
Distributed Verifiable Random Function With
Compact Proof

Ahmet Ramazan Ağırtaş1[0000−0002−4574−0067],
Arda Buğra Özer2,⋆[0000−0002−6505−7038],
Zülfükar Saygı3[0000−0002−7575−3272], and

Oğuz Yayla2[0000−0001−8945−2780]

1 Nethermind, London, UK
a.r.agirtas@gmail.com

2 Institute of Applied Mathematics, Middle East Technical University, Ankara,
Türkiye

abozer@gmail.com, oguz@metu.edu.tr
3 Department of Mathematics, TOBB University of Economics and Technology,

Ankara, Türkiye
zsaygi@etu.edu.tr

Abstract. Verifiable Random Functions (VRFs) are cryptographic prim-
itives that generate unpredictable randomness along with proofs that are
verifiable, a critical requirement for blockchain applications in decentral-
ized finance, online gaming, and more. Existing VRF constructions often
rely on centralized entities, creating security vulnerabilities. Distributed
VRFs (DVRFs) offer a decentralized alternative but face challenges like
large proof sizes or dependence on computationally expensive bilinear
pairings. In this research, a unique distributed VRF (DVRF) system
called DVRFwCP with considerable improvements is proposed. DVR-
FwCP has constant-size proofs, which means that the size of the proof
does not change based on the number of participants. This overcomes a
significant drawback of earlier DVRF systems, which saw proof size in-
crease with participant count. Furthermore, DVRFwCP produces more
efficient verification than previous systems by eliminating the require-
ment for bilinear pairings throughout the verification process. These in-
novations contribute to a more secure and scalable solution for gener-
ating verifiable randomness in decentralized environments. We compare
our construction to well-established DVRF instantiations such as DDH-
DVRF and GLOW-DVRF while also pointing out the major improve-
ment in the estimated gas cost of these algorithms.

Keywords: Cryptography, Verifiable Random Function, Distributed Ver-
ifiable Random Function, Blockchain

1 Introduction

True randomness is a key element of computing, and its applications range from
generating cryptographic keys to digital signing, online gaming, and gambling.
⋆ Corresponding author

2 A. R. Ağırtaş et al.

Recently, with the introduction and rapid growth of blockchain technologies and
Web3-based applications, especially in decentralized finance and the online gam-
ing industry, the demand for trustworthy sources of randomization has increased
substantially. In most of these applications involving multiple participants, en-
suring that the randomness used is neither predictable nor biased toward any one
party is not only important but crucial. Many platforms that rely on blockchain
technology have consensus protocols that involve authorizing the creation of
blocks to a block producer, whose selection mechanism frequently involves a
means for collective sampling of random values. A typical solution to avoid de-
pendence on a trusted party is to utilize a process that permits the distributed
generation of verifiable randomness.

Micali, Rabin, and Vadhan [16] introduced verifiable random functions (VRF)
that offer such capabilities. A VRF may be viewed as the public-key equivalent
of a keyed cryptographic hash. For a secret key chosen uniformly at random, a
VRF, on the input of a plaintext α, outputs γ and a proof π, which can pub-
licly be used to verify the correct evaluation of γ. They realized that VRFs and
unique signatures share similarities and constructed an RSA signature based
VRF. Dodis and Yampolskiy [6] constructed a more optimal VRF using bilin-
ear pairings and collision-resistant hash functions. A more efficient construction
using elliptic curves was introduced by Papadopoulos et al. [17]. This was later
brought into IETF standardization by Goldberg et al. [12]. In [2], Buser et al.
considered post-quantum VRFs based on symmetric primitives. Later, Esgin et
al. [7] studied few-time verifiable Lattice-Based post-quantum secure VRFs, and
a few other post-quantum secure VRFs have appeared since.

Many blockchains utilize VRF through smart contracts, including Algorand
[11] and Polkadot [20]. Chainlink [3] offers one of the most popular VRF ser-
vices, but their construction is not decentralized; hence, when a specific node is
compromised, the secret key is known to the attacker, and in turn, the output
of the VRF is completely predictable. Therefore, it is crucial and mandatory to
construct decentralized VRF services.

A distributed VRF (DVRF) poses many challenges, such as communication
and computational complexity. To our knowledge, Dodis [5] proposed the first
DVRFs under the requirement of a trusted dealer. Using unique aggregate sig-
natures, Kuchta and Manulis [15] proposed a generic construction of DVRFs.
Hanke et al. [13] introduced a BLS-pairing DVRF. Galindo et al. [9] provided the
first systematic analysis and definitions for (Non-Interactive) Fully Distributed
Verifiable Random Functions (DVRFs), where they introduced DDH-DVRF (a
Decisional Diffie Hellman DVRF) and GLOW-DVRF (a BLS-pairing DVRF)
and provided comparisons to [13], which they named Dfinity-DVRF. The major
drawback of these constructions is that the proof size of DDH-DVRF is O(t),
where t is the threshold number of participants. Therefore, the number of group
actions needed for verification is in the same order. On the other hand, the
construction of GLOW-DVRF is similar; although it has compact proofs, verifi-
cation is done using costly procedures such as bilinear pairings. Recently, Kate

Distributed Verifiable Random Function With Compact Proof 3

et al. [14] introduced the notion of Output-Private DVRF, which is based on the
GLOW-DVRF mechanism.

