
Faster Asynchronous Blockchain Consensus and
MVBA

Matthieu Rambaud
Télécom Paris

Abstract—Blockchain consensus, a.k.a. BFT SMR, are proto-
cols enabling n processes to decide on an ever-growing chain.
The fastest known asynchronous one is called 2-chain VABA
(PODC’21 and FC’22), and is used as fallback chain in Abraxas*
(CCS’23). It has a claimed 9.5δ expected latency when used
for a single shot instance, a.k.a. an MVBA. We exhibit attacks
breaking it. Hence, the title of the fastest asynchronous MVBA
with quadratic messages complexity goes to sMVBA (CCS’22),
with 10δ expected latency. Our positive contributions are two new
and complementary designs.

• 2PAC (2-phase asynchronous consensus). It has a simpler
and lighter chaining than in previous approaches. Instantiated
with either quadratic or cubic phases of voting, it yields:

2PAClean: +90% throughput and 9.5δ expected latency, with
quadratic (O(n2)) messages complexity. In both 2-chain VABA
and sMVBA (as if chained, with pipelining), the quorum-certified
transactions which were produced in the worst-case 1/3 of views
with a slow leader were dumped, so the work was lost. The
simpler design of 2PAC inserts such blocks in straight-line in the
chain. Thus, contrary to naive uncle-referencing, this comes with
no computational overhead, yielding a net +50% throughput gain
over chained sMVBA. Both the remaining throughput and latency
(−0.5δ) gains, come from the lighter interactive construction of
proofs of consistency appended to proposed blocks, compared to
sMVBA.

2PACBIG: the fastest asynchronous blockchain consensus with
cubic (O(n3)) messages complexity. Fault-free single shot MVBA
runs decide in just 4δ, as soon as no message is delivered more
than twice faster than others: GradedDAG (SRDS’23) required
furthermore no messages reordering.

• Super Fast Pipelined Blocks. This is an upgrade of previous
approaches for pipelining: in 2-chain VABA, Cordial Miners
(DISC’23) and GradedDAG, a block pipelined by a leader in
the middle of the view had almost twice larger latency than the
non-pipelined block. Our design provides a fast path deciding the
pipelined block with even smaller latency than the non-pipelined
block. The fast delay is guaranteed in all executions with a
fair scheduler, but remarkably, whatever the behaviors of faulty
processes. Consistency is preserved by a lightweight mechanism,
of one threshold signature appended per proposal. Instantiated
with the previous protocols, it yields: s2PAClean, with fast decision
of pipelined blocks in 4δ; s2PACBIG, in 3δ; and sGradedDAG, in
3δ.

I Notation: View, Height, QC, Endorsement 6

II Attacks 7

III 2PAClean 8

IV s2PAClean: Super Fast Pipelining 10

V 2PACBIG and s2PACBIG 12

VI Computational Evaluation 12

VII Variants, Optimizations & Comments 13

Appendix A: Deferred details of proofs 15

Appendix B: Further optimizations 16

Appendix C: Further comments and related works 17

INTRODUCTION

A. Model and Definitions

Network and corruptions. The system consists of n = 3f+1
processes P1, . . . ,Pn, of which f are actively corrupt by the
adversary. For simplicity we consider static corruptions, we
refer to Sec. VII-2 for adaptive security. Processes are linked
by pairwise asynchronous channels without authentication nor
secrecy, of which the delays are controled by the adversary.
They have access to a global common coin (Sec. I-3), as in all
efficient related works [2, 40, 46, 65, 29, 73, 24, 22, 33, 21].
As in most works, they have access to a PKI and to signatures.
We denote δ the largest (unknown) delivery delay of a message
between honest processes in a given execution. To multicast a
message m is the instruction to send it to all processes.

Asynchronous Blockchain Consensus (a.k.a. async. BFT
SMR). Processes continuously receive input transactions, and
output an ever-growing chain of decided blocks. In more
detail: there exists a public predicate called valid_DecCert .
If valid_DecCert(b, σ) = true then we say that σ is a
decision certificate (DecCert) vouching for the block b (fol-
lowing the formalism of “PVABA” in [23]). Each block
contains a pointer to a parent block, thus forming a chain
of blocks. A DecCert for a block automatically constitutes a
DecCert for all the chain of its ancestors. When a process
outputs a DecCert for a block, we say that the block and all
its ancestors are decided.

Definition 1. ([20]) A blockchain consensus must satisfy

• liveness: in an infinite execution, there is an infinitely long
chain of decided blocks;

• consistency: if two chains of decided blocks exist, then
one must be prefix of the other;

• p-quality ([39, 2, 44]) for some p > 0: the asymptotic
proportion of decided blocks in which transactions were
input by honest processes, is at least p.

These specifications are matched by [59, 28, 53, 65, 46, 38,
73, 49, 23, 11, 64, 24, 22, 21]. By contrast, the liveness of [30,
57, 62, 5] is conditioned to eventual synchrony and absence
of DoS attacks on pre-determined leaders (a.k.a. “anchors”).
Being agnostic to such DoS attacks is the motivation given in
[41] for developping asynchronous blockchain consensus.

Throughput. We use the following estimate, equal to the
computation time done per decided block per process. Since
our protocols and previous works proceed by iterations called
views (a.k.a. “waves”), the estimate is itself equal to

(1) throughput =
blocks/view

computation/view
where blocks/view is the average number of decided blocks
per view and computation/view the average computation time
per view per process.

Latency measured on a single-shot MVBA. The definition
of the latency to decide a transaction in a blockchain protocol
varies in the literature. Either the timer is started when one
process receives the transaction (the scripts of [63] and [5]; or
when all processes receive it ([20]); or, later, when furthermore
all players are in the same view ([20] “view-based latency”).
We thus use a more universal metric, which is the latency of
a single-shot instance, also known as “MVBA” (or “VABA”).
MVBA is one of the most important ingredients in distributed
systems (Sec. C-1). In an MVBA protocol, each process i starts
with an input block bi at time t = 0: we start the timer here. We
call latency of the execution the first time t at which one honest
process outputs a DecCert for a block (b, σ). This convention,
of when to stop the timer, is in line with [63]. We believe
that it is relevant from the perspective of an external client
subscribing to the system. From when the first process outputs
a DecCert, the subscriber is guaranteed to obtain the publicly
verifiable decision: (b, σ) in one message delay. The worst-
case expected latency, over all adversaries, is what we call
the expected latency of the MVBA. For further emphasis, we
will sometimes prefix it with “(worst-case)”. We adopt our
definitions everywhere, including for related works.

Good-case latency. sMVBA [46, Table I] guarantees that
all processes output a DecCert by 6δ if both: there is no
corruptions, and the scheduler is fair, i.e., messages are not
reordered. We observe that they achieve 6δ in a wider-than-
advertised (and arguably more realistic) set of executions,
which we formalize as follows.

Definition 2. We say that the scheduler is half-fair if: either
it is fair, or, δ 6 2δfast, where δfast is the fastest message delay
between honest processes.
We call an execution good case if both: it is fault-free, i.e.,
with no corruptions, and the scheduler is half-fair.
We call good case latency the delay until all (not only one)
processes output in a good case execution.

We will use this definition everywhere, including for related
works. Note that some works [49, 24] use the terminology
“good case” to denote instead the best case latency ([46, 22]),
which is the smallest achievable one.

The number of messages complexity., resp. the bit complex-
ity, is the expected number of messages, resp. of bits, sent by
honest processes per decided block.

The fastest blockchain consensus with a quadratic
(O(n2)) number of messages complexity, is called
2-chain_VABA [40]. Its claimed worst-case expected latency
on a single-shot MVBA, according to our definition, is 9.5δ.
Its good-case latency is 6δ. 2-chain_VABA is used as the
asynchronous blockchain in Abraxas∗ [11, §6].

B. Attacks, Insight and New Approach

Both this subsection and Sec. II follow from the request
of a reviewer, to outline our attacks early in the paper and
to explain how the insight from the attacks is utilized in
the new design. 2-chain_VABA proceeds by iterations called
views. In each view v, processes run n parallel instances:
(v, i), ∀i ∈ [n] of a view of the consensus called “2-phase
Hotstuff” [71, 56] (not to be mistaken with Jolteon [41]).
Process Pi acts as the proposer of the i-th instance (v, i),
∀i ∈ [n]. Note that this general structure, of running n views
in parallel then electing one a posteriori (to be detailed), dates
back at least from [2] and has been adopted in at least [65,
46, 49, 24, 22]. Each instance (v, i) proceeds by two phases
of vote. First, proposer Pi multicasts a block bv,1,i, called of
“height 1”, then hopefully receives 2f + 1 votes on bv,1,i
which it combines into a quorum certificate (QC): qcv,1,i
vouching for bv,1,i. Then, the proposer Pi initiates a second
phase of vote by multicasting a child block: qcv,1,i ← bv,2,i
called of “height 2”. processes reply by a height-2 vote,
enabling Pi to form a height-2 QC: qcv,2,i and multicast it.
Upon obtaining enough height-2 QCs, processes elect a view-
v leader a posteriori: P` = lead(v), ` ∈ [n] then go to the
next view v+1 and repeat. The QCs on blocks proposed by
the leader lead(v) are called (a posteriori) endorsed QCs. A
DecCert on a view-v height-1 block bv,1,`, is by definition a
“2-chain” of endorsed QCs: qcv,1,` ← qcv,2,` of heights 1
and 2, on bv,1,` and one some height-2 block bv,1,`. Hence,
only blocks proposed by leaders can possibly be decided. Note
that the height-2 block bv,2,` is not decided yet: we dub it
the pipelined block, it will be decided at best only in the next
view (we will overcome this with our fast path). For the sake of
preserving Consistency despite the parallel instances, processes
act in later views > v+1 as if only the view-v instance of
the leader: (v, lead(v)) had existed. Namely, they ignore the
QCs for blocks produced in other parallel instances.

2-chain_VABA introduces relaxations to this baseline,
opening the way to a number of attacks. The first one
(Sec. II-1) breaks the consistency of both the published and
implemented versions, it leverages a bug allowing processes
to accept non-endorsed QCs. All next attacks apply after a
fix to the bug (suggested by the authors on 2023-10-13). The
second one (Sec. II-2) breaks liveness, it leverages a relax-
ation called “boosting” allowing interactions between parallel
instances. The third one (Sec. II-3) breaks consistency of the
implemented version [69]. It leverages a relaxed definition
of a leader’s QC. The fourth one (Sec. II-4) breaks liveness
of a variant of 2-chain VABA suggested in DumboNG [38,
Footnote 5], it leverages a relaxed trigger allowing early leader
election. The authors confirmed all the attacks on 2023-10-25,

2

then withdrew 2-chain_VABA: since the 2023-12-23 update,
the Ditto BFT [41] is now instantiated with a generic MVBA.

Insight: the structural livelock of 2-chain_VABA. In Sec. II-5
we make a last attempt at fixing 2-chain_VABA, consist-
ing in removing all the previous relaxations, which turned
out to be insecure. We then describe a liveness attack on
this last attempt, which shows that the structural livelock of
2-chain_VABA comes from the voting rule of 2-phase Hotstuff
[16, 71, 56]. Namely, a process cannot vote for a block
descendent of an (endorsed) QC: qc , if the process saw an
(endorsed) QC of higher view number: qchigh on a conflicting
branch. We are faced with a dead-end: it is well-known ([70,
§4.4]) that in 2-phase Hotstuff, the only way to escape the
livelock is to wait for the maximum eventual network delay:
∆. More precisely, a proposer in a new view v which does
not have a view-(v – 1) QC, is instructed to wait ∆ (in both
[71, 56]). Then it selects the QC of the highest view which
it has: qcmax, and proposes a child block: qcmax ← b. But
under asynchrony no such upper-bound ∆ is known. Thus,
we use instead as baseline the classical voting mechanism
of PBFT/SBFT/Jolteon [43, 41]. There, processes vote for a
block if it comes appended with a proof: π, that no other
conflicting block could have been committed in any earlier
view. But in [70, §7.2] it is stressed that the classical proofs
used have linear O(n) complexity (in PBFT/SBFT/Jolteon:
consist of 2f + 1 signatures on distinct messages; in Diem
[47, 27, 4]: aggregated with BGLS [13], costing f+1 pairings
to verify). Since n proposers run in parallel, this would blow up
the total complexity to O(n3). Building such a small proof π
was achieved by the breakthrough sMVBA [46], used since in
[74, 72, 23, 45]. However there is potential for simplification
and speedup, in particular in the chained regime as we are
going to see. The proof π in sMVBA: is built incrementally
as the concatenation of several threshold signatures (line 30 of
Algorithm 3 of [46]), takes two rounds to be built (PreVote
then Vote), and the specification of its validity predicate takes
19 lines ([46, Algorithm 4]).

