⟩Y DxDxc

= |y ⊕ π−1(z), t, πxc⟩Y DxDxc
=

{
|y ⊕ x, t, πxc⟩Y DxDxc

if t = z,
|y ⊕ π−1<x(z), t, πxc⟩Y DxDxc

otherwise.

It follows that

OSPO,inv,z
Y D |y⟩Y |+x⟩Dx

|πxc⟩Dxc
= |y ⊕ π−1<x(z)⟩Y |+x⟩Dx

|πxc⟩Dxc

+
1√
x

(
|y ⊕ x⟩Y − |y ⊕ π−1<x(z)⟩Y

)
|z⟩Dx

|πxc⟩Dxc
,

hence (
I − |+x⟩⟨+x|Dx

)
OSPO,inv,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

=
1√
x

(
|y ⊕ x⟩Y − |y ⊕ π−1<x(z)⟩Y

)
⊗
(
|z⟩Dx

− 1√
x
|+x⟩Dx

)
⊗ |πxc⟩Dxc

and finally

ER,x
D OSPO,inv,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

24

=
1√
x

(
|y ⊕ x⟩Y − |y ⊕ π−1<x(z)⟩Y

)
⊗
(
1z∈Rx |z⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

= M
(z)
Y Dxc

 1√
x
|y⟩Y ⊗

(
1z∈Rx |z⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

,

where the operator M
(z)
Y Dxc

is defined by M
(z)
Y Dxc

|y⟩Y |πxc⟩Y Dxc
=
(
|y ⊕ x⟩Y − |y ⊕ π−1<x(z)⟩Y

)
|πxc⟩Dxc

and has operator norm ≤
√
2. Thus:

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

= M
(z)
Y Dxc

1√
x

(
1z∈Rx |z⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

Using the above and Eq. (6.4), we can now bound the desired norm:∥∥∥ER,x
D OSPO,inv,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2

=
∥∥∥ER,x

D OSPO,inv,z
Y D |+x⟩⟨+x|Dx

∑
πxc

|πxc⟩⟨πxc |Dxc
|ϕz⟩

∥∥∥2
=
∥∥∥ ∑
πxc∈Sx,z

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

=
∥∥∥M (z)

Y Dxc

∑
πxc∈Sx,z

1√
x

(
1z∈Rx |z⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 2

x

∑
πxc∈Sx,z

∥∥∥(1z∈Rx |z⟩Dx
− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⟨+x|Dx

⟨πxc |Dxc
|ϕz⟩

∥∥∥2
≤ 4

x

∑
πxc∈Sx,z

(
1z∈Rx

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2 + 1

x2

∥∥∥ ∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx
⟨+x|Dx

⟨πxc |Dxc
|ϕz⟩

∥∥∥2)

=
4

x

∑
πxc∈Sx,z

1z∈Rx

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2 + 4

x3

∑
πxc∈Sx,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 4

x

∑
πxc∈Sx,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x3

∑
πxc∈Sx,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2
following the same reasoning as the proof of Lemma 6.3. It follows that

x−1∑
z=1

∥∥∥ER,x
D OSPO,inv,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2

≤ 4

x

x−1∑
z=1

∑
πxc∈Sx,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x3

x−1∑
z=1

∑
πxc∈Sx,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

≤ 4

x

x−1∑
z=1

∑
πxc∈Sx,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x3

∑
πxc

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕ⟩
∥∥∥2

≤ 4

x

x−1∑
z=1

∑
πxc∈Sx,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x2
|Rx|
N

=
4

x

x−1∑
z=1

∑
πxc :π

−1
>x(z)<x

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x2
|Rx|
N

,

where the last inequality follows from the same argument as in the proof of Lemma 6.3 and is using the
assumption that ∥⟨πxc |Dxc

|ϕ⟩∥2 = x
N ! for all π ∈ SN .

25

(iii) For z > x, we use the same notation as above, but instead of Sx,z we consider

S′x,z :=
{
πxc : π−1>x(z) < x

}
,

S′′x,z :=
{
πxc : π−1>x(z) = x

}
.

If πxc ̸∈ S′x,z ∪ S′′x,z, then we see as above that π−1(z) does not depend on the choice of t and hence

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

= ER,x
D |+x⟩Dx

OSPO,inv,z
Y D |πxc⟩Dxc

= 0. (6.5)

Next, suppose that πxc ∈ S′x,z. Then,

OSPO,inv,z
Y D |y, t, πxc⟩Y DxDxc

=

{
|y ⊕ x, t, πxc⟩Y DxDxc

if t = π−1>x(z),
|y ⊕ π−1xc (z), t, πxc⟩Y DxDxc

otherwise.

It follows that

OSPO,inv,z
Y D |y⟩Y |+x⟩Dx

|πxc⟩Dxc
= |y ⊕ π−1xc (z)⟩Y |+x⟩Dx

|πxc⟩Dxc

+
1√
x

(
|y ⊕ x⟩Y − |y ⊕ π−1xc (z)⟩Y

)
|π−1>x(z)⟩Dx

|πxc⟩Dxc
,

hence (
I − |+x⟩⟨+x|Dx

)
OSPO,inv,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

=
1√
x

(
|y ⊕ x⟩Y − |y ⊕ π−1xc (z)⟩Y

)
⊗
(
|π−1>x(z)⟩Dx

− 1√
x
|+x⟩Dx

)
⊗ |πxc⟩Dxc

and finally

ER,x
D OSPO,inv,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

=
1√
x

(
|y ⊕ x⟩Y − |y ⊕ π−1xc (z)⟩Y

)
⊗
(
1z∈Rx |π−1>x(z)⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

= M
(z)
Y Dxc

 1√
x
|y⟩Y ⊗

(
1z∈Rx |π−1>x(z)⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

,

where the operator M ′Y Dxc ,z
is defined by M ′Y Dxc ,z

|y⟩Y |πxc⟩Y Dxc
=
(
|y ⊕ x⟩Y − |y ⊕ π−1xc (z)⟩Y

)
|πxc⟩Dxc

and has operator norm ≤
√
2. Thus:

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

= M ′Y Dxc ,z

1√
x

(
1z∈Rx |π−1>x(z)⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⊗ |πxc⟩Dxc

. (6.6)

Finally, suppose that πxc ∈ S′′x,z. Then,

OSPO,inv,z
Y D |y, t, πxc⟩Y DxDxc

= |y ⊕ π−1<x(t), t, πxc⟩Y DxDxc
,

hence (
I − |+x⟩⟨+x|Dx

)
OSPO,inv,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

=
1√
x

x∑
t=1

|y ⊕ π−1<x(t)⟩Y

⊗
(
|t⟩Dx

− 1√
x
|+x⟩Dx

)
⊗ |πxc⟩Dxc

,

and finally

ER,x
D OSPO,inv,z

Y D |y⟩Y |+x⟩Dx
|πxc⟩Dxc

26

=
1√
x

x∑
t=1

|y ⊕ π−1<x(t)⟩Y ⊗

1π>x(t)∈Rx
|t⟩Dx

− 1

x

∑
t′∈[x]∩π−1

>x(Rx)

|t′⟩Dx

⊗ |πxc⟩Dxc

= M ′′Y D

 1√
x
|y⟩Y ⊗

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx
⊗ |πxc⟩Dxc

,

with M ′′Y D |y, t, πxc⟩ := (|y ⊕ π−1<x(t)⟩Y −
1
x

∑x
t′=1 |y ⊕ t′⟩Y) |t⟩Dx

|πxc⟩Dxc
, an operator of norm ≤ 2,

hence

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

= M ′′Y D

1√
x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx
⊗ |πxc⟩Dxc

.