In this work, we propose a distributed verifiable random function with com-
pact proofs (DVRFwCP) that does not require bilinear pairings and has constant
proof size, independent of the threshold number of participants. Our approach
alters and utilizes the NIZK proof system (see Section 2.3) by adding a t-out-
of-n threshold structure and needs at least t participants to generate verifiable
randomness, whereas requiring these parties to generate the NIZK proof jointly.

We first present preliminary information about verifiable secret sharing and
certain VRF primitives in Section 2. In Section 3, we introduce our distributed
VRF with compact proofs. In Section 4, we compare our construction to DDH-
DVRF and GLOW-DVRF in terms of the required number of mathematical
operations and estimated gas cost.

2 Preliminaries

We recall the underlying hard problem, the formal definition of Distributed Ver-
ifiable Random Function (DVRF), and other cryptographic primitives we utilize
in our construction. We use the notation s

R← S to mean the element s is chosen
with uniform probability from the set S. Let Zq be the residue ring of prime order
q. From hereon, let P = {P1, . . . , Pn} be the parties involved in the mentioned
secret sharing scheme.

2.1 Lagrangian Interpolation

For a reconstruction set S, the Lagrange basis polynomials are
λj,S(x) =

∏
k∈S\{j}

x−k
j−k ∈ Zq[X] with the Lagrange coefficients λi,j,S = λj,S(0) ∈

Z∗
q . For any polynomial f ∈ Zq[X] of degree at most |S|− 1 this produces a way

to reconstruct f(X) =
∑

i∈S λ0,i,S f(i). The process of reconstructing f(0) is
called Lagrangian Interpolation. We shall drop the subscript S and simplify the
notation to write λi,j = λi,j,S for these coefficients, whenever S is clear from the
context.

2.2 Verifiable Secret Sharing

Let p and q be two primes, such that q | p − 1, where the lengths of p and q
are polynomial in a fixed security parameter λ. For any such pair of primes,
let G ⊂ Z∗

p be a subgroup of elements of order q with a generator g ∈ G. An
element y ∈ G can be written as y = gx mod p for x ∈ [1, . . . , q]; the integer x
is called the discrete logarithm of y with respect to g, denoted logg y. Let A be a
probabilistic polynomial-time adversary.

Definition 1. (DDH assumption) Let G = ⟨g⟩ be a (cyclic) group of prime order
q. Let X ←

(
G, q, g, gα, gβ

)
where α, β

R← Z∗
q . The Decisional Diffie-Hellman

4 A. R. Ağırtaş et al.

assumption holds if for γ
R← Z∗

q the value

AdvDDH
A (λ) =

∣∣Pr [A (
X, gαβ

)
= 1

]
− Pr [A (X, gγ) = 1]

∣∣
is negligible in λ.

In [21], Shamir defined a way to share a secret σ ∈ Zq among n parties using
a polynomial of degree t − 1 so that any t parties or more could recover the
secret, using the following protocol.

Protocol Shamir-SS.

1. The dealer chooses a random polynomial f(X) over Zq of degree t− 1, such
that f(0) = σ, the secret being shared.

2. The dealer secretly transmits a share si = f(i) mod q to the party Pi.

It is evident that t− 1 or fewer parties cannot gather any information about
the secret σ, whereas t or more parties can reconstruct it using Lagrange poly-
nomial interpolation as described in Section 2.1.

However, Shamir’s protocol could fail as a dealer can share values that do not
lie on a polynomial of degree t−1. Also, dishonest parties can contribute incorrect
shares to disrupt reconstruction. Various challenges, including those mentioned
above, demonstrated the necessity for Verifiable Secret Sharing (VSS) protocols.

In [8], Feldman extended Shamir’s secret-sharing scheme, enabling share re-
cipients to verify that the shares they receive from the dealer are consistent
with the secret being shared (i.e., any subset of t shares yields the same unique
secret) and to rule out the erroneous shares that dishonest parties submit dur-
ing reconstruction. In Feldman’s approach [8], which we call Feldman-VSS, the
secret is merely computationally secure, i.e., the verification values are leaked;
nevertheless, it can be shown that an adversary that holds t− 1 or fewer shares
cannot obtain any information on the secret except what can be learned from
the public values.

Protocol Feldman-VSS.

1. The dealer chooses a random polynomial f(X) =

t−1∑
k=0

akX
k over Zq of degree

t− 1, such that f(0) = σ, the secret being shared.
2. The dealer broadcasts verification values Ak = gak mod p for k = 0, . . . , t−1.
3. The dealer secretly transmits a share si = f(i) mod q to the party Pi.
4. The parties can verify that the shares si define a secret by checking

gsi
?
=

t−1∏
k=0

(Ak)
ik

mod p . (1)

5. (a) Each party Pi verifies (1) for their share si

Distributed Verifiable Random Function With Compact Proof 5

(b) If verification fails, Pi broadcasts a complaint against the dealer.
(c) For each complaining party Pi, the dealer reveals the share si matching

the equation (1).
(d) If any of the revealed shares fails (1), the dealer is disqualified.
(e) At the time of reconstruction of the secret σ, the same equation is used

to verify the shares submitted by the parties so that dishonest parties
may be identified. If at least t honest parties exist, the secret may be
reconstructed using lagrangian interpolation.

Pedersen’s Verifiable Secret Sharing (Pedersen-VSS) [19], in comparison to
Feldman-VSS, offers perfect (information-theoretic) security for the shared se-
cret, which means that the adversary can merely view values unrelated to the
secret being shared under the assumption that any adversary, especially the
dealer, cannot solve the discrete logarithm problem.

