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Abstract. The SHA-3 standard consists of four cryptographic hash func-
tions, called SHA3-224, SHA3-256, SHA3-384 and SHA3-512, and two
extendable-output functions (XOFs), called SHAKE128 and SHAKE256. In
this paper, we study the collision resistance of the SHA-3 instances. By
analyzing the nonlinear layer, we introduce the concept of maximum dif-
ference density subspace, and develop a new target internal difference
algorithm by probabilistic linearization. We also exploit new strategies
for optimizing the internal differential characteristic. Furthermore, we fig-
ure out the expected size of collision subsets in internal differentials, by
analyzing the collision probability of the digests rather than the interme-
diate states input to the last nonlinear layer. These techniques enhance
the analysis of internal differentials, leading to the best collision attacks
on four round-reduced variants of the SHA-3 instances. In particular, the
number of attacked rounds is extended to 5 from 4 for SHA3-384, and to
6 from 5 for SHAKE256.

Keywords: Hash Functions · SHA-3 · Collision Attacks · Internal Dif-
ferentials · Linearization

1 Introduction

The Keccak hash function [2], a creation of Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van Assche [3], emerged victorious in the SHA-3
(Secure Hash Algorithm-3) competition conducted by the National Institute
of Standards and Technology (NIST) in the United States. In 2015, NIST re-
leased the final version of the SHA-3 standard [8]. The SHA-3 family consists
of four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384 and
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SHA3-512. Additionally, the SHA-3 family includes two Extendable-Output Func-
tions (XOFs), called SHAKE128 and SHAKE256, capable of generating digests of
variable lengths. The SHA-3 function, to say, Keccak, employs a sponge con-
struction that accommodates messages of varying lengths for hash function in-
puts. The message undergoes padding and is then divided into uniform-sized
message blocks. The 1600-bit initial state of Keccak is XORed with the first
message block, followed by 24 rounds of the Keccak-f permutation applied to
update the state and XORing of subsequent message blocks until absorption
is complete. Finally, a final 24-round Keccak-f is applied to the state, and
selected state bits are extracted as the resulting digest. Since its introduction
in 2008, Keccak has emerged as a crucial hash function, undergoing exten-
sive security analysis, including evaluations of preimage resistance and collision
resistance [1,4,6,7,11,14,15,9,10,17].

A collision attack is to find a pair of distinct messages that produce identical
digests. In the literature, differential and internal differential cryptanalysis are
the two main cryptanalytic tools for security evaluation of SHA-3 against colli-
sion resistance. In 2012, Dinur, Dunkelman and Shamir [5] introduced practical
attack strategies targeting 4-round Keccak-224 and Keccak-256 using differ-
ential cryptanalysis. Their work involved the development of a target difference
algorithm (TDA) to establish a link between a 1-round connector and a 3-round
high probability differential characteristic. Building on Dinur et al.’s framework,
Qiao et al. [14] expanded the connection of 2-round connectors and 3-round dif-
ferential characteristic through the application of linearization techniques, and
demonstrated actual collisions for 5-round SHAKE128. Further advancements were
made in [15,9], where connectors were improved to 3-round connectors using
non-full Sbox linearization techniques, resulting in practical collision attacks on
5-round SHA3-224 and SHA3-256. In [12], Huang et al. introduced a SAT-based
connector to address the issue of insufficient degrees of freedom and proposed a
collision attack on SHA3-384 with a complexity of 259.64. In [10], Guo et al. em-
ployed SAT-based automatic search tools and enhanced connector construction
algorithms to present the first quantum collision attacks on SHA-3 instances,
including 6-round SHA3-224 and SHA3-256, as well as the classical collisions of
6-round SHAKE128.

In 2013, Dinur, Dunkelman and Shamir [6] employed generalized internal
differentials in the analysis of SHA-3 for the first time, and conducted prac-
tical collision attacks on 3-round Keccak-384 and Keccak-512 as well as
theoretical attacks on 4-round Keccak-384 and 5-round Keccak-256. In the
5-round attack of Keccak-256, Dinur et al. developed an analogous variant of
the TDA, called target internal difference algorithm (TIDA). Recently in 2023,
Zhang, Hou and Liu [17] improved the target internal difference algorithm and
proposed the conditional internal differentials, which directly selects messages
that pass through the first two rounds of internal differential characteristic by
imposing linear conditions on the initial message space. With the help of these
methods, Zhang et al. presented collision attacks for all the six SHA-3 functions
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reduced to up to 5 rounds, including the first collision attack on 4 rounds and 5
rounds of SHAKE256 and the best collision attack on 4-round SHA3-512.

The target difference and internal difference algorithms have demonstrated
their core force in collision attacks on reduced SHA-3. Most of these algorithms
are designed by setting up and solving linear equations through linearizing the
Sbox, of which all the linearization techniques are developed in a deterministic
way. Concretely speaking, in the existing target difference algorithms [5,14,15,9]
and target internal difference algorithms [6,17], the input difference of each ac-
tive Sbox is constrained in a two-dimensional affine subspace by introducing 3
linear equations to establish a linear equation system with respect to the in-
put differences, based on which another linear system is built with respect to
the values of the states. This results in too many equations to apply TDA or
TIDA to SHA-3 instances with large capacity and high security strength (such
as SHA3-384, SHA3-512, and even SHAKE-256). Another method is to set up and
solve nonlinear equations combining with linear ones, e.g., [12]. This method
depends on the ability of the solver. It is challenging to evaluate the complexity
in a general case, and it is unclear how to extend to more rounds.

At present, the best known collisions on SHA3-384, SHA3-512 and SHAKE-256
achieve 4 rounds, 4 rounds and 5 rounds respectively, while the best known
collisions on SHA3-224, SHA3-256 and SHAKE-128, the three SHA-3 instances that
have collision resistance within 128 bits, reach 5 rounds, 5 rounds and 6 rounds
respectively, which are exactly one round more. A natural question that arises
in this context is whether we could extend the attacks on the SHA-3 instances
with stronger collision resistance to more rounds.

Our Contribution. In this paper, we focus on the collision resistance of the
SHA-3 instances, especially including those with high security strength, starting
from the above question. We first propose a method called probabilistic lineariza-
tion by introducing the concept of maximum difference density subspace. Then
we generalize the target internal difference algorithm by probabilistic lineariza-
tion, in which we set up much less equations. We also figure out the expected size
of collision subsets in internal differentials, which is more accurate than before.
In particular, for attacking more rounds of the SHA-3 instances, we construct
new internal differential characteristic by exploiting specific properties. These
techniques enhance the internal differential cryptanalysis, and lead to the devel-
opment of theoretical attacks on all the six SHA-3 variants up to 6 rounds. The
details of our techniques and results are summarized as follows.

We introduce the maximum difference density subspace to constrain the in-
put difference of each active Sbox in an affine subspace of a high dimension
(more than two) with maximum probability. The linear system established in
this probabilistic way has much less equations, and it requires much less mes-
sages of the first block to satisfy the inner part of the system. The cost is that
the solution of the system is not necessarily the input difference. We need to cre-
ate multiple systems and determine whether their solutions sets contain input
differences. Overall, the complexity is lower than the previous method of us-

3



ing two-dimensional affine subspace. By probabilistic linearization, we design a
new TIDA to link an internal differential characteristic starting from the second
round to the initial state of SHA-3, also called 1-round internal connector. The
application of the new TIDA makes it possible to improve the collision attacks
on round-reduced SHA-3.

We describe two guidelines for choosing the target internal difference in
TIDA, and extend the internal differential characteristic by an extra round,
for two SHA-3 instances, by exploiting their specific properties.

The collision subsets are the output subsets of the last round in internal
differentials used to find collisions. In the discussion of a variant of birthday
attack [17], the following conclusion was proved. If there are 2k collision subsets,
each of which has a size of 2m, then during the collision searching stage, we need
to search 2(m−k)/2 states in each subset to find a collision with a probability of
0.4 (the success probability of normal birthday attack), and the time complexity
is 2(k+m)/2. In the previous works [6,17], the size of the collision subset was
estimated by the length of the state that affected the output before the last
χ mapping. This results in the same time complexity required for collisions
of 512 bits and 640 bits, while for the 512-bit case the adversary expects a
lower cost than that of 640 bits. In this work, we estimate the size of collision
subset by calculating the probability of a collision in the digests rather than the
intermediate states input to the last nonlinear layer χ, and thereby obtain a
tighter upper bound on the complexity of collision search. The accuracy of our
estimation is also confirmed by experiments.

With the help of these techniques, we propose the first collision attack on
5-round SHA3-384 with a complexity of 2170.73, as well as the first collision
attack on 6-round SHAKE256 with a complexity of 2232.29. We also revisit the
collision attacks on 4-round SHA3-512, 5-round SHA3-224/SHA3-256/SHAKE128
and 5-round SHAKE256 in [17], and obtain a new complexity of 2225.29, 296.67 and
2163.28 respectively. Our results are listed in Table 1 with a comparison of the
related previous work.

Organization. The rest of the paper is organized as follows. In Section 2, we
describe the SHA-3 hash function. In Section 3, we list the notations used in
this paper and review the internal differentials. In Section 4, we propose the
technique of probabilistic linearization, followed by a description and analysis of
the new target internal difference algorithm. Section 5 presents the framework of
our attacks, followed by detailed explanations over our techniques. The results
of our attacks are given in Section 6. We conduct experiments for verifying our
attacks in Section 7, and conclude the paper in Section 8.

2 Description of SHA-3

In this section, we give a brief description of the sponge construction and the
SHA-3 hash function, i.e., the Keccak hash function. Subsequently, the security
strengths of SHA-3 instances are given.
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Target Rounds Complexity Attack method Reference

SHA3-224
5 2105 Internal differential [17]
5 296.67 Internal differential Section 6.3
5 Practical Differential [15]

SHA3-256
5 2105 Internal differential [17]
5 296.67 Internal differential Section 6.3
5 Practical Differential [9]

SHA3-384

4 2147 Internal differential [6]
4 276 Internal differential [17]
4 259.64 Differential [12]
5 2170.73 Internal differential Section 6.1

SHA3-512
3 Practical Internal differential [6]
4 2237 Internal differential [17]
4 2225.29 Internal differential Section 6.3

SHAKE128

5 2105 Internal differential [17]
5 296.67 Internal differential Section 6.3
5 Practical Differential [14]
6 2123.5 Differential [10]

SHAKE256

4 276 Internal differential [17]
5 2185 Internal differential [17]
5 2163.28 Internal differential Section 6.3
6 2232.29 Internal differential Section 6.2

Table 1: Comparison of the best collision attacks against the SHA-3 family

2.1 The Sponge Function

The sponge construction is a framework for constructing hash functions based
on permutations. The sponge construction proceeds in two phases: absorbing
phase and squeezing phase, as shown in Figure 1. The message is firstly padded
by appending a bit string of 10*1, where 0* represents a shortest string of 0’s so
that the length of padded message is multiple of r, and cut into r-bit blocks. The
b-bit internal state is initialized to be all zeros. In absorbing phase, each message
block is XORed into the first r bits of the current state, and then applying a
fixed permutation to the entire b-bit state. The sponge construction switches to
the squeezing phase after all message blocks are processed. In this phase, the
first r bits of the state are returned as output and the permutation is applied in
each iteration. This process is repeated until all d bits digest are produced.

2.2 The Keccak Hash Function

The Keccak permutation has 24 rounds, which operates on the 1600-bit state
that can be viewed as a 3-dimensional array of bits. One bit of the state at
position (x, y, z) is noted as A[x][y][z], where 0 ≤ x, y < 5 and 0 ≤ z < 64. The
designers of Keccak defined the following naming conventions: A[·][y][z] is a
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Fig. 1: The sponge construction

row, A[x][·][z] is a column, and A[x][y][·] is a lane; A[x][·][·] is a sheet, A[·][y][·]
is a plane, and A[·][·][z] is a slice.

There are five mappings in each round of the permutation:

θ :A[x][y][z]← A[x][y][z] +

4∑

y′=0

A[x− 1][y′][z] +
4∑

y′=0

A[x+ 1][y′][z − 1].

ρ :A[x][y][z]← A[x][y][z + T (x, y)],where T (x, y) is a predefined constant.

π :A[x][y][z]← A[x′][y′][z],where
(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
.

χ :A[x][y][z]← A[x][y][z] + (¬(A[x+ 1][y][z])) ∧A[x+ 2][y][z].

ι :A← A+RC[ir],where RC[ir] is the round constants.

The addition and multiplication are in GF (2). Since we analyse round-
reduced variant with at most 6 rounds, we only give the first five round constants:
0000000000000001, 0000000000008082, 800000000000808a, 8000000080008000,
000000000000808b, 0000000080000001 (given in hexadecimal using the little-
endian format).

