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Abstract. Recent advancements in transformers have revolutionized machine learning, forming the
core of Large language models (LLMs). However, integrating these systems into everyday applications
raises privacy concerns as client queries are exposed to model owners. Secure multiparty computation
(MPC) allows parties to evaluate machine learning applications while keeping sensitive user inputs
and proprietary models private. Due to inherent MPC costs, recent works introduce model-specific
optimizations that hinder widespread adoption by machine learning researchers. CrypTen (NeurIPS’21)
aimed to solve this problem by exposing MPC primitives via common machine learning abstractions such
as tensors and modular neural networks. Unfortunately, CrypTen and many other MPC frameworks rely
on polynomial approximations of the non-linear functions, resulting in high errors and communication
complexity.

This paper introduces Curl, an easy-to-use MPC framework that evaluates non-linear functions as lookup
tables, resulting in better approximations and significant round and communication reduction. Curl
exposes a similar programming model as CrypTen and is highly parallelizable through tensors. At its
core, Curl relies on discrete wavelet transformations to reduce the lookup table size without sacrificing
accuracy, which results in up to 19× round and communication reduction compared to CrypTen for
non-linear functions such as logarithms and reciprocals. We evaluate Curl on a diverse set of LLMs,
including BERT, GPT-2, and GPT Neo, and compare against state-of-the-art related works such as
Iron (NeurIPS’22) and Bolt (S&P’24) achieving at least 1.9× less communication and latency.

Finally, we resolve a long-standing debate regarding the security of widely used probabilistic truncation
protocols by proving their security in the stand-alone model. This is of independent interest as many
related works rely on this truncation style.
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1 Introduction

Large language models (LLMs) like GPT-2, GPT-4 [1], BERT [19], and LLaMA [67] have emerged as prime
examples showcasing the capabilities of artificial intelligence. LLMs assist individuals and businesses in
everyday tasks; from machine translation [5], to text generation [32], and question answering [57], among
others. To generate human-like responses, LLMs have been trained in vast amounts of data and continue
learning through their interactions with users.

However, as LLMs become increasingly integrated into human lives, privacy becomes a critical concern as
individuals frequently share sensitive information, including names, addresses, and credit card numbers, or
even financial and healthcare information [61]. On top of that, there is a shift towards personalized AI, with
OpenAI enabling a memory feature to ChatGPT [29]. For an LLM-powered assistant to be able to understand
individual preferences, habits, and workflows and provide tailored assistance, it would require access to an
immense amount of personal data. As this personalized data is retained and used to continuously improve
the LLMs, the possibility of a data breach or unauthorized access poses huge risks to individuals’ privacy.
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Privacy-enhancing technologies (PETs) such as multiparty computation (MPC) [28,76] enable a plethora
of privacy-preserving machine learning (PPML) use-cases. In the most prominent setting, a server possesses a
proprietary model and aims to provide it as a service to clients for use with their private data [13,46,47,38,33].
The objective is for clients to receive only the inference results without gaining any knowledge about the
model, while the model provider does not learn anything about clients’ input. Another popular PPML use
case involves multiple distrusting parties to securely train a model over their joint sensitive data without
revealing anything about their data to each other [53,66,45,74,40].

Several MPC systems leverage linear secret sharing schemes as they allow linear operations to be performed
with minimal communication overhead [17,24]. However, non-linear operations (e.g., square roots, logarithms)
often present greater challenges and require specialized techniques such as polynomial approximations [46],
look-up table evaluations [70], or other protocol-specific approaches [8,16]. Furthermore, incorporating domain
knowledge can significantly enhance the efficiency and effectiveness of these protocols by tailoring the
parameters to better fit specific use cases [36,48,58].

1.1 Related Work

1.1.1 Focusing on Function Secret Sharing

Recently, several secure computation works have emerged leveraging function secret sharing (FSS) [3,70,65,56,55].
Pika [70] extends the prior work of [3] by showcasing a novel approach to securely evaluate look-up tables
(LUTs) through FSS. While it demonstrates efficacy in benchmarking against popular datasets like MNIST
and CIFAR-10, its scalability poses challenges. As noted by Grotto [65], for large LUTs, the computational
cost may render the protocol infeasible due to the extensive number of distributed point functions (DPF)
evaluations required. In contrast, Curl circumvents this challenge by eliminating the need for DPF eval-
uations, thanks to the integration of the discrete wavelet transform (DWT) technique. On top of that,
our technique can also benefit FSS-based frameworks by reducing the size of the LUTs, resulting in less
computation and communication. On the other hand, Grotto [65] introduces innovative protocols leveraging
custom splines and DPFs to handle a subset of functions efficiently. Yet, it faces challenges in terms of
computational and communication overhead compared to alternatives like Sigma [33]. Orca [40] showcases
the potential of GPU acceleration in FSS protocols, particularly tailored for convolutional neural networks
(CNNs). However, its suitability for other architectures like transformers is questioned due to its reliance on
heavy non-linearities [40].

Sigma [33] builds on top of Orca and distinguishes itself by relying on minimal-sized LUTs through protocols
tailored for small ranges. Despite its efficiency from custom protocols with small-sized LUTs, it demands
significant computing and communication resources (e.g., 1 TB RAM and around 9Gbps communication link).
Furthermore, its use of deterministic truncation, although claiming improved security, falls short in speed
compared to probabilistic truncation methods. Unfortunately, all FSS-based works focus on the two-party
setting as FSS becomes impractical with more than two parties.

1.1.2 Focusing on Preprocessing

The line of work initiated by Pika [70] focuses on the two-party setting with an additional dealer party.
In this scenario, the preprocessing phase necessitates the dealer to prepare and distribute an O(n)-sized
element. Given the assumption that the dealer will not collude with any party, reducing dependency on such
assumptions is desirable. This has led to the development of protocols that eliminate the need for a dealer.
Notably, some previous works have aimed to achieve this in the two-party setting, enabling both parties to
independently generate the required preprocessing material [39,18,6].

The One-Time Truth Table (OTTT) protocol [39] employs a boolean circuit to represent the table for
every possible input, resulting in an exponential complexity relative to the bit size. The OP-LUT protocol
[18] attempts to enhance the OTTT preprocessing phase but only achieves improvements for small bit sizes,
with the communication cost remaining exponential. The SP-LUT protocol [18] significantly enhances the
preprocessing phase but modifies the online phase, leading to an exponential communication cost in the
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bit size during the online phase. FLUTE [6] offers advancements over previous works but still requires
O(2n) communication in the setup phase. Therefore, finding a preprocessing phase with sub-exponential
communication complexity while maintaining the efficiency of the online phase remains an open challenge.

1.1.3 Focusing on Fully-Homomorphic Encryption

Fully homomorphic encryption (FHE) schemes have benefited significantly from the use of LUTs to enhance
performance and enable new applications. This concept was initially proposed by Ducas and Micciancio [22],
who devised a method to evaluate arbitrary binary gates in FHE using LUTs. Building on this foundation,
Chillotti et al. [10] implemented the evaluation of arbitrary functions through a tree of leveled multiplexers,
leading to the development of the Torus FHE (TFHE) scheme. Despite their development of a fast boot-
strapping mechanism, capable of execution in approximately 10 milliseconds on a CPU, its adoption has
been limited. This is primarily because the control inputs for the multiplexers required fresh ciphertexts –
meaning prior computation on them was not possible – and the approach necessitated expressing programs
as deterministic automata. Further improvement over TFHE was presented in [11] with the introduction of
the programmable bootstrapping (PBS) technique, allowing for efficient and general-purpose LUT evaluation.
To enhance adoptability, HELM [30] expanded on the PBS technique and introduced a framework for auto-
matically converting Verilog hardware description language (HDL) into encrypted circuits. HELM employs
three modes of operation. The first mode exclusively processes binary gates. The second mode operates on
integers using secure LUT evaluations. The third, mixed mode, works with binary circuits and ”bridges” over
to integers for secure LUT evaluations before returning to the binary domain. However, HELM is limited
to very low-precision LUTs. This limitation arises because converting an integer to multiple bits requires
multiple n-to-1 LUTs. Recently, Ripple [31] proposed using compression techniques based on discrete wavelet
transform (DWT) theory to decrease the size of LUT, thereby accelerating the PBS technique for general
smooth functions.

1.1.4 Focusing on Secure LLM Inference

Secure frameworks for LLM inference have only recently gained traction due to the inherent complexity of
transformers compared to traditional neural networks. Techniques to ensure secure inference include notable
implementations like THE-X [9] and Iron [36], which were among the first to use homomorphic encryption
for matrix multiplication and non-linear functions.

Subsequently, several studies have explored MPC techniques for private transformer inference system [48,21].
MPCFormer [48] leverages the CrypTen [46] MPC engine, while Puma [21] utilizes the SecretFlow-SPU [52]
MPC engine to assess MPC’s suitability for LLM inference. MPCFormer introduces a distillation process
where stronger models train weaker models to improve accuracy, compensating for the limitations of using
small (2-degree) approximations of non-linear functions. Nevertheless, MPCFormer faces challenges due to
the loss of approximation accuracy, necessitating fine-tuning the models. On the other hand, Puma uses a
piece-wise approximation of the GeLU activation function, requiring comparisons and polynomials up to
degree 6.

Recent research has increasingly focused on hybrid solutions, combining the best techniques for specific
operations [58,40]. Bolt [58] developed a solution integrating both fully homomorphic encryption and MPC.
Like Puma [21], Bolt uses a piece-wise approximation that requires comparison, which increases round
complexity and communication. To boost efficiency, Bolt employs word elimination while maintaining
accuracy. Additionally, it enhances MPCFormer’s polynomial approximations by increasing the polynomial
degree and mitigates the corresponding efficiency loss through Motzkin’s polynomial pre-processing procedure.
In contrast, Curl avoids both comparisons and polynomial approximations by using an optimized lookup table
protocol that reduces the round and communication complexity typically added by polynomial approximations
while maintaining accuracy.
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1.1.5 Focusing on Secure Truncation

Machine learning tasks employ floating-point numbers to construct precise models [35]. However, it is widely
recognized that the use of floating-point numbers renders MPC impractical from an efficiency standpoint. For
this reason, most works on machine learning under MPC employ fixed-point representation instead, requiring
a truncation protocol to maintain constant precision.

Among the available truncation methodologies – deterministic, nearest integer, and probabilistic – the
deterministic and probabilistic approaches (see Section 3) are the most widely used in the secure computation
setting [8,49]. Moreover, a substantial body of research favors probabilistic truncation due to its lower commu-
nication costs and resultant enhanced performance, e.g., [54,53,60,13,14,47,45,64]. Despite these advantages,
some recent works express concerns about probabilistic truncation, and opt for more resource-intensive
protocols to achieve deterministic truncation [49,34,33]. The concerns raised with regard to probabilistic
truncation include security and rounding errors.