In addition to the notation of Feldman’s VSS, this scheme requires an ad-
ditional element ḡ ∈ G where it is assumed that logg (ḡ) is hard to compute.
To share a secret σ to a group of participants P = {P1, . . . , Pn}, Pedersen-VSS
works as follows.

Protocol Pedersen-VSS.

1. The dealer generates two random polynomials f(X) =

t−1∑
k=0

akX
k and f̄(X) =

t−1∑
k=0

bkX
k over Zq, both of degree t− 1, such that f(0) = σ.

2. The dealer publishes Ck = gak ḡbk mod p for k = 0, . . . , t− 1
3. The dealer transmits (si, s̄i) =

(
f(i), f̄(i)

)
to Pi, for i = 1, . . . , n.

4. (a) Each party Pi ∈ P checks

gsi ḡs̄i
?
=

t−1∏
k=0

(Ck)
ik

mod p . (2)

(b) If check fails, Pi complains against the dealer.
(c) For each complaining party Pi, the dealer reveals (si, s̄i) matching (2).
(d) If any of the revealed shares fails (2), the dealer is disqualified.

In [19], it was shown that if the dealer is not disqualified, all honest parties
can interpolate a unique polynomial of degree t − 1, and any t of these honest
parties can obtain the secret efficiently and where each share can be verified
publicly.

Based on the Feldman-VSS protocol, in [18], Pedersen proposed the first dis-
tributed key generation protocol, which executes n parallel Feldman-VSS proto-
cols for the parties P1, . . . , Pn. In homage to [10], we use the name Joint Feldman
Distributed Key Generation (JF-DKG) for a simplified version of Pedersen’s
DKG protocol.

6 A. R. Ağırtaş et al.

Protocol JF-DKG.

1. Acting as a dealer, each party Pi ∈ P
(a) chooses a random polynomial fi(X) = ai,0 + ai,1X + · · · + ai,t−1X

t−1

over Zq of degree t− 1, where ai,0 = zi is the secret to be shared,
(b) broadcasts Ai,k = gai,k mod p for k = 0, . . . , t− 1,
(c) computes the shares si,j = fi(j) mod q for j = 1, . . . , n and sends si,j

secretly to party Pj .
2. Acting as a receiver, each Pj ∈ P verifies the shares they received from the

other parties by checking for i = 1, . . . , n:

gsi,j
?
=

t−1∏
k=0

(Ai,k)
jk

mod p (3)

If the check fails for an index i, Pj broadcasts a complaint against Pi.
3. For every complaint against Pi, acting as a dealer, for each complaining

party Pj , Pi reveals the share si,j matching (3). If any revealed shares fail
this equation, Pi is disqualified. We define Q as the set of non-disqualified
parties.

4. The public verification values are computed as Ak =
∏

i∈Q Ai,k mod p for
k = 0, . . . , t − 1. Each party Pj sets their share of the secret as xj =∑

i∈Q si,j mod q. The secret shared value, which is (usually) not computed
by any party, is x =

∑
i∈Q zi mod q =

∑
i∈Q ai,0 mod q. Finally, the public

value y is computed as y =
∏

i∈Q yi mod p =
∏

i∈Q Ai,0 mod p.

It was shown that during a run of the protocol JF-DKG, an attacker could
affect the distribution of the pair (x, y), resulting in a non-uniform distribution,
eventually proving that JF-DKG cannot be used as a generic secure DKG proto-
col. Consequently, Gennaro et al. [10] proposed the following protocol, which is
utilized in most distributed systems, including the one we propose in this paper.

Protocol Secure-DKG.
Generating x :

1. Each party Pi ∈ P performs a Pedersen-VSS of a random value zi as a
dealer:
(a) Pi chooses two random secret polynomials fi(X), f̄i(X) over Zq of degree

t− 1 :

fi(X) = ai,0 + ai,1X + · · ·+ ai,t−1X
t−1,

f̄i(X) = bi,0 + bi,1X + · · ·+ bi,t−1X
t−1,

where ai,0 = zi = fi(0).
(b) Pi broadcasts Ci,k = gai,k ḡbi,k mod p for k = 0, . . . , t− 1.
(c) Pi computes the shares si,j = fi(j) and s̄i,j = f̄i(j) mod q, and sends

(si,j , s̄i,j) to each party Pj ∈ P.

Distributed Verifiable Random Function With Compact Proof 7

(d) Each party Pj ∈ P verifies the shares they received from the other par-
ties, i.e., for each Pi ∈ P, Pj checks whether

gsi,j ḡs̄i,j
?
=

t−1∏
k=0

(Ci,k)
jk

mod p (4)

If the check fails for any index i, Pj broadcasts a complaint against Pi.
(e) Each party Pi, acting as a dealer, who received a complaint from a party

Pj , broadcasts the values (sij , s̄ij) that satisfy 4.
(f) Each party Pj marks Pi as disqualified if either

– Pi received more than t− 1 complaints in Step 1(d), or
– Pi answered a complaint in Step 1(e) with values that do not satisfy

4.
2. Each party builds the set of non-disqualified parties Q, where it was shown

in [10] that all honest parties build the same Q.
3. The distributed secret value x is (usually) not explicitly computed by any

party, but it is
x =

∑
i∈Q

zi mod q . (5)

Each party Pi sets their share of the secret as xi =
∑

j∈Q sj,i mod q and
x̄i =

∑
j∈Q s̄j,i mod q.