Together with Eqs. (6.5) and (6.6), we obtain∥∥∥ER,x
D OSPO,inv,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2

=
∥∥∥ER,x

D OSPO,inv,z
Y D |+x⟩⟨+x|Dx

∑
πxc

|πxc⟩⟨πxc |Dxc
|ϕz⟩

∥∥∥2
=
∥∥∥ ∑
πxc∈S′

x,z∪S′′
x,z

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 2
∥∥∥ ∑
πxc∈S′

x,z

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

+ 2
∥∥∥ ∑
πxc∈S′′

x,z

ER,x
D OSPO,inv,z

Y D |+x⟩Dx
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

= 2
∥∥∥M ′Y Dxc ,z

∑
πxc∈S′

x,z

1√
x

(
1z∈Rx |π−1>x(z)⟩Dx

− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

+ 2
∥∥∥M ′′Y D

∑
πxc∈S′′

x,z

1√
x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx
|πxc⟩Dxc

⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 4

x

∑
πxc∈S′

x,z

∥∥∥(1z∈Rx |π−1>x(z)⟩Dx
− 1

x

∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx

)
⟨+x|Dx

⟨πxc |Dxc
|ϕz⟩

∥∥∥2
+

8

x

∑
πxc∈S′′

x,z

∥∥∥ ∑
t∈[x]∩π−1

>x(Rx)

|t⟩Dx
⟨+x|Dx

⟨πxc |Dxc
|ϕz⟩

∥∥∥2
≤ 8

x

∑
πxc∈S′

x,z

1z∈Rx

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2 + 8

x3

∑
πxc∈S′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

+
8

x

∑
πxc∈S′′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨+x|Dx
⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 8

x

∑
πxc∈S′

x,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 8

x3

∑
πxc∈S′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2
+

8

x

∑
πxc∈S′′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2.
By summing the above estimate over all z > x, we obtain

N∑
z=x+1

∥∥∥ER,x
D OSPO,inv,z

Y D |+x⟩⟨+x|Dx |ϕz⟩
∥∥∥2

27

≤ 8

x

N∑
z=x+1

∑
πxc∈S′

x,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 8

x3

N∑
z=x+1

∑
πxc∈S′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

+
8

x

N∑
z=x+1

∑
πxc∈S′′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

≤ 8

x

N∑
z=x+1

∑
πxc∈S′

x,z

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 8

x2
|Rx|
N

+
8

x

N∑
z=x+1

∑
πxc∈S′′

x,z

∑
t∈[x]∩π−1

>x(Rx)

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

=
8

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)<x

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 8

x2
|Rx|
N

+
8

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(Rx)|
∥∥∥⟨πxc |Dxc

|ϕz⟩
∥∥∥2.

The last estimate follows as in part (ii).

By combining the results of (i), (ii), and (iii), we obtain the following bound on the right-hand side Eq. (6.3):

∥∥∥ER,x
D OSPO,inv

XYD |+x⟩⟨+x|Dx |ϕ⟩
∥∥∥ ≤

√√√√√√√√√√√√√√√√√√

4
|Rx|
x
∥|ϕx⟩∥2 +

4

x

x−1∑
z=1

∑
πxc :π

−1
>x(z)<x

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 4

x2
|Rx|
N

+
8

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)<x

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2 + 8

x2
|Rx|
N

+
8

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(Rx)|
∥∥∥⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 4

√√√√√√√√√√√
|Rx|
x
∥|ϕx⟩∥2 +

1

x2
|Rx|
N

+
1

x

N∑
z=1

∑
πxc :π

−1
>x(z)<x

1z∈Rx

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

+
1

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(Rx)|
∥∥∥⟨πxc |Dxc

|ϕz⟩
∥∥∥2

≤ 4

√√√√√√√√√√√

|Rx|
x
∥|ϕx⟩∥2 +

1

x2
|Rx|
N

+
1

x

∑
z∈Rx

∑
πxc :π

−1
>x(z)<x

∥∥∥⟨πxc |Dxc
|ϕz⟩

∥∥∥2

+
1

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(Rx)|
∥∥∥⟨πxc |Dxc

|ϕz⟩
∥∥∥2 .

Now the lemma follows.

As a consequence of the preceding lemmas, we obtain a bound that holds for any query algorithm that
makes q queries.

Proposition 6.5. Let A be a unitary query algorithm on registers AXY , where X and Y are N -dimensional
registers, that gets query access to two oracles that each act on XY . Let |ϕ⟩AXYD be the joint state of
algorithm and oracle defined by running InitSPOD and then ASPOD . Suppose that A makes in total q queries to
its oracles. Then for any x ∈ [N],∥∥∥ER,x

D |ϕ⟩
∥∥∥ ≤ q∑

j=1

(√
|Rx|
x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ(j)⟩

∥∥∥+ 4

√
ζ
(j)
x

)

28

≤

√√√√2q

q∑
j=1

(
|Rx|
x

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ(j)⟩

∥∥2 + 16ζ
(j)
x

)
,

where |ϕ(j)⟩AXYD denotes the state right before the j-th query of ASPOD and where we defined ζ
(j)
x := ζ|ϕ(j)⟩,x

as in Lemma 6.3 if the j-th query is a forward query and otherwise ζ
(j)
x := ζ inv|ϕ(j)⟩,x, as in Lemma 6.4.

Proof. We will prove the first inequality, since the second follows directly using the Cauchy-Schwartz inequality.
To this end, we first observe that ∥⟨π|D |ϕ(j)⟩AXYD∥2 = 1

N ! for every j ∈ [q] and π ∈ SN . This is because
the database is initialized in a uniform superposition of the basis states |π⟩D, the query unitaries OSPO

XYD

and OSPO,inv
XYD are controlled on D in this basis and hence commute with a basis measurement, and all other

unitaries applied by A only act on registers AXY . Thus the states |ϕ(j)⟩AXYD satisfy the requirements of
Lemmas 6.3 and 6.4 and hence we see that, for QSPO ∈ {OSPO, OSPO,inv} and any x ∈ [N],

∥∥∥ER,x
D QSPO

XYD |ϕ(j)⟩
∥∥∥− ∥∥∥ER,x

D |ϕ(j)⟩
∥∥∥ ≤√ |Rx|

x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ(j)⟩

∥∥∥+ 4

√
ζ
(j)
x (6.7)

We will now show the following inequality for every k ∈ {0, 1, . . . , q}, with |ϕ(q+1)⟩ := |ϕ⟩:

∥∥∥ER,x
D |ϕ(k+1)⟩

∥∥∥ ≤ k∑
j=1

(√
|Rx|
x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ(j)⟩

∥∥∥+ 4

√
ζ
(j)
x

)
, (6.8)