Correctness error. Before we address the above two concerns we recall that a widely used and inexpensive
probabilistic truncation protocol over fields, due to Catrina and Hoogh [8], has a correctness errors with
probability 2−(n−|x|) where |x| is the maximum bitsize of truncation input x. This necessitated using
significantly larger rings, setting n ≥ |x|+ κ where κ is a statistical security parameter. Damg̊ard et al. [15]
presented a probabilistic protocol with zero probability of correctness error, but it required a non-constant-
round bit-decomposition protocol. Subsequent works [13,25] optimized [8,15] and showed a constant-round
probabilistic truncation protocol with communication and computation costs matching Catrina and Hoogh [8],
but with no correctness error and allowing n ≥ |x|+ 1. CrypTen [46] proposed a protocol inspired by [71] for
division by public value, which can be reduced to a probabilistic truncation with non-zero correctness error.

Security. Recently, Li et al. [49] identified a security flaw in the security proof of the probabilistic truncation
of [8], revealing a discrepancy between the information leaked by that protocol and by the ideal probabilistic
truncation functionality. Note that the same issue pertains to the n-optimal probabilistic truncation of [25].
This led several recent papers, e.g., [33,33], to move away from the inexpensive probabilistic truncation
protocols because of concerns regarding their security. In this paper, we show that the n-optimal probabilistic
truncation protocol of [25] (as well as the original probabilistic truncation of [8]) securely realizes a natural
ideal probabilistic truncation functionality which we define. This enables us to capitalize on the efficiency
benefits of probabilistic truncation without compromising security (Section 3).

Rounding Errors. The LLAMA paper [34] recently suggested the use of deterministic truncation, claiming
it improves inference accuracy. However, this assertion has not been backed by experimental evidence,
and earlier studies indicating a possible decrease in accuracy with probabilistic truncation have not been
confirmed through empirical testing [64,13]. Intriguingly, Gupta et al. [35] demonstrated that computation
using 16-bit fixed-point with 12-bit precision and probabilistic truncation achieves nearly equivalent accuracy
to that of a 32-bit floating-point. Conversely, truncation to the nearest integer fails to train under such
conditions adequately. Additionally, although not the primary focus of the work, Keller and Sun [44] provided
experimental evidence indicating that in neural networks, there is minimal disparity between probabilistic
truncation and truncation to the nearest integer. Indeed, out of 28 distinct experiments, 13 exhibited superior
accuracy with probabilistic truncation, 13 with truncation to the nearest integer, and 2 yielded identical
accuracy.

1.2 Our Contributions

In this paper, we introduce Curl, a user-friendly MPC framework designed for efficiently evaluating non-linear
functions using lookup tables. Curl addresses three critical aspects essential to secure protocols: efficiency,
accuracy, and security.

Curl employs a novel LUT compression technique using discrete wavelet transformation (DWT) achieving
efficient approximations with minimal errors. This effectively reduces the size of original LUTs while preserving
the accuracy of non-linear functions, thus surpassing traditional polynomial piece-wise approximation methods.
By minimizing communication costs, Curl significantly enhances end-to-end runtime performance and supports
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a wide range of activation functions including GeLU, SiLU, Gaussian error function, Sigmoid, and Hyperbolic
tangent. Additionally, Curl generalizes the piece-wise approximation used within the GeLU protocol from
[58,33] to encompass any bounded odd or even function that converges to a piecewise polynomial, further
broadening the utility of our approach.

Curl’s core technique extends to complex non-linear functions used by LLMs, ensuring both client input
data privacy and safeguarding the intellectual property of service providers, such as their models. We evaluate
Curl across a spectrum of LLMs including BERT (tiny, base, large), GPT-2, and GPT-Neo, including
both CPU and GPU backends. Our evaluation demonstrates significant advancements over state-of-the-art
frameworks, achieving at least 6.5 times fewer rounds and 1.9 times less communication overhead.

Finally, Curl addresses the security concerns surrounding efficient probabilistic truncation by introducing
a natural ideal functionality, a corresponding protocol, and providing a simulation security proof. Many works
that rely on this truncation style were proven to have a security flaw by [49] as they cannot be simulated in
the real-ideal paradigm. Our result is of independent interest since our proof settles this debate and restores
confidence in secure probabilistic truncation protocols.

We summarize our contributions as follows:

– A novel framework based on DWT compression that achieves high accuracy with low round and commu-
nication complexities. When applied to LLM inference, Curl demonstrates at least a 6.5× reduction in
round complexity and a 1.9× reduction in communication when compared against existing methods.

– Curl builds on top of the user-friendly CrypTen [46] framework, offering high flexibility and low adoption
friction for developers and researchers, thereby democratizing access to secure computation techniques.
As a proof-of-concept, we implement a variety of LLM models and numerous non-linear functions, all
operable on both CPU and GPU.

– We introduce a novel natural ideal functionality for efficient probabilistic truncation and prove Escudero
et al. [25] to be secure. This result is of independent interest.

2 Preliminaries

2.1 Arithmetic & Binary Secret Sharing

We consider two main algebraic structures: the ring ZQ where Q = 2n for some bit width n, and the binary
field Z2. We consider additive secret sharing between a set of parties P in both ZQ and Z2.

Arithmetic secret sharing. JxK denotes additive shares in the ring ZQ for parties P0, . . . ,PN−1. This means
each party Pi owns a share JxKi, where the sum of all shares is equal to x. Private addition of secret shared
values is executed by local share addition and private multiplication is implemented through Beaver triples [2].
Fixed-point representation of a floating-point number xR is considered using the standard integer encoding
with nearest-integer approximation: x =

⌊
xR · 2f

⌉
, for precision f [8]. To decode, we simply divide by 2f .

Binary secret sharing. Some secure operations profit from a secret sharing representation in the binary
domain. For this reason, we consider a binary secret sharing scheme for x ∈ Z2n , denoted as ⟨⟨x⟩⟩. A binary
secret share ⟨⟨x⟩⟩ is formed by secret sharing all the bits of x in Z2 and each party Pi owns a share ⟨⟨x⟩⟩i. To
reconstruct the secret, the parties P0, . . . ,PN−1 add their shares in Z2n (i.e., equivalent to bitwise XOR).

Conversions. Arithmetic shares suit best arithmetic operations (+, ×) and binary shares perform best in
evaluating logical expressions (XOR, AND, right-shift and left-shift operations). For this reason, following the
line of research of mixed-mode secure computation [25,46,59], we make use of known conversions between the
arithmetic and the binary domain. We follow the approach provided by Damg̊ard et al. ([16], §3) to convert
from arithmetic shares to binary shares (A2B) and the procedure using algorithm 2 in [46] to convert binary
shares into arithmetic shares (B2A). We denote these protocols by ΠA2B

n,l and ΠB2A
n,l , respectively, where n

represents the input bitwidth and l the output bitwidth.
We note that the preprocessing procedure used for B2A conversion can be optimized using the techniques

proposed by Escudero et. al [25]. In particular, CrypTen’s approach requires n tuples of shares (JrK, ⟨⟨r⟩⟩)
for a bit r, whereas [25] employs just 1 tuple of share (JsK, ⟨⟨s⟩⟩) for a ring element s, with the former being
comparatively more costly than the latter.
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2.2 Large Language Models (LLMs)

In 2017, Vaswani et al. [69] introduced the Transformer architecture, a type of neural network that utilizes
attention mechanisms, enabling AI models to prioritize different segments of the input sequence when
generating an output. A transformer comprises an encoder-only architecture (like in BERT [19,75]), a decoder-
only (e.g., GPT), or both encoder and decoder [69]. The encoder takes the input sequence and maps it to a
lower-dimensional representation to generate a sequence of hidden states. The decoder generates an output
sequence by iteratively generating tokens from the previously generated hidden states. In practice, multiple
encoder and decoder blocks are used together to achieve higher accuracy.

Attention. A core component of transformers is self-attention, a mechanism that weighs the importance of
different parts of an input sequence when making predictions. Self-attention takes a query matrix Q and a set
of key-value matrix pairs K,V , which are all produced by linear layers, and produces an output as follows,
where d is the dimension of the keys:

Attention(Q,K, V ) = softmax

(
Q ·KT

√
d

)
· V.

Usually, the inputs to the softmax are masked so that each token is only influenced by previous tokens,
thereby creating a causal relationship.

Layers. In the context of secure LLM inference, all the components of transformers can be seen as linear
and non-linear layers. A linear layer consists of matrix multiplications and feed-forward neural networks
(FNN) which can be evaluated using fixed-point arithmetic. A crucial part of evaluating the linear layers is
to maintain the fixed-point precision using truncation.4 For instance, the matrix multiplication Q ·KT in
self-attention can be computed as multiple inner products, each of which needs to be followed by a truncation.
Next comes the FNN which relies on an inner product followed by an activation function or a non-linear layer.

A non-linear layer, like the rectified linear unit (ReLU) [27], Gaussian error linear unit (GeLU) [37], sigmoid
linear unit (SiLU), softmax, etc., is not straightforward to evaluate securely. ReLU can be implemented
with a secure comparison (i.e., ReLU(x) = max(0, x)), while GeLU and other activation functions are not
as trivial. Several works like CrypTen [46] resort to polynomial approximations which has a significant
impact on accuracy. More recent works like Sigma [33] approximate GeLU using ReLU and then using lookup
table methods to evaluate the difference. Lastly, layer normalization (LayerNorm) and root mean squared
normalization (RMSNorm) require non-linear functions such as reciprocals or reciprocal square roots.

Transformer Block. A transformer block comprises several linear and non-linear layers. This usually includes
attention, linear layers, non-linear activation functions, and layer normalization.

Embedding Layers. Like any language model, LLMs start off with a word embedding layer and a positional
embedding layer. These layers are LUT protocols based on the token value and position of the token
respectively. As LUT protocols, they can also be thought of as multiplications with a one-hot vector. To
implement these under MPC, we have several options.

Firstly, even though the token value is a hidden input, its position is public. While we keep the weights
hidden under MPC, with the public input we can do a plaintext lookup. With the hidden token value, however,
the lookup is not so straightforward. The client either has to secret share the token as a one-hot vector,
which can be quite large or we can use a random one-hot vector generated by the provider. The alternative,
which is to run equality with every possible value is also quite costly. To relieve the client from sharing a
one-hot vector for every token and to avoid running the costly equality multiple times, we use the provider to
generate the one-hot vector. This protocol then works just like the LUT protocols, with the exception that
the LUT is not public. Since the LUT, which is the embedding weights matrix, is also private, we need to
rely on Beaver triple multiplication.