Function Rate Capacity Output Security Strengths in Bits
Size Size Size Collision Preimage 2nd Preimage

SHA3-224 1152 448 224 112 224 224
SHA3-256 1088 512 256 128 256 256
SHA3-384 832 768 384 192 384 384
SHA3-512 576 1024 512 256 512 512
SHAKE128 1344 256 d min(d/2, 128) ≥ min(d, 128) min(d, 128)

SHAKE256 1088 512 d min(d/2, 256) ≥ min(d, 256) min(d, 256)

Table 2: Specifications and security strengths of SHA-3 functions
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2.3 Instances of SHA-3

The four instances of SHA-3 family named SHA3-d are defined from Keccak
[c] by appending a two-bit suffix ‘01’ to the message, where b = 1600, c = 2d
and d ∈ {224, 256, 384, 512}. After that, the padding of Keccak is applied.
SHAKE128 and SHAKE256 are two instances with the capacity c = 256 or 512 and
any output length d, and the original message M is appended with an additional
4-bit suffix ‘1111’ before applying the padding rule, for any output length. In our
attack on SHAKE256, the output length is 512 bits. The suffixes “128” and “256”
indicate the security strengths that these two functions can generally support.
We summarize specifications and security strengths of the SHA-3 functions in
Table 2.

3 Notations and Review of Internal Differentials

In this section, we first enumerate some notations used in this paper. Then
we review the concepts of squeeze attack and internal differentials, as well as
conditional internal differentials. Finally, the framework of collision attack using
internal differentials is summarized, together with the complexity analysis.

3.1 Notations

The addition operation of the state is performed on GF (2) or the linear space
over GF (2). We summarize the major notations to be used in this paper here.

nr Number of attacked rounds
c Capacity of a sponge function
r Rate of a sponge function
b Width of a Keccak permutation in bits, b = r + c
d Length of the digest in bits
p Number of minimum fixed bits in the initial state due to padding
i Period of a symmetric state
θ, ρ, π, χ, ι The five mappings that comprise a round.
L Composition of θ, ρ, π and its inverse denoted by L−1

Rj(·) Keccak permutation reduced to the first j rounds
S(·) 5-bit Sbox operating on each row of Keccak state
δin, δout 5-bit input and output differences of an Sbox
M Padded message of M . Note that M is the second block in our attack
M0||M1 Concatenation of strings M0 and M1

αj−1 Input internal difference of the j-th round function with period 32
βj−1 Input internal difference of χ in the j-th round with period 32
δin → δout δin is the internal difference input to χ and δout the output difference
∆(·) Internal difference of one state
Aj−1 Bit value vector with period 32 input to the j-th round
Bj−1 Bit value vector with period 32 input to χ of the j-th round
E[·] Expectation of one random variable
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3.2 Squeeze Attack

Dinur et al. [6] used a specific method in collision attack on Keccak by focusing
on a specific subset of outputs to find hash function collisions. It describes how,
by limiting outputs to a smaller subset and considering the probabilities of inputs
leading to these outputs, one can potentially find collisions more efficiently than
traditional methods. This strategy is called a squeeze attack.

To motivate this attack, assume that the hash function H maps a set S of
possible inputs into a set D of possible outputs. By the birthday paradox, we
have to try a subset S′ ⊆ S of size |D|1/2. We consider a subset D′ of D, where
|D′| = q|D|, and the probability of picking an input in S′ whose output is in
D′ is p. To find a collision in D′, the number of inputs in S′ we have to try is
(q1/2/p)|D|1/2. If we can exploit some non-random behavior of the hash function
in order to find sets S′ and D′ for which p2 > q, we can get an improved collision
finding algorithm.

Zhang et al. [17] proposed a variant of birthday attack, which is essen-
tially a squeeze attack. Assume that the hash function H maps 2k input sub-
sets S1, ..., S2k into output subsets D1, ..., D2k (called collision subsets) and is
a random function when it is confined to any set Sj , where Sj(j = 1, ..., 2k)
and Dj(j = 1, ..., 2k) are both pairwise disjoint respectively, |Sj | = 2l, |Dj | =
2m(m > 2l). For the randomly selected input x in the union of all Sj (denoted
as S′), assume that we can determine which output subset H(x) belongs to,
but cannot determine the input subset corresponding to x. So the probability of
H(x) in subset Dj is 2−k for any j ∈ {1, ..., 2k}. According to the results derived
in [17], the total number of inputs required to find a collision is 2(k+m)/2. Take
4-round SHA3-512 as an example (Fig. 2). Assume that H maps a set S of pos-
sible inputs into a set D of possible outputs and S′ =

⋃2k

j=1 Sj , D′ =
⋃2k

j=1 Dj .
|S| = 21600, |D| = 2512, |S′| = 2252, |Dj | = 2296.58. There are 2156 output subsets
Dj , and the size of their union D′ is 2156+296.58 = 2452.58. By using conditional
internal differentials, the probability of transition from S′ to D′ is 1. The ex-
pected number of inputs to find a collision is 2226.29.

3.3 Internal Differentials

The internal differential collision attack is essentially a squeeze attack. Inter-
nal differential was initially developed by Peyrin [13] in the cryptanalysis of the
Grøstl hash function. This method was later generalized by Dinur et al. [6] in
collision attacks on Keccak. Similar to the case of standard differential anal-
ysis, the adversary’s goal is to find several internal differential characteristics
with high transition probability by tracking the differences between different
parts of the internal state through the cryptographic function. The difference
between standard differential and internal differential is that the input of the
former is multiple message pairs, while the input of latter is multiple messages.
Another difference is that in standard differential analysis, the adversary can
check whether a collision occurred after each input of a message pair. In internal
differential analysis, the adversary has to input enough messages to enter the
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Fig. 2: A squeeze attack

characteristic, and search for each collision subset at the end of the character-
istic until a collision is found. It can be seen that internal differential analysis
is a squeeze attack, the collision subset is a subset of the output set D, and the
transition probability of the internal differential characteristic is the probability
p that the input enter the output subset.

In Keccak, a state is called a symmetric state if it has period i in the z -axis.
This means that for all (x, y, z), there is some positive integer i less than 64 such
that state A satisfies A[x][y][z] = A[x][y][(z+i) mod 64]. An interesting property
of Keccak is that after applying any of the θ, ρ, π, χ operations to a symmetric
state, the new state is still a symmetric state and maintains its period.

In this paper, we set i = 32, and a symmetric state consists of two repetitions
of slices 0-31. Each sequence of slices (0-31, 32-63) is called a consecutive slice
set or CSS in short. For a state A, we can express it as A = (Â,

ˆ̂
A), where Â and

ˆ̂
A are the first and second CSS’s respectively, called CSS form in this paper.

Note that all round constants are not periodic, so the ι operation will in-
troduce a difference between the two CSS’s, and this difference will propagate
through other operations. To characterize the difference, the internal difference
is defined as follows. The set {v+u|u is symmetric} obtained by adding all sym-
metric states to a single state v is called internal difference, recorded as [i, v].
If v = 0, the subset [i,0] is called zero internal difference, and other internal
differences [i, v] are cosets of [i,0]. The state v is called the representative state.
We choose v satisfying v[x][y][z] = 0 (z ∈ 32, 33, ..., 63) as the canonical repre-
sentative state. For a state v, we refer to its corresponding canonical represen-
tative state of the internal difference as its internal difference, denoted by ∆(v).
Then, an internal differential for round function R is a pair of internal differences
(α1, α2), and its probability is defined as Pr(∆(R(v)) = α2|∆(v) = α1).

Similarly to the standard differential characteristics, an internal differential
characteristic is defined as the propagation of internal differences through round
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function. The internal differential transition of the j-th round in the characteris-
tic is denoted by αj−1

L−→ βj−1
χ−→ α⋆

j
ι−→ αj , where j ≥ 1. An internal differential

characteristic for nr-round collision attack extends before the χ operation of the
(nr − 1)-th round. Non-zero internal differences will generate multiple internal
differences after the χ operation. The output subset of each internal difference
after the last round function is called collision subset. In the framework of our
collision attack, collision search is carried out in each collision subset.

3.4 Conditional Internal Differentials

The conditional internal differential was developed by Zhang, Hou and Liu in [17]
as a technique to find messages conforming the first two rounds internal differ-
ential characteristic. For a known 1.5-round internal differential characteristic,

α0
L−→ β0

ι◦χ−−→ α1
L−→ β1,

let the state with period 32 in the internal difference be expressed as follows:

v(0) = α0 +A0, v
(0.5) = β0 + B0, v(1) = α1 +A1, v

(1.5) = β1 + B1,

where v(j), αj andAj are the state, internal difference and symmetric state before
the (j+1)-th θ operation respectively, v(j+0.5), βj and Bj are the state, internal
difference and symmetric state before the (j + 1)-th χ operation respectively.
Since Aj and Bj each have two identical CSS’s, they have the following vector
form (determined by their first CSS):

Âj = (a
(j)
0 , . . . , a

(j)
799), B̂j = (b

(j)
0 , . . . , b

(j)
799).

So the CSS forms of symmetric states Aj and Bj are (Âj , Âj) and (B̂j , B̂j) re-
spectively. Since the second CSS of the internal difference is a zero vector, taking
α0 as an example, its separable form is symbolized as (0, α0). To ensure a de-
terministic passage through the χ operations of the first two rounds, we should
find Â0 such that B̂0 and B̂1 satisfy the respective differential transition condi-
tions (denoted as E0(B̂0) and E1(B̂1)). E0(B̂0) and E1(B̂1) can be transformed
into E′

0(Â0) and E′
1(Â1) by linear operation (L(A0) = B0, L(A1) = B1). Since

ι◦χ((B̂0, B̂0⊕β0)) = ι◦χ(u(0.5)) = u(1) = (Â1, Â1⊕α1), we know Â1 = ι◦χ(B̂0),
and a

(1)
j is equal to b

(0)
j ⊕ (b

(0)
j+32⊕1) · b(0)j+64 up to a constant. We regard b

(0)
j+32 or

b
(0)
j+64 as a variable x, and a

(1)
j can be transformed into a linear function about

B̂0 by assigning a value to x. Generally, we set all bits b
(0)
j+32 (or b

(0)
j+64) corre-

sponding to the bits a
(1)
j appearing in E′

1(Â1) as intermediate variables {xt}t∈I

(I is an index set). System E′
1(Â1) can be transformed into a system E′′

1 (Â0)
on Â0 by assigning values to all intermediate variables. Noting that each xt is
actually a linear function about Â0, so assigning values to all xt is equivalent
to adding linear equations to the initial space of Â0. The set of these equations
is recorded as system E2. Then, by solving the linear system E′

0

⋃
E′′

1

⋃
E2 and
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XORing each solution with α0, we can get the messages conforming 2-round
internal differential characteristic.

The intermediate variables {xt}t∈I may be linearly dependent. We call the
variables in the maximal linearly independent system of {xt}t∈I are the free
intermediate variables. During a collision attack, it is often necessary to iterate
through all possible values of free variables in order to gather sufficient initial
messages. Consequently, we must judiciously choose intermediate variables to
minimize the number of free variables, thus reducing the overall complexity when
solving linear systems at this stage.

Definition 1. [17] Given the non-zero input difference δin = (δ0, . . . , δ4)
T of the

5-bit Keccak Sbox, the output difference δout is determined by q (2 ≤ q ≤ 4)

linear conditions with respect to the actual input x = (x0, . . . , x4)
T . The q linear

conditions {Lt(x)}q−1
t=0 (without constant terms) are called differential transition

conditions. Equivalently, δout = S(x)⊕ S(x⊕ δin) = C ·x⊕ η, where C ∈ F5×5
2 is

a matrix (rank(C) ∈ {2, 3, 4}) and η ∈ F5
2 is a constant vector. It can be easily

verified that C and η can be represented by δin as

C =




δ2 δ1
δ3 δ2

δ4 δ3
δ4 δ0
δ1 δ0




, η = S(δin) =




δ0 ⊕ (δ1 ⊕ 1)δ2
δ1 ⊕ (δ2 ⊕ 1)δ3
δ2 ⊕ (δ3 ⊕ 1)δ4
δ3 ⊕ (δ4 ⊕ 1)δ0
δ4 ⊕ (δ0 ⊕ 1)δ1




.

Take δin = 0x03 as an example, the output difference is

δout =




0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 0 0







x0

x1

x2

x3

x4



⊕




1
1
0
1
0




.

The differential transition conditions are {l0 = x4, l1 = x2, l2 = x0 + x1}.
Definition 2 (Transition Condition Number [17]). Given an internal dif-
ferential characteristic, for the input internal difference βj−1 of the j-th χ oper-
ation, the rank of the set of all differential transition conditions obtained from
βj−1 is called the transition condition number (denoted as kj).

Property 1. [17] If the transition condition number of βj−1 is k, there are at
most 2k possible output internal differences and the lower bound of transition
probability is 2−k.