Extracting y = gx mod p :

1. Each party Pi ∈ Q publishes yi = gzi mod p via Feldman-VSS as follows.
(a) Pi broadcasts Ai,k = gai,k mod p for k = 0, . . . , t− 1.
(b) Each party Pj ∈ Q verifies the values publicised by the other parties in
Q, i.e, for each Pi ∈ Q, Pj checks if

gsi,j
?
=

t−1∏
k=0

(Ai,k)
jk

mod p . (6)

If the check fails for a party member Pi, Pj broadcasts the values (sij , s̄ij)
that satisfy 4 but do not satisfy 6, thereby broadcasts a complaint against
Pi.

(c) For parties Pi who receive at least one valid complaint, i.e., values which
satisfy 4 and not 6, the remaining parties run the reconstruction phase
of Pedersen-VSS to compute zi, fi(X), and Ai,k for k = 0, . . . , t− 1. For
all parties in Q, let yi = Ai,0 = gzi mod p and compute y as

y =
∏
i∈Q

yi mod p .

We now present a new augmented version of the Secure-DKG protocol, which
will be used in our construction.

8 A. R. Ağırtaş et al.

Protocol Augmented Secure-DKG. This protocol extends the Secure-DKG
protocol above to share commitments to the shared secret x relative to an aux-
iliary element h ∈ G, where it is assumed that logg(h) is hard to compute. This
is done to reduce the number of interactions in our proposed algorithm. The
generation phase of the shared secret x is the same, whereas the modifications
to the extraction phase are emphasized in blue.
Extracting y = gx mod p :

1. Each party Pi ∈ Q publishes yi = gzi mod p via Feldman-VSS as follows.
(a) Pi broadcasts Ai,k = gai,k mod p and Bi,k = hai,k mod p for k =

0, . . . , t− 1.
(b) Each party Pj ∈ Q verifies the values publicised by the other parties in
Q, i.e, for each Pi ∈ Q, Pj checks if

gsi,j
?
=

t−1∏
k=0

(Ai,k)
jk

mod p . (7)

hsi,j ?
=

t−1∏
k=0

(Bi,k)
jk

mod p . (8)

If the checks fail for a party member Pi, Pj broadcasts the values (sij , s̄ij)
that satisfy 4 but do not satisfy 6, thereby broadcasts a complaint against
Pi.

(c) For parties Pi who receive at least one valid complaint, i.e., values which
satisfy 4 and not 6, the remaining parties run the reconstruction phase
of Pedersen-VSS to compute zi, fi(X), and Ai,k for k = 0, . . . , t− 1. For
all parties in Q, compute

gx =
∏
i∈Q

Ai,0 mod p

and

hx =
∏
i∈Q

Bi,0 mod p .

2.3 NIZK Proof for Equality of Discrete Logarithms

The DDH-DVRF construction uses Non-Interactive Zero Knowledge (NIZK)
proof of exponents by Chaum and Pedersen [4]. The Equality of Discrete Log-
arithms proof system (ProveEqH ,VerifyEqH) to show k = logg x = logh y is as
follows. Consider a hash function H : {0, 1}∗ → Zq.

– ProveEqH(g, h, x, y; k) chooses r
R← Zq, computes u ← gr, v ← hr and sets

c ← H (g, h, x, y, u, v). The output is a non-interactive proof π = (c, s),
where s = r − k · c.

– VerifyEqH(g, h, x, y, π) parses π = (c, s) , computes ū← gsxc and v̄ ← hsyc

and outputs c
?
= H (g, h, x, y, ū, v̄).

Distributed Verifiable Random Function With Compact Proof 9

2.4 Distributed Verifiable Random Functions

In 2020, Galindo et al. [9] introduced DDH-DVRF, a DDH-based DVRF with
non-compact proofs, and GLOW-DVRF, which is built on top of DDH-DVRF
with aggregate proofs using pairings.

DDH-DVRF. Let (G, g, q) be a multiplicative group where the DDH assump-
tion holds. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq be two hash functions.
Let VDDH−DVRF = (DistKeyGen, PartialEval, Combine, Verify), where:
DistKeyGen

(
1λ, t, n

)
is run by n participating nodes P = {P1 , . . . , Pn}. Each

node Pi chooses a random polynomial fi(X) = ai,0 + ai,1X + · · · + ai,tX
t−1.

The protocol outputs a set of qualified nodes QUAL ⊆ P, a secret key ski =∑
j∈QUAL fj(i) ∈ Zq and a verification key vki = gski ∈ G for each i ∈ QUAL,

an implicit distributed secret value sk =
∑

i∈QUAL ai,0 ∈ Zq, and a global public
key pk =

∏
i∈QUAL g

ai,0 .
PartialEval (α, ski, vki) outputs siα = (i, γi, πi) for a plaintext α, where γi ←
H1(α)

ski and πi ← ProveEqH2
(g, vki, H1(α) , γi; ski).

Combine(pk,VK, α,S) parses list S =
{
sj1α , . . . , s

j|S|
α

}
of |S| ≥ t partial eval-

uation candidates originating from |S| different nodes, and obtains verification
keys vkj1 , . . . , vkj|S| . Next,

1. Identifies an index subset I = {i1, . . . , it} such that
VerifyEqH2

(g, vki, H1(α), γi, πi) = 1 holds for every i ∈ I, where (i, γi, πi)←
siα. If no such subset exists, aborts.