New Approach for 2-Phase Asynchronous Consensus:
2PAC. Instead of trying to further reduce the proof for the
same predicate, we instead allow a relaxed predicate, thanks
to a new recycling-friendly chaining. Our observation is that
in our context of n parallel instances, a proposer P starting
a new view v is at least guaranteed to timely obtain a QC:
qcv – 1 (actually > f+1 QCs) produced in an instance of
the previous view v – 1. With probability up to 1/3, P may
not obtain any view-(v – 1) endorsed QC, since the previous
leader lead(v – 1) could possibly be corrupt or slow. Our key
observation is that P can still safely propose a child block
of a non-endorsed view-(v – 1) QC: qcv – 1 ← b. Namely, our
mechanism is that processes are allowed to vote for such b
as soon as they could verify the relaxed predicate that no
decision conflicting with qcv – 1 was taken in the previous view
v – 1 only. Safety of our mechanism intuitively follows from a
«chain of consistency». Namely, let us assume the Statement:
no view-(v – 1) QCs conflicts with any prior view-(< v – 1)-
DecCert. We now prove that the statement also holds for v: it
will then follow, by induction, that the statement holds for all v.
Sketch proof : consider a view-v QC: qcv . By our mechanism
it is always descendent of a view-(v – 1) QC: qcv – 1. By the
assumption, qcv – 1 does not conflict with any view-(< v – 1)
DecCert. Thus is remains to show the Claim that it does

not conflict with any view-(v – 1) DecCert. Either qcv – 1 is
endorsed, then the claim follows from quorum intersection.
Or it is not, then the DocG proves that no view-(v – 1)
DecCert can possibly exist, which implies a fortiori the claim.
We slightly more detail this sketch proof of consistency in
Appendix A-A1 (this time the actual notation of 2PAC), and
fully formalize the proof in Sec. III-1.

Our mechanism brings many advantages for free. A
proof π of the relaxed predicate is small, and consists
only of a threshold signature on 2f + 1 declarations «I
did not vote for the leader’s QC in view-v». We call this
a “declaration of a certificate-less group” (DocG). It can be
formed in one round instead of two in sMVBA: this is how
we gain 0.5δ expected latency. Last but not least, ability to
always propose a child of a QC of the last view, yields +50%
more decided blocks than 2-chain_VABA (and sMVBA, as
if chained with pipelining). Indeed in those prior approaches,
proposers propose child blocks of the endorsed QC: qcmax of
the highest view which they saw. As a result, quorum-certified
blocks produced in the 1/3 of views with a slow or corrupt
leader were dumped. Our mechanism is not uncle referencing
(as in “DAG-2PAC” below), since such non-endorsed QCs
are inserted in straight line in the chain. Hence it brings
no computation overhead: this alone explains a net +50%
throughput gain. This is illustrated in Figure 3.

Figure 1: Bird’s eye view of 2PAClean, omitting the new
ingredients: propose-QC-of-previous-view, and DocG.

Overview of 2PAC (without fast pipelining). We now put
the previous ideas in order. We start by the first iteration,
called view v = 1, which is simpler. Each process Pi acts
as a so-called proposer of its instance (v = 1, i) of two-
phases of vote (depicted in the dotted rectangle of Figure 1,

3

for proposer Pi = P1 and n = 4 processes). We describe an
instantiation, called 2PAClean, in which votes are centralized
by proposers, and thus which has O(n2) number of messages
complexity. Pi initiates the first phase of vote by multicasting
a so-called height-1 block bv=1,1,i (b in Figure 1). Processes
reply by signed height-1 votes on b1,1,i, which Pi combines
into a view-1 height-1 QC: qc1,1,i. Then Pi initiates the
second phase of vote by multicasting a child block of so-called
height-2: qc1,1,i ← b1,2,i (b′ in Figure 1). Processes reply
by a signed height-2 vote on b1,1,i ← b1,2,i. Pi combines
them into a height-2 QC: qc1,2,i which it multicasts, which
finishes its instance. Upon receiving 2f + 1 view-1 height-2
QCs from distinct proposers, a process j multicasts a coin
share. Any 2f + 1 coin shares can be combined into a
coin-QC which reveals the identity of the so-called view-
1 leader: P` := lead(v = 1) (` = 2 in Figure 1). A
DecCert is by definition a 2-chain of QCs on P`’s blocks:
qc1,1,` ← qc1,2,`, it enforces decision on P`’s height-1
block b1,1,`. Upon learning the leader, a process enters the
next view v = 2. There is a probability 2/3, not only 1/3,
that such a DecCert is formed for the leader of view v = 1.
The reason is well-known ([2, 46]): for the leader P` to have
been revealed to the adversary, it must be that at least one
honest process P received beforehand 2f + 1 height-2 QCs.
Hence, by unpredictability of the coin, the indices of these
2f + 1 proposers are independent of `. In particular, there is
2/3 probability that one of them has proposer P`, hence, is a
DecCert.

Upon entering such a new view v > 2, processes report to
each other what they have seen or not. This step is called
“Report”. Denoting P`-1 = lead(v – 1) the leader of the
previous view v – 1, each Pi multicasts:
- Either a height-1 endorsed QC: qcv – 1,1,`-1 ← bv – 1,2,`-1 , if
Pi has such one (wrapped in a height-2 block of P`-1);

- Or a signed declaration: {no_endorsed_height-1_QC, v}i
that Pi did not see any view-(v – 1) height-1 endorsed QC,
and thus did not cast a vote for any P`-1 ’s height-2 block.

Upon receiving (up to) 2f + 1 such reports of a new view
v, a process Pi starts acting as proposer of the new view
instance (v, i), as depicted by the back arrow at the bottom
of Figure 1. It builds its new proposed block bv,1,i depending
on the following two cases:
- Either Pi received (or already has) an endorsed view-

(v – 1) QC, then it builds its proposal on the top of it:
qcv – 1,1,`-1 ← bv – 1,2,`-1 ← bv+1,1,i (the QC is wrapped
in a height-2 block of proposer P`-1). Processes accept to
vote for it, enabling Pi’s instance to go through.

- Or it must be that Pi received signed declarations:
{no_endorsed_height-1_QC, v}j from 2f + 1 Pj’s. It
combines them into a threshold signature (which we called
a DocG). In that case, Pi freely chooses any view-(v – 1)
height-2 QC and builds a child of it: qcv,2,j ← bv,1,i.
Processes accept to vote for bv,1,i upon checking the DocG,
enabling again Pi’s instance to go through.

C. Quantitative Results

We now state the properties of the protocol that we have
just outlined: 2PAClean, as well as a faster variation with
cubic complexity, and a doubling of the speed of pipelined
blocks. 2PAClean is the new fastest blockchain consensus with

quadratic (O(n2)) number of messages complexity. It has 9.5δ
worst-case expected latency, and the same bit complexity as
previous works [2, 40, 46], i.e., O

(
(nκ)2 +n3

)
or O

(
(nκ)2

)
,

depending if multi-signatures or constant-sized threshold sig-
natures [12, 68] are used. In Table 2 we compare the latencies
of a single-shot 2PAClean MVBA, with the previously fastest
one. 2PAClean is formalized and proven in Sec. III.

latencies, in δ Worst-case
expected

Good-case (Def. 2) := until all
processes decide, if no faults &
half-fair scheduler

sMVBA [46] 10 (†) 6

2PAClean 9.5 6

Table 2: MVBAs with a quadratic number of messages. (†) 12δ
latency for sMVBA is stated in [46, 23]. Our estimate (Sec. A)
is instead 10δ, following our definition of latency. This is
consistent with the updated estimate of 11δ notified on 2024-
05-26 by the authors of sMVBA [46], since they measure
latency instead until all processes output a DecCert.

+80% to +100% throughput over Chained sMVBA, thanks
to the new design. Despite 2PAClean being the first correct
quadratic asynchronous blockchain consensus, we can compare
its throughput to what would have given previous approaches.
Consider a chained version of sMVBA [46], in which pro-
posers would pipeline a child block in each of their provable
broadcast (PB) instance (two per view).

Figure 3: New view v proposal by Pi: bv+1,1,i when no
endorsed view-(v – 1) QC is known to Pi. Top: in chained
sMVBA (& 2-chain_VABA). Bottom: in 2PAC.

As explained in Sub-section -B, and illustrated in Figure 3,
in all views with a too slow leader (up to 1/3 of views), all
quorum-certified blocks are dumped forever. Whereas 2PAC
saves the work of such views, yielding a +50% to the
numerator of Eq. (1). As for the denominator of Eq. (1),
we empirically estimate (Sec. VI) a computation time gain
of −20% to −25%, mainly brought by the removal of one
round and an extra optimization (checking DocG only once).

2PACBIG: the fastest blockchain consensus with cubic mes-
sage complexity. It is a surprisingly simple variant of 2PAClean.

Figure 4: Compressed two phases of vote in 2PACBIG

4

As depicted in Figure 4, it simply consists in compressing each
2δ-long phase of vote, into 1δ of all-to-all sending of all votes.
We compare in Table 5 its latencies on a single-shot MVBA,
with those of other cubic protocols.

latencies, in δ
Worst-case
expected

Good-case (Def. 2) := until all
processes decide, if no faults &
half-fair scheduler

Best-case

Bullshark [65] 30 _ 6

Cordial Miners [49] 7.5 _ 5 (∗)

GradedDag [24] (†) 6.5 ∞ 4

LightDAG2 [22] (‡) 12(f ′ + 1) ? 4

2PACBIG 6.5 4 4

Table 5: MVBAs with O(n3) messages. (∗) Cordial Miners has
best-case latency 5δ, since leader election is in the 5-th round.
In [49, Table 1, Async.] it is stated 5δ in a “good case”, we did
not analyze it under a half-fair scheduler (nor did we analyze
[65] under a half-fair scheduler). (†) [24] see below. (‡) The
“best-case” figures for [65, 22] are taken from [22, TABLE
1]. f ′ denotes the actual number of cheaters. We could not
analyze LightDAG2 under a half-fair scheduler, as we do not
have access to a pseudocode or code.

GradedDAG [24] is the closest to 2PACBIG in terms of
structure and performance. In [24, TABLE I] the expected la-
tency is stated as 7.5δ. According to our definition, we estimate
it instead to 6.5δ for a single-shot MVBA. This is because all
their views have 5 rounds, in which voting is in the 4-th round
(cf also Sec. C-2 about indexation conventions). In Sec. C-3
we describe (with a picture) a fault-free scenario in the first
view with a half-fair scheduler, in which 3

2δfast < δ < 2δfast,
such that no decision is reached in the first view. Since this
scenario can repeat in all higher views with very bad luck,
this explains the stated ∞ good-case latency in Table 5. The
scenario is that the process P4 to-be-elected leader is slower,
so that others refuse to vote to form a height-2 QC (in our
terminology) for P4. The subtle difference enabling 2PACBIG

to escape such scenarios and reach 4δ latency, is that processes
accept to vote for height-2 blocks even after they received
2f+1 height-2 QCs.

s2PAClean & s2PACBIG: Super Fast Pipelined Blocks.
As in the previous asynchronous blockchain consensus
2-chain_VABA [40] & Cordial Miners [49], 2PAClean also pays
a latency price for pipelining. Consider a block pipelined by
some view-v leader ` ∈ [n], i.e., a height-2 proposed block
bv,1,` ← bv,2,`. While a view-v DecCert enforces decision
only on the height-1 block bv,1,`, decision of the pipelined
block bv,2,` is delayed at least until the end of the next v+1. In
Sec. IV we introduce a fast path deciding the pipelined height-
2 block of an honest leader in just 4δ, as soon as the scheduler
is fair, whatever the arbitrary behaviors of corrupt processes.
This is even less than the 6δ taken by the height-1 block!
Our fast path technique applies to both 2PAClean & 2PACBIG

(and to GradedDAG), yielding s2PAClean & s2PACBIG (and
sGradedDAG, in paragraph V-0a). In Table 6 we compare their
latencies under a fair scheduler to those of previous works.

The technique is simply that processes in view v cast
a SPEED_VOTE for a view-v height-2 block upon seeing a
(height-2) QC for it (Figure 7). 2f + 1 SPEED_VOTEs for

unit: δ
Fair scheduler

Arbitrary corruptions Fault-free
sMVBA [46] (as if chained) 14 10

2PAClean 13.5 10

s2PAClean (Thm 5) 4 4

O(n3) messages:
Cordial Miners [49] 11.5 9

GradedDag [24] 9.5 6

2PACBIG 9.5 7

sGradedDag 3 3

s2PACBIG (Thm 6) 3 3

Table 6: Delay between the pipelining of a height-2 block
by an honest leader, and decision of it by all processes. Top:
protocols with a quadratic number of messages complexity;
bottom: with cubic complexity.

a height-2 block: b′ pipelined by the leader, constitute a
“speed-DecCert ” for b′, enforcing its decision. To preserve
consistency, we simply require that a new proposer which
forked from an endorsed height-1 QC of the previous view,
must exhibit a combined quorum of declarations not to have
seen an endorsed height-2 QC of the previous view. This
proves that no quorum of 2f+1 SPEED_VOTEs for a height-2
block can exist, hence, that no height-2 block of the previous
view could be speed-DecCert’ed.

Figure 7: Bird’s eye view of s2PAClean, omitting the added
consistency mechanism.