3.5 Collision Attacks Using Conditional Internal Differentials

Utilizing internal differentials and conditional internal differentials, Zhang et al.
[17] select 2-block messages as inputs and propose collision attacks on 5-round
SHA-3. As shown in Fig. 3, given a 2.5 round internal differential characteristic
starting from the second round, their attack framework can be summarized into
three parts:
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1. TIDA Stage: Calculate in advance the number of initial messages needed to
achieve a collision, aiming for a probability that matches that of the birthday
attack, which is assumed to be 2n. Continue to run the targeted internal
differential algorithm until accumulating a sufficient quantity of messages.
The output of the target internal difference algorithm includes the first block
M0, the initial input difference v0, and an affine subspace W1 of the second
block M1. Within this subspace W1, the values of M1 can ensure that v0
legally propagate to the target internal difference v1.

2. Selecting Messages Stage and Collecting Messages Stage: Utilize conditional
internal differential techniques to select initial messages from subspace W1

that satisfy all or part of the second round differential transition conditions.
Subsequently, calculate the states and internal differences of these messages
after four round functions. Following the fifth round function, organize the
outputs into respective collision subsets, which are distinguished by the val-
ues of their internal differences observed after the fourth round.

3. Brute-force Searching Stage: Using hash table techniques, perform an ex-
haustive search in each collision subset sequentially until two states with the
same digest value are found and their respective preimages are recovered.

M0
R5

−−→ ⊕ −→ [i, v(0)]
R−−−−−→

p=2−k1

[i, v(1)]
R−−−−−→

p=2−k2

[i, v(2)]
L◦R−−−−−−→

p=2−k3

[i, v(3.5)]
χ,ι−−→





[i, v
(4)
1 ]

R−−→ D(1)

[i, v
(4)
2 ]

R−−→ D(2)

· · · R−−→ · · ·
[i, v

(4)

2k4
]

R−−→ D(2k4 )

Selecting messages Collecting messages SearchingTIDA

[i,M1]

Fig. 3: The framework of 5-round collision attack

The Complexity. The time complexity is determined by the complexity of the
following parts.

1. The total complexity of TIDA stage, denoted by 2d1 . It is calculated by
multiplying the average time of TIDA and the number of times TIDA is
run. Assume that the time to run TIDA once is 2t, and the average size of
the space W1 output by TIDA is 2d. Then the complexity of this part is
2t ·max{2n−d, 1}.

2. The complexity of Selecting Messages Stage and Collecting Messages Stage,
denoted by 2d2 . Assuming that q second round differential transition condi-
tions are satisfied, then 2d2 = 2n−q.

3. The complexity of Brute-force Searching Stage, denoted by 2s. Assuming
that the probability of the given differential characteristic is 2−k, then 2n =
2s+k.

12



Thus, the final complexity of collision attack is summarized in Equation (1),

2d1 + 2d2 + 2s = 2t ·max{2k+s−d, 1}+ 2k+s−q + 2s. (1)

In our attack strategy, we employ probabilistic linearization to accelerate
TIDA, and thereby reduce the time complexity 2t of the TIDA stage (see also
Section 4). Furthermore, we use a probabilistic approach to estimate an upper
bound for the size of the collision subset, effectively reducing the complexity 2s of
Brute-force searching stage (see also Section 5.3). We also provide new construc-
tions of internal differential characteristics for some SHA-3 variants, including
5-round SHA3-384 and 6-round SHAKE256, and thus reduce the complexity of
selecting messages stage and collecting messages stage (see also Section 5.2).

4 Probabilistic Linearization and Target Internal
Difference Algorithm

In this section, we first review the target difference and internal difference algo-
rithms which are the core algorithms for finding collisions of reduced SHA-3 in the
literature, and then describe a generalized target internal difference algorithm
by the method of probabilistic linearization.

4.1 Connector and Connectivity Problem

In the differential collision attacks on reduced SHA-3 [5,14,15,9], an n1-round con-
nector and an n2-round differential characteristic are combined to find collisions
for (n1+n2) rounds. Here an n1-round connector is a procedure which produces
a large number of one-block message pairs satisfying three requirements:

– The last (c+ p)-bit difference input to the first round is zero;
– The last (c+ p)-bit value of the initial state is fixed;
– The output difference after n1 rounds should be equal to the target difference,

i.e., the input difference of the n2-round differential characteristic.

The construction of n1-round connector with the target difference αn1 is essen-
tially to find many solutions of the nonlinear system on M1 and M ′

1,

Rn1(M1||0c)⊕ Rn1(M ′
1||0c) = αn1 . (2)

Dinur et al. [5] initially introduced the target difference algorithm (TDA)
to link a differential characteristic to the initial message space, which is a 1-
round connector based on the linearization of the Keccak Sbox. Qiao et al. [14],
Song et al. [15], and Guo et al. [9] further constructed the 2-round connector
and 3-round connector respectively by the full and non-full Sbox linearization.
In [6], Dinur et al. extended the technique of TDA to target internal difference
algorithm (TIDA) for constructing 1-round connector of internal differentials.
In [17], Zhang et al. redesigned TIDA for conditional internal differentials. All the

13



connectors in these works were constructed by adding enough linear equations to
the nonlinear system (2) or its internal-differential version such that the system
is simplified into a linear one. A side effect of these methods is a rapid increase in
the size of the linear system. For the SHA-3 variants with a large capacity, e.g.,
SHA3-384 and SHA3-512, the initial message space output by TIDA is too small
each time, and TIDA runs slowly, making it impossible to launch a collision
attack.

In the differential collision attack on 4-round SHA3-384, Huang et al. [12]
constructed 1-round connector by solving the nonlinear system on M1 and M ′

1,

R(R4(M0||0c)⊕ (M1||0c))⊕ R(R4(M ′
0||0c)⊕ (M ′

1||0c)) = α1. (3)

In this connector, Huang et al. used two-block messages and observed that a
linear system is implied by (3) on the difference of the inner part of middle states
R4(M0||0c) and R4(M ′

0||0c) generated by (M0,M
′
0). Specifically, they grouped 10

differences out of all 5-bit output differences into one category and showed that
their input differences always satisfy a linear relationship. Then the authors used
a SAT solver to solve the 1-round connectivity problems when the middle states
generated by the first block pairs (M0,M

′
0) satisfy these linear conditions. In

this attack, the solutions of connectivity problem are not lost by adding those
linear conditions. The SAT-based connector makes the attack very efficient, and
it brings the fastest collision attack on 4-round SHA3-384. On the other hand,
this method highly depends on the ability of the solver. It is difficult to evaluate
the complexity in a general case, and it is unclear how to extend to more rounds.

Inspired by the aforementioned works, we propose a probabilistic lineariza-
tion method for the connector construction, specially demonstrated in internal
differential cryptanalysis: to find 2-block message M0||M1 satisfying the internal
connectivity problem.

Definition 3. In a collision attack on nr-round SHA-3, given the first block M0

and a 1-round input difference α1, the internal connectivity problem is to find a
second block M1, if exists, such that

∆(R(Rnr (M0||0c)⊕ (M1||0c))) = α1. (4)

We generalize the target internal difference algorithm by probabilistic lin-
earization to solve the internal connectivity problem. Its essence is to transform
the system (4) into two linear systems E∆ and E∆(L(α0))→α⋆

1
, in a probabilis-

tic way rather than in a deterministic way. The system E∆ is called the input
difference system (Def. 4), and its solution space contains correct input inter-
nal differences with a probability of p⋆1. That is, solving 1/p⋆1 systems of E∆’s
gives an input internal difference α0 propagated to α1 on average. The sys-
tem E∆(L(α0))→α⋆

1
is differential transition system (Def. 5), used to determine

whether the input internal difference α0 can be propagated to α1 for legal mes-
sages. This method neither radically reduces the solution set of (4), nor depends
on the solver of nonlinear system.

The definitions of input difference system and differential transition system
are described as follows.
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Definition 4 (Input Difference System). In internal differentials of SHA-3,
given the characteristic starting from the second round, the linear system with
respect to the input difference α0 of the first round is the input difference system,
regarded as E∆. The last (c/2+p) bits of α0 and the last (c+p) bits of the input
state of the second block are defined as padding and inner bits (or inner bits
for short), which are known but can not be controlled. After applying Gaussian
elimination to E∆, the equations related only to the inner bits are called the
inner part (or inner system) of E∆, denoted as EC.

Example 1. Let’s consider the state of two bits in each lane. We set
the rate part to the first 15 lanes, totaling 30 bits, and the remain-
ing 20 bits are the capacity part. The internal difference α0 and β0 can
be represented by 25-bit states (x0, ..., x24) and (y0, ..., y24) respectively,
where (x15, ..., x24) are inner bits. When the output internal difference
α⋆
1 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1), there are 4 active

Sboxes and 1 non-active Sbox, and the output differences of the 5 Sboxes are
in sequence: 0x04, 0x00, 0x03, 0x08, 0x11. According to the method of [17],
each active Sbox adds 3 equations to the system, and each non-active Sbox
adds 5 equations to the system, resulting in a total of 17 equations related to
β0, denoted as E′

∆. We substitute β0 = ∆(L(α0)) into system E′
∆, transform-

ing it into a system relating to α0, and obtain system E∆ after performing
Gaussian elimination. As shown in system (5), the internal system EC of E∆ is
{x17 + x23 + x24 = 1, x18 + x23 = 0, x19 + x21 + x24 = 0, x22 + x23 + x24 = 0},
which only depends on inner bits.

E′
∆ :





y2 = 1,

y3 = 0,

y4 = 0,

y5 = 0,

y6 = 0,

y7 = 0,

y8 = 0,

y9 = 0,

y12 = 0,

y10 + y13 = 0,

y11 + y13 = 1,

y15 = 0,

y18 = 1,

y19 = 0,

y21 = 0,

y20 + y22 = 1,

y20 + y24 = 1.

⇒ E∆ :





x0 + x5 + x15+x16 + x20 + x23 + x24 = 0,

x1+ x16 + x21 = 0,

x2+ x16 + x21 + x23 + x24 = 1,

x3+ x23 = 0,

x4+ x24 = 0,

x6 + x11+ x24 = 0,

x7+ x21 + x23 + x24 = 1,

x8+ x23 = 0,

x9+ x24 = 0,

x10+ x16 = 0,

x12+ x23 + x24 = 1,

x13+ x23 = 0,

x14+ x16 + x21 + x24 = 0,

x17 + x23 + x24 = 1,

x18 + x23 = 0,

x19 + x21 + x24 = 0,

x22 + x23 + x24 = 0.

(5)
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Definition 5 (Differential Transition System). Given an input difference
β and its output difference α after χ, the linear system composed of all differ-
ential transition conditions and their values of the constant terms is called the
differential transition system from β to α, regarded as Eβ→α.

4.2 Probabilistic Linearization of the Sbox for Input Difference

In this section, we analyze the 5-bit Keccak Sbox and apply probabilistic lin-
earization on the input difference set of each active Sbox. Specifically, when
building the input difference system, we select the t-dimensional affine subspace
that contains the most input differences (denoted as the maximum difference
density subspace), which is equivalent to adding (5 − t) linear equations to the
system for each active Sbox. Since not all elements in the maximum difference
density subspace are input differences of the corresponding Sbox, the solutions
of input difference system may not propagate to the target difference α⋆

1. There-
fore we need to solve multiple input difference systems and search the solution
set of each system to obtain an input difference. Although the probabilistic lin-
earization cannot obtain the input difference deterministically, from the overall
perspective of TIDA, this will result in lower complexity. Before delving into the
details of Keccak Sbox, we first introduce a property of 5-dimensional linear
space.

Property 2. Any t-dimensional affine subspace U of the 5-dimensional F5
2 can

be regarded as the kernel of a particular equation within F5
2. Namely, for the t-

dimensional affine subspace U ⊂ F5
2, there exists (l(j)0 , l

(j)
1 , l

(j)
2 , l

(j)
3 , l

(j)
4 , q(j)) ∈ F6

2,
such that

U =





(x0, ..., x4)

∣∣∣∣∣∣∣∣∣∣∣

∑4

j=0
l
(1)
j · xj = q(1),

... ,
∑4

j=0
l
(5−t)
j · xj = q(5−t)





≜ Ker
(∑4

j=0 l
(1)
j · 2j , q(1)| . . . |

∑4
j=0 l

(5−t)
j · 2j , q(5−t)

)

where (l
(j)
0 , ..., l

(j)
4 ) ̸= 0, for 1 ≤ j ≤ 5− t.

From the above property, we infer that the number of 4-dimensional affine
subspaces of the 5-dimensional space is 62. In the following, we sometimes use
Ker(

∑4
j=0 lj ·2j , q) or (

∑4
j=0 lj ·2j , q) to refer to a certain 4-dimensional subspace.

Given a non-zero output difference δout of the Keccak Sbox, for the t-
dimensional affine space U , the proportion of the input differences of δout in U
is called the difference density of U with respect to δout, recorded as P(U, δout).
That is to say, P(U, δout) = #{δ ∈ U |δ → δout}/|U |.

