
OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms
Maximilian Kroschewski

Hasso Plattner Institute,

University of Potsdam

maximilian.kroschewski@hpi.de

Anja Lehmann

Hasso Plattner Institute,

University of Potsdam

anja.lehmann@hpi.de

Cavit Özbay

Hasso Plattner Institute,

University of Potsdam

cavit.oezbay@hpi.de

ABSTRACT
Single Sign-On (SSO) allows users to conveniently authenticate

to many Relying Parties (RPs) through a central Identity Provider

(IdP). SSO supports unlinkable authentication towards the RPs

via pairwise pseudonyms, where the IdP assigns the user an RP-

specific pseudonym. This feature has been rolled out prominently

within Apple’s SSO service. While establishing unlinkable identities

provides privacy towards RPs, it actually emphasizes the main

privacy problem of SSO: with every authentication request, the IdP

learns the RP that the user wants to access. Solutions to overcome

this limitation exist, but either assume users to behave honestly or

require them to manage long-term cryptographic keys.

In this work, we propose the first SSO system that can provide

such pseudonymous authentication in an unobservable yet strongly
secure and convenient manner. That is, the IdP blindly derives the

user’s pairwise pseudonym for the targeted RP without learning

the RP’s identity and without requiring key material handled by the

user. We formally define the desired security and privacy properties

for such unlinkable, unobservable, and strongly secure SSO. In par-

ticular, our model includes the often neglected RP authentication:

the IdP typically wants to limit its services to registered RPs only

and thus must be able to (blindly) verify that it issues the token and

pseudonym to such a registered RP. We propose a simple construc-

tion that combines signatures with efficient proofs-of-knowledge

with a blind, yet verifiable, evaluation of the Hashed-Diffie-Hellman

PRF. We prove the security of our construction and demonstrate its

efficiency through a prototypical implementation, which requires a

running time of 2-20ms per involved party.

1 INTRODUCTION
Single Sign-On (SSO) allows users to conveniently authenticate

towards multiple online services with the help of a central party,

the Identity Provider (IdP). When accessing a service – denoted as

a Relying Party (RP) – users are redirected for authentication to the

IdP. The IdP then verifies the user and sends a cryptographically

signed token attesting the user’s identity 𝑢𝑖𝑑 to the RP. The SSO

approach frees users from the burden of having to remember a

dedicated login credential for each service they want to use, while

also providing stronger authentication and simpler deployment

for the RPs. Due to these characteristics, SSO has seen widespread

adoption in recent years, particularly with major platform providers

such as Google, Meta, or Apple serving as IdPs [1, 2, 18].

Unlinkability via Pseudonyms. A privacy drawback of SSO sys-

tems is that users become linkable across RPs through their identity

𝑢𝑖𝑑 , included in each token the IdP signs. Therefore, NIST recom-

mends the use of Pairwise Pseudonymous Identifiers [35, §6.2.5] –
short 𝑝𝑝𝑖𝑑 . The IdP then replaces the user’s identity𝑢𝑖𝑑 in the token

with a unique pseudonym 𝑝𝑝𝑖𝑑 , which is derived specifically for

IdP

UserRP

(1) Access

(
2
)
A
u
t
h
e
n
t
ic
a
t
io
n

Redirections

(
3
)
A
u
t
h
e
n
t
ic
a
t
io
n

Registered 𝑟𝑖𝑑 Registered𝑢𝑖𝑑

Unlinkability

Does not learn𝑢𝑖𝑑

(
4
)
T
o
k
e
n
w
it
h
a

𝑝
𝑝
𝑖𝑑
f
o
r
(𝑢
𝑖𝑑
, 𝑟
𝑖𝑑
)

Unobservability

Does not learn 𝑟𝑖𝑑

Figure 1: OPPID: Users authenticate to RPs through the IdP. The
IdP cannot observe towards which RP the user authenticates, and
users are unlinkable via RP-specific pseudonyms 𝑝𝑝𝑖𝑑𝑠.

the targeted RP. This protocol feature is supported by the widely-

adopted OpenID Connect (OIDC) standard [41, §8], which uses

a hash function H to set 𝑝𝑝𝑖𝑑 = H(𝑘,𝑢𝑖𝑑, 𝑟𝑖𝑑) where 𝑘 is a high-

entropy key of the IdP and 𝑢𝑖𝑑, 𝑟𝑖𝑑 are the identifiers of the user

and RP, respectively. As the IdP assigns deterministic and unique

pseudonyms for each user-RP combination, the RP is still ensured

that the correct user logs in, and the same user cannot authenticate

under multiple pseudonyms, which is known as sybil-resistance.

At the same time, the user can engage with different RPs under

unlinkable pseudonyms, which has been prominently advertised by

Apple in their Sign in with Privacy service [5] that uses this feature.

Main Challenge: Unobservability. While unlinkable pseudonyms

improve user privacy towards RPs, they emphasize another and

more fundamental privacy problem of SSO: to derive the user’s RP-

specific pseudonym, the IdP must know the RP’s identity 𝑟𝑖𝑑 at each

user’s login. The pseudonym computation is not the only reason

why the 𝑟𝑖𝑑 is revealed to the IdP in every authentication request.

The most important purpose is to bind the token to the targeted RP

for phishing protection, which is done by simply including 𝑟𝑖𝑑 in the

signed token. Further, the IdP typically wants to restrict its service

to registered RPs only, which requires some form of authentication

from the RP to the IdP too [41].

The lack of unobservability is a significant risk to users’ privacy.

The IdP is involved in every online authentication and learns exactly

which services and websites users access and when. As SSO is

convenient for RPs when only a few IdPs exist, as is currently the

case with Google, Meta, and Apple dominating the end-user SSO

market, this concentration of information is particularly dangerous.

Thus, an important question is how the convenience and security

of SSO can be provided in an unobservable manner. This requires

that the IdP does not learn the targeted 𝑟𝑖𝑑 with every request

but can still bind the signed token to the properly authenticated

RP and support unlinkability through RP-specific pseudonyms. To

maintain convenience for end-users, this should be in the plain SSO

1

setting, i.e., not relying on any long-term keys or cryptographic

credentials managed by the user.

Partial Solutions Towards Unobservable SSO. This core challenge
of providing SSO in an unobservable manner by the IdP has been

addressed in surprisingly few works, and all provide only partial

solutions to the problem.

The first work to provide unlinkability and unobservability for

users in OIDC was done by Hammann, Sasse, and Basin [26]. Their

protocol, denoted as Pairwise POIDC (PPOIDC) [26], lets the IdP
blindly bind the token to the targeted RP by signing a cryptographic

commitment to 𝑟𝑖𝑑 . The pseudonym computation (via hash func-

tions) is mostly outsourced to the user and again lets the IdP only

blindly sign the pseudonym through a commitment. The user must

also provide a zero-knowledge proof that the committed pseudo-

nym is indeed derived for 𝑢𝑖𝑑 . The protocol does not guarantee

that the computed pseudonym was generated for the intended RP,

though, allowing corrupt users to generate arbitrary IdP-attested

pseudonyms per RP.

TheUPPRESSO protocol byGuo et al. [25] also aims at pseudony-

mous SSO and generates pseudonyms through blind exponentiation

of an 𝑟𝑖𝑑-specific group element, enabling the RP to verify that it

received a correctly computed pseudonym on its 𝑟𝑖𝑑 . The protocol

focuses solely on the pseudonym, though, and does not detail how

the final token is also strictly bound to the 𝑟𝑖𝑑 .

Further, both protocols do not support RP authentication towards

the IdP. They only realize a weaker form, where the verification of

the RP’s legitimacy is outsourced to the user. Apart from putting

more burden on the user, this also implicitly assumes that usersmust

behave honestly. If a user misbehaves, or the user-side verification

is not handled properly, the IdP can be tricked into providing its

service to malicious and non-registered RPs or sign tokens that

assert pseudonymous identities that are incorrect.

The first work to address privacy-preserving RP authentica-

tion directly to the IdP was recently done by Kroschewski and

Lehmann [31]. Their AIF-ZKP (Authenticated Implicit Flow) pro-

tocol ensures that the IdP-issued token is bound to the intended

and authenticated RP without disclosing 𝑟𝑖𝑑 to the IdP. While this

approach provides unobservability towards the IdP, the protocol

did not provide support for pseudonyms, i.e., it lacks unlinkability.

Thus, there is no protocol – or even security model – for such a

fully private yet strongly secure SSO system.

Concrete Use Case: European Digital Identity Wallet. Apart from
general SSO, there is also a more concrete use case that explicitly de-

mands user authentication with unlinkability, unobservability, and

RP authentication: the European Digital Identity Wallet. This Iden-

tity Wallet is part of the EU’s eIDAS regulation, which entered into

force in May ’24 [17], and aims to establish government-attested

and verifiable digital identities with the following requirements:

“Enable privacy-preserving techniques which ensure unlinkabil-
ity [. . .] [17, §16b] — possibility of users to access services through
the use of pseudonyms [. . .] [17, §22] — providers should ensure
unobservability by not collecting data and not having insight
into the transactions of the users [. . .] [17, §32] — relying par-
ties should provide the information necessary to allow for their
identification and authentication [. . .] [17, §17]”

Every EU member state is now tasked with developing such an

Identity Wallet for all its citizens and residents, creating an urgent

demand for suitable technical solutions.

1.1 Our Contributions
In this work, we introduce the first SSO system (OPPID) that com-

bines all properties of unlinkable and unobservable user authenti-

cation via a central IdP towards an authenticated RP. More specifi-

cally, we propose a protocol where the IdP issues its users strictly

RP-bound tokens for a properly authenticated RP and containing

RP-specific pseudonyms, yet learns nothing about the RP’s identity.

Our protocol achieves its security and privacy properties in a very

convenient way, as it still works in the plain SSO setting, i.e., not

relying on additional user-managed key material.

Formal Security Model for OPPID. The first core challenge is to
properly define the security and privacy properties of this 3-party

protocol, where each party has complementing views as depicted in

Figure 1. In fact, neither of the aforementioned works on pseudony-

mous SSO provided a formal security model. We formalize Un-
linkability and Unobservability as the two privacy properties, and

security is expressed through notions of Session Binding and Request
Authentication. The latter three build upon the model of [31]. The

new property of Unlinkability – demanding that two corrupt RPs re-

ceiving pseudonymous user authentication cannot decide whether

they interact with the same user or not – must carefully exclude

trivial wins exploiting the deterministic nature of pseudonyms

and their blind computation. Security expressed through Session

Binding must hold despite unobservability, in particular guarantee-

ing that the user can only authenticate under correct and unique

pseudonyms 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) towards an authenticated RP – but

where the IdP must not learn anything about 𝑟𝑖𝑑 . Our Session Bind-
ing definition builds upon [31] and discovers and fixes a weakness

in their model: to balance security and unobservability, they guar-

antee Session Binding for honest users only, as this allows knowing
the RP they intend to authenticate. However, this excludes the most

important corruption setting. Thus, beyond extending their Session

Binding notion to pseudonymous and unlinkable authentication,

we strengthen their model by capturing security for malicious users.

Provably Secure Protocol 𝜋OPPID. We propose a protocol that se-

curely realizes all required properties. Our solution builds upon the

SSO protocol with privacy-preserving RP authentication from [31]

and shows how oblivious – yet strictly binding – pseudonym com-

putation can be added. In a nutshell, [31] uses anonymous creden-

tials for the RP’s authentication towards the IdP and lets the IdP

sign a verified commitment on 𝑟𝑖𝑑 in its token. To extend this to

blindly computed pseudonyms, we rely on a variant of the HashDH

(O)PRF [29] to realize F(𝑢𝑖𝑑, 𝑟𝑖𝑑). While it is currently not known

how such an oblivious PRF can be evaluated on blinded yet verified
inputs – which would allow ensuring that pseudonyms are com-

puted for the correct 𝑟𝑖𝑑 – we circumvent this missing building

block: letting the IdP bind non-verified and verified 𝑟𝑖𝑑-derived

values in the signed (blinded) token and carefully checking for

their consistency in the final token verification, where the 𝑟𝑖𝑑 is

no longer blind. Thus, we can carry the guarantees from the ver-

ified 𝑟𝑖𝑑-bound values over to the ones the IdP had to sign fully

2

blind and ensure that valid tokens contain properly authenticated

pseudonyms 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑), even with malicious users and RPs.

Implementation and Evaluation. To demonstrate the efficiency of

our solution, we implemented our protocol using PS signatures [38]

and Pedersen commitments [37] for RP authentication, RSA signa-

tures for IdP tokens, and HashDH-style pseudonym computation

in the PS signature source group. Our scheme is significantly faster

than PPOIDC [26], requiring only 2-17ms per party. We report on

the benchmarks of our open-source implementation and compare

it in more detail to the closest related works.

1.2 Other Related Work
We have already mentioned the related work that is closest to ours:

PPOIDC [26], UPPRESSO [25], and AIF-ZKP [31], all of which op-

erate within the plain SSO model. We consider the plain SSO model

as one where users do not manage long-term keys or credentials,

crucial for convenience and adoption, but this comes with privacy

limitations: colluding IdP and RPs can trace users. Therefore, we also
briefly discuss solutions for pseudonymous user authentication that

provide stronger privacy than our work, but at the cost of reduced

usability. A summary of such pseudonymous user authentication

solutions and a comparison to our work is given in Table 1.

The protocols [13, 21, 24, 42, 43] provide untraceable pseudony-

mous authentication but either introduce additional parties or rely

on user-managed secret keys, thus deviating from the plain SSO

setting: PseudoID [13] introduces an additional token service to

blindly sign a token that gets bound to a pseudonym and user se-

cret, allowing users to authenticate directly to an RP. Besides the

extra party, this approach makes RP authentication towards the IdP

impossible due to the token’s independence from the RP’s identity.

EL PASSO [43] lets users obtain a short-lived anonymous credential

from the IdP, again bound to a user-held key. The user can then

locally derive an RP-specific pseudonym and presentation token

from that credential and key for each login. This provides untrace-

able authentication but again detaches the RP authentication from

the IdP and requires users to manage a long-term key. PrivSSO [21]

requires users to create and manage a dedicated signature key pair

for each RP account, which is then bound to a generic IdP token. Us-

ing both enables pseudonymous and unobservable authentication

towards an RP but relies on even more keys that need to be securely

stored and orchestrated by the user. The approaches [24, 42] do not

require user keys but leverage secure enclaves on the user side or

on an extra party to compute the users’ pseudonyms. The enclave

acts as an intermediary between the RPs and the IdP, eliminating

the need for the IdP to learn the 𝑟𝑖𝑑 , while the correctness of the

pseudonym is guaranteed through remote attestation.

As an alternative to SSO-(like) solutions, truly user-centric sys-

tems [4, 11, 28, 36, 40] exist. They fully remove the role of an on-

line IdP and require users to manage their secret keys or anony-

mous credentials themselves for authentication. While providing

the strongest privacy properties, these systems have seen little

adoption so far.

2 SSO WITH OBLIVIOUS PPIDS
Before we present our pseudonymous SSO system OPPID, we in-
troduce its entities and detail the properties of pseudonymous user

authentication. Our system builds upon the standard SSO model,

where this privacy mechanism is commonly realized via a Pair-

wise Pseudonymous Identifier, as outlined by NIST [35, §6.2.5] and

further specified by OIDC [41, §8].

2.1 Entities & Main Phases
Our OPPID protocol is built for a classic SSO system that encom-

passes three core entities: Users, Relying Parties (RPs), and a central

Identity Provider (IdP):

Users: The user is registeredwith the IdP under a unique username

𝑢𝑖𝑑 . We assume the IdP handles all user-related registration and

authentication but omit those details from our model. For our

purposes, the crucial part is that the user is known as 𝑢𝑖𝑑 to the

IdP but has individual pseudonyms 𝑝𝑝𝑖𝑑 for each Relying Party.

RPs: The RP is the service the user wishes to access. The RP is

known as 𝑟𝑖𝑑 to the user and IdP. The RP relies on the IdP for

user authentication and for receiving additional user and session

information 𝑐𝑡𝑥 . The RP knows the user only under their pseu-

donym 𝑝𝑝𝑖𝑑 . To use the IdP’s service, the RP must be registered

with the IdP.

IdP: The IdP is the central authority that RPs and users rely on

for authentication. It issues a token 𝜏 , which asserts to an RP

that it is communicating with the user known as 𝑝𝑝𝑖𝑑 . Apart

from the pseudonym, the token is also bound to a particular

session referenced by 𝑠𝑖𝑑 , additional user/session data 𝑐𝑡𝑥 , and

the targeted RP 𝑟𝑖𝑑 .Whilewe do not detail how users authenticate

to the IdP, our model explicitly covers that only registered and

authenticated RPs can use the IdP’s service.

As one of our primary requirements is proper RP authentication,

we roughly divide our system into two phases:

Phase 1: RP Registration. Before utilizing the IdP’s authentication
service, an RP must first register with the IdP. We assume that an

RP is uniquely identified through its 𝑟𝑖𝑑 and denote withM the

set of registered RPs.

Phase 2: Authentication. When users with a unique username

𝑢𝑖𝑑 want to authenticate towards a specific RP 𝑟𝑖𝑑 , they initiate the

authentication session towards the targeted 𝑟𝑖𝑑 . Importantly, the

user does not reveal her username to the RP. The RP then provides

authentication information 𝑎𝑢𝑡ℎ and a session identifier 𝑠𝑖𝑑 and

sends both – via the user – to the IdP. When forwarding 𝑠𝑖𝑑, 𝑎𝑢𝑡ℎ

to the IdP, the user now reveals the username to the IdP, and we

assume that the IdP has the means to check whether the user 𝑢𝑖𝑑

is correctly authenticated.

While we do not detail how the user authenticates to the IdP, we

require that the IdP checks that the request stems from a previously

registered RP, i.e., 𝑟𝑖𝑑 ∈ M. If so, the IdP generates a token 𝜏 that

pseudonymously authenticates the user 𝑢𝑖𝑑 as 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑)
towards 𝑟𝑖𝑑 , where F is a pseudonym function we detail next. The

final token 𝜏fin must be strictly bound to 𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑠𝑖𝑑 and some

context 𝑐𝑡𝑥 , which stands for additional session/user information

vouched for by the IdP.

3

Approach \ Property
Privacy Security Other

Unobservability Unlinkability Req. Auth. Session Binding Plain SSO Model

OIDCWith Pseudonyms
∗
[41]

PseudoID [13]

PPOIDC∗[26]

UPPRESSO∗[25] / BISON [27]

EL PASSO [43]

AIF-ZKP∗[31]

MISO [42]

PrivSSO [21]

Our Work: OPPID
∗
Detailed security comparison given in Sec. 6

Table 1: Overview of SSO protocols, supporting RP authentication and/or pseudonymous user authentication.

2.2 Pairwise Pseudonymous Identifier
Our system focuses on providing the Pairwise Pseudonymous Iden-

tifier (𝑝𝑝𝑖𝑑) feature of OIDC [41] that hides the user’s 𝑢𝑖𝑑 to an RP.

The core properties of the 𝑝𝑝𝑖𝑑 are:

Uniqueness: For every combination of 𝑟𝑖𝑑 and 𝑢𝑖𝑑 , there exists a

unique mapping to a 𝑝𝑝𝑖𝑑 . We model this by assuming the 𝑝𝑝𝑖𝑑

to be derived through a deterministic function F as

𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) .