DAG-2PAC: DAG-ification, with the classical trade-off.
The generic compiler of Conflux [52], formalized in [3],
straightforwardly applies to any of the 2PAC protocols. This
compiler is, roughly, a combination of uncle-referencing and

5

of parallelization ([65, 66]). It would give “DAG-2PAC”, as
follows: each process Pi uses a predetermined 1/n-th fraction
of the memory pool to make the blocks which it proposes.
In each proposed block bv,1,i, in addition to the reference to
the parent block, Pi also includes QCs of 2f other blocks,
dubbed the “uncles”. More precisely, the “uncles” must be
of view v – 1, of which at least f+1 QCs of height 2.
Then, decision of a block enforces decision on all the tree
of ancestors, in a deterministic topological order as discussed
in [52, 3]. This parallelization gain comes with two prices.
First, uncle-referencing adds computational load. Recall that
s2PAClean and 2PACBIG are free of uncle-referencing, which is
why they achieve a net throughput gain over (a chaining of)
sMVBA. Second, transactions input by non-leaders must wait
+6δ longer to be decided (in the case of 2PAClean), compared
with if processes input in their blocks every transaction which
they see. Hence, we believe that the choice to DAG-ify or not a
blockchain consensus should not be all-or-nothing, but instead
left as a flexible implementation cursor.

I. NOTATION: VIEW, HEIGHT, QC, ENDORSEMENT

In this section we set a consistent notation used throughout
the paper, including for 2-chain_VABA and sMVBA. It is
obtained as a simplification of the one of 2-chain_VABA
[40]. In particular we drop their notion of “rounds”, and
of “fallback” vs “regular” blocks and QCs, since we are
not concerned with switching back-and-forth from a partially
synchronous protocol (called steady-state in [40]). Instead, the
tuple of (view, height) is enough to uniquely rank blocks in
both 2-chain_VABA and 2PAC.

1) Threshold- or multi- signatures: We denote 〈m〉i a
standalone signature of Pi on the message m, and say that
Pi is the signer of the “signed message 〈m〉i”. A fully non-
interactive (fNI) 2f+1-multi- (or threshold-) signature scheme
[61] takes as input 2f+1 “individual” (or “partial”) signatures
from any distinct signers Pi’s on the same message m: {m}i
and combines them into a short multi- (or threshold) signature
on m: {m}. The signing public key(s) are also appended,
excepted in threshold signatures. All previous notations imply
that the signature is appended with the plaintext m. There
exists fNI threshold signatures without pairings [7], and post-
quantum fNI multi-signatures [50, 35].

2) Local View number: Each process Pi has a local counter
denoted v and called the current view number of Pi.
. denoted instead vcurr in [40], it could also have been denoted vi.
We say that Pi is in view v. When v advances to a higher
number v ′, we say that Pi enters view v ′.

3) Common coin: ([18, §4.3]) For any view number v, each
process can generate a coin share for v. Then there is a public
algorithm which takes a threshold number of any valid coin
shares from distinct processes for the same v, and combines
them into a certificate called coin-QC: qccoin, vouching for
unique value i ∈ [n]. We then say that process Pi is the elected
leader of view v, and denoted lead(v) = Pi. The probability of
the adversary to predict the outcome i of the election, before
it sees any view-v coin share from an honest process, is at
most 1/n+ negl(κ).

- In 2-chain_VABA the threshold number is f+1.
- In 2PAC the threshold number is instead 2f+1.

The 2f+1 will be important to achieve our claimed 6δ good-
case latency of 2PAC, in particular even if the scheduler is only
half-fair: cf Sec. C-4. Only for simplicity of the exposition,
we further assume that coin-QCs are constant sized. This
smallness assumption holds when coin-QCs are implemented
as non-interactive unique threshold signatures [12, 68, 7] (the
latter is not pairing-based, which positively answers [73, 29]).
This smallness assumption of coin-QCs can be lifted: as
explained in Sec. B-1, using a Bracha-like termination gadget
for election (see Sec. B-1) removes the need for processes
to forward coin-QCs to each other. This alternative preserves
all theoretical latencies of the 2PAC protocols. Thus, post-
quantum lattice-based coins are usable, such as [14, §5 &
§7.1], improved by [32], or also [58].

4) Blocks, QCs, Endorsement:

• Block format. A block is formatted as
b =

[
v, h, i, parent, txn, id

]
where:

- v is the view number of b ;
- h ∈ {1, 2} is called the height;
- i ∈ [n] is the index of the proposer Pi of the block;
- parent is the parent block. We denote b̃ ← b a block b

with parent b̃, and call b a child of b̃. Blocks are chained
by parent-child relations.

- txn is a batch of transactions;
- id = H(parent, v, height, proposer, txn) is the unique

hash digest of (parent, v, height, proposer, txn);
For simplicity we may omit txn and id from the description.
We denote b.id , b.v etc. the id, view number etc. of a block
b . We will use bv,h,j to denote a view-v height-h block with
proposer j, and omit j when not necessary.

• Quorum certificate. A QC: qc vouching for a block b is
a (2f + 1)-multi (or threshold) signature on the message
(b.v , b.height , b.proposer , b.id). For v := b.v and h :=
b.height, we say that qc is a view-v height-h QC.

• Ranking. Blocks and QCs are ranked by their view numbers,
then by their heights, i.e., by 2v + height. Hence, we abuse
notation and shorten as qc > qc′ the relation qc.(2v +
height) > qc′.(2v + height). The rank must strictly increase
along a chain of blocks, e.g. bv−2,1 ← bv,1 ← bv,2. In 2PAC,
blocks in a decided chain will always have consecutive ranks,
e.g. bv – 1,1 ← bv – 1,2 ← bv,1 ← bv,2. This will yield a
+50% increase in the numerator of the throughput formula
(Eq. (1)), compared to a chaining of sMVBA.

• Endorsed QC. Once a process has a coin-QC: qccoin for
view v that elects process lead(v) as the leader, we say that
any view-v proposer-lead(v) QC is endorsed (by qccoin).

• Parent-referencing with QCs. In 2-chain_VABA (and an
as-if chained version of sMVBA), the parent b̃ ← b of a
block b is always encoded as a QC: q̃c on b̃. We then say
that q̃c is “wrapped inside b”, and denote q̃c← b. We then
abuse notation by calling directly b a “child” of q̃c.

• Parent-referencing without QCs. There are cases where the
process proposer of a block b has no QC on its parent. In this
case, for simplicity of the exposition we will consider that
the proposer encodes the parent b̃, signed by b̃’s proposer,
as a full copy inside b. The optimized way would be of
course instead to reference the parent b̃ via its hash id, and
diffuse the signed b̃ in case it had been badly diffused. Then,
processes would vote for b only if they received a preimage b̃
of the hash (and all its ancestors). Hence, a QC on b would

6

still imply that all its ancestors are efficiently retrievable,
since f+1 honest processes would have received them.

• Genesis blocks. Processes are initialized with the two view-
0 genesis blocks: b0,1 ← b0,2 with empty transactions. By
convention the empty string: ⊥ is a QC for both of them.

II. ATTACKS

2-chain_VABA is defined page 8 & Appendix C of [40] as
a particular instantiation of the protocol called Ditto, published
in [42, 40]. Thus our attacks a fortiori apply to the published
version of Ditto. 2-chain_VABA is specified by setting to 0
the time-out before processes switch to the fallback path of
Ditto, which is described in [40, Figure 5]. In particular, the
steady-state path of Ditto described in their [40, Figure 4] boils
down to the non-interactive steps called [Lock] and [Commit],
before they immediately time-out and return to the fallback
path. Since it is not obvious to read 2-chain_VABA from
the full specifications of Ditto in [40], we make it explicit
in Figure 8. Since the steady state of Ditto, i.e., Jolteon,
is never triggered in 2-chain_VABA, some data structures
and instructions are never used. This allows us to simplify
the presentation. The attacks also apply when 2-chain_VABA
is used to do a single-shot MVBA, since the consistency
violations will be observed for the first view-1 block, and
since no block is decided in the livelessness scenarios. Both
the description of 2-chain_VABA and of the attacks aim at
simplicity: the full details are available on demand if necessary.
The two highlighted checks of endorsement were neither in the
published specifications nor in the implementation [69]. The
authors confirmed (on 2023-10-13) that this was an oversight
and that they should be added.

1) Without the checks of endorsement, an attack on con-
sistency: Absence of the two highlighted checks allowed the
following obvious attack. The isolated view-1 to-be-elected
leader ` forms a 2-chain of QCs: qc1,1,` ← qc1,2,` but delivery
of qc1,2,` to other processes is delayed very long. Nevertheless,
since ` is leader then qc1,1,` ← qc1,2,` is a DecCert on
b1,1,`. In view 2, a corrupt to-be-elected leader Pi ignores the
wrapped height-1 QC: qc1,1,` ← b1,2,` received from `, and
instead proposes a block child of its own non-endorsed view-
1 height-2 QC: qc1,2,i ← b2,1,i. Processes accept to vote for
it, ultimately leading to a DecCert for b2,1,i, which enforces
decision on all its ancestors, in particular on b1,1,i conflicting
with b1,1,`.

2) Leveraging the boosting strategy, an attack blocking
liveness: The following attack applies to the published version
[40], after adding the highlighted endorsement checks. The
rough idea is that a fixed Process Pk is corrupt, and in each
view v it is made “fast-then-oblivious” of height-2 votes.
First, Pk proposes an height-1 block b1,1,k, then collects very
quickly votes on it, forming an height-1 QC qc1,1,k, which
it multicasts (wrapped in a height-2 block, say b1,2,k). All
processes receive it before any other height-1 QC, so they
follow the [Propose height-1] step and build their height-2
block as childs of qc1,1,k. As a result, all their 2-chains of
QCs: qc1,1,k ← qc1,1,i are with different proposers i 6= k so
none of them is a DecCert. Whereas Pk ignores all height-2
votes so never forms either a DecCert. Thus if a DecCert is
ever formed, it can be only in view 2 or after. The attack can

be mounted again from the same single corrupt Pk in higher
views, preventing any DecCert to be ever formed.

3) Leveraging the relaxed endorsement definition in the
implemented version: an attack on consistency: In the im-
plemented version [69], processes consider any height-1 QC:
qcv,1,j as endorsed as soon as it is wrapped inside a height-2
block of which the proposer is the leader, i.e., qcv,1,j ← bv,2,`
with ` = lead(v), whereas possibly ` 6= j. [Technically: lines
627-628 of [69] P` sets itself as the “acceptor” of qcv,1,j , then
line 542 makes processes consider it as endorsed.] This allows
an attack, of which the idea is simple: the leader ` privately
delivers a DecCert: qcv,1,` ← qcv,2,` to an isolated process. In
parallel, it generously endorses another QC: qcv,1,j ← b′v,2,`
which it diffuses to other processes. As a result, in the next
view all processes propose child blocks of this concurrent
qcv,1,j , hence it ultimately gets decided.

4) Leveraging the trigger for early leader election: a
liveness attack on the Dumbo-NG variant: In Dumbo-NG
[38] they observe that 2-chain_VABA does not have quality,
because of the boosting strategy. Hence, they suggest a variant
of Ditto, consisting in removing the boosting strategy1. It could
be formalized as the following modification:

Propose height -2. Upon the first height-2 block bh,i (by any
process j) by Pi itself is certified by some qc, . . .

We observe that it allows the following attack which slows-
down latency by n/3×. Surprisingly, a strenghtening of the
attack actually prevents quality. The attack leverages the trig-
ger for early leader election highlighted in footnote (iv) of
Figure 8. The idea is simply that in each view, a very fast
proposer P delivers to all processes an endorsed height-2 QC:
qc before they receive any other. Following [trigger leader
election], they all sign-then-multicast qc . Reception of 2f+1
such signed copies of qc by an honest process triggers it to
multicast a coin share: helped by the remaining f coin shares
from the adversary, processes learn the leader then move to
the next view. Since P is elected with probability only 1/n,
the expected number of views before output is n. Moreover if
P is fast enough, then other proposers will not even have the
time to form their height-1 QCs. So the only value possibly
ever decided is the one of qc: if P is corrupt, then the quality
is thus equal to 0.

5) Last Failed Attempt: It is interesting to study a last
(failed) attempt at fixing 2-chain_VABA, consisting in remov-
ing both the boosting strategy and the trigger for early leader
election. Namely, we revert to the classical leader election
of AMS/sMVBA [2, 46] & 2PAC, i.e., that a process must
wait for height-2 QCs from 2f+1 distinct proposers. Such a
variant of 2-chain_VABA would thus be equal to n parallel 2-
phase Hotstuff [71, 56] (not to be mistaken with Jolteon [41],
which is analogous to SBFT [43]). It is well-known that in 2-
phase Hotstuff, a new leader must wait ∆ (the upper bound on
message delivery) before it can propose, otherwise the protocol
is not live: cf [70, §4.4]. This inspires the following attack. In
view 1, a malicious elected leader delivers its endorsed height-
2 QC only to an isolated honest process P . Then in view 2 the

1[38, page 7] footnote 5: «the honest nodes would propose its height-2 f-
block chained to any earliest height-1 f-block that it receives, and unfortunately
the adversary can always propose the fastest height-1 f-block to manipulate
the output.»