4 The precision on fixed-point values doubles after multiplication so truncation is used to bring it back down.
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2.3 The Discrete Wavelet Transform (DWT)

A Discrete Wavelet Transformation (DWT) is a transformation that decomposes a discretely sampled signal
into approximation and detail coefficients [68]. The detail coefficients contain the information about the
error incurred by the approximation coefficients. Given the approximation and detail coefficients, one can
invert the application of a DWT to obtain the original signal. We convey this idea in Fig. 1. Starting with
the whole signal we can apply a DWT to obtain a first level of approximation and detail coefficients. This
first-level approximation and detail coefficients are enough to recover the original signal. We can repeat this
process on the approximation coefficient to obtain a second level of approximation and detail coefficients. The
second-level approximation and detail coefficients together with the first-level detail coefficients allow us to
recover the original signal. This process can be repeated as necessary to reduce the size of the approximation
coefficients.

Whole signal

Approximation

Details

Level 0

Level 1

Level 2

Fig. 1: Overview of two DWT iterations. The signal is represented by the approximation (blue) and the
details (gray).

There are many different wavelet families and each uses linear transformations (e.g., matrix multiplication):
Daubechy (Db) wavelets, Biorthogonal wavelets, and others. Let us explore in more detail two types of
wavelets: the Haar and the (5, 3) Biorthogonal transformations.

2.3.1 Haar DWT

A special case of the Db family is the Haar wavelet, also called Db1. In Haar, the approximation coefficients
are obtained by averaging every two consecutive samples of the original signal. One of the properties of the
Db wavelet of degree m (Dbm) is that if a signal encodes data of polynomials of degree strictly below m,
then the corresponding detail coefficients for those polynomial parts will be zero.

More specifically, the Haar DWT is a linear transformation that can be represented by a matrix W . This
linear transformation when applied to a one-dimensional signal v of length 2n (where n ∈ Z), is defined as:

W · v = W ·



v0
...

vn−1

vn
...

v2n−1


=



a0
...

an−1

d0
...

dn−1


=

[
a
d

]
,

where a and d correspond to the approximation and detail coefficients respectively and are computed as:

ak =
v2k + v2k+1

2
, dk =

v2k − v2k+1

2
,
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Secret share inputs

Secret share model

Final inference

P0 P1

Private model Private inputs

Fig. 2: Overview of Curl for privacy-preserving inference.

for k = 0, 1, . . . , n − 1. We note that the Haar DWT operation W can be applied multiple j times. For a
vector v with size n divisible by 2j ,

W j · v =

↶j
a
↶j

d

 ,

where the approximation vector
↶j
a has size n/2j and the detail vector

↶j

d amounts to the rest (i.e., n−n/2j).
Note that, since W is an orthogonal matrix, its inverse is obtained by its transpose. One can see that, for
k = 0, 1, . . . , n− 1, the inverse is given by v2k+1 = ak + dk and v2k = ak − dk.

2.3.2 Biorthogonal DWT

While the Dbm wavelets use an orthogonal matrix, the Biorthogonal wavelets require two different matrices
where the transpose of one matrix is the inverse of the other. One matrix, B, is used for the decomposition of
the signal and the other, B̃, is used for the reconstruction.

In this work, we consider the (5, 3) Biorthogonal DWT defined by B where the corresponding approximation
and detail coefficients are given by:

ak =
1

8
(−v2k−2 + 2 · v2k−1 + 6 · v2k + 2 · v2k+1 − v2k+2) dk =

1

4
(v2k − 2 · v2k+1 + v2k+2) ,

for k = 0, . . . , n−1. Note that the (5, 3) Biorthogonal DWT computes the approximation and detail coefficients

with a weighted average of 5 and 3 points, respectively. The inverse transformation B−1 is given by B̃ where
B−1 = B̃⊤.

2.4 Threat & Computation Model

Curl allows two or more computing parties (P0,P1, . . . ) to perform private inference and training of machine-
learning models. In the most prominent use case, one party (e.g., P0) owns a trained model, while another
party (e.g., P1) aims to utilize the model for inference on their private data. Both parties wish to keep both
the data and the model’s architecture private. For instance, imagine a scenario where P0 is a cybersecurity
firm developing a malware detection machine learning model that they offer as a service (MLaaS) to client
organizations. The clients (P1) would like to use the model in their internal codebase while keeping sensitive
implementation details private. In MLaaS, both the model owner and the clients could benefit from outsourcing
the model and their inputs respectively to an MPC infrastructure and not participate in the computation.

Curl is flexible and can facilitate multiple other use cases such as: (a) having different parties that possess
distinct sets of features jointly train a model without exchanging raw data, (b) unveiling correlations where
one party retains feature data and another party holds corresponding labels without revealing anything else,
among others. For the sake of presentation, we assume a two-party protocol and we focus on the inference
setting (i.e., P0 holds the private model and P1 holds the sensitive inputs), as demonstrated in Fig. 2.

We assume the parties are semi-honest (i.e., follow the protocol specification) in the pre-processing model.
This threat model enables a wide range of realistic use cases of secure machine learning [41,46,51,54,63], while
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pre-processing is used to generate correlated randomness which the parties consume in the online phase. There
is a plethora of ways to generate this randomness; one can use general-purpose MPC [77,43,42], specialized
protocols [20,18,6], or more commonly a trusted dealer [3,4,34,40,46,64,65]. In Curl, we resort to the latter.
Lastly, as long as not all the parties collude, no information is leaked about the private inputs (or private
models depending on the use case).

3 Secure Truncation

In this work, we use truncation over the ring ZQ and we define it as follows. For input JxK, it outputs Jx′K
where x′ = ⌊x/2f⌋ and f is the precision of the fixed-point representation.

The truncation operation is required whenever we work with fixed-point numbers. Multiplication of two
fixed-point rationals with precision f obtains a fixed-point rational with precision 2f . Therefore, we require
truncation to go back to a fixed-point rational with precision f . As we analyze in Section 3.3, the number of
truncations required in a GPT-2 model is at least 220. Hence, it is paramount to use an efficient truncation
protocol. As mentioned in Section 1.1.5, works on secure computation over fixed-point rationals use two types
of truncation protocols: a deterministic truncation, where output x′ is set exactly to ⌊x/2f⌋; or a probabilistic
truncation, where x′ = ⌊x/2f⌋ + u where u = 1 with probability (x mod 2f )/2f and u = 0 otherwise.
Although implementing probabilistic truncations incurs minimal costs, two concerns have been raised about
it: security and the impact of rounding errors in ML applications. In this section, we summarize the security
issue raised by Li et al. [49] and present a solution in the stand-alone secure computation framework [7,50].

3.1 Revisiting Li et al. [49]

Li et al. [49] pointed out that some efficient probabilistic truncation protocols fail to meet the criteria for
standard simulation-based security [50], rendering them insecure in this framework. This includes Catrina
and Hoogh’s [8], CrypTen’s [46], and other proposals including [15,13,25].

Li et al. use a variant of the protocol of [8] to exemplify that the above protocols are not simulatable as
realizations of a standard ideal probabilistic truncation functionality, because in these protocols the rounding
error u is a deterministic function of input x and an information which the protocol reveals. Specifically,
given the protocol execution, the rounding error u is a deterministic function of x(f) = (x mod 2f ), i.e., the
last f bits of x. This violates an ideal functionality for probabilistic truncation, where u = 1 with probability
x(f)/2

f (and u = 0 with probability 1− x(f)/2
f ), but whether or not u becomes 1 or 0 is not revealed.

We show that the probabilistic rounding protocols cited above realize a modified probabilistic truncation
functionality, which we define in Fig. 3. The modification is natural: The functionality picks and reveals a
“cutoff” point s(f) chosen at random in Z2f = [0, ..., 2f −1], and sets the rounding error as u = 1 if x(f) ≥ s(f),
and as u = 0 otherwise. In Appendix A we prove that the n-optimal probabilistic truncation protocol of
Escudero et al. [25], included in Fig. 9, realizes this modified truncation functionality. We note that several
other probabilistic truncation protocols, e.g., [8], also realize this functionality, after adjustments related to
correctness error.

Technically, we show an efficient simulator Sim s.t. for every input x and every set C of corrupted parties,(
Jx̃′K, s̃(f),ViewC(JxK)

)
≈ϵ

(
JxK′, s(f),Sim(JxKC, Jx′KC, s(f))

)
where Jx̃′K and s̃(f) are the output and the cutoff point set by a protocol execution, ViewC(JxK) is the
adversarial view of that protocol execution, Jx′K and s(f) are the output and the cutoff point set by the ideal
functionality, and JxKC and Jx′KC are the shares of resp. JxK and Jx′K held by parties C.

3.2 Modified Probabilistic Truncation Functionality

If x is an integer in Z2n , we define x(f) = (x mod 2f ) as the f least significant bits of x, and x(f) = ⌊x/2f⌋ as

the truncation of the last f bits of x. In particular it holds that x = x(f) · 2f + x(f). We present the modified
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probabilistic truncation functionality FTruncPr
n,f (JxK) in Fig. 3. Note that the proposed functionality reveals the

cutoff point s(f) whereas the functionality considered by Li et al. ([49, Functionality 2]) can be stated as
following the same procedure except that it hides s(f). (In particular, if u is based on the random cutoff s(f)
as in Fig. 3 then u = 1 with probability x(f)/2

f , as expected.)

Note that this extra element conveys as much information as the correctness definition of the probabilistic
truncation itself, which has seen wide acceptance and use in the literature. By definition, probabilistic
truncation incurs a rounding error with probability px = x(f)/2

f . Therefore, for a fixed input value x, one can
estimate probability px given outputs x′ from multiple runs of this functionality, and then approximate the
f least significant bits of x as x(f) ≈ px · 2f . Each run of functionality FTruncPr

n,f (JxK) reveals in addition the

cutoff points s(f), which can also be used to approximate x(f) because each s(f) partitions range [0, ..., 2f − 1],

and bit u = x′ − x(f) reveals to which side of this partition x(f) belongs. However, the information revealed
by these two versions of probabilistic truncation functionality appear equivalent. Indeed, for any x(f) and x∗

(f)

in Z2f , the statistical difference between the sequence of rounding errors u(1), ..., u(i) “leaked” by i runs of
the standard probabilistic truncation functionality on these two points is 1− (1− δ)i for δ = |x(f) − x∗

(f)|/2
f ,

which is identical to the difference between the corresponding views made by rounding errors and cutoff
points leaked by the modified probabilistic truncation functionality FTruncPr

n,f (JxK).

Input: Assume parties hold JxK ∈ Z2n for x < 2n−1.

1. Reconstruct x from sharing JxK.

2. Set x(f) = ⌊x/2f⌋ and x(f) = (x mod 2f ).

3. Pick cutoff point s(f) at random in Z2f .

4. Set x′ = x(f) + u where

u =

{
0 if x(f) ≤ s(f),
1 otherwise.