Collision Freeness: For every 𝑟𝑖𝑑 and for all 𝑢𝑖𝑑 ≠ 𝑢𝑖𝑑′, it must

hold that F(𝑢𝑖𝑑, 𝑟𝑖𝑑) ≠ F(𝑢𝑖𝑑′, 𝑟𝑖𝑑), i.e., different users are as-

signed different pseudonyms towards the same RP 𝑟𝑖𝑑 .

Unlinkable Pseudonyms: Seeing two pseudonyms for different

𝑟𝑖𝑑0 ≠ 𝑟𝑖𝑑1 with 𝑝𝑝𝑖𝑑0 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑0) and 𝑝𝑝𝑖𝑑1 = F(𝑢𝑖𝑑′, 𝑟𝑖𝑑1),
it is infeasible to determine whether 𝑢𝑖𝑑 = 𝑢𝑖𝑑′ or not.

As F is deterministic and the set of usernames is typically small,

the property of unlinkable pseudonyms requires that F must not

be known to the RPs viewing the user’s pseudonyms. This could

be achieved by F being an internal and secret mapping maintained

by the IdP or by relying on a keyed function Fk, where the key 𝑘
is only known to the IdP (with the function itself being public). A

simple realization for F is a pseudorandom function.

The challenge we address with our work is to enable the (par-

tially) blind – yet authenticated – 𝑝𝑝𝑖𝑑 computation. Specifically,

the IdP knows 𝑢𝑖𝑑 but not 𝑟𝑖𝑑 while ensuring that it computes valid

tokens for F(𝑢𝑖𝑑, 𝑟𝑖𝑑) for the targeted and properly authenticated

RP 𝑟𝑖𝑑 .

2.3 Syntax of OPPID
We present the syntax of OPPID — our Oblivious Pairwise Pseu-
donymous Identifier SSO variant that enables RP authentication

towards the IdP and pseudonymous authentication for users to-

wards registered RPs.

Definition 2.1 (Syntax of OPPID). Inmore detail, anOPPID scheme

is defined as a tuple of algorithms (Setup,KGenIdP, ⟨JoinRP,RegIdP⟩,
AInitU, AReqRP, AResIdP,AFinU, VfRP):
Setup(1𝜆) → pp Given the security parameter 𝜆 ∈ N, returns the
public parameters 𝑝𝑝 , which serve as implicit input for all subse-

quent algorithms.

KGenIdP (𝑝𝑝) → ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) Returns the keys for the IdP, where

𝑖𝑠𝑘 represents the secret key,M the membership state, and 𝑖𝑝𝑘

the public key.

⟨JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑),RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M)⟩ → {(𝑐𝑟𝑒𝑑,M′),⊥} An inter-

active protocol between the RP and IdP. Successful execution

results in the RP acquiring a credential 𝑐𝑟𝑒𝑑 , and the IdP yielding

an updated member stateM′. In case of failure, it returns ⊥.
AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑) → (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) Executed by the user to initialize

a token request via an IdP with 𝑖𝑝𝑘 for RP 𝑟𝑖𝑑 . It returns a com-

mitting value 𝑐𝑟𝑖𝑑 and an opening 𝑜𝑟𝑖𝑑 .

AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑) → 𝑎𝑢𝑡ℎ Executed by an RP,

taking an 𝑟𝑖𝑑 , a credential 𝑐𝑟𝑒𝑑 , user commitment 𝑐𝑟𝑖𝑑 and open-

ing 𝑜𝑟𝑖𝑑 , and a random session ID 𝑠𝑖𝑑 . It returns the RP authenti-

cation 𝑎𝑢𝑡ℎ.

AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) → {𝜏,⊥} Executed by the IdP

using it’s secret key 𝑖𝑠𝑘 , RP authentication data 𝑎𝑢𝑡ℎ, user com-

mitment 𝑐𝑟𝑖𝑑 , context 𝑐𝑡𝑥 , and session identifier 𝑠𝑖𝑑 . If the verifi-

cation of the request fails, it outputs ⊥ and a token 𝜏 otherwise.

AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏) → {(𝜏fin, 𝑝𝑝𝑖𝑑),⊥} Executed

by the user to finalize the token 𝜏 . It takes an RP’s 𝑟𝑖𝑑 , user com-

mitment 𝑐𝑟𝑖𝑑 and opening 𝑜𝑟𝑖𝑑 , context 𝑐𝑡𝑥 , and 𝑠𝑖𝑑 . It outputs

⊥ if the inputs are invalid, and the finalized token 𝜏fin and her

pseudonym 𝑝𝑝𝑖𝑑 otherwise.

VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin) → 0/1 Returns 1 if 𝜏fin is valid

under 𝑖𝑝𝑘 for (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) and otherwise 0.

We denote the user, RP, and session space with the sets U, R,
S, respectively. See Table 2 for an overview of all parameters and

App. A for the correctness definition.

Setup and Registration. Before offering its authentication service,

the IdP generates its key pair (𝑖𝑠𝑘, 𝑖𝑝𝑘) based on the public param-

eters 𝑝𝑝 and initializes its member stateM. The public key 𝑖𝑝𝑘 is

shared with all entities, and tokens issued by the IdP are validated

against this key. RPs can then engage in the registration process

⟨JoinRP,RegIdP⟩ with the IdP to obtain their credential 𝑐𝑟𝑒𝑑 .

Authentication Flow. The user authentication (see Figure 3) to

an RP 𝑟𝑖𝑑 via the IdP with 𝑖𝑝𝑘 involves the following four steps:

4

Notation Description
𝑝𝑝 Public parameters 𝑝𝑝 , known by all parties

𝑖𝑠𝑘, 𝑖𝑝𝑘,M IdP’s secret key 𝑖𝑠𝑘 , public key 𝑖𝑝𝑘 , RP member state

𝑟𝑖𝑑 RP’s identity 𝑟𝑖𝑑 ∈ R registered at the IdP

𝑐𝑟𝑒𝑑 Issued by the IdP to the RP to enable RP authentication

𝑢𝑖𝑑 User’s identity 𝑢𝑖𝑑 ∈ U registered at the IdP

𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑 User commitment 𝑐𝑟𝑖𝑑 and opening 𝑜𝑟𝑖𝑑 in a session

𝑎𝑢𝑡ℎ, 𝑠𝑖𝑑 RP authentication for a session referenced by 𝑠𝑖𝑑 ∈ S
𝑐𝑡𝑥 Context that abstracts the user and session information

𝜏 Authentication token issued by the IdP

𝑝𝑝𝑖𝑑 RP-specific user pseudonym finalized by the user

𝜏fin Token finalized by the user and verified by the RP

Figure 2: Parameters used in an OPPID system.

(1) The user executes AInitU with 𝑟𝑖𝑑 to initiate the authentication

process, obtaining (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑). The user then stores 𝑜𝑟𝑖𝑑 and

transmits both values to the RP.

(2) The RP runs AReqRP to generate 𝑎𝑢𝑡ℎ using 𝑐𝑟𝑖𝑑 , 𝑜𝑟𝑖𝑑 , and 𝑐𝑟𝑒𝑑

to authenticate as a legitimate RP. To ensure freshness, the RP

provides a fresh session identifier 𝑠𝑖𝑑 . The user then forwards

𝑎𝑢𝑡ℎ to the IdP.

(3) When the IdP receives a token request from a user𝑢𝑖𝑑 for session

𝑠𝑖𝑑 and implicit authentication 𝑎𝑢𝑡ℎ for an RP, it executes the

algorithm AResIdP. This results in either a token 𝜏 or⊥ if the RP

authentication fails. The token is now bound to the implicit 𝑟𝑖𝑑

and explicit 𝑢𝑖𝑑, 𝑠𝑖𝑑 , along with additional session information

such as timestamps, simplified through context 𝑐𝑡𝑥 . We assume

that the IdP has properly authenticated 𝑢𝑖𝑑 , but do not make

that explicit here.

(4) The user runs AFinU to transform the IdP’s token 𝜏 with the

committed 𝑟𝑖𝑑 to verify that the final token corresponds to

the initial 𝑟𝑖𝑑 and to derive an RP-specific pseudonym 𝑝𝑝𝑖𝑑 .

This algorithm takes the user opening 𝑜𝑟𝑖𝑑 and all received

information as input to produce the final token 𝜏fin and 𝑝𝑝𝑖𝑑 .

The resulting token 𝜏fin is then verified against 𝑖𝑝𝑘 to confirm its

validity for the tuple (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑). This explicit verification
binds the session information, 𝑝𝑝𝑖𝑑 , and the RP’s 𝑟𝑖𝑑 together.

3 SECURITY MODEL OF OPPID
We now formally define the privacy and security properties ex-

pected from an OPPID system, building upon the model of [31].

While we reuse some of their properties (Request Authentication

and Unobservability
1
), we also require the additional Unlinkabil-

ity property and extend their Session Binding model to cover the

pseudonymous authentication we aim for. Interestingly, the original

model for Session Binding was rather weak, which we strengthen

with our work too. We start with a high-level intuition of the de-

sired properties and then present our formal model in the form of

game-based security notions.

Note that some requirements are already specified for the pseu-

donym function F (see Sec. 2.2): each user must have a single pseu-

donym per 𝑟𝑖𝑑 (Uniqueness), and distinct users will obtain different

pseudonyms for the same 𝑟𝑖𝑑 (Collision Freeness). These two guar-

antees essentially boil down to requiring that F is deterministic and

injective, so we omit an explicit formalization for these straightfor-

ward properties.

1
These properties were denoted as RP Accountability / RP Hiding in [31]

In addition to these basic pseudonym properties, we require their

computation to be done in a blind way by the IdP (Unobservability),
as well as the unlinkability of the pseudonymous authentication

(Unlinkability), which also includes the unlinkability of F.

Unlinkability: The user’s identity 𝑢𝑖𝑑 should remain hidden to-

wards RPs – they should only know users under their RP-specific

pseudonym 𝑝𝑝𝑖𝑑 . This implies that when the same user authenti-

cates to two different RPs as 𝑝𝑝𝑖𝑑0 and 𝑝𝑝𝑖𝑑1, the two RPs cannot

distinguish whether they are communicating with the same user

or two different users.

Unobservability: The RP’s identity 𝑟𝑖𝑑 should remain hidden to-

wards an IdP during the authentication session. This property

assumes that RPs and users are honest and ensures privacy to-

wards a potentially corrupt IdP.

Despite the blind computation of 𝑝𝑝𝑖𝑑s and the privacy-preserving

authentication of RPs, IdP-issued tokens must still be unforgeable

and strictly bound to the blindly verified 𝑟𝑖𝑑 and the correctly com-

puted pseudonym.

Session Binding: It is infeasible to create a valid token 𝜏fin for a

session identified through (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) that was not prop-
erly authenticated or approved by the honest IdP. This notion

ensures that the user (and RP) can only generate tokens for the

unique and correct 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) they have jointly authenti-

cated, where RPs must be properly registered with the IdP.

Kroschewski and Lehmann also define the property of Request
Authentication [31], which complements their Session Binding no-

tion. While Session Binding expresses the security of the final token,

this additional property demands that every valid request (including

intermediate protocol values) processed by the IdP must originate

from a properly registered RP. As this property is not impacted

by the blind pseudonym computation focused on in this work, we

only restate this notion in our setting and refer to the detailed

explanation in App. A.

3.1 Oracles
Our definitions are given in a game-based notion, where an ad-

versary A runs an experiment with a challenger responsible for

managing all honest entities and their private states. These interac-

tions with honest entities are captured through oracles (see Figure 4,

right), which we outline before presenting our security games.

RP Registration With the IdP. We give the adversary the ability

to register RPs with the IdP, where A runs the part of the corrupt

party (either RP or IdP) and interacts with the honest counterpart

through the oracle.

RegHRP: Runs the registration protocol between an honest RP and

the honest IdP. Enables A to register an honest RP 𝑟𝑖𝑑 and later

request its authentication data through the AReqRP oracle.

RegCRP: Registers a corrupt RP at the honest IdP.

JoinCIdP: Registers an honest RP with the corrupt IdP. It is only

used for our privacy-related Unobservability property, where A,

the corrupt IdP, aims to break Unobservability.

Authentication. We futher grant the adversary the capability to

intercept, capture, and inject messages between honest parties in

an authentication session.

5

RP (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) User (𝑢𝑖𝑑) IdP (𝑖𝑠𝑘, 𝑖𝑝𝑘)

(𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑)

𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)

(𝜏fin, 𝑝𝑝𝑖𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)

0/1 ← VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin)

(1) Initialize protocol (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑)

(2) Authentication request (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑) (2) Authentication request (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑)

(3) Response, IdP (𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)

(4) Response, User (𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏fin)

Figure 3: User authentication in an OPPID scheme to a registered RP, which has previously obtained a credential 𝑐𝑟𝑒𝑑 from the IdP.

AInitU: Initiates an honest user session with a potentially corrupt

𝑟𝑖𝑑 , which can later be finalized using the AResFin oracle. The

main purpose of this oracle is to register the 𝑟𝑖𝑑 to which an

honest user intends to authenticate.

AReqRP: Returns an honest RP authentication 𝑎𝑢𝑡ℎ for a poten-

tially adversarially user initiated session, referenced by 𝑠𝑖𝑑 .

AResIdP: Allows A to retrieve an honest IdP’s response for any

token request. This oracle simulates the behavior of an honest

IdP and aborts if a token has already been requested for 𝑠𝑖𝑑 . The

inputs, such as the authentication 𝑎𝑢𝑡ℎ, user commitment 𝑐𝑟𝑖𝑑 ,

and 𝑠𝑖𝑑 , could be adversarially generated or partially/fully derived

from other oracles.

AResFin: Enables A to obtain a finalized token 𝜏fin and 𝑝𝑝𝑖𝑑 from

an honest user session with a (potentially corrupt) RP, initiated

using the AInitU oracle. This oracle simulates secure communi-

cation between an honest user and an honest IdP.

VfRP: Verifies a session (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) against a finalized to-

ken 𝜏fin and the 𝑖𝑝𝑘 . It keeps track of tokens presented by the

adversary and detects "double-spending", as explained in our

Session Binding game.

3.2 Unlinkability
Unlinkability captures the core privacy feature of pseudonymous
authentication, where authentication is done under a pseudonym

𝑝𝑝𝑖𝑑’s that hide the user’s identity towards malicious RPs. This

property requires the unlinkability of pseudonyms produced via F
across RPs, which will be a convenient stepping stone in the formal

analysis. Additionally, it ensures that authentication tokens do not

leak any information about 𝑢𝑖𝑑 beyond the requested pseudonym.

We model this property though a classic indistinguishability

experiment, which is defined through the game ExpUNLINKA,OPPID (see

Figure 4). In this game, the IdP is honest, and the adversary A
controls all RPs. It can register RPs through O .RegCRP and let

honest users initiate sessions through O .AInitU, and receive tokens
and RP-specific 𝑝𝑝𝑖𝑑s from the honest IdP via O .AResIdP.

Eventually, A outputs two challenge users 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 along

with common session information 𝑠𝑖𝑑, 𝑐𝑡𝑥 and RP authentication

𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑 . The game returns the token and 𝑝𝑝𝑖𝑑𝑏 for the randomly

chosen user 𝑢𝑖𝑑𝑏 , requiring the adversary to determine the bit 𝑏

better than by guessing.

Excluding Trivial Wins. Since 𝑝𝑝𝑖𝑑s are deterministically (yet

blindly) derived for every 𝑢𝑖𝑑, 𝑟𝑖𝑑 combination, we must prevent

trivial wins exploiting this determinism. Specifically, if the adver-

sary has already learned 𝑝𝑝𝑖𝑑0 or 𝑝𝑝𝑖𝑑1 through interactions with

the oracles, winning this game becomes trivial. Therefore, we en-

sure thatA never learns these values through two abort conditions

in our game.

Before looking at these conditions, note that Unlinkability is

meaningful and defined only for honest users. Thus, our challenger
computes the pseudonym for an honestly generated 𝑐𝑟𝑖𝑑 , knowing

the target RP 𝑟𝑖𝑑 for which the challenge pseudonym 𝑝𝑝𝑖𝑑𝑏 :=

F(𝑢𝑖𝑑𝑏 , 𝑟𝑖𝑑) is computed.

The first check in our winning condition ensures that (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑)
∉ Qppid for 𝑑 ∈ {0, 1}, meaning the adversary never triggered

either challenge user 𝑢𝑖𝑑𝑑 to initiate an honest session for 𝑟𝑖𝑑 (via

O .AInitU andO .AResIdP), whichwould reveal 𝑝𝑝𝑖𝑑𝑑 . Here, "honest"
implies 𝑐𝑟𝑖𝑑𝑖 was honestly generated in each request, allowing the

challenger to precisely know 𝑟𝑖𝑑 and the 𝑝𝑝𝑖𝑑𝑏 that A learned.

When the adversary queries O .AResIdP with 𝑐𝑟𝑖𝑑 that was not

honestly generated, the challenger lacks information about which

𝑟𝑖𝑑 the adversary requested the token and pseudonym for, requiring

stricter abort conditions. This is captured by O .AResIdP keeping

records (𝑢𝑖𝑑, adv) in Qppid for such adversarial sessions, and later

enforcing that (𝑢𝑖𝑑𝑑 , adv) ∉ Qppid for 𝑑 ∈ {0, 1}. Here, adv denotes
that the adversary cannot query O .AResIdP for any adversarial

query concerning the challenge users. This is unavoidable as we

cannot determine which 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, ?) A has obtained.

Capturing Unlinkability. Note that A can receive pseudonyms

𝑝𝑝𝑖𝑑 for both challenge users 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 for all 𝑟𝑖𝑑
′ ≠ 𝑟𝑖𝑑 apart

from the target 𝑟𝑖𝑑 from the challenge query, while using O .AInitU.
This capability is crucial to capture the desired unlinkability of

the users’ pseudonyms across RPs. Requiring A to use O .AInitU
merely mimics how honest users would behave, whom we aim to

protect with this property.