For example, all input differences δin’s of δout = 0x05 and the input differ-
ences in space Ker(0x01, 1) are listed as follows, and the difference density is
7/16.

δin 0x04 0x06 0x07 0x0f 0x11 0x16 0x17 0x19 0x1b 0x1d
Ker(0x01,1) ✓ ✓ ✓ ✓ ✓ ✓ ✓
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For δout, the t-dimensional affine subspace with maximum difference density
is called the maximum difference density subspace (to say max density subspace)
of δout. Note that there may be more than one max density subspace. Table 3
records all max density subspaces with δout = 0x05 and their average transition
condition number E[kU ]. The average transition condition number of an affine
subspace U is the average of transition condition numbers of all input differences
of δout in U . We call the table containing all max density subspaces and corre-
sponding average transition condition numbers the max density subspace table
(MDST). For δout ∈ {0x01, 0x02, 0x04, 0x08, 0x10, 0x03, 0x06, 0x0c, 0x18, 0x11},
we find that it has only one 4-dimensional max density subspace, and the sub-
space contains all input differences. In order to use the greedy algorithm to
build a probabilistic input difference system with smaller inner part for 5-round
SHA3-384 collision attack, we also record the 4-dimensional affine subspace whose
difference density is second only to the max density subspace in MDST of this
type of δout.

U (0x01,1) (0x04,1) (0x09,0) (0x11,0) (0x06,0) (0x0c,1) (0x14,1) (0x13,0) (0x0e,0)
E[kU ] 27/7 24/7 24/7 24/7 25/7 24/7 24/7 24/7 25/7

Table 3: The max density subspace of δout = 0x05

We now show the establishment process of linear system E∆. The first step
is to select an 800-dimension subspace (named W ) to which the initial internal
difference α0 = (∆R, ∆C) propagates through the linear layer L, that is, W =
L(∆R, ∆C). For each non-active Sbox involved in α⋆

1, it is still constrained by
five linear equations. For an active Sbox, given the output difference δout, we
select a max density subspace Ker(

∑4
j=0 lj · 2j , q) of δout and add the equation

l0 ·x0+ · · ·+ l4 ·x4 = q into E∆. The other details of establishment are shown in
Procedure PIDS. Assuming that E∆ is consistent and ∆(L−1(β0)) is a solution
to E∆, the probability p⋆1 of β0 being the input difference of α⋆

1 is determined
by the product of the corresponding difference density of each selected affine
subspace.

We can also try to construct the system E∆ using 3-dimensional affine sub-
spaces. In this scenario, the difference density of max density subspace will in-
crease, but it will not exceed twice the difference density in 4-dimension sub-
space. Furthermore, when constructing system E∆, each active Sbox introduces
two equations, leading to an expansion of the inner part within E∆. Consider-
ing both factors, we prioritize the utilization of 4-dimensional affine subspace
in our attack. In the collision attack on 5-round SHA3-384, we design the Pro-
cedure GreedyPIDS according to the greedy algorithm to construct the sys-
tem E∆ with smaller inner part, and the algorithm is shown in Supplementary
Material A. We have discussed in detail the advantages of adding more linear
conditions to the active Sbox in Supplementary Material F.
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Procedure PIDS(α⋆
1, MDST)

Input: Internal difference α⋆
1 and MDST.

Output: Probabilistic input difference system E∆(∆R,∆C), probability p⋆1.
1 Set E∆ = ∅, p⋆1 = 1 and W = L(∆R,∆C).

/* W is a variable vector (w0, ..., w799), wi = wi(∆R,∆C) is a linear
function about ∆R = (δ0, ..., δ799−p−c/2),∆C = (δ800−p−c/2, ..., δ799) */

2 for j = 0 → 160 do
3 Get the output difference δout of the j-th Sbox from α⋆

1.
4 if δout = 0 then
5 E∆ = E∆ ∪ {w5j(∆R,∆C) = 0, . . . , w5j+4(∆R,∆C) = 0}.
6 else
7 Select one subspace Ker(

∑4
j=0 lj · 2

j , q) of δout from MDST[δout].
8 E∆ = E∆ ∪ {l0 · w5j(∆R,∆C) + · · ·+ l4 · w5j+4(∆R,∆C) = q}.
9 p⋆1 = p⋆1 · P(Ker(

∑4
j=0 lj · 2

j , q), δout).
10 end
11 end
12 return (E∆, p⋆1)

4.3 An Improved Target Internal Difference Algorithm

After obtaining the input difference β0 of α⋆
1 by solving 1/p⋆1 systems E∆, another

question is that β0 may not be propagated to α⋆
1 for any legal message. This

question is equivalent to determining whether the differential transition system
Eβ0→α⋆

1
is consistent with respect to M1. In our work, we modify the TIDA in

conditional internal differential cryptanalysis [17] to obtain two-block message
M0||M1 that satisfies Eq.(4) by solving the input difference systems E∆ and the
differential transition systems Eβ0→α⋆

1
sequentially. The procedure of TIDA is

shown in Algorithm 1.
For the target internal difference ∆T = α1, we begin by running the Pro-

cedure PIDS to set the system E∆ = E∆(∆R, ∆C), where ∆R represents the
first (r/2− p) bits of α0 and ∆C represents the inner bits of ∆(Rnr (M0)). Next,
we apply Gaussian elimination to the system E∆ and then extract the inner
system EC . The first block M0 is randomly selected until linear system E∆ is
consistent. Randomly select a solution α0 of ER and calculate its corresponding
internal difference β0 after the linear layer. If β0 is an input difference of α⋆

1

and the differential transition system Eβ0→α⋆
1

is consistent, then get a solution
M1 of Eβ0→α⋆

1
. The 2-block message M0||M1 satisfies the internal connectivity

problem Eq.(4). If none of the solutions for EC satisfy the conditions mentioned
above, we will proceed by randomly selecting the first message block M0 until
we find a solution for M1. Most of M0 are filtered out before solving the system
ER because they do not satisfy system EC . Consequently, only a small subset of
M0 results in the input difference system and the differential transition system
being consistent.

Remark 1. For collision attack on 6-round SHAKE256, we only randomly select
one solution instead of searching for all solutions for each system ER.
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Algorithm 1: TIDA
Input: Target internal difference α1, target number of rounds nr, and MDST
Output: the first block M0, the value subspace W1 of the second M1, initial

internal difference α0

1 Set E∆ = ∅, α⋆
1 = α1 ⊕RC[1] and p⋆1 = 1.

2 (E∆(∆R,∆C), p
⋆
1) = PIDS(∆T , p

⋆
1).

3 Reduce E∆(∆R,∆C) = ER(∆R,∆C) ∪ EC(∆C).
4 Set W1 to NULL.
5 do
6 Set ∆⋆

c = (δ′800−p−c/2, ..., δ
′
799).

7 do
8 Randomly select M0 and compute ∆(Rnr (M0)).
9 for each integer j ∈ [800− p− c/2, 800) do

10 δ′j = ∆(Rnr (M0))[j]. // the j-th bit of ∆(Rnr (M0))
11 end
12 while ∆⋆

c is not a solution of EC ;
13 Solve ER(∆R,∆⋆

C) and obtain its solution space UC .
14 do
15 Randomly choose and delete a solution α0 of UC .
16 β0 = ∆(L(α0)).
17 if β0 is the input difference of α⋆

1 then
18 Obtain the differential transition system Eβ0→α⋆

1
. // as defined

in Def. 5
19 Solve the linear system Eβ0→α⋆

1
(Rnr (M0)⊕ (X||0c)) on X, and get

its solution space W1 if it has solutions.
20 end
21 while W1 is NULL and UC ̸= ∅;
22 while W1 is NULL;
23 return (M0,W1, α0)

Analysis of TIDA. Next we explain why the output of TIDA satisfies the
internal connectivity problem and analyze the complexity of the algorithm. As-
sume that for a given first message block M0, ∆(Rnr (M0))[800− p− c/2, ..., 799]
is a solution of system EC(∆C).

We rewrite Eq.(4) as ∆(R(∆H ⊕ S)) = α1, where ∆H is the internal differ-
ence of Rnr (M0)⊕M1, S is the symmetric state Rnr (M0)⊕M1 ⊕∆H . Namely,
Rnr (M0)⊕M1 = (Ŝ, Ŝ ⊕∆H). Then ∆H [800− p− c/2, ..., 799] is in the solution
set of EC , and the freedom degrees of ∆H [0, ..., 799 − p − c/2] and S are both
(800−p−c/2). Eq.(4) having solutions for M1 is equivalent to ∆(R(∆H⊕S)) = α1

having solutions for ∆H and S.
For the system E∆ we selected, there are s independent linear equations,

including s1 equations in ER(∆R, ∆C) and s2 equations in EC(∆C). Given ∆⋆
C =

∆H [800 − p − c/2, ..., 799], let ∆⋆
H be the ∆H that satisfies all equations in

ER(∆R, ∆⋆
C), the degrees of freedom of ∆⋆

H are d = (800− p− c/2− s1). Since
the value space of ∆⋆

H is a subset of the value space of ∆H , the solutions of
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∆(R(∆⋆
H⊕S)) = α1 with respect to (∆⋆

H ,S) must be the solutions of ∆(R(∆H⊕
S)) = α1.

Set S̃ is a symmetric state with 800 degrees of freedom, then ∆(R(α0⊕S̃)) =
α1 having solutions for S̃ is equivalent to ∆(L(α0)) being the input difference
of α1. Therefore, ∆(R(∆⋆

H ⊕ S̃)) = α1 having solutions for (∆⋆
H , S̃) means that

there is at least one input difference of α1 in the value space of ∆(L(∆⋆
H)). The

value space of ∆⋆
H is actually the solution spaces of ER(X,∆⋆

C) on X, denoted
by UH,C , so the value space of ∆(L(∆⋆

H)) is ∆(L(UH,C)). If there is an input
difference β0 of α1, which satisfies the differential transition system Eβ0→α⋆

1
is

consistent, then ∆(R(∆⋆
H ⊕S)) = α1 has solutions with respect to (∆⋆

H ,S). Let
NH,C be the set of containing all input differences of α1 in space ∆(L(UH,C)),
the above derivation can be summarized as the following conclusions:

For given UH,C , there exits β0 ∈ NH,C such that Eβ0→α⋆
1

is consistent.

=⇒∆(R(∆⋆
H ⊕ S)) = α1 having solutions for (∆⋆

H ,S).
=⇒∆(R(∆H ⊕ S)) = α1 having solutions for (∆H ,S).
⇐⇒∆(R(Rt(M0||0c)⊕ (M1||0c))) = α1 having solutions for M1.

Therefore the output of Algorithm 1 satisfies the internal connectivity problem.
Assume that, on average, the probability of NH,C ̸= ∅ is denoted as p1.

Under the condition that NH,C ̸= ∅, the average probability of there being an
input difference β0 ∈ NH,C , which makes Eβ0→α⋆

1
consistent, is represented as

p2. The complexity of TIDA can be upper-bounded by 2s2+log2(p
−1
1 )+log2(p

−1
2 ).

Below we will make a preliminary estimate of the value of p1, and the value of
p2 will be calculated in Section 6.1 and Section 6.2.

Let U0 be the set of all input differences of α1 before linear layer, and U1 be
the solution space of E∆(∆̃), where ∆̃ is an internal difference with 800 degrees
of freedom, #U1 = 2800−s. Then U2 = U0

⋂
U1 consists of the input differences

of α1 in U1. From the above definition, ∆⋆
H ∈ U1, the freedom degrees of ∆⋆

H

are d and UH,C is the value space of ∆⋆
H . In other words, U1 is divided into

2p+c/2−s2 subspaces of size 2d according to the value of the inner bits ∆⋆
C , and

UH,C is one of the subspaces. Set ∆⋆
H(j) is an internal difference in UH,C . Noting

that there is a unique solution of E∆ corresponding to each element of U2, if
∆⋆

H(j) is randomly chosen from U1, then the probability that it falls into U2 is
p⋆1 = #U2/#U1.

Record uj as

uj =

{
{∆(L(∆⋆

H(j)))} , ∆⋆
H(j) ∈ U2

∅ , ∆⋆
H(j) /∈ U2.

Then NH,C =
⋃

∆⋆
H(j)∈UH,C

uj , the probability p1 > p⋆1. In the analysis of 6-
round SHAKE256, we use p⋆1 instead of p1 to evaluate the complexity of TIDA.
For 5-round SHA3-384, we determine the value of p1 through experiments.
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5 Applications to Collision Attacks on Reduced SHA-3

In this section, we first give an overview of our collision attacks, followed by
two directions for improvements: the selection of α1 in the internal connectivity
problem and the estimation of the complexity of searching stage. Finally, we
introduce two guidelines for constructing characteristics and a new method for
bounding the size of collision subset in response to the two directions.