This will conclude the proof, since for k = q it is the desired inequality. We use induction over k. For k = 0,
the inequality holds trivially, since all database registers are initialized in a uniform superposition and
hence (I−|+x⟩⟨+x|Dx) |ϕ⟩ = 0 and ER,x

D |ϕ⟩ = 0. For the induction step, note that for any k > 0 we can write

ER,x
D |ϕ(k+1)⟩AXYD = ER,x

D UAXY Q
SPO
XYD |ϕ(k)⟩AXYD = UAXY E

R,x
D QSPO

XYD |ϕ(k)⟩AXYD ,

for some unitary UAXY , where QSPO ∈ {OSPO, OSPO,inv} depending on A’s choice for the k-th query. Here
we have used that the operators UAXY and ER,x

D act on disjoint registers. Using first the unitary invariance
of the norm, then Eq. (6.7), and finally the induction hypothesis, we get∥∥∥ER,x

D |ϕ(k+1)⟩
∥∥∥ =

∥∥∥ER,x
D QSPO

XYD |ϕ(k)⟩AXYD

∥∥∥
≤
∥∥∥ER,x

D |ϕ(k)⟩
∥∥∥+√ |Rx|

x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ(k)⟩

∥∥∥+ 4

√
ζ
(k)

|ϕ(k)⟩,x

≤
k∑

j=1

(√
|Rx|
x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕ(j)⟩

∥∥∥+ 4

√
ζ
(j)
x

)
.

This concludes the proof of Eq. (6.8) and hence proof of the corollary.

6.2 Bounding the Success Probability in Expectation

As discussed at the beginning of the section we will now lift the worst-case bounds established in the previous
section to the average case by running the query algorithm with the twirled permutation oracle for uniformly
random σ, τ ∈ SN and also averaging over the choice of x ∈ [N], corresponding to the progress measure

E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2,
where Rσ,τ is the twirled relation defined in (6.1). Note that rmax = max{maxx∈[N]|R

σ,τ
x |,maxy∈[N]|(Rσ,τ)invy |}.

The main result of this section is the following. It shows that the randomized test for the twirled relation
rarely succeeds for algorithms making not too many queries, up to an error term that captures the “sparsity”
of the database and that will be bounded in Section 6.3.

29

Proposition 6.6. Let A be a unitary query algorithm on registers AXY , where X and Y are N -dimensional
registers, that gets query access to two oracles that each act on XY . Suppose that A makes in total q
queries to its oracles. For every σ, τ ∈ SN , let |ϕσ,τ ⟩AXYD be the joint state of algorithm and oracle defined
by running InitSPOD and then ATSPOσ,τ

D . Let B be the query algorithm on registers BXY as in Lemma 4.9,
with B = AZ and Z another N -dimensional register. Then,

E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2 ≤ 384
q2rmax

(
ln(N) + 2

)
N2

+ 4qrmax

2q∑
j=1

E
x←[N],
σ,τ←SN

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥2
x

where |ϕσ,τ,(j)⟩BXYD is the state given by running InitSPOD and then BTSPO
σ,τ
D until right before the j-th query.

Proof. By Lemma 4.9 for every σ, τ ∈ SN it holds that

BTSPO
σ,τ
D = BSPOD

σ,τ .

with Bσ,τ defined in the statement of the lemma. Moreover, the joint state of the algorithm and oracle defined
by running InitSPOD and then either of these two algorithms is given by |χσ,τ ⟩BXYD = |ϕσ,τ ⟩AXYD ⊗ |0⟩Z .
Thus we can apply Proposition 6.5 with the relation Rσ,τ and the algorithm Bσ,τ , which makes 2q queries to
the untwirled standard oracle, to obtain

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2 = ∥∥∥ERσ,τ ,x
D |χσ,τ ⟩

∥∥∥2 ≤ 4q

2q∑
j=1

(
|Rσ,τ

x |
x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|χσ,τ,(j)⟩

∥∥∥2 + 16ζσ,τ,(j)x

)
, (6.9)

where |χσ,τ,(j)⟩BXYD denotes the state right before the j-th query of BSPOD
σ,τ and

ζσ,τ,(j)x =

{
ζ|χσ,τ,(j)⟩,x if the j-th query of Bσ,τ is a forward query,
ζ inv|χσ,τ,(j)⟩,x if the j-th query of Bσ,τ is an inverse query;

the right-hand side quantities are defined in Lemmas 6.3 and 6.4. In view of the relation between Bσ,τ and B
in Lemma 4.9, we can express the pre-query states of the former in terms of the pre-query states of the
latter: we have |χσ,τ,(j)⟩ ∈

{
V σ
X |ϕσ,τ,(j)⟩ , V σ

XV τ
Y |ϕσ,τ,(j)⟩

}
if the j-th query of Bσ,τ is a forward query, and

otherwise |χσ,τ,(j)⟩ ∈
{
V τ
X |ϕσ,τ,(j)⟩ , V τ

XV σ
Y |ϕσ,τ,(j)⟩

}
. Using the unitary invariance of the norm, we see that∥∥∥(I − |+x⟩⟨+x|Dx

)
|χσ,τ,(j)⟩

∥∥∥ =
∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥∥ (6.10)

and

ζσ,τ,(j)x =

{
ζV σ

X |ϕσ,τ,(j)⟩,x if the j-th query of B is a forward query,

ζ inv
V τ
X |ϕσ,τ,(j)⟩,x if the j-th query of B is an inverse query.

To prove the proposition, we need to upper bound Ex,σ,τ ζ
σ,τ,(j)

|χσ,τ,(j)⟩,x. We distinguish the two cases:

(i) If the j-th query is a forward query, we have

ζσ,τ,(j)x = ζV σ
X |ϕσ,τ,(j)⟩,x =

|Rσ,τ
x |
x
∥|ϕσ,τ,(j)

σ−1(x)
⟩∥2 + |R

σ,τ
x |

x2N
+

1

x

x−1∑
z=1

∑
πxc :πxc (z)∈R

σ,τ
x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

σ−1(z)
⟩
∥∥∥2,

where |ϕσ,τ,(j)
ξ ⟩

BYD
:= ⟨ξ|X |ϕσ,τ,(j)⟩BXYD (as in Lemma 6.3). We will now upper bound the average of

the above term by term, beginning with the first term. Now, p(j)ξ := ∥|ϕσ,τ,(j)
ξ ⟩∥2 is a function of the

reduced state of an algorithm that makes queries to the twirled standard oracle (the part of B right up
to the j-th query), so it follows from Lemma 4.6 that this quantity is independent of σ, τ ∈ SN . Thus:

E
x,σ,τ

|Rσ,τ
x |
x
∥|ϕσ,τ,(j)

σ−1(x)
⟩∥2 ≤ E

x,σ,τ

rmax

x
p
(j)
σ−1(x)

= E
x

rmax

x
E
σ,τ

p
(j)
σ−1(x)