Definition 3.1 (Unlinkability). An OPPID scheme satisfies Un-

linkability if for all PPT adversaries A, it holds that

Pr[ExpUNLINKA,OPPID (𝜆) = 1] ≤ 1/2 + negl(𝜆).
Content of 𝑐𝑡𝑥 . We emphasize that in practice, privacy guaran-

teed by Unlinkability strongly depends on the information revealed

in 𝑐𝑡𝑥 . Our model assumes that 𝑐𝑡𝑥 is identical for both 𝑢𝑖𝑑0 and

6

Unlinkability : ExpUNLINKA,OPPID (𝜆)
𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝) ; 𝑏 ←R {0, 1}
O := {RegCRP,AInitU,AResIdP }
(𝑢𝑖𝑑0,𝑢𝑖𝑑1, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) ← AO (𝑖𝑝𝑘)
Require (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) ∈ Qrid

For 𝑑 ∈ {0, 1} :
𝜏𝑑 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑𝑑 , 𝑐𝑡𝑥, 𝑠𝑖𝑑)
(𝜏𝑓 𝑖𝑛𝑑 , 𝑝𝑝𝑖𝑑𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏𝑑)
Require VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑𝑑 , 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏𝑓 𝑖𝑛𝑑) = 1

𝑏∗ ← AO (𝜏𝑓 𝑖𝑛𝑏 , 𝑝𝑝𝑖𝑑𝑏)
Abort if for 𝑑 ∈ {0, 1}: (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑) ∈ Qppid ∨ (𝑢𝑖𝑑𝑑 , adv) ∈ Qppid

Return 1 if 𝑏 = 𝑏∗

Unobservability: ExpUNOBSA,OPPID (𝜆)
𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝) ; 𝑏 ←R {0, 1}
O := {JoinCIdP,AReqRP }
(𝑟𝑖𝑑0, 𝑟𝑖𝑑1, 𝑠𝑖𝑑) ← AO ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘)
For 𝑑 ∈ {0, 1} : Require (𝑟𝑖𝑑𝑑 , 𝑐𝑟𝑒𝑑𝑑) ∈ HRP
(𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑𝑏)
𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑𝑏 , 𝑐𝑟𝑒𝑑𝑏 , 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)
𝑏∗ ← AO (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑)
Return 1 if 𝑏 = 𝑏∗

Request Authentication: ExpREQ-AUTH
A,OPPID (𝜆)

𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝)
O := {RegHRP,AReqRP,AResIdP }
(𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ← AO (𝑖𝑝𝑘)
Return 1 if AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ≠ ⊥ ∧
(·, 𝑐𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth

Session Binding: ExpSES-BINA,OPPID (𝜆)
𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝)
O := {RegHRP,RegCRP,AInitU,AReqRP,AResIdP,AResFin,VfRP }
(𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗, 𝜏∗fin) ← A

O (𝑖𝑝𝑘)
Return 1 if VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), 𝜏∗fin) = 1 ∧
(1) (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏∨ // Direct Forgery
(2) (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 and at least one of the following holds:

(a) 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗) // Nym Correctness
(b) (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏fin ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗ // RP Binding I
(c) (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Qvf ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗ // RP Binding II
(d) 𝑟𝑖𝑑∗ ∉ HRP ∪ CRP // RP Authentication I
(e) 𝑟𝑖𝑑∗ ∈ HRP ∧ (𝑟𝑖𝑑∗, ·, 𝑠𝑖𝑑∗) ∉ Qauth // RP Authentication II

Oracle : RegHRP(rid) Oracle : JoinCIdP(ipk, rid)

Require (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP Require (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP
// Both RP and IdP are honest // A being the corrupt IdP
⟨JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑),RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M)⟩ Run JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑) withA
Upon output (𝑐𝑟𝑒𝑑,M′) Upon output 𝑐𝑟𝑒𝑑

HRP := HRP ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) } HRP := HRP ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) }
Return 1 Return 1

Oracle : RegCRP(rid) Oracle : AInitU (rid)
Require (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑)
// A being the corrupt RP // Req. for Unlinkability
RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M) with A Qrid := Qrid ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) }
Upon outputM′ Return (𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑)
CRP := CRP ∪ { (𝑟𝑖𝑑, ·) }
Return 1

Oracle : AReqRP (rid, crid, orid, sid)
Require (𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑) ∈ HRP
Qauth := Qauth ∪ { (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑) } // Req. for Session Binding
Return 𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)

Oracle : AResIdP (auth, crid, uid, ctx, sid)
Require (·, ·, 𝑠𝑖𝑑) ∉ Q𝜏

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
If (𝜏 ≠ ⊥) then
Q𝜏 := Q𝜏 ∪ (𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) // Req. for Session Binding
If (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, ·) ∈ Qrid then // Req. for Unlinkability
Qppid := Qppid ∪ { (𝑢𝑖𝑑, 𝑟𝑖𝑑) }

Else Qppid := Qppid ∪ { (𝑢𝑖𝑑, adv) }
Return 𝜏

Oracle : AResFin(auth, crid, uid, ctx, sid)
Require (·, ·, 𝑠𝑖𝑑) ∉ Q𝜏 ∧ (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) ∈ Qrid

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
(𝜏fin, 𝑝𝑝𝑖𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏)
If (𝜏 ≠ ⊥) : Q𝜏 := Q𝜏 ∪ (𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) // Req. for Session Binding
If (𝜏fin, 𝑝𝑝𝑖𝑑) ≠ ⊥ : Q𝜏fin := Q𝜏fin ∪ { (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) }
Return (𝜏fin, 𝑝𝑝𝑖𝑑)

Oracle : VfRP ((rid, ppid, ctx, sid), 𝜏fin)
𝑏 ← VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin)
If (𝑏 = 1) : Qvf := Qvf ∪ (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) // Req. for Session Binding
Return 𝑏

Figure 4: Our privacy and security definitions. Unlinkability (UNLINK, exp-1), captures the privacy guarantees of pseudonymous
authentication towards corrupt RPs. Unobservability (UNOBS, exp-2) models that an RP’s 𝑟𝑖𝑑 is hidden towards a corrupt
IdP during an authentication session. Request Authentication (REQ-AUTH, exp-3) captures the security of an authentication
request sent to an IdP, ensuring it originates from a registered RP. Session Binding (SES-BIN, exp-4) defines the security of the
authentication session. Oracles are defined on the right side. All sets are initially empty.

𝑢𝑖𝑑1, as revealing different 𝑐𝑡𝑥 would render distinguishing the

pseudonym and associated token trivial again. Thus, any imple-

mentation of our protocol must ensure that 𝑐𝑡𝑥 does not disclose

information that could link/identify users behind their pseudonyms.

3.3 Unobservability
This property captures that a malicious IdP does not learn anything

about the RP’s identity 𝑟𝑖𝑑 in an authentication request, meaning

it cannot observe where the user wants to authenticate to. Specif-

ically, the IdP should not be able to distinguish whether a user

repeatedly authenticates to the same RP or different ones. This

property was formally introduced in [31], and we simply adapt

this to our notation. The game is represented as ExpUNOBSA,OPPID in

Figure 4. Unobservability is defined through an indistinguishability

game, where the adversary, acting as a corrupt IdP, can setup RPs

and obtain their authentication data via the corresponding oracles.

Eventually the adversary chooses two RPs 𝑟𝑖𝑑0 and 𝑟𝑖𝑑1 and re-

ceives the authenticated request 𝑎𝑢𝑡ℎ𝑏 , 𝑐𝑟𝑖𝑑𝑏 of either of them. The

adversary wins if it can determine 𝑏 better than by guessing.

Definition 3.2 (Unobservability). An OPPID scheme satisfies Un-

observability if for all PPT adversaries A, it holds that

Pr[ExpUNOBSA,OPPID (𝜆) = 1] ≤ 1/2 + negl(𝜆).
7

3.4 Session Binding
The Session Binding property ensures that despite the privacy-

preserving computation of an authentication token and pseudonym,

the content (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) in the token is strictly unforgeable

and pseudonyms are correctly formed. This comprises the classic

unforgeability for all inputs directly seen and vouched for by the IdP

–which are (𝑐𝑡𝑥, 𝑠𝑖𝑑) for aDirect Forgery – but also all blindly signed
information. The blindly signed information is (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑), which
the IdP vouches for in a session 𝑠𝑖𝑑 for user 𝑢𝑖𝑑 with context 𝑐𝑡𝑥 .

If the IdP indeed created a token for (𝑐𝑡𝑥, 𝑠𝑖𝑑), the blindly signed

information must be consistent with its view and the intentions of

all honest users and RPs. More precisely, the following must hold:

• If a user 𝑢𝑖𝑑 requested a token in session 𝑠𝑖𝑑 , it is infeasible to

create a valid token for 𝑟𝑖𝑑, 𝑠𝑖𝑑 and 𝑝𝑝𝑖𝑑 ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑) – Nym
Correctness.

• If an honest user 𝑢𝑖𝑑 intended to authenticate to an RP 𝑟𝑖𝑑 in

session 𝑠𝑖𝑑 , it must be infeasible to create a valid token for 𝑠𝑖𝑑

and another 𝑟𝑖𝑑′ ≠ 𝑟𝑖𝑑 – RP Binding I.
• If a corrupt user 𝑢𝑖𝑑 authenticated to an RP 𝑟𝑖𝑑 in a session 𝑠𝑖𝑑 ,

it is infeasible to generate valid authentication tokens for 𝑠𝑖𝑑

and more than one RP – RP Binding II.
• If an RP 𝑟𝑖𝑑 is not properly registered, it is infeasible to generate

a valid token for 𝑟𝑖𝑑 – RP Authentication I.
• If an honest RP 𝑟𝑖𝑑 never authenticated for session 𝑠𝑖𝑑 , it is

infeasible to create a valid token for 𝑟𝑖𝑑 – RP Authentication II.

We model the aforementioned properties through the game

ExpSES-BINA,OPPID (see Figure 4), following the classic unforgeability

setting. In this game, the IdP is honest, and the adversary can

register both corrupt and honest RPs using oracles O .RegHRP and

O .RegCRP, respectively, storing their registrations in HRP and

CRP. The adversary initiates sessions for honest users via O .AInitU,
obtains authentications from honest RPs via O .AReqRP, and ac-

quires tokens from the IdP using O .AResIdP (for corrupt users) and

O .AResFin (for honest users). Additionally, we utilize a verification

oracle O .VfRP to detect if the adversary attempts to reuse the same

token across multiple (possibly corrupt) RPs.

The adversary can interact arbitrarily with these oracles and

must output a forgery consisting of a valid token 𝜏∗fin for session

(𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) that verifies under 𝑖𝑝𝑘 . The adversary wins

the game if this forgery is non-trivial, meaning it breaks any of

the guarantees listed above, which are captured through dedicated

winning conditions.

Direct and Indirect Forgeries. First, note that whenever the honest
IdP creates a token for a session identified through (𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑),
these values are stored in Q𝜏 . Thus, in the game, we check if the

forgery is for (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏 . If this occurs, A has produced a

token for a session never attested by the honest IdP and wins under

condition 1 (Direct Forgery).
The second category, an Indirect Forgery, means that the IdP

did sign (𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), but the additionally blindly signed or derived

values 𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗ are inconsistent with the behavior of the other

(honest) parties. This is captured under winning condition 2 and

branches according to the properties we discussed earlier. In the

following, we focus on Nym Correctness and refer to App. A for a

detailed explanation of the RP Binding and Authentication proper-

ties.

Nym Correctness. Despite the blind pseudonym computation, a

corrupt user 𝑢𝑖𝑑 must not be able to derive a token for any pseudo-

nym other than the one uniquely defined through F(𝑢𝑖𝑑, 𝑟𝑖𝑑), where
𝑟𝑖𝑑 is the RP specified in the token. This is captured in Condition

(a), whereA wins if 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗). This condition leverages

the fact that the IdP receives 𝑢𝑖𝑑 as input, and we store 𝑠𝑖𝑑,𝑢𝑖𝑑 in

Q𝜏 whenever a token is generated. Therefore, when the adversary

outputs (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), we can look up 𝑢𝑖𝑑 in Q𝜏 for 𝑠𝑖𝑑∗

and verify the correctness of the pseudonym for 𝑢𝑖𝑑, 𝑟𝑖𝑑∗. Recall
that we already required F to produce unique pseudonyms, so this

precisely defines the one pseudonym that is valid here, andA wins

if it can produce a valid token for any other pseudonym value.

Note that this property, together with the uniqueness require-

ment of F, ensures sybil-resistance. This prevents malicious users

from exploiting pseudonymous authentication to create several

identities towards a single RP, which was not guaranteed in [26].

RP Binding & Authentication. The winning condition (b) for RP

Binding I exploits that we know the intended 𝑟𝑖𝑑 when a session

𝑠𝑖𝑑∗ is started by an honest user through O .AInitU. Thus, if the
adversary outputs a token for any 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 for such a session,

it wins the game. For a session 𝑠𝑖𝑑∗ initiated by a corrupt user

towards a corrupt RP, we never know the exact RP the user wants

to authenticate to:A invokes O .AResIdP with adversarially chosen

inputs 𝑎𝑢𝑡ℎ and 𝑐𝑟𝑖𝑑 , both of which hide 𝑟𝑖𝑑 . Thus, our guarantees

are weaker here and follow the spirit of one-more unforgeability:

the adversary wins if it has previously "presented" a valid token

for some 𝑟𝑖𝑑 to the VfRP oracle, yet later outputs a token for the

same 𝑠𝑖𝑑∗ but with 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 as a forgery. Catching such a "double

spending" attack is the reason why we have the VfRP oracle: it

runs purely on public values, but essentially asks the adversary to

commit to one view, and later output a contradicting one as it’s

forgery (see App. A for further explanation).

The preceding two properties ensure that the IdP-generated

token is bound to the blindly received 𝑟𝑖𝑑 . Additionally, conditions

(d) and (e) further ensure that only legitimate RPs can request such

tokens. In condition (d), the adversary wins if it manages to produce

a valid token for some 𝑟𝑖𝑑∗ that has never been registered, meaning

𝑟𝑖𝑑∗ ∉ HRP ∪ CRP. If the 𝑟𝑖𝑑∗ in the forgery belongs to an honest

RP, we further letA win if (𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth, indicating that the

honest RP had never authenticated for that particular session 𝑠𝑖𝑑∗.

Definition 3.3 (Session Binding). An OPPID scheme satisfies Ses-

sion Binding if for all PPT adversaries A, it holds that

Pr[ExpSES-BINA,OPPID (𝜆) = 1] ≤ negl(𝜆) .

Uniqueness of 𝑠𝑖𝑑 . We remark that our security notion relies

on the fact that an honest IdP issues a single token per session

𝑠𝑖𝑑 . This ensures the desired freshness guarantees and uniquely

identifies the session context that the IdP attests. As is typical in

such protocols, we therefore assume that 𝑠𝑖𝑑 is unique per IdP and

do not rely on the cryptographic protocol to enforce this. Thus, an

implementation of OPPID must implement measures to ensure the

freshness of 𝑠𝑖𝑑 at the application layer.

8

Weaknesses of [31]. Our notion builds upon the RP Session Bind-

ing model of [31]. Apart of adding Nym Correctness – which is

the core functional extension needed for our work – our model

significantly enhances the overall security guarantees provided by

their notion. We address the following two weaknesses:

Firstly, the original model [31] only ensures security for ses-

sions involving honest users. This restriction excludes scenarios

involving "corrupt" user sessions, which are critical in real-world

applications. The justification for this limitation lies in the blind-

ness of 𝑟𝑖𝑑 towards the IdP: it is argued that the game requires the

view of honest users to determine their targeted RP. However, this

dependency is necessary only for security properties that depend

on 𝑟𝑖𝑑 . Our security model carefully separates these dependencies

into several sub-cases, where only RP Binding I necessitates the

restriction to honest users. We demonstrate that even for corrupt

users, a weaker form of 𝑟𝑖𝑑-binding should be realized, as expressed

in our RP Binding II condition.

Secondly, the original model captures security only against cor-
rupt RPs, arguing that honest RPs do not give the adversary any

advantage. However, higher security guarantees should ideally

apply to sessions involving honest RPs as well. Specifically, the

adversary should not be able to create any valid 𝑟𝑖𝑑-bound token

for sessions that the RP never authenticated, which we formalize

in our RP Authentication II property. We stress that both are over-

sights in their security model only, as the protocol from [31] also

satisfies our stronger security notion. However, related works such

as PPOIDC [26] and UPPRESSO [25] do become insecure when

users are corrupt, highlighting the need of a security model that

properly captures malicious behavior. A more detailed comparison

with the security model of [31] is provided in App. A.

3.5 Privacy Limitation: No Untraceability
While OPPID significantly enhances privacy in SSO, its guarantees

are notably weaker compared to "full-fledged" privacy-preserving

authentication systems. The primary limitation lies in the lack of

untraceability, meaningOPPID does not provide privacy protection

when the IdP and RP collude. We discuss these limitations here and

argue that they are inherent in any SSO-like system.

When the IdP and (some) RPs collude, they can trace users

through severalmeans. First, through the deterministic pseudonyms,

which is inherent in any pseudonymous SSO system where the only

secret input to the pseudonym computation, 𝑝𝑝𝑖𝑑 = F𝑘 (𝑢𝑖𝑑, 𝑟𝑖𝑑),
is controlled by the IdP. As 𝑢𝑖𝑑 and 𝑟𝑖𝑑 are public information and

typically stem from small "brute-forceable" sets, a colluding RP 𝑟𝑖𝑑

and IdP can determine the user behind an RP-specific pseudonyms

through re-computation of the pseudonyms of all users and com-

parison against the 𝑝𝑝𝑖𝑑 they want to identify. This is independent

of how these pseudonyms are computed, and merely exploits their

determinism. Possible means to mitigate that would be to distribute

the IdP’s key 𝑘 among several IdPs or requiring some cryptographic

input from the user. Both would deviate from core principles of

SSO though, which relies on a single entity and does not assume

the users to manage keys or credentials.

Second, a user’s token request and the finalized token can be

linked to each other, not only through the pseudonym, but also

through the 𝑠𝑖𝑑 values known to both the IdP and RP, and through

the timing between sessions that are handled simultaneously by

both the IdP and RP. One can design a protocol where 𝑠𝑖𝑑 values are

not revealed to the IdP in the clear, but the impact would be limited

as the sessions can still be linked through the timing information.

To avoid that linkage, one would have to break the immediate

connection between the IdP and RP, e.g., by letting the IdP issue

(somewhat) long-term credentials to users, and rely on techniques

such as anonymous credentials for untraceable authentication from

the user to the RP. In fact, this approach has already been proposed

by EL PASSO [43], but gives up on the convenience advantage of

plain SSO as it requires users to manage a long-term key.

4 BUILDING BLOCKS
This section introduces the necessary building blocks. The security

parameter is denoted as 𝜆 ∈ N, and the symbol ⊥ represents failure.

Note that all algorithms may use global parameters 𝑝𝑝 , such as

shared groups, instead of 1
𝜏
, and may also provide additional public

parameters. For simplicity, we omit explicit mention of these public

parameters or the algorithms used to generate them.

Commitment Scheme. A commitment scheme COM = (Com,

Open) produces a commitment 𝑐𝑜𝑚 and its corresponding opening

𝑜 using the algorithm Com(𝑚). The algorithm Open(𝑚,𝑐𝑜𝑚, 𝑜)
outputs 1 if 𝑐𝑜𝑚 is a valid commitment for𝑚, and 0 otherwise. The

commitment scheme must satisfy hiding and binding properties.

Non-interactive Zero-Knowledge Proofs. In a non-interactive zero-
knowledge proof system [7, 20], the prover and verifier possess

the statement 𝑠 and some public context 𝑥 . The prover generates a

proof 𝜋 ← NIZK{(𝑤) : 𝑠 (𝑤)}(𝑥) that convinces the verifier that
𝑠 (𝑤) = 1, without revealing𝑤 to the verifier and ensuring that 𝜋 is

bound to 𝑥 . We require the proof system to be zero-knowledge and

simulation-sound [23]. Our NIZK instantiation uses generalized

Schnorr-proofs [9], made non-interactive through the Fiat-Shamir

heuristic [20], including 𝑥 in the challenge hash.

Signature Scheme. A signature scheme is a tuple of algorithms

S1 = (KGen, Sign,Vf), with key generation (𝑝𝑘, 𝑠𝑘) ← KGen(1𝜆),
signing 𝜎 ← Sign(𝑠𝑘,𝑚), and verification as 0/1 ← Vf (𝑝𝑘,𝑚, 𝜎).
We need S1 to be Existentially Unforgeable under a Chosen Mes-

sage Attack (EUF-CMA) [22]. In our implementation, we use RSA

signatures for compatibility with existing standards.

We also require a signature scheme S2 = (KGen, Sign,Vf) that
supports the creation of efficient NIZKs. The NIZK should prove

knowledge of a valid signature 𝜎 on a message𝑚 under 𝑝𝑘 with-

out revealing the message or signature. In our construction, we

combine S2 signatures with commitments using a NIZK proof that

demonstrates knowledge of a signature on a committed message as

NIZK{(𝑚,𝜎, 𝑜) : Vf (𝑝𝑘,𝑚, 𝜎) = 1 ∧ Open(𝑚,𝑐𝑜𝑚, 𝑜) = 1}(𝑐𝑜𝑚) .