7

2-chain_VABA + endorsement checks

Instructions for each process Pi. At the beginning of the protocol, enter view v ← 1; initialize the highest seen quorum certificate qchigh
to the default QC: ⊥ of the genesis block of view 0.
Enter View. Upon entering a view v:

- For every process j ∈ [n], record all the QCs of view v by process j, and keep a voted height number hvote[j]. Initialize rvote[j]← 0
and hvote[j]← 0 for all j ∈ [n];

- then (Propose height-1) multicast a height-1 block:
bv,1,i = [v, 1, i, qchigh, txn, id] .

Vote. Upon receiving a view-v block bv,h,j from process j, if h> hvote[j], and
- if h = 1, and bv,1,j = [v, 1, j, qc, txn, id] such that qc > qchigh and such that qc is endorsed; or

- if h = 2, and bv,2,j = [v, 2, j, qc, txn, id] such that qc is any(i) valid(ii) view-v QC of height-1 (iii); 2 > hvote[j].
set hvote[j]← h and vote for the block by sending {v, h, j, id}i to process j.

Propose height -2, and trigger leader election. Upon the first height-h block bv,h,j (by any(i) process j) is certified by some qc
- if h = 1, create a child block bv,2,i = [v, 2, i, qc, txn, id] and multicast it;
- if h = 2, sign and multicast 〈qc〉i ;

Leader Election. Upon receiving 2f+1 valid(ii) height-2 view-v QCs signed by distinct processes (iv), sign and multicast a coin share
for view v.

Advance View (was called: Exit Fallback). Upon receiving a coin-QC qccoin of view > v or f+1 valid coin shares to form a qccoin of
view > v, multicast qccoin. Update v ← qccoin.v + 1. Execute Lock and Decision.

Lock. Upon seeing(v) a valid endorsed QC: qc (formed by votes or contained in proposal or timeouts), update qchigh ← max(qchigh, qc).
Decision certificate. For any view number w, a DecCert for a view-w height-1 block with proposer P` = lead(w): bw,1,`, is a 2-chain

of endorsed QCs qcw,1,` ← qcw,2,`, i.e., QCs on blocks bw,1,` ← bw,2,` where bw,2,` is a view-w height-2 proposer P` block.

(i) Boosting strategy (highlighted [40, page 7]). The originality of 2-chain_VABA is that a process i is allowed to propose a height-2
block bv,2,i child of another proposer j’s height-1 certified block bv,1,j , and processes are then allowed to vote for qcv,1,j ← bv,2,i.
In the code [69] it is described line 749: “adopt others’ certified fallback block”, and is implemented lines 622 to 646.

(ii) “valid QC” is not defined. In the implementation [69] there is another predicate called “valid_qc(qc)”, which instead checks endorsement.
It is not checked here (otherwise this would have blocked the protocol, no view-v QC being endorsed yet).

(iii) In [40, Figure 5], this predicate is written under the equivalent form: “h = qc.height + 1”. The simpler equivalent form under which
we wrote it, i.e., qc.height = 1, turns out to be also the way the public implementation does it (line 630 of [69]).

(iv) Trigger for early leader election. Nothing prevents these QCs from being issued by the same proposer, as long as they were signed
by distinct processes (line h = 2 of Propose). This is also allowed in the implementation of the authors ([69] lines 821-822). This
will be leveraged by our attack of Sec. II-4. Note that the proofs of latency in [40] instead assumes them from distinct proposers, our
last attack Sec. II-5 will break this alternative version. Both our attacks on consistency are compatible with both versions (either no
condition on these QCs, or, requiring from distinct proposers).

(v) The specifications [40, Fig. 4 & 5] instruct explicitely to do [Lock] at two specific places, i.e., in [Timeout] and [Exit Fallback]. So
said like this, one would deduce that qchigh is not updated elsewhere. But in the implemented version [69], processes update their qchigh
at anytime upon receiving an endorsed QC. All our attacks are compatible with both versions.

Figure 8

height-1 proposal of P (child of the endorsed height-2 QC) is
delivered too slowly: all processes have already proposed their
block before receiving it. So they all propose blocks childs
of the view-0 QC, thus P refuses to vote for these blocks.
Provided all f corrupt processes stay silent, no quorum of
2f+1 votes is reached for the height-1 proposals of the 2f
honest proposers other than P . Thus those 2f proposers are
unable to form height-2 QCs, thus leader election is never
triggered.

III. 2PACLEAN

We present 2PAClean in Figure 9, in Theorem 3 we state
then prove both its expected and good-case latencies, and its
consistency. In Sec. III-4 we analyze its quality. In Sec. VII
we sketch some variants and optimizations, further ones are
deferred to Appendix B. The definition of a DecCert in
2PAClean is the same as in 2-chain_VABA (Figure 8), let us
recall it.

• DecCert For any view number w, a DecCert for a view-w
height-1 block with proposer P` = lead(w): bw,1,`, is a 2-
chain of endorsed QCs qcw,1,` ← qcw,2,`, i.e., QCs on the
blocks bw,1,` ← bw,2,` where bw,2,` is a view-w height-2
proposer P` block.

Recall that a DecCert on a block b is by definition also a
DecCert for each block in the chain of its ancestors. Processes
can form QCs and DecCerts out of votes even if they did not
receive the height-1 block: bw,1,` itself. Note that existence
of the qcw,1,` guarantees that the block and all its ancestors
were received by f+1 honest processes, and thus that they are
efficiently retrievable ([26, 36]). This is the reason why we
measure latency only until output of a DecCert, which could
happen before learning the block.

Theorem 3. 2PAClean is a blockchain consensus. When used
for a single-shot MVBA, then

- it has 9.5δ worst case expected latency;
- (Good case latency, cf Def. 2) in every fault free execution

8

2PAClean

Instructions for each process Pi, with local view number denoted v. At the beginning of the protocol it enters v = 1, i.e., sets v ← 1.
Upon entering a view v, it initializes the flags proposedHeight1 and proposedHeight2 to 0.
New view and Report. upon entering a view v > 2

if it has a view-(v – 1) height-1 endorsed QC: qcv – 1,1,` ← bv – 1,2,` (wrapped in a height-2 block of ` = lead(v – 1))
it multicasts it;

else it freely chooses any view-(v – 1) height-2 QC qcv – 1,2,`

and multicasts it appended with a signed eclaration {no_endorsed_height-1_QC, v}i.
Propose height-1. While proposedHeight1 = 0

upon obtaining an endorsed view-(v – 1) height-1 QC wrapped in a height-2 block: qcv – 1,1,` ← bv – 1,2,` (` = lead(v – 1))
. It might already have one upon entering v.

creates a child view-v block: qcv – 1,1,` ← bv – 1,2,` ← bv,1,i = [v, 1, i, bv – 1,2,`, txn, id]
. Optimization (will become standard in s2PAClean): in case it has a QC on bv – 1,2,`, then shortens the reference as: qcv – 1,2,` ← bv,1,i.

multicasts
〈
qcv – 1,1,` ← bv – 1,2,` ← bv,1,i

〉
i and sets 1← proposedHeight1.

upon receiving from 2f+1 processes Pj’s: {no_endorsed_height-1_QC, v}j
freely chooses a view-(v – 1) height-2 QC, forms a child block: qcv – 1,2 ← bv,1,i = [v, 1, i, qcv – 1,2, txn, id]
combines the signed declarations into {no_endorsed_height-1_QC, v}

. DocG (declaration of a certificate-less group): proof that no (v – 1)-DecCert can ever exist, thus qcv – 1,2 can safely be extended.

multicasts
(〈

qcv – 1,2 ← bv,1,i
〉
i, {no_endorsed_height-1_QC, v}

)
and sets 1← proposedHeight1.

Vote height-1. For any j ∈ [n], upon receiving for the first time a well-formed proposal for a view-v height-1 proposer-j block bv,1,j ,
i.e., of one of the following forms:

- either the raw signed block
〈
qcv – 1,1 ← bv – 1,2 ← bv,1,j = [v, 1, j, bv – 1,2, txn, id]

〉
j such that qcv – 1,1 is endorsed;

- or, appended with a DocG, i.e., of the form
(〈

qcv – 1,2 ← bv,1,j = [v, 1, j, qcv – 1,2, txn, id]
〉
j , {no_endorsed_height-1_QC, v}

)
;

. Optimization: check a DocG only once per view, cf. Appendix B-2

then votes for the block by replying {v, 1, j, id}i to Pj .

QC height-1 & Propose height-2. if proposedHeight2 = 0, upon receiving 2f+1 votes for its height-1 block bv,1,i
combines the 2f+1 signatures into a view-v height-1 QC: qcv,1,i = {v, 1, i, id} on bv,1,i
creates a child height-2 block: qcv,1,i ← bv,2,i = [v, 2, i, bv,1,i, txn, id], signs then multicasts it, then sets 1← proposedHeight2.

Vote height-2. For any j ∈ [n], upon receiving for the first time a height-2 proposal:
〈
qcv,1,j ← bv,2,j =

[
v, 2, j, qcv,1,j , txn, id

]〉
j

. i.e., a view-v height-1 proposer-j QC, wrapped in a height-2 block bv,2,j of same proposer j
votes for the height-2 block by replying {v, 2, j, id}i to Pj .

QC height-2. For a view number w ∈ {v – 1, v}, upon receiving 2f +1 votes for its view-w proposal bw,2,i : {w, 2, i, id}j’s signed
by distinct processes Pj’s

combines the 2f+1 signatures into a view-w height-2 QC: qcw,2,i. If w = v, it multicasts it.
. w = v – 1 allows a slow lead(v – 1) to form a height-2 QC while in view v: this will be used in the proof of 6δ good-case latency (Sec. III-3).

Leader election. upon receiving 2f+1 view-v height-2 QCs of distinct proposers, then multicasts its view-v coin share.

Coin QC and Advance view. upon receiving or forming a view-v coin-QC: qccoin, then it multicasts it and enters view v+1.

Decision. upon receiving or forming a DecCert for any view number w, i.e., a 2-chain qcw,1,j ← qcw,2,j s.t. j = lead(w)

multicasts it and outputs it.

Figure 9

with a half-fair scheduler, all players decide by 6δ.

1) Proof of consistency: Assume existence of a DecCert
for a block b′v ′,1 conflicting with a DecCert for a block bv,1,
w.l.o.g. v 6 v ′. By Lemma 4 below, b′v ′,1 must be of the
same view: v ′ = v. Thus both blocks have same proposer
` := lead(v). Hence, we would have two QCs for conflicting
view-v height-1 proposer-` blocks: bv,1,` and b′v,1,`, which is
impossible by quorum intersection.

Lemma 4. For all v > 1, consider a DecCert: qcv,1 ← qcv,2

for a block bv,1. Then no higher view-(v ′> v) height-1 QC:
qc′v ′,1 (non-necessarily endorsed) can vouch for a block: b′v ′,1
lying on a conflicting branch.

Proof: W.l.o.g. we can assume that qc′v ′,1 is of min-
imal view v ′> v among those conflicting with bv,1. By
construction, qc′v ′,1 is descendent of a view-(v′ – 1) height-
1 QC: qcv′ – 1,1. By the classical Claim below, v′ – 1 = v.
Existence of a DecCert for bv,1 implies that at least f+1
processes had a view-v endorsed QC for bv,1: qcv,1 upon
entering view v ′ = v+1. Thus no quorum of declarations:

9

{no_endorsed_height-1_QC, v+1} (DocG) could be made.
Hence, all view-(v+1) height-1 blocks voted for by honest
processes must be descendent of bv,1, contradicting existence
of a conflicting qc′v ′,1.

Claim: v′ – 1 = v. [proof : assume v′ – 1> v. Minimality
of v′ implies that that qcv′ – 1,1 is on the same branch as qcv,1,
hence also qc′v ′,1, a contradiction.]

2) Proof of (worst-case) expected latency 6 9.5δ: Let us
fix any given adversary and denote E the expected latency
of 2PAClean under this adversary. We are going to prove the
upper-bound E 6 9.5δ. It will follow that the max over all
adversaries is 6 9.5δ, which will conclude our claim. We
convey the main idea, the details are deferred to Sec. A-A.
For each view number v, either: an endorsed height-2 QC of
an earlier view v′ was already formed, in which case processes
decide at most while in view v; or: all processes receive a coin-
QC of v. We now consider this latter case. Existence of a view-
v coin-QC implies that at least one honest process (actually
at least f +1): P(v), received 2f + 1 height-2 QCs before
the leader lead(v) was revealed. By unpredictability of the
coin, the identity of lead(v) is independent of the proposers of
these height-2 QCs. Hence, the probability that one of them is
equal to lead(v) is (2f+1)/n> 2/3. If this happens, then this
implies that all honest processes will receive a DecCert, i.e.,
an endorsed view-v height-2 QC, by 6δ. If it does not happen
(with probability < 1/3), at least all processes receive a view-
v coin-QC by 6δ thus move to the next view v+1. There,
they have again > 2/3 probability to DECIDE in v+1 and
< 1/3 probability to move to the next view v+2, etc. Thus the
expected number of elapsed views until decision is 1.5. Since
the delay to decision in the first view (if successful) is 6δ in the
first view and 7δ in every higher view v > 2 (if successful),
we thus obtain the claimed E 6 6δ + 0.5× 7δ = 9.5δ.