5. Generate a random sharing Jx′K of x′.

6. Output Jx′K and leak s(f) to the adversary.

FTruncPr
n,f (JxK)

Fig. 3: Ideal modified probabilistic truncation functionality

We prove the following theorem in Appendix A:

Theorem 1. Protocol ΠTruncPr
n,f (JxK) of Escudero et al. [25], shown in Fig. 9 in Appendix A, securely realizes

functionality FTruncPr
n,f (JxK) shown in Fig. 3 with semi-honest security in the stand-alone security framework [50].

3.3 Comparison to CryptTen’s Truncation

We chose to implement truncation using the protocol of Escudero et al. [25] instead of CrypTen’s truncation [46]
because of correctness and rounding errors in the latter protocol. First, as in the case of the probabilistic
truncation of [8] discussed in Section 1.1.5, CrypTen’s truncation incurs a correctness error with probability
2−(n−|x|) where |x| is the maximum bit size of the truncation input x.

Consider the implications of the above for LLM inference. Assuming the maximum bit size of fixed-point
elements is 24 (8-bit integer part and 16-bit precision), after multiplication, the input bit size doubles. Since
n is fixed at 64 bits, the correctness error occurs with a probability of 2−(64−48) = 2−16. For instance, the

10



GPT-2 model requires at least 220 inner products.5 Assuming a truncation is executed after each inner
product, we expect 16 random errors, undermining inference correctness.

We verified this experimentally by running 220 CrypTen truncations of 48-bit elements 30 times, resulting
in an average error of 15.83, which aligns with the expected value of 24. By contrast, the probabilistic
truncation protocol of Escudero et al. [25] is always correct.

Furthermore, CrypTen’s truncation mechanism exhibits worse rounding errors compared to functionality
in Fig. 3 realized by the protocol of [25], even for N = 2 parties, increasing further if the number of parties
increases. CrypTen’s rounding error is linear in N because each party truncates their share of the input
value x locally, i.e., [x′]i =

⌊
[x]i/2

f
⌋
. Since each [x′]i can be 1 away from the rational value, summing N of

them results in the output x′ which can be up to N away from x(f). In contrast, value x′ output by the
truncation protocol of [25] is at most 1 away from x(f). For these reasons we opt for the truncation protocol
from Escudero et al. [25] instead of CrypTen’s truncation mechanism after each multiplication.

4 Curl Overview

As we mentioned in Section 2.3, DWT is used to decompose signals into approximation and detail coefficients.
DWT is particularly effective for signals that represent smooth functions (e.g., logarithm, square root)
since the detail coefficients are relatively small compared to the approximation coefficients. This unique
observation allows us to set the detail coefficients to zero and invert the application of the DWT to obtain
an approximation of the original signal. The main benefit of this process is that for smooth functions we
acquire detailed approximations while requiring significantly fewer samples than the original signals. We
leverage this to develop a secure protocol with compressed LUTs achieving high accuracy with low round and
communication complexities.

We begin by analyzing several DWT techniques, specifically Haar and Biorthogonal DWT, for plaintext
evaluation of LUTs and we translate the plaintext procedures into the secure setting. Next, we apply our
DWT LUT techniques and create Curl, an easy-to-use framework for privacy-preserving machine learning
that exposes a tensor-based programming model for both CPU and GPU backends. Finally, we evaluate Curl
on non-linear functions and LLMs securely, improving accuracy and reducing communication compared to
related works.

4.1 Improving Approximations with DWT-Encoded LUTs

Our key contribution lies in utilizing discrete wavelet transform (DWT) to securely evaluate a table. We
start by explaining the secure evaluation of a look-up table (LUT) and demonstrate the application of both
Haar and Biorthogonal DWT compression techniques for function evaluation using plaintext values. Next, we
extend those two techniques to the secure setting. Our protocols use some techniques introduced in [12,39,70]
but contrary to previous works, Curl can be easily extended to any number of parties. For simplicity, we
present our protocols in the two-party setting.

4.1.1 Secure LUT Evaluation

Let F : R → R be a function and consider its fixed-point encoded counterpart tF : Z2n → Z2n , with precision

f . The function tF can be represented as a LUT in (Z2n)
2n
, where tF(x) corresponds the value at the x-th

index. We briefly explain the method for securely computing tF(JxK) = JyK, which is depicted in Fig. 4.
Before initiating the protocol, both parties P0 and P1 can locally produce a LUT tF representation of

the function F. This evaluation needs to be performed only once and can be reused indefinitely. The secure

5 For GPT-2, dmodel = 768, dff = 3072, nheads = 12, and dk = 64. Considering an input of size L = 64, the token
embedding requires dmodel × L inner products, each attention mechanism requires (dk + dmodel) × L, and each
feed-forward layer requires at least (dff + dmodel) × L inner products. This amounts to at least 3, 637, 248 > 220

inner products.
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Rotate by δ
& Multiply

Rotate by δ
& Multiply

LUT tF

47
119
268
. . .
723

JvK0

J0K
. . .
J0K
J1K
J0K

JvK1

J0K
. . .
J0K
J1K
J0K

JyK0

J0K
J119K
J0K
. . .
J0K

JyK1

J0K
J119K
J0K
. . .
J0K

P0

JxK0, JrK0, JvK0
Reveal δ = x− r

P1

JxK1, JrK1, JvK1
Reveal δ = x− r

D

r $←− Z
v = [0, . . . , 0, 1, 0, . . . , 0]

s.t. v is 1-hot at r

Share v to JvK0, JvK1
Share r to JrK0, JrK1

xth index

Fig. 4: Secure evaluation tF(x) = y of a public LUT (tF) on secret-shared x (Pi holds JxKi) with the help of
dealer D.

evaluation of the LUT begins with the dealer generating a random element r ∈ Z2n . Then, it generates a
1-hot vector v with elements equal to 0 everywhere except in the r-th entry. Then, the dealer secret-shares to
both P0 and P1 the random value r along with the 1-hot vector v. These steps make up the preprocessing
phase as they do not depend on the function input x. During the online phase, the parties locally compute
the offset value δ given by δ = x− r. This offset value is revealed to both parties P0 and P1 as it is used to
locally rotate the secret-shared vector v. Note that δ cannot be revealed to the dealer, otherwise D would
be able to recover the underlying value of the input x. After the parties rotate their shares of v by δ, the
underlying value 1 is placed at r + (x − r) = x-th index. Finally, the parties compute the inner product
between the shares of the rotated vector and the public LUT tF. Indeed, this yields the share of tF at index
x. Note that all operations are executed in the ring Z2n .

4.2 Look-Up Table Approximation

As previously discussed, DWT provides a way to approximate signals. We observe that it is specifically
well-suited for smooth functions, such as exponential, sigmoid, logarithm, and square root, to name a few.
Additionally, it provides a compression mechanism that allows us to reduce bandwidth usage. Next, we delve
into two approaches for evaluating a DWT-approximated LUT in the plaintext setting. This exploration will
help inform the secure protocols for both Haar and (5, 3) Biorthogonal DWTs.

Approach 1. Recall from Section 2.3 that when DWT is applied to a vector v j times, we end up with two

vectors
↶j
a and

↶j

d , where
↶j
a is 2j times smaller than the original vector. By setting the detail coefficients to

zero, we define the approximation of v to be the approximation coefficients. This effectively reduces the size
of the original vector by 2j .

Similar to how we apply the DWT to a general vector v ∈ (Z2n)
2n
, we apply it to the LUT representation

tF. We define
↶j
tF ∈ (Z2n)

2n−j

to be the LUT containing only the approximation coefficients of the original
LUT after j DWT operations, W j · tF. Note that, in this process, the original LUT is compressed by a factor
of 2j , while the original input value x remains within Z2n . This leads to a natural question: how do we find

the original input x in the j-times compressed table
↶j
tF? To locate x in

↶j
tF , we truncate x by j bits and find

the corresponding index in
↶j
tF . This process yields the following approximation:

tF(x) ≈
↶j
tF(x ≫ j),
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which is depicted in Fig. 5. Observe that the output bitwidth of the compressed LUT
↶j
tF is the same as the

output bitwidth of the original table tF.

x

000
001
010
011
100
101
110
111

tF

0000
0010
0100
0110
1000
1010
1100
1110

(a) Evaluation of the original LUT, i.e., tF(x).

x≫ 1

00
01
10
11

↶1
tF

0001
0101
1001
1101

(b) Approach 1 for LUT approximation. Evaluation of
the Haar-compressed LUT over the truncated input, i.e.,
↶1
tF .

Fig. 5: Execution of the original and Haar-compressed LUT (tF and
↶1
tF ) on inputs x and x ≫ 1, respectively.

Approach 2. From DWT theory, we can retrieve the original signal from the approximation and detail
coefficients by evaluating the inverse transform over them. Moreover, it is known that the inverse transform
provides a method to amplify a signal, by considering the original signal as the approximation coefficients

[68]. We can use this method to amplify the approximated LUT
↶j
tF and get a better approximation than

approach 1. We execute the following chain of operations:

tF W j · tF =

↶j
tF
↶j

d

 [
↶j
tF

0

]
=:

↶j
eF W−j ·

↶j
eF =: t̃F,

Wj W−j (1)

and we obtain tF(x) ≈ t̃F(x) for any DWT type.

Next, we explain both approaches for the Haar and (5, 3) Biorthogonal transformations. We discuss how
the structure of the DWT matrices affects the approximation, as this provides insight into translating a
plaintext approximation to a secure protocol. Finally, we extend these approaches to the secure setting and
present the corresponding protocols.

4.2.1 Haar-LUT Evaluation

The two aforementioned approaches presented in Section 4.2 can be applied to the Haar DWT. Considering
vectors of size 2n, recall from Section 2.3.1 that the Haar DWT compresses data by computing the average
of two elements: ak = (v2k + v2k+1)/2, for k = 0, 1, . . . , 2n−1 − 1. In other words, as k represents the n− 1
most significant bits (MSB) of the original index, the index elements with the same n− 1 MSBs are averaged.
Applying consecutively DWT j times, the DWT averages the index elements with the same n− j MSBs.

We observe that for the Haar DWT, both approaches 1 and 2 yield the same approximation. As described
in Section 4.2, the inverse Haar transformation is given by v2k+1 = ak + dk and v2k = ak − dk. Since the
detail coefficients are set to 0, we observe that v2k = v2k+1 = ak, i.e., the elements from indexes with the
same n− 1 MSBs are reconstructed to the same value. In other words, the inverse transformation duplicates
the entries of the indexes having the same n− 1 MSBs. This yields the same result as taking the n− 1 MSB

of x and looking up the compressed table
↶1
tF , i.e., more generally

↶j
tF(x ≫ j) = t̃F(x).

Secure Haar LUT Evaluation. The techniques described above can be used together to securely compute
an approximated function F through a look-up table. The full protocol is formally described in Fig. 6.
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Parameters: n, l for input bit-width and output bit-width. F is the function to be computed and represented

by the corresponding j−times compressed LUT
↶j
tF .