2. Sets γ ←
∏

i∈I γ
λ0,i,I
i and π ←

{
siα

}
i∈I

3. Outputs (γ, π).

Verify(pk,VK, α, γ, π) parses π =
{
siα

}
i∈I

such that |I| = t and I ⊆ QUAL

1. Parses siα = (i, γi, πi) for i ∈ I.
2. Checks if VerifyEqH2

(g, vki, H1(α), γi, πi)
?
= 1 for every i ∈ I; if some of the

checks fail, outputs 0.
3. Checks if γ ?

=
∏

i∈I γ
λ0,i,I

i ; if so outputs 1 ; otherwise outputs 0 .

GLOW-DVRF. Let (e,G1,G2,GT , q, g1, g2, h1, h2) be a bilinear paring where
g1, h1 and g2, h2 are generators of G1,G2, respectively. GLOW-DVRF is a pairing-
based DVRF similar to DDH-DVRF that achieves compact proofs as elements of
G1 that are validated using pairing equations in the Verify algorithm. We refer
the reader to [9] for details.

3 DVRFwCP: Distributed Verifiable Random Function
with Compact Proof

Since we are working in a distributed environment, we assume that the partici-
pants communicate with each other in a secure and authenticated channel.

10 A. R. Ağırtaş et al.

Definition 2. (Distributed Verifiable Random Function with Compact Proof) A
t-out-of-n Distributed Verifiable Random Function with Compact Proof (DVR-
FwCP) V consists of the six algorithms, i.e., V = (DistKeyGen, PartialEval,
EvalCombine, PartialProofGen, ProofCombine, Verify), described below.

– DistKeyGen
(
1λ, t, n

)
: On input of a security parameter λ, the number of

participating nodes n, and the threshold parameter t as inputs, and outputs
a public key pk, a list of partial secret keys SK = (x1, . . . , xn), and a list of
partial verification keys VK = (y1, . . . , yn).

– PartialEval (α, xi, yi): On input of a plaintext α, a partial secret and ver-
ification keys (xi, yi) as inputs, and outputs a partial evaluation γi and a
partial evaluation NIZK proof πi.

– EvalCombine(VK, α,S): On input of the list of verification keys VK, the
plaintext α and a list S =

{
si1 , . . . , si|S|

}
of partial evaluation proofs from

at least t nodes, outputs either a combined evaluation γ or aborts.
– PartialProofGen (α, xi, yi): On input of a plaintext α, a partial secret and

verification key (xi, yi) as inputs and outputs a partial NIZK proof Πi =
(c, si).

– ProofCombine(VK, α,S): On input of the list of verification keys VK, the
plaintext α and a list S =

{
Πi1 , . . . ,Πi|S|

}
of partial proofs from at least t

nodes, outputs either a combined NIZK proof Π = (γ, c, s) or aborts.
– Verify(pk, α,Π): On input of the public key pk, the plaintext α, a NIZK

proof Π as inputs, it outputs 0/1.

A DVRFwCP needs to satisfy the following requirements.

– Correctness: This requires that for a correctly generated VRF value γ,
Verify always outputs 1.

– Uniqueness: This requires that for every plaintext α a unique value γ passes
the verification test. It is infeasible for an adversary to calculate two different
output values γ1 and γ2 where both values pass the verification test with
respect to α, even if the secret keys of the honest parties are compromised.

– Consistency: This means that, for a given plaintext α, successful execution
of the protocol should produce the same VRF output γ, regardless of the
collection of correctly formed shares used.

– Robustness: This guarantees the availability of computing the random
function value on any plaintext in the presence of an active adversary, i.e.,
if Combine does not abort, its output passes the verification, even if the
adversary inputs malformed values to the combination.

– Strong pseudorandomness: This guarantees that even if at most t − 1
participants are malicious, on input of the plaintext α, they are not able to
distinguish between an honest output y of the DVRF protocol from a uni-
formly random value in the output range; this holds even when the malicious
parties are involved in multiple executions on inputs α1, α2. . . . that are not
α. It should be noted that, through these executions, the malicious parties
learn not only the DVRF outputs yi on inputs of αi but also the partial
evaluations.

Distributed Verifiable Random Function With Compact Proof 11

Our construction aims to aggregate the individual NIZK proofs used in DDH-
DVRF (see Section 2.4) [9] in a way that it can be verified at once. To that
end, we modified the NIZK proof system (see Section 2.3) by adding a t-out-
of -n threshold structure over it. In other words, our approach needs at least t
participants to generate a verifiable random value, and it also needs the same
parties to generate the NIZK proof jointly.

We build a DVRF with compact proofs using the notation and setup of
DDH-DVRF 2.4, also assume that we have a set P of l participants, i.e., P =
{P1, . . . , Pl}. Additionally, assume that H3 : {0, 1}∗ → {0, 1}b(λ) is another hash
function. Let VDVRFwCP be defined via the following six algorithms.
DistKeyGen: On input of the public parameters pp, the participants P1, . . . , Pl

jointly run the protocol Secure-DKG as in 2.2 to obtain their partial secret keys
x1, . . . , xn ∈ Zq of the shared secret x ∈ Zq, and the group public key

y =
∏
i∈S

(gxi)λi = g

∑
i∈S

xiλi

= gx

where Q is the set of n qualified participants, S ⊂ Q is a subset of at least t
qualified participants, and λi’s are the appropriate Lagrange coefficients.
PartialEval: Each Pi ∈ Q performs the following actions.