= E
x

rmax

x
E
x′
p
(j)
x′

30

= rmax

(
1

N

N∑
x=1

1

x

)(
1

N

N∑
x′=1

p
(j)
x′

)
≤ rmax

ln(N) + 1

N

1

N

= (ln(N) + 1)
rmax

N2
(6.11)

since
∑N

x′=1 p
(j)
x′ = ∥|ϕσ,τ,(j)⟩∥2 = 1. The second term can be bounded straightforwardly:

E
x,σ,τ

|Rσ,τ
x |

x2N
≤ rmax

N
E
x

1

x2
=

rmax

N2

N∑
x=1

1

x2
≤ π2

6

rmax

N2
≤ 2

rmax

N2
. (6.12)

We defer bounding the third term to Lemma 6.7 (i), where we get

E
x,σ,τ

1

x

x−1∑
z=1

∑
πxc :πxc (z)∈R

σ,τ
x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

σ−1(z)
⟩
∥∥∥2 ≤ (ln(N) + 3)

rmax

N2
. (6.13)

Combining Eqs. (6.11) to (6.13), we obtain

E
x,σ,τ

ζσ,τ,(j)x ≤
(
2 ln(N) + 6

)rmax

N2
. (6.14)

(ii) If the j-th query is an inverse query, we have

ζσ,τ,(j)x = ζ inv
V τ
X |ϕσ,τ,(j)⟩,x =

|Rσ,τ
x |
x
∥|ϕσ,τ,(j)

τ−1(x)
⟩∥2 + |R

σ,τ
x |

x2N
+

1

x

∑
z∈Rσ,τ

x

∑
πxc :π

−1
>x(z)<x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

τ−1(z)
⟩
∥∥∥2

+
1

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(R
σ,τ
x)|

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

τ−1(z)
⟩
∥∥∥2,

where |ϕσ,τ,(j)
ξ ⟩

BYD
:= ⟨ξ|X |ϕσ,τ,(j)⟩BXYD (as in Lemma 6.4). The average can again be bounded term

by term. For the first two terms we proceed as above and for the last two we use Lemma 6.7 (ii) and (iii).
Altogether we obtain

E
x,σ,τ

ζσ,τ,(j)x ≤ (ln(N) + 1)
rmax

N2
+ 2

rmax

N2
+ (ln(N) + 1)

rmax

N2
+ (ln(N) + 1)

rmax

N2

=
(
3 ln(N) + 5

)rmax

N2
.

(6.15)

From Eqs. (6.14) and (6.15) we see that in both the forward and the inverse case, we can bound

E
x,σ,τ

ζσ,τ,(j)x ≤ 3
(
ln(N) + 2

)rmax

N2

We can now use the above and Eq. (6.10) to further bound Eq. (6.9) and obtain

E
x,σ,τ

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2 ≤ 64q

2q∑
j=1

E
x,σ,τ

ζσ,τ,(j)x + 4q

2q∑
j=1

E
x,σ,τ

|Rσ,τ
x |
x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|χσ,τ,(j)⟩

∥∥∥2
≤ 384q2

(
ln(N) + 2

)rmax

N2
+ 4q

2q∑
j=1

E
x,σ,τ

|Rσ,τ
x |
x

∥∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥∥2
= 384

q2rmax

(
ln(N) + 2

)
N2

+ 4qrmax

2q∑
j=1

E
x,σ,τ

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥2
x

,

which is the desired result.

Lemma 6.7. In the situation of Proposition 6.6 and with |ϕσ,τ,(j)
ξ ⟩

BYD
:= ⟨ξ|X |ϕσ,τ,(j)⟩BXYD, we have:

31

(i) Ex←[N], σ,τ←SN

1
x

∑x−1
z=1

∑
πxc :πxc (z)∈R

σ,τ
x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

σ−1(z)
⟩
∥∥∥2 ≤ (ln(N) + 3) rmax

N2 .

(ii) Ex←[N], σ,τ←SN

1
x

∑
z∈Rσ,τ

x

∑
πxc :π

−1
>x(z)<x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

τ−1(z)
⟩
∥∥∥2 ≤ (ln(N) + 1) rmax

N2 .

(iii) Ex←[N], σ,τ←SN

1
x

∑N
z=x+1

∑
πxc :π

−1
>x(z)=x|[x] ∩ π−1>x(R

σ,τ
x)|

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

τ−1(z)
⟩
∥∥∥2 ≤ (ln(N) + 1) rmax

N2 .

Proof. Note that the quantity

qω,ξ :=
∥∥∥⟨τωσ−1|D |ϕσ,τ,(j)

ξ ⟩
∥∥∥2 = ∥∥∥⟨τωσ−1|D ⟨ξ|X |ϕσ,τ,(j)⟩

∥∥∥2
can be interpreted as the joint probability of the outcomes of the following procedure: initialize the database,
run an algorithm (namely, B up to right before its j-th query) that makes queries to the twirled standard
oracle, measure the X register to obtain an outcome ξ ∈ [N], and also apply the recovery operation to the
database to obtain an outcome ω ∈ SN . Accordingly, Lemma 4.6 shows that qω,ξ does not depend on the
choice of σ, τ ∈ SN (which justifies the notation) and that the marginal distribution of ω with respect to qω,ξ
is uniform, i.e.,

∑
ξ∈[N] qω,ξ =

1
N ! for all ω ∈ SN . This observation will be used to establish all three parts of

the lemma.

(i) We start by writing

E
x,σ,τ

1

x

x−1∑
z=1

∑
πxc :πxc (z)∈R

σ,τ
x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

σ−1(z)
⟩
∥∥∥2 = E

x,σ,τ

1

x

x−1∑
z=1

∑
π:πxc (z)∈R

σ,τ
x

qτ−1πσ,σ−1(z). (6.16)

Recall that π = π>x (x tx)π>x for some tx ∈ [x], as in Eqs. (3.1) and (3.4). We will write tx(π) := tx to
make explicit the dependency of tx on the permutation. Because z < x, we have

πxc(z) =

{
π(z) if π<x(z) ̸= tx(π),

π(x) if π<x(z) = tx(π),

so we can write the right-hand side of Eq. (6.16) as a sum of two terms,

E
x,σ,τ

1

x

x−1∑
z=1

∑
π:πxc (z)∈R

σ,τ
x

qτ−1πσ,σ−1(z)

= E
x,σ,τ

1

x

x−1∑
z=1

∑
π:π(z)∈Rσ,τ

x

1π<x(z)̸=tx(π) qτ−1πσ,σ−1(z) + E
x,σ,τ

1

x

x−1∑
z=1

∑
π:π(x)∈Rσ,τ

x

1π<x(z)=tx(π) qτ−1πσ,σ−1(z)

= E
x′,σ,τ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(z′)∈Rx′

1π<σ(x′)(σ(z
′)) ̸=tσ(x′)(τπ

′σ−1) qπ′,z′

+ E
x′,σ,τ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(x′)∈Rx′

1π<σ(x′)(σ(z
′))=tσ(x′)(τπ

′σ−1) qπ′,z′ ,

where the last step follows by substituting x = σ(x′), z = σ(z′), and π = τπ′σ−1, noting that (x′, σ, τ)
is still uniformly random, and using the relation π(ξ) ∈ Rσ,τ

x ⇔ τ−1(π(ξ)) ∈ Rσ−1(x). As τ only appears
in the indicator functions, we can rewrite and bound this as