Dealer setup:

1. D randomly generates r $←− Z2n−j .

2. D builds a 1-hot vector v of size 2n−j with value 1 at position r.

3. D shares r and v to P0 and P1.

LUT evaluation for parties Pi for i ∈ {0, 1}:

4. Pi truncates the input value JxK by j: Jx∗K = Jx≫ jK. ▷ Truncation protocol [25, §5.1]

5. Pi reduces its share Jx∗Ki by locally computing Jx∗Ki mod 2n−j .

6. Pi compute JδK = Jx∗K− JrK and reveal δ.

7. Pi rotate JvKi by δ.

8. Pi apply the inner product between
↶j
tF and the rotated vector. We denote the resulting share by JyK.

9. Output: JyK.

ΠHaar-LUT
n,l,j,F (JxK)

Fig. 6: Secure Haar protocol.

The secure LUT procedure of Fig. 4 can be adapted to be compatible with the DWT compression
technique. Assume input bitwidth n, output bitwidth l, and the number of DWT transformations to be j.
The secure Haar LUT protocol, ΠHaar-LUT

n,l,j,F (Fig. 6) is given as follows. During the preprocessing phase, similar
to the secure LUT evaluation, the dealer produces a secret-shared random 1-hot vector. However, to profit
from DWT compression, the 1-hot vector has reduced size, i.e., 2n−j , and r ∈ Z2n−j . Following approach 1,
we have that the look-up index is given by the n− j MSBs of the input x. Therefore, the shift δ to be applied

to the compressed LUT
↶j
tF is computed using the n − j MSBs of x and r. The online phase starts with

the parties truncating the shares of x by j and computing its modulo in Z2n−j . As we saw, the truncation
from the DWT-LUT evaluation approach 1 can be executed with the Escudero et al. [25, §5.1] probabilistic
truncation protocol over rings. The modulo operation is required because the shares of r belong to Z2n−j and
the shares of truncated x belong to Z2n . We note that modulo can be executed locally as described below.
The rest of the protocol is similar to the online phase of the secure LUT evaluation (Fig. 4).

Local modulo. In the literature, several protocols evaluate the modulo operation over shares in a ring or field
[8,26]. Those protocols are used whenever the space of the modulo operation is the same for both inputs and
outputs. However, we observe that the modulo operation required for our protocol needs to reduce the ring
size of the operand. More specifically, the shares Jx∗K in Z2n have to be reduced to shares in Z2n−j . This can
be achieved locally by letting the parties compute the modulo operation over their shares. For correctness,
consider x = (JxK1 + JxK2) mod 2n and x′ = x mod 2n−j . We have,

x′ = x mod 2n−j

= ((JxK1 + JxK2) mod 2n) mod 2n−j

= (JxK1 + JxK2) mod 2n−j ▷ 2n−j is a factor of 2n.

=
(
JxK1 mod 2n−j + JxK2 mod 2n−j

)
mod 2n−j

= (Jx′K1 + Jx′K2) mod 2n−j .

Thus, the shares of x′ can be computed locally from JxK.
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4.2.2 Biorthogonal-LUT Evaluation

Now, we explore the LUT DWT approximation for the (5, 3) Biorthogonal DWT. As described in Section 2.3.2,
the approximation coefficients are given by a weighted average of 5 elements and, similar to Haar, approach 1
for the Biorthogonal compresses two indexes with the same n− 1 MSBs to the same index. On the other

hand, approach 2 requires computing B−j ·
↶j
eF =: t̃F as shown in Eq. (1). For simplicity, we set j = 1 and

examine the structure of the inverted Biorthogonal DWT matrix B−1:
2
1
0
0

0
1
2
1
...

0
0
0
1

. . .

. . .

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

Index  · 1
4
.

To simplify the exposition, we present matrix B−1 only with the elements that interact with the approximation

coefficients, i.e.,
↶j
tF . Thus, the detail coefficients are effectively set to zero. Observe that the line indexes with

the same n− 1 MSBs ( green ) constitute a 2× 2 submatrix that combines two elements from
↶1
tF , i.e., its

corresponding index element and the subsequent element. For instance, the 001 -th block of t̃F, combines

the 001 -th and the ( 001 + 1)-th index element of
↶1
tF . Note that the LSB ( red ) of the line index plays a

role in the weights of the sub-matrices. Indeed, we have:(
2 0
1 1

)
=

(
2− 0 0

2− 1 1

)
.

Finally, consider the case j = 2. We omit the (1/4)j constant for readability. The 2 LSBs of the indices
define the elements of 4× 2 sub-matrices and the n− 2 MSBs of the indices define the elements from the

approximation LUT
↶2
tF to be used.



4

3

2

1

0

0

0

0

0

1

2

3

4

3

2

1
...

0

0

0

0

0

1

2

3

. . .

. . .

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1


·



a0

...

a2n−2

0

...

0


=



(22 − 0 ) · a
0

+ 0 · a
0 +1

(22 − 1 ) · a
0

+ 1 · a
0 +1

(22 − 2 ) · a
0

+ 2 · a
0 +1

(22 − 3 ) · a
0

+ 3 · a
0 +1

(22 − 0 ) · a
1

+ 0 · a
1 +1

(22 − 1 ) · a
1

+ 1 · a
1 +1

(22 − 2 ) · a
1

+ 2 · a
1 +1

(22 − 3 ) · a
1

+ 3 · a
1 +1

...



B−2Index
↶2

T ext
F t̃F

We can generalize the above pattern for any j, which provides an approximation formula suited for the
secure setting:

t̃F(x) =
1

4j

((
2j − x(j)

)
·
↶j
tF(x

(j)) + x(j) ·
↶j
tF(x

(j) + 1)

)
, (2)

where x(j) and x(j) represent the n− j MSBs and j LSBs of x, respectively. We recall that the n− j MSBs
can be obtained by truncation and the j LSB by the mod 2j operation.

Secure Biorthogonal LUT evaluation. Eq. (2) can be used to securely compute an approximated function
F through a look-up table. The full protocol is formally described in Fig. 7. Similarly, the secure LUT
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Parameters: n, l for input bit-width and output bit-width. F is the function to be computed and represented

by the corresponding j−times compressed LUT
↶j
tF .

Dealer setup:

1. D randomly generates r $←− Z2n−j .

2. D builds a 1-hot vector v of size 2n−j with value 1 at position r.

3. D shares r and v to P0 and P1.

LUT evaluation for parties Pi for i ∈ {0, 1}:

4. Pi truncates the input value JxK by j, Jx≫ jK := Jx(j)K. Then, Pi reduces its share Jx(j)Ki by locally
computing Jx(j)Ki mod 2n−j .

5. Pi computes the j LSB of x by locally computing Jx(j)K := JxK− 2j · Jx(j)K.

6. Pi compute JδK = Jx(j)K− JrK and reveal δ.

7. Pi rotate JvKi by δ and δ + 1.

8. Pi apply the inner product between
↶j
tF and the rotated vectors. We denote the resulting shares by

J
↶j
tF(x(j))K and J

↶j
tF(x(j) + 1)K.

9. Pi computes the expression

JyK :=
1

4j

((
2j − Jx(j)K

)
· J

↶j
tF(x(j))K + Jx(j)K · J

↶j
tF(x(j) + 1)K

)
.

10. Output: JyK.

ΠBior-LUT
n,l,j,F (JxK)

Fig. 7: Secure Biorthogonal protocol.

procedure described before (Fig. 4) can be adapted to be compatible with the Biorthogonal DWT compression
technique. Assume input bitwidth n, output bitwidth l, and the number of DWT transformations to be j.

The secure Biorthogonal LUT protocol, ΠBior-LUT
n,l,j,F (Fig. 7), is similar to ΠHaar-LUT

n,l,j,F with the difference that

it requires two LUT evaluations of
↶j
tF . As an optimization, note that these two LUT evaluations do not

require two different one-hot vectors. Since the LUT evaluation is executed in two consecutive indices, we can
use the same vector v to generate two shifted vectors: one shifted by δ and the other by δ + 1. This allows
us to use the same dealer setup phase as in secure Haar LUT evaluation. The online phase starts with the
parties computing x(j) as the n− j MSBs and x(j) as the j LSBs of x. More specifically, x(j) is computed by
truncating JxK by j (i.e., [25, §5.1]) and locally computing its modulo in Z2n−j , while x(j) is computed locally

based on x(j) as x = 2j · x(j) + x(j). The rest of the protocol is similar to the online phase of the secure LUT
evaluation (Fig. 4) on δ and δ + 1. In the final step 10, the parties compute the expression (2) as the output.

Both Haar and Biorthogonal secure evaluation protocols can be used to directly evaluate a function
over a fixed interval. Furthermore, we note that our protocols can be combined with a piece-wise approach
commonly employed in prior works [58,33]. We extend this method in Appendix B to accommodate any
bounded even or odd function (Fig 11). We demonstrate the applicability of this protocol to various functions,
including s-shape functions such as tanh, erf and sigmoid, as well as activation functions like GeLU and SiLUq.
Additionally, in Appendix B.3, we introduce a protocol for both sin and cos.
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(b) Square root (Fig. 7).
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(c) Inv. square root (Fig. 6).
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(d) Sigmoid (Fig. 11).
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(e) SiLU (App. B.2).
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(f) SiLU (Fig. 7).

Fig. 8: Mean absolute error (MAE) and latency trade-offs for different DWT compressions. We plot CrypTen
as a baseline.

4.3 Complexity Analysis

4.3.1 Memory

The secure DWT-LUT approach, using compressed tables, significantly minimizes the memory required
for LUT handling. For instance, consider the interval (0, 4096) with a precision of f = 16. A conventional
LUT protocol would typically demand a table size of approximately 2.15 GB. However, employing the DWT
technique allows us to reduce the original table size by a factor of approximately 220 while maintaining high
accuracy levels as discussed in Section 5.1.2. The corresponding DWT-reduced LUT occupies only 1 KB of
memory, demonstrating a substantial reduction in storage requirements without compromising accuracy.

4.3.2 Round & Communication

Both Haar and Biorthogonal protocols have the same preprocessing phase and both start the online phase by
truncating and opening a single field element. However, the Biorthogonal requires an additional truncation and
two share multiplications (see Fig. 7 Step 9). Observe that Escudero et al. [25, §5.1] probabilistic truncation
protocol over rings involves one round to open a ring element. Consequently, while the Haar protocol operates
within 2 rounds and transmits 2 ring elements, the Biorthogonal is more resource-intensive, requiring 4 rounds
and transmitting 5 elements.