1. Compute h← H1(α) ∈ G− {1}.
2. Compute partial evaluation γi = hxi ∈ G.
3. Compute partial evaluation proof πi ← ProveEqH2

(g, h, gxi , γi; xi).
4. Broadcast (γi, πi).

EvalCombine: Each Pi ∈ Q performs the following actions.

1. Upon receiving (γj , πj) from Pj , check VerifyEqH2
(g, h, gxi , γi, πi)

?
= 1.

2. If the checks do not pass for at least t partial proofs, abort. Otherwise, define
I as the set of indices of the participants whose partial evaluation proofs are
valid.

3. Perform Lagrange interpolation to reconstruct γ = hx =
∏
j∈I

γ
λj

j , where λj

is the appropriate Lagrange coefficient with respect to Pj and I is the set of
indices of at least t received valid γj ’s.

PartialProofGen: Each Pi ∈ Q performs the following actions.

1. Participate in the Augmented Secure-DKG protocol from 2.2 amongst the
members of Q using the elements g, h ∈ G to generate a shared secret k. At
the end of this step, each Pi obtains a partial ephemeral secret ki, public
values gk and hk.

2. Compute the joint challenge, i.e., c← H2(g, h, y, γ, g
k, hk).

3. After obtaining the joint challenge c, compute si ← ki − cxi mod q,
4. Broadcast the partial proof Πi = (c, si).

ProofCombine:

12 A. R. Ağırtaş et al.

1. Upon receiving partial proof Πj = (c, sj) from Pj , Pi verifies them by check-
ing whether gkj

?
= ycj · gsj and hkj

?
= γc

j · hsj .
2. If the checks do not pass for at least t partial proofs, abort. Otherwise, define
S as the set of indices of the participants whose partial proofs are valid.

3. Perform Lagrange interpolation to obtain the aggregated proof, i.e., s =∑
i∈S

siλi (mod q), where λi’s are the appropriate Lagrange coefficients.

4. Output the VRF value β ← H3 (γ) and the proof as Π = (γ, c, s).

Verify: Given the group public key y, the proof Π = (γ, c, s), the VRF value β
and the plaintext α, perform verification as follows:

1. Compute u = yc · gs .
2. Given α, obtain h = H1(α), compute v = γc · hs.

3. Check if c ?
= H2(g, h, y, γ, u, v) and β

?
= H3(γ). If both are satisfied, output

1; otherwise, output 0.

Remark 1. In the first step of the Combine algorithm, each Pi verifies the partial
proof sj to ensure that partial proofs to be aggregated are valid. Notice that the
values gkj , hkj and γj ’s are known to Pi from the third step of the PartialEval
algorithm.

Security

DVRFwCP satisfies the correctness property because of the following.

u = yc · gs

= (gx)c · g
∑
i∈S

siλi

= gcx · g
∑
i∈S

(ki−cxi)λi

= gcx · g
∑
i∈S

(kiλi−cxiλi)

= gcx · g
∑
i∈S

kiλi−c
∑
i∈S

xiλi

= gcx · gk−cx

= gk (9)

and

Distributed Verifiable Random Function With Compact Proof 13

v = γc · hs

= (hx)c · h
∑
i∈S

siλi

= hcx · h
∑
i∈S

(ki−cxi)λi

= hcx · h
∑
i∈S

(kiλi−cxiλi)

= hcx · h
∑
i∈S

kiλi−c
∑
i∈S

xiλi

= hcx · hk−cx

= hk (10)

and from (9) and (10), we have

c = H2 (g, h, y, γ, u, v) = H2

(
g, h, y, γ, gk, hk

)
.

The properties of Secure-DKG [10] immediately imply consistency. Unique-
ness follows from the fact that the output is consistent and the hash functions are
based on random oracles. We argue that the DVRFwCP satisfies robustness and
strong pseudorandomness, as the proposed algorithm is a modified version of the
DDH-DVRF proposed in [9]; therefore, the security is reduced to the security of
DDH-DVRF if the utilized distributed key generation algorithm is secure.

4 Comparison

In Table 1, we compare our construction with the DVRF schemes proposed in
[9]. This comparison includes the number of operations required in each phase of
the schemes, the number of rounds of interaction, and the proof size. In Table 2,
we give a rough gas cost estimation for the verification and the proof size of the
schemes compared in Table 1, assuming the EIP-2537: Precompile for BLS12-381
curve operations [22].

In the DistKeyGen phase, our scheme requires the same number of operations
as in DDH-DVRF, which requires less than GLOW-DVRF.

In the PartialEval and EvalCombine phases, our scheme requires the same
number of operations as in DDH-DVRF and GLOW-DVRF.

Our scheme has two additional algorithms, i.e., ParitalProofGen and
ProofCombine. All the operations in these phases can be counted extra oper-
ations which do not exist in the other schemes in comparison. However, for
example, in blockchains, these parts are handled off-chain; hence, no gas cost is
accrued.