This proof discloses only the commitment 𝑐𝑜𝑚 while verifying the

possession of a valid signature 𝜎 under 𝑝𝑘 on𝑚 and an opening 𝑜

to the commitment 𝑐𝑜𝑚 for the signed message. We instantiat this

scheme with PS signatures [38], which provide all these features.

Pseudorandom Functions. We require a pseudorandom function

𝑦 ← PRF(𝑘, 𝑥) that produces output indistinguishable from ran-

dom, towards an adversary not knowing the key 𝑘 . We need two

9

different pseudorandom functions, one that produces pseudoran-

dom values in Z𝑞 and can simply be HMAC with a proper output

mapping; and a second function that allows for the partially-blind

evaluation needed in our protocol. For the latter, we use the DL-

based PRF(𝑘, 𝑥) := H(𝑥)𝑘 [34] in a group G of prime order 𝑞.

5 OUR OPPID CONSTRUCTION
This section introduces our OPPID protocol 𝜋OPPID, which com-

bines oblivious 𝑝𝑝𝑖𝑑 generation with a recent privacy-preserving

RP authentication approach for the OIDC Implicit Flow [31]. We

first outline the adapted authentication process from [31], present

the construction of our pseudonym function and its semi-blind eval-

uation in the context of joint SSO authentication, and then proceed

with the security analysis of our protocol. The detailed protocol,

including oblivious 𝑝𝑝𝑖𝑑 generation, is given in Figure 5.

5.1 Privacy-Preserving RP Authentication
Our protocol 𝜋OPPID builds upon [31], which enables privacy-

preserving RP authentication in SSO. The core idea therein is that

an RP obtains obtaining a privacy-preserving credential from the

IdP that includes the RP’s identifier 𝑟𝑖𝑑 . This credential uses a signa-

ture scheme with efficient proofs, enabling the RP to authenticate

to the IdP in a blind yet verifiable manner by sending a commitmen

to 𝑟𝑖𝑑 and proving ownership of a valid signature on 𝑟𝑖𝑑 . The IdP

then verifies the proof and signs the commitment as part of the

authentication token. Both the user and RP know the opening to

the commitment and can verify that the token is indeed issued for

the intended RP. The authentication token in [31] always contains

the username 𝑢𝑖𝑑 that is vouched for by the IdP. In our protocol,

the key modification is replacing 𝑢𝑖𝑑 with the pseudonym 𝑝𝑝𝑖𝑑 ,

computed in a blind yet controlled way, detailed in Sec. 5.2.

The protocol in [31] also captures revocation by making the RP’s

credentials short-lived and encoding an epoch that must be revealed

in every authentication. On the protocol level, adding epochs to

credentials is very simple, but it makes the security model and

analysis significantly more complex. Thus, we only use the core

idea in our protocol and use it as a basis for integrating our privacy-

preserving 𝑝𝑝𝑖𝑑 generation. The main steps we use from [31] are

related to setup, registration, and basic authentication.

Setup & Registration. The IdP generates key pairs for two signa-

ture schemes: (𝑠𝑘1, 𝑝𝑘1) ←R
S1 .KGen(1𝜆), a standard scheme used

for signing the authentication token, and (𝑠𝑘2, 𝑝𝑘2) ←R
S2 .KGen(1𝜆),

which supports efficient proofs for RP authentication. During the

registration of an RP with identifier 𝑟𝑖𝑑 , the IdP issues a credential

𝑐𝑟𝑒𝑑 := 𝜎𝑟𝑖𝑑 for 𝑟𝑖𝑑 .

The public parameters 𝑝𝑝 ← OPPID.Setup(1𝜆) serve as im-

plicit inputs for all algorithms. They include the descriptions of

the underlying groups and the potential public parameters of the

commitment scheme Com, signature schemes S2 and S1, and the

zero-knowledge proof system NIZK.

Basic Authentication – From [31] Without Pseudonyms. For au-
thentication of a user𝑢𝑖𝑑 to an RP 𝑟𝑖𝑑 in a session identified through

𝑠𝑖𝑑 , the user, RP, and IdP proceed as follows:

KGenIdP (pp) → ((isk,M), ipk)
(𝑠𝑘1, 𝑝𝑘1) ←R S1 .KGen(1𝜆) ; (𝑠𝑘2, 𝑝𝑘2) ←R S2 .KGen(1𝜆) ; 𝑘 ←R {0, 1}𝜆
Return (((𝑠𝑘1, 𝑠𝑘2, 𝑘), ∅), (𝑝𝑘1, 𝑝𝑘2))

⟨JoinRP (ipk, rid),RegIdP (isk, rid,M)⟩ → { (cred,M′),⊥}
RP : Initiate registration for 𝑟𝑖𝑑

IdP : Parse 𝑖𝑠𝑘 as (·, 𝑠𝑘2, ·) ; Require 𝑟𝑖𝑑 ∉ M
𝜎𝑟𝑖𝑑 ← S2 .Sign(𝑠𝑘2, 𝑟𝑖𝑑) ; M′ ← M ∪ {𝑟𝑖𝑑 }

RP : Return 𝜎𝑟𝑖𝑑 ; IdP : ReturnM′

AInitU (ipk, rid) → (orid, crid)
(𝑐𝑜𝑚,𝑜) ←R Com(𝑟𝑖𝑑) ; 𝑟 ←R Z∗𝑞 ; 𝑥 ← H(𝑟𝑖𝑑)𝑟
Return ((𝑟, 𝑜), (𝑥, 𝑐𝑜𝑚))

AReqRP (ipk, rid, cred, crid, orid, sid) → auth

Parse 𝑐𝑟𝑒𝑑 as 𝜎𝑟𝑖𝑑 , 𝑖𝑝𝑘 as (·, 𝑝𝑘2), 𝑐𝑟𝑖𝑑 as (𝑥, 𝑐𝑜𝑚), 𝑜𝑟𝑖𝑑 as (𝑟, 𝑜)
Require H(𝑟𝑖𝑑)𝑟 = 𝑥 ∧Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = 1

Return 𝜋 ← NIZK{ (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑) : S2 .Vf (𝑝𝑘2, 𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) = 1

∧ Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = 1} (𝑐𝑜𝑚, 𝑥, 𝑠𝑖𝑑)

AResIdP (isk, auth, crid, uid, ctx, sid) → {𝜏,⊥}
Parse 𝑖𝑝𝑘 as (·,𝑝𝑘2) , 𝑖𝑠𝑘 as (𝑠𝑘1,·, 𝑘), 𝑐𝑟𝑖𝑑 as (𝑥, 𝑐𝑜𝑚), 𝑎𝑢𝑡ℎ as 𝜋

Require that 𝜋 verifies w.r.t. (𝑝𝑘2, 𝑐𝑜𝑚, 𝑥, 𝑠𝑖𝑑) and 𝑥 ∈ G
𝑢𝑘 ← PRF(𝑘,𝑢𝑖𝑑) ; 𝑦 ← 𝑥 𝑢𝑘

𝜎𝜏 ← S1 .Sign(𝑠𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑)) ; Return (𝜎𝜏 , 𝑦)

AFinU (ipk, rid, crid, orid, ctx, sid, 𝜏) → { (𝜏fin, ppid),⊥}
Parse 𝑖𝑝𝑘 as (𝑝𝑘1, ·), 𝑐𝑟𝑖𝑑 as (·, 𝑐𝑜𝑚), 𝑜𝑟𝑖𝑑 as (𝑟, 𝑜), 𝜏 as (𝜎𝜏 , 𝑦)
𝑥 ← H(𝑟𝑖𝑑)𝑟 ; 𝑦 ← 𝑦 −𝑟

Require Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = S1 .Vf (𝑝𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑), 𝜎𝜏) = 1

Return ((𝑐𝑜𝑚,𝑜, 𝑟, 𝑦, 𝜎𝜏), 𝑦)

VfRP (ipk, (rid, ppid, ctx, sid), 𝜏fin) → 0/1
Parse 𝑖𝑝𝑘 as (𝑝𝑘1, ·), 𝜏fin as (𝑐𝑜𝑚,𝑜, 𝑟, 𝑦, 𝜎𝜏)
𝑥 ← H(𝑟𝑖𝑑)𝑟 ; 𝑦 ← 𝑦 −𝑟

Return 1 if

Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜) = S1 .Vf (𝑝𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑), 𝜎𝜏) = 1 ∧ 𝑝𝑝𝑖𝑑 = 𝑦

Figure 5: 𝜋OPPID protocol construction of our OPPID system.

(1) Initialization: The user creates a commitment 𝑐𝑜𝑚 on the in-

tended RP’s 𝑟𝑖𝑑 , sends 𝑐𝑜𝑚 and the opening 𝑜 to the RP, and

keeps all values in its state for later finalization.

(2) RP Authentication: When the RP receives a well-formed 𝑐𝑜𝑚

and 𝑜 for its 𝑟𝑖𝑑 , it generates its authentication 𝑎𝑢𝑡ℎ by proving

possession of the IdP’s S2 signature 𝜎𝑟𝑖𝑑 on 𝑟𝑖𝑑 and proving

that 𝑟𝑖𝑑 is also contained in 𝑐𝑜𝑚. It sends the proof 𝜋 to the user,

who forwards it along with the commitment 𝑐𝑜𝑚 to the IdP.

(3) Token Generation: When the IdP receives the commitment 𝑐𝑜𝑚

and the proof 𝜋 from the user 𝑢𝑖𝑑 , it verifies the proof, ensuring

that authentication is requested by a registered RP. If verification

succeeds, the IdP generates a standard S1 signature 𝜎𝜏 on the

commitment 𝑐𝑜𝑚, the session 𝑠𝑖𝑑 , and the context 𝑐𝑡𝑥 .

(4) Finalization & Verification: To finalize the token 𝜏 , the user

opens the commitment 𝑐𝑜𝑚 with 𝑜 and the intended 𝑟𝑖𝑑 and

verifies the IdP’s signature. If the verification is successful, the

opening 𝑜 is added to 𝜏 , creating a verifiable binding of the IdP’s

signature to a specific RP.

5.2 Oblivious PPID Generation
The protocol outlined above would not be very useful yet, as it does

not include a user identifier, which was simply 𝑢𝑖𝑑 in [31]. We now

want to include a pseudonym 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) in every token,

10

where 𝑢𝑖𝑑 is the known user that the IdP has authenticated (outside

of our protocol), and 𝑟𝑖𝑑 is the RP the user wants to authenticate

to, but which must not be revealed to the IdP. We first describe the

core function F and then explain how to compute it in a semi-blind

and controlled manner as our model requires.

Pseudonym Function F. Our pseudonym function F is a keyed

deterministic function, which combines the standard DL-based

pseudorandom function FDL (𝑘, 𝑥) := H(𝑥)𝑘 [34], operating in a

group G of prime order 𝑞, and a hash function H : R ↦→ G \ {1},
with a standard PRF : {0, 1}𝜆 × U ↦→ Z𝑞 . The sets U and R
represent the user and RP space, respectively. For compactness, we

will sometimes write Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) to refer to this keyed function:

FDL+PRF = Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) := H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .
The desired pseudonym unlinkability is directly ensured as FDL+PRF
is a secure PRF. In fact, FDL is often used to derive so-called scope-

exclusive pseudonyms in the context of anonymous credentials,

group signatures and DAA [8, 14, 33]. In these works, the expo-

nent is a user-managed secret key, while we rely on the IdP to

maintain them. Note that UPPRESSO [25] employs a similar keyed

pseudonym function, and we refer for the comparison to Sec. 6.

Partially-Blind Evaluation of F. The construction FDL+PRF has

also been used as a partially-blind OPRF in prior works [12, 30, 32].

This gives us the needed capability for blind evaluation of the

function on a hidden 𝑟𝑖𝑑 and a revealed𝑢𝑖𝑑 : the user blinds the inner

hash as 𝑥 ← H(𝑟𝑖𝑑)𝑟 for a random 𝑟 and sends this blinded value

along with 𝑢𝑖𝑑 to the IdP. The IdP responds with 𝑦 ← 𝑥PRF(𝑘,𝑢𝑖𝑑) ,
where the exponent depends on the revealed𝑢𝑖𝑑 . The user can then

unblind the response to 𝑝𝑝𝑖𝑑 ← 𝑦−𝑟 , which yields the expected

pseudonym:

𝑝𝑝𝑖𝑑 = 𝑦−𝑟 =

(
(H(𝑟𝑖𝑑)𝑟)PRF(𝑘,𝑢𝑖𝑑)

)−𝑟
= H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .

The Need for Verifiability. Finally, another essential feature re-
quired for our function is verifiability: the RP must be assured that

a received 𝑝𝑝𝑖𝑑 was computed for the correct 𝑟𝑖𝑑 . While the IdP

is trusted here, one approach could be to delegate this verification

task to the IdP by employing a partially-blind OPRF with commit-
ted and verifiable inputs. This approach would enable the IdP to

verify that it evaluates the blind function on the same 𝑟𝑖𝑑 that is

authenticated through 𝑎𝑢𝑡ℎ (and contained in 𝑐𝑜𝑚). Such a func-

tion would serve as a suitable building block, but it is not known

whether such an OPRF is feasible [10]. Existing constructions like

the Dodis-Yampolskiy (O)PRF [15], which operate on homomor-

phically encrypted inputs, allow for proofs of well-formedness but

do not extend to the partially-blind setting needed here. Similarly,

constructions like (2)HashDH, which enable partial blindness, lack

efficient and composable proofs of correct inputs as their input is a

perfectly blinded hash value that destroys all algebraic structure.

Adding Partial Verifiability to Our Protocol. Interestingly, we can
work around this non-existent building block by incorporating sev-

eral straightforward steps, building upon UPPRESSO [25] and the

base protocol from [31]. The resulting protocol is detailed in Fig-

ure 5.

First, in addition to the commitment and opening 𝑐𝑜𝑚, 𝑜 for 𝑟𝑖𝑑 ,

we let the user compute 𝑥 = H(𝑟𝑖𝑑)𝑟 and send all values, including

𝑟 and 𝑜 , to the RP. The RP verifies that both 𝑥 and 𝑐𝑜𝑚 open to

its 𝑟𝑖𝑑 . Only upon successful verification does the RP provide its

authentication 𝑎𝑢𝑡ℎ, proving ownership of a valid credential for

the committed 𝑟𝑖𝑑 in 𝑐𝑜𝑚. The RP also binds its NIZK proof 𝜋 to 𝑥 .

This ensures 𝑥 correctness when either the RP or user is honest.

Second, upon receiving a verified authentication request, the IdP

includes both the blinded input 𝑥 and the blinded output 𝑦 in its to-

ken, as done in [25], signing𝜎𝜏 ← S1 .Sign(𝑠𝑘1, (𝑐𝑜𝑚 | |𝑥 | |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑)).
Crucially, the signature binds the blinded and non-verified values 𝑥

and 𝑦 used for 𝑝𝑝𝑖𝑑 to the commitment 𝑐𝑜𝑚 on 𝑟𝑖𝑑 , for which the

RP provided a valid NIZK proof.

Third, the user incorporates the blinding value 𝑟 used to hide 𝑟𝑖𝑑

in 𝑥 as part of the final token 𝜏fin. Thus, 𝜏fin = (𝑐𝑜𝑚, 𝑜, 𝑟,𝑦, 𝜎𝜏), and
the verification functionVfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin) performs

the following crucial checks:

• Verify that the IdP’s signature 𝜎𝜏 is valid for the recomputed

𝑥 = H(𝑟𝑖𝑑)𝑟 , where 𝑟𝑖𝑑 is the one provided in the verification.

• Ensure that the pseudonym 𝑝𝑝𝑖𝑑 satisfies 𝑝𝑝𝑖𝑑 = 𝑦 −𝑟 , where 𝑦
is signed by the IdP and 𝑟 is the blinding value leading to the

correct 𝑥 .

• Confirm that the 𝑟𝑖𝑑 contained in 𝑥 matches the one in 𝑐𝑜𝑚.

These checks extend the guarantees from 𝑐𝑜𝑚 to 𝑝𝑝𝑖𝑑 , leveraging

our three-party setting where both the user and RP are aware of

𝑟𝑖𝑑 , and both verify that 𝑥 and 𝑐𝑜𝑚 are valid for the intended 𝑟𝑖𝑑 .

Thus, as long as either the RP or the user in the session remains

honest, the derived pseudonym 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑) is ensured to be

correct.

Invalid Pseudonyms – If Both RP and User Are Corrupt. If both
the RP and user are corrupt, they have some leeway, but none that

is harmful. A malicious RP 𝑟𝑖𝑑 and a malicious user 𝑢𝑖𝑑 can request

and obtain pseudonyms 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑′) for arbitrary 𝑟𝑖𝑑′ ≠ 𝑟𝑖𝑑

by sending a blinded 𝑥 to the IdP that does not contain the correct

𝑟𝑖𝑑 . The IdP will compute the pseudonym based on the incorrect

𝑟𝑖𝑑′ but will bind it to the verified commitment 𝑐𝑜𝑚, which can only

be opened to 𝑟𝑖𝑑′. In the final token, the 𝑟𝑖𝑑 is no longer blinded,

and verification includes a check whether the commitment contains

the same 𝑟𝑖𝑑 as the blinded 𝑥 used in the 𝑝𝑝𝑖𝑑 computation. This

check will fail, rendering the entire token and pseudonym invalid.

Furthermore, note that this "attack" is only feasible for mali-

cious users 𝑢𝑖𝑑 , as 𝑢𝑖𝑑 is revealed to the IdP and used to compute

𝑝𝑝𝑖𝑑 . Thus, a malicious RP and user 𝑢𝑖𝑑 cannot trick the IdP into

computing pseudonyms for any other user 𝑢𝑖𝑑′ ≠ 𝑢𝑖𝑑 .

5.3 Security Analysis
We have already informally sketched how the different security

properties are guaranteed in our protocol description. Now, we

formally prove that our protocol 𝜋OPPID satisfies all security and

privacy properties defined in Sec. 3.

Properties of FDL+PRF. Let us first analyze the properties of our
pseudonym function FDL+PRF = Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) := H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .
Recall that our OPPID model requires this function to provide

unique, collision-free, and unlinkable pseudonyms (see Sec. 2.2).

It is easy to see that all properties are satisfied due to FDL+PRF
being deterministic, injective, and a secure PRF. These properties

are further elaborated in App. B.

11

Analysis of 𝜋OPPID. We now turn to the proofs of our three core

properties, ensuring the correct yet privacy-preserving computa-

tion of pseudonymous authentication tokens with respect to our

pseudonym function FDL+PRF.

Theorem 5.1 (Unlinkability). 𝜋OPPID satisfies Unlinkability if
H is a random oracle, PRF is a secure pseudorandom function and the
DDH assumption holds in G.

This proof relies on the pseudorandomness of FDL+PRF, as shown
in App. B.2, under the assumptions that H is a random oracle, PRF
is a secure pseudorandom function, and the DDH assumption holds

in G. We now provide a proof sketch and refer to App. B.1 for the

full proof, where we also discuss why a one-more-type assumption,

often required for OPRFs, is not required.

Proof sketch. In the Unlinkability game, the adversary’s ob-

jective is to determine the user𝑢𝑖𝑑𝑏 behind a pseudonym 𝑝𝑝𝑖𝑑𝑏 and

token 𝜏fin𝑏 , generated for 𝑟𝑖𝑑 and either𝑢𝑖𝑑0 or𝑢𝑖𝑑1. The adversary

has oracle access to the honest IdP and can learn the pseudonyms

of 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 for all RPs except 𝑟𝑖𝑑 (as otherwise winning is

trivial).