5 Experimental Results

We implemented Curl by building on top of CrypTen and open-source it in https://github.com/jimouris/

curl. Curl natively supports both CPU and GPU backends, however, we focus on CPU experiments as this
is the most widely used setting in MPC. For completeness, we conduct some GPU experiments using an
NVIDIA GeForce RTX 4080. All parties run in separate processes on a c5n.9xlarge AWS instance with 36
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vCPUs and 96 GB of memory. As communication and round complexity form crucial metrics for assessing
MPC end-to-end runtime, we extensively report these numbers in all our benchmarks. This can be used to
glean WAN performance.

Furthermore, as Curl’s novelty lies in improving approximations through DWT-encoded lookup tables, we
focus on reporting the mean absolute errors (MAE) and mean relative errors (MRE) over the expected result.
Finally, we focus on private LLM inference using secret-shared models on secret-shared data. Note that Curl
can be used for private training in a similar way, which we omit due to space constraints. We use 16 bits of
precision, following related works that typically use precision between 9 and 17 bits [54,33,72,70].

Table 1: Overview of Curl’s improvement over CrypTen for selected tensors functions in terms of latency,
mean absolute error (MAE), and mean relative error (MRE), for tensors of 256× 256 elements.

Op. Protocol Domain

Curl CrypTen [46]

LUT
Latency Com.‡ Error§ Latency Com. Error

(sec.)† Rounds MB MAE MRE (sec.) Rounds MB MAE MRE

log Fig. 7 (0, 64) 28 0.17 4 2.6 2.09e-2 5.48e-2 0.17 40 39.8 2.14e-2 6.36e-3

reciprocal Fig. 7 (1, 64) 27 0.09 4 2.6 7.18e-4 1.43e-3 0.11 59 38.3 1.7e-4 7.05e-3

sqrt Fig. 7 (0, 256) 26 0.06 4 2.6 1.23-1 1.11e-2 0.09 26 17.3 6.09e+0 4.04e-1

invsqrt Fig. 6 (0, 256) 26 0.04 2 1.0 1.45e-2 1.14e-1 0.09 24 15.7 2.69e-2 0.405e-1

sin App. B.3 (−64, 64) 25 0.08 16 20.4 4.55e-3 1.14e-2 0.11 37 24.1 8.52e-1 1.58e+0

cos App. B.3 (−64, 64) 25 0.08 16 20.4 4.77e-3 9.85e-2 0.10 37 24.1 8.86e-1 1.45e+0

sigmoid
Fig. 11 (−64, 64) 26 0.10 22 33.6 4.70e-5 7.83e-2 0.11 26 26.2 7.00e-5 3.49e+0
Fig. 7 (−64, 64) 26 0.10 4 2.6 1.11e-2 6.59e-2 0.11 26 26.2 7.00e-5 3.49e+0

tanh Fig. 11 (−64, 64) 25 0.09 22 33.6 2.31e-4 3.96e-4 0.13 26 26.2 8.60e-5 1.19e-4

erf Fig. 11 (−64, 64) 23 0.09 22 33.6 8.98e-4 1.83e-3 0.21 56 36.2 3.39e+7 3.40e+7

GeLU
App. B.2 (−64, 64) 24 0.10 30 47.7 5.95e-3 2.79e+0 N/A N/A N/A N/A N/A

Fig. 7 (−4, 4) 24 0.11 4 2.6 2.60e-3 5.02e-2 N/A N/A N/A N/A N/A

SiLU
App. B.2 (−64, 64) 26 0.14 30 47.7 2.61e-3 5.48e-3 N/A N/A N/A N/A N/A

Fig. 7 (−64, 64) 26 0.09 4 2.6 1.54e-1 1.18e-1 N/A N/A N/A N/A N/A

† Green background indicates the fastest runtime, ‡ orange indicates the lowest communication, and § blue indicates the lowest error (MAE or

MRE).

5.1 Non-linear Functions

We experimentally verified that the Biorthogonal protocol achieves better approximations than Haar with
almost identical latency and communication costs (Appendix C). Therefore, we use the Biorthogonal protocol
for almost all our experiments. We choose constrained ranges of input values to enable a meaningful comparison
with CrypTen. For wider ranges, such as (0, 212), CrypTen’s approximations exhibit significantly higher errors.
Since previous MPC works [58,48,21] rely on similar polynomial approximations, we can argue that they
all have similar error levels. For example, for the log function, CrypTen’s approximation yields a MAE of
1.09e+10, whereas the Biorthogonal with a compression j = 21 achieves a substantially lower MAE of 2.66e-1.
We note that the latency time reported is dominated by computation time as the protocol is executed in the
same machine.

5.1.1 Choosing LUT Sizes

We evaluate our secure DWT protocols to compute a set of smooth functions commonly used in machine
learning tasks such as logarithm (used for perplexity and cross-entropy that measure LLM’s performance),
square root and inverse square root (used for layer normalization), sigmoid, and SiLU. In Fig. 8 we investigate
the trade-offs between latency on the left y-axes (green) and MAE on the right y-axes (red) for the
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aforementioned non-linear functions. As a baseline, we show CrypTen’s latency and MAE with dashed green
and red lines, respectively. In the case of SiLU, which we evaluate with two different protocols, CrypTen
does not support this so we only show Curl’s latency and MAE. Of course, bigger LUTs in Curl achieve
better approximations but require more computation and thus higher latency. However, DWT reduces the
size of the LUTs which therefore decreases the computation complexity of Curl while still achieving good
approximations. For a LAN setting, the total runtime is expected to be dominated by the computation
time. However, for WAN, the total runtime is mostly dominated by communication. Therefore, we focus on
achieving better errors than CrypTen while keeping a similar latency level. As an example, consider running
265×265 log functions in a LAN setting with 0.8ms ping-time and 3 Gbps bandwidth and in a WAN setting
with 80ms ping-time and 200 Mbps bandwidth. We estimate6 Curl to take 180ms and CrypTen to take 313ms
(×1.8 more) in LAN and Curl to take 599ms and CrypTen to take 5, 039ms (×10.1 more) in WAN.

For general and unbounded functions, we apply the secure Biorthogonal protocol (Fig. 7). Exceptionally,
we use Haar-encoded protocol (Fig. 6) for the invsqrt function as it achieves better errors whenever the (0, 1)
interval is included. For sqrt and invsqrt we consider the interval (0, 256). However, for log we consider the
interval to be (0, 64) as CrypTen’s MAE and MRE are of the order of 1e+6 for (0, 256). This corresponds to
an original LUT of size 224 for sqrt and invsqrt and of size 222 for log. Observe the logarithm approximation
in Fig. 8a in which both latency and MAE of Curl matches that of CrypTen’s for LUT sizes of 8 bits. In
Figs. 8b and 8c, Curl’s MAE is always below CrypTen’s. For these two functions, we use LUT sizes with
6 bits as these provide lower latency for Curl. We set the compression parameter to j = 18 for both sqrt
and invsqrt and 14 for log. For sigmoid, we use the protocol presented in Fig. 11 and set the interval to be
(−64, 64). As analyzed in Appendix B.1, sigmoid is not an odd function but the last step of the protocol can
be adapted to be applied to any s-shape function, including sigmoid. We observe that Curl achieves a better
approximation than CrypTen for LUT sizes with 6 or more bits with runtime being marginally slower. Finally,
for SiLU, we set the interval to be (−64, 64) and we use two different protocols: the approach described in
Appendix B.2 which is a derivation of Fig 11 protocol (Fig. 8e); and the Biorthogonal protocol (Fig. 8f).
We observe that Appendix B.2 approach achieves better MAE errors when compared to the Biorthogonal
protocol. The latency from Fig. 8e is less affected by an increase in the LUT when compared with Fig. 8f.
The same behavior happens with GeLU and SiLU as we can observe in Table 1. This is justified by the fact
that the approach from Appendix B.2 requires comparisons, whether the Biorthogonal protocol does not.
Indeed, note that in all functions where a DWT-LUT protocol is applied, the latency decreases by half when
we half the LUT size.

5.1.2 Evaluations

Having found the optimal tradeoffs for LUT sizes, we compare the Curl approximations with the DWT
technique to CrypTen’s polynomial approximations in terms of latency, communication, and errors. In Table 1,
we evaluate a set of commonly used non-linear functions including logarithm, inverse square root, the sigmoid
activation function, as well as GeLU and SiLU. For unbounded functions, we use the protocol from Fig. 7,
while for bounded functions (e.g., sin) we use our optimized protocols which are referenced in the table. We
experimentally verified that, in most cases, the Biorthogonal protocol outperforms the Haar DWT in terms of
both MAE and MRE, with the only exception being invsqrt. Observe that for the same LUT size, the latency
for Haar is 2/3 lower than the Biorthogonal approach (compare sqrt 0.06s latency using Biorthogonal with
invsqrt 0.04s latency using Haar). For each function, we specify the evaluation domain for which we report
the errors (i.e., MAE and MRE).

Observe that all functions that utilize the protocol from Fig. 7 and Fig. 6 have constant rounds and
communication, regardless of the LUT size, as the one-hot vectors (which depend on the size) are generated
during preprocessing from the dealer. Latency is affected by the LUT size (e.g., sqrt vs log) since the LUT
output value is accumulated with shares of zero, which are as many as the LUT size (see last step of Fig. 4).
However, as discussed before, the end-to-end latency will be dominated by the number of rounds and total

6 We add the computation latency, the ping-time multiplied by the number of rounds and the amount of information
sent divided by the bandwidth. We use the numbers reported in Table 1.
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communication size, for which Curl is almost always significantly better. Regarding trigonometric functions
(sin and cos) we use the approach proposed in Appendix B.3. We note that CrypTen’s approximation of both
functions already has a 1.2e+2 error for the range (−128, 128). For this reason, we decrease the interval range
to (−64, 64). On the other hand, Curl’s approximation keeps the same level of errors independent of the input
range. Moreover, Curl achieves that while having less latency, rounds and communication when compared
with CrypTen.

5.2 LLM Inference

We evaluate Curl with BERT Tiny (4 million parameters), BERT Base (110 million parameters), BERT
Large (340 million parameters), GPT-2 (124 million parameters), and GPT Neo (1.3 billion parameters). In
Table 2, we report the latency, number of rounds, and total communication for each LLM for 64 inputs. For
completeness, we also evaluate BERT Tiny and Base on GPU for 64 elements and report between 2− 3×
speedup compared to CPU (1.1 and 6.5 seconds, respectively). Finally, we use the QNLI classification task
from the GLUE benchmark [73] to evaluate the accuracy of our models. Curl achieves an accuracy of 80.3%
for encrypted BERT Tiny, which almost matches the plaintext accuracy (i.e., 81.4%). This further verifies
our claim regarding the probabilistic truncation protocol that is sufficiently accurate to evaluate LLMs.
However, we observed that in LLMs the LUT protocols are not great for inverse square root as the input
range varies and the output of the function changes rapidly in (0, 1]. Thus, to achieve high accuracy we resort
to a comparison and two LUTs: a dense one between (0, 1] and a sparse one in (1, 256), getting the best of
both worlds.