E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(z′)∈Rx′

Pr
τ

(
π<σ(x′)(σ(z

′)
)
̸= tσ(x′)(τπ

′σ−1)) qπ′,z′

+ E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(x′)∈Rx′

Pr
τ

(
π<σ(x′)(σ(z

′)
)
= tσ(x′)(τπ

′σ−1)) qπ′,z′

= E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(z′)∈Rx′

Pr
t′←[σ(x′)]

(
π<σ(x′)(σ(z

′)) ̸= t′
)
qπ′,z′

32

+ E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(x′)∈Rx′

Pr
t′←[σ(x′)]

(
π<σ(x′)(σ(z

′)) = t′
)
qπ′,z′

≤ E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(z′)∈Rx′

qπ′,z′ + E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(x′)∈Rx′

1

σ(x′)
qπ′,z′

= E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(z′)∈Rx′

qπ′,z′ + E
x′,σ

1

(σ(x′))2

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(x′)∈Rx′

qπ′,z′ ,

since, for any fixed x′, z′, σ, π′, the permutation τπ′σ−1 is uniformly random in SN , so tσ(x′)(τπ
′σ−1) is

uniformly random in [σ(x′)] (by Corollary 3.2) and hence equal to any fixed integer in this interval with
probability 1

σ(x′) . We can finally upper bound the above by

E
x′,σ

1

σ(x′)

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(z′)∈Rx′

qπ′,z′ + E
x′,σ

1

(σ(x′))2

∑
z′∈σ−1([1,σ(x′)])

∑
π′:π′(x′)∈Rx′

qπ′,z′

≤ E
x′,σ

1

σ(x′)

N∑
z′=1

∑
π′:π′(z′)∈Rx′

qπ′,z′ + E
x′,σ

1

(σ(x′))2

N∑
z′=1

∑
π′:π′(x′)∈Rx′

qπ′,z′

= E
x′

(
E
σ

1

σ(x′)

) N∑
z′=1

∑
π′:π′(z′)∈Rx′

qπ′,z′ +E
x′

(
E
σ

1

σ(x′)2

) N∑
z′=1

∑
π′:π′(x′)∈Rx′

qπ′,z′

= E
x′

(
E
σ

1

σ(x′)

) N∑
z′=1

∑
π′:π′(z′)∈Rx′

qπ′,z′ +E
x′

(
E
σ

1

σ(x′)2

) N∑
z′=1

∑
π′:π′(x′)∈Rx′

qπ′,z′

≤ ln(N) + 1

N
E
x′

N∑
z′=1

∑
π′:π′(z′)∈Rx′

qπ′,z′ +
π2

6

1

N
E
x′

N∑
z′=1

∑
π′:π′(x′)∈Rx′

qπ′,z′

=
ln(N) + 1

N

∑
π′∈SN

N∑
z′=1

Pr
x′

(
x′ ∈ Rinv

π′(z)

)
qπ′,z′ +

π2

6

1

N
E
x′
Pr
π′
(π′(x′) ∈ Rx′)

≤ ln(N) + 1

N

rmax

N
+

π2

6

1

N

rmax

N

≤ (ln(N) + 3)
rmax

N2
,

where we first enlarging the sum over z′ to all of [N], then we bounded the expectation over σ by
using that σ(x′) ∈ [N] is uniformly random for any fixed x′; in the last equality we also used that the
marginal distribution of π′ with respect to qπ′,z′ is uniform as discussed above.

(ii) Similarly as above, we begin by writing

E
x,σ,τ

1

x

∑
z∈Rσ,τ

x

∑
πxc :π

−1
>x(z)<x

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

τ−1(z)
⟩
∥∥∥2 = E

x,σ,τ

1

x

∑
z∈Rσ,τ

x

∑
π:π−1

>x(z)<x

qτ−1πσ,τ−1(z)

We can upper-bound this by omitting the constraint on π, which gives the bound

E
x,σ,τ

1

x

∑
z∈Rσ,τ

x

∑
π:π−1

>x(z)<x

qτ−1πσ,τ−1(z) ≤ E
x,σ,τ

1

x

∑
z∈Rσ,τ

x

qτ−1(z) = E
x′,σ,τ

1

σ(x′)

∑
z′∈Rx′

qz′

= E
x′

(
E
σ

1

σ(x′)

) ∑
z′∈Rx′

qz′ ≤
ln(N) + 1

N
E
x′

∑
z′∈Rx′

qz′

=
ln(N) + 1

N

N∑
z′=1

Pr
x′

(
x′ ∈ Rinv

z′
)
qz′ ≤ (ln(N) + 1)

rmax

N2
,

where we use the notation qξ :=
∑

ω∈SN
qω,ξ for the marginal distribution of ξ with respect to qω,ξ; the

second step follows by substituting x = σ(x′) and z = τ(z′).

33

(iii) Again we begin with

E
x,σ,τ

1

x

N∑
z=x+1

∑
πxc :π

−1
>x(z)=x

|[x] ∩ π−1>x(R
σ,τ
x)|

∥∥∥⟨πxc |Dxc
|ϕσ,τ,(j)

τ−1(z)
⟩
∥∥∥2

= E
x,σ,τ

1

x

N∑
z=x+1

∑
π:π−1

>x(z)=x

|[x] ∩ π−1>x(R
σ,τ
x)| qτ−1πσ,τ−1(z)

≤ rmax E
x,σ,τ

1

x

N∑
z=x+1

∑
π:π−1

>x(z)=x

qτ−1πσ,τ−1(z)

= rmax E
x′,σ,τ

1

τ(x′)

∑
z′∈τ−1({τ(x′)+1,...,N})

∑
π′

1((τπ′σ−1)>τ(x′))
−1(τ(z′))=τ(x′)qπ′,z′ ,

where the last step follows by substituting x = τ(x′), z = τ(z′), and π = τπ′σ−1. As σ only occurs in
the indicator function, we can rewrite and bound this as

rmax E
x′,τ

1

τ(x′)

∑
z′∈τ−1({τ(x′)+1,...,N})

∑
π′

Pr
σ

(
((τπ′σ−1)>τ(x′))

−1(τ(z′)) = τ(x′)
)
qπ′,z′

= rmax E
x′,τ

1

τ(x′)

∑
z′∈τ−1({τ(x′)+1,...,N})

∑
π′

Pr
σ

(
σ>τ(x′)(τ(x

′)) = τ(z′)
)
qπ′,z′ (6.17)

since, for any fixed τ and π′, the permutation τπ′σ−1 is again uniformly random. Using part (iii) of
Lemma 3.3, we see that the inner probability is simply equal to 1

N . Hence the above is equal to

rmax

N
E
x′,τ

1

τ(x′)

∑
z′∈τ−1({τ(x′)+1,...,N})

∑
π′

qπ′,z′ ≤
rmax

N
E
x′,τ

1

τ(x′)
=

rmax

N
E
x′

1

x′
≤ (ln(N) + 1)

rmax

N2
.