3) Proof of Good-case latency 6δ: Let us consider a one-
shot MVBA good-case execution. Recall (Def 2) that it means:
fault-free, and with a half-fair scheduler, i.e., 1/2

δ 6 δfast. Our
goal is to show that all processes output a DecCert by 6δ.
Consider the first time: t when a process enters view 2.

Since the process received a coin-QC, it must be that
6δfast 6 t (for a process to perform a step, e.g., advance view,
it must be that at least t other honest processes completed the
last step at least δfast before, e.g., casting their coin share).
Hence by the half-fair scheduler assumption, 3δ 6 t. Thus at
3δ all n processes were still in view 1, so they had received
height-1 proposals from all n processes, and had multicast
(or were multicasting) their height-1 votes. Hence, at 4δ all
processes will all have formed-then-multicast a height-2 QC
for their own proposal. In conclusion at 5δ, all height-2 QCs
from all n processes have been received.

On the other hand, all processes will have received a coin-
QC by 6δ, promoting one of their height-2 QCs as a DecCert,
which concludes the proof.

4) Quality of 2PAClean:

a) On a single-shot MVBA, if the scheduler is half-fair:
If the first leader P` = lead(1) is honest, which happens
with probability > 2/3, then all processes will receive its
proposed height-2 block: qc1,1,` ← b1,2,` by 3δ. By the half-

fair assumption they are still in view 1, thus will vote for it,
which will form a DecCert. Hence, we have > 2/3-quality.

b) If the scheduler is fair: If the leader P` = lead(v) of
some view v is honest, which happens with probability > 2/3,
then all processes will receive its proposed height-2 block:
qcv,1,` ← b1,2,` while they are still in view v (otherwise,
there would have been one more round-trip between some fast
honest processes, contradicting the fair scheduler assumption).
Hence, for the same reason we have > 2/3-quality.

c) Worst-case: Let us fix any v and consider a 2-chain
bv,1,i ← bv,2,i included in a decided chain, we are going
to compute the quality, i.e., the probability that this 2-chain
is “honest input” (to be precised). Consider the first honest
process receiving 2f + 1 view-v QCs. In the event X where
one of them is proposed by the to-be-elected leader `, then
this implies that at least f+1 processes received its height-2
proposed block: qcv,1,` ← bv,2,`, thus for the same reason as
above we have that the 2-chain bv,1,` ← bv,2,` will end up
in the decided chain (thus i = `). Since P(X)> 2/3, and that
P(` is honest|X)> 1/2, there is > 1/3-quality. We can obtain
a higher estimate. Consider the bad event, included in ¬X ,
where no bv,1,` ← bv,2,` ends in the decided chain. Consider
the first view w> v for which there is an honest process which
receives a DecCert, i.e., a height-2 QC of the view-w leader
lead(w). Recall that when lead(w) built its height-1 proposal,
it made a free choice between 2f + 1 certified-but-undecided
chains bv,1,i ← bv,2,i ← . . . bw−1,2. From there, two possible
definitions of quality can be considered. The first definition
is optimistic and always labels as “honest input” any such
undecided chain freely chosen by an honest lead(w). With
this definition, since P

(
lead(w) is honest|¬X

)
> 1/2, then

P
(

bv,1,i ← bv,2,i is corrupt input|¬X
)
< 1/2. Hence, the

total quality is > 2/3.1/2 + 1/3.1/2 = 1/2.

The second definition is pessimistic, and labels as “honest
input”, on average, 50% of such chains freely chosen by
an honest lead(w) (else, labeled “corrupt input” if lead(w)
is corrupt). With this definition, the total quality would be
> 2/3.1/2 + 1/3.1/4 = 5/12. With such a definition, there is
a simple way to lift the 5/12-quality to optimal 1/2: clients
simply ignore the transactions in 2-chains bv,1,j ← bv,2,j s.t.
j 6= lead(v). The throughput would then drop down by 1/3.

IV. s2PACLEAN : SUPER FAST PIPELINING

s2PAClean is described in Figure 10, in Theorem 5 we state
its properties, then prove them. In addition to the DecCerts
on height-1 blocks as in 2PAClean, dubbed ordinary DecCerts,
s2PAClean allows a new type of DecCerts:

• A speed-DecCert for a height -2 (“pipelined”) block
qcv,1,` ← bv,2,` =

[
v, 2, `, qcv,1,`, txn, id

]
proposed by

the leader P` of view v, is a 2f + 1 multi- (or threshold)
signature on the message

(
SPEED_VOTE; v, 2, `, id

)
.

A speed-DecCert equally enforces decision of bv,2,i and all its
ancestors.

10

s2PAClean: with Optimistically Fast Decision of Pipelined Blocks

Instructions for each process Pi, with local view number denoted v. At the beginning of the protocol it enters v = 1, i.e., sets v ← 1.
Upon entering a view v, it initializes the flags proposedHeight1 and proposedHeight2 to 0.
New view and Report. Upon entering a view v > 2

if it has a view-(v – 1) height-2 endorsed QC: qcv – 1,2, it multicasts it.

elseif it has a view-(v – 1) height-1 endorsed QC: qcv – 1,1,` ← bv – 1,2,` (wrapped in a height-2 block of ` = lead(v – 1)),

it multicasts it, appended with a signed declaration
{
no_endorsed_height-2_QC, v

}
i

else multicasts
(
report, {no_endorsed_height-1_QC, v}i

)
.

Propose height-1. While proposedHeight1 = 0 (throughout we denote P` = lead(v – 1))

upon obtaining a view-(v – 1) height-2 endorsed QC: qcv – 1,2,`

creates a child view-v block: qcv – 1,2,` ← bv,1,i =
[
v, 1, i, qcv – 1,2,`, txn, id

]
, multicasts it and sets 1← proposedHeight1.

upon receiving from 2f+1 processes Pj’s: {no_endorsed_height-2_QC, v}j

chooses any view-(v – 1) height-1 endorsed QC: qcv – 1,1,` ← bv – 1,2,` (wrapped in a height-2 block of P`)
creates a child view-v block: qcv – 1,1,` ← bv – 1,2,` ← bv,1,i =

[
v, 1, i, bv – 1,2,`, txn, id

]
combines the signed declarations into

{
no_endorsed_height-2_QC, v

}
. proof that no view-(v – 1)-speed-DecCert can ever exist.

multicasts
(
〈qcv – 1,1 ← bv – 1,2 ← bv,1,i〉i,

{
no_endorsed_height-2_QC, v

})
and set 1← proposedHeight1.

upon receiving from 2f+1 processes:
(
report, {no_endorsed_height-1_QC, v}j

)
chooses any view-(v – 1) height-2 QC, form a child block: qcv – 1,2 ← bv,1,i =

[
v, 1, i, qcv – 1,2, txn, id

]
combines the signed declarations into {no_endorsed_height-1_QC, v}

. proof that no v – 1 DecCerts can ever exist, thus qcv – 1,2 can safely be extended.

multicasts
(
〈qcv – 1,2 ← bv,1,i〉i {no_endorsed_height-1_QC, v}

)
and sets 1← proposedHeight1.

Vote height-1. For any j ∈ [n], upon receiving for the first time a well-formed proposal for a view-v height-1 proposer-j block
bv,1,j =

[
v, 1, j, parent, txn, id

]
, i.e., of one of the following forms:

either the raw signed block
〈
qcv – 1,2,` ← bv,1,j

〉
j with qcv – 1,2,` endorsed,

or, of the form
(
〈qcv – 1,1,` ← bv – 1,2 ← bv,1,j〉j, {no_endorsed_height-2_QC, v}

)
with qcv – 1,1,` endorsed,

or, of the form
(
〈qcv – 1,2 ← bv,1,j〉j, {no_endorsed_height-1_QC, v}

)
votes for the height-1 block by replying {v, 1, j, id}i to Pj .

QC height-1 & Propose height-2. if proposedHeight2 = 0, upon receiving 2f+1 votes for its height-1 block bv,1,i
combines the 2f+1 signatures into a view-v height-1 QC: qcv,1,i = {v, 1, i, id} on bv,1,i;
creates a child height-2 block: qcv,1,i ← bv,2,i =

[
v, 2, i, qcv,1,i, txn, id

]
, signs then multicasts it, then sets 1← proposedHeight2.

Vote height-2. For any j ∈ [n], upon receiving for the first time a height-2 proposal
〈
qcv,1,j ← bv,2,j =

[
v, 2, j, qcv,1,j , txn, id

]〉
j

. i.e., a view-v height-1 proposer-j QC, wrapped in a height-2 block bv,2,j of same proposer j

votes for the height-2 block by replying {v, 2, j, id}i to Pj .

QC height-2. ∀w ∈ {v – 1, v}, upon receiving 2f + 1 votes for its view-w height-2 block bw,2,i: {w, 2, i, id}j’s signed by distinct
processes Pj’s

combines the 2f+1 signatures into a view-w height-2 QC: qcw,2,i. If w = v, it multicasts it.

Speed-Decision vote (for height-2 blocks).

For any j ∈ [n], upon receiving for the first time a view-v height-2 proposer-j QC: qcv,2,j =
{
w, 2, i, id

}
it replies

{
SPEED_VOTE, v, 2, j, id

}
i to Pj . . optimization: if furthermore qcv,2,i is endorsed, then multicast the SPEED_VOTE.

Leader election. upon receiving 2f+1 view-v height-2 QCs of distinct proposers, then multicasts its view-v coin share.

Coin QC and Advance view. upon receiving or forming a view-v coin-QC: qccoin, then it multicasts it and enters view v+1.

Decision. upon receiving or forming an ordinary DecCert for any view number w, i.e., a 2-chain qcw,1,j ← qcw,2,j s.t. j = lead(w)

or a speed-DecCert: {SPEED_VOTE, qcw,2,j} , then

multicasts it and outputs it.

Figure 10: Differences with 2PAClean are highlighted , they are due to the optimistically fast decision of pipelined blocks.

11

Theorem 5. s2PAClean is a blockchain consensus. When used
for a single-shot MVBA, then it has 9.5δ (worst-case) expected
latency; and 6δ good-case latency (Def. 2).
- If the scheduler is fair, then a height-2 block pipelined by

an honest leader at a time t gets decided before t+ 4δ.

Both the proof of expected latency and of good case latency
are identical to the ones for 2PAClean (Sec. III-2 then Sec. A-A,
and Sec. III-3), so we skip them.

1) Proof of 4δ-decision of pipelined blocks if fair scheduler:
Consider a view v, by definition at time t the (to-be-elected)
leader P` = lead(v) proposes its height-2 block bv,2,`. By the
Claim below, all 2f+1 honest processes cast a SPEED_VOTE
for bv,2,`, thus by t+ 3δ. In conclusion, a DecCert is formed
(at least by P`) by t+4δ. We now state then prove the Claim.

Claim: all 2f + 1 honest processes vote for bv,2,`, then
P` forms-then-multicasts a height-2 QC while still in view v,
which is received (and thus SPEED_VOTEd) by all 2f + 1
honest processes while still in view v. [Proof of the claim:
assuming the contrary, then some honest process would have
received .].

2) Proof of consistency of s2PAClean: First we deduce
consistency from the following claim, then we prove the
claim. Claim: Consider a (ordinary or speed-) DecCert for
a block bv,h, then no higher view (v ′> v)-QC: qcv ′,h′ (non-
necessarily endorsed) can exist for a block b′ on a conflicting
branch.

Consider a DecCert for a block b′ conflicting with a
DecCert for a block bv,h, which we assume w.l.o.g. lower
ranked, i.e., 2v + h 6 2v ′ + h′. By the Claim, b′ must be of
the same view: v ′ = v, thus both blocks have same proposer
lead(v). By quorum intersection it cannot be of same height
h, so we must have h = 1 and h ′ = 2. But by construction
we must have qcv,h=1 ← qc′v,h′=2 (otherwise processes would
not have voted to form qc′v,h′=2), a contradiction.