We already know that FDL+PRF is a secure PRF, meaning the

𝑝𝑝𝑖𝑑s themselves do not leak any information about the contained

𝑢𝑖𝑑 , except what is deterministically derived. The only part in the

IdP’s response 𝜏fin that depends on 𝑢𝑖𝑑 is the PRF output 𝑦 =

𝑥PRF(𝑘,𝑢𝑖𝑑) , where 𝑥 is the value Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) = H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑)
blinded with a random 𝑟 . Note that Unlinkability holds for honest

users only, ensuring that 𝑥 = H(𝑟𝑖𝑑)𝑟 in the challenge query is a

valid input. Thus, the token does not provide the adversary with

any information beyond 𝑝𝑝𝑖𝑑 .

What remains to be shown is that a malicious RP, possibly col-

luding with a malicious user 𝑢𝑖𝑑∗, cannot exploit the partially blind
evaluation of FDL+PRF to obtain dedicated 𝑝𝑝𝑖𝑑s of either of the

honest challenge users 𝑢𝑖𝑑0 or 𝑢𝑖𝑑1 illegitimately. Specifically, they

cannot obtain their pseudonyms through oracle queries not in-
tended for either𝑢𝑖𝑑0 or𝑢𝑖𝑑1 (as for the challenge users, the oracles

enforce honest user behavior and honestly generated inputs 𝑥).

It is easy to see that this scenario is infeasible because the 𝑝𝑝𝑖𝑑

depends on the𝑢𝑖𝑑 , which the IdP learns in clear and uses in its com-

putation. Therefore, there is no opportunity to manipulate the 𝑢𝑖𝑑

and its impact on the 𝑝𝑝𝑖𝑑 computation. While a malicious RP and

user could potentially trick the IdP into computing a pseudonym for

an arbitrary 𝑟𝑖𝑑 that does not match the one authenticated via 𝑎𝑢𝑡ℎ,

they can only do so for a malicious 𝑢𝑖𝑑∗ ≠ 𝑢𝑖𝑑0, 𝑢𝑖𝑑1, which does

not provide any advantage in winning the Unlinkability game. □

Theorem 5.2 (Unobservability). 𝜋OPPID satisfies Unobservabil-
ity if COM is hiding, and the NIZK is zero-knowledge.

This proof is essentially the same as in [31]. It follows from the

fact that the IdP receives the 𝑟𝑖𝑑 in a commitment and within a zero-

knowledge proof. The only difference here is that A also receives

𝑥 = H(𝑟𝑖𝑑)𝑟 , which is the blinded hash of 𝑟𝑖𝑑 . As the blinding is

information-theoretic, no additional assumptions are needed. We

provide a simple proof in App. B.2 for completeness.

Theorem 5.3 (Session Binding). 𝜋OPPID satisfies Session Bind-
ing if the S1 and S2 scheme are EUF-CMA secure, COM is binding,
and the NIZK is zero-knowledge and simulation extractable.

We give a proof sketch below and refer for the full proof to

App. B.3.

Proof sketch. The proof branches along the winning condi-

tions in the Session Binding game. Direct forgeries, condition (1), re-

quire the adversary to output a S1 signature on a fresh (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗),
which leads to a S1 forgery.

For Nym Correctness, condition (2a), it must be infeasible to

output (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗, 𝜏∗fin), where 𝜏
∗
fin is a valid token for

a pseudonym 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗). That is, the pseudonym in

the forgery does not match the expected and unique pseudonym

F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗) for the user 𝑢𝑖𝑑 that the honest IdP had seen in the

session 𝑠𝑖𝑑∗, and the 𝑟𝑖𝑑∗ the token is targeted for.

Recall that the final token 𝜏∗fin contains 𝑟∗, 𝑦∗, and 𝜎∗𝜏 , and being

valid implies that 𝑝𝑝𝑖𝑑∗ = 𝑥∗ = 𝑦∗−𝑟
∗
and 𝜎∗𝜏 is a valid signature on

𝑥∗, 𝑦∗, 𝑐𝑡𝑥∗, and 𝑠𝑖𝑑∗ vouched by the IdP. If 𝑥∗, 𝑦∗ (in 𝜏∗fin) are the
values indeed seen by the IdP in session 𝑠𝑖𝑑∗ and the verification

checks that 𝑥∗ = H(𝑟𝑖𝑑∗)𝑟 ∗ and 𝑝𝑝𝑖𝑑∗ = 𝑦∗−𝑟
∗
, they uniquely deter-

mine the correct pseudonym value for which verification succeeds.

RP Binding 1, condition (2b), implies that the adversary was able

to present an honest user’s token for a different 𝑟𝑖𝑑 than it was

intended for by the honest user. The adversary can succeed in this

case only by finding an opening collision for the commitment 𝑐𝑜𝑚∗

in the finalized token of the honest user, which occurs negligibly

due to the binding property of COM.

RP Binding 2, condition (2c), occurs when the adversary can

create two valid tokens with the same (𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), but distinct 𝑟𝑖𝑑
and 𝑟𝑖𝑑∗ values. As the IdP issues a token for 𝑠𝑖𝑑 values only once,

the adversary needs to either forge a S1 signature on 𝑠𝑖𝑑∗ with a

new commitment to 𝑟𝑖𝑑∗ or find an opening collision for 𝑐𝑜𝑚∗ for
distinct 𝑟𝑖𝑑 and 𝑟𝑖𝑑∗ values, breaking the binding property of COM.

RP Authentication 1, condition (2d), occurs when the adversary

forges a valid token for a non-registered 𝑟𝑖𝑑 value. This requires

forging a S2 signature for the non-registered 𝑟𝑖𝑑∗, finding a COM
collision and using the credential on another 𝑟𝑖𝑑 value than 𝑟𝑖𝑑∗

to create the NIZK proof, or creating a NIZK proof for an invalid

statement, i.e., without knowing a valid credential on 𝑟𝑖𝑑∗ at all.
RP Authentication 2, condition (2e), is similar to condition (2d)

but considers an adversary who forges a valid token for honest RPs

by using corrupted RPs. This case closely follows condition (2d),

except for a technical detail about the required extractability notion

from the NIZK, which is explained in detail in App. B.3.

□

Theorem 5.4 (Reqest Authentication). 𝜋OPPID satisfies Re-
quest Authentication if the S2 scheme is EUF-CMA secure, and the
NIZK is zero-knowledge and simulation extractable.

The proof of Request Authentication essentially follows [31] and

is given in App. B.4 for completeness. This property ensures that it

is hard to forge an authentication request 𝑎𝑢𝑡ℎ∗ for a fresh tuple

(𝑐𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗). In our construction, we set 𝑐𝑟𝑖𝑑 = (𝑥, 𝑐𝑜𝑚) to the

blinded pseudonym input and commitment on 𝑟𝑖𝑑 , and 𝑎𝑢𝑡ℎ is a

NIZK 𝜋 of a valid credential 𝑐𝑟𝑒𝑑 for 𝑟𝑖𝑑 . The proof 𝜋 is also bound

to (𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑). It easily follows that without having a valid credential,
which is a S2 signature on the honest RP’s 𝑟𝑖𝑑 , an adversary cannot

compute such a valid proof 𝑎𝑢𝑡ℎ∗ for a fresh (𝑐𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗).
12

6 EVALUATION & DISCUSSION
In this section, we present our prototypical implementation of

𝜋OPPID and compare it to the most related work, evaluating both

efficiency and security.

6.1 Security Comparison with Related Protocols
The works most closely related to ours are standard OIDC with

pseudonyms [41],AIF-ZKP [31],PPOIDC [26], andUPPRESSO [25].

These protocols have been selected for a detailed comparison as

they also operate within the plain-SSO model, meaning they do not

require the user to manage any long-term keys or credentials, nor

do they rely on additional parties or dedicated hardware modules.

OIDC [41]. OIDC is the most widely deployed SSO protocol

for user authentication, supporting both RP authentication and

RP-specific pseudonyms. According to its specification [41, §8.1],

the IdP creates a pseudonym 𝑝𝑝𝑖𝑑 as H(𝑢𝑖𝑑 | |𝑟𝑖𝑑 | |𝑘), where H is a

cryptographic hash function and 𝑘 is a secret, high-entropy ran-

dom string held by the IdP. Upon receiving an authenticated re-

quest from the RP 𝑟𝑖𝑑 via the user 𝑢𝑖𝑑 , the IdP computes 𝑝𝑝𝑖𝑑

and signs 𝑟𝑖𝑑 , 𝑝𝑝𝑖𝑑 , and the session data. While this provides Re-

quest Authentication, Session Binding, and Unlinkability, OIDC

does not achieve Unobservability.

AIF-ZKP [31]. This work, outlined in Sec. 5.1, provides the foun-

dation of our protocol to achieve Session Binding, including strong

RP authentication and Unobservability simultaneously. Our Session

Binding model is stronger than that in [31], and our analysis shows

that the original protocol already satisfied this stronger notion as

well. The protocol reveals 𝑢𝑖𝑑 in clear text to RPs and does not

support pseudonyms, thus failing to provide Unlinkability.

PPOIDC [26]. The PPOIDC protocol aims to turn OIDC into an

unobservable protocol. To blindly bind the IdP’s token to a partic-

ular 𝑟𝑖𝑑 and compute the 𝑝𝑝𝑖𝑑 it mostly relies on hash functions,

serving as commitments. More precisely, when the user wants to au-

thenticate to 𝑟𝑖𝑑 , it first computes 𝑐𝑜𝑚𝑟𝑖𝑑 := H(𝑟𝑖𝑑 | |𝑟) for a random
𝑟 ←

R
{0, 1}𝜆 . The pseudonym computation uses a hash function

again and also makes the non-standard assumption that 𝑢𝑖𝑑 is a

high-entropy value that the user retrieves from the IdP at every

login. The user computes 𝑝𝑝𝑖𝑑 := H(𝑢𝑖𝑑 | |𝑟𝑖𝑑) and the commitment

𝑐𝑜𝑚𝑝𝑝𝑖𝑑 := H(𝑝𝑝𝑖𝑑 | |𝑟 ′) with 𝑟 ′ ←
R
{0, 1}𝜆 . The user also generates

a zero-knowledge proof 𝜋 that 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 is derived for her 𝑢𝑖𝑑 and

sends 𝑐𝑜𝑚𝑟𝑖𝑑 , 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 and 𝜋 to the IdP.

The IdP verifies that the proof is valid for the authenticated 𝑢𝑖𝑑 ,

and then signs 𝑐𝑜𝑚𝑟𝑖𝑑 and 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 in its token. The user forwards

the IdP’s signature, randomness 𝑟, 𝑟 ′ and her 𝑝𝑝𝑖𝑑 to the RP, which

checks that the IdP-signed commitment 𝑐𝑜𝑚𝑟𝑖𝑑 correctly opens to

its own 𝑟𝑖𝑑 and 𝑐𝑜𝑚𝑝𝑝𝑖𝑑 opens to 𝑝𝑝𝑖𝑑 .

The protocol does not consider RP authentication towards the

IdP and thus cannot satisfy these parts of the Session Binding prop-

erty or Request Authentication. RP authentication is not entirely

missing either though, as their protocol issues certificates to the

RP upon registration and relies on the user to verify them when

they start a session. This only provides security if all users are

honest though, and we discuss the difference to our IdP-centric

authentication at the end of this section. The PPOIDC still partially

satisfies Session Binding, as the IdP blindly signs the commitment

𝑐𝑜𝑚𝑟𝑖𝑑 of an user-verified 𝑟𝑖𝑑 , which ensures RP Binding I and II.

However, PPOIDC does not achieve Nym Correctness: The proof
𝜋 only ensures that 𝑝𝑝𝑖𝑑 is computed on the correct 𝑢𝑖𝑑 , but does

not guarantee that the committed 𝑟𝑖𝑑 in 𝑐𝑜𝑚𝑟𝑖𝑑 matches the one

used to compute 𝑝𝑝𝑖𝑑 , allowing corrupt users to obtain arbitrary

IdP-certified pseudonyms.

UPPRESSO [25]. The protocol focuses solely on the blindly com-

puted pseudonyms in SSO, which are computed as 𝑝𝑝𝑖𝑑 := 𝑟𝑖𝑑𝑘𝑢𝑖𝑑

where 𝑘𝑢𝑖𝑑 is a user-specific secret key in Z𝑞 maintained by the

IdP. Instead of hashing 𝑟𝑖𝑑 to the group as in 𝜋OPPID, their protocol

relies on 𝑟𝑖𝑑 already being a proper and random group element.

This is done by letting the IdP issue a certificate on a randomly

chosen group element 𝑟𝑖𝑑 ∈ G (where G is a cyclic group of order

𝑞) to the RP when it registers.

When a user wants to authenticate to an RP, it receives and

verifies the certified 𝑟𝑖𝑑 from the RP and blinds it as 𝑟𝑖𝑑 := 𝑟𝑖𝑑𝑟

using a random 𝑟 . The IdP then receives 𝑟𝑖𝑑 from the user 𝑢𝑖𝑑 ,

computes 𝑝𝑝𝑖𝑑 := 𝑟𝑖𝑑
𝑘𝑢𝑖𝑑

, and signs both 𝑟𝑖𝑑 and 𝑝𝑝𝑖𝑑 in its token.

The RP then receives all signed values and 𝑟 and unblinds them to

𝑝𝑝𝑖𝑑 := 𝑟𝑖𝑑𝑘𝑢𝑖𝑑 .

In terms of security, UPPRESSO achieves both privacy-related

properties due to perfect blinding of 𝑟𝑖𝑑 and pseudonyms computed

via a classic DL-based PRF. The protocol also achieves some form of

RP-Binding, as the signed 𝑟𝑖𝑑 could serve as a commitment to 𝑟𝑖𝑑

which can be verified using 𝑟 (this is not made publicly verifiable

in their protocol though). In contrast to our scheme, this would

additionally require to also verify that 𝑟𝑖𝑑 is the correct group

element – which was simply computing H(𝑟𝑖𝑑) in our scheme.

However, UPPRESSO does not achieve RP authentication as part

of Session Binding or Request Authentication, as the RP does not

authenticate to the IdP.

Comparing UPPRESSO to our protocol, we made three key

changes to the pseudonym computation: First, we set 𝑘𝑢𝑖𝑑 :=

PRF(𝑘,𝑢𝑖𝑑), where 𝑘 is a secret key held by the IdP. This elimi-

nates the need for the IdP to manage a secret key table that grows

linearly with the number of users. Second, we compute the pseu-

donym on H(𝑟𝑖𝑑) instead of a certified 𝑟𝑖𝑑 ∈ G directly, removing

the need for users to verify a certificate on 𝑟𝑖𝑑 to check its validity.

Using a malformed 𝑟𝑖𝑑 will allow malicious RPs to link users, which

is prevented through our hash computation. Third, our protocol

ensures that any valid and publicly verifiable IdP token contains

the correct and RP-authenticated pseudonym through consistency

checks between the verified commitment and blinded input. In

UPPRESSO, the final token can include malformed pseudonyms

when corrupt users and RPs collude, allowing the RP to falsely claim

an inflated user base asserted by the IdP. Other changes primarily

focus on providing IdP-side RP authentication and ensuring the

final token’s public verifiability for the targeted 𝑟𝑖𝑑 .

We note that the recently proposed BISON protocol [27] for

blindly computed SSO pseudonyms follows essentially the same

approach asUPPRESSO as well. Although the authors claim a more

generic approach, their construction boils down to the same proto-

col already taken by UPPRESSO, and our analysis and comparison

transfers to BISON too.

13

User-Side RP Authentication. In PPOIDC and UPPRESSO, RP
authentication has been shifted from an IdP-verified setting to a

user-verified one. In this approach, the user receives an RP’s cer-

tificate to verify that it is properly registered with the IdP and

provides the correctly certified values for the cryptographic pro-

tocol. UPPRESSO requires two RP and IdP scripts that the user

receives from each party, which handle certificate transfer and

verification within the session.

Interestingly, both protocols suggest sending the plain certificate

from the RP to the user, i.e., without binding the certificate to a

key and session nonce. This approach would immediately allow

phishing attacks if no additional cross-verification of consistent

certificates from the authenticated TLS session and the verified

SSO-protocol values is performed.

Furthermore, relying on proper RP authentication by the user

compromises full IdP control over the token it issues. As discussed

above, the IdP can be tricked into signing tokens for malformed

pseudonyms or invalid 𝑟𝑖𝑑s, violating the correctness and non-

repudiation guarantees typically expected from such an IdP. Over-

all, handling RP authentication on the user side is rather fragile

and requires trust in the honest execution on the user’s device.

Therefore, our OPPID system aims for IdP-side RP authentication.

RP Revocation. Achieving Unobservability, which means hiding

the 𝑟𝑖𝑑 from the IdP during RP authentication, rules out classic re-

vocation strategies based on blacklisting the revoked 𝑟𝑖𝑑s. This is a

well-understood challenge and has been addressed by [31] through

an epoch-based strategy. In this approach, the RP credentials used

in anonymous authentication requests are short-lived, lasting, e.g.,

for a week or a month. Thus, the RP must regularly re-obtain its

membership credential from the IdP, which will refuse to do so if

the RP has been revoked. The short-lived credentials can be realized

by having the IdP also sign the current epoch along with the RP’s

𝑟𝑖𝑑 in the membership credential. During authentication, the 𝑟𝑖𝑑

remains hidden, but the epoch must be revealed and valid.

Since 𝜋OPPID is built upon [31], integrating this revocation mech-

anism only requires adding an epoch to the issued RP credential.

This is straightforward and has no impact on how the 𝑝𝑝𝑖𝑑 is gen-

erated or verified. We omitted revocation to simplify the security

model and focus on oblivious 𝑝𝑝𝑖𝑑 computation.

6.2 Implementation and Evaluation
We now report on the implementation of our protocol and compare

its efficiency to related works.

Instantiation of Building Blocks. We instantiated 𝜋OPPID as fol-

lows: for the IdP’s standard signature S1, we used RSA-SHA256

2048-bit to comply with current industry standards. Building upon

[31], we used PS signatures [38] on curve BLS12-381 [6] for S2,
which includes the bilinear group description (𝑞,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒)
in the public parameters 𝑝𝑝 . The commitment is instantiated with

Pedersen commitments [37] in G1, and the pseudonym function

is executed in G1 as well, with hashing to the curve [19] and the

“exponent” PRF realized with HMAC-SHA256 mapping elements to

Z𝑞 [19, §5.3].

For comparison with OIDC, PPOIDC, and UPPRESSO, we used

the same RSA-signature for IdP-signed tokens in all schemes. For

Entity RP User IdP
Protocol \ Ops. Vf Req Fin Init Res

OIDC [41] 0.06 n/a n/a n/a 1.41

AIF-ZKP [31] 1.79 8.84 1.31 1.05 16.23

PPOIDC [26] 0.11 n/a n/a 2647.89 6.98

UPPRESSO [25] 1.37 0.85 n/a 0.70 2.08

Our Work: 𝜋OPPID 2.13 9.42 2.03 1.68 17.33

Table 2: The execution mean in milliseconds.