6.3 Sparsity Analysis

The goal of this section is to upper bound the term

E
x←[N],
σ,τ←SN

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥2
x

, (6.18)

which remains to be estimated in the right-hand side of Proposition 6.6. Intuitively, this quantifies the extent
to which a random database register Dx has been queried by the algorithm, weighted by 1/x-.

To analyze Eq. (6.18), recall that |ϕσ,τ,(j)⟩AXYD denotes the joint state of the algorithm and database
right before the j-th query when run with the twirled oracle. By Lemma 4.8, we have

|ϕσ,τ,(j)⟩AXYD = Lτ
DR

σ
D |ϕ(j)⟩AXYD ,

where |ϕ(j)⟩ denotes the state right before the j-th query when the same algorithm is run with the untwirled
oracle. We can thus express Eq. (6.18) as follows:

E
x←[N],
σ,τ←SN

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥2
x

= ⟨ϕ(j)|ΓD |ϕ(j)⟩ , (6.19)

where we have introduced the operator

ΓD := E
x←[N]

1

x
E

σ,τ←SN

(Lτ
DR

σ
D)
†(I − |+x⟩⟨+x|Dx

)
(Lτ

DR
σ
D) (6.20)

34

where we recall that HN denotes the harmonic numbers, see Eq. (2.1).
To upper bound the quantity of interest, we now observe that that we can upper bound its growth with

each additional query as follows, in terms of the norm of a commutator:

⟨ϕ(j+1)|ΓD|ϕ(j+1)⟩ − ⟨ϕ(j)|ΓD|ϕ(j)⟩ = ⟨ϕ(j)|Q†XYDΓDQXYD − ΓD|ϕ(j)⟩

= ⟨ϕ(j)|Q†XYD[ΓD, QXYD]|ϕ(j)⟩
≤ ∥[ΓD, QXYD]∥ (6.21)

where QXYD ∈ {OSPO
XYD, O

SPO,inv
XYD }, depending on whether the j-th query is a forward or an inverse query.

The first equality holds because the unitary that the algorithm performs inbetween the two queries does not
act on the oracle’s database register D.

We now calculate the operator ΓD explicitly and use the result to estimate the norm of the commutator.

Lemma 6.8. We have

ΓD =
HN −H

(2)
N

N
ID − 2

H
(2)
N −H

(3)
N

N
W

(2)
D −

HN − 3H
(2)
N + 2H

(3)
N

N
W

(3)
D ,

where we denote H
(ℓ)
N :=

∑N
ℓ=1

1
xℓ and W (ℓ) := Eγ ℓ-cycle R

γ = Eγ ℓ-cycle L
γ.5

Proof. We first compute the action of |+x⟩⟨+x|Dx in the permutation basis. For any π ∈ SN , we have

|+x⟩⟨+x|Dx |π⟩D = E
s←[x]

|π>x (x s)π<x⟩

= E
s←[x]

|π>x (x tx)π<x π
−1
<x (x tx)π<x π

−1
<x (x s)π<x⟩

= E
s←[x]

|π
(
x π−1<x(tx)

) (
x π−1<x(s)

)
⟩

= E
s←[x]

R
(x s)
D R

(x π−1
<x(tx(π)))

D |π⟩D ,

where we denote by tx ∈ [x] the number in the decomposition (3.1) of π, i.e., π = π>x (x tx)π<x; in the last
line we write tx(π) to make the dependence on π explicit. Thus,

|+x⟩⟨+x|Dx =
∑
π∈SN

E
s←[x]

R
(x s)
D R

(x π−1
<x(tx(π)))

D |π⟩D ⟨π|D .

We first average this over the left action, which commutes with the right action, and obtain

E
τ←SN

(Lτ
D)
†|+x⟩⟨+x|DxL

τ
D =

∑
π∈SN

E
s←[x]

R
(x s)
D R

(x π−1
<x(tx(π)))

D E
τ←SN

|τ−1π⟩D ⟨τ
−1π|D︸ ︷︷ ︸

= 1
N !

ID

= E
π∈SN

E
s←[x]

R
(x s)
D R

(x π−1
<x(tx(π)))

D = E
s,t←[x]

R
(x s)
D R

(x t)
D = E

s,t←[x]
R

(x s)(x t)
D .

If we now average over the right action, the permutation (x s) (x t) is conjugated into a random permutation
of the same type (either the identity, a transposition, or a 3-cycle, depending on the cardinality of {x, s, t}):

E
σ,τ←SN

(Lτ
DR

σ
D)
†|+x⟩⟨+x|Dx(L

τ
DR

σ
D) = E

s,t←[x]
E

σ←SN

R
(σ−1(x) σ−1(s))(σ−1(x) σ−1(t))
D

=

3∑
ℓ=1

Pr
s,t←[x]

(
|{s, t, x}| = ℓ

)
W

(ℓ)
D

=
1

x
ID +

2(x− 1)

x2
W

(2)
D +

(x− 1)(x− 2)

x2
W

(3)
D .

5To see this, note that Eγ R
γ |π⟩ = Eγ |πγ−1⟩ = Eγ |πγ−1π−1π⟩ = Eγ |γπ⟩ = Eγ Lγ |π⟩, since if γ is a uniformly random

ℓ-cycle then so is πγ−1π−1, for any permutation π ∈ SN .

35

and finally, using Eq. (6.20) and Ex←[N]
1
xℓ = H

(ℓ)
N /N ,

ΓD = E
x←[N]

1

x

(
ID − E

σ,τ←SN

(Lτ
DR

σ
D)
†|+x⟩⟨+x|Dx(L

τ
DR

σ
D)

)
= E

x←[N]

((
1

x
− 1

x2

)
ID −

2(x− 1)

x3
W

(2)
D − (x− 1)(x− 2)

x3
W

(3)
D

)
.

Lemma 6.9. For QXYD ∈ {OSPO
XYD, O

SPO,inv
XYD }, we have ∥[ΓD, QXYD]∥ ≤ 6(ln(N)+1)

N2 .

Proof. We prove the bound in the case that QXYD ∈ {OSPO
XYD – the other case is identical except for using the

formula W (ℓ) in terms of the left instead of the right action. We first observe that since OSPO
XYD is controlled

on X, ∥∥∥[ΓD, O
SPO
XYD]

∥∥∥ = max
x∈[N]

∥∥∥[ΓD, O
SPO,x
Y D]

∥∥∥
where OSPO,z

Y D := ⟨z|X OSPO
XYD |z⟩X . Next, note that if γ ∈ SN is any permutation such that γ(x) = x, then

[Rγ
D, O

SPO,x
Y D] = 0.

since for any y ∈ [N] and π ∈ SN we have OSPO,x
Y D Rγ

D |y, π⟩Y D = |y ⊕ π(γ−1(x)), πγ−1⟩Y D = |y ⊕ π(x), πγ−1⟩Y D =

Rγ
DO

SPO,x
Y D |y, π⟩Y D. Otherwise, if γ(x) ̸= x then it still holds that ∥Rγ

D, O
SPO,x
Y D]∥ ≤ 2 since the commutator

of any two unitaries has operator norm at most two. Accordingly,∥∥∥[W (2)
D , OSPO,x