[Proof of the Claim. W.l.o.g. we can assume that qc′ =
qcv ′,h is of minimal view v ′> v, then height, among those
conflicting with bv,h. We first easily rule out the case h′ = 2.
Indeed, this would mean that its parent bv ′,1,j ← b′v ′,h′=2,j ,
of same proposer j, would be on the same chain as bv,h, a
contradiction. Thus it remains to analyze the height-1 case:
we have qc′ = qcv ′,1,j for a block b′v ′,1,j , where j denotes its
proposer. We consider one by one the three possibilities for
the step [Vote height-1] by which an honest process, say Pi,
could have cast a VOTE to form qc′:

i) either upon receiving a proposal 〈qcv ′ – 1,2 ← b′v ′,1,j〉j with
qcv ′ – 1,2 endorsed. By minimality, qcv ′ – 1,2 must be on the
same chain as bv,h, thus also b′v ′,1,j , a contradiction;

ii) or, upon receiving a proposal 〈qcv ′ – 1,1 ← bv ′ – 1,2 ←
bv ′,1,j〉j appended with {no_endorsed_height-2_QC, v ′}
with qcv ′ – 1,1 endorsed. By minimality, qcv ′ – 1,1 must be
on the same chain as bv,h; So the only possibility to have
a fork, is that v ′ = v and bv,h=2 is a child of qcv ′ – 1,1,
thus that the DecCert on bv,h=2 is a fast one. But the
{no_endorsed_height-2_QC, v ′ = v} rules out existence
of a view-v speed-DecCert, a contradiction.

iii) or, upon receiving a proposal 〈qcv ′ – 1,2 ← b′v ′,1,j〉j ap-
pended with {no_endorsed_height-1_QC, v ′}. By min-

imality, qcv ′ – 1,2 must be on the same chain as bv,h, thus
also b′v ′,1,j , a contradiction.

V. 2PACBIG AND s2PACBIG

The modifications to go from 2PAClean to 2PACBIG, and
from s2PAClean to s2PACBIG, are identical. Those modifications
are only that: players now multicast their votes; they collect the
votes for all proposers j ∈ [n] and form their QCs themselves;
finally a proposer i multicasts a height-2 block: bv,2,i without
waiting to receive a QC on its height-1 parent block: bv,1,i.
So the child bv,2,i does not refer anymore to its parent bv,1,i
via a QC, but instead simply via a hash (the preimage having
been diffused previously).

Since 2PACBIG/s2PACBIG reduce by 2δ the latency per
view compared to 2PAClean/s2PAClean, and since there are 1.5
views in expectation for a single-shot MVBA, it follows that
2PACBIG/s2PACBIG have 9.5δ − 1.5× 2δ = 6.5δ (worst-case)
expected latency. We formalize its properties as the following
theorem. The proofs of consistency are identical to the ones of
2PAClean and s2PAClean (the key point is that processes wait to
receive a height-1 QC on the parent before voting for a height-
2 block, so we are brought back to the situation of 2PAC
where the height-1 QC was wrapped in the height-2 block).
The proofs of the latencies (expected, good-case and pipelined)
are also identical to the ones of 2PAClean and s2PAClean, so we
also skip them.

Theorem 6. 2PACBIG & s2PACBIG are blockchain consensus.
When used for a single-shot MVBA, they both have 6.5δ (worst-
case) expected latency; and 4δ good-case latency (Def. 2).
- In s2PACBIG, if the scheduler is fair, then a block pipelined
by an honest leader at a time t gets decided by all players
by t+ 3δ.

a) sGradedDAG: the same kind of technique provides
a fast track for GradedDag [24] (reminders are given in
Sec. C-3). In GradedDAG, the two phases of vote per view
are for only one block, and are called a GBC. Then, as in
2PACBIG there is a leader election (called the first round of
a CBC), and furthermore processes pipeline a block in their
coin-share messages. We now sketch how to add a fast-track,
yielding sGradedDAG. In its GBC proposal of a new view
v+1, a process: (a) either it has an endorsed QC: qcv,2 for a
CBC block of the previous view v, then it casts a SPEED_VOTE
for the corresponding block bv,2, and proposes a child of it:
qcv,2 ← b′. (b) Or it has none, then it proposes a child b′

of the highest endorsed QC: qcw,h which it has. It appends
to its proposal a quorum of 2f + 1 declarations, testifying
not to have seen a more recent endorsed QC than qcw,h. In
particular, such declarations rule-out the existence of 2f + 1
SPEED_VOTEs on any view-v′ > w endorsed CBC block bv′,2,
hence of a conflicting view-v′ speed-DecCert for bv′,2.

VI. COMPUTATIONAL EVALUATION

In the spreadsheet 2PAC_timings.xls (https://perso.
telecom-paristech.fr/rambaud/articles) we measure the compu-
tation time per process per view, i.e., the denominator of the
throughput formula Eq. (1), for both 2PAClean and sMVBA
(as if chained with pipelining), for some values of n from

12

2PACBIG and s2PACBIG

Vote height-1. . . . votes for the height-1 block by multicasting {v, 1, j, id}i.
Propose height-2. if proposedHeight2 = 0 upon receiving height-1 blocks from 2f+1 proposers (∗)

create a child height-2 block: bv,1,i← bv,2,i and multicast it, then set 1← proposedHeight2.

QC height-1 ∀j: upon receiving 2f+1 votes for Pj’s height-1 block: {v, 1, j, id}k’s
combines the 2f+1 signatures into a view-v height-1 QC: qcv,1,j = {v, 1, j, id}. (†)

Vote height-2. For any j ∈ [n], upon receiving for the first time a height-2 proposal:
〈
bv,1,j ← bv,2,j =

[
v, 2, j, bv,1,j , txn, id

]〉
j

waits until obtaining a qcv,1,j on bv,1,j then votes by multicasting {v, 2, j, id}i.
QC height-2. ∀j, ∀w ∈ {v – 1, v},upon receiving for the first time 2f+1 votes for Pj’s height-2 block: {w, 2, j, id}k’s

combines the 2f+1 signatures into a view-w height-2 QC: qcw,2,j
(†)

Fast Decision vote (for height-2 blocks).

For any j ∈ [n], upon receiving for the first time a view-v height-2 proposer-j QC: qcv,2,j = {v, 2, j, id}
it multicasts {SPEED_VOTE, v, 2, j, id}i.

Figure 11: Only changes from 2PAClean (for 2PACBIG) and from s2PAClean (for s2PACBIG) are displayed (in black, vs gray if
unchanged). (∗): thus it waits no longer than δ before height-2 proposing. This could be sped-up by: upon receiving f+1
proposals (at the cost of potentially including less transactions in bv,2,i). (†): it could possibly multicast the QCs for further speed,
but this is not needed to match any of our latency bounds. Multicasting the SPEED_VOTE is necessary to make all processes
decide the pipelined block within 3δ.

22 to 121. We use the benchmarked computation times of
https://zka.lc/ for elementary operations on the curve BLS-381
implemented by gnark-crypto [15], running on an EC2 m5.2x
large instance. From these timings, we deduce the time taken
by the three main basic operations in both sMVBA and 2PAC,
which are: verification of 2f +1 signatures, combination into
a BLS-based multisignature [61], and verification of it. We
obtain that the total computation time of 2PAClean is smaller by
−20% to −27%, depending if a parameter called “Optimistic”
(below) is set to 0 or 1. Since the numerator of Eq. (1) is
+50% larger in 2PAClean than in sMVBA, its throughput is
thus larger by +80% to +104%. When Optimistic is set to 1,
the verification of 2f + 1 signatures is done in batch (this is
the methodology in [72]). Namely: by first combining them,
then verifying the multisignature. When Optimistic is set to 0,
the verification is done one by one (this is the methodology
in [46]). Since naively verifying 2f + 1 BLS signatures
would be prohibitive, we instead measure the verification time
of a nice speedup suggested in [37]. Namely, we consider
that a BLS signer also provides a Chaum-Pedersen proof of
equality of discrete logarithms between its signature: sk.H(m)
and its public key: sk.G2. Then, BLS verification amounts
to verification of this proof, which takes less than twice
the time to verify a Schnorr signature. The reason why the
computational gain of 2PAClean is comparatively higher when
Optimistic is set to 1, is that when so, then the optimization
to verify DocGs only once saves a cost comparatively closer
to optimistically combining and batch-verifying votes.

VII. VARIANTS, OPTIMIZATIONS & COMMENTS

1) Amortization over long values, with only +δ overhead:
Recall that the extension protocol Dumbo-MVBA? [55] com-
piles any asynchronous Mvba: C with (expected) latency into
one with asymptotic bit complexity O(Mn) over long M -sized
input values (but same message complexity: the messages-
cubic protocols of Table 5 cannot magically become linear).

Its blueprint can be adapted to 2PAC as follows. Each pro-
poser disperses its block b with error-correction encoding,
then collects signatures into a certificate of retrievability:
lock := (σ, c). Technically, c is a vector commitment to
codewords of b and σ a threshold signature of declarations
to have received a correct opening of a coordinate of c. After
this 2δ-long round-trip, the proposer can finally propose the
lock in its instance. Upon learning the elected leader, processes
reconstruct its block b in one δ step, called “Re-Cast” in [55].
We make the observation that in 2PAC, the first 2δ round-trip
can be spared by merging it into the proposal step. Indeed,
since σ is a threshold signature on a unique digest of b : c, it
plays the role of a QC on b .

Since a lattice-based c can weigh hundreds of kilobytes,
we propose the minor improvement to further reduce the lock
in Dumbo-MVBA?, as:

(
σ,Hash(c)

)
.

2) Adaptive corruptions: Adaptive security can be achieved
in all 2PAC protocols, simply by using adaptively-secure prim-
itives. For instance, [6, 25, 7] provide unique non-interactive
threshold signatures, which can thus be hashed into adaptive
common coins ([60]). We refer to the nice discussion on
adaptive fairness in [46, Appendix E].

Acknowledgements

We thank Julian Loss for notifying of 2-chain_VABA,
Zhuolun Xiang for exchanges on 2-chain_VABA, Zhenliang
Lu for exchanges on sMVBA and Nathan Rouillé for useful
comments on the paper.

13

REFERENCES

[1] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass,
L. Ren, and E. Shi. “Communication complexity of
byzantine agreement, revisited”. In: Distributed Comput.
(2023).

[2] I. Abraham, D. Malkhi, and A. Spiegelman. “Asymp-
totically Optimal Validated Asynchronous Byzantine
Agreement”. In: PODC. 2019.

[3] I. Amores-Sesar and C. Cachin. “We will DAG you”.
In: CoRR abs/2311.03092 (2023).

[4] Aptos. Implementation of Aptos consensus, following
Diem. https://github.com/aptos- labs/aptos- core/blob/
main/consensus/consensus-types/src/timeout_2chain.rs
Retrieved on June 23, 2024. 2024.

[5] B. Arun, Z. Li, F. Suri-Payer, S. Das, and A. Spiegel-
man. Shoal++: High Throughput DAG BFT Can Be
Fast! 2024.

[6] R. Bacho and J. Loss. “On the Adaptive Security of the
Threshold BLS Signature Scheme”. In: CCS. 2022.

[7] R. Bacho, J. Loss, G. Stern, and B. Wagner. HARTS:
High-Threshold, Adaptively Secure, and Robust Thresh-
old Schnorr Signatures. ePrint 2024/280. 2024.

[8] M. Ben-Or, R. Canetti, and O. Goldreich. “Asyn-
chronous Secure Computation”. In: STOC. 1993.

[9] M. Ben-Or and R. El-Yaniv. “Resilient-optimal inter-
active consistency in constant time”. In: Distributed
Comput. (2003).

[10] M. Ben-Or, B. Kelmer, and T. Rabin. “Asynchronous
Secure Computations with Optimal Resilience (Ex-
tended Abstract)”. In: PODC. 1994.

[11] E. Blum, J. Katz, J. Loss, K. Nayak, and S. Ochsen-
reither. “Abraxas: Throughput-Efficient Hybrid Asyn-
chronous Consensus”. In: CCS. 2023.

[12] A. Boldyreva. “Threshold Signatures, Multisignatures
and Blind Signatures Based on the Gap-Diffie-Hellman-
Group Signature Scheme”. In: PKC. Latest long version
at https://faculty.cc.gatech.edu/~aboldyre/papers/b.pdf.
2003.

[13] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggre-
gate and Verifiably Encrypted Signatures from Bilinear
Maps”. In: EUROCRYPT. 2003.

[14] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghu-
nathan. “Key Homomorphic PRFs and Their Applica-
tions”. In: CRYPTO. 2013.

[15] G. Botrel, T. Piellard, Y. E. Housni, A. Tabaie, and I.
Kubjas. ConsenSys/gnark-crypto: v0.6.1. 2022.

[16] V. Buterin and V. Griffith. “Casper the Friendly Finality
Gadget”. In: arxiv 1710.09437 (2017).

[17] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. “Se-
cure and Efficient Asynchronous Broadcast Protocols”.
In: CRYPTO. 2001.

[18] C. Cachin, K. Kursawe, and V. Shoup. “Random Oracles
in Constantinople: Practical Asynchronous Byzantine
Agreement Using Cryptography”. In: J. Cryptol. (2005).

[19] M. Castro and B. Liskov. “Practical Byzantine Fault
Tolerance”. In: OSDI. 1999.

[20] B. Y. Chan and R. Pass. “Simplex Consensus: A Simple
and Fast Consensus Protocol”. In: TCC. 2023.

[21] H. Cheng, Y. Lu, Z. Lu, Q. Tang, Y. Zhang, and Z.
Zhang. JUMBO: Fully Asynchronous BFT Consensus
Made Truly Scalable. 2024.

[22] X. Dai, G. Wang, J. Xiao, Z. Guo, R. Hao, X. Xie, and
H. Jin. “LightDAG: A Low-latency DAG-based BFT
Consensus through Lightweight Broadcast”. In: IPDPS.
2024.