Table 2: Runtime and communication of Curl with a sequence length of 64 items.

Model Latency (s) Rounds Com. (GB)

BERT Tiny 3.55 409 1.34
BERT Base 13.63 1,629 2.8
BERT Large 33.93 3,093 5.66

GPT-2 16.61 1,630 3.77
GPT-Neo 103.4 3,118 14.9

Next, we compare with Iron, MPCFormer, Puma, and Bolt in Table 3 for BERT Base with 128 items. In
terms of end-to-end latency, Curl outperforms all other frameworks by at least 1.5×, with as much as 20×
in the case of Iron. More importantly, Curl achieves this with significantly less amount of rounds and total
communication. Specifically, Iron and Bolt require 8× and 6× more rounds than Curl, respectively, while in
terms of total communication, all other frameworks need more than 10 GBs (with Iron needing 281 GBs)
while Curl only needs 5.7 GBs. Although the end-to-end runtime in a real-world instantiation would increase
due to communication, Curl would not be affected as much by that since it exhibits the lowest communication
and number of rounds.

Finally, in Table 4 we compare Curl with CrypTen for five LLMs with 64 inputs. This differs from Tables 2
and 3 as CrypTen lacks a protocol to evaluate embeddings (Section 2.2). Thus, in Table 4, we skip embedding
for a fair comparison. Curl needs less than half the amount of rounds CrypTen does for all five models
and almost half the total communication. Although Curl’s runtimes are already faster than CrypTen’s, the
difference in end-to-end latency will increase further in a realistic instantiation due to communication.

6 Concluding Remarks

We have introduced Curl, a framework for privacy-preserving machine learning that evaluates non-linear
functions as lookup tables, resulting in better approximations and significant round and communication
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Table 3: Runtime and communication comparisons with a sequence length of 128 items for the full BERT
Base LLM.

Framework Latency (s) Rounds Com. (GB)

Iron [36] 475 13,663 281
MPCFormer [48] 55.3 – 12.1

Puma [21] 33.9 – 10.8
Bolt [58] 185 10,509 59.6

Bolt (WE) [58]† 91 10,901 25.7

Curl 22.5 1,629 5.7

† In Bolt, WE stands for word elimination.

Table 4: Runtime and communication comparisons with CrypTen with a sequence length of 64 items. These
models skip the embeddings as CrypTen does not support lookups.

Model
Curl CrypTen [46]

Lat.
(s)

Rounds
Com.
(GB)

Lat.
(s)

Rounds
Com.
(GB)

BERT Tiny 0.51 252 0.02 0.86 539 0.05
BERT Base 9.01 1,472 1.31 13.23 3,089 2.62
BERT Large 28.79 2,936 4.11 38.59 6,149 7.6

GPT-2 8.94 1,464 1.31 12.93 3,060 2.62

GPT-Neo 98.44 2,952 11.95 137.20† 6,144 18.91

† Approximated since CrypTen could not fit GPT Neo in RAM.

reduction. Curl achieves this by relying on discrete wavelet transformations to reduce the lookup table sizes
without sacrificing accuracy, which has resulted in up to 19× round and communication reduction compared
to related works. We have evaluated Curl on five large language models such as BERT, GPT-2, and GPT Neo
(1.3 billion parameters), and have compared it against state-of-the-art related works, significantly reducing
latency, the number of communication rounds, and the total communication. On top of that, Curl is easy
to use by exposing a tensor-based programming model that machine learning researchers and developers
are familiar with which allows for both CPU and GPU backends. Lastly, we have introduced a new ideal
functionality for probabilistic truncation protocols and proved their security in the real-ideal paradigm. This
is of independent interest, as truncation is a core component of encrypted machine-learning models, and
probabilistic truncation was previously considered insecure.
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A Proof of Theorem 1

We consider the probabilistic truncation protocol of Escudero et al. [25], denoted ΠTruncPr
n,f (JxK) and shown in

Fig. 9. Below we prove Theorem 1, i.e. we show that protocol ΠTruncPr
n,f (JxK) securely realizes the modified

probabilistic truncation functionality FTruncPr
n,f (JxK) shown in Fig. 3 in Section 3. To simplify notation, we

assume below that ℓ = n− 1, in which case s̃ = s = (x+ r̃) mod 2n for r̃ = 2n−1b+ 2fr + r′. In the general
case of ℓ < n all arguments are the same except that computation is done over Z2ℓ+1 instead of Z2n .
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1. Assume parties hold JxK ∈ Z2n for x < 2ℓ, ℓ < n.

2. Assume parties hold (JrK, Jr′K, JbK) from pre-processing where r, r′, b are random in resp. Z2ℓ−f , Z2f , and
Z2.

3. Parties set JsK = 2n−(ℓ+1) · (JxK + 2ℓJbK + 2f JrK + Jr′K) and publicly reconstruct s from JsK.

4. Denote s = 2n−(ℓ+1) · s̃ and note that s̃ = (x + r̃) mod 2ℓ+1 where r̃ = 2ℓb + 2fr + r′ < 2ℓ+1.

5. Parties compute JvK = Jb⊕ s̃ℓK = JbK + s̃ℓ · (1− 2JbK), where s̃ℓ is the ℓ-th bit of s̃.

6. Parties output Jx′K = 2ℓ−f JvK + ⌊(s̃ mod 2ℓ)/2f⌋ − JrK.

ΠTruncPr
n,f (JxK)

Fig. 9: Probabilistic truncation protocol of [25].

Proof. The simulator receives the shares of corrupted parties in sharings JxK, JrK, Jr′K, JbK and a random
value s(f) ∈ Z2f from functionality FTruncPr

n,f (JxK). On these inputs the simulator picks a random value s(f)

in Z2n−f , sets s = 2f · s(f) + s(f), and simulates the reconstruction of secret-sharing JsK = Jx + r̃K =

JxK+ 2n−1JbK+ 2f JrK+ Jr′K into value s. Note that all other computations in the protocol are local given the
input shares and the revealed value s, so the simulator’s work is done.

Note that ΠTruncPr
n,f (JxK) reveals only s reconstructed from secret-sharing JsK = Jx+r̃K. Since s = x+r̃ mod 2n

and r̃ is random in Z2n it follows that s is uniform in Z2n for every x, hence the simulation above is perfect.
Note also that since the simulator sets s as 2f · s(f) + s(f), output s(f) in the simulation agrees with value
s(f) set by the functionality.

It remains to argue that distribution of x′ output by the ΠTruncPr
n,f (JxK) is the same as in the ideal-world

functionality FTruncPr
n,f (JxK). In the ideal-world functionality, value x′ is a function of x and s(f), determined

by the following formula:

x′ =

{
x(f) if s(f) ≥ x(f),

x(f) + 1 otherwise.
(3)

We argue that x′ is determined in the same way in protocol ΠTruncPr
n,f (JxK). Recall that for any v, we denote

v(f) = ⌊v/2f⌋ and v(f) = (v mod 2f ), hence v = v(f) · 2f + v(f). Correctness of the protocol is based on the

observation that if s = x + r̃ mod 2n then s = x + (2fr + r′) − 2n−1v over integers, where v = b ⊕ sn−1,
equivalently s = 2f (x(f) + (r − ṽ)) + (x(f) + r′) where ṽ = (2(n−1)−f )v. There are two cases for how s(f) and

s(f) relate to x(f), r, ṽ and x(f), r
′:

s(f) =

{
x(f) + (r − ṽ) if x(f) + r′ < 2f ,

x(f) + (r − ṽ) + 1 otherwise.
(4)

s(f) =

{
x(f) + r′ if x(f) + r′ < 2f ,

x(f) + r′ − 2f otherwise.
(5)

Since Jx′K is set to s(f) − Jr − ṽK, equation (4) implies that:

x′ = s(f) − (r − ṽ) =

{
x(f) if x(f) + r′ < 2f ,

x(f) + 1 otherwise.
(6)

However, equation (5) implies that:

x(f)+r′ < 2f if and only if s(f) = x(f)+r′ ≥ x(f)

x(f)+r′ ≥ 2f if and only if s(f) = x(f)+(r′−2f ) < x(f).
(7)

Equations (6) and (7) together imply the same expression of x′ according to x(f) and s(f) as in equation (3).

We conclude that x′ output by protocol ΠTruncPr
n,f (JxK) is set by the same formula as in the ideal functionality

FTruncPr
n,f (JxK).
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In the proof above, note that the randomness of the opened masked value is part of the view of the
adversary, so the rounding error is fixed in both the real and ideal worlds by the adversary’s view. This
argument can be extended to all probabilistic truncation protocols that follow the same pattern regarding
masking the input value with randomness. More specifically, the proof can be adapted for the protocols with
non-zero correctness error, including [8] and [15], and for other protocols with perfect correctness, e.g., [13].

B Bounded functions

Recall that an odd function F obeys the following property F(−x) = −F(x) and an even function F is such
that F(−x) = F(x). In this section, we generalize the approach taken by Sigma [33] for the GeLU function [33]
and apply it to any bounded odd or even function that converges to some constant c for |x| → ∞ (e.g.,
s-shape functions). This method can be applied to several important functions: s-shape functions, used as
activation functions (hyperbolic tangent tanh and error function erf); shifted s-shape functions, like sigmoid;
and more general functions such as GeLU and SiLU.

The odd/even property guarantees that we only need to compute the function for positive values. This
effectively halves the size of the required LUT. To achieve this, we compute the sign of the input and multiply
it by its value, then get its absolute value. The convergence property ensures that, given some acceptable
error, we can clip the function for some interval [−a, a] and assign a constant value c to all elements outside
that interval. We note that [33] sets c = F(a) but we set the constant c to be the limit value of the function
F. Outside [−a, a], we claim that the error incurred by [33] is bigger for most of the inputs but for a short
interval. Intuitively, Fig. 10 shows the errors incurred by Curl’s and Sigma’s approach to the Sigmoid function.
Observe that the error following Sigma’s approach ( red area) is bigger than the error by Curl’s approach
( green area) outside the interval [2, 2.76].

Curl

[40]

[40] has
lower error

Curl has
lower error

2 2.76

0.5

0.88
0.94

1

x

σ(x)

Fig. 10: Analysis of error incurred by Curl’s ( green ) and Sigma’s ( red ) approach on approximating

Sigmoid function σ(x) for x > 2. Curl’s approach sets the approximation σ̃(x) = 1 and Sigma’s approach sets
σ̃(x) = σ(2) for x > 2. Sigma’s approach error is lower in [2, 2.76) and Curl’s approach error is lower in
(2.76,+∞).