Y D]
∥∥∥ ≤ 2 Pr

γ 2-cycle
(γ(x) ̸= x) =

4

N
,∥∥∥[W (3)

D , OSPO,x
Y D]

∥∥∥ ≤ 2 Pr
γ 3-cycle

(γ(x) ̸= x) =
6

N
.

and hence, using Lemma 6.8, the fact that HN ≥ H
(2)
N ≥ H

(3)
N ≥ 0, and Eq. (2.2),

∥∥∥[ΓD, O
SPO,x
Y D]

∥∥∥ ≤ 2
H

(2)
N −H

(3)
N

N

∥∥∥[W (2)
D , OSPO,x

Y D]
∥∥∥+ HN − 3H

(2)
N + 2H

(3)
N

N

∥∥∥[W (3)
D , OSPO,x

Y D]
∥∥∥

≤ 8
H

(2)
N −H

(3)
N

N2
+ 6

HN − 3H
(2)
N + 2H

(3)
N

N2

=
6HN − 10H

(2)
N + 4H

(3)
N

N2
≤ 6HN

N2
≤ 6(ln(N) + 1)

N2
.

Corollary 6.10. For all j, it holds that

E
x←[N],
σ,τ←SN

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥2
x

≤ 6
j(ln(N) + 1)

N2

and hence

4qrmax

2q∑
j=1

E
x←[N],
σ,τ←SN

∥∥(I − |+x⟩⟨+x|Dx

)
|ϕσ,τ,(j)⟩

∥∥2
x

≤ 72
q3rmax(ln(N) + 1)

N2

Proof. The first formula follows from Eqs. (6.19) and (6.21) and Lemma 6.9 by using induction, since
⟨ϕ(0)|ΓD |ϕ(0)⟩ = ⟨ΦSPO|ΓD |ΦSPO⟩ = 0. The second formula follows at once.

36

6.4 Main Theorem

Finally, we can use the preceding analysis, together with the fundamental lemma, to establish our main
theorem (which formalizes Theorem 1.1 announced in the introduction):

Theorem 6.11 (Search). Let A be a quantum algorithm with quantum query access to a random permuta-
tion π ∈ SN and its inverse (Definition 4.1), which returns an x ∈ [N], and let R ⊆ [N]× [N] be any relation.
If A makes fewer than q queries, then the probability that it returns an element x such that (x, π(x)) ∈ R is

Pr
π←SN , x←AUπ,Uπ−1

[
(x, π(x)) ∈ R

]
≤ 914

q3rmax

(
ln(N) + 2

)
N

,

where we recall rmax = max
{
maxx |Rx|,maxy |Rinv

y |
}
, with Rx = {y : (x, y) ∈ R} and Rinv

y = {x : (x, y) ∈ R}.

Proof. Without loss of generality we can assume that A is a unitary query algorithm on registers AXY ,
where X and Y are the two N -dimensional registers that the oracles get applied to such that the classical
outcome x can be obtained by measuring the X register. Let B denote the unitary query algorithm that
first runs x← A, then makes one more query to load π(x) into the Y register. Since A makes fewer than q
queries, the algorithm B makes at most q queries. For every σ, τ ∈ SN , let |ϕσ,τ ⟩AXYD be the joint state of
algorithm and oracle defined by running InitSPOD and then BTSPO

σ,τ
D . Then, Proposition 6.6 and Corollary 6.10

combine to

E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2 ≤ 384
q2rmax

(
ln(N) + 2

)
N2

+ 72
q3rmax(ln(N) + 1)

N2

≤ 456
q3rmax

(
ln(N) + 2

)
N2

.

Using Lemmas 5.3 and 6.1, we can upper bound the quantity p(ii) defined in the fundamental lemma
(Lemma 5.1) as follows:

p(ii) ≤ N E
x←[N],
σ,τ←SN

∥∥∥ERσ,τ ,x
D |ϕσ,τ ⟩

∥∥∥2 ≤ 456
q3rmax

(
ln(N) + 2

)
N

.

Finally, the fundamental lemma states that

√
p(i) ≤

√
p(ii) +

√
ln(N) + 1

N

and hence

p(i) ≤ 2

(
p(ii) +

ln(N) + 1

N

)
≤ 914

q3rmax

(
ln(N) + 2

)
N

concluding our proof.

7 Application to One-Round Sponge and Unruh’s Conjecture

We can now apply our results to obtain bounds for the hardness of search problems for algorithms given
quantum query access to a random permutation and its inverse.

We first show a bound on the pre-image search problem for the sponge construction, instantiated with a
random permutation, restricted to one absorption round and one squeezing round. The sponge function in
this special case, for a permutation π ∈ S{0,1}n and with capacity c < n, is given by

fπ : {0, 1}n−c → {0, 1}n−c, fπ(x) = π(x∥0c)[1,n−c],

where s[1,r] denotes the first r bits of a string s. The following result was stated as Corollary 1.2 in the
introduction.

37

Corollary 7.1 (One-round sponge). For any y ∈ {0, 1}n−c, the probability that a quantum algorithm A with
quantum query access to a random permutation π ∈ S{0,1}n and its inverse returns a preimage x ∈ {0, 1}n−c
under the one-round sponge function fπ, by making fewer than q queries, can be upper bounded as

Pr
π←S{0,1}n , x←AUπ,Uπ−1

[
fπ(x) = y

]
≤ 914

q3(n+ 2)

2min(c,n−c) .

Proof. Let B denote the algorithm that runs x← A and returns x′ := x∥0c. Clearly, fπ(x) = y if and only
if (x′, π(x′)) ∈ R, where

R =
{
(x′, y′) ∈ {0, 1}n × {0, 1}n : x′[n−c+1,n] = 0c, y′[1,n−c] = y

}
.

Note that

rmax = max

{
max
x′
|Rx′ |,max

y′
|Rinv

y′ |
}

= 2max(c,n−c).

Applying Theorem 6.11 to B, which makes the same number of queries as A, we find that

Pr
π←S{0,1}n ,

x←AUπ,Uπ−1

[
fπ(x) = y

]
= Pr

π←S{0,1}n ,

x′←BUπ,Uπ−1

[
(x′, π(x′)) ∈ R

]
≤ 914

q32max(c,n−c)(n+ 2)

2n
= 914

q3(n+ 2)

2min(c,n−c) .

Next we consider the double-sided zero-search conjecture, which states that no adversary making poly-
nomially many quantum queries to a permutation π ∈ S{0,1}2n and its inverse is able to find x ∈ {0, 1}n
such that π(x∥0n)[n+1,2n] = 0n with non-negligible probability [Unr23, Conjecture 1]. The following corollary
confirms Unruh’s conjecture and establishes more generally an upper bound on the success probability for the
problem with an arbitrary number c of zeros. It was stated as Corollary 1.3 in the introduction.

Corollary 7.2. The probability that a quantum algorithm A with quantum query access to a random
permutation π ∈ S{0,1}2n and its inverse returns x ∈ {0, 1}n such that π(x∥0n)[n+1,2n] = 0n, by making fewer
than q queries, can be upper bounded as

Pr
π←S{0,1}2n , x←AUπ,Uπ−1

[
∃y ∈ {0, 1}n : π(x∥0n) = y∥0n

]
≤ 1828

q3
(
n+ 1

)
2n

.