[23] X. Dai, B. Zhang, H. Jin, and L. Ren. ParBFT: Faster
Asynchronous BFT Consensus with a Parallel Optimistic
Path. ePrint 2023/679. 2023.

[24] X. Dai, Z. Zhang, J. Xiao, J. Yue, X. Xie, and H.
Jin. “GradedDAG: An Asynchronous DAG-based BFT
Consensus with Lower Latency”. In: SRDS. 2023.

[25] S. Das and L. Ren. Adaptively Secure BLS Threshold
Signatures from DDH and co-CDH. ePrint 2023/1553.
2023.

[26] S. Das, Z. Xiang, and L. Ren. “Asynchronous Data
Dissemination and its Applications”. In: CCS. 2021.

[27] Diem. DiemBFT v4: State Machine
Replication in the Diem Blockchain.
https://developers.diem.com/papers/diem-consensus-
state-machine-replication-in-the-diem-blockchain/2021-
08-17.pdf. 2021.

[28] S. Duan, M. K. Reiter, and H. Zhang. “BEAT: Asyn-
chronous BFT Made Practical”. In: CCS. 2018.

[29] S. Duan, X. Wang, and H. Zhang. “FIN: Practical
Signature-Free Asynchronous Common Subset in Con-
stant Time”. In: CCS. 2023.

[30] S. Duan, H. Zhang, X. Sui, B. Huang, C. Mu, G. Di, and
X. Wang. “Dashing and Star: Byzantine Fault Tolerance
with Weak Certificates”. In: 2024.

[31] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. “Con-
sensus in the presence of partial synchrony”. In: J. ACM
(1988).

[32] M. F. Esgin, R. Steinfeld, D. Liu, and S. Ruj. “Efficient
Hybrid Exact/Relaxed Lattice Proofs and Applications
to Rounding and VRFs”. In: Crypto. 2023.

[33] H. Feng, Z. Lu, T. Mai, and Q. Tang. Making Hash-
based MVBA Great Again. ePrint 2024/479. 2024.

[34] M. Fitzi and M. Hirt. “Optimally Efficient Multi-Valued
Byzantine Agreement”. In: Podc. 2006.

[35] N. Fleischhacker, G. Herold, M. Simkin, and Z. Zhang.
“Chipmunk: Better Synchronized Multi-Signatures from
Lattices”. In: CCS. 2023.

[36] F. Gai, J. Niu, I. Beschastnikh, C. Feng, and S. Wang.
“Scaling Blockchain Consensus via a Robust Shared
Mempool”. In: ICDE. 2023.

[37] D. Galindo and J. Liu. “Robust Subgroup Multi-
signatures for Consensus”. In: CT-RSA. 2022.

[38] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang.
“Dumbo-NG: Fast Asynchronous BFT Consensus with
Throughput-Oblivious Latency”. In: CCS. 2022.

[39] J. Garay, A. Kiayias, and N. Leonardos. “The Bitcoin
Backbone Protocol: Analysis and Applications”. In:
EUROCRYPT. 2015.

[40] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A.
Spiegelman, and Z. Xiang. “Jolteon and Ditto: Network-
Adaptive Efficient Consensus with Asynchronous Fall-
back”. In: FC. we refer to the 18 June 2021 version on
arxiv. 2022.

[41] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A.
Spiegelman, and Z. Xiang. “Jolteon and Ditto: Network-
Adaptive Efficient Consensus with Asynchronous Fall-
back”. In: version 2024-04-30, fixing the FC’22 version
and the 2023-12 version. 2024.

14

[42] R. Gelashvili, L. Kokoris-Kogias, A. Spiegelman, and
Z. Xiang. “Brief Announcement: Be Prepared When
Network Goes Bad: An Asynchronous View-Change
Protocol”. In: PODC. 2021.

[43] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. K. Reiter, D. Seredinschi, O. Tamir,
and A. Tomescu. “SBFT: A Scalable and Decentralized
Trust Infrastructure”. In: DSN. 2019.

[44] G. Goren, Y. Moses, and A. Spiegelman. “Probabilis-
tic Indistinguishability and the Quality of Validity in
Byzantine Agreement”. In: Proceedings of the 4th ACM
Conference on Advances in Financial Technologies.
2023.

[45] V. Gramoli, Z. Lu, Q. Tang, and P. Zarbafian. Optimal
Asynchronous Byzantine Consensus with Fair Separa-
bility. ePrint. 2024.

[46] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang.
“Speeding Dumbo: Pushing Asynchronous BFT Closer
to Practice”. In: NDSS. 2022.

[47] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai. “Fast-
HotStuff: A Fast and Resilient HotStuff Protocol”. In:
IEEE Transactions on Dependable and Secure Comput-
ing (2023).

[48] A. Kavousi, Z. Wang, and P. Jovanovic. “SoK: Public
Randomness”. In: EuroS&P. 2024.

[49] I. Keidar, O. Naor, O. Poupko, and E. Shapiro. “Cordial
Miners: Fast and Efficient Consensus for Every Even-
tuality”. In: DISC. 2023.

[50] I. Khaburzaniya, K. Chalkias, K. Lewi, and H. Malvai.
“Aggregating and Thresholdizing Hash-Based Signa-
tures Using STARKs”. In: Asia CCS. 2022.

[51] A. Lewis-Pye and I. Abraham. “Fever: OptiFmal Re-
sponsive View Synchronisation”. In: Opodis. 2023.

[52] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu,
F. Long, and A. C. Yao. “A Decentralized Blockchain
with High Throughput and Fast Confirmation”. In:
USENIX ATC. 2020.

[53] C. Liu, S. Duan, and H. Zhang. “EPIC: Efficient Asyn-
chronous BFT with Adaptive Security”. In: DSN. 2020.

[54] Y. Lu, Z. Lu, and Q. Tang. “Bolt-Dumbo Transformer:
Asynchronous Consensus As Fast As the Pipelined
BFT”. In: CCS. 2022.

[55] Y. Lu, Z. Lu, Q. Tang, and G. Wang. “Dumbo-MVBA:
Optimal Multi-Valued Validated Asynchronous Byzan-
tine Agreement, Revisited”. In: PODC. 2020.

[56] D. Malkhi and K. Nayak. Extended Abstract: HotStuff-
2: Optimal Two-Phase Responsive BFT. ePrint
2023/397. 2023.

[57] D. Malkhi, C. Stathakopoulou, and M. Yin. “BBCA-
CHAIN: One-Message, Low Latency BFT Consensus
on a DAG”. In: FC. 2024.

[58] E. V. Mangipudi and A. P. Kate. “D-KODE: Distributed
Mechanism to Manage a Billion Discrete-Log Keys”. In:
FC. 2022.

[59] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. “The
Honey Badger of BFT Protocols”. In: CCS. 2016.

[60] R. Pass and E. Shi. “Thunderella”. In: EUROCRYPT.
2018.

[61] T. Ristenpart and S. Yilek. “The Power of Proofs-
of-Possession: Securing Multiparty Signatures against
Rogue-Key Attacks”. In: EUROCRYPT. 2007.

[62] N. Shrestha, R. Shrothrium, A. Kate, and K. Nayak.
Sailfish: Towards Improving Latency of DAG-based
BFT. ePrint 2024/472. 2024.

[63] A. Sonnino. Implementation of Jolteon. https://github.
com/asonnino/hotstuff/. 2021.

[64] A. Spiegelman, B. Aurn, R. Gelashvili, and Z. Li.
“Shoal: Improving DAG-BFT Latency And Robust-
ness”. In: FC. 2023.

[65] A. Spiegelman, N. Giridharan, A. Sonnino, and L.
Kokoris-Kogias. “Bullshark: DAG BFT Protocols Made
Practical”. In: CCS. 2022.

[66] C. Stathakopoulou, M. Pavlovic, and M. Vukolic. “State
machine replication scalability made simple”. In: Eu-
roSys’22. 2022.

[67] E. N. Tas, D. Zindros, L. Yang, and D. Tse. “Light
Clients for Lazy Blockchains”. In: FC. 2024.

[68] A. Tomescu, R. Chen, Y. Z. and Ittai Abraham, B.
Pinkas, G. Golan-Gueta, and S. Devadas. “Towards
Scalable Threshold Cryptosystems”. In: IEEE S&P.
2020.

[69] Z. Xiang. Implementation of the fallback of Ditto. https:
//github.com/danielxiangzl/Ditto/blob/main/consensus/
src/fallback.rs Retrieved on August 17 2023. 2021.

[70] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and
I. Abraham. “HotStuff: BFT Consensus with Linearity
and Responsiveness”. In: PODC. we refer to the arxiv
v6 long version. 2019.

[71] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta,
and I. Abraham. ““Two-phase HotStuff” in Sections 4.4
and 6 of HotStuff: BFT Consensus with Linearity and
Responsiveness”. In: PODC. 2019.

[72] T. Yurek, Z. Xiang, Y. Xia, and A. Miller. “Long Live
The Honey Badger: Robust Asynchronous DPSS and its
Applications”. In: USENIX security. 2023.

[73] H. Zhang, S. Duan, B. Zhao, and L. Zhu. “Water-
Bear: Practical Asynchronous BFT Matching Security
Guarantees of Partially Synchronous BFT”. In: USENIX
Security. 2023.

[74] Y. Zhou, Z. Zhang, H. Zhang, S. Duan, B. Hu, L.
Wang, and J. Liu. Dory: Asynchronous BFT with Re-
duced Communication and Improved Efficiency. ePrint
2022/1709. 2022.

APPENDIX A
DEFERRED DETAILS OF PROOFS

A. Proof of expected latency of 2PAClean (and of sMVBA)

We formalize the proof given in Sec. III-2 for the upper-
bound 9.5δ on the expected latency of 2PAClean. For each view
number v, we call lucky (roulette) roll, and denote LR(v), the
following event:

LR(v):=
{

Denote P(v) the first honest process which
multicasts a view-v coin share. Denote Q(v) the set
of height-2 QCs (issued by 2f + 1 distinct proposers)
which it received beforehand. Then one of them will be
endorsed, i.e., lead(v) is among these 2f+1 proposers.

}
Let us informally explain why our terminology is justified,
i.e., why electing lead(v) is like rolling a wheel with n
numbers. The index in [n] on which the wheel stops is, by

15

unpredictability of a common coin, independent of the view
of the adversary so far (this will be leveraged in Lemma 7
below). In particular it is independent of Q(v). If the wheel
stops on the index of one of the 2f+1 proposers in Q(v), then
this height-2 QC is promoted as endorsed, hence, constitutes a
DecCert. This explains why we say that the roll was “lucky”.

From Proposition 8 below, it follows that the random
variable L of the latency of an execution is upper-bounded
by the random variable L′ defined as follows. Let vD > 1 (D
for “decision”) be the random variable equal to the smallest
view number in which the roll is lucky. Namely:

(2) vD := min
(
v > 1 s.t.

[
¬LR(v′),∀v′ < v

]
∧ LR(v)

)
.

Then L′ = 6δ+7δ.(vD−1). Moreover, by Lemma 7 the events
{¬LR(v), v ∈ [1, ...,∞[} are independent. It follows that L′ is
“memory-less” with respect to the “past un-lucky rolls”, i.e.,
for all v:

(3) E
[
L′ |
{
¬LR(v ′),∀v ′ 6 v

}]
= 6δ + 7δ.(v – 1) + E[L′] .

Since by Lemma 7, each event ¬LR(v) has probability < 1/3,
we obtain the following inductive formula on E′ = E[L′] the
expectation of L′:

(4) E′ = 2/3.6δ + 1/3(7δ + E′)

from which the claimed E 6 E′ = 9.5δ follows.

We now estimate an upper-bound on the latency of sMVBA
[46] by the same method, then state and prove Lemma 7 and
Proposition 8. In sMVBA, each view v > 1 is as follows: if
LR(v) then an honest process decides by 6δ after all processes
have entered the view. Else, there are two extra asynchronous
rounds added at the end of the view, called “pre-vote and vote”.
So by 8δ after the view v started, if no honest process has
decided yet, then all processes have entered the next view v+1.
In conclusion, with the same notation as above, the latency
of an execution of sMVBA is upper-bounded by the random
variable L′′ defined as L′′ = 6δ+8δ.(vD−1). Since the events
{¬LR(v), v ∈ [1, ...,∞[} are also independent, and each of
probability < 1/3, we obtain the inductive formula on the
expectation of L′′: E′′ = 2/3.6δ+ 1/3(8δ+E′′), which gives
our estimated upper-bound E′′ = 10 for the expected latency
of sMVBA.

Lemma 7. The events {¬LR(v), v ∈ [1, ...,∞[}, are indepen-
dent. Each of them has probability < 1/3.

Proof: The times tcoin(v) at which the P(v)’s send their
coin shares are strictly ordered by increasing v. Thus all events
¬LR(v′) for v′ < v, are independent from ¬LR(v): otherwise,
unpredictability of the view-v coin would be broken. This
proves the first claim. The second claim follows from the fact
that the indices of the proposer in the set Q(v) of the height-2
QCs received by P(v), are independent from the view-v coin.
Indeed, otherwise, unpredictability of the view-v coin would
be broken.