OIDC, we followed the specification [41, §8.1] and used SHA256

for the 𝑝𝑝𝑖𝑑 computation. For PPOIDC, no implementation was

available, so we implemented their scheme from scratch. We chose

SHA256 forH to instantiate F(𝑢𝑖𝑑, 𝑟𝑖𝑑) and the commitment scheme,

as originally proposed in [26]. For the ZKP 𝜋 of a pre-image of H,
we chose ZoKrates [16] – the zkSNARK is created by the user and

verified by the IdP. For UPPRESSO, we implemented its core cryp-

tographic operations: IdP-issued RP certificates are realized via an

RSA-SHA256 signature on 𝑟𝑖𝑑 only, and pseudonyms are computed

in G1.

Evaluation Results. The benchmark results of all schemes are

summarized in Table 2, with all operations performed on an Apple

M1 CPU (8-core, 2020, 3.2 GHz). Our implementation and bench-

marks are available at [3] for reproducibility.

Our protocol 𝜋OPPID, achieving all desired security and privacy

properties, is highly efficient. User operations and token verification

each take only 2ms, proof verification at the IdP requires only 17ms

after a 9ms generation time at the RP. We now discuss these results

in relation to the closest variants, PPOIDC and UPPRESSO.
Our scheme is significantly faster than PPOIDC, which requires

an expensive proof generation of 2.5s by the user, which came for

a fast IdP verification of only 7ms. One might be able to speed

up the proof generation of a hash preimage by using alternative

zkSNARK setups, but that would increase verification or communi-

cation costs [39]. UPPRESSO has almost an identical pseudonym

computation as in 𝜋OPPID and does not involve the costs for RP

authentication, thus it is slightly faster than ours – but also provides

less security.

Regarding communication costs, an element in (Z𝑞,G1,G2,G𝑇)
requires (32, 48, 92, 576) bytes respectively. Therefore, 𝜋OPPID re-

quires only 864 bytes (3Z𝑞 + 4G1 + 1G𝑇) for the authentication
proof and the blinded and committed 𝑟𝑖𝑑 sent to the IdP. The user-

generated ZKP in PPOIDC is relatively small at 997 bytes, but the

associated costs are substantial due to the large pre-compiled circuit

(96435 constraints, 231MB) and a 37MB proving key. Fetching these

files from the IdP for each login is clearly impractical. The overhead

introduced by user-side RP certificates in PPOIDC/UPPRESSO is

relatively minor at 32 bytes for the signature in addition to the

signed 4-byte 𝑟𝑖𝑑 . Thus, in scenarios where RP authenticationwould

not be needed, our protocol remains more efficient than PPOIDC.

ACKNOWLEDGMENTS
This research was partially funded by the HPI Research School on

Data Science and Engineering. It was also supported by the Ger-

man Federal Ministry of Education and Research (BMBF) through

funding of the ATLAS project under reference number 16KISA037.

14

REFERENCES
[1] Google 2023. OpenID Connect. Google. https://developers.google.com/identity/

protocols/oauth2/openid-connect

[2] Apple Inc. 2023. Sign in with Apple. Apple Inc. https://developer.apple.com/

documentation/sign_in_with_apple

[3] 2024. OPPID. https://github.com/jmakr0/OPPID

[4] Gergely Alpár, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs, Wouter

Lueks, and Sietse Ringers. 2017. IRMA: practical, decentralized and privacy-

friendly identity management using smartphones. HotPETs 2017 (2017).

[5] Apple. 2023. Sign in with Apple & Privacy. https://www.apple.com/legal/privacy/

data/en/sign-in-with-apple/

[6] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2003. Constructing Elliptic

Curves with Prescribed Embedding Degrees. In SCN 02 (LNCS, Vol. 2576), Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano (Eds.). Springer, Heidelberg,

Germany, Amalfi, Italy, 257–267. https://doi.org/10.1007/3-540-36413-7_19

[7] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications (Extended Abstract). In 20th ACM STOC. ACM
Press, Chicago, IL, USA, 103–112. https://doi.org/10.1145/62212.62222

[8] Jan Camenisch, Manu Drijvers, and Anja Lehmann. 2016. Anonymous At-

testation Using the Strong Diffie Hellman Assumption Revisited. In Trust and
Trustworthy Computing, Michael Franz and Panos Papadimitratos (Eds.). Springer

International Publishing, Cham, 1–20.

[9] Jan Camenisch, Aggelos Kiayias, and Moti Yung. 2009. On the Portability of

Generalized Schnorr Proofs. In EUROCRYPT 2009 (LNCS, Vol. 5479), Antoine
Joux (Ed.). Springer, Heidelberg, Germany, Cologne, Germany, 425–442. https:

//doi.org/10.1007/978-3-642-01001-9_25

[10] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. 2022. SoK: Oblivious Pseu-

dorandom Functions. Cryptology ePrint Archive, Report 2022/302. https:

//eprint.iacr.org/2022/302.

[11] James Conners, Corey Devenport, Stephen Derbidge, Natalie Farnsworth, Kyler

Gates, Stephen Lambert, Christopher McClain, Parker Nichols, and Daniel Zap-

pala. 2022. Let’s authenticate: Automated certificates for user authentication. In

Network and Distributed Systems Security Symposium (NDSS).
[12] Poulami Das, Julia Hesse, and Anja Lehmann. 2022. DPaSE: Distributed Password-

Authenticated Symmetric-Key Encryption, or How to Get Many Keys from One

Password. In ASIACCS 22, Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue

Sako (Eds.). ACM Press, Nagasaki, Japan, 682–696. https://doi.org/10.1145/

3488932.3517389

[13] Arkajit Dey and Stephen Weis. 2010. PseudoID: Enhancing Privacy in Federated

Login. In Hot Topics in Privacy Enhancing Technologies. Sciendo, Berlin, Germany,

95–107.

[14] Jesus Diaz and Anja Lehmann. 2021. Group Signatures with User-Controlled

and Sequential Linkability. In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay

(Ed.). Springer, Heidelberg, Germany, Virtual Event, 360–388. https://doi.org/10.

1007/978-3-030-75245-3_14

[15] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function

with Short Proofs and Keys. In PKC 2005 (LNCS, Vol. 3386), Serge Vaudenay (Ed.).

Springer, Heidelberg, Germany, Les Diablerets, Switzerland, 416–431. https:

//doi.org/10.1007/978-3-540-30580-4_28

[16] Jacob Eberhardt and Stefan Tai. 2018. ZoKrates - Scalable Privacy-Preserving

Off-Chain Computations. In 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 1084–1091. https://doi.org/10.1109/Cybermatics_2018.2018.00199

[17] EU. 2024. Regulation 2024/1183 of the european parliament and of the council of 11
april 2024 amending regulation no 910/2014 as regards establishing the european
digital identity framework. https://eur-lex.europa.eu/eli/reg/2024/1183/oj

[18] Facebook. 2021. OpenID Connect. https://developers.facebook.com/docs/

facebook-login

[19] A. Faz-Hernandez, S. Scott, N. Sullivan, R. S. Wahby, and C. A. Wood. 2023.

Hashing to Elliptic Curves. RFC 9380. RFC Editor.

[20] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), AndrewM.

Odlyzko (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 186–194.

https://doi.org/10.1007/3-540-47721-7_12

[21] Ge Gao, Yuan Zhang, Yaqing Song, and Shiyu Li. 2024. PrivSSO: Practical

Single-sign-onAuthentication against Subscription/Access Pattern Leakage. IEEE
Transactions on Information Forensics and Security (2024).

[22] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature

Scheme Secure Against Adaptive Chosen-message Attacks. SIAM J. Comput. 17,
2 (April 1988), 281–308.

[23] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS, Vol. 4284), Xuejia Lai
and Kefei Chen (Eds.). Springer, Heidelberg, Germany, Shanghai, China, 444–459.

https://doi.org/10.1007/11935230_29

[24] Chengqian Guo, Fan Lang, Qiongxiao Wang, and Jingqiang Lin. 2022. UP-

SSO: Enhancing the User Privacy of SSO by Integrating PPID and SGX. In 2021

International Conference on Advanced Computing and Endogenous Security. IEEE,
01–05.

[25] Chengqian Guo, Jingqiang Lin, Quanwei Cai, Wei Wang, Fengjun Li, Qiongx-

iao Wang, Jiwu Jing, and Bin Zhao. 2021. Uppresso: Untraceable and unlink-

able privacy-preserving single sign-on services. arXiv preprint arXiv:2110.10396
(2021).

[26] SvenHammann, Ralf Sasse, and David A. Basin. 2020. Privacy-Preserving OpenID

Connect. In ASIACCS 20, Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and

Giuseppe Ateniese (Eds.). ACM Press, Taipei, Taiwan, 277–289. https://doi.org/

10.1145/3320269.3384724

[27] Jakob Heher, Lena Heimberger, and Stefan More. 2024. BISON: Blind Identifica-

tion through Stateless scOpe-specific derivatioN. arXiv preprint arXiv:2406.01518
(2024).

[28] Marios Isaakidis, Harry Halpin, and George Danezis. 2016. UnlimitID: Privacy-

preserving federated identity management using algebraic MACs. In Proceedings
of the 2016 ACM on Workshop on Privacy in the Electronic Society. 139–142.

[29] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. 2014. Round-Optimal

Password-Protected Secret Sharing and T-PAKE in the Password-Only Model. In

ASIACRYPT 2014, Part II (LNCS, Vol. 8874), Palash Sarkar and Tetsu Iwata (Eds.).

Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C., 233–253. https:

//doi.org/10.1007/978-3-662-45608-8_13

[30] Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. 2018. Threshold Partially-

Oblivious PRFs with Applications to Key Management. Cryptology ePrint

Archive, Report 2018/733. https://eprint.iacr.org/2018/733.

[31] Maximilian Kroschewski and Anja Lehmann. 2023. Save The Implicit Flow?

Enabling Privacy-Preserving RP Authentication in OpenID Connect. Proceedings
on Privacy Enhancing Technologies 4 (2023), 96–116.

[32] Anja Lehmann. 2019. ScrambleDB: Oblivious (Chameleon) Pseudonymization-

as-a-Service. PoPETs 2019, 3 (July 2019), 289–309. https://doi.org/10.2478/

popets-2019-0048

[33] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. 1999. Pseudo-

nym Systems. In SAC 1999 (LNCS, Vol. 1758), Howard M. Heys and Carlisle M.

Adams (Eds.). Springer, Heidelberg, Germany, Kingston, Ontario, Canada, 184–

199. https://doi.org/10.1007/3-540-46513-8_14

[34] Moni Naor, Benny Pinkas, and Omer Reingold. 1999. Distributed Pseudo-random

Functions and KDCs. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).

Springer, Heidelberg, Germany, Prague, Czech Republic, 327–346. https://doi.

org/10.1007/3-540-48910-X_23

[35] NIST. 2023. SP 800-63 Digital Identity Guidelines. https://pages.nist.gov/800-63-4/
sp800-63c.html

[36] Christian Paquin and Greg Zaverucha. 2013. U-prove cryptographic specification

v1. 1. Technical Report, Microsoft Corporation (2013).

[37] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 129–140. https://doi.

org/10.1007/3-540-46766-1_9

[38] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, Germany,

San Francisco, CA, USA, 111–126. https://doi.org/10.1007/978-3-319-29485-8_7

[39] Ethereum Research. 2023. Benchmarking ZKP Development
Frameworks: the Pantheon of ZKP. https://ethresear.ch/t/

benchmarking-zkp-development-frameworks-the-pantheon-of-zkp/14943

[40] Ahmad Sabouri and Kai Rannenberg. 2015. ABC4Trust: protecting privacy in

identity management by bringing privacy-ABCs into real-life. In Privacy and
Identity Management for the Future Internet in the Age of Globalisation: 9th IFIP
WG 9.2, 9.5, 9.6/11.7, 11.4, 11.6/SIG 9.2. 2 International Summer School, Patras,
Greece, September 7-12, 2014, Revised Selected Papers 9. Springer, 3–16.

[41] N. Sakimura, J. Bradley, M. Jones, B. de Medeirosk, and C. Mortimore. 2014.

OpenID Connect Core 1.0. https://openid.net/specs/openid-connect-core-1_0.

html

[42] Rongwu Xu, Sen Yang, Fan Zhang, and Zhixuan Fang. 2023. MISO: Legacy-

compatible Privacy-preserving Single Sign-on using Trusted Execution Environ-

ments. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P).
IEEE, 352–372.

[43] Zhiyi Zhang, Michal Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière.

2021. EL PASSO: Efficient and Lightweight Privacy-preserving Single Sign On.

PoPETs 2021, 2 (April 2021), 70–87. https://doi.org/10.2478/popets-2021-0018

A OMITTED MODEL PARTS

Here, we provide the omitted parts and further explanations of

our security model as well as compare it to the Session Binding

model from [31].

15

https://developers.google.com/identity/protocols/oauth2/openid-connect
https://developers.google.com/identity/protocols/oauth2/openid-connect
https://developer.apple.com/documentation/sign_in_with_apple
https://developer.apple.com/documentation/sign_in_with_apple
https://github.com/jmakr0/OPPID
https://www.apple.com/legal/privacy/data/en/sign-in-with-apple/
https://www.apple.com/legal/privacy/data/en/sign-in-with-apple/
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://eprint.iacr.org/2022/302
https://eprint.iacr.org/2022/302
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1145/3488932.3517389
https://doi.org/10.1007/978-3-030-75245-3_14
https://doi.org/10.1007/978-3-030-75245-3_14
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://eur-lex.europa.eu/eli/reg/2024/1183/oj
https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/docs/facebook-login
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11935230_29
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://eprint.iacr.org/2018/733
https://doi.org/10.2478/popets-2019-0048
https://doi.org/10.2478/popets-2019-0048
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://pages.nist.gov/800-63-4/sp800-63c.html
https://pages.nist.gov/800-63-4/sp800-63c.html
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://ethresear.ch/t/benchmarking-zkp-development-frameworks-the-pantheon-of-zkp/14943
https://ethresear.ch/t/benchmarking-zkp-development-frameworks-the-pantheon-of-zkp/14943
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.2478/popets-2021-0018

A.1 Correctness
Recall that we denote with R, S, andU the RP, session, and user

spaces. An OPPID scheme – as defined in Sec. 2.3 – is correct if for

all 𝜆 ∈ N, setup and RP registrations with 𝑟𝑖𝑑 ∈ R

𝑝𝑝 ← Setup(1𝜆), ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝),
(𝑐𝑟𝑒𝑑,M′) ← ⟨JoinRP (𝑖𝑝𝑘, 𝑟𝑖𝑑),RegIdP (𝑖𝑠𝑘, 𝑟𝑖𝑑,M)⟩,

all authentication sessions with 𝑠𝑖𝑑 ∈ S of user 𝑢𝑖𝑑 ∈ U to RP 𝑟𝑖𝑑

(𝑜𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑) ← AInitU (𝑖𝑝𝑘, 𝑟𝑖𝑑)
𝑎𝑢𝑡ℎ ← AReqRP (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑠𝑖𝑑)

𝜏 ← AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
(𝜏fin, 𝑝𝑝𝑖𝑑) ← AFinU (𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑, 𝜏),

result in

VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑), 𝜏fin) = 1.

A.2 Session Binding: RP Binding & RP Auth.
Here, we provide more intuition on how the properties of RP Bind-

ing and RP Authentication are captured in our Session Binding

game ExpSES-BINA,OPPID in Figure 4. Note that RP Binding II and RP Au-

thentication II define security aspects that were not covered by the

original model in [31]. We give a more detailed comparison in the

following section.

RP Binding. If an honest user 𝑢𝑖𝑑 wants to authenticate to a

certain RP 𝑟𝑖𝑑 in a session 𝑠𝑖𝑑 , the adversary wins if it can produce

a token for the same session, but which is valid for a different

𝑟𝑖𝑑∗. This models phishing attacks from malicious RPs. To capture

this property, we need to know what the intent of the honest user

was, which is done through O .AInitU and O .AResFin. Using the

bookkeeping in these oracles, we can define an honest user’s intent

as (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) in Q𝜏fin when the finalized token is computed.

The adversary wins if it can come up with a token for that session

but with 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 , as defined in condition (b) for RP Binding I.
For a session initiated by a corrupt user towards a corrupt RP,

we never know the exact RP the user wants to authenticate to:

A invokes O .AResIdP on adversarial chosen inputs 𝑎𝑢𝑡ℎ and 𝑐𝑟𝑖𝑑 ,

which both hide the 𝑟𝑖𝑑 . So our guarantees are naturally weaker

here than for honest users. What we do guarantee, is that the

adversary cannot re-use the same token it receives from the IdP, and

claim it to be valid towards multiple corrupt RPs. This is the reason

we have O .VfRP. It might be surprising that we provide an oracle

that runs purely on public values, and would mimic something that

is typically run internally be the adversary. What we want to model

here is that if the adversary presents a token for (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑)
somehow publicly, e.g., towards a judge or some external honest
entity, and later presents a token for the same context 𝑐𝑡𝑥, 𝑠𝑖𝑑 but

for a different 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 (which is its forgery). Thus, despite the

honest IdP never learning the exact RP the corrupt user wanted

to authenticate, we guarantee that this user can authenticate to at

most one RP. This RP Binding II is captured in winning condition (c),

and can be seen as a notion similar to the one-more unforgeability

property in blind signatures.

RP Authentication. The previous two properties ensured that

the IdP-generated token is bound to the blindly received 𝑟𝑖𝑑 . We

further want to guarantee that only legitimate RPs can request such

tokens, which is captured in conditions (d) and (e). In condition (d),

the adversary wins if it manages to produce a valid token for some

𝑟𝑖𝑑∗, yet this RP has never registered, i.e., 𝑟𝑖𝑑∗ ∉ HRP∪CRP where

HRP and CRP are the sets of all honest and corrupt RPs, the IdP

has registered through O .RegHRP and O .RegCRP.
If the 𝑟𝑖𝑑∗ in the forgery belongs to an honest RP, we want even

stronger guarantees and ensure that it must be infeasible to win if

the honest RP had never authenticated for that particular session

𝑠𝑖𝑑∗. As all authentication requests for honest RPs are handled

through O .AReqRP, where we store each query (𝑟𝑖𝑑, 𝑠𝑖𝑑) in Qauth,

this translates to simply checking that (𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth.

A.3 Comparison to Session Binding from [31]
Before we compare the security guarantees of our Session Binding

model to the one from [31], we outline two fundamental functional
differences between both models.

Functional Differences. The focus of our work is pseudonymous
user authentication towards RPs, where the pseudonyms are blindly

computed by the IdP. This was the main challenge and manifests

as Nym Correctness in our model. In the work of Kroschewski

and Lehmann [31], all authentication tokens contained the globally

unique user identifier 𝑢𝑖𝑑 that was directly vouched for by the IdP.

The focus of [31] was on RP authentication, and their work

explicitly models epoch-based credentials to allow adaptive RP cor-

ruption and enable their revocation. Our model omits this approach

for simplicity. We stress that epoch-based credentials are straight-

forward to add at the construction level but significantly complicate

the security model. In fact, epoch-based renewal is an orthogonal

aspect to our focus on pseudonymous identifiers, and we can con-

sider our setting as a single-epoch – and pseudonym-extended –

version of [31].

Original Model Only Considers Honest Users + Corrupt RPs. For
better comparison, we state the original Session Binding property

translated to our single-epoch view and syntax on the left in Fig. 6.

This makes it easy to see that, ignoring the obvious differences due

to the different functional properties, our Session Binding model is

significantly stronger than [31], as shown on the right in Fig. 6.

The original definition has the weakness that it only considers

the security of sessions between honest users and corrupt RPs. This

was justified by the argument that (i) honest users are necessary

in order to know the 𝑟𝑖𝑑 a user wanted to authenticate to in a

particular session and compare it to the adversary’s forgery, and (ii)

honest RPs do not give the adversary an advantage. We will now

explain why this restriction to honest users and corrupt RPs led to

a security model that does not capture all desirable properties, and

how we incorporated them into our definition.