More generally, it holds for any c ∈ [2n] and any algorithm A that returns bitstrings x ∈ {0, 1}2n−c that

Pr
π←S{0,1}2n , x←AUπ,Uπ−1

[
∃y ∈ {0, 1}2n−c : π(x∥0c) = y∥0c

]
≤ 1828

q3
(
n+ 1

)
2c

.

Proof. It suffices to establish the second claim since it implies the first for c = n. Similarly to the proof of
Corollary 7.1 we can reduce to a relation, namely

R =
{
(x′, y′) ∈ {0, 1}2n × {0, 1}2n : x′[2n−c+1,2n] = y′[2n−c+1,2n] = 0c

}
.

Note that rmax = 22n−c. Thus, Theorem 6.11 yields, with N = 22n,

Pr
π←S{0,1}2n , x←AUπ,Uπ−1

[
∃y ∈ {0, 1}2n−c : π(x∥0c) = y∥0c

]
≤ 914

q322n−c
(
2n+ 2

)
22n

= 1828
q3
(
n+ 1

)
2c

.

38

Acknowledgments

The authors thank Saliha Tokat for feedback on an earlier version of this manuscript.
GM and MW acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. GM also acknowledges
support by the European Research Council through an ERC Starting Grant (grant agreement No. 101077455,
ObfusQation). MW also acknowledges support by the European Research Council through an ERC Starting
Grant (grant agreement No. 101040907, SYMOPTIC), by the NWO through grant OCENW.KLEIN.267, and
by the BMBF through project Quantum Methods and Benchmarks for Resource Allocation (QuBRA). CM
acknowledges support by the Independent Research Fund Denmark via a DFF Sapere Aude grant (IM-3PQC,
grant ID 10.46540/2064-00034B). MW acknowledges the Simons Institute for the Theory of Computing at
UC Berkeley for its hospitality and support. MW and CM thank the Leibnitz Center for Informatics for its
hospitality.

References

[ABK+] Gorjan Alagic, Chen Bai, Jonathan Katz, Christian Majenz, and Patrick Struck. Post-quantum se-
curity of tweakable Even-Mansour, and applications. Cryptology ePrint Archive, Paper 2022/1097.
Accepted at EUROCRYPT 2024. URL: https://eprint.iacr.org/2022/1097.

[ABKM22] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. Post-quantum security of the
Even-Mansour cipher. In Advances in Cryptology—Eurocrypt 2022, Part III, volume 13277 of
LNCS, pages 458–487. Springer, 2022.

[ABPS23] Gorjan Alagic, Chen Bai, Alexander Poremba, and Kaiyan Shi. On the two-sided permutation
inversion problem. Cryptology ePrint Archive, Paper 2023/985, 2023. URL: https://eprint.iacr.
org/2023/985.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and
weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Advances in Cryptology–ASIACRYPT 2011,
pages 41–69. Springer, 2011.

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti.
Tighter proofs of CCA security in the quantum random oracle model. In Theory of Cryptography.
TCC 2019, volume 11892 of Lecture Notes in Computer Science, pages 61–90. Springer, 2019.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM.

[CFHL21] Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, pages 598–629,
Cham, 2021. Springer International Publishing.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM, 51:557–594, July 2004.

[CMSZ19] Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur. Quantum lazy
sampling and game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive,
Report 2019/428, 2019. URL: https://eprint.iacr.org/2019/428.

[CP24] Joseph Carolan and Alexander Poremba. Quantum one-wayness of the single-round sponge with
invertible permutations. Cryptology ePrint Archive, Paper 2024/414, 2024. https://eprint.iacr.
org/2024/414. URL: https://eprint.iacr.org/2024/414.

39

https://eprint.iacr.org/2022/1097
https://eprint.iacr.org/2023/985
https://eprint.iacr.org/2023/985
https://eprint.iacr.org/2019/428
https://eprint.iacr.org/2024/414
https://eprint.iacr.org/2024/414
https://eprint.iacr.org/2024/414

[Cza21] Jan Czajkowski. Quantum indifferentiability of SHA-3. Cryptology ePrint Archive, Paper
2021/192, 2021. URL: https://eprint.iacr.org/2021/192.

[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in
the quantum random-oracle model. Cryptology ePrint Archive, Report 2021/280, 2021. URL:
https://eprint.iacr.org/2021/280.

[Dwo15] Morris J Dworkin. SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Inf. Process. Stds. (NIST FIPS) 202, 2015. URL: https://doi.org/10.6028/NIST.FIPS.202.

[HHM22] Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Failing gracefully: Decryption
failures and the Fujisaki-okamoto transform. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology – ASIACRYPT 2022, pages 414–443, Cham, 2022. Springer Nature
Switzerland.

[HM23] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for finding multiple collision
pairs. ACM Trans. Comput. Theory, 15, 2023.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput., 17(2):337–386, 1988.

[LZ19a] Qipeng Liu and Mark Zhandry. On finding quantum multi-collisions. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 189–218, Cham, 2019.
Springer International Publishing.

[LZ19b] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 326–355, Cham,
2019. Springer International Publishing.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[Ros21] Ansis Rosmanis. Tight bounds for inverting permutations via compressed oracle arguments. 2021.
arXiv:2103.08975.

[Unr21] Dominique Unruh. Compressed permutation oracles (and the collision-resistance of Sponge/SHA3).
Cryptology ePrint Archive, Paper 2021/062, 2021. URL: https://eprint.iacr.org/2021/062.

[Unr23] Dominique Unruh. Towards compressed permutation oracles. In Advances in Cryptology –
ASIACRYPT 2023, volume 14441 of Lecture Notes in Computer Science, pages 369–400. Springer,
2023.

[Wat18] John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.

[Wil19] Mark M Wilde. Quantum Information Theory. Cambridge University Press, second edition, 2019.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In Advances in Cryptology–CRYPTO 2019, pages 239–268. Springer, 2019.

40

https://eprint.iacr.org/2021/192
https://eprint.iacr.org/2021/280
https://doi.org/10.6028/NIST.FIPS.202
http://arxiv.org/abs/2103.08975
https://eprint.iacr.org/2021/062

	1 Introduction
	1.1 Summary of Contributions
	1.2 Key Challenges and Techniques
	1.3 Concurrent Independent Work

	2 Preliminaries
	3 Random Permutations
	3.1 Random Permutations from Independent Transpositions
	3.2 Active Transpositions

	4 Quantum Random Permutations Oracles
	4.1 Superposition Permutation Oracle
	4.2 Twirled Superposition Permutation Oracle

	5 The Fundamental Lemma of the Permutation Oracle
	6 Bounding the Success Probability for Search
	6.1 Bounding the Success Probability in the Worst Case
	6.2 Bounding the Success Probability in Expectation
	6.3 Sparsity Analysis
	6.4 Main Theorem

	7 Application to One-Round Sponge and Unruh's Conjecture