5.1 The Framework of the Attack

Following the framework of Dinur et al. [6] and Zhang et al.’s work [17], our
collision attack consists of three parts, i.e., an internal connector linking the
internal differential characteristic with the initial value, a high probability in-
ternal differential characteristic and several collision subsets generated by the
characteristic for searching collisions. Given an internal differential characteristic
covering (nr−2.5) rounds starting from the second round, there are three stages
in our nr-round collision attacks, as depicted in Figure 4. Next, we overview the
three stages.

M0
Rnr−−−→ ⊕ −→ E∆, Eβ0→α⋆

1
−→ [i, α0]

R−−−−−→
p=2−k1

[i, α1]
R−−−−−→

p=2−k2

[i, α2]
L◦Rnr−4

−−−−−−−−−−−→
p=

∏nr−2
i=3 2−ki

[i, βnr−2]
χ,ι−−→





[i, α
(1)
nr−1]

R−−−→ D(1)

[i, α
(2)
nr−1]

R−−−→ D(2)

· · · · · ·
[i, α

(2k)
nr−1]

R−−−→ D(2k)

Collecting messages SearchingTIDA

[i,M1]

Inconsistent

Exp. Size

Conditional Differentials (p = 1)

Fig. 4: The framework of nr-round collision attack

TIDA stage. In this stage, for the target internal difference α1, we establish
the input difference system E∆ by probabilistic linearization and filter out the
first message blocks M0 that make E∆ consistent. After that, select α0 from the
solution space of each E∆ that can be legally propagated to α1.
Collecting messages stage. For each β0 = ∆(L(α0)) obtained in the previous
stage, we solve the differential transition systems Eβ0→α⋆

1
and Eβ1→α⋆

2
and get

several subspaces of the second block M1 passing the first 2 rounds by condi-
tional internal differentials. After that, compute after (nr − 1) rounds functions
from the subspaces and store these outputs into different sets.
Searching stage. In this stage, perform brute-force search on the outputs of
each set after one round function, continuing until a collision is found. In order
for collisions to be found, we need to estimate the size of each collision subset in
advance to determine the number of states that need to be searched.

Note that the time complexity of the TIDA stage is the number of runs of
Algorithm 1 multiplied by the time of a single run. We find that the choice of α1

directly affects these two aspects. This leads to the first question of this section,
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how to choose α1 to reduce the complexity of the TIDA stage. It will be answered
in Section 5.2.

Another question is how to more accurately estimate the number of states
required in searching stage. This is because the initial messages generated in the
first two stage are stored in the collision subsets after going through internal
differential characteristic. The number of states required during searching stage
directly determines the complexity of collecting message stages. We will address
this question in Section 5.3.

5.2 Constructing Internal Differential Characteristics

For 5-round SHA3-384 and 6-round SHAKE256, we extend the characteristic start-
ing from the second round forward by one extra round. When α1 is fixed, the
internal differential characteristic is determined. We choose α1 according to two
guidelines as follows:

• Guideline 1: The probability of first round differential transition should
not be too small.
• Guideline 2: The inner part of system E∆ should not have too many equa-

tions.

If we violate Guideline 1, there will not be enough messages to enter the col-
lision subset during the collecting messages stage. Unless we run TIDA multiple
times, by identifying multiple initial input differences α0 to generate a sufficient
number of initial messages. However, this will result in increased complexity of
the TIDA stage.

If Guideline 2 is not satisfied, the process of generating the first message
block M0 will consume more time complexity, potentially causing the overall
complexity of TIDA to surpass the boundary of birthday attack and hinder the
effectiveness of our collision attack.

In order to follow Guideline 1, we try to find an input internal difference
β0 of α⋆

1 with high transition probability. For 5-round SHA3-384, the number
of initial messages we need to complete the collision attack is 2k1+151.38, where
2151.38 is the time complexity of searching stage (see Section 6.1). When β0 is
determined, the size of initial message space is 2800−384−4 = 2412, so k1 have to
satisfy k1 ≤ 412 − 151.38 = 260.62. The contribution of each active Sbox to k1
is between 2 and 4. Assuming an average of 3.5, there should be approximately
⌈261/3.5⌉ = 75 active Sboxes in α1. For 6-round SHAKE256, the size of initial
message space is 2800−256−6 = 2538, k1 is upper-bounded by 538− k2− 233.29 =
273.71, where 2233.29 is the time complexity of searching stage (see Section 6.2).
Therefore the number of active Sboxes in α1 is approximately ⌈273/3.5⌉ = 78.

As for Guideline 2, since there are not many internal differences α1 that meet
the above conditions, we can start from α1 with the least active Sboxes to check
whether this guideline is fulfilled.

Among the characteristics we searched by MILP, there are 77 active Sboxes in
Characteristic 1 and 65 active Sboxes in Characteristic 2. The average transition
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condition number of β0 can be upper-bounded by accumulating E[kU ] in MDST.
In Characteristic 2, E[k1] ≤

∑
E[kU ] = 224.71 ≤ 225. In Characteristic 1, the

rank of Eβ0→α1 is equal to the total number of equations minus the number of
equations related only to the inner bits. The average number of equations of
inner part is 12.65, E[k1] =

∑
E[kU ]− 12.65 = 267.88− 12.65 ≤ 256.

5.3 The Expected Size of Collision Subset

In the searching stage using birthday attack [17], the size of collision subset
determines its complexity. If there are 2k collision subsets, each of which is 2m

in size. We need to search 2(m−k)/2 states in each subset to find a collision with a
probability of 0.4, time complexity is 2(k+m)/2. In [17], taking the digest lengths
of 512 bits and 640 bits as an example, the sizes of corresponding collision subset
are both estimated to be 2320, resulting in the same search complexity. But when
d = 512, the complexity of collision searching stage is lower. In this section, we
use a probabilistic method to bound the size of the collision subset.

The collision subset is the output of the last round ι ◦ χ, and since ι does
not affect the size of the collision subset, it can be disregarded in this section. A
property of χ is its independent application to each plane of the state, specifically,
mapping each plane to itself. Let Xδ and X ′

δ be the two 10-bit vectors with the
same internal difference δ = (δ0, · · · , δ4), each of which contains only two rows,
i.e., five lanes with length 2. With these two vectors as the input of χ, below
we show an observation on Keccak Sbox which describes the probability of
collision of the output vectors in the first j lanes on average for 1 ≤ j ≤ 5.

Observation 1 Let χj be the first j components of the 5-bit Keccak Sbox,
1 ≤ j ≤ 5. Given δ ∈ F5

2, let Xδ = (X̂, X̂ + δ) and X ′
δ = (X̂ ′, X̂ ′ + δ) with

X̂, X̂ ′ ∈ F5
2, and Yj = (χj(X̂), χj(X̂ + δ)) and Y ′

j = (χj(X̂ ′), χj(X̂ ′ + δ)). Let
P

(j)
δ be the probability of collision between Yj and Y ′

j , that is,

P
(j)
δ = Pr

X̂,X̂′
{Yj = Y ′

j |Yj = (χj(X̂), χj(X̂ + δ)), Y ′
j = (χj(X̂ ′), χj(X̂ ′ + δ))}.

Then the geometric mean of the probability that Yj and Y ′
j are equal is Pj =

(
∏

δ P
(j)
δ )1/32, the arithmetic mean is P ′

j = (
∑

δ P
(j)
δ )/32, and

P1 = 0.297, P2 = 0.118, P3 = 0.052, P4 = 0.035, P5 = 0.031;

P ′
1 = 0.313, P ′

2 = 0.125, P ′
3 = 0.055, P ′

4 = 0.036, P ′
5 = 0.031.

The above observation is obtained through calculations over all possible cases.
Building upon this, we now consider the lanes with length 64. Given the internal
difference ∆ = (∆0, · · · , ∆4), where each ∆j has 32 bits. Randomly select two
distinct states from the internal difference [32, ∆], and let P∆ be the probability
of collision in the first three lanes after applying the operation χ. Then P∆ =∏31

j=0 P
(3)

δ(j)
, where δ(j) = (∆0[j], · · · , ∆4[j]). When ∆ is randomly selected, P∆
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can be estimated as P∆ = P 32
3 . The probability that no collision is found after

performing t birthday attacks in [32, ∆] is

P = (1− P∆)(1− P∆)2 · · · (1− P∆)t−1 ≈ e−t2P∆/2. (6)

N∆ = P−1
∆ is called the expected size of the collision subset corresponding to

[32, ∆]. When t = N
1/2
∆ , the probability of finding a collision is consistent with

the success probability of the birthday attack. If there are w internal differ-
ences {[32, ∆(j)]}w−1

j=0 , the probability of performing t birthday attacks in each
corresponding collision subset without finding a collision is

P =

w−1∏

j=0

e−t2P
∆(j)/2 = e−t2

∑w−1
j=0 P

∆(j)/2. (7)

When w is too large to calculate P , we use P∆
−1

to estimate the expected
size of the collision subset corresponding to each [32, ∆(j)], which is called the
geometric expected size. The complexity estimated by the geometric expected size
is (wP∆

−1
)1/2. Correspondingly, the arithmetic expected size is defined as P ′

∆

−1
,

where P ′
∆ = P ′

j
32. Using arithmetic expected size to estimate complexity will

result in lower attack boundaries. It can be seen that the geometric (arithmetic)
expected size of the collision subset is related to the length of the digest. Table 4
lists the size of the collision subset with an output length within 640 bits.

collision length G.E. size† A.E. size‡ collision length G.E. size A.E. size
1 lane 256 253.70 6 lanes 2216 2213.70

2 lanes 298.64 296 7 lanes 2258.64 2256

3 lanes 2136.58 2134.16 8 lanes 2296.58 2294.16

4 lanes 2154.64 2153.93 9 lanes 2314.64 2313.93

5 lanes 2160 2160 10 lanes 2320 2320

† Geometric expected size
‡ Arithmetic expected size

Table 4: The expected size for collision length no more than 640 bits

If t = (
∑w−1

j=0 P∆(j))−1/2, the above attack is equivalent to the birthday

attack, with a time complexity of wt. Since P∆(j) =
∏31

i=0 P
(3)

δ(j,i)
, where ∆(j) =

(∆
(j)
0 , · · · , ∆(j)

4 ), δ(j,i) = (∆
(j)
0 [i], · · · , ∆(j)

4 [i]), there is the following inequality:

w · t ≤ w(w(

w−1∏

j=0

31∏

i=0

P
(3)

δ(j,i)
)1/w)−1/2 ≈ w(w(P∆

w
)1/w)−1/2 = (wP∆

−1
)1/2. (8)

When w ·32 internal differences δ(j,i) traverse each of the 5-bit differences exactly
w times, the approximate equality sign in the previous inequality becomes an
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equality sign. It can be seen from (8) that the complexity estimated by geometric
expected size is generally larger than the real complexity.

We performed a simulation on the probability of a collision during the search-
ing stage for the case of the lane length 32, using the geometric expected size
as the size of each collision subset. In each experiment, we randomly select 212

internal differences with period of 16, and the goal is to find a collision in the first
two lanes by searching the 212 corresponding collision subsets. The geometric ex-
pected size is 249.32, and the number of states required to generate a collision is
2(49.32+12)/2 = 230.66. We randomly select 218.66 states in each internal difference
and calculate their outputs after χ mapping to store them in the corresponding
collision subset. Finally, the collision subsets are searched sequentially until a
collision is found. Out of 128 experiments, collisions were found 86 times. The
probability of finding a collision is 0.67, which exceeds the theoretical probability
of 0.4 shown in [17]. This shows that the complexity of searching stage calculated
by the geometric expected size is larger than but close to the real complexity.

6 Details of the Attacks

In this section, we present the details and theoretical results of our collision
attack on 4-round SHA3-512, 5-round SHAKE128/SHA3-224/SHA3-256, 5-round
SHAKE256, 5-round SHA3-384 and 6-round SHAKE256. For 4-round SHA3-512,
5-round SHAKE128/SHA3-224/SHA3-256 and 5-round SHAKE256, we follow the
attack framework in [17] and use the expected size of collision subset in the
searching stage to more accurately bound the complexity. For 5-round SHA3-384
and 6-round SHAKE256, the collision attacks are performed in the framework
in Section 5.1. Given an internal differential characteristic covering (nr − 2.5)
rounds starting from the second round, the steps of a collision attack on nr-round
SHA-3 are as follows:

1. Calculate the number N of required initial messages based on the character-
istic. Run the Procedure PIDS to construct the input difference system E∆

for α0.
2. According to the system E∆, run Algorithm 1 to obtain the first block M0

and the initial internal difference α0.
3. Construct differential transition systems of the first two rounds and solve

them to get initial messages by conditional internal differentials. If the num-
ber of initial messages is less than N , go back to Step 2.

4. Pick an arbitrary message and calculate its internal difference of after (nr−1)
rounds. If the internal differential characteristic satisfied, store the message
into the corresponding subset. Otherwise, discard the message and go back
to Step 4 until collect enough states.