Adding Security for Sessions of Corrupt User. Regarding (i): While

we indeed do not know the intended 𝑟𝑖𝑑 when an IdP issues a

token towards a corrupt user and corrupt RP, the model should not

abandon security in such scenarios. What we still care about -—

and in fact, this could be seen as the most crucial security property

of SSO -— is that the IdP’s signature cannot be used out of context.

Simply removing the restriction of honest users in the winning

condition already enhances security. This is what our game achieves

16

ExpRP Session Binding
A,OPPID (𝜆)

𝑝𝑝 ← Setup(1𝜆) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← KGenIdP (𝑝𝑝)
O := {RegCRP,AInitU,AReqRP,AResIdP,AResFin}
(𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗, 𝜏∗fin) ← A

O (𝑖𝑝𝑘)
Return 1 if VfRP (𝑖𝑝𝑘, (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), 𝜏∗fin) = 1 ∧ "𝑢𝑖𝑑∗ is honest"

and at least one of the following holds:

(a) (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏fin
(b) (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏fin ∧ 𝑟𝑖𝑑

∗ ∉ CRP

This Work Model [31]

(1) Direct Forgery (a), but for honest users only

(2) Indirect Forgery:

(a) Nym Correctness (a), via 𝑢𝑖𝑑 correctness, but for honest users only

(b) RP Binding I (a)

(c) RP Binding II —, missing

(d) RP Authentication I (b), but for honest users only

(e) RP Authentication II —, missing, partially covered via RP Accountability

Figure 6: Left: RP Session Binding from [31] translated to our syntax, where we abuse notation and consider F(𝑢𝑖𝑑, 𝑟𝑖𝑑) = 𝑢𝑖𝑑 . The honest user
requirement was enforced in [31] by checking that the 𝑢𝑖𝑑∗ of the forgery was never used in a "malicious" query via O.AResIdP but always
via O.AResFin – which allows the challenger to know the intended 𝑟𝑖𝑑 for every session. Right: Comparison between the Session Binding
guarantees in this work and [31], mapping the winning conditions to each other.

compared to [31] for Direct Forgeries (1) and Indirect Forgeries (2a,

d). However, this alone is not sufficient: the guarantee does not

extend to the blindly signed 𝑟𝑖𝑑 , as condition (2b) is the only sub-

case that strictly needs to be limited to the honest user setting.

This is where our game introduces the winning condition (2c)

in a one-more unforgeability style. This condition requires that it

must be infeasible to produce multiple valid tokens for different

corrupt 𝑟𝑖𝑑s. Generating multiple tokens for corrupt users and RPs

would not be a direct attack on the authentication session, but it

would still be undesirable behavior: it could allow corrupt RPs to

present apparently IdP-attested tokens for non-existent sessions,

falsely inflating their active user base. Our stronger model prevents

this.

Adding Stronger Guarantees for Honest RPs. The second enhance-
ment is related to (ii). The original model allows the adversary to

win by producing a token for an 𝑟𝑖𝑑 that was never registered at all.

Again, this was only defined for honest users, whereas our model

extends this to corrupt users as well. The more significant change is

that our model provides stronger guarantees when an honest RP is

involved—which was not addressed in [31]. Our winning condition

(2e) additionally requires that it must be infeasible to produce a

token for some 𝑟𝑖𝑑, 𝑠𝑖𝑑 when 𝑟𝑖𝑑 belongs to an honest RP that never

authenticated for session 𝑠𝑖𝑑 .

At first glance, this might appear to be covered by the RP Ac-

countability game in [31]. However, the RP Accountability defi-

nition only applies to fully blind authentication requests – and

therefore is weaker. In our Session Binding game, we have knowl-

edge of the finalized token including 𝑟𝑖𝑑 , and can verify whether a

corresponding authentication request from this 𝑟𝑖𝑑 and session 𝑠𝑖𝑑

exists.

A.4 Request Authentication
This property captures the authenticity of the request that an IdP

receives and uses to produce its token. It ensures that if an IdP

receives an authenticated request (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑) via a user 𝑢𝑖𝑑

for which AResIdP (𝑖𝑠𝑘, 𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑) produces an output

≠ ⊥, it must originate from a previously registered RP.

The game is defined by ExpREQ-AUTH
A,OPPID (see Figure 4) and follows

a classic unforgeability definition. Instead of demanding security

for the final authentication token (as in Session Binding), it cap-

tures unforgeability for the RP authenticated information: 𝑐𝑟𝑖𝑑, 𝑠𝑖𝑑 .

The IdP is honest here, and the adversary can register honest RPs

through O .RegHRP, obtain their authenticated requests through

O .AReqRP, and query tokens from the IdP through O .AResIdP. The
adversary wins if it outputs (𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), where
the IdP accepts the authentication (i.e., does not return ⊥) and no

honest RP authenticated 𝑐𝑟𝑖𝑑∗ in session 𝑠𝑖𝑑∗.
Note that this property defines the security of the fully blind

authentication request towards the IdP, which implies that all RPs

must be honest -— otherwise, "forging" is trivial. The original def-

inition in [31] allowed corrupt RPs, which was possible as their

work considered epoch-based renewal of membership credentials.

The security model then only requires that all registered RPs of the

current epoch must be honest, but RPs from previous epochs can be

corrupt. In this sense, just as in our Session Binding definition, our

Request Authentication definition can be seen as a single-epoch

version of the Request Authentication definition of [31]. We do not

allow any corrupt RPs in the definition as any corrupt RP in the

single-epoch would allow the adversary to win trivially.

Definition A.1 (Request Authentication). An OPPID scheme sat-

isfies Request Authentication if for all PPT adversaries A, it holds

Pr[ExpREQ-AUTH
A,OPPID (𝜆) = 1] ≤ negl(𝜆).

B FULL PROOFS OF 𝜋OPPID

Here, we provide the proofs showing that our protocol described in

Sec. 5 achieves all properties defined in Sec. 3. We start by analyzing

the properties of the pseudonym function FDL+PRF.

Properties of FDL+PRF. We analyze the properties of our pseudo-

nym function

FDL+PRF = Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) := H(𝑟𝑖𝑑)PRF(𝑘,𝑢𝑖𝑑) .

Recall that our OPPID model requires this function to provide

unique, collision-free, and unlinkable pseudonyms (see Sec. 2.2).

Uniqueness requires that for every 𝑟𝑖𝑑,𝑢𝑖𝑑 combination, there is

a unique pseudonym 𝑝𝑝𝑖𝑑 = F(𝑢𝑖𝑑, 𝑟𝑖𝑑). FDL+PRF naturally ensures
uniqueness as it is a deterministic function.

Regarding collision-freeness, note thatH(𝑟𝑖𝑑)𝑢𝑘 is a permutation

for 𝑢𝑘 ∈ Z𝑞 . If 𝑢𝑘 ← PRF(𝑘,𝑢𝑖𝑑) is an injective function, then F
provides different pseudonyms for each user. That is, for all 𝑟𝑖𝑑 and

𝑢𝑖𝑑 ≠ 𝑢𝑖𝑑′ it holds that Fk (𝑢𝑖𝑑, 𝑟𝑖𝑑) ≠ Fk (𝑢𝑖𝑑′, 𝑟𝑖𝑑). This property
requires that U ≤ Z𝑞 , which holds for any normal deployment,

where the number of users is significantly smaller than Z𝑞 .

17

Lemma B.1. Our pseudonym function FDL+PRF provides unique
and collision-free pseudonyms, if H is deterministic, PRF is determin-
istic, injective, andU ≤ Z𝑞 .

In the following, we prove that FDL+PRF is a secure pseudoran-
dom function. This immediately grants the unlinkability of the pseu-

donyms, which will be helpful in proving the Unlinkability property

of 𝜋OPPID. Note that a similar function (essentially FDL+PRF with
double hashing) was shown to be a secure (partially oblivious) pseu-

dorandom function already [30], whereas we need the classic PRF

property here and do not apply the outer hash.

Lemma B.2. Our pseudonym function FDL+PRF is a secure PRF if
H is a random oracle, PRF is a secure pseudorandom function, and
DDH holds in G.

Proof. Our proof has two main steps. The first step switches

from PRF(𝑘,𝑢𝑖𝑑) to the random values from𝑢𝑘 ←
R
Z𝑞 while evalu-

ating the PRF output in the oracle. This change is indistinguishable

by pseudorandomness of PRF. The second step relies on the sim-

ple observation that H(𝑟𝑖𝑑)𝑢𝑘 is HashDH PRF [34] and shows the

pseudorandomness of these values by relying on the multi-key

pseudorandomness of the HashDH PRF.

Game 0. This game is identical to the pseudorandomness game

with FDL+PRF.

Game 1. In this game, for each PRF query (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) with a new

𝑢𝑖𝑑𝑖 , we sample𝑢𝑘𝑖 ←R
Z𝑞 for the𝑢𝑖𝑑𝑖 and answer FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑)

queries as FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) = H(𝑟𝑖𝑑)𝑢𝑘𝑖 . By pseudorandomness

of PRF, this change is indistinguishable to the adversary.

Game 2. This game finalizes the proof by changing the PRF

evaluations for FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) from H(𝑟𝑖𝑑)𝑢𝑘𝑖 to 𝑦 ←
R
G.

We show that this change is indistinguishable to the adversary by

presenting sequences of indistinguishable hybrids between Games

1 and 2 where the first and last hybrids are identical to Games 1

and 2, respectively. Each hybrid changes the PRF evaluations for

𝑢𝑖𝑑𝑖 from H(𝑟𝑖𝑑)𝑢𝑘𝑖 to a random value. Let 𝑢𝑖𝑑1, ..., 𝑢𝑖𝑑𝑛 represent

the 𝑢𝑖𝑑 values that the adversary queries FDL+PRF oracle.

Hybrid 0. This hybrid is identical to Game 1.

Hybrid 𝑖∈{1,...,𝑛} . Hybrid𝑖 runs Hybrid𝑖−1 identically except for

the following change. For FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) queries, Hybrid𝑖 out-
puts FDL+PRF (𝑢𝑖𝑑𝑖 , 𝑟𝑖𝑑) ←R

G random values. Note that Hybrid 𝑛

is identical to Game 2.

Transition Hybrid 𝑖 → Hybrid 𝑖+1. The transition between hy-

brids simply relies on the pseudorandomness of HashDH. In partic-

ular, Hybrid𝑖 evaluates HashDH PRF H(𝑟𝑖𝑑)𝑢𝑘𝑖+1 with the PRF key

𝑢𝑘𝑖+1 whereas Hybrid𝑖+1 changes these evaluations to the random

values from G. By pseudorandomness of HashDH, Hybrids 𝑖 and

𝑖 + 1 are indistinguishable and HashDH is pseudorandom if DDH

assumption holds in ROM [34]. □

B.1 Proof of Theorem 5.1 (Unlinkability)
Here, we prove that 𝜋OPPID satisfies Unlinkability (see Def. 3.1) if

H is a random oracle, PRF is a secure pseudorandom function, and

the DDH assumption holds in G.

Proof. Recall that A is given the IdP’s public key and oracles

O := {RegCRP,AInitU,AResIdP} to register corrupt RPs, initialize

honest user sessions, and obtain pseudonyms and tokens from

the IdP. Eventually, it outputs 𝑢𝑖𝑑0, 𝑢𝑖𝑑1, and 𝑟𝑖𝑑 , together with

𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑, 𝑐𝑡𝑥, 𝑠𝑖𝑑 , and receives a challenge token and pseudonym

(𝜏𝑓 𝑖𝑛𝑏 , 𝑝𝑝𝑖𝑑𝑑) for 𝑢𝑖𝑑𝑏 .
We further know that if A wins, it must not make any query

that trivially reveals Fk (𝑢𝑖𝑑0, 𝑟𝑖𝑑) or Fk (𝑢𝑖𝑑1, 𝑟𝑖𝑑). That is,A is not

allowed to make O.AResIdP queries (𝑎𝑢𝑡ℎ, 𝑐𝑟𝑖𝑑,𝑢𝑖𝑑𝑑 , 𝑐𝑡𝑥, 𝑠𝑖𝑑) for
𝑑 ∈ {0, 1} where either:
• 𝑐𝑟𝑖𝑑 belongs to 𝑟𝑖𝑑 from the challenge query (via previous query

to O.AInitU), or
• 𝑐𝑟𝑖𝑑 is malicious, i.e., not an output from O.AInitU.
These conditions ensure that all queriesAmakes towardsO.AResIdP

must involve 𝑐𝑟𝑖𝑑 values that are honestly generated and for which

we know the underlying 𝑟𝑖𝑑 (and blinding value 𝑟).

This makes the proof straightforward. As we already know the

blinding value of 𝑦, we can compute the response value by relying

on PRF computation instead of an oblivious PRF evaluation. We

prove Unlinkability through a small sequence of games, replacing

all user-dependent values for 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1 with random values,

ensuring that A has no better chance than guessing to determine

the bit 𝑏. Let Game 0 be the original game.

Game 1. We now change the way we compute the 𝑦𝑑 values in

O .AResIdP to compute the challenge token values 𝜏𝑑 . We simulate

A’s view by using FDL+PRF as a black-box algorithm to reason

about its pseudorandomness, showing the Unlinkability property

of our scheme instead of its one-more pseudorandomness. Since

O .AResIdP queries must contain 𝑐𝑟𝑖𝑑 values generated through

AInitU, we can look up (𝑟𝑖𝑑, 𝑐𝑟𝑖𝑑, 𝑜𝑟𝑖𝑑) in Qrid and parse 𝑜𝑟𝑖𝑑 =

(𝑜, 𝑟). Instead of blindly computing 𝑦, we compute 𝑦 = FDL+PRF
(𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑)) from the known input and blind the response later:

𝑦𝑑 = 𝑦𝑟
𝑑
. This change produces outputs identical to those in the

previous game, so this game hop cannot be distinguished by A.

Game 2. In this game, we change the way we compute 𝑦𝑑 =

FDL+PRF (𝑘, (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑)) while computing 𝜏𝑑 values and set𝑦𝑑 ←R
G

as a random value. By the winning condition of the Unlinkabil-

ity game, we know that there are no previous O.AResIdP queries

for (𝑢𝑖𝑑𝑑 , 𝑟𝑖𝑑). Also, by the previously proven Lemma B.2, we know

that FDL+PRF is a secure PRF, so the change in this game is indistin-

guishable.

In the last game, all the bit𝑑-related values are uniformly random,

independent of 𝑢𝑖𝑑0 and 𝑢𝑖𝑑1. Thus,A’s chance of determining the

bit 𝑏 is 1/2.

□

No One-More-Type Assumption. What might be surprising at first

glance is that we do not need a one-more-type assumption typically

required in blind evaluation protocols, such as the (2)HashDH-

OPRF, which seems equivalent to our construction. This is not

surprising after closer examination. First, recall that our security

property guarantees that the 𝑢𝑖𝑑 in the IdP’s response remains

hidden, and the 𝑢𝑖𝑑 is not blind towards the IdP but revealed in

every query. Second, the guarantee can only hold for honest users,
which is enforced throughout the game for both challenge users,

18

𝑢𝑖𝑑0 and 𝑢𝑖𝑑1. The adversary can only obtain "blind" PRF evalu-

ations (as part of O .AResIdP queries), where the blinded input 𝑥

was honestly generated. Thus, in the security proof, the challenger

is always aware of the blinded 𝑟𝑖𝑑 behind 𝑥 , i.e., knows exactly

on which values the PRF FDL+PRF is evaluated. This allows us to
prove Unlinkability under the standard assumption that FDL+PRF
is a secure pseudorandom function, which holds if H is a random

oracle, and the DDH assumption holds in G [30].

B.2 Proof of Theorem 5.2 (Unobservability)
We now provide a simple proof that 𝜋OPPID satisfies Unobservabil-

ity (see Def. 3.2) if COM is hiding, and the NIZK is zero-knowledge.

Proof. A receives 𝑎𝑢𝑡ℎ = 𝜋 and 𝑐𝑟𝑖𝑑 = (𝑥, 𝑐𝑜𝑚), where 𝑐𝑜𝑚 is

a commitment to 𝑟𝑖𝑑 and 𝑥 is the blinded hash. 𝜋 proves knowledge

of an IdP-issued credential on 𝑟𝑖𝑑 and that the commitment 𝑐𝑜𝑚

opens to the same 𝑟𝑖𝑑 . Unobservability follows directly from the

zero-knowledge property of 𝜋 , the perfect hiding of 𝑟𝑖𝑑 via 𝑥 with

𝑟 , and the hiding property of COM with the undisclosed opening

𝑜 . □

B.3 Proof of Theorem 5.3 (Session Binding)
Here we prove that 𝜋OPPID is Session Binding (see Def. 3.3) if the

S1 and S2 schemes are both EUF-CMA secure, COM is binding, and

the NIZK is zero-knowledge and simulation-extractable.

Proof. We split the proof along the winning condition that the

adversary must satisfy. Recall that A outputs (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗, 𝑐𝑡𝑥∗,
𝑠𝑖𝑑∗, 𝜏∗fin) and wins if this is a valid yet non-trivial forgery.

The final token 𝜏∗fin contains (𝑐𝑜𝑚∗, 𝑜∗, 𝑟∗, 𝑦∗, 𝜎∗𝜏). A valid token

implies that 𝜎∗𝜏 is a valid signature, meaning

S1 .Vf (𝑝𝑘1, (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), 𝜎∗𝜏) = 1

with 𝑥∗ := H(𝑟𝑖𝑑∗)𝑟 ∗ , 𝑐𝑜𝑚∗ := Com(𝑟𝑖𝑑∗, 𝑜∗), and 𝑝𝑝𝑖𝑑∗ := 𝑦∗−𝑟
∗
.

We first distinguish whether we have a direct or indirect forgery,
i.e., whether the information that was publicly signed by the IdP is

already a forgery or not.

Case 1: Direct Forgery with (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∉ Q𝜏 . If the adversary
outputs a valid forgery where the combination (·, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) was
never vouched for by the honest IdP, it must have forged the IdP’s

signature on these values. This is infeasible if the signature scheme

S1 is EUF-CMA secure.

We can build a S1 forger easily using an adversary that can

perform a direct forgery as follows. We get the challenge S1 public
key 𝑝𝑘∗

1
and use it as 𝑝𝑘1 while setting the issuer public key 𝑖𝑝𝑘 .

As we do not know the corresponding secret key to 𝑝𝑘∗
1
, we need a

way to simulate the S1 signatures 𝜎𝜏 which are part of IdP’s output

to 𝜏 queries, 𝜏 . We simulate 𝜎𝜏 values using the signing oracle of

S1. In particular, the oracles work as follows:

RegHRP,RegCRP,AInitU,AReqRP,AResFin,VfRP: As they are.

AResIdP: It computes𝑦 as before. To form the token on𝑚 = (𝑐𝑜𝑚 | |𝑥
| |𝑦 | |𝑐𝑡𝑥 | |𝑠𝑖𝑑), it queries the signing oracle of S1 and gets the sig-

nature 𝜎𝜏 on𝑚 and outputs (𝜎𝜏 , 𝑦).
Finally, the adversary outputs (𝜎∗,𝑚∗) := (𝜎∗𝜏 , (𝑐𝑜𝑚∗, 𝑥∗, 𝑦∗, 𝑐𝑡𝑥∗,

𝑠𝑖𝑑∗)) to the S1 unforgeability challenger as the S1 forgery for the

forged token 𝜏∗fin := ((𝑐𝑜𝑚∗, 𝑜∗, 𝑟∗, 𝑦∗, 𝜎∗𝜏), 𝑦∗) and 𝑥∗ := H(𝑟𝑖𝑑∗)𝑟 ∗ .