Proposition 8. For each view number v, consider the time
t(v) := 6δ + (v − 1)7δ. Suppose that no process decided by
t(v). Then, by t(v): (i) ¬LR(v′) happened for all v′ 6 v; (ii)
and all processes have entered view v+1.

Proof: We proceed by induction on v. Let us first initialize
the induction by proving the proposition for v = 1. At 5δ:

- if an honest process has received a coin-QC: then all
honest processes receive it by 6δ;

- or, since no honest process received a coin-QC yet, all
honest processes are still in view 1. So each of them must
have formed a height-2 QC and multicast it, then received
2f+1 height-2 QCs, then multicast its coin share. Thus
by 6δ, all processes have obtained a view-1 coin-QC.

In conclusion, all processes have received a coin-QC by 6δ.
Since by assumption no honest process decided by t(1) = 6δ,
they must all have entered view v = 2, which proves (ii).
Moreover, consider P(1): since by assumption it did not decide
despite having received a view-1 coin-QC, it must be that none
of its 2f+1 height-2 QCs is endorsed, which proves (i).

Last, we assume that the proposition holds for all v ′ < v
for some v > 2, and deduce that it holds for v. We skip the
proof of this deduction, since it is identical to the case v = 1,
up to replacing “at 5δ” by: “at 6δ + (v − 2)7δ + 6δ”.

1) (One more time) intuition of the proof of consistency:
Let us explain again the intuition of the proof of consistency
of 2PAClean, formalized in Sec. III-1. Let us consider a view:
v – 1 and assume the induction statement that no view-(v – 1)
QC conflicts with any prior view-(< v – 1) DecCert. Let us
prove that the statement then holds for view-v QCs: it will
follow, by induction, that the statement holds for all views.

To this end, we consider a view-v QC: qcv,1. It is
descendent of a view-(v – 1) QC: qcv – 1,1. It always holds that
(i): no view-(< (v – 1)) DecCert conflicting with qcv,1 can
exist (since otherwise it would conflict with qcv – 1,1,lead(v – 1),
contradicting the assumption). Let us now prove (ii): no view-
(v – 1) DecCert conflicting with qcv,1 can exist, from which
the desired statement for v will follow.

Either qcv – 1,1 is endorsed. Then (ii) holds (since oth-
erwise a conflicting view-(v – 1) DecCert would conflict
with the endorsed qcv – 1,1, which is impossible by quorum
intersection). Hence, the desired statement holds. Or qcv – 1,1
is not endorsed. Thus at least one honest process (actually
f + 1 of them) checked existence of a threshold signature
{no_endorsed_height-1_QC, v}, i.e, a DocG. The DocG
proves that no view-(v – 1) DecCert could be made, which
in particular implies (ii)

APPENDIX B
FURTHER OPTIMIZATIONS

1) Leader election without forwarding the coin-QC: Ex-
isting post-quantum common coins, recalled in Sec. I, do
not come with an algorithm aggregating coin shares into a
constant-sized coin-QC. Fortunately, the leader-election mech-
anism in the 2PAC protocols can be modified into a variant
which does not require anymore to forward any coin-QC. In-
stead, the variant guarantees that all processes receive enough
coin shares. This variant is the one of sMVBA ([46, Alg 5 line
9]), it was introduced in a related context by [27] under the
name “Bracha timeout”.

The sMVBA variant. It consists in adding the following
trigger: a process multicasts its coin share also upon receiving
f+1 coin shares.

16

First, we show that the (worst-case) expected latency 9.5δ
of 2PAClean is unaffected. It is enough to show that Proposition
8 still holds. We prove it for the first view v = 1, i.e., we prove
the Claim: all honest processes entered view 2 by 6δ. [Proof
of the Claim. Assuming an execution where the Claim does
not hold. Thus, at 4δ, there would exist an honest proposer
P which did not collect 2f + 1 height-2 votes. For this to
happen, it must be that, at 3δ, there exists a process Q which
is already in the next view v+1. For this to happen, it must
be that Q received 2f + 1 coin shares before 3δ. Since f+1
of them were issued by honest processes, they will reach all
honest processes by 4δ, triggering them to multicast their coin
shares. Thus all honest processes will have left view v by 5δ,
a contradiction.]

Second (and last), we show that the good-case 6δ latency of
2PAClean is unaffected. Assume the contrary, then there would
exist an execution where, at 4δ, there would exist an honest
proposer P which did not collect 2f + 1 height-2 votes. For
this to happen, it must be that, at 3δ, there exists a process Q
which is already in the next view v+1. For this to happen, it
must be that Q received 2f + 1 coin shares before 3δ, thus
6δfast < 3δ, a contradiction.

2) Check only one DocG instead of 2f+1: In
both 2PAClean and 2PACBIG, the threshold signature
{no_endorsed_height-1_QC, v} needs to be checked
only once in a view v. Once checked, raize a flag
DocGchecked and accept non-endorsed QCs from other
proposers without checking DocGs from them. Similarly,
in s2PAClean and s2PACBIG, the threshold signature
{no_endorsed_height-2_QC, v} needs to be checked
only once in a view v. In Sec. B-3 we describe a further
optimization enabling proposers to optimistically not form
nor send a DocG, without losing latency in the worst-case.

3) Optimistically Skipping DocG: The optimization, which
applies to both 2PAClean and 2PACBIG (mutatis mutandis for
s2PAClean), is that in the second case of [Propose], the proposer
Pi optimistically sends only a bare non-endorsed view-(v – 1)
QC in its proposal

〈
qcv – 1,2 ← bv,1,i

〉
i, without the threshold

signature {no_endorsed_height-1_QC, v}. Then, a process
Pj accepts to [Lock Vote] for such a bare proposal, only if
Pj did not cast a view-(v – 1) height-VOTE for a conflicting
proposal of lead(v – 1) (notice that this is an adaptation of the
unlocking mechanism of Tendermint/two-phase Hotstuff [70,
p. 4.4]). It could happen that some slow processes Pj’s refuse
to [Vote - height 1] because they cast such a view-(v – 1)
VOTE for a height-2 block bv – 1,2. The key observation which
we make is that such slow processes must have already sent
to Pi the endorsed qcv – 1,2 ← bv – 1,2, in view-v [Report].
Thus proposer Pi will detect such Pj’s straight from their
[Report]-ed endorsed QCs. To such a process Pj , Pi sends
the threshold signature {no_endorsed_LockCert, v}, then Pj
accepts to Vote upon receiving it. In conclusion, no further
round-trip is needed between Pi and Pj .

Let us finally prove that this optimization preserves con-
sistency. Suppose that there exists a quorum of 2f+1 view-v
height-1 votes on a view-(v – 1) non-endorsed QC. Then, it
must be the case that no f +1 honest processes cast view-
(v – 1) height-2 votes for a height-2 block of lead(v – 1). Thus,
no view-(v – 1) DecCert conflicting with qcv – 1,2 ← bv,1,i

can ever exist. We then make the same kind of induction
argument as in the proof of consistency, i.e., that no (v – 1)-
QC conflicts with a DecCert of a lower view, to conclude
that qcv – 1,2 ← bv,1,i does not conflict with any lower view
DecCert.

4) Clever processing of mailbox: The proof of 6δ latency
in the good case would fail in an implementation allowing a
process to process incoming messages not in the order in which
they were received. For instance, the process could form first
a view-v coin-QC then move to view v+1, before processing
the view-v height-1 QCs which arrived before, preventing it
forever to height-2 vote for their child. To prevent this, it
must be precised that processes process all received view-v
messages before moving to view v+1.

5) Fast catch-up: A process advances to a higher view v ′

upon receiving any view-v′ QC (such a QC implies existence
of 2f + 1 view-(v ′ – 1) height-2 QCs, and of a coin-QC, so
the proofs of latencies apply unchanged).

6) Do not re-send messages infinitely many times, while
preserving liveness: In a model where messages could be lost,
processes would have to re-send a message m until they obtain
an ACK. Thus if the recipient is corrupt, they would re-send
it infinitely, thus the complexity would blow-up linearly in
v. We thus make the optimization that the only messages of
prior views v ′ < v that a process re-sends, are: the highest
DecCert which it has, and the coin-QC of the previous view
v – 1. Moreover, by the previous optimization (Sec. B-5), a
process can stop re-sending the latter as soon as it obtains a
QC of the current view.

APPENDIX C
FURTHER COMMENTS AND RELATED WORKS

1) More on MVBA: MVBA is the costliest building block
in most state-of-the-art asynchronous blockchain consensus
[46, 54, 38, 23, 21, 11, 45]. In addition, MVBA is the main
building block in most implementations [17, 46, 72, 29] of the
primitive called “agreement on a common/core subset” (ACS
[8, 10], also known as asynchronous interactive consistency
[9]). ACS is also a building block of blockchain consensus [72,
28, 53]. MVBA and/or ACS are also building blocks of proac-
tive resharing [72], PVSS-based distributed randomness gener-
ation [48] and threshold signing [7]. A classical requirement in
MVBA (also called VABA [2, 40]) is called (external) validity
[17, 46]. Such an MVBA is parametrized by any publicly
verifiable so-called validity predicate, denoted Mvba_valid ,
and it is further required that the output value x is appended
with a certificate π such that Mvba_valid(x, π) = true. All
our protocols can straightforwardly be made externally valid,
simply by having processes ignore messages containing non-
valid values, i.e., on which Mvba_valid returns false. For the
use-case of blockchain consensus, having quality removes the
need to impose external validity. Instead, it is advocated in
[67] that blockchains are faster when they outsource to clients
the task of pruning invalid transactions.

Note that the terminology of validated consensus is used in
[34] for the conflicting validity specification known as strong
unanimity ([31]). It would be straightforward to enforce strong
unanimity in 2PAC, provided a preliminary round as in [1, §6].

17

2) report after starting a view: Our convention of a view
beginning before report is in line with [19, 70, 51]. There,
processes switch to the next view as soon as they time-out,
before they send report messages to the next leader (formatted
as (NEW_VIEW, v+1, . . .) in [19]). Instead in GradedDAG, the
next view begins one round after leader election completed
(in sMVBA: two rounds after since there is “pre-vote” then
“vote”).

Figure 12: A view of GradedDAG with δfast < 2/3δ

3) GradedDAG under a half-fair scheduler: We describe a
fault-free scenario where the scheduler is half-fair (Def. 2) but
not fair, i.e., that δ/2 6 δfast < 2/3δ. For simplicity we further
consider that all messages to and from P4 take δ, while all
messages between other processes take δfast. All the discussion
still holds as long as round-trips to and from P4 take between
3/2× and 2× longer than round-trips between other processes.
For simplicity we consider the first view v = 1. Under such
assumptions, by Theorem 6, in 2PACBIG it is guaranteed that
a view-1 DecCert is formed (namely: all processes would
receive he-2 proposals from all proposers=processes while still
in view 1, thus vote for all of them). We now consider what
would happen in GradedDAG, following the description of
[24, p. IV C]. At t = 0, all processes act as senders of a
reliable broadcast (RBC). At 3δfast, all {P1,P2,P3} receive
certificates of termination of the RBCs of {P1,P2,P3} (recall
that certificate is a 2f+1 = 3-quorum of READY messages).
By our δ/2 6 δfast < 2/3δ assumption, at this point, none of
them received a quorum of ECHO, hence, could have sent a
READY for the RBC of P4. We conclude by the Claim: they
will never send READY for P4. The Claim implies that no
grade-2 block of P4 will ever be formed. In conclusion, if P4

is elected leader, no view-1 DecCert will ever be formed. With
very bad luck, such a scenario (of a slow elected leader) could
repeat in all higher views.[

Proof of the Claim. At 3δfast, Processes {P1,P2,P3}
create their CBC blocks, in which they do not reference the
block sent by P4. Indeed, they follow the rule in bold in the
last paragraph of page 4 of [24], forbidding one to reference
a block for which one did not receive at least a quorum of
ECHO (called a grade 1 block, in their terminology). Hence,
by the rule called “to guarantee safety” on the top of page 5 in
[24], all {P1,P2,P3} stop participating in the RBC instance

of P4.
]

4) Why a coin with threshold only f+1 prevents 6δ good-
case latency: We describe the counterexample for 2PAC as
if it had been instantiated with a (f+1)-threshold coin. The
counterexample also applies to 2-chain_VABA. By 5δfast, there
is an honest process: P(v) which sends its coin share. The
adversary immediately delivers to P(v) the f corrupt coin
shares from corrupt processes, as a result P(v) enters view
v+1 at 5δ. On the other hand, since the scheduler is assumed
only half-fair (but not fair), there could be honest processes
(acting as proposers) of which the height-1 block was still not
received by P(v) at 5δfast. Such bad event can happen, e.g., if
5/2δ 6 5δfast < 3δ. Hence, if corrupt processes do not vote,
then these honest processes will never obtain height-2 QCs on
their proposals.

18