The ΠF
n,a,c,p,j(JxK) protocol is formally shown in Fig. 11. Recall from Section 2.1, that ΠA2B

n,l and ΠB2A
n,l

represent the arithmetic to binary and binary to arithmetic conversion protocols. The protocol goes as follows.
For input value x, the parties start by computing the signal of x and its absolute value. Note that the signal
value can be computed using the expression sgn(x) = 1 − 2 · (x < 0) and the absolute value of x can be
computed as |x| = sgn(x) · x. The absolute value is then used to check whether x lies within a predetermined
interval [−a, a] or not. Then, parties run the secure Biorthogonal protocol ΠBior-LUT

n,l,j,F (JxK) to evaluate on |x|,
returning y′. In case x ∈ [−a, a], parties output y′, otherwise they output the limit value c of the function F.
This is effectively computed by the operation i · y′ + (1− i) · c, where i is the comparison bit for |x| < a. In
the last step, the output value is corrected in case the function is odd: returning sgn(x) · y. This is set by the
parity parameter p, which is p = 0 for even functions and p = 1 for odd functions.
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Parameters: n is the full bit-width, a defines the interval in which the bior-LUT protocol is applied, c is the
constant value for the function outside the interval, p is the parity of F (p = 1 for odd functions and p = 0 for
even functions) and j is the compression variable for the bior-LUT protocol.

Compute sign and absolute value, Jsgn(x)K and J|x|K:

1. ⟨⟨x⟩⟩ ← ΠA2B
n,n(JxK) ∈ Zn

2

2. ⟨⟨b⟩⟩ ← ⟨⟨y⟩⟩ ≫ (n− 1) ∈ Z2

3. JbK← ΠB2A
1,n (⟨⟨b⟩⟩) ∈ Z2n

4. Jsgn(x)K← 1− 2 · JbK ∈ Z2n

5. J|x|K← Jsgn(x)K · JxK ∈ Z2n

Check |x| < a:

6. JzK← J|x|K− a ∈ Z2n

7. ⟨⟨z⟩⟩ ← ΠA2B
n,n(JzK) ∈ Zn

2

8. ⟨⟨i⟩⟩ ← ⟨⟨z⟩⟩ ≫ (n− 1) ∈ Z2

9. JiK← ΠB2A
1,n (⟨⟨i⟩⟩) ∈ Z2n

Compute F:

10. Jy′K← ΠBior-LUT
n,n,j,F (J|x|K)

11. JyK← (JiK · Jy′K + (1− JiK) · c) ▷ Computes share of: y =

{
y′, if |x| < a

c, otherwise.

12. Output: Jsgn(x)Kp · JyK ∈ Z2n ▷ Equivalent to JyK for even functions and J−yK otherwise.

ΠF
n,a,c,p,j(JxK)

Compute comparison bit:
b = x < 0.

Compute comparison bit:
i = |x| < a.

Fig. 11: Protocol for convergent bounded odd (p = 1) or even (p = 0) function F based on the secure
biorthogonal-encoded LUT protocol.

B.1 S-shape functions

In the previous section, we presented a protocol that can be applied to any bounded odd or even function
that is convergent. S-shape functions are bounded functions that converge to some value c for |x| → ∞ but
are not necessarily odd or even. For example, we have that tanh and erf are odd functions but the sigmoid
function σ(x) is not. However, we note that we can transform any s-shape function to an odd function by
applying a shift. For example, the sigmoid function σ(x) can be shifted by 1/2, resulting in an odd function:
σ(x)− 1/2.

Generally, observe that, for an s-shape function F, there exists a shift value s, such that F(−x) − s =
−F(x) + s ⇔ F(−x) = 2 · s − F(x). So, setting for b = x < 0, we can change the last step (12) of protocol
ΠF

n,a,c,p,j(JxK) to evaluate the function F:

F(x) = b · F(−|x|) + (1− b) · F(|x|)
= b · (2 · s− F(|x|)) + (1− b) · F(|x|)
= b · 2 · s+ sgn(x) · F(|x|),

where sgn(x) = (1− 2 · b). Thus, for the sigmoid function where s = 1/2, the last step (12) from Fig. 11 is as
follows: JbK + Jsgn(x)K · JyK. Note that for both tanh and erf b = 0, recovering the initial expression.

Parameters. Now, for each of the three s-shape functions, we need to define the following parameters:
bitwidth n, the interval [−a, a], the constant c, the parity p and the compression value j. We use the hardcoded
bitwidth value from CrypTen n = 64, imposed by the PyTorch dependency. Also, c, p = 1 for all three s-shape
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functions. We note that [33] clips the interval in GeLu and accepts a constant error on the order of ∼ 10−5.
We follow a similar approach and accept errors < 10−5. For the error function (erf), hyperbolic tangent (tanh)
and sigmoid (sigmoid) we set the interval to be [−4, 4], [−8, 8] and [−16, 16], respectively. These intervals
incurr a maximum error on the order of 10−8, 10−7 and 10−7, and the size of the original LUT is 218, 219

and 220, respectively.

B.2 Activation Functions: GeLU And SiLU

In this section, we consider two popular activation functions: GeLU [37] and SiLU [23], given by

GeLU(x) :=
x

2

(
1 + erf

(
x√
2

))
,

where erf(·) denotes the Gauss error function and

SiLU(x) := x · sigmoid(x).

These activation functions are sometimes considered smooth approximations to the classical ReLU of [27]. We
observe that the functions DGeLU := ReLU(x)− GeLU(x) and DSiLU := ReLU(x)− SiLU(x) are even functions.
Regarding DGeLU, note that

DGeLU =
1

2

(
|x| − x erf

(
x√
2

))
,

so the claim follows as |x| is even and x and erf are both odd. Regarding DSiLU, observe that σ(−x) = 1−σ(x),
for sigmoid σ. Thus, we have:

DSiLU(x) =

{
x · (1− σ(x)) x ≥ 0,

−x · σ(x) x < 0
=

{
x · σ(−x) x ≥ 0,

−x · σ(x) x < 0
= DSiLU(−x).

Since these two activation functions are also bounded and converge to 0 for |x| → ∞, we can use ΠF
n,a,c,p,j

protocol (Fig. 11) to compute both GeLU and SiLU by evaluating: GeLU(x) = ReLU(x)− ΠDGeLU
n,a,c,p,j(x) and

SiLU(x) = ReLU(x)−ΠDSiLU
n,a,c,p,j(x).

Note that ReLU can be computed using ReLU(x) = (x < 0) · x. Since we compute x < 0 in step 3. of the
ΠF

n,a,c,p,j protocol (Fig. 11), we can reuse this value.

Parameters. Again, we use the hardcoded bitwidth value from CrypTen n = 64 and c, p = 0. As noted
before, [33] clips the interval in GeLU and accepts a constant error on the order of ∼ 10−5. We follow a
similar approach and accept errors < 10−5. For GeLU and SiLU we set the interval to be [−4, 4] and [−16, 16],
respectively. These intervals incur a maximum error on the order of 10−8 and 10−7, and the size of the
original LUT is 218 and 220, respectively.

B.3 Trigonometric functions

It is known that sin is an odd function and cos is an even function. However, these two functions do not
converge, making protocol ΠF

n,a,c,p,j (Fig. 11) unsuitable. Despite this, we can still use the core concepts from
that protocol and adapt them to these trigonometric functions. The key insight is that both functions are
periodic with a period of 2π. We leverage this periodicity by scaling these trigonometric functions to have
period 1. This is achieved by generating LUT for sin(2π · x) and cos(2πx), where x ∈ [0, 1]. Then, for input
x, we evaluate the LUT using the secure Biorthogonal protocol at point x/(2π). We execute division (Πdiv)
based on the Escudero et al. [25, §5.1] probabilistic truncation protocol over rings. The protocol for sin is
formally described in Fig. 12. The cos protocol is similar but does not require the sign correction in the last
step.
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Parameters: n is the full bit-width, f is the number of bits used for the fractional part, and p = 0 for even
functions) and j is the compression variable for the Biorthogonal protocol.

Compute sign and absolute value, Jsgn(x)K and J|x|K:

1. ⟨⟨x⟩⟩ ← ΠA2B
n,n(JxK)

2. ⟨⟨b⟩⟩ ← ⟨⟨y⟩⟩ ≫ (n− 1)

3. JbK← ΠB2A
1,n (⟨⟨b⟩⟩)

4. Jsgn(x)K← 1− 2 · JbK
5. J|x|K← Jsgn(x)K · JxK

Compute sin:

6. Use encoding of 2π, q := ⌊2π · 2f⌋, and compute J|x′|K← Πdiv(J|x|K, q).

7. Jy′K← ΠBior-LUT
n,n,j,sin(2π·)(J|x′|K)

8. Output: Jsgn(x)K · JyK ∈ Z2n ▷ For cos it returns JyK.

Πsin
n,f,j(JxK)

Fig. 12: Protocol for sin function based on the secure Biorthogonal protocol.

B.4 The Softmax Function

Recall that softmax is given by the following expression:

yi =
exi−max(x)∑k−1
j=0 e

xj−max(x)
,

where x ∈ Rk and max is the maximum operation over the vector x. To be able to compute the expression
above, we need three main functions: maximum, natural exponentiation, and reciprocal. The maximum
operation is computed using the protocol implemented in CrypTen (Section C.1.4 [46]). We note that
both CrypTen adopts a tree-reduction algorithm but also provides a pairwise method with constant round
complexity.

Reciprocal. From the softmax expression, we have that there exists at least one index j such that exj−max(x) =
1. Also, since there are at most k terms, we have that the reciprocal function can be only evaluated within
the [1, k] interval. We set k = 64 as per in GPT-2 model [62]. Then, we apply the secure ΠBior-LUT

n,l,j,F to the
interval [1, 64].

Table 5: Comparison of the mean absolute error (MAE) between Haar and Bioriothogonal LUT protocol with
probabilistic and deterministic truncation in (1, 64).

Op.
Probabilistic Truncation Deterministic Truncation

Haar Biorthogonal Haar Biorthogonal

log 8.63e-3 2.53e-2 9.76e-03 4.63e-04
reciprocal 2.26e-3 4.58e-4 1.87e-03 5.79e-04

sqrt 1.29e-1 8.84e-4 6.04e-02 6.41e-05
invsqrt 7.58e-4 5.40e-5 9.36e-04 2.20e-05

§ The light blue background indicates the lowest MAE error.
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C Truncation with Haar vs Biorthogonal

We compare the accuracy of Haar and Biorthogonal DWT approaches using both probabilistic and deterministic
truncation methods in Table 5. Our findings indicate that the Biorthogonal approach consistently outperforms
the Haar approach. The reason for this is that Haar averages out two consecutive values whereas Birthogonal
uses five consecutive elements, thus retaining more information and capturing the trend of the function.
Finally, for the both Haar and Biorthogonal approaches we observe only a marginal difference between the
probabilistic and deterministic truncation protocols.
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