5. Choose an unselected subset.
(a) Pick a state and store its output after the nr-th round in a hash table

(along with its initial message).
(b) If a collision is found, stop and output it. Else if all state are chosen and

there is no collision, go back to Step 5. Otherwise, go back to (a).
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6.1 A Collision Attack on 5-round SHA3-384

For 5-round SHA3-384, we use the internal differential characteristic given in
Characteristic 1 in Supplementary Material B. The transition condition numbers
are (k2, k3, k4) = (25, 18, 16). For α⋆

1, there are 77 active Sboxes and 83 non-active
Sboxes.

During the TIDA stage, we combine the Procedure PIDS and the greedy
algorithm to design the Procedure GreedyPIDS. The input difference system E∆

contains 492 equations, of which the inner part contains 97 equations. The output
probability p⋆1 of Procedure GreedyPIDS is 2−76.50. Continuing the discussion
in Section 4.3, we find that there are 45 active Sboxes involving only variables
in the inner bits of ∆̃⋆, where ∆̃⋆ is ∆̃ that satisfies all equations in E∆(∆̃).
Noting that for the randomly selected ∆⋆

H , the value of ∆(L(∆⋆
H)) on these 45

Sboxes are all random values with 4 degrees of freedom. We can calculate that
the probability that the projection of ∆(L(∆⋆

H)) on these 45 Sboxes is the input
difference is 2−45.70. The degrees of freedom of ∆⋆

H are 800 − 388 − 395 = 17,
which means that there are 17 free variables in ∆⋆

H . The remaining 32 active
Sboxes will be affected by these 17 free variables and the inner bits of ∆⋆

H at the
same time. Since each active Sbox is independent of each other, we can randomly
select several ∆(L(∆⋆

H)) to estimate the probability that the other 32 Sboxes
will obtain the input difference at the same time. We search the value spaces
of 224 randomly selected ∆⋆

H and find that there are 34 NH,C contained input
differences which simultaneously satisfied 32 Sboxes. Therefore the value of p1
can be estimated as 2−45.70 · 34/2−24 = 2−64.61. For p2, we randomly choose 228

input differences β0 and find that there are 217.42 consistent systems Eβ0→α⋆
1
.

So p2 = 217.42−28 = 2−10.58. The number of the first blocks M0 required at this
stage is 297+64.61+10.58 = 2172.19, of which 275.19 M0 enter the step of solving
system ER(∆R, ∆⋆

C).
The dimension of the solution space UH,C of each ER is (800 − 492 + 97 −

388) = 17, so there are 292.19 internal differences β0 that need to be judged
as the input difference of α⋆

1. We can record the input differences of 77 active
Sboxes in 77 tables in advance. For each β0, determine whether its projection
on each active Sboxes is in the corresponding table. The complexity of this step
is 292.19 · 77 · 2q1 = 298.46+q1 . Where 2q1 is the complexity of calculating the
projection of β0 on an Sbox and looking up the table, which is significantly
lower than the complexity of a 5-round SHA3-384 operation. The complexity of
solving the differential transition systems can be ignored, because only about
210.58 input differences β0 enter this step.

In collecting messages stage and searching stage, we use conditional internal
differential to select the initial messages that can pass the first round function,
which only required solving the differential transition system Eβ0→α⋆

1
. The com-

plexity of this step can be ignored. The average of all collision subsets’ expected
size is 2200.75 for d = 384. We need to choose 225+18+(200.75+16)/2 = 2151.375

initial messages from the solution space of Eβ0→α⋆
1
, which confirm the internal

differential characteristic of the first round. From the discussion in Section 5.2, we
know that the size of the solution space of Eβ0→α⋆

1
is 2412−k1 , where 412−E[k1] ≥
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412−256 = 156. Therefore, running the TIDA once on average can obtain enough
initial messages. The total complexity is 2172.19 + 298.46+q1 + 2151.375 = 2172.19.

Furthermore, we removed 7 redundant conditions and added a linear con-
dition to each of the other 7 active Sboxes to ensure that no new redundant
conditions were generated, resulting in a new input difference system Ê∆. The
maximum density subspace selected for each active Sbox can be found in Sup-
plementary Material C. In this new attack, the size of inner part is reduced from
97 to 90, and the value of p1 is 2−70.15. The total complexity of the attack is
2170.73.

6.2 A Collision Attack on 6-round SHAKE256

In this section, we present a collision attack on 6-round SHAKE256. Our attack
uses internal differential characteristic given in Characteristic 2 in Supplemen-
tary Material B, which covers 3.5 rounds starting from the second round. The
transition condition numbers are (k2, k3, k4, k5) = (31, 25, 20, 83). For α⋆

1, there
are 65 active Sboxes and 95 non-active Sboxes.

In TIDA stage, each active Sbox provides 1 linear equation, each non-active
Sbox provides 5 linear equations. There are 540 equations in system E∆ and
59 equations in the inner part. The output probability p⋆1 of Procedure PIDS is
2−57.22, and the average number of equations related only to the inner bits in
Eβ0→α1 is 2. We take 2−57.22 and 2−2 as the values of p1 and p2 respectively
in Section 4.3. Therefore, the number of the first blocks M0 required at this
stage is 259+57.22+2 = 2118.22, of which 259.22 M0 enter the step of solving sys-
tem ER(∆R, ∆⋆

C). Since we only randomly select one solution of each ER, the
complexity of determining the input difference of α⋆

1 and solving the differential
transition system can be ignored.

In collecting messages stage, we need to collect 2k3+k4 · 2q2 initial messages,
which conforming the first two rounds internal differential characteristic, where
2q2 is the complexity of the searching stage. Since period i = 32 is half the lane
size, we can put the first CSS of two completely symmetric states in each state
for computation. In addition, there are 800 − 262 − k1 = 538 − k1 variables,
denoted by {xj}j∈J , after solving the linear system Eβ0→α⋆

1
. Fixing the values

of free intermediate variables {xt}t∈I gives at most 231 equations on {xj}j∈J ,
and therefore there are at most 231+31 equations in total together with the 31
differential transition conditions from β1 to α⋆

2. On average, by solving such linear
system of up to 262 equations we obtain 2276−k1 solutions. In order to collect
245+q2 states in searching stage, we need to randomly assign all free variables
245+q2−276+k1 = 2k1+q2−231 times, and solve the linear system Eβ1→α⋆

2
each time

to get the initial message. The complexity of this step is 2k1+q2−231 · 2q3 , where
2q3 < 2622 × 317 = 224.38 is the time complexity of solving a linear system
containing about 262 equations and 317 variables in terms of bit operations.
The complexity of collecting messages stage is 2k1+q2+q3−231 + 245+q2−1, where
E[k1] ≤ 225.

In searching stage, there are 283 different internal differences after the χ
mapping of the fifth round. These internal differences actually compose a 83-
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dimensional affine space (denoted as V ) over F2. The projection of the affine
space L ◦ ι(V ) on the first 10 lanes consists of internal differences which are
projected to their first 10 lanes, and its dimension is 80. So there are 280 differ-
ent collision subsets. The geometric expected size of collision subset is 2296.58,
arithmetic expected size is 2294.16. To find a collision, the number of outputs
we need to search is 2q2 = 2(296.58+80)/2 = 2188.29. The total complexity is
2118.22 + 2k1+q3−42.71 + 245+188.29−1 = 2232.29.

6.3 Collision Attacks on 4-round SHA3-512 and 5-round
SHA3-224/SHA3-256/SHAKE128/SHAKE256

For 4-round SHA3-512, we use the 2.5-round internal difference characteristic
given in Characteristic 2 in [17]. The transition condition numbers of the char-
acteristic are (k1, k2, k3) = (16, 16, 170). For k3 = 170, there are 2170 different
internal differences after the χ mapping of the third round. The dimension of the
projection of the affine space composed of 2170 internal differences on the first 10
lanes is 156. For d = 512, we collect the messages with the same internal differ-
ence in the first 10 lanes into a set. So there are 2156 different collision subsets.
We randomly select 230 different collision subsets and calculate the average of
their expected size, which is 2296.06. This is closer to the geometric expected size
2296.58 compared to the arithmetic expected size 2294.16 for the collision length
of 8 lanes. We use the geometric expected size to estimate complexity.

Since the size of collision subset is bounded by 2296.58, we need to choose
2(296.58+156)/2 = 2226.29 messages, which conforming the first two rounds internal
differential characteristic. With the conditional differential technique, we can
directly select the initial message that can pass the first two rounds functions
at the cost of negligible time complexity. We calculate the CSS of two messages
simultaneously as in Section 6.2. The time complexity of calculating the output
of all messages after 4-round permutation is bounded by 2226.29−1 = 2225.29.

For 5-round SHA3-224/SHA3-256/SHAKE128/SHAKE256, we use internal dif-
ferential characteristic given in Characteristic 3 in [17]. The transition con-
dition numbers of the characteristic are (k2, k3, k4) = (21, 18, 16). We evalu-
ated the average expected sizes of 216 collision subsets, which are 2134.34 for
d = 256 and 2276.56 for d = 512. We also use conditional differential technique
and calculate the CSS of two messages simultaneously to reduce time complex-
ity. For an output length of 256 bits, the complexity of our collision attack is
218+(16+134.34)/2−1 = 296.67. When the output length is 512 bits, the complexity
is 218+(16+276.56)/2−1 = 2163.28.

6.4 Summary of Collision Attacks

We summarize our collision attacks in Table 5. For 4-round SHA3-512 and 5-
round SHAKE256, we use the same characteristic in [17]. For 5-round SHA3-384,
the last two rounds of its characteristic is the same as characteristic of 5-round
SHAKE256. We slightly change the input difference of the second χ mapping to
obtain a target internal difference with less active Sboxes. For 6-round SHAKE256,
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we use MILP to search for characteristic starting from the third round with the
objective of minizing (k3+k4+k5/2). Then, the characteristic are extended one
round forward to obtain the output difference of the first χ with fewer active
Sboxes.

Target nr i k1 k2 k3 k4 k5 Complexity (log2)
SHA3-512 4 32 16 16 170 - - 225.29

SHA3-224/SHA3-256/SHAKE128 5 32 - 21 18 16 - 96.67

SHA3-384 5 32 - 25 18 16 - 170.73†

SHAKE256 5 32 - 21 18 16 - 163.28

SHAKE256 6 32 - 31 25 20 83 232.29
† Inspired by the reviewers, we reduced the time complexity from 2172.19 to 2170.73

Table 5: The parameters of characteristics and complexities

7 Experiments

In order to illustrate the probabilistic linearization technique, and to validate the
new attack boundary, we implemented an actual collision attack on a reduced
version of Keccak, called Keccak[240, 160, 5, 96]. The internal state size of
Keccak[240, 160, 5, 96] is 400 bits, with the first 240 bits being the rate part
and the remaining 160 bits constituting the capacity part. The underlying per-
mutation is reduced to 5 rounds, and the length of the digest is set to 96 bits.

In our collision attack on this Keccak instance, the basic framework aligns
with the analysis of 5-round SHA3-384 as shown in Section 6.1. We select 2-block
messages for the collisions. Initially, we find a 2.5-round internal differential
characteristic from round 1 to round 3.5 through MILP, see also Characteristic
3 in Supplementary Material B. The parameters are (k2, k3, k4) = (14, 8, 7), and
there are 18 active Sboxes and 22 non-active Sboxes for α⋆

1. In the TIDA stage,
we set 1 linear equation for each active Sbox and 5 linear equations for each non-
active Sbox, and obtain 18+22×5 = 128 equations in input difference system. For
this system, 21 equations are in the inner part. In other words, for each random
message of the first block M0, it has a solution with a probability p0 = 2−21.
By applying the Procedure PIDS, the probability p⋆1 that a randomly selected
difference in its solution space happens to be the input difference turns out to
be 2−15.30. This means that we randomly generate at most 221+15.30 = 236.30

times for the first block M0, and the input difference to the nonlinear operation
of the first round can be obtained. In the experiment, we randomly selected
230 M0 and obtained 29 input difference systems with solutions, which verifies
p0 = 2−21. Among them, about 22 input difference systems E∆ have solution
spaces that contain input differences. Therefore the real value of the probability
p1 is 2−7 and it is much higher than its theoretical lower bound p⋆1 = 2−15.30

(see also the analysis of TIDA in Section 4.3). Then, as shown in steps 15 to 20
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of Algorithm 1, for each input difference β0 in the input difference system E∆,
we calculate its differential transition system Eβ0→α⋆

1
(R5(M0) ⊕M1) and solve

it on M1. On average, for about 22 ∼ 23 trials of input difference systems E∆,
there is one correct input difference β0 such that the corresponding differential
transition system Eβ0→α⋆

1
has solutions. The size of the solution space W1 for

the system Eβ0→α⋆
1

is 2240/2−k1 , where E(k1) = 62. In the experiments, we ran
Algorithm 1 multiple times and found a space W1 of size 266. This solution space
alone can provide enough initial messages to generate collisions.