In the Verify phase, DVRFwCP requires fewer operations. We want to em-
phasize that a noteworthy achievement of our construction is that in the Verify
phase, our algorithm does not use bilinear pairings, which are known to be
slow; also, DVRFwCP has constant time verification as opposed to the linear

14 A. R. Ağırtaş et al.

time verification in the quantity of the threshold of DDH-DVRF. This is an
important improvement, especially in the context of blockchains. For example,
when a smart contract acts as a public verifier, each node should run the same
code for verification. Since our construction requires a constant number of group
operations, the gas cost required by the verifier smart contract would be much
lower than the verification gas cost required by DDH-DVRF and GLOW-DVRF,
as they require either much more expensive operations like bilinear pairings or
O(t) group operations, where t is the threshold number of participants, as seen
in Table 2.

Another crucial achievement of our proposed scheme is that the proof size
is constant (as in GLOW-DVRF), i.e., it consists of one group element and
two Zq elements. This is also a very important improvement, especially for the
blockchain use cases. Note that, other than the computational complexity of the
verification algorithm, the size of the data (call data) that needs to be sent to
the verifier smart contract also increases the gas cost. For example, in Ethereum,
one should pay 16 gas per Byte of call data in addition to the verification cost
of a VRF proof [1].

On the other hand, our construction requires one more round of interactions.
For more details, one can see Table 1 and Table 2 below.

5 Conclusion

Verifiable randomness is a fundamental feature of blockchains and Web3 appli-
cations. Because of the increasing demand for this resource, fresh challenges are
emerging. In this paper, we propose a distributed verifiable random function
with compact proof, DVRFwCP, which is more efficient in terms of verification
and proof size but less efficient in terms of proof generation.

We conclude that, due to its constant proof size and efficient verification
algorithm, our construction may be a good candidate for distributed systems,
especially solutions that use smart contracts as verifiers.

References

1. Akhunov, A., Ben Sasson, E., Brand, T., Guthmann, L., Levy, A.: "eip-2028: Trans-
action data gas cost reduction," ethereum improvement proposals, no. 2028 (May
2019), https://eips.ethereum.org/EIPS/eip-2028, last accessed 01/07/2024

2. Buser, M., Dowsley, R., Esgin, M.F., Kasra Kermanshahi, S., Kuchta, V., Liu, J.K.,
Phan, R.C.W., Zhang, Z.: Post-quantum verifiable random function from symmet-
ric primitives in pos blockchain. In: European Symposium on Research in Computer
Security. pp. 25–45. Springer (2022). https://doi.org/10.1007/978-3-031-17140-6_
2

3. Chainlink: "chainlink vrf" (June 2024), https://docs.chain.link/vrf, last accessed
01/07/2024

4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Annual inter-
national cryptology conference. pp. 89–105. Springer (1992). https://doi.org/10.
1007/3-540-48071-4_7

https://eips.ethereum.org/EIPS/eip-2028
https://doi.org/10.1007/978-3-031-17140-6_2
https://doi.org/10.1007/978-3-031-17140-6_2
https://doi.org/10.1007/978-3-031-17140-6_2
https://doi.org/10.1007/978-3-031-17140-6_2
https://docs.chain.link/vrf
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7

Distributed Verifiable Random Function With Compact Proof 15

Table 1. Comparison with DVRF schemes from [9]

DDH-DVRF GLOW-DVRF This work

DistKeyGen

2 poly. in Zq

4t+ 3 exp. in G
n+ 3t− 2 mul. in G
n− 1 add. in Zq

2 poly. in Zq

4t+ 3 exp. in G
n+ 3t− 2 mul. in G
n− 1 add. in Zq

2n pairings

2 poly. in Zq

4t+ 3 exp. in G
n+ 3t− 2 mul. in G
n− 1 add. in Zq

PartialEval

1 hash to G
3 exp. in G
1 hash to Zq

1 add. in Zq

1 mult. in Zq

1 hash to G1

3 exp. in G1

1 hash to Zq

1 add. in Zq

1 mul. in Zq

1 hash to G
3 exp. in G
1 hash to Zq

1 mul. in Zq

1 add. in Zq

EvalCombine
5t exp. in G
3t− 1 mul. in G
t hashes to Zq

5t exp. in G1

3t− 1 mul. in G1

t hashes to {0, 1}b(λ)

5t exp. in G
3t− 1 mul. in G
1 Hash to Zq

PartialProofGen(b)

- -

2 poly. in Zq

6t+ 4 exp. in G
2n+ 4t− 2 mul. in G
n add. in Zq

1 mul. in Zq

1 hash to Zq

ProofCombine(b) - -

6t exp. in G
2t mul. in G
t− 1 add. in Zq

t mul. in Zq

1 Hash to {0, 1}b(λ)

Verify
5t exp. in G
3t− 1 mul. in G
t hashes to Zq

2 pairings
1 hash to G1

1 hash to {0, 1}b(λ)

4 exp. in G
2 mul. in G
1 hash to Zq

1 hash to {0, 1}b(λ)

Interactions(a) 1 round 1 round 2 rounds

Proof size t G elements 1 G1 element
1 b(λ)-bit element

1 G element
2 Zq elements

(a) We use the following abbreviations: "poly." for "polynomial evaluations", "exp" for
"exponentiations", "mul." for "multiplications", and "add." for "additions". (b) These
algorithms do not exist in the corresponding DVRFs. (c) Note that we do not take
DistKeyGen into account as it is a one-time interaction.