As the forged token is valid, we know that S1 .Vf (𝑝𝑘∗
1
, 𝜎∗,𝑚∗) = 1.

Furthermore, direct token forgeries ensure that we do not make a

signing oracle query for (·| | · | | · | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), so our forgery is on a

fresh message.

Case 2: Indirect Forgery with (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 . If the honest
IdP has previously signed the combination (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) for a
session for user 𝑢𝑖𝑑 , the adversary can only win if the associated

information (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗) that the IdP has blindly signed and de-

rived is inconsistent with the expected pseudonym or behavior of

honest and corrupt RPs. This inconsistency is expressed through

the five sub-cases in the winning condition of the Session Binding

game, and our proof branches accordingly.

What is important here is that the IdP signs additional informa-

tion in 𝜎∗𝜏 , namely (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗). If the adversary outputs a forgery
where this tuple differs from what the honest IdP has signed along

with (𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), then we can immediately turn this into a forgery

of the S1 scheme. We simulate 𝑝𝑘1 as the S1 EUF-CMA challenge

public key 𝑝𝑘∗
1
and simulate the Session Binding game just as in

Case 1.

Note that while the adversary does not explicitly output 𝑐𝑜𝑚∗

and 𝑥∗, these values are uniquely defined through its outputs as

𝑐𝑜𝑚∗ = Com(𝑟𝑖𝑑∗, 𝑜∗) and 𝑥∗ = H(𝑟𝑖𝑑∗)𝑟 ∗ , with 𝑜∗ and 𝑟∗ being
part of 𝜏∗fin and 𝑟𝑖𝑑∗. At the end of the Session Binding game, we

check the AResIdP query with (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 . If the cor-

responding query differs from (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗), then we

can output (𝜎∗𝜏 , (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗)) as a valid S1 forgery.
Thus, the rest of the proof of Case 2 is now conditioned on the

fact that the full tuple (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗) has indeed been

signed by the honest IdP in a session with user 𝑢𝑖𝑑 .

(a) Nym Correctness: 𝑝𝑝𝑖𝑑∗ ≠ F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗). If the adversary wins

by satisfying the first sub-condition, it must have produced a

valid token with an incorrect pseudonym, i.e., output a 𝑝𝑝𝑖𝑑∗ ≠
H(𝑟𝑖𝑑∗)PRF(𝑘,𝑢𝑖𝑑) .

In our construction, winning under this condition is impos-

sible (other than through manipulating the IdP’s signed infor-

mation, which we excluded above). Recall that the adversary’s

forgery must contain 𝑥∗ | |𝑦∗ along with the public session infor-

mation. We have already excluded the case where A manages

to manipulate these values. Thus, we know that 𝑥∗, 𝑦∗ are the
values the IdP has signed in a session 𝑠𝑖𝑑∗, where it learned the

username 𝑢𝑖𝑑 and computed

𝑦∗ = 𝑥∗PRF(𝑘,𝑢𝑖𝑑) .

As the forgery must pass the verification, we know that

𝑝𝑝𝑖𝑑∗ = 𝑦∗−𝑟
∗

and 𝑥∗ = H(𝑟𝑖𝑑∗)𝑟
∗

Putting it all together implies that

𝑝𝑝𝑖𝑑∗ = ((H(𝑟𝑖𝑑∗)𝑟
∗
)PRF(𝑘,𝑢𝑖𝑑))−𝑟

∗
= H(𝑟𝑖𝑑∗)PRF(𝑘,𝑢𝑖𝑑) .

Thus, for every valid token, it holds that 𝑝𝑝𝑖𝑑∗ = F(𝑢𝑖𝑑, 𝑟𝑖𝑑∗).

(b) RP Binding I : (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏fin ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗. If an
adversary wins under condition (2b), it must have "high-jacked"

an honest user session. For sessions intended by honest users,

we know the exact RP 𝑟𝑖𝑑 they intended to authenticate to, and

the adversary wins if it can create a token for this session that

19

is valid for a different RP 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 . We can again leverage the

fact that we know that (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗) is the original
information signed by the honest IdP in the session with the

honest user 𝑢𝑖𝑑 . We further know that the commitment 𝑐𝑜𝑚∗ is
an honestly generated commitment (through O .AInitU) for 𝑟𝑖𝑑 .

As the final token contains an opening 𝑜∗ and checks that

𝑐𝑜𝑚∗ = Com(𝑟𝑖𝑑∗, 𝑜∗), this implies thatA managed to open the

commitment 𝑐𝑜𝑚∗ to a different value 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 , which is infea-

sible under the binding property of COM. In particular, by the

behavior of O .AResFin, we know that Q𝜏fin is updated with an

𝑟𝑖𝑑 only when there is a valid opening 𝑜 for the commitment 𝑜∗

provided in the token 𝜏fin. Thus, the tuple (𝑐𝑜𝑚∗, 𝑟𝑖𝑑, 𝑟𝑖𝑑∗, 𝑜, 𝑜∗)
breaks the binding property of the commitment.

(c) RP Binding II : (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Qvf ∧ 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗. If the
IdP did sign (𝑐𝑜𝑚∗ | |𝑥∗ | |𝑦∗ | |𝑐𝑡𝑥∗ | |𝑠𝑖𝑑∗) in a session with a cor-
rupt user 𝑢𝑖𝑑 (which was ensured by the main S1 unforgeability
reduction of condition (2)), we do not know the intended 𝑟𝑖𝑑

contained in 𝑐𝑜𝑚∗ (or 𝑥∗). Thus, the adversary can "open" the to-
ken to any valid 𝑟𝑖𝑑∗ it wants. In order to create a valid forgery,

A must have produced (at least) two valid tokens for (𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗)
yet different (𝑟𝑖𝑑, 𝑝𝑝𝑖𝑑) and (𝑟𝑖𝑑∗, 𝑝𝑝𝑖𝑑∗) with 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗. Note
that we do not make any requirements on the pseudonyms here,

as the adversary already wins under condition (2a) if it can

produce an invalid pseudonym.

The only remaining way for the adversary to provide a con-

dition (2c) forgery is then providing different openings of 𝑐𝑜𝑚∗

to distinct 𝑟𝑖𝑑 and 𝑟𝑖𝑑∗ values. If this occurs, the query of the

adversary to O .VfRP with 𝑠𝑖𝑑∗ and 𝑐𝑡𝑥∗ contains a valid open-

ing of 𝑐𝑜𝑚∗ to 𝑟𝑖𝑑 and 𝑜 for 𝑟𝑖𝑑∗ ≠ 𝑟𝑖𝑑 . Obviously, it contradicts

the binding property ofCOM as the tuple (𝑐𝑜𝑚∗, 𝑟𝑖𝑑, 𝑟𝑖𝑑∗, 𝑜, 𝑜∗)
breaks the binding property.

(d) RP Authentication I : 𝑟𝑖𝑑∗ ∉ HRP ∪ CRP. If the adversary wins

under this condition, it means that the adversary produced a

valid token for an 𝑟𝑖𝑑∗ that was never registered with the honest
IdP. As the IdP only provides an authentication token when

it receives a valid registration proof 𝜋 , A must have forged

this proof in its query for 𝑠𝑖𝑑∗. A can perform such an attack

either by forging a proof on an invalid statement directly, or by

forging the underlying witness, which is a tuple in the form of

(𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). Here, by forging a witness, we mean either forg-

ing the membership credential 𝜎𝑟𝑖𝑑 on a non-registered 𝑟𝑖𝑑 , or

forging the opening (𝑟𝑖𝑑∗, 𝑜∗) of 𝑐𝑜𝑚∗ where (𝑟𝑖𝑑, 𝑜) is also a

valid opening to 𝑐𝑜𝑚∗ for a registered but corrupted 𝑟𝑖𝑑 . Neither
of these cases is feasible by relying on the special soundness of

NIZK, EUF-CMA of S2 under 𝑝𝑘2, and the binding property of

the commitment scheme. To be able to reduce to a forgery under

S2, we require NIZK to be special sound and use the knowledge

extractor to obtain a valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By relying on

the binding property of the commitment scheme, we can argue

that 𝜎𝑟𝑖𝑑 satisfies the winning condition of the EUF-CMA game.

In more detail, our reduction in condition (2d) works as

follows. We obtain a challenge public key 𝑝𝑘∗
2
from a S2 un-

forgeability challenger and simulate the 𝑝𝑘2 in the identity

provider public key 𝑖𝑝𝑘 as 𝑝𝑘∗
2
. We simulate the S2 signatures

for O .RegCRP/O .RegHRP queries by relying on the signing

oracle of the S2 unforgeability challenger, so the behavior of

the oracles changes as follows:

AInitU,AReqRP,AResIdP,AResFin,VfRP: As they are.

RegHRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP. If it does not
hold, it outputs 0. Otherwise, for the registration query for

𝑟𝑖𝑑 , it queries the S2 signing oracle, gets the signature 𝜎𝑟𝑖𝑑 ,

updates HRP := HRP ∪ {(𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑)} on 𝑟𝑖𝑑 , and outputs 1.

RegCRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP. If it does not
hold, it outputs 0. Otherwise, for the registration query for

𝑟𝑖𝑑 , it queries the S2 signing oracle, gets the signature 𝜎𝑟𝑖𝑑 ,

updates CRP := CRP ∪ {(𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑)} on 𝑟𝑖𝑑 , and outputs 𝜎𝑟𝑖𝑑 .

Finally, we run the knowledge extractor for the NIZK on the

proof 𝜋 which corresponds to the O .AResIdP query for (𝑢𝑖𝑑, 𝑐𝑡𝑥 ,
𝑠𝑖𝑑) ∈ Q𝜏 and extract a valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By the spe-

cial soundness property of the underlying NIZK, we know that

the extractor will output a valid witness with overwhelming

probability, so S2 .Vf (𝑝𝑘,
2
𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) and Open(𝑟𝑖𝑑, 𝑐𝑜𝑚,𝑜).

If 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗, then we break the binding property of the

commitment scheme as (𝑟𝑖𝑑, 𝑜) and (𝑟𝑖𝑑∗, 𝑜∗) are distinct valid
openings to the commitment 𝑐𝑜𝑚∗. Otherwise, 𝜎𝑟𝑖𝑑 is a valid

signature on 𝑟𝑖𝑑∗ = 𝑟𝑖𝑑 . There is no signing oracle query to the

S2 challenger for 𝑟𝑖𝑑∗ by condition (2d), so (𝜎𝑟𝑖𝑑 , 𝑟𝑖𝑑∗) is a valid
and fresh S2 forgery, breaking the EUF-CMA property of S2.

We conclude that if there is a type (2d) forger adversary, the

underlying NIZK is not special sound, the underlying commit-

ment scheme is not binding, or S2 is not EUF-CMA.

(e) RP Authentication II : 𝑟𝑖𝑑∗ ∈ HRP ∧ (𝑟𝑖𝑑∗, 𝑠𝑖𝑑∗) ∉ Qauth. When

the adversary wins by satisfying the final condition, it has cre-

ated a valid token for session 𝑠𝑖𝑑∗ and honest RP 𝑟𝑖𝑑∗, yet this
RP never provided authentication for that session. As in the

previous case,A can do this by forging 𝜋 directly, finding a com-

mitment collision for 𝑟𝑖𝑑∗ and a corrupted 𝑟𝑖𝑑 , or forging the

membership credential 𝜎𝑟𝑖𝑑 of the honest RP. To formally prove

it, we use both the zero-knowledge and simulation extractability

properties here.

We aim to show that the adversary must forge a NIZK proof

𝜋 or a witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑) as explained in condition (2d). Thus,

similar to condition (2d), we must simulate S2 signatures by

relying on an EUF-CMA challenger. However, unlike condition

(2d), 𝑟𝑖𝑑∗ belongs to an honest RP here, so if we make a signing

query for 𝑟𝑖𝑑∗ to the EUF-CMA challenger, a signature on 𝑟𝑖𝑑∗

is not a valid forgery anymore. Thus, we do not simulate honest

RP credentials with S2 signatures, but we simulate the NIZK
proofs 𝜋 ’s in AReqRP oracle queries for the honest RP’s without

knowing/creating a valid 𝜎𝑟𝑖𝑑 . As a result, we cannot simply rely

on special soundness as in condition (2d), but we will needNIZK
to be simulation extractable. Moreover, changing only RegHRP
and RegCRP is not enough, but we also need to change AReqRP
so that the honest RP authentication requests can be created

using the NIZK simulator. We change the oracles’ behavior as

follows:

AInitU,AResIdP,AResFin,VfRP: As they are.

20

RegHRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP. If it holds, it
updates HRP := HRP ∪ {(𝑟𝑖𝑑,⊥)} and outputs 1. If not, it

outputs 0. It does not make a S2 signing query in any case.

RegCRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP ∪ CRP. If it does not
hold, it outputs 0. Otherwise, for the registration query for

𝑟𝑖𝑑 , it queries the S2 signing oracle, gets the signature 𝜎𝑟𝑖𝑑 ,

updates CRP := CRP ∪ {(𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑)} on 𝑟𝑖𝑑 , and outputs 𝜎𝑟𝑖𝑑 .

AReqRP: Checks if (𝑟𝑖𝑑, ·) ∈ HRP and returns ⊥ if not. Runs

the original O .AReqRP except for computing NIZK. As we do
not know a valid credential for honest 𝑟𝑖𝑑’s, the NIZK proof

is simulated using the zero-knowledge simulator.

After simulating the adversary’s view as above, we run the

knowledge extractor for the NIZK on the proof 𝜋 which corre-

sponds to the O .AResIdP query for (𝑢𝑖𝑑, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗) ∈ Q𝜏 and ex-

tract a valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By the simulation extractabil-

ity property of the underlying NIZK, we know that the extrac-

tor will output a valid witness with overwhelming probability,

which satisfies S2 .Vf (𝑝𝑘∗
2
, 𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) and Open(𝑟𝑖𝑑, 𝑐𝑜𝑚∗, 𝑜).

Just as in condition (2d), if 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗, then we break the

binding property of the commitment scheme using the distinct

openings (𝑟𝑖𝑑, 𝑜) and (𝑟𝑖𝑑∗, 𝑜∗) to the commitment 𝑐𝑜𝑚∗. Other-
wise, 𝜎𝑟𝑖𝑑 is a valid signature on 𝑟𝑖𝑑∗ = 𝑟𝑖𝑑 . There is no signing

oracle query to the S2 challenger for 𝑟𝑖𝑑∗ as 𝑟𝑖𝑑∗ ∈ HRP, so
we output a valid forgery. We conclude that if there is a type

(2e) forger adversary, the underlying NIZK is not simulation

extractable, the underlying commitment scheme is not binding,

or S2 is not EUF-CMA.

□

B.4 Proof of Theorem 5.4 (Req. Authentication)
Here we prove that 𝜋OPPID satisfies Request Authentication (see

Def. A.1) if the S2 scheme is EUF-CMA secure, and the NIZK is

zero-knowledge and simulation extractable. The proof essentially

follows the RP Accountability proof from [31].

Proof. The proof of Request Authentication follows from the

zero-knowledge and simulation extractability of NIZK, and the

unforgeability of S2. The main proof strategy is similar to condition

(2e) of the Session Binding proof. We aim to build a S2 forger using
an 𝑎𝑢𝑡ℎ-forger, Request Authentication adversary. For that, we

simulate the S2 public key in 𝑖𝑝𝑘 as an EUF-CMA challenge public

key 𝑝𝑘∗
2
. Note that we will not actually need the full power of

EUF-CMA, as we will not make any signing queries. Thus, the

unforgeability of S2 against a key-only attack, where no signing

queries are allowed, would also be sufficient.

Just as in condition (2e) of the Session Binding, we do not create

credentials for honest RPs, but we simulate the correspondingNIZK
proofs to generate 𝑎𝑢𝑡ℎ values for these RPs. The difference from

condition (2e) of the Session Binding game is that corrupted RPs

are not allowed, so we do not have to simulate their credentials.

Thus, we do not need to make signing queries for 𝑝𝑘∗
2
at all. In the

end, we extract a valid signature on some 𝑟𝑖𝑑 value from the forged

𝑎𝑢𝑡ℎ, which is a valid S2 forgery. In more detail, we simulate the

adversary’s view as follows:

AResIdP: As it is.

RegHRP: It checks that (𝑟𝑖𝑑, ·) ∉ HRP∪CRP. If it holds, it updates
HRP := HRP ∪ {(𝑟𝑖𝑑,⊥)} and outputs 1. If not, it outputs 0. It

does not make a S2 signing query in any case.

AReqRP: Checks if (𝑟𝑖𝑑, ·) ∈ HRP and returns ⊥ if not. Runs the

original AReqRP algorithm except for computing NIZK. As we
do not know a valid credential for honest 𝑟𝑖𝑑’s, the NIZK proof

is simulated using the zero-knowledge simulator.

Finally, when the adversary outputs an authentication request

forgery (𝑎𝑢𝑡ℎ∗, 𝑐𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑠𝑖𝑑∗), we run the knowledge ex-

tractor for the NIZK on the proof 𝑎𝑢𝑡ℎ∗ := 𝜋∗, and extract a

valid witness (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑). By the winning condition, we know

that there is no O .AReqRP query for (𝑠𝑖𝑑∗, 𝑐𝑟𝑖𝑑∗). As honest RPs
bind (𝑠𝑖𝑑∗, 𝑐𝑟𝑖𝑑∗) to the created proofs, we know that 𝜋∗ is not out-
put by O .AReqRP, so it is not a previously simulated proof by the

zero-knowledge simulator. Thus, by the simulation extractability

property of the underlying NIZK, (𝑟𝑖𝑑, 𝑜, 𝜎𝑟𝑖𝑑) is a valid witness

with overwhelming probability, and thus S2 .Vf (𝑝𝑘∗
2
, 𝑟𝑖𝑑, 𝜎𝑟𝑖𝑑) = 1.

As we do not make any signing queries to the unforgeability chal-

lenger, (𝜎𝑟𝑖𝑑 , 𝑟𝑖𝑑) is a valid forgery against the EUF-CMA property

of S2.
□

21

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Work

	2 SSO with Oblivious PPIDs
	2.1 Entities & Main Phases
	2.2 Pairwise Pseudonymous Identifier
	2.3 Syntax of OPPID

	3 Security Model of OPPID
	3.1 Oracles
	3.2 Unlinkability
	3.3 Unobservability
	3.4 Session Binding
	3.5 Privacy Limitation: No Untraceability

	4 Building Blocks
	5 Our OPPID Construction
	5.1 Privacy-Preserving RP Authentication
	5.2 Oblivious PPID Generation
	5.3 Security Analysis

	6 Evaluation & Discussion
	6.1 Security Comparison with Related Protocols
	6.2 Implementation and Evaluation

	Acknowledgments
	References
	A Omitted Model Parts
	A.1 Correctness
	A.2 Session Binding: RP Binding & RP Auth.
	A.3 Comparison to Session Binding from Existing Definitions
	A.4 Request Authentication

	B Full Proofs of P4ID
	B.1 Proof of Theorem 5.1 (Unlinkability)
	B.2 Proof of Theorem 5.2 (Unobservability)
	B.3 Proof of Theorem 5.3 (Session Binding)
	B.4 Proof of Theorem 5.4 (Req. Authentication)