In the collecting stage and searching stage, we use the techniques of con-
ditional internal differentials to satisfy all the differential transition conditions
in the first round together with 9 differential transition conditions in the sec-
ond round. The total time complexity is 2k2−1−9+k3+(k4+54)/2 = 242.5, where
254 = 2216/4 is the geometric expected size of the collision subset (see also Ta-
ble 4). If we use arithmetic expected size to predict time, the complexity is
2k2−1−9+k3+(k4+53.425)/2 = 242.21. On a desktop with an Intel Core i9-13900KF
processor, it takes about 17 hours to find a 96-bit collision, and consumes about
48G of memory. The total number of the searched messages is around 243, which
matches the theoretical complexity. A concrete example is given in Supplemen-
tary Material E.

8 Conclusions

In this paper, we presented collision attacks on up to 6 rounds against four
SHA-3 variants by 1-round internal connectors. We equivalently transform the
construction of internal connectors into the internal connectivity problem, and
reduce this nonlinear problem to two types of linear systems: input difference
system and differential transition system. The TIDA is redesigned to construct
and solve these linear systems by probabilistic linearization method. In addi-
tion, we search for new internal differential characteristics and more accurately
estimate the time complexity of searching stage. Compared to previous ways
of constructing connectors, the probabilistic linearization method neither loses
too many input differences, nor depends on the solver of nonlinear system. For
4-round SHA3-512 and 5-round SHAKE256, our collision attack outperforms the
best known attacks, and the collision attacks on 5-round SHA3-384 and 6-round
SHAKE256 are presented for the first time.

The further work includes bounding the complexity of this algorithm and
building new input difference system for other SHA-3 instances with higher secu-
rity strength, such as SHA3-512. Additionally, in some cases it may be helpful to
use solvers such as CryptoMiniSAT [16] or develop fast solvers to directly solve
the connectivity problem.

We stress that our attack does not threaten the security of the full SHA-3.

Acknowledgements. We thank the anonymous reviewers from CRYPTO 2024
for their thoughtful comments and insightful questions. Inspired by the reviewers,
we were able to optimize the collision attack on 5-round SHA3-384.
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Supplementary Material

A Greedy Probabilistic Input Difference System

Procedure GreedyPIDS(α⋆
1, MDST)

Input: Internal difference α⋆
1 and MDST.

Output: Linear equation system E∆, probability p⋆1.
1 Set E∆ = ∅, E′

∆ = ∅, E⋆
C = ∅, p⋆1 = 1 and W = ∆(L(∆R,∆C)).

/* W is a variable vector (w0, ..., w799), wi = wi(∆R,∆C) is a linear
function about ∆R = (δ0, ..., δ799−p−c/2),∆C = (δ800−p−c/2, ..., δ799) */

2 for each integer j ∈ [0, 160) do
3 Get the output difference δout of the j-th Sbox from α⋆

1.
4 if δout = 0 then
5 E∆ = E∆ ∪ {w5j(∆R,∆C) = 0, . . . , w5j+4(∆R,∆C) = 0}.
6 end
7 end
8 Reduce E∆(∆R,∆C) = ER(∆R,∆C) ∪ EC(∆C), E∆ = ER, E⋆

C = EC .
9 for each integer j ∈ [0, 160) do

10 Get the output difference δout of the j-th Sbox from α⋆
1.

11 if δout ̸= 0 then
12 do
13 r1 = rank(E∆).

14 Select and delete a subspace Ker(
∑4

j=0 lj · 2
j , q) from MDST[δout].

15 E′
∆ = E∆

⋃
{l0 · w5j(∆R,∆C) + · · ·+ l4 · w5j+4(∆R,∆C) = q}.

16 Reduce E′
∆(∆R,∆C) = E′

R(∆R,∆C) ∪ E′
C(∆C), E′

∆ = E′
R.

17 r2 = rank(E′
∆).

18 if r2 > r1 then
19 E∆ = E′

∆.
20 else if MDST[δout] = ∅ then
21 E⋆

C = E⋆
C
⋃
{l0 · w5j(∆R,∆C) + · · ·+ l4 · w5j+4(∆R,∆C) = q}.

22 end
23 while r2 = r1 and MDST[δout] ̸= ∅;
24 end
25 end
26 E∆ = E∆

⋃
E⋆

C .
27 return (E∆, p⋆1)

B Internal Differential Characteristics

In this section, we provided the internal differential characteristics (labeled as
Characteristic 1-3) which we use in our collision attacks. The internal difference



[i, v] is represented by its canonical representative state defined in Section 3.3.
Each state is given as a matrix of 5 × 5 lanes of 64 bits, order from left to
right, where each lane is given in hexadecimal using the little-endian format.
The symbol ’-’ is used in order to denote a zero 4-bit value.

|----------a---4b|--------8184--2-|--------8496--31|--------8782---c|--------8382--1a|
|--------8-a---49|---------194--68|--------8-94--31|--------8682---4|--------8382--1a|
|--------8-a---49|---------184--6-|--------8484--31|--------8782---4|--------8382--1a|
|--------8-a----9|---------18---6-|--------8494--31|--------8382---4|--------8382--1a|
|--------8-8---49|---------184--6-|--------849---35|--------8782---4|--------838---18|

|--------8------2|------------8--1|--------8-------|------------8---|--------8---8---|
|--------8-------|----------------|----------------|--------8-------|--------8---8---|
|--------------81|---------------1|----------------|----------------|--------------8-|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|------------8---|----------------|------------8---|----------------|

|--------8------2|---------------1|----------------|----------------|------------8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|----------------|----------------|

|--------8---8-8-|---------------1|----------------|----------------|------------8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|----------------|----------------|

|--------8---8-8-|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|---------------2|
|-------------4--|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|--------8---8-8-|----------------|----------------|----------------|----------------|
|---------------8|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------a|----------------|----------------|----------------|----------------|
|---------------8|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------a|------------8---|----------------|----------------|----------------|
|----------------|----------------|--------------1-|-----------1----|----------------|
|----------------|-----------1----|----------------|----------------|----------------|
|----------------|--------------8-|----------------|---------2------|----------------|
|----------------|----------------|----------------|----------------|----------------|

L

χ (p = 2−25)

ι

L

χ (p = 2−18)

ι

L

R1

R2

R3

R3.5

The characteristic has a period of i = 32 for the 5-round attack on
SHA3-384, as described in Section 6.1.

Characteristic 1: The 1-3.5 round internal differential characteristic with
probability 2−43 and k4 = 16.
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|--------c2-----2|--------381--4-2|--------58-2-2-2|--------3----2--|--------3-2----d|
|--------42-----1|--------38---4-2|--------58-2---2|--------38-----8|--------3-2----5|
|--------4-1----1|--------381--4-2|--------58-----2|--------38---2-8|--------32-----d|
|---------2-----5|--------781----2|--------58-----2|--------38---2-8|--------3-2----d|
|--------42-----1|--------781--4-2|--------5c-----2|--------38---2-8|--------3-2----d|

|--------8------3|---------------1|----------------|----------------|----------------|
|--------8-8-----|----------8-----|--------1-8-----|----------8--8--|----------8-----|
|----------------|----------8-----|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8-8-|---------------1|--------1------1|-------------88-|---------------1|

|--------8---8-8-|---------------1|----------------|----------------|----------------|
|--------8-------|----------8-----|--------1-------|-------------8--|----------------|
|----------------|----------8-----|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8-8-|---------------1|--------1-------|-------------8--|----------------|

|--------8---8-8-|---------------8|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|---------2------|
|---------------2|---------------4|----------------|----------------|---------2-----2|
|----------------|---------------8|---------------2|----------------|---------------8|
|----------------|---------------4|----------------|----------------|---------------4|

|---------------2|---------------8|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|---------2------|
|---------------2|---------------4|---------------2|----------------|---------2------|
|----------------|---------------8|---------------2|----------------|----------------|
|----------------|---------------4|----------------|----------------|----------------|

|---------------2|----------------|------------1---|----------------|----------------|
|----------------|------------2---|--------------1-|-----------1----|----------------|
|--------------1-|----------------|----------------|----------------|----------------|
|----------------|----------------|------------1---|-----------1----|----------------|
|----------------|----------------|---------------1|----------------|--------------1-|

|------------8--2|----------------|------------1---|----------------|----------------|
|--------------1-|------------2---|--------------1-|-----------1----|----------------|
|--------------1-|----------------|----------------|----------------|--------------1-|
|----------------|----------------|------------1---|-----------1----|----------------|
|----------------|----------------|--------------11|----------------|--------------1-|

|------------c--2|---------a------|---------1------|----------2---2-|--------4--5----|
|--------1-------|----------4---1-|-----------2--8-|--------1-------|--------2----4-2|
|-----------1----|-----------8-4--|---------2------|---------1---4--|---------------1|
|--------2----8--|-----------4-1--|---------2------|--------18------|---------1------|
|-------------c--|----------8---8-|----------8--a--|----------8-----|-----------2----|

L

ι ◦ χ (p = 2−31)

L

ι ◦ χ (p = 2−25)

L

ι ◦ χ (p = 2−20)

L

R1

R2

R3

R4

R4.5

The characteristic has a period of i = 32 for the 6-round attack on
SHAKE256, as described in Section 6.2.

Characteristic 2: The 1-4.5 round internal differential characteristic with
probability 2−76 and k5 = 83.
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|---2|---6|---4|---1|----|

|---8|----|---4|---1|----|

|---8|---2|---1|---1|----|

|---8|---2|---4|----|--2-|

|---a|---2|---4|---1|--2-|

|---a|--2-|--28|--2-|---8|

|----|----|----|----|----|

|---8|----|----|--2-|---8|

|----|----|----|----|----|

|----|----|----|----|----|

|---a|----|----|--2-|----|

|----|----|----|----|----|

|---8|----|----|--2-|----|

|----|----|----|----|----|

|----|----|----|----|----|

|---8|----|----|--2-|----|

|----|----|----|----|----|

|---8|----|----|--2-|----|

|----|----|----|----|----|

|----|----|----|----|----|

|---8|----|----|----|----|

|---2|----|--4-|----|----|

|----|----|--4-|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|---8|----|----|----|----|

|---2|----|--4-|----|----|

|----|----|--4-|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|---2|----|----|----|----|

|---2|----|--4-|----|----|

|----|----|--4-|----|----|

|----|----|----|----|----|

|----|----|----|----|----|

|---2|----|---2|----|----|

|----|----|----|----|----|

|----|--1-|----|----|----|

|----|--2-|----|----|----|

|----|----|----|----|----|

L

χ (p = 2−14)

ι

L

χ (p = 2−8)

ι

L

R1

R2

R3

R3.5

The characteristic has a period of i = 8 for the 5-round attack on
Keccak[240, 160], as described in Section 7.

Characteristic 3: The 1-3.5 round internal differential characteristic with
probability 2−22 and k4 = 7.