Table 2. Gas cost estimation comparison for the BLS12-381 curve

Gas cost DDH-DVRF GLOW-DVRF DVRFwCP
verification cost ∼70, 000t ∼200, 000 ∼50, 000

calldata cost 768t 1, 280 1, 792

Total cost ∼70, 768t ∼201, 280 ∼51, 792

(a) We assume that the subgroup G1 of BLS12-381 curve
is used as the cyclic group for both DDH-DVRF and
DVRFwCP. (b) We estimate the gas cost only for pair-
ings, exponentiation, and multiplications in G = G1. (c)
We take |G1| = 48 bytes and |Zq| = 32 bytes.

16 A. R. Ağırtaş et al.

5. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Public Key Cryptography—PKC 2003: 6th International Workshop on Practice
and Theory in Public Key Cryptography Miami, FL, USA, January 6–8, 2003
Proceedings 6. pp. 1–17. Springer (2002). https://doi.org/10.1007/3-540-36288-6_
1

6. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys.
In: International Workshop on Public Key Cryptography. pp. 416–431. Springer
(2005). https://doi.org/10.1007/978-3-540-30580-4_28

7. Esgin, M.F., Kuchta, V., Sakzad, A., Steinfeld, R., Zhang, Z., Sun, S., Chu,
S.: Practical post-quantum few-time verifiable random function with applica-
tions to algorand. In: Borisov, N., Diaz, C. (eds.) Financial Cryptography and
Data Security. pp. 560–578. Springer Berlin Heidelberg, Berlin, Heidelberg (2021).
https://doi.org/10.1007/978-3-662-64331-0_29

8. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science (sfcs 1987). pp.
427–438 (Oct 1987). https://doi.org/10.1109/SFCS.1987.4

9. Galindo, D., Liu, J., Ordean, M., Wong, J.M.: Fully distributed verifiable random
functions and their application to decentralised random beacons. In: 2021 IEEE
European Symposium on Security and Privacy (EuroS&P). pp. 88–102 (2021).
https://doi.org/10.1109/EuroSP51992.2021.00017

10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gener-
ation for discrete-log based cryptosystems. Journal of Cryptology 20, 51–83 (05
2007). https://doi.org/10.1007/s00145-006-0347-3

11. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. p. 51–68. SOSP ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132757,
https://doi.org/10.1145/3132747.3132757

12. Goldberg, S., Reyzin, L., Papadopoulos, D., Včelák, J.: Verifiable Random Func-
tions (VRFs). RFC 9381 (Aug 2023). https://doi.org/10.17487/RFC9381, https:
//www.rfc-editor.org/info/rfc9381

13. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, consen-
sus system (2018). https://doi.org/10.48550/arXiv.1805.04548, https://arxiv.org/
abs/1805.04548

14. Kate, A., Mangipudi, E.V., Maradana, S., Mukherjee, P.: Flexirand: Output private
(distributed) vrfs and application to blockchains. In: Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1776–1790
(2023). https://doi.org/10.1145/3576915.3616601

15. Kuchta, V., Manulis, M.: Unique aggregate signatures with applications to dis-
tributed verifiable random functions. In: Abdalla, M., Nita-Rotaru, C., Dahab,
R. (eds.) Cryptology and Network Security. pp. 251–270. Springer International
Publishing, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5_14

16. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th annual
symposium on foundations of computer science (cat. No. 99CB37039). pp. 120–
130. IEEE (1999). https://doi.org/10.1109/SFFCS.1999.814584

17. Papadopoulos, D., Wessels, D., Huque, S., Naor, M., Včelák, J., Reyzin, L., Gold-
berg, S.: Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive, Paper
2017/099 (2017), https://eprint.iacr.org/2017/099, https://eprint.iacr.org/2017/
099

https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1109/EuroSP51992.2021.00017
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.17487/RFC9381
https://doi.org/10.17487/RFC9381
https://www.rfc-editor.org/info/rfc9381
https://www.rfc-editor.org/info/rfc9381
https://doi.org/10.48550/arXiv.1805.04548
https://doi.org/10.48550/arXiv.1805.04548
https://arxiv.org/abs/1805.04548
https://arxiv.org/abs/1805.04548
https://doi.org/10.1145/3576915.3616601
https://doi.org/10.1145/3576915.3616601
https://doi.org/10.1007/978-3-319-02937-5_14
https://doi.org/10.1007/978-3-319-02937-5_14
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2017/099

Distributed Verifiable Random Function With Compact Proof 17

18. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W.
(ed.) Advances in Cryptology — EUROCRYPT ’91. pp. 522–526. Springer Berlin
Heidelberg, Berlin, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp.
129–140. Springer Berlin Heidelberg, Berlin, Heidelberg (1992). https://doi.org/
10.1007/3-540-46766-1_9

20. Polkadot: "cryptography on polkadot" (June 2024), https://wiki.polkadot.
network/docs/learn-cryptography, last accessed 01/07/2024

21. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613
(Nov 1979). https://doi.org/10.1145/359168.359176, http://doi.acm.org/10.1145/
359168.359176

22. Vlasov, A., Olson, K., Stokes, A., Sanso, A.: "eip-2537: Precompile for bls12-381
curve operations [draft]," ethereum improvement proposals, no. 2537 (February
2020), https://eips.ethereum.org/EIPS/eip-2537, last accessed 01/07/2024

https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://wiki.polkadot.network/docs/learn-cryptography
https://wiki.polkadot.network/docs/learn-cryptography
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://eips.ethereum.org/EIPS/eip-2537

	Distributed Verifiable Random Function With Compact Proof