36



C Maximum Difference Density Subspace for SHA3-384

In. δout U P In. δout U P
0 0x04 (0x04, 1) 9/16 1 0x11 (0x05, 1) 9/16
2 0x08 (0x08, 1) 9/16 3 0x19 (0x01,1),(0x06,0) 5/8
4 0x14 (0x04,1),(0x06,0) 5/8 5 0x06 (0x14, 1) 9/16
6 0x01 (0x01, 1) 9/16 17 0x1c (0x04,1),(0x1b,0) 5/8
18 0x06 (0x14, 1) 9/16 20 0x04 (0x04, 1) 9/16
21 0x01 (0x01, 1) 9/16 23 0x1f (0x07,1),(0x1e,0) 6/8
24 0x1a – 12/32 25 0x18 (0x12, 1) 9/16
26 0x0c (0x04, 1) 6/16 31 0x1e (0x16, 0) 9/16
32 0x05 (0x04, 1) 7/16 33 0x10 (0x04, 1) 6/16
34 0x08 (0x08, 1) 9/16 35 0x13 (0x10,1),(0x0f,0) 5/8
36 0x14 (0x04,1),(0x19,0) 5/8 37 0x06 (0x14, 1) 9/16
38 0x03 (0x0a, 1) 9/16 49 0x18 (0x12, 1) 9/16
50 0x06 (0x02, 1) 6/16 52 0x06 (0x14, 1) 9/16
53 0x01 (0x04, 0) 6/16 55 0x1f (0x07, 1) 8/16
56 0x12 (0x02, 1) 7/16 57 0x18 (0x12, 1) 9/16
58 0x08 (0x02, 1) 6/16 63 0x1d (0x0d, 0) 9/16
64 0x05 (0x11,0),(0x0e,0) 5/8 65 0x10 (0x02, 0) 6/16
66 0x08 (0x08, 1) 9/16 67 0x11 (0x05, 1) 9/16
68 0x14 – 10/32 69 0x06 (0x14, 1) 9/16
70 0x03 (0x01, 1) 6/16 81 0x18 (0x12, 1) 9/16
82 0x06 (0x02, 1) 6/16 85 0x01 (0x01, 1) 9/16
87 0x1f (0x07, 1) 8/16 88 0x1a – 12/32
89 0x18 (0x12, 1) 9/16 90 0x0c (0x09, 1) 9/16
95 0x1d – 11/32 96 0x05 (0x04, 1) 7/16
97 0x10 (0x04, 1) 6/16 98 0x08 (0x04, 1) 6/16
99 0x11 (0x05, 1) 9/16 100 0x14 (0x04, 1) 7/16
101 0x06 (0x02, 1) 6/16 102 0x02 (0x02, 1) 9/16
113 0x18 (0x12, 1) 9/16 114 0x04 (0x04, 1) 9/16
116 0x04 (0x04, 1) 9/16 117 0x01 (0x01, 1) 9/16
119 0x1f (0x13, 1) 8/16 120 0x1a (0x02, 1) 9/16
121 0x18 (0x12, 1) 9/16 122 0x04 (0x04, 1) 9/16
127 0x1d (0x0d, 0) 9/16 128 0x05 (0x06, 0) 7/16
130 0x0c (0x09, 1) 9/16 131 0x11 (0x05, 1) 9/16
132 0x14 – 10/32 133 0x06 (0x14, 1) 9/16
134 0x03 (0x0a, 1) 9/16 145 0x08 (0x08, 1) 9/16
146 0x02 (0x02, 1) 9/16 148 0x04 (0x02, 1) 6/16
151 0x1f (0x07, 1) 8/16 152 0x1a – 12/32
153 0x18 (0x12, 1) 9/16 154 0x0c (0x09, 1) 9/16
159 0x1d – 11/32
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D Maximum Difference Density Subspace for SHAKE256

Index δout U E[kU ] Index δout U E[kU ]
0 0x11 (0x05, 1) 30/9 1 0x07 (0x01, 1) 27/7
2 0x10 (0x10, 1) 30/9 3 0x10 (0x10, 1) 30/9
9 0x0c (0x09, 1) 30/9 10 0x02 (0x02, 1) 30/9
17 0x04 (0x04, 1) 30/9 20 0x02 (0x02, 1) 30/9
21 0x10 (0x10, 1) 30/9 25 0x01 (0x01, 1) 30/9
27 0x06 (0x14, 1) 30/9 28 0x1e (0x16, 0) 33/9
29 0x1a (0x10, 1) 33/9 30 0x05 (0x01, 1) 27/7
31 0x01 (0x01, 1) 30/9 32 0x11 (0x05, 1) 30/9
33 0x06 (0x14, 1) 30/9 34 0x10 (0x10, 1) 30/9
35 0x08 (0x08, 1) 30/9 42 0x02 (0x02, 1) 30/9
49 0x04 (0x04, 1) 30/9 53 0x10 (0x10, 1) 30/9
57 0x01 (0x01, 1) 30/9 59 0x0e (0x02, 1) 27/7
60 0x1e (0x16, 0) 33/9 61 0x1a (0x10, 1) 33/9
62 0x05 (0x01, 1) 27/7 64 0x11 (0x05, 1) 30/9
65 0x06 (0x14, 1) 30/9 66 0x10 (0x10, 1) 30/9
67 0x18 (0x12, 1) 30/9 73 0x08 (0x08, 1) 30/9
74 0x02 (0x02, 1) 30/9 84 0x03 (0x0a, 1) 30/9
89 0x10 (0x10, 1) 30/9 91 0x0e (0x02, 1) 27/7
92 0x1e (0x16, 0) 33/9 93 0x1a (0x10, 1) 33/9
94 0x05 (0x01, 1) 27/7 96 0x11 (0x05, 1) 30/9
97 0x06 (0x14, 1) 30/9 98 0x11 (0x05, 1) 30/9
99 0x18 (0x12, 1) 30/9 105 0x08 (0x08, 1) 30/9
116 0x02 (0x02, 1) 30/9 117 0x10 (0x10, 1) 30/9
121 0x01 (0x01, 1) 30/9 123 0x0e (0x02, 1) 27/7
124 0x1e (0x16, 0) 33/9 125 0x1a (0x10, 1) 33/9
126 0x06 (0x14, 1) 30/9 128 0x11 (0x05, 1) 30/9
129 0x06 (0x14, 1) 30/9 130 0x10 (0x10, 1) 30/9
131 0x18 (0x12, 1) 30/9 137 0x08 (0x08, 1) 30/9
138 0x02 (0x02, 1) 30/9 148 0x02 (0x02, 1) 30/9
149 0x10 (0x10, 1) 30/9 153 0x01 (0x01, 1) 30/9
154 0x04 (0x04, 1) 30/9 155 0x0e (0x02, 1) 27/7
156 0x1e (0x16, 0) 33/9 157 0x1a (0x10, 1) 33/9
158 0x07 (0x01, 1) 27/7

38



E An Example of the Collision

|6a44|1a51|321-|23f2|66f6|

|41-9|7d57|a1b2|7d8c|1a7a|

|6d-f|c9aa|d211|b134|f229|

|----|----|----|----|----|

|----|----|----|----|----|

|169d|-51e|5252|7437|dc49|

|629a|9762|e2--|8eae|5a93|

|67-5|8-dc|c829|f4c4|-aea|

|fbff|bb15|95ee|3b2f|7b41|

|--93|54ba|a9ce|5e4a|4779|

|b9a5|-d74|35f2|51be|f816|

|9a53|7251|e164|ebe5|482b|

|5--3|14a7|e3cd|-b83|8614|

|----|----|----|----|----|

|----|----|----|----|----|

|af38|-86a|67a-|2589|245f|

|f8c9|e533|-364|654b|12b8|

|37-6|947b|2be4|ff47|8cfe|

|fbff|bb15|95ee|3b2f|7b41|

|--93|54ba|a9ce|5e4a|4779|

|5992|37b4|27ce|9981|b9eb|

|e7e5|81a7|eafc|9a8e|6ef8|

|e4a9|8b81|8264|187b|e9e9|

|7826|9f-9|a72d|e5bf|3e62|

|-ba6|f6d7|db68|84ce|7744|

|617d|86ff|df18|fa15|9876|

|8a43|e4c7|ca4f|cdc3|482b|

|683b|2c9f|d2fc|c54d|8c1e|

|----|----|----|----|----|

|----|----|----|----|----|

|77e-|83e1|8d4a|8e22|443f|

|e8d9|73a5|284f|436d|12b8|

|-f3e|ac43|1ad5|3189|86f4|

|fbff|bb15|95ee|3b2f|7b41|

|--93|54ba|a9ce|5e4a|4779|

|5992|37b4|27ce|9981|b9eb|

|e7e5|3197|37a5|-f1b|25b3|

|9ed2|fdb-|2baf|4665|a9a9|

|ece4|e96d|d75f|--58|7e34|

|8ba7|-cad|997a|--d1|6af4|

R5

⊕R5(M0)

R5

⊕R5(M0)

R5

M0 =

R5(M0) =

M1 = = M ′
1

Collision: A collision (M0||M1) and (M0||M ′
1) in Keccak[r = 240, c =

160, nr = 5, d = 96].
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F Advantages of Adding More Equations to One Sbox

Compared with adding one equation on the input difference for each active Sbox,
the probability p⋆1 will slightly increase without changing the total number of
equations if the number of equations for each active Sbox is allowed to any
number among 0, 1, 2, 3.1 For simplification, we consider two scenarios: the
groups of two active Sboxes and the groups of three.

Denoted by pi,w the difference density of Sbox i for adding w equations.
All the 31 nonzero δout’s can be classified into 5 categories, according to their
difference density profile (p·,0, p·,1, p·,2, p·,3), as listed in Table 6.

Category p·,0 p·,1 p·,2 p·,3 p·,0/p·,1 p·,2/p·,1 p·,3/p·,1
C1 1.830075 0.830075 0.415037 0 −1 0.415038 0.830075
C2 1.540568 0.830075 0.192645 0 −0.710493 0.63743 0.830075
C3 1.415037 0.830075 0.192645 0 −0.584962 0.63743 0.830075
C4 1.540568 1 0.415037 0 −0.540568 0.584963 1
C5 1.678072 1.192645 0.678072 0 −0.485427 0.514573 1.192645

Table 6: The Difference Density Profile of 5 Categories of δout’s (− log2)

For a group of two active Sboxes, we compare one 5-dimensional and one
3-dimensional affine subspace with two 4-dimensional affine subspaces. Let

a2 = log2(pi,0/pi,1) + log2(pj,2/pj,1)

be the advantage of adding two equations to Sbox j and no equations to Sbox
i. If a2 > 0, then adding two equations to Sbox j (and no equations to Sbox i)
is better than adding one equation to each of these two Sboxes. Table 7 lists the
advantages of adding two equations to one Sbox greater than 0.

0 Eqs.
2 Eqs. C2 or C3 C4 C5

C3 0.052468
C4 0.096862 0.044395
C5 0.152003 0.099536 0.029146

Table 7: The Advantage a2 of Adding Two Equations to One Sbox

For the case of three Sboxes, if three equations are imposed to one Sbox (to
say k), we have the advantage

a3 = log2(pi,0/pi,1) + log2(pj,0/pj,1) + log2(pk,3/pk,1).

If a3 > 0, then adding three equations to Sbox k (and no equations to Sboxes i
and j) is better. By an exhaustive calculation with taking Table 7 into account,
1 The setting of the number of equations is suggested by the reviewers.
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0 Eqs.
3 Eqs. C5

(C4,C4) 0.111509
(C4,C5) 0.166650
(C5,C5) 0.221791

Table 8: The Advantage a3 of Adding Three Equations to One Sbox

Category Number of Equations
C1 1
C2 1,2
C3 0,1,2
C4 0,1,2
C5 0,1,2,3

Table 9: Candidates for Optimal Number of Equations

we can conclude that adding three equations to one Sbox (that is, full lineariza-
tion of one Sbox for every three Sboxes) is optimal only in two cases: a) the
number n5 of δout’s from Category 5 (this is exactly the category of δout’s men-
tioned by the reviewer) is larger than the total number (n2 + n3 + n4) of δout’s
from Category 2, 3, and 4, and it happens for at most (n5 − (n2 + n3 + n4))/3
triples (C5,C5,C5); b) all Sboxes have been handled but three Sboxes with one
or two δout’s from Category 5 and the rest from Category 4, that is, a single
triple (C4,C4,C5) or (C4,C5,C5). Their advantages are listed in Table 8.

According to Tables 7 and 8, the candidates for optimal number of equations
for probabilistic linearization are listed in Table 9.

From the above analysis, it is evident that the probability of p⋆1 can possibly
be optimized by a factor of 2160×0.152/2 = 212.16. However, it does not affect the
complexity of our collision attacks on reduced SHA-3 in Section 6.

For the collision attack on 6-round SHAKE256, the original probability of
p⋆1 is used to evaluate the lower bound of p1 and derive an upper bound on the
complexity of TIDA stage, which is much lower than those of collecting messages
and searching stages, and thus the optimized probability of p⋆1 does not affect
the total complexity.

For the collision attack on 5-round SHA3-384, given α⋆
1 in Section 6.1, the

probability of p⋆1 is 2−69.48 using PIDS. It turns out to be 2−67.70 if using the
optimized probabilistic linearization, improving p⋆1 by a factor of around 21.78.
But the probability p⋆1 is not the dominant term of the complexity either. For
setting up an input difference system with inner part as small as possible, we
adopt 4-dimensional affine subspaces with both maximal and submaximal dif-
ference density in GreedyPIDS (see also Line 11 of Page 17). As a result, while
the probability p⋆1 produced by GreedyPIDS decreases to 2−76.50 from 2−67.70,
the size t2 of the inner system is reduced to 97 from 116. In addition, p⋆1 gives
a lower bound of p1, but a low probability p⋆1 does not imply a low probability
p1. The probability p1 turns out to be 2−64.61 as estimated in Page 26, which is
markedly larger than p⋆1 = 2−76.50.
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In either case, the optimization of p⋆1 is not our primary goal as mentioned
previously. However, we further expand MDST with 3-dimensional affine sub-
spaces in GreedyPIDS, and cut down the attack complexity to 2170.73, by a factor
of 2−1.71, for 5-round SHA3-384. In this new attack, t2 is reduced to 90 from 97,
while p⋆1 = 2−76.97 and p1 = 2−70.15. The other parameters are the same. We
can see that the improved attack is achieved by optimizing the size of the inner
system rather than p⋆1. Still, we can add more equations to the input difference
system without changing the inner part to increase p⋆1, but the corresponding
p1 becomes smaller. In Supplementary Material C, we list the difference density
subspaces used in the new collision attack on 5-round SHA3-384.
